Sample records for doe nuclear facilities

  1. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  2. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Cancels DOE O 433.1A. Admin Chg 1, dated 3-12-2013, cancels DOE O 433.1B.

  3. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-13T23:59:59.000Z

    The Order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of Structures, Systems and Components (SSCs) that are part of the safety basis required by 10 CFR 830.202.1 at hazard category 1, 2 and 3 Department of Energy (DOE) nuclear facilities. Cancels DOE O 433.1. Canceled by DOE O 433.1B.

  4. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Admin Chg 1, dated 3-12-2013. Cancels DOE O 433.1A.

  5. Human factors methods in DOE nuclear facilities

    SciTech Connect (OSTI)

    Bennett, C.T.; Banks, W.W. (Lawrence Livermore National Lab., CA (United States)); Waters, R.J. (Department of Energy, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle.

  6. Innovative cement helps DOE safeguard nuclear facilities | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep...

  7. Order Module--DOE O 433.1B, MAINTENANCE MANAGEMENT PROGRAM FOR DOE NUCLEAR FACILITIES

    Broader source: Energy.gov [DOE]

    "The familiar level of this module is designed to summarize the basic information in DOE O 433.1B, Maintenance Management Program for DOE Nuclear Facilities. This Order canceled DOE O 433.1A. This...

  8. Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To establish selection, qualification, and training requirements for management and operating (M&O) contractor personnel involved in the operation, maintenance, and technical support of Department of Energy and National Nuclear Security Administration Category A and B reactors and non-reactor nuclear facilities. Canceled by DOE O 426.2

  9. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Cancels DOE G 420.1-1.

  10. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  11. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  12. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13, cancels DOE O 426.2.

  13. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility...

    Energy Savers [EERE]

    the use of the original version. The DOE-STD-3009-2014 training team (led by Garrett Smith: garrett.smith@hq.doe.gov (AU-31), and supported by David Compton, Jeff Woody, and...

  14. DOE's Approach to Nuclear Facility Safety Analysis and Management

    Broader source: Energy.gov [DOE]

    Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

  15. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13.

  16. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  17. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  18. DOE-STD-1064-94; DOE Standard Guideline to Good Practices For Seasonal Facility Preservation at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE STANDARD

  19. DOE-STD-1067; DOE Standard Guideline to Good Practices for Maintenance Facilities, Equipment, and Tools at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE STANDARD5-947-94

  20. DOE-STD-1072-94; DOE Standard Guideline to Good Practices for Facility Condition Inspections at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE9-94 June2-94 June

  1. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  2. Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned

    SciTech Connect (OSTI)

    Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

    2005-11-01T23:59:59.000Z

    From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

  3. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-12T23:59:59.000Z

    The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1.

  4. DOE-STD-1070-94; DOE Standard Guidelines for Evalation of Nuclear Facility Training Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE9-94 June 1994

  5. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  6. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-09T23:59:59.000Z

    The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1. Admin Chg 1, dated 6-14-13, cancels DOE G 433.1-1A.

  7. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    The order establishes the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shutdown. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  8. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-28T23:59:59.000Z

    To establish the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1. Canceled by DOE O 425.1B.

  9. Estimating inventory thresholds for nuclear facilities using DOE STD-1027-92 Attachment 1 Table A.1 ``Thresholds for Radionuclides``

    SciTech Connect (OSTI)

    Price, D. [Onsite Engineering and Management, Inc. (United States); Hildum, J.S.; Williams, A.C. [Onsite Engineering and Management, Inc. (United States)

    1997-04-01T23:59:59.000Z

    It has recently been reports that Table A.1 of Attachment 1 of DOE STD-1027-92 is being improperly used to determine the Category 3 inventory threshold values for non-reactor nuclear facilities. The concern of this paper is that Safety Analysts and Facility Managers at the Lawrence Livermore National Laboratory (LLNL), as well as at other locations in the DOE Complex, are improperly using the entries in Table A.1. It is noted at this point that the common use of this table is to establish the lower thresholds for both Categories 2 and 3 non-reactor nuclear facilities by considering inventory quantities, as opposed to a postulated accident scenario. This paper will provide insight regarding this error and will show that the error is most likely non-conservative in nature.

  10. DOE-STD-1065-94; DOE Standard Guideline to Good Practices For Postmaintenance Testing at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE STANDARD5-94 June

  11. DOE-STD-1068-94; DOE Standard Guideline to Good Practices For Maintenance History at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE

  12. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  13. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  14. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-03-13T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1B. Canceled by DOE O 425.1D

  15. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-21T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1A. Canceled by DOE O 425.1C.

  16. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-05T23:59:59.000Z

    This Guide describes a maintenance management program that would be acceptable to DOE for meeting the requirements of DOE O 433.1. Canceled by DOE G 433.1-1A.

  17. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09T23:59:59.000Z

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  18. Nuclear Physics User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    link The 88-Inch Cyclotron, located at the Lawrence Berkeley National Laboratory (LBNL) External link , supports ongoing research programs in nuclear structure, astrophysics,...

  19. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  20. DOE-STD-1069-94; Guideline to Good Practices for Maintenance Tools and Equipment Control at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE9-94 June 1994 DOE

  1. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  2. DOE Designated Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

  3. DOE Issues Landmark Rule for Risk Insurance for Advanced Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million)Guidance for|

  4. DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessage fromIdaho |

  5. DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOST MANAGEMENT REPORT26, 20119 - 2013 DOE

  6. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  7. Guidance for the design and management of a maintenance plan to assure safety and improve the predictability of a DOE nuclear irradiation facility. Final report

    SciTech Connect (OSTI)

    Booth, R.S.; Kryter, R.C.; Shepard, R.L.; Smith, O.L. [Oak Ridge National Lab., TN (United States); Upadhyaya, B.R. [Univ. of Tennessee, Knoxville, TN (United States). Dept. of Nuclear Engineering; Rowan, W.J.

    1994-10-01T23:59:59.000Z

    A program is recommended for planning the maintenance of DOE nuclear facilities that will help safety and enhance availability throughout a facility`s life cycle. While investigating the requirements for maintenance activities, a major difference was identified between the strategy suitable for a conventional power reactor and one for a research reactor facility: the latter should provide a high degree of predicted availability (referred to hereafter as ``predictability``) to its users, whereas the former should maximize total energy production. These differing operating goals necessitate different maintenance strategies. A strategy for scheduling research reactor facility operation and shutdown for maintenance must balance safety, reliability,and predicted availability. The approach developed here is based on three major elements: (1) a probabilistic risk analysis of the balance between assured reliability and predictability (presented in Appendix C), (2) an assessment of the safety and operational impact of maintenance activities applied to various components of the facility, and (3) a data base of historical and operational information on the performance and requirements for maintenance of various components. These factors are integrated into a set of guidelines for designing a new highly maintainable facility, for preparing flexible schedules for improved maintenance of existing facilities, and for anticipating the maintenance required to extend the life of an aging facility. Although tailored to research reactor facilities, the methodology has broader applicability and may therefore be used to improved the maintenance of power reactors, particularly in anticipation of peak load demands.

  8. Guidelines for Evaluation of Nuclear Facility Training Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22T23:59:59.000Z

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  9. User's guide to DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1984-01-01T23:59:59.000Z

    The Department of Energy's research laboratories represent valuable, often unique, resources for university and industrial scientists. It is DOE policy to make these laboratories and facilities available to qualified scientists. The answers to such questions as who are eligible, what and where are the facilities, what is the cost, when can they be used, are given. Data sheets are presented for each facility to provide information such as location, user contact, description of research, etc. A subject index refers to areas of research and equipment available.

  10. CRAD, Nuclear Facility Construction - Structural Concrete, May...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

  11. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12T23:59:59.000Z

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  12. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-12-30T23:59:59.000Z

    The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

  13. Biosafety Facilities - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G 151.1-5, Biosafety Facilities by David Freshwater Functional areas: Defense Nuclear Facility Safety and Health Requirement, Safety and Security, The Guide assists DOENNSA field...

  14. DOE-STD-1051-93; DOE Standard Guideline to Good Practices For Maintenance Organization and Administration at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-94 December8-964-931-93 March 1993 DOE

  15. DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-9464-94 June 1994 DOE9-94 June

  16. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  17. Facility Approvals, Security Surveys, and Nuclear Materials Surveys

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03T23:59:59.000Z

    To establish the Department of Energy (DOE) requirements for granting facility approvals prior to permitting safeguards and security interests on the premises and the conduct of on-site security and/or nuclear material surveys of facilities with safeguards and security interests. Cancels DOE O 5630.7 and DOE O 5634.1. Canceled by DOE 5634.1B.

  18. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  19. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  20. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  1. Facility Approvals, Security Surveys, and Nuclear Materials Surveys

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-15T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for granting facility approvals prior to permitting safeguards and security interests on the premises and the conduct of insite security and/or nuclear material surveys of facilities with safeguards and security interests. Cancels DOE 5634.1A. Canceled by DOE O 470.1 dated 9-28-95.

  2. DOE Facility Management Contracts Facility Owner Contractor

    Office of Environmental Management (EM)

    Palmer 630-252-2127 Oak Ridge Environmental Management EM Bechtel Jacobs Co LLC 12181997 12312011 12312011 Environmental Mgmt 1998 http:www.oakridge.doe.govexternal...

  3. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  4. Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

  5. Construction Cost Growth for New Department of Energy Nuclear Facilities

    SciTech Connect (OSTI)

    Kubic, Jr., William L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-05-25T23:59:59.000Z

    Cost growth and construction delays are problems that plague many large construction projects including the construction of new Department of Energy (DOE) nuclear facilities. A study was conducted to evaluate cost growth of large DOE construction projects. The purpose of the study was to compile relevant data, consider the possible causes of cost growth, and recommend measures that could be used to avoid extreme cost growth in the future. Both large DOE and non-DOE construction projects were considered in this study. With the exception of Chemical and Metallurgical Research Building Replacement Project (CMRR) and the Mixed Oxide Fuel Fabrication Facility (MFFF), cost growth for DOE Nuclear facilities is comparable to the growth experienced in other mega construction projects. The largest increase in estimated cost was found to occur between early cost estimates and establishing the project baseline during detailed design. Once the project baseline was established, cost growth for DOE nuclear facilities was modest compared to non-DOE mega projects.

  6. DOE Facility Management Contracts Facility Owner Contractor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOE

  7. Notice of Intent to Revise DOE G 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04T23:59:59.000Z

    This revision will incorporate new content devoted to Federal oversight and evaluation of effectiveness of activity-level work planning and control (WP&C) at Hazard Category 1, 2, and 3 nuclear facilities.

  8. DOE Facility Management Contracts Facility Owner Contractor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOEUniv. Of

  9. DOE Facility Management Contracts Facility Owner Contractor

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOEUniv.

  10. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16T23:59:59.000Z

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  11. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-01-26T23:59:59.000Z

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

  12. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-30T23:59:59.000Z

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1A.

  13. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  14. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16T23:59:59.000Z

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

  15. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  16. Human factors design guidelines for maintainability of Department of Energy nuclear facilities

    SciTech Connect (OSTI)

    Bongarra, J.P. Jr.; VanCott, H.P.; Pain, R.F.; Peterson, L.R.; Wallace, R.I.

    1985-06-18T23:59:59.000Z

    Intent of these guidelines is to provide design and design review teams of DOE nuclear facilities with human factors principles to enhance the design and aid in the inspection of DOE nuclear facilities, systems, and equipment. These guidelines are concerned with design features of DOE nuclear facilities which can potentially affect preventive and corrective maintenance of systems within DOE nuclear facilities. Maintenance includes inspecting, checking, troubleshooting, adjusting, replacing, repairing, and servicing activities. Other factors which influence maintainability such as repair and maintenance suport facilities, maintenance information, and various aspects of the environment are also addressed.

  17. WIPP Nuclear Facilities Transparency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsing Maps1DOE Awards Contract for WIPP Mobile4 WIPP5

  18. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01T23:59:59.000Z

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  19. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  20. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19T23:59:59.000Z

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  1. Nuclear Facility Construction - Structural Concrete, May 29,...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0) Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev....

  2. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  3. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  4. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  5. Nuclear Explosive Safety Evaluation Processes - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  6. CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  7. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility

  8. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  9. Facilities | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNateFacilities| National

  10. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect (OSTI)

    Shull, D; Joe Cordaro, J

    2007-03-28T23:59:59.000Z

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  11. Nuclear Facilities and Applied Technologies at Sandia

    SciTech Connect (OSTI)

    Wheeler, Dave; Kaiser, Krista; Martin, Lonnie; Hanson, Don; Harms, Gary; Quirk, Tom

    2014-11-28T23:59:59.000Z

    The Nuclear Facilities and Applied Technologies organization at Sandia National Laboratories Technical Area Five (TA-V) is the leader in advancing nuclear technologies through applied radiation science and unique nuclear environments. This video describes the organizations capabilities, facilities, and culture.

  12. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  13. ALARA training at DOE contractor facilities

    SciTech Connect (OSTI)

    Neeser, J.L.

    1992-05-22T23:59:59.000Z

    ALARA training is an important element of a sound ALARA program. ALARA training at a nuclear facility needs to be conducted for all occupational workers, for radiation workers, for radiation protection technicians, and for all other employees who have ALARA responsibilities. Each of these groups needs to receive ALARA training specific to their responsibilities. This report describes how to develop this training. It also outlines what should be included in an acceptable ALARA training program.

  14. Use of Facility Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To clarify and modify policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facility contractor employees located in the Washington, D.C., area. Cancels DOE N 350.5. Certified 12-28-06. Canceled by DOE O 350.2A.

  15. KRS Chapter 278: Nuclear Power Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

  16. PRTR/309 building nuclear facility preliminary

    SciTech Connect (OSTI)

    Cornwell, B.C.

    1994-12-08T23:59:59.000Z

    The hazard classification of the Plutonium Recycle Test Reactor (PRTR)/309 building as a ``Radiological Facility`` and the office portions as ``Other Industrial Facility`` are documented by this report. This report provides: a synopsis of the history and facility it`s uses; describes major area of the facility; and assesses the radiological conditions for the facility segments. The assessment is conducted using the hazard category threshold values, segmentation methodology, and graded approach guidance of DOE-STD-1027-92.

  17. Application of Nuclear Regulatory Commission Regulation Equivalency to Construction of New Nuclear Facilities

    SciTech Connect (OSTI)

    BISHOP, G.E.

    1999-06-02T23:59:59.000Z

    The Spent Nuclear Fuels Project (SNFP) Office of the Department of Energy (DOE), Richland Operations Office, is charged with moving 2.100 metric tons of spent nuclear fuel elements left over from plutonium production into semi-permanent storage at DOE'S Hanford site in Washington state. In anticipation of eventual NRC regulation, the DOE decided to impose NRC requirements on new SNFP facility design and construction, specifically for the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB). The SNFP implemented this policy of ''NRC equivalency'' with the goal of achieving a level of nuclear safety equivalent to that of NRC-licensed fuel processing facilities. Appropriate features of the NRC licensing process were adopted. However, the SNFP maintained applicable DOE requirements in tandem with the NRC regulations. Project work is continuing, with the first fuel movement scheduled for November, 2000.

  18. DOE Facility Management Contracts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2 RecordFacility Management

  19. Ground Test Facility for Propulsion and Power Modes of Nuclear Engine Operation

    SciTech Connect (OSTI)

    Michael, WILLIAMS

    2004-11-22T23:59:59.000Z

    Existing DOE Ground Test Facilities have not been used to support nuclear propulsion testing since the Rover/NERVA programs of the 1960's. Unlike the Rover/NERVA programs, DOE Ground Test facilities for space exploration enabling nuclear technologies can no longer be vented to the open atmosphere. The optimal selection of DOE facilities and accompanying modifications for confinement and treatment of exhaust gases will permit the safe testing of NASA Nuclear Propulsion and Power devices involving variable size and source nuclear engines for NASA Jupiter Icy Moon Orbiter (JIMO) and Commercial Space Exploration Missions with minimal cost, schedule and environmental impact. NASA site selection criteria and testing requirements are presented.

  20. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The purpose of this Guide is to provide U.S. Department of Energy (DOE) line management with guidance that may be useful to them in effectively and efficiently implementing the requirements of DOE O 226.1B, Implementation of Department of Energy Oversight Policy, date April 25, 2011, as applied to Federal line management of hazard category 1, 2, and 3 nuclear facilities.

  1. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  2. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  3. Guidelines for Evaluation of Nuclear Facility Training Programs...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0-94, Guidelines for Evaluation of Nuclear Facility Training Programs by Diane Johnson The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and...

  4. Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan, Departmental Representative to the DNFSB Defense Nuclear Facilities Safety Board (DNFSB) Update - Dale Govan,...

  5. DOE/NNSA Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Facility Management Contracts Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed Parent Companies LLC...

  6. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.

  7. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  8. Listing of Defense Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant Rocky Flats Environmental Technology Site, including the Oxnard Facility Savannah River Site Los Alamos National Laboratory Sandia National Laboratory Lawrence Livermore...

  9. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

  10. Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

    E-Print Network [OSTI]

    International Organization for Standardization. Geneva

    2004-01-01T23:59:59.000Z

    Nuclear facilities: criteria for the design and operation of ventilation systems for nuclear installations other than nuclear reactors

  11. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    SciTech Connect (OSTI)

    Ann M. Beauchesne

    2000-01-01T23:59:59.000Z

    Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.

  12. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07T23:59:59.000Z

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  13. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

  14. Code of Federal Regulations Procedural Rules for DOE Nuclear Activities Part II

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is issuing procedural rules to be used in applying its substantive regulations and orders relating to nuclear safety. These procedural rules are intended to be an essential part of the framework through which DOE deals with its contractors, subcontractors, and suppliers to ensure its nuclear facilities are operated in a manner that protects public and worker safety and the environment. In particular, this part sets forth the procedures to implement the provisions of the Price- Anderson Amendments Act of 1988 (PAAA) which subjects DOE contractors to potential civil and criminal penalties for violations of DOE rules, regulations and orders relating to nuclear safety (DOE Nuclear Safety Requirements).

  15. Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS

    Broader source: Energy.gov [DOE]

    The familiar level of this module is divided into two sections that are intended to provide only an overview of the material contained in DOE-STD-1104-2009, which should be consulted for complete...

  16. Heat transfer modeling of dry spent nuclear fuel storage facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-07-01T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geologic codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geologic repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  17. Heat Transfer Modeling of Dry Spent Nuclear Fuel Storage Facilities

    SciTech Connect (OSTI)

    Lee, S.Y.

    1999-01-13T23:59:59.000Z

    The present work was undertaken to provide heat transfer model that accurately predicts the thermal performance of dry spent nuclear fuel storage facilities. One of the storage configurations being considered for DOE Aluminum-clad Spent Nuclear Fuel (Al-SNF), such as the Material and Testing Reactor (MTR) fuel, is in a dry storage facility. To support design studies of storage options a computational and experimental program has been conducted at the Savannah River Site (SRS). The main objective is to develop heat transfer models including natural convection effects internal to an interim dry storage canister and to geological codisposal Waste Package (WP). Calculated temperatures will be used to demonstrate engineering viability of a dry storage option in enclosed interim storage and geological repository WP and to assess the chemical and physical behaviors of the Al-SNF in the dry storage facilities. The current paper describes the modeling approaches and presents the computational results along with the experimental data.

  18. DOE Approved Technical Standards | Department of Energy

    Energy Savers [EERE]

    safe operation of DOE's defense nuclear facilities. 03032004 DOE-STD-1181-2014 Facility Maintenance Management Functional Area Qualification Standard The Facility Maintenance...

  19. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  20. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1

    Broader source: Energy.gov [DOE]

    This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOEs operation of nuclear facilities.

  1. DOE Office of Nuclear Energy Transportation Planning, Route Selection...

    Office of Environmental Management (EM)

    DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

  2. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

  3. DOE Initiates Environmental Impact Statement for Global Nuclear...

    Energy Savers [EERE]

    DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy...

  4. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from the ConsumerNuclear EnergyNuclear

  5. Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79

    SciTech Connect (OSTI)

    NONE

    1989-07-01T23:59:59.000Z

    Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

  6. EFFECTIVE IMPLEMENTATION OF DOE RESTART ORDERS AND STANDARDS FOR DEACTIVATION FACILITIES

    SciTech Connect (OSTI)

    Tindal, W.C.; Daniels, D.L.

    2003-02-27T23:59:59.000Z

    Building 9206 at the Y-12 National Security Complex has recently completed an Operational Readiness Review (ORR). The scope of the review covered the transition from a post operation surveillance and maintenance (S&M) mode to a deactivation mode. This process has generated several lessons learned that may be valuable to other Department of Energy (DOE) nuclear facilities.

  7. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    SciTech Connect (OSTI)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01T23:59:59.000Z

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  8. NNSA and Defense Nuclear Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Saleshttp://www.fnal.gov/directorate/nalcal/nalcal02_07_05_files/nalcal.gif Directorate1, IssueThailand | National Nuclear Securityand

  9. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect (OSTI)

    VINCENT, Andrew

    2005-07-14T23:59:59.000Z

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

  10. Treatment of gaseous effluents at nuclear facilities

    SciTech Connect (OSTI)

    Goossen, W.R.A. [Studiecentrum voor Kernenergie, Mol (Belgium). Dept. of Chemical Engineering] [ed.; Eichholz, G.G.; Tedder, D.W. [eds.] [Georgia Institute of Technology, Atlanta, GA (United States)

    1991-12-31T23:59:59.000Z

    Airborne effluents from nuclear facilities represent the major environmental impact from such plants both under routine conditions or after plant accidents. Effective control of such emissions, therefore, constitutes a major aspect of plant design for nuclear power plants and other facilities in the nuclear fuel cycle. This volume brings together a number of review articles by experts in the various areas of concern and describes some of the removal systems that have been designed for power plants and, particularly, for reprocessing plants. Besides controlling the release of radionuclides, other potentially hazardous effluents, such as nitrous oxides, must be minimized, and these are included in some of the systems described. The various chapters deal with historic developments and current technology in reducing emission of fission products, noble gases, iodine, and tritium, and consider design requirements for practical installations.

  11. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  12. CRAD, Nuclear Facility Construction - Structural Steel, May 29...

    Broader source: Energy.gov (indexed) [DOE]

    Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Steel, May 29, 2009 May 29, 2009 Nuclear Facility Construction - Structural Steel (HSS CRAD 64-16, Rev. 0) This...

  13. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008Facility EngineeringFacility Ops

  14. Reports to the DOE Nuclear Data Committee

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  15. DOE/NNSA Facility Management Contracts

    Energy Savers [EERE]

    Institute Jeff Burgan 865-241-2513 Mark Million 865-576-4523 Savannah River Site (SRS) EM Savannah River Nuclear Solutions LLC (SRNS) DE-AC09-08SR22470 1102008 9302016 5 year...

  16. Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-07-01T23:59:59.000Z

    This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

  17. NEW - DOE O 452.2E, Nuclear Explosive Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

  18. Application of Engineering and Technical Requirements for DOE...

    Office of Environmental Management (EM)

    Engineering and Technical Requirements for DOE Nuclear Facilities Standard Review Plan (SRP) Application of Engineering and Technical Requirements for DOE Nuclear Facilities...

  19. DOE Facility Management Contracts | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at1450.5B OMB3.2 DOE F580.1 DOEUniv.DOE

  20. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  1. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  2. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  3. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  4. DOE Designated User Facilities | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. DepartmentEnergy ThisStandardsSeptember 7, 2012 PageDOE Designated User

  5. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-12-01T23:59:59.000Z

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation.

  6. DOE Facility Database - Datasets - OpenEI Datasets

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database Data and Resources DOE Facility DatabaseCSV Preview

  7. Nuclear Materials Stewardship Within the DOE Environmental Management Program

    SciTech Connect (OSTI)

    Bilyeu, J. D.; Kiess, T. E.; Gates, M. L.

    2002-02-26T23:59:59.000Z

    The Department of Energy (DOE) Environmental Management (EM) Program has made significant progress in planning disposition of its excess nuclear materials and has recently completed several noteworthy studies. Since establishment in 1997, the EM Nuclear Material Stewardship Program has developed disposition plans for excess nuclear materials to support facility deactivation. All nuclear materials have been removed from the Miamisburg Environmental Management Project (Mound), and disposition planning is nearing completion for the Fernald Environmental Management Project and the Rocky Flats Environmental Technology Site. Only a few issues remain for materials at the Hanford and Idaho sites. Recent trade studies include the Savannah River Site Canyons Nuclear Materials Identification Study, a Cesium/Strontium Management Alternatives Trade Study, a Liquid Technical Standards Trade Study, an Irradiated Beryllium Reflectors with Tritium study, a Special Performance Assessment Required Trade Study, a Neutron Source Trade Study, and development of discard criteria for uranium. A Small Sites Workshop was also held. Potential and planned future activities include updating the Plutonium-239 storage study, developing additional packaging standards, developing a Nuclear Material Disposition Handbook, determining how to recover or dispose of Pu-244 and U-233, and working with additional sites to define disposition plans for their nuclear materials.

  8. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

  9. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

  10. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  11. Facilities & Capabilities | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNate McDowellFacilities and

  12. Facilities & Projects | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNate McDowellFacilities

  13. Assessment of the facilities on Jackass Flats and other Nevada test site facilities for the new nuclear rocket program

    SciTech Connect (OSTI)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D. (Field Test Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States))

    1993-01-15T23:59:59.000Z

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. In particular we have assumed that the program goal will be to certify a full engine system design as flight test ready. All nuclear and non-nuclear components will be individually certified as ready for such a test at sites remote from the NRDA facilities, the components transported to NRDA, and the engine assembled. We also assume that engines of 25,000--100,000 lb thrust levels will be tested with burn times of 1 hour or longer. After a test, the engine will be disassembled, time critical inspections will be executed, and a selection of components will be transported to remote inspection sites. The majority of the components will be stored for future inspection at Jackass Flats. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad.

  14. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  15. Notice of Intent to Develop a Page Change for DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    The Page Change will be strictly limited in scope to changes necessary to accomplish the following objectives: (1) to invoke revised DOE-STD- 1104-20xx, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, as a required method; (2) to invoke revised DOE-STD-3009-20xx, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis, as a required method for new nuclear facilities as discussed below; and (3) to make miscellaneous administrative corrections and clarifications based on the one-year implementation review required by DOE O 251.1C, Departmental Directives Program. This JM is an update to one approved June 21, 2013.

  16. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  17. Hazard classification criteria for non-nuclear facilities

    SciTech Connect (OSTI)

    Mahn, J.A.; Walker, S.A.

    1997-03-01T23:59:59.000Z

    Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

  18. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) December 4, 2014 CRAD,...

  19. The necessity for permanence : making a nuclear waste storage facility

    E-Print Network [OSTI]

    Stupay, Robert Irving

    1991-01-01T23:59:59.000Z

    The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

  20. Evaluation of natural phenomena hazards as part of safety assessments for nuclear facilities

    SciTech Connect (OSTI)

    Kot, C.A.; Hsieh, B.J.; Srinivasan, M.G.; Shin, Y.W.

    1995-02-01T23:59:59.000Z

    The continued operation of existing US Department of Energy (DOE) nuclear facilities and laboratories requires a safety reassessment based on current criteria and guidelines. This also includes evaluations for the effects of Natural Phenomena Hazards (NPH), for which these facilities may not have been designed. The NPH evaluations follow the requirements of DOE Order 5480.28, Natural Phenomena Hazards Mitigation (1993) which establishes NPH Performance Categories (PCs) for DOE facilities and associated target probabilistic performance goals. These goals are expressed as the mean annual probability of exceedance of acceptable behavior for structures, systems and components (SSCs) subjected to NPH effects. The assignment of an NPH Performance Category is based on the overall hazard categorization (low, moderate, high) of a facility and on the function of an SSC under evaluation (DOE-STD-1021, 1992). Detailed guidance for the NPH analysis and evaluation criteria are also provided (DOE-STD-1020, 1994). These analyses can be very resource intensive, and may not be necessary for the evaluation of all SSCs in existing facilities, in particular for low hazard category facilities. An approach relying heavily on screening inspections, engineering judgment and use of NPH experience data (S. J. Eder et al., 1993), can minimize the analytical effort, give reasonable estimates of the NPH susceptibilities, and yield adequate information for an overall safety evaluation of the facility. In the following sections this approach is described in more detail and is illustrated by an application to a nuclear laboratory complex.

  1. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  2. CRAD, Nuclear Facility Construction - Piping and Pipe Supports...

    Broader source: Energy.gov (indexed) [DOE]

    March 29, 2012 Nuclear Facility Construction - Piping and Pipe Supports Inspection Criteria, Approach and Lines of Inquiry (HSS CRAD 45-52, Rev. 0) This Criteria Review and...

  3. Nuclear Facility Safety Basis Fundamentals Self-Study Guide ...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1) November 2002 Nuclear...

  4. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11

    Broader source: Energy.gov [DOE]

    It is the policy of the Department of Energy (DOE) to design, construct, operate anddecommission its nuclear facilities in a manner that ensures adequate protection ofworkers, the public, and the...

  5. DOE Site Facility Management Contracts Internet Posting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014ContributingDOE Contract DOEEnergy Site Facility Management

  6. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect (OSTI)

    R. Rohe; T. N. Tranter

    2011-12-01T23:59:59.000Z

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  7. Part of the National Nuclear User Facility Culham Materials

    E-Print Network [OSTI]

    Part of the National Nuclear User Facility Culham Materials Research Facility #12;Introduction from Professor Steve Cowley Culham's Materials Research Facility (MRF) is a valuable addition to the UK's suite and fusion ­ with equipment for the processing and micro-characterisation of radioactive materials, for on

  8. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  9. Modern tornado design of nuclear and other potentially hazardous facilities

    SciTech Connect (OSTI)

    Stevenson, J.D. [J.D. Stevenson Consulting Engineer, Cleveland, OH (United States); Zhao, Y. [Battele Energy Systems Group, Columbus, OH (United States)

    1996-01-01T23:59:59.000Z

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  10. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Defense Programs Research, Development, Test, and Evaluation Inertial Confinement Fusion ICF Facilities ICF Facilities Nike mirror array and lens array ICF operates a set...

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  12. US Department of Energy (DOE)/Gosatomnadzor (GAN) of Russia project at the Petersburg Nuclear Physics Institute (PNPI)

    SciTech Connect (OSTI)

    Baranov, I.A.; Konoplev, K.A. [Petersburg Nuclear Physics Institute, Gatchina (Russian Federation); Hauser, G.C. [Sandia National Lab., Albuquerque, NM (United States)] [and others

    1997-08-01T23:59:59.000Z

    This paper presents a summary of work accomplished within the scope of the DOE-Gosatomnadzor (GAN) Agreement to reduce vulnerability to theft of direct-use nuclear materials in Russia. The DOE-GAN agreement concerns the Russian Academy of Science B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), located 45 kilometers from St. Petersburg. The PNPI operates facilities to research basic nuclear physics. Current world conditions require particular attention to the issue of Material Protection, Control, and Accounting (MPC&A) of nuclear materials. The long-term plan to increase security at the facility is outlined, including training, physical protection upgrades, and material control and accountability. 4 figs.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  14. Frequently Asked Questions Regarding DOE Order 420.1C, Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Phenomena Hazards Analysis and Design Criteria for DOE Facilities, and DOE-STD-1066-2012, Fire Protection. Frequently Asked Questions Regarding DOE Order 420.1C,...

  15. Nuclear Data Capabilities Supported by the DOE NCSP

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) Nuclear Data

  16. DOE Handbook: Implementing Activity-level Work Planning & Control...

    Office of Environmental Management (EM)

    Nuclear Facilities DOE Handbook: Implementing Activity-level Work Planning & Control at Nuclear Facilities May 16, 2013 Presenter: James Winter, NA-00-10 Topics Covered: Project...

  17. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This volume contains the appendices that provide additional environment, safety, and health (ES and H) information to complement Volume 1 of this Standard. Appendix A provides a set of candidate DOE ES and H directives and external regulations, organized by hazard types that may be used to identify potentially applicable directives to a specific facility disposition activity. Appendix B offers examples and lessons learned that illustrate implementation of ES and H approaches discussed in Section 3 of Volume 1. Appendix C contains ISMS performance expectations to guide a project team in developing and implementing an effective ISMS and in developing specific performance criteria for use in facility disposition. Appendix D provides guidance for identifying potential Applicable or Relevant and Appropriate Requirements (ARARs) when decommissioning facilities fall under the Comprehensive Environmental Response, Compensation, Liability Act (CERCLA) process. Appendix E discusses ES and H considerations for dispositioning facilities by privatization. Appendix F is an overview of the WSS process. Appendix G provides a copy of two DOE Office of Nuclear Safety Policy and Standards memoranda that form the bases for some of the guidance discussed within the Standard. Appendix H gives information on available hazard analysis techniques and references. Appendix I provides a supplemental discussion to Sections 3.3.4, Hazard Baseline Documentation, and 3.3.6, Environmental Permits. Appendix J presents a sample readiness evaluation checklist.

  18. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect (OSTI)

    Laidler, J.J.

    1995-02-01T23:59:59.000Z

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  19. The LLNL Heavy Element Facility -- Facility Management, Authorization Basis, and Readiness Assessment Lessons Learned in the Heavy Element Facility (B251) Transition from Category II Nuclear Facility to Radiological Facility

    SciTech Connect (OSTI)

    Mitchell, M; Anderson, B; Brown, E; Gray, L

    2006-04-10T23:59:59.000Z

    This paper presents Facility Management, Readiness Assessment, and Authorization Basis experience gained and lessons learned during the Heavy Element Facility Risk Reduction Program (RRP). The RRP was tasked with removing contaminated glove boxes, radioactive inventory, and contaminated ventilation systems from the Heavy Element Facility (B251) at Lawrence Livermore National Laboratory (LLNL). The RRP was successful in its goal in April 2005 with the successful downgrade of B251 from a Category II Nuclear Facility to a Radiological Facility. The expertise gained and the lessons learned during the planning and conduct of the RRP included development of unique approaches in work planning/work control (''Expect the unexpected and confirm the expected'') and facility management. These approaches minimized worker dose and resulted in significant safety improvements and operational efficiencies. These lessons learned can help similar operational and management activities at other sites, including facilities restarting operations or new facility startup. B251 was constructed at LLNL to provide research areas for conducting experiments in radiochemistry using transuranic elements. Activities at B251 once included the preparation of tracer sets associated with the underground testing of nuclear devices and basic research devoted to a better understanding of the chemical and nuclear behavior of the transuranic elements. Due to the age of the facility, even with preventative maintenance, facility safety and experimental systems were deteriorating. A variety of seismic standards were used in the facility design and construction, which encompassed eight building increments constructed over a period of 26 years. The cost to bring the facility into compliance with the current seismic and other requirements was prohibitive, and simply maintaining B251 as a Category II nuclear facility posed serious cost considerations under a changing regulatory environment. Considering the high cost of maintenance and seismic upgrades, the RRP was created to mitigate the risk of dispersal of radioactive material during an earthquake by removing the radioactive materials inventory and glove box contamination. LLNL adopted the goal of reducing the hazard categorization of the Facility from a Category II Nuclear Facility to a Radiological Facility. To support the RRP, B251 transitioned from a standby to a fully operational Category II Nuclear Facility, compliant with current regulations. A work control process was developed, procedures were developed, Authorization Basis Documents were created, work plans were written, off-normal drills practiced, a large number of USQ reviews were conducted, and a ''Type II'' Readiness Assessment (RA) was conducted to restart operations. Subsequent RA's focused on specific operations. Finally, a four-step process was followed to reach Radiological Status: (1) Inventory Reduction and D&D activities reduced the inventory and radiological contamination of the facility below the Category III threshold (DOE-STD-1027), (2) Radiological Safety Basis Document (SBD aka HAR) was approved by NNSA, (3) the inventory control system for a Radiological Facility was implemented, and (4) verification by NNSA of radiological status was completed.

  20. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18T23:59:59.000Z

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  1. MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY

    E-Print Network [OSTI]

    MISSION AND NEED FOR A FUSION NUCLEAR SCIENCE FACILITY Mission Gerald Navratil Need Mohamed Abdou (Deputy Chair, Oak Ridge National Laboratory) Ron Stambaugh (Deputy Chair, General Atomics) Mohamed Abdou

  2. CRAD, New Nuclear Facility Documented Safety Analysis and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Safety Requirements - December 2, 2014 (EA CRAD 31-07, Rev. 0) More Documents & Publications CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08...

  3. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  4. Nuclear Thermal Propulsion: A Joint NASA/DOE/DOD Workshop

    SciTech Connect (OSTI)

    Clark, J.S.

    1991-01-01T23:59:59.000Z

    Papers presented at the joint NASA/DOE/DOD workshop on nuclear thermal propulsion are compiled. The following subject areas are covered: nuclear thermal propulsion programs; Rover/NERVA and NERVA systems; Low Pressure Nuclear Thermal Rocket (LPNTR); particle bed reactor nuclear rocket; hybrid propulsion systems; wire core reactor; pellet bed reactor; foil reactor; Droplet Core Nuclear Rocket (DCNR); open cycle gas core nuclear rockets; vapor core propulsion reactors; nuclear light bulb; Nuclear rocket using Indigenous Martian Fuel (NIMF); mission analysis; propulsion and reactor technology; development plans; and safety issues.

  5. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    information visit the CFF webpage. CFF The containment chamber at LLNL's Contained Firing Facility Related Topics Maintaining the Stockpile stockpile stewardship R&D llnl Related...

  6. National Ignition Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  7. DOE-STD-1104

    Office of Environmental Management (EM)

    Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

  8. FDA Exemption Letter, 78EL-01DOE by LSSG for GOCG Facilities

    Broader source: Energy.gov [DOE]

    Food and Drug Administration response to Department of Energy's request for clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  9. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect (OSTI)

    Soelberg, Nicolas R. [Idaho National Laboratory, Idaho Falls, ID (United States); Garn, Troy [Idaho National Laboratory, Idaho Falls, ID (United States); Greenhalgh, Mitchell [Idaho National Laboratory, Idaho Falls, ID (United States); Law, Jack [Idaho National Laboratory, Idaho Falls, ID (United States); Jubin, Robert T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Strachan, Denis M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-01-01T23:59:59.000Z

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing. These can evolve in volatile species in the reprocessing facility off-gas streams, depending on the separations and reprocessing technologies that are used. Radionuclides that have been identified as volatile radionuclides are noble gases (most notably isotopes of Kr and Xe); 3H; 14C; and 129I. Radionuclides that tend to form volatile species that evolve into reprocessing facility off-gas systems are more challenging to efficiently control compared to radionuclides that tend to stay in solid or liquid phases. Future used fuel reprocessing facilities in the United States can require efficient capture of some volatile radionuclides in their off-gas streams to meet regulatory emission requirements. In aqueous reprocessing, these radionuclides are most commonly expected to evolve into off-gas streams in tritiated water [3H2O (T2O) and 3HHO (THO)], radioactive CO2, noble gases, and gaseous HI, I2, or volatile organic iodides. The fate and speciation of these radionuclides from a non-aqueous fuel reprocessing facility is less well known at this time, but active investigations are in progress. An Off-Gas Sigma Team was formed in late FY 2009 to integrate and coordinate the Fuel Cycle Research and Development (FCR&D) activities directed towards the capture and sequestration of the these volatile radionuclides (Jubin 2012a). The Sigma Team concept was envisioned to bring together multidisciplinary teams from across the DOE complex that would work collaboratively to solve the technical challenges and to develop the scientific basis for the capture and immobilization technologies such that the sum of the efforts was greater than the individual parts. The Laboratories currently participating in this effort are Argonne National Laboratory (ANL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL). This article focuses on control of volatile radionuclides that evolve during aqueous reprocessing of UNF. In particular, most of the work by the Off-gas Sigma Team has focused on the capture and sequestration of 129I and 85Kr, mainly because, as discussed below, control of 129I can require high efficiencies to meet regulatory requirements, and control of 85Kr using cryogenic processing, which has been the technology demonstrated and used commercially to date, can add considerable cost to a reprocessing facility.

  10. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01T23:59:59.000Z

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called Safeguards-by-Design. This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  11. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central and Technology Center (UCLA) President, Council of Energy Research and Education Leaders, CEREL (USA) With input

  12. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-31T23:59:59.000Z

    To establish policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), management and operating (M&O) and other facility management contractor employees assigned to the Washington, D.C. area. Cancels DOE O 350.2A

  13. Test facilities for evaluating nuclear thermal propulsion systems

    SciTech Connect (OSTI)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C. (Sandia National Labs., Albuquerque, NM (United States)); Todosow, M. (Brookhaven National Lab., Upton, NY (United States))

    1992-09-22T23:59:59.000Z

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.

  14. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  15. High Explosives Application Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    and counterterrorism. Examples include the following: Stockpile Stewardship, assuring the reliability and safety of our nuclear weapons; Conventional weapon development, including...

  16. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14T23:59:59.000Z

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  17. Combined Heat and Power for Federal Facilities and the DOE CHP...

    Office of Environmental Management (EM)

    and Power for Federal Facilities and the DOE CHP Technical Assistance Partnerships Hosted by: FEDERAL UTILITY PARTNERSHIP WORKING GROUP SEMINAR May 7 - 8, 2014 Virginia Beach, VA...

  18. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research & Development Principal...

  19. Improved Design of Nuclear Reactor Control System | U.S. DOE...

    Office of Science (SC) Website

    Improved Design of Nuclear Reactor Control System Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  20. Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Wallet Cards at BNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of Nuclear Science...

  1. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  2. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for complete, verifiable and irreversible dismantlement, or CVID. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  3. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

    Energy Savers [EERE]

    Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY...

  4. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  6. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  7. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01T23:59:59.000Z

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  8. Local Government Implementation of Long-Term Stewardship at Two DOE Facilities

    SciTech Connect (OSTI)

    John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

    2003-08-13T23:59:59.000Z

    The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

  9. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  10. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy Savers [EERE]

    of Energy (DOE) today announced it has received 19 Part I applications from 17 electric power companies for federal loan guarantees to support the construction of 14 nuclear power...

  11. Nuclear Safety Policy - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED SEN-35-91, Nuclear Safety Policy by jnichols Functional areas: Environment, Safety, and Health, Canceled by DOE P 420.1 n3591.pdf -- PDF Document, 20 KB Writer: jnichols...

  12. Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning

    SciTech Connect (OSTI)

    JACKSON, M.W.

    2002-05-01T23:59:59.000Z

    DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

  13. Ground test facility for SEI nuclear rocket engines

    SciTech Connect (OSTI)

    Harmon, C.D.; Ottinger, C.A.; Sanchez, L.C.; Shipers, L.R.

    1992-08-01T23:59:59.000Z

    Nuclear Thermal Propulsion (NTP) has been identified as a critical technology in support of the NASA Space Exploration Initiative (SEI). In order to safely develop a reliable, reusable, long-lived flight engine, facilities are required that will support ground tests to qualify the nuclear rocket engine design. Initial nuclear fuel element testing will need to be performed in a facility that supports a realistic thermal and neutronic environment in which the fuel elements will operate at a fraction of the power of a flight weight reactor/engine. Ground testing of nuclear rocket engines is not new. New restrictions mandated by the National Environmental Protection Act of 1970, however, now require major changes to be made in the manner in which reactor engines are now tested. These new restrictions now preclude the types of nuclear rocket engine tests that were performed in the past from being done today. A major attribute of a safely operating ground test facility is its ability to prevent fission products from being released in appreciable amounts to the environment. Details of the intricacies and complications involved with the design of a fuel element ground test facility are presented in this report with a strong emphasis on safety and economy.

  14. Use of Facility Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    To clarify and modify policies and procedures for management of Department of Energy (DOE) facility contractor employees located in the Washington, D.C., area. A facility contractor employee is any employee of either a contractor responsible for managing a Department-owned facility, such as a National Laboratory, or a subcontractor of such a contractor. Facility contractor means any contractor performing under a Management and Operating (M&O), Management and Integration (M&I), or Environmental Restoration Management Contractor (ERMC) contract awarded by a DOE contracting officer. Canceled by DOE O 350.2.

  15. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06T23:59:59.000Z

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  16. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

  17. Nuclear Facility Risk Ranking | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732onMake YourDepartment of EnergyNoticeFacility Risk Ranking

  18. Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST) Strategic Issues, challenges, and Facilities Nuclear Science & Technology (FNST) The nuclear environment also affects Tritium Fuel Cycle separation PFC & Blanket T processing design dependent optics 3 #12;Fusion Nuclear Science and Technology

  19. An assessment of alternatives and technologies for replacing ozone- depleting substances at DOE facilities

    SciTech Connect (OSTI)

    Purcell, C.W.; Miller, K.B.; Friedman, J.R.; Rapoport, R.D.; Conover, D.R.; Hendrickson, P.L. [Pacific Northwest Lab., Richland, WA (United States); Koss, T.C. [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

    1992-10-01T23:59:59.000Z

    Title VI of the Clean Air Act, as amended, mandates a production phase-out for ozone-depleting substances (ODSs). These requirements will have a significant impact on US Department of Energy (DOE) facilities. Currently, DOE uses ODSs in three major activities: fire suppression (halon), refrigeration and cooling (chlorofluorocarbons [CFCs]), and cleaning that requires solvents (CFCs, methyl chloroform, and carbon tetrachloride). This report provides basic information on methods and strategies to phase out use of ODSs at DOE facilities.

  20. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  4. Inventory extension at the Nuclear Materials Storage Facility

    SciTech Connect (OSTI)

    Stanbro, W.D.; Longmire, V.; Olinger, C.T.; Argo, P.E.

    1996-09-01T23:59:59.000Z

    The planned renovation of the Nuclear Material Storage Facility (NMSF) at Los Alamos National Laboratory will be a significant addition to the plutonium storage capacity of the nuclear weapons complex. However, the utility of the facility may be impaired by an overly conservative approach to performing inventories of material in storage. This report examines options for taking advantage of provisions in Department of Energy orders to extend the time between inventories. These extensions are based on a combination of modern surveillance technology, facility design features, and revised operational procedures. The report also addresses the possibility that NMSF could be the site of some form of international inspection as part of the US arms control and nonproliferation policy.

  5. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01T23:59:59.000Z

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  6. National Ignition Facility | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security |

  7. Infrastructure and Facilities Management | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFPTri-PartyFor many yearsSandia

  8. Public Reading Facilities | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News,Program90803| DepartmentPseudogaps,Point ThisReading

  9. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies |MarchContained Firing

  10. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiability Nuclear

  11. Nuclear Facility Operations | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire3627 Federal Register /7 This is aLinksNuclearOperations

  12. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Criticality Safety Program Conference April 27, 2011 #12;2Mechanical, Aerospace and Nuclear, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility Nuclear Criticality Safety1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

  13. Operation technology of air treatment system in nuclear facilities

    E-Print Network [OSTI]

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01T23:59:59.000Z

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  14. User Facilities and DOE Programs Related to Imaging and Measurement...

    Office of Science (SC) Website

    (NCXT) at the Advanced Light Source External link Other Relevant Resources High-Performance Computing and Data Storage Facilities Molecular Science Computing (MSC) External link...

  15. DOE Designated User Facilities Multiple Laboratories * ARM Climate...

    Broader source: Energy.gov (indexed) [DOE]

    * Energy Sciences Network( ESnet) ** * Joint Genome Institute (JGI) - Production Genomics Facility(PGF)** (joint with LLNL, LANL, ORNL and PNNL) * Advanced Light Source (ALS)...

  16. A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation

    E-Print Network [OSTI]

    Iamsumang, Chonlagarn

    2010-01-01T23:59:59.000Z

    With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to the inclusion of highly enriched material and reprocessing ...

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  18. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01T23:59:59.000Z

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  19. Facility Operations and User Support | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014Facilities FusionFacility Data

  20. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energys (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOEs mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project teams successful integration of the projects core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOEs mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  1. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    SciTech Connect (OSTI)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

  2. Nuclear space power safety and facility guidelines study

    SciTech Connect (OSTI)

    Mehlman, W.F.

    1995-09-11T23:59:59.000Z

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  3. End points for facility deactivation

    SciTech Connect (OSTI)

    Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

  4. ORAU Wins DOE Facility Management Contractor Small Business Achievemen...

    Office of Environmental Management (EM)

    visibility of the Small Business Program. In addition, ORAU participates in the DOE Mentor-Protg Program, providing mentoring opportunities and outreach in an effort to...

  5. DOE Nuclear Weapon Reliability Definition: History, Description, and Implementation

    SciTech Connect (OSTI)

    Wright, D.L.; Cashen, J.J.; Sjulin, J.M.; Bierbaum, R.L.; Kerschen, T.J.

    1999-04-01T23:59:59.000Z

    The overarching goal of the Department of Energy (DOE) nuclear weapon reliability assessment process is to provide a quantitative metric that reflects the ability of the weapons to perform their intended function successfully. This white paper is intended to provide insight into the current and long-standing DOE definition of nuclear weapon reliability, which can be summarized as: The probability of achieving the specified yield, at the target, across the Stockpile-To-Target Sequence of environments, throughout the weapon's lifetime, assuming proper inputs.

  6. DOE's Office of Nuclear Energy Honored

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetric Tons ofDOE's

  7. DOE Turns 25 | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies HighAnnounces PlansTurns

  8. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  9. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

    2013-07-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  10. Assessment of a hot hydrogen nuclear propulsion fuel test facility

    SciTech Connect (OSTI)

    Watanabe, H.H.; Howe, S.D.; Wantuck, P.J.

    1991-01-01T23:59:59.000Z

    Subsequent to the announcement of the Space Exploration Initiative (SEI), several studies and review groups have identified nuclear thermal propulsion as a high priority technology for development. To achieve the goals of SEI to place man on Mars, a nuclear rocket will operate at near 2700K and in a hydrogen environment at near 60 atmospheres. Under these conditions, the operational lifetime of the rocket will be limited by the corrosion rate at the hydrogen/fuel interface. Consequently, the Los Alamos National Laboratory has been evaluating requirements and design issues for a test facility. The facility will be able to directly heat fuel samples by electrical resistance, microwave deposition, or radio frequency induction heating to temperatures near 3000K. Hydrogen gas at variable pressure and temperatures will flow through the samples. The thermal gradients, power density, and operating times envisioned for nuclear rockets will be duplicated as close as reasonable. The post-sample flow stream will then be scrubbed and cooled before reprocessing. The baseline design and timetable for the facility will be discussed. 7 refs.

  11. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11T23:59:59.000Z

    DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

  12. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-02-12T23:59:59.000Z

    The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

  13. Facility Ops | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist. Category UC-lFederalFY 2008Facility EngineeringFacility Ops High

  14. Does the Sun work as a nuclear fusion amplifier of

    E-Print Network [OSTI]

    Scafetta, Nicola

    Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? Nicola Scafetta ACRIM oscillates because of planetary motion The Sun is likely very sensitive to these oscillations March 1977); We reconstruct here Sun-centred planetary conjunctions and tidal potentials for the AD 1645

  15. Observations on the Impact of Leased Facilities to The DOEs Fire Protection Program

    Broader source: Energy.gov [DOE]

    Presenter: Robert F. Bitter, P.E., Staff Engineer - National Nuclear Security Administration's Kansas City Plant

  16. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23T23:59:59.000Z

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  17. The Advanced Test Reactor National Scientific User Facility Advancing Nuclear Technology

    SciTech Connect (OSTI)

    T. R. Allen; J. B. Benson; J. A. Foster; F. M. Marshall; M. K. Meyer; M. C. Thelen

    2009-05-01T23:59:59.000Z

    To help ensure the long-term viability of nuclear energy through a robust and sustained research and development effort, the U.S. Department of Energy (DOE) designated the Advanced Test Reactor and associated post-irradiation examination facilities a National Scientific User Facility (ATR NSUF), allowing broader access to nuclear energy researchers. The mission of the ATR NSUF is to provide access to world-class nuclear research facilities, thereby facilitating the advancement of nuclear science and technology. The ATR NSUF seeks to create an engaged academic and industrial user community that routinely conducts reactor-based research. Cost free access to the ATR and PIE facilities is granted based on technical merit to U.S. university-led experiment teams conducting non-proprietary research. Proposals are selected via independent technical peer review and relevance to DOE mission. Extensive publication of research results is expected as a condition for access. During FY 2008, the first full year of ATR NSUF operation, five university-led experiments were awarded access to the ATR and associated post-irradiation examination facilities. The ATR NSUF has awarded four new experiments in early FY 2009, and anticipates awarding additional experiments in the fall of 2009 as the results of the second 2009 proposal call. As the ATR NSUF program mature over the next two years, the capability to perform irradiation research of increasing complexity will become available. These capabilities include instrumented irradiation experiments and post-irradiation examinations on materials previously irradiated in U.S. reactor material test programs. The ATR critical facility will also be made available to researchers. An important component of the ATR NSUF an education program focused on the reactor-based tools available for resolving nuclear science and technology issues. The ATR NSUF provides education programs including a summer short course, internships, faculty-student team projects and faculty/staff exchanges. In June of 2008, the first week-long ATR NSUF Summer Session was attended by 68 students, university faculty and industry representatives. The Summer Session featured presentations by 19 technical experts from across the country and covered topics including irradiation damage mechanisms, degradation of reactor materials, LWR and gas reactor fuels, and non-destructive evaluation. High impact research results from leveraging the entire research infrastructure, including universities, industry, small business, and the national laboratories. To increase overall research capability, ATR NSUF seeks to form strategic partnerships with university facilities that add significant nuclear research capability to the ATR NSUF and are accessible to all ATR NSUF users. Current partner facilities include the MIT Reactor, the University of Michigan Irradiated Materials Testing Laboratory, the University of Wisconsin Characterization Laboratory, and the University of Nevada, Las Vegas transmission Electron Microscope User Facility. Needs for irradiation of material specimens at tightly controlled temperatures are being met by dedication of a large in-pile pressurized water loop facility for use by ATR NSUF users. Several environmental mechanical testing systems are under construction to determine crack growth rates and fracture toughness on irradiated test systems.

  18. Accelerator Facility Safety Implementation Guide for DOE O 420.2C, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-01T23:59:59.000Z

    This document is a guide to understanding and meeting the requirements of DOE O 420.2C, and shares lessons learned based on valuable experience within the community. Cancels DOE G 420.2-1.

  19. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  20. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  1. DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials

    SciTech Connect (OSTI)

    Veirs, D Kirk [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

  2. Nuclear power plant simulation facility evaluation methodology: handbook. Volume 1

    SciTech Connect (OSTI)

    Laughery, K.R. Jr.; Carter, R.J.; Haas, P.M.

    1986-01-01T23:59:59.000Z

    This report is Volume 1 of a two-part document which describes a project conducted to develop a methodology to evaluate the acceptability of nuclear power plant (NPP) simulation facilities for use in the simulator-based portion of NRC's operator licensing examination. The proposed methodology is to be utilized during two phases of the simulation facility life-cycle, initial simulator acceptance and recurrent analysis. The first phase is aimed at ensuring that the simulator provides an accurate representation of the reference NPP. There are two components of initial simulator evaluation: fidelity assessment and a direct determination of the simulation facility's adequacy for operator testing. The second phase is aimed at ensuring that the simulation facility continues to accurately represent the reference plant throughout the life of the simulator. Recurrent evaluation is comprised of three components: monitoring reference plant changes, monitoring the simulator's hardware, and examining the data from actual plant transients as they occur. Volume 1 is a set of guidelines which details the steps involved in the two life-cycle phases, presents an overview of the methodology and data collection requirements, and addresses the formation of the evaluation team and the preparation of the evaluation plan. 29 figs.

  3. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect (OSTI)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  4. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect (OSTI)

    Moore, Murray E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-04-15T23:59:59.000Z

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the wind tunnel for testing HEPA filters (cf. ASTM F1471 and ASME N511). This project involves three systems that were developed for testing the 24*24*11 (inch) HEPA filters (i.e. the already mentioned mixer, diluter and metric). Prototypes of the mixer and the diluter have been built and individually tested on a preliminary basis. However, the third system (the HEPA metric method) has not been tested, since that requires complete operability of the aerosol wind tunnel device. (The experimental wind tunnel has test aerosol injection, control and measurement capabilities, and can be heated for temperature dependent measurements.) Benefits: US DOE facilities that use HEPA filters and/or require exhaust stacks from their nuclear facility buildings will benefit from access to the new hardware (mixer and diluter) and performance-based metric (for HEPA filter air flow).

  5. DOE Solid-State Lighting in Higher Ed Facilities

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-07-20T23:59:59.000Z

    The focus of the workshop was on higher education facilities because college and university campuses are an important market for lighting products and they use almost every kind of luminaire on the market. This workshop was seen as a chance for SSL manufacturers large and small to get the inside scoop from a group of people that specify, pay for, install, use, maintain, and dispose of lighting systems for nearly every type of application. Workshop attendees explored the barriers to SSL adoption, the applications where SSL products could work better than existing technologies, and where SSL luminaires are currently falling short. This report summarizes the Workshop activities and presentation highlights.

  6. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummer in the ArcticFacilities User

  7. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S. DOEHow to085Facilities

  8. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S. DOEHowFacilities High

  9. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,,of ScienceCurrentEmergencyU.S. DOEHowFacilities

  10. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed FuelFAQW03: DataFacilities

  11. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsed FuelFAQW03:Facilities

  12. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities High Energy

  13. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon4. UraniumUsedFacilities High EnergyUser

  14. Accelerator Facility Safety Implementation Guide for DOE Order 420.2C, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-30T23:59:59.000Z

    This is a guide to understanding and meeting the requirements of DOE Order 420.2C and shares lessons learned based on valuable experience within the community.

  15. Remote machine engineering applications for nuclear facilities decommissioning

    SciTech Connect (OSTI)

    Toto, G.; Wyle, H.R.

    1983-01-01T23:59:59.000Z

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines.

  16. Nuclear and Facility Safety Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates fromNuclear Securityand Facility Safety

  17. 2015 Call for Proposals for the Department of Energy (DOE) Nuclear...

    Energy Savers [EERE]

    5 Call for Proposals for the Department of Energy (DOE) Nuclear Safety Research and Development (NSR&D) Program 2015 Call for Proposals for the Department of Energy (DOE) Nuclear...

  18. Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility

    Broader source: Energy.gov [DOE]

    Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  19. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have the units. Facility design and installation: Design and installation of a new NMR facility requires a number

  20. DOE Honors Idaho Facility with Safety Award | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) Go toHonors Idaho

  1. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

  2. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)

    Broader source: Energy.gov [DOE]

    "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

  3. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    SciTech Connect (OSTI)

    Van Dyke, Melissa; Martin, James [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2004-07-01T23:59:59.000Z

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  4. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04T23:59:59.000Z

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  6. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect (OSTI)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17T23:59:59.000Z

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  7. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input, focuses on the issue of showing compliance with given...

  8. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »DepartmentLaboratory | DepartmentCoal Plantfor

  9. Independent Oversight Review, DOE Nuclear Facilities - May 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecember 2001 |ofand Performance,- July

  10. Independent Oversight Review, DOE/NNSA Nuclear Facilities - April 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet),EnergyImprovement ofDecember 2001 |ofand Performance,-

  11. Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities

    E-Print Network [OSTI]

    Saman, N.; Heneghan, T.; Bou-Saada, T. E.

    1996-01-01T23:59:59.000Z

    , W.K., "Fundamental Concepts Integrating Evaporative Techniques in HVAC Systems," ASHRAE TRANSACTIONS, V. 96, Pt. 1, 1990. 3. McDonald, G.W., M.H. Turietta and R.E. Foster, "Modeling Evaporative Cooling Systems with DOE- 2. ID," ASHRAE...USE OF DOE-2 TO EVALUATE EVAPORATIVE COOLING IN TEXAS CORRECTIONAL FACILITIES Namir Saman, Ph.D., P.E. Tarek Bou-Saada Tia Heneghan Visiting Assistant Professor Research Associate Energy Manager Energy Systems Laboratory Energy Systems...

  12. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01T23:59:59.000Z

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  13. Nuclear safety information sharing agreement between NRC and DOE's Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates fromNuclear Securityand Facility

  14. Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility

    E-Print Network [OSTI]

    Becchetti, Fred

    Improvement of Ion-Beam Energy Resolution in a Solenoid-based Radioactive Nuclear Beam Facility of Philosophy (Nuclear Engineering and Radiological Sciences) in The University of Michigan 2010 Doctoral

  15. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect (OSTI)

    Alan A. Chen

    2008-03-27T23:59:59.000Z

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in the understanding the origin of galactic {sup 26}Al, a target radioisotope for gamma ray astronomy; the {sup 13}N(p,{gamma}){sup 14}O reaction in turn is the trigger reaction for the transition into the Hot-CNO cycles in novae and X-ray bursts. A graduate student of mine, who has been supported part-time by this grant, completed the evaluation of the {sup 25}Al(p,{gamma}){sup 26}Si reaction as part of his plans to measure this reaction at TRIUMF for his Ph.D. thesis project. I also hired a part-time undergraduate student for the 2004-05 academic year to assist with the evaluations, including that of the {sup 13}N(p,{gamma}){sup 14}O reaction. Year 3 (2005-06): The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions - This year's progress was closely coupled to new results coming from our collaboration on the DRAGON spectrometer team at TRIUMF. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions were both measured, and significant modifications to their respective reaction rates were required. Both are required input toward predicting the respective amounts of Titanium-44 and Aluminum-26 produced in our galaxy, in supernovae, massive stars, and nova explosions. The {sup 26}Al(p,{gamma}){sup 27}Si reaction rate was successfully completed. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction in particular served as the Ph.D. thesis for Christian Ouellet, and therefore the evaluation of this rate fell naturally within his thesis project. Christian successfully defended his thesis in 2007 and is now working for me on the McMaster DOE-funded Nuclear Data Project. In light of the recent data from his thesis, Christian is now putting the final touches on this evaluation, and will disseminate it through the Oak Ridge National Laboratory reaction rate database.

  16. Twenty-third DOE/NRC nuclear air cleaning and treatment conference

    SciTech Connect (OSTI)

    Bellamy, R.R.; Hayes, J.J.; First, M.W.

    1995-01-01T23:59:59.000Z

    The Twenty-Third Department of Energy/Nuclear Regulatory Commission (DOE/NRC) nuclear Air-Cleaning and Treatment Conference was held July 25-28, 1994, in Buffalo, New York. The conference was also sponsored by the Harvard Air-Cleaning Laboratory and the Internation Society of Nuclear Air Treatment Technologies, a nonprofit organization founded to promote technology transfer in the nuclear air-cleaning and treatment area. A total of 192 air-cleaning specialists attended the conference. The United States and 11 foreign countries were represented. The specialists are affiliated with all aspects of the nuclear industry, including government agencies, educational institutions, utilities, architect-engineers, equipment suppliers, and consultants. The high level of international interests is evident from the 40% of papers sponsored by foreign interests. More than 20% of the attendees as well as several members of the Program Committee were from outside the United States. Major topics discussed at this conference included nuclear air-cleaning codes and standards, waste disposal, particulate filter developments (including testing and performance under stress and after aging), sampling and monitoring of process and effluent streams, off-gasses from fuel reprocessing, adsorbents and adsorption, accident control and analysis, and revised source terms for power-plant accidents. A highlight of the conference concerned operations a at the DOE facility at West Valley, New York, where construction is under way to solidify radioactive waste. A recurrent theme throughout the sessions was that, in spite of the large number of guidance documents available in the form of regulations, codes, standards, and directives, multiple difficulties arise when all are invoked simultaneously. Gas processing needs, rather than controls for civilian power plants, will provide the principal challenge during the next decade for the air-cleaning specialists of the world. 15 refs.

  17. Nuclear-fuel-cycle facility deployment and price generation

    SciTech Connect (OSTI)

    Andress, D.A.

    1981-04-01T23:59:59.000Z

    The enrichment process and how it is to be modeled in the International Nuclear Model (INM) is described. The details of enrichment production, planning, unit price generation, demand estimation and ordering are examined. The enrichment process from both the producer's and the utility's point of view is analyzed. The enrichment separative-work-unit (SWU) contracts are also discussed. The relationship of the enrichment process with other sectors of the nuclear fuel cycle, expecially uranium mining and milling is considered. There are portions of the enrichment process that are not completely understood at the present time. These areas, which require further study, will be pinpointed in the following discussion. In many cases, e.g., the advent of SMU brokerage activities, the answers will emerge only in time. In other cases, e.g., political trends, uncertainties will always remain. It is possible to cast the uncertainties in a probabilistic framework, but this is beyond the scope of this report. INM, a comprehensive model of the international nuclear industry, simulates the market decision process based on current and future price expectations under a broad range of scenario specifications. INM determines the proper reactor mix as well as the planning, operation, and unit price generation of the attendant nuclear fuel cycle facilities. The level of detail of many of the enrichment activities presented in this report, e.g., the enrichment contracts, is too fine to be incorporated into INM. Nevertheless, they are presented in a form that is ammendable to modeling. The reasons for this are two-fold. First, it shows the level of complexity that would be required to model the entire system. Second, it presents the structural framework for a detailed, stand-alone enrichment model.

  18. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    SciTech Connect (OSTI)

    Burger, Joanna [Division of Life Sciences, Rutgers University, Piscataway, NJ (United States); Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States); Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Clarke, James; Powers, Charles W.; Kosson, David [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Civil and Environmental Engineering, Vanderbilt University, Nashville, TN (United States)

    2012-07-01T23:59:59.000Z

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider the protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)

  19. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01T23:59:59.000Z

    Structures . iii 3 Nuclear Power Plants 3.1 Nuclear FacilityKashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 Ch uetsuno seismically-isolated nuclear plant has been constructed

  20. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  1. Mission and Readiness Assessment for Fusion Nuclear Facilities

    SciTech Connect (OSTI)

    G.H. Neilson, et. al.

    2012-12-12T23:59:59.000Z

    Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

  2. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  3. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Abdou, Mohamed

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF) Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  4. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

    2008-07-01T23:59:59.000Z

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  5. Frequently Asked Questions Regarding DOE-STD-1195-2011, Design...

    Office of Environmental Management (EM)

    Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities Frequently Asked Questions Regarding DOE-STD-1195-2011, Design of...

  6. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect (OSTI)

    Jasen, W.G.

    1998-01-07T23:59:59.000Z

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  7. NEW - DOE O 420.1 Chg 1, Facility Safety - DOE Directives, Delegations,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgenda Workshop AgendaGraphic ofNEUP AwardViolence

  8. DOE-STD-3003-2000; Backup Power Sources for DOE Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002 October SENSITIVEFAQs for DOE-STD-1195-2011

  9. DOE-STD-3014-96; DOE Standard Accident Analysis For Aircraft Crash Into Hazardous Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant6-2002 October SENSITIVEFAQsExpectations forDOE

  10. DOE Order Self Study Modules - DOE O 420.1B Facility Safety

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments4 ChairsEnergy DOE CitesFuelDepartmentEnergy3DOEOrder

  11. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High...

  12. Evaluation of UF{sub 6}-to-UO{sub 2} conversion capability at commercial nuclear fuel fabrication facilities.

    SciTech Connect (OSTI)

    Ranek, N. L.; Monette, F. A.

    2001-06-08T23:59:59.000Z

    This report examines the capabilities of existing commercial nuclear fuel fabrication facilities to convert depleted uranium hexafluoride (UF{sub 6}) to uranium oxide (UO{sub 2}). The U.S. Department of Energy (DOE) needs this information to determine whether using such capacity to convert DOE's inventory of depleted UF{sub 6} to a more stable form is a reasonable alternative that should be considered in the site-specific environmental impact statement for construction and operation of depleted UF{sub 6} conversion facilities. Publicly available information sources were consulted to ascertain the information summarized in this report. For domestic facilities, the information summarized includes currently operating capacity to convert depleted UF{sub 6} to UO{sub 2}; transportation distances from depleted UF{sub 6} storage locations near Oak Ridge, Tennessee, Portsmouth, Ohio, and Paducah, Kentucky, to the facilities; and regulatory requirements applicable to nuclear fuel fabrication and transportation of depleted UF{sub 6}. The report concludes that the total currently operating capability of U.S. commercial nuclear fuel fabricators to convert UF{sub 6} to UO{sub 2} is approximately 5,200 metric tons of UF{sub 6} per annum (tUF{sub 6}/a). This total includes 666 tUF{sub 6}/a scheduled for shutdown by the end of 2001. However, only about 300 tUF{sub 6}/a of this capacity could be confirmed as being possibly available to DOE. The report also provides some limited descriptions of the capabilities of foreign fuel fabrication plants to convert UF{sub 6} to uranium oxide forms.

  13. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    SciTech Connect (OSTI)

    Ryan, B.C.

    1997-05-01T23:59:59.000Z

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  14. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  15. SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities

    E-Print Network [OSTI]

    Stephens, Larry M.

    SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

  16. Ground test facilities for evaluating nuclear thermal propulsion engines and fuel elements

    SciTech Connect (OSTI)

    Allen, G.C.; Beck, D.F.; Harmon, C.D.; Shipers, L.R.

    1992-08-01T23:59:59.000Z

    Interagency panels evaluating nuclear thermal propulsion development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and design issues of a proposed ground test complex for evaluating nuclear thermal propulsion engines and fuel elements being developed for the Space Nuclear Thermal Propulsion (SNTP) program. 2 refs.

  17. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  18. Heat barrier for use in a nuclear reactor facility

    DOE Patents [OSTI]

    Keegan, Charles P. (South Huntingdon Twp., Westmoreland County, PA)

    1988-01-01T23:59:59.000Z

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  19. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-09-07T23:59:59.000Z

    To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

  20. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  1. Knowledge, skills, and abilities for key radiation protection positions at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This document provides detailed qualification criteria for contractor key radiation protection personnel. Although federal key radiation protection positions are also identified, qualification standards for federal positions are provided in DOE O 360.1 and the DOE Technical Qualifications Program. Appendices B and D provide detailed listings for knowledge, skills, and abilities for contractor and DOE federal key radiation protection positions. This information may be used in developing position descriptions and individual development plans. Information provided in Appendix C may be useful in developing performance measures and assessing an individual`s performance in his or her specific position. Additionally, Federal personnel may use this information to augment their Office/facility qualification standards under the Technical Qualifications Program.

  2. Descriptions of representative contaminated sites and facilities within the DOE complex

    SciTech Connect (OSTI)

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D. [Pacific Northwest Lab., Richland, WA (United States); Oates, L. [ICF, Richland, WA (United States)] [and others

    1994-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a {open_quotes}No Action{close_quotes} alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory`s (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each.

  3. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31T23:59:59.000Z

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  4. Certification of U.S. instrumentation in Russian nuclear processing facilities

    SciTech Connect (OSTI)

    D.H. Powell; J.N. Sumner

    2000-07-12T23:59:59.000Z

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities.

  5. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  6. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  7. Report to the DOE Nuclear Data Committee, 1982

    SciTech Connect (OSTI)

    Haght, R.C.; Struble, G.L.

    1982-03-01T23:59:59.000Z

    The report includes summaries of measurements and calculations of nuclear data applications, and use of nuclear data for reactor safety. (GHT)

  8. DOE Undersecretary for Nuclear Security and NNSA Administrator...

    National Nuclear Security Administration (NNSA)

    Undersecretary for Nuclear Security and NNSA Administrator Frank Klotz visits Y-12 National Security Complex | National Nuclear Security Administration Facebook Twitter Youtube...

  9. DOE NNSA Site Facility Management Contracts - 7-23-15.xlsx

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergy AllNNSA Site Facility

  10. 2014 Facility EMS Annual Report Data (DOE-LM) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment ofCBFO-13-3322(EE)Department of EnergyOffice14 DOE4,4 Facility

  11. DOE site facility mgt contracts Internet Posting 5-2-11.xlsx | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29,of Energy DOE site facility mgt contracts

  12. Doe Bay Village Resort Pool & Spa Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale, Michigan:Emerling FarmCenter, Minnesota:Dodson

  13. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17T23:59:59.000Z

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

  14. Report to the DOE Nuclear Data Committee, 1989

    SciTech Connect (OSTI)

    Struble, G.L.; White, R.M.; Resler, D.A.

    1989-02-01T23:59:59.000Z

    This report contains short papers on nuclear data measurements, calculations, and evaluations. (LSP)

  15. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect (OSTI)

    Richard Metcalf; Robert Bean

    2009-10-01T23:59:59.000Z

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEAs Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facilitys general character, purpose, capacity, and location; (2) Description of the facilitys layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

  16. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  17. Status and Effectiveness of DOE Efforts to Learn from Internal...

    Energy Savers [EERE]

    Experience in Accordance with Commitment 20 of the DOE Implementation Plan for Defense Nuclear Facilities Safety Board Recommendation 2004-1 February 2011 Office of Health,...

  18. DOE Standard Integration Of Environment,Safety, and Health Into...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities...

  19. Global nuclear material monitoring with NDA and C/S data through integrated facility monitoring

    SciTech Connect (OSTI)

    Howell, J.A.; Menlove, H.O.; Argo, P.; Goulding, C.; Klosterbuer, S.; Halbig, J.

    1996-09-01T23:59:59.000Z

    This paper focuses on a flexible, integrated demonstration of a monitoring approach for nuclear material monitoring. This includes aspects of item signature identification, perimeter portal monitoring, advanced data analysis, and communication as a part of an unattended continuous monitoring system in an operating nuclear facility. Advanced analysis is applied to the integrated nondestructive assay and containment and surveillance data that are synchronized in time. End result will be the foundation for a cost-effective monitoring system that could provide the necessary transparency even in areas that are denied to foreign nationals of both US and Russia should these processes and materials come under full-scope safeguards or bilateral agreements. Monitoring systems of this kind have the potential to provide additional benefits including improved nuclear facility security and safeguards and lower personnel radiation exposures. Demonstration facilities in this paper include VTRAP-prototype, Los Alamos Critical Assemblies Facility, Kazakhstan BM-350 Reactor monitor, DUPIC radiation monitoring, and JOYO and MONJU radiation monitoring.

  20. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  1. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-05-12T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  2. Mock Nuclear Processing Facility-Safeguards Training Requirements

    SciTech Connect (OSTI)

    Gibbs, Philip [Brookhaven National Lab. (BNL), Upton, NY (United States); Hasty, Tim [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johns, Rissell [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Baum, Gregory [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-31T23:59:59.000Z

    This document outlines specific training requirements in the topical areas of Material Control and Accounting (MC&A) and Physical Protection(PP) which are to be used as technical input for designing a mock Integrated Security Facility (ISF) at Sandia National Laboratories (SNL). The overall project objective for these requirements is to enhance the ability to deliver training on Material Protection Control and Accounting (MC&A) concepts regarding hazardous material such as irradiated materials with respect to bulk processing facilities.

  3. DRAFT - DOE O 452.2C, Security and Use Control of Nuclear Explosives and Nuclear Weapons

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes requirements to implement the nuclear explosive security and use control (UC) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts (DUAs), deliberate unauthorized use (DUU), and denial of authorized use (DAU).

  4. EIS-0203F; DOE Programmatic Spent Nuclear Fuel Management and...

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Final...

  5. DOE-STD-3009-2014 Training Modules (Changes to DOE-STD-3009 and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    training for DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis. It focuses on Changes to DOE-STD-3009 and Expectations for Effective...

  6. The environmental impact assessment process for nuclear facilities: An examination of the Indian experience

    SciTech Connect (OSTI)

    Ramana, M.V., E-mail: mvramana@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India); Rao, Divya Badami, E-mail: di.badamirao@gmail.co [Centre for Interdisciplinary Studies in Environment and Development, Bangalore (India); Centre for Interdisciplinary Studies in Environment and Development, ISEC Campus, Nagarbhavi, Bangalore 560 070 (India)

    2010-07-15T23:59:59.000Z

    India plans to construct numerous nuclear plants and uranium mines across the country, which could have significant environmental, health, and social impacts. The national Environmental Impact Assessment process is supposed to regulate these impacts. This paper examines how effective this process has been, and the extent to which public inputs have been taken into account. In addition to generic problems associated with the EIA process for all kinds of projects in India, there are concerns that are specific to nuclear facilities. One is that some nuclear facilities are exempt from the environmental clearance process. The second is that data regarding radiation baseline levels and future releases, which is the principle environmental concern with respect to nuclear facilities, is controlled entirely by the nuclear establishment. The third is that members of the nuclear establishment take part in almost every level of the environmental clearance procedure. For these reasons and others, the EIA process with regard to nuclear projects in India is of dubious quality. We make a number of recommendations that could address these lacunae, and more generally the imbalance of power between the nuclear establishment on the one hand, and civil society and the regulatory agencies on the other.

  7. Evaluation of Near Field Atmospheric Dispersion Around Nuclear Facilities Using a Lorentzian Distribution Methodology

    SciTech Connect (OSTI)

    Gavin Hawkley

    2014-12-01T23:59:59.000Z

    Abstract: Atmospheric dispersion modeling within the near field of a nuclear facility typically applies a building wake correction to the Gaussian plume model, whereby a point source is modeled as a plane source. The plane source results in greater near field dilution and reduces the far field effluent concentration. However, the correction does not account for the concentration profile within the near field. Receptors of interest, such as the maximally exposed individual, may exist within the near field and thus the realm of building wake effects. Furthermore, release parameters and displacement characteristics may be unknown, particularly during upset conditions. Therefore, emphasis is placed upon the need to analyze and estimate an enveloping concentration profile within the near field of a release. This investigation included the analysis of 64 air samples collected over 128 wk. Variables of importance were then derived from the measurement data, and a methodology was developed that allowed for the estimation of Lorentzian-based dispersion coefficients along the lateral axis of the near field recirculation cavity; the development of recirculation cavity boundaries; and conservative evaluation of the associated concentration profile. The results evaluated the effectiveness of the Lorentzian distribution methodology for estimating near field releases and emphasized the need to place air-monitoring stations appropriately for complete concentration characterization. Additionally, the importance of the sampling period and operational conditions were discussed to balance operational feedback and the reporting of public dose.

  8. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect (OSTI)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01T23:59:59.000Z

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  9. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Energy Savers [EERE]

    includes three key mission areas: environmental cleanup, operation of the Savannah River National Laboratory (SRNL), and National Nuclear Security Administration (NNSA)...

  10. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16T23:59:59.000Z

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  11. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19T23:59:59.000Z

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

  12. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

  13. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01T23:59:59.000Z

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  14. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  15. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  16. DOE - Office of Legacy Management -- Sylvania Corning Nuclear...

    Office of Legacy Management (LM)

    to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 NY.07-2 -...

  17. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29T23:59:59.000Z

    To establish policies and procedures for management of DOE, including NNSA, Management and Operating (M&O) and other facility management contractor employees assigned to the Washington, D.C., area. Cancels DOE O 350.2.

  18. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect (OSTI)

    Abdou, M.

    1984-10-01T23:59:59.000Z

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  19. Nuclear Facility Construction- Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0)

    Broader source: Energy.gov [DOE]

    This Criteria Review and Approach Document (HSS CRAD 64-15) establishes review criteria and lines of inquiry used by the Office of Independent Oversight's Office of Environment, Safety and Health Evaluations to assess the quality of the manufacturing and placement of concrete used in nuclear facility construction at the Department of Energy

  20. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  1. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01T23:59:59.000Z

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  2. Criteria for Evaluation of Nuclear Facility Training Programs

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Reaffirmed June 2013 DOE

  3. Criteria for Evaluation of Nuclear Facility Training Programs

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T, Inc.'sEnergyTexas1.SpaceFluorControlsEnergy Reaffirmed June 2013 DOE

  4. National Ignition Facility Reaches Milestone Early | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScience (SC)In99Security

  5. National Laser User Facilities Program | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1 JulyScienceScientistsNational

  6. National Laser Users' Facility Grant Program | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparency VisitSilver Toyota1

  7. Sandia completes major overhaul of key nuclear weapons test facilities |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:FacebookContractor/Bidder|BRUthE NIttYDM

  8. Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,39732 DOE F 243.2Dashboards DashboardsDeep Vadose Zone Deep Vadose|

  9. Preparation of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment DOE-STD-3009-94 July 1994A coolingThe

  10. Ceremony celebrates new NNSA facility in Kansas City | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclear Security Administration

  11. Underground Facility at Nevada National Security Site | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads Arrives in United States and Will

  12. Y-12 demos former utilities and maintenance facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved: 5-13-14Russian Nuclear Warheads

  13. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15T23:59:59.000Z

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  14. DOE Initiates Environmental Impact Statement for Global Nuclear Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) GoDOE IDIQ

  15. DOE Office of Nuclear Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessagein Alaska |Energy DOE

  16. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    SciTech Connect (OSTI)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

    2003-02-26T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

  17. Comparison of airborne and surface particulate size distributions in specific Hanford Nuclear Facilities

    SciTech Connect (OSTI)

    Ottley, D.B.

    1995-05-01T23:59:59.000Z

    Settled dust from nuclear operations may be contaminated with radionuclides and become resuspended and subsequently breathed. This is the predominate radionuclide inhalation hazard scenario in nuclear facilities that have been deactivated and no longer have liquid in their process systems that may become directly airborne in accident situations. Comparisons were made between indoor ambient airborne particulate size distribution and that of resuspended dust that could become contaminated and subsequently airborne during decommissioning operations at selected nuclear facilities on the Hanford Site. Results indicate that only 5% of the particles, by count, above the breathing zone are greater than ten (10) {mu}m in size and that the particulates that could be resuspended into the breathing zone had a mean aerodynamic equivalent diameter of four (4) {mu}m or less.

  18. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-02-03T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  19. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-02T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  20. Design, installation and implementation of a Neutron Depth Profiling facility at the Texas A&M Nuclear Science Center

    E-Print Network [OSTI]

    Khalil, Nazir Sabbar

    1989-01-01T23:59:59.000Z

    DESIGN, INSTALLATION AND IMPLEMENTATION OF A NEUTRON DEPTH PROFILING FACILITY AT THE TEXAS A&M NUCLEAR SCIENCE CENTER A Thesis by NAZIR SABBAR KHALIL Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE August 1989 Major Subject: Nuclear Engineering DESIGN, INSTALLATION AND IMPLEMENTATION OF A NEUTRON DEPTH PROFILING FACILITY AT THE TEXAS A(IM NUCLEAR SCIENCE CENTER A Thesis by NAZIR SABBAR KHALIL...

  1. DOE Handbook: Guide to good practices for training of technical staff and managers

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Training programs at DOE facilities should prepare personnel to safely and efficiently operate the facilities in accordance with DOE requirements. This guide contains information that can be used to develop or validate training programs for technical staff and managers at DOE nuclear facilities. Training programs based on the content of this guide should provide assurance that these personnel perform their jobs safely and competently.

  2. Nuclear Theory and Science of the Facility for Rare Isotope Beams

    E-Print Network [OSTI]

    A. B Balantekin; J. Carlson; D. J. Dean; G. M. Fuller; R. J. Furnstahl; M. Hjorth-Jensen; R. V. F. Janssens; Bao-An Li; W. Nazarewicz; F. M. Nunes; W. E. Ormand; S. Reddy; B. M. Sherrill

    2014-01-24T23:59:59.000Z

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \\keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.

  3. Disposal of radioactive waste from nuclear research facilities

    E-Print Network [OSTI]

    Maxeiner, H; Kolbe, E

    2003-01-01T23:59:59.000Z

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  4. DOE-STD-1055-93; DOE Standard Guideline to Good Practices For Maintenance Management Involvement at DOE Nuclear Facilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact610-94 December8-964-931-93 March5-93NOT

  5. DOE G 414.1-4, Safety Software Guide for Use with 10 CFR 830...

    Energy Savers [EERE]

    to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE promulgated the safety software requirements and this guidance to...

  6. EIS-0350-S1: DOE Notice of Availability of the Draft Supplemental...

    Energy Savers [EERE]

    and Notice of Public Hearings Nuclear Facility Portion of the Chemistry and Metallurgy Research Building Replacement Project NNSA, a semiautonomous agency within DOE,...

  7. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  8. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27T23:59:59.000Z

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  9. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  10. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

  11. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  12. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect (OSTI)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  13. Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-12-12T23:59:59.000Z

    he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  14. New User Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    New User Facility Web Policies Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 New User Facility...

  15. Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development

    SciTech Connect (OSTI)

    Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

    1995-01-01T23:59:59.000Z

    The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

  16. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  17. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19T23:59:59.000Z

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  18. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01T23:59:59.000Z

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  19. DOE Cites Bechtel Jacobs Company for Nuclear Safety Violations | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM | DepartmentIOffshoreDepartmentBegins DOEof Energy DOE

  20. DOE Continues Path Forward on Global Nuclear Energy Partnership |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRU Waste Cleanup at Bettis DOE CompletesDepartment of

  1. DOE Continues Path Forward on Global Nuclear Energy Partnership |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of Energy SafetyDOE CompetencyCleanup30

  2. DOE Office of Nuclear Energy Transportation Planning, Route Selection, and

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessagein Alaska |

  3. DOE, State of Idaho Sign Agreement on Nuclear Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITION OF CALCIUMCOSTDOENuclear EnergyMeetingMetricDOE, State of

  4. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28T23:59:59.000Z

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  5. Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

    2006-07-01T23:59:59.000Z

    Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

  6. DOE Announces Plans for WIPP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies HighAnnounces Plans for

  7. DOE celebrates Earth Day | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA groupTubahq.na.gov Office of theNuclearNanotechnologies HighAnnouncesenhance

  8. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01T23:59:59.000Z

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  9. A systematic method for identifying vital areas at complex nuclear facilities.

    SciTech Connect (OSTI)

    Beck, David Franklin; Hockert, John

    2005-05-01T23:59:59.000Z

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  10. Safeguards Guidance for Designers of Commercial Nuclear Facilities International Safeguards Requirements for Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

    2010-04-01T23:59:59.000Z

    For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

  11. Scenario guidance handbook for emergency-preparedness exercises at nuclear facilities

    SciTech Connect (OSTI)

    Laughlin, G.J.; Martin, G.F.; Desrosiers, A.E.

    1983-01-01T23:59:59.000Z

    As part of the Emergency Preparedness Implementation Appraisal Program conducted by the Nuclear Regulatory Commission (NRC) with the technical assistance of the Pacific Northwest Laboratory (PNL), emergency preparedness exercises are observed on an annual basis at all licensed reactor facilities. One of the significant findings to arise from these observations was that a large number of the commonly observed problems originated in the design of the scenarios used as a basis for each exercise. In an effort to help eliminate some of these problems a scenario guidance handbook has been generated by PNL for the NRC to assist nuclear power plant licensees in developing scenarios for emergency preparedness exercises.

  12. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect (OSTI)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01T23:59:59.000Z

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  13. Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities - 12237

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA Federal Services LLC (United States); Clement, Gilles [AREVA NC (France)

    2012-07-01T23:59:59.000Z

    AREVA has accumulated over 20 years of experience in managing and operating fuel cycle facilities Decontamination and Decommissioning (D and D) projects of many different types and a variety of scales, both as facility owner (at La Hague for example) and as prime contractor to external customers such as the French Atomic Energy Commission (at Marcoule). A specific Business Unit was created in 2008 to capitalize on this experience and to concentrate - in one division - the specific skills required to be successful and cost effective in decommissioning projects. Indeed one of the key lessons learned in the past decades is that decommissioning is a significantly different business as compared to normal operations of a nuclear facility. Almost all the functions of a project need to be viewed from a different angle, challenged and adapted consequently in order to optimize costs and schedule. Three examples follow to illustrate the point: Safety management needs to take into account the ever changing configuration of a plant under D and D (a quite new situation for the authorities). Production of waste is significantly different in term of volume, activities, conditioning and disposal path. Technology is important but technical issues are often less critical than good management and planning. Further examples and lessons learned are developed through reviewing the projects experience basis. AREVA has a long and vast experience in the cleanup and dismantling of a number of very large and complex nuclear facilities. This effort focused initially on AREVA's own plants and is expanding now to other customers. The setup of a specific Business Unit in 2008 to takeover this business allowed concentration of the skills and the lessons learned in a dedicated division so as to provide the best means to optimize safety, performance, costs and schedules. Indeed transitioning from operations to D and D of a nuclear facility is a quantum leap. The assistance from specialized teams can bring significant cost savings. (authors)

  14. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect (OSTI)

    HUNACEK, G.S.

    2000-08-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  15. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09T23:59:59.000Z

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  16. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  17. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    SciTech Connect (OSTI)

    Bertini, H.W.

    1980-04-01T23:59:59.000Z

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  18. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  19. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  20. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  2. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01T23:59:59.000Z

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  3. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.] [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-06-01T23:59:59.000Z

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  4. DOE-HDBK-1169-2003; DOE Handbook Nuclear Air Cleaning Handbook

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact6 of 9Control7-1 CHAPTER 7 GLOVEBOX8-1-1DOE

  5. DOE-HDBK-1169-2003; DOE Handbook Nuclear Air Cleaning Handbook

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny:Revised Finding of No Significant Impact6 of 9Control7-1 CHAPTER 7 GLOVEBOX8-1-1DOE

  6. RHIC R&D -eCooling Annual DOE/Nuclear Physics Review

    E-Print Network [OSTI]

    &D effort by Ilan Ben-Zvi, Collider-Accelerator Department Brookhaven National Laboratory #12;The RHIC II Booster AGS RHIC II Electron cooling IP2 Location of cooler: IP2 Objective: Cool RHIC stored ion beamsRHIC R&D - eCooling Annual DOE/Nuclear Physics Review of RHIC Science and Technology July 24

  7. DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy...

  8. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Policies and Processes Definition Official List of SC User Facilities Designation Process User Statistics Collection Practices Science Highlights Frequently Asked Questions...

  9. Report to the DOE Nuclear Data Committee, 1983

    SciTech Connect (OSTI)

    Haight, R.C.; Struble, G.L.

    1983-02-01T23:59:59.000Z

    Measurements for nuclear data applicactions are described including branching ratio in /sup 7/Be decay, kerma factor for carbon, photoneutron cross sections, neutron differential scattering cross sections, half-life of /sup 77/Kr, stellar neutron capture rates for /sup 86/ /sup 87/ /sup 88/Sr, neutron total cross sections, /sup 142/ /sup 143/ /sup 144/Nd neutron capture nucleo-synthesis, half-life of /sup 163/Ho, thermal neutron fission of /sup 236/Np, revised branching ratios in /sup 237/U and /sup 238/Pu decays, and levels of /sup 244/Cm populated by the beta decay of 10-hour /sup 244/Am and 26-minute /sup 244m/Am. Calculations discussed include systematic test of microscopic optical models for nucleon scattering in the range 7 to 60 MeV, Lanczos method shell-model calculations of GamowTeller strength functions, explosive nucleosynthesis and direct radiative capture rates, and calculation of fission cross sections. Evaluated data libraries are briefly discussed. (WHK)

  10. Report to the DOE Nuclear Data Committee, 1984

    SciTech Connect (OSTI)

    Wong, C.; Haight, R.C.; Struble, G.L.

    1984-02-01T23:59:59.000Z

    Experimental results are discussed for: /sup 6/ /sup 7/Li(n,/sup 4/He) cross sections at 14 MeV, neutron elastic and inelastic scattering from carbon near 14 MeV, neutron capture cross sections for /sup 46/Ca and /sup 48/Ca at stellar temperatures, revised neutron cross sections for /sup 142/ /sup 143/ /sup 144/Nd, fragment angular distribution for neutron fission of /sup 232/Th, neutron differential scattering measurements in the actinide region, nuclear structure of /sup 244/Am, conversion coefficients of the M4 transition in /sup 193m/Ir, gamma-ray and conversion-electron decay of the /sup 238/U shape isomer, and levels of /sup 244/Cm populated by the beta decay of 10-hr /sup 244g/Am and 26-minute /sup 244m/Am. Calculations described include tests of microscopic optical models for neutron and proton scattering on light nuclei in the range 14 to 45 MeV, a new dynamic model for fission, and the necessity of discrete-level modeling in isomer ratio calculations for neutron-induced reactions on deformed nuclei. Also, a reevaluation for ENDL of sigma(n,f) and anti nu p for /sup 235/U and /sup 239/Pu from 100 keV to 20 MeV is described. 31 references. (WHK)

  11. DOE Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented by the Tribal Energy Program and the U.S. Department of Energy (DOE) Office of Indian Energy with support from DOE's National Renewable Energy Laboratory, this interactive workshop will...

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  13. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  15. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    SciTech Connect (OSTI)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle [Tish

    2012-01-31T23:59:59.000Z

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

  16. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  17. Entry/exit control at fuel fabrication facilities using or possessing formula quantities of strategic special nuclear material

    SciTech Connect (OSTI)

    Dwyer, P.A.

    1988-12-01T23:59:59.000Z

    This document presents information on entry/exit control at fuel fabrication facilities using or possessing formula quantities of strategic special nuclear material. It describes NRC requirements and methods for conducting personnel, package, and vehicle searches at these facilities. Testing methods for determining the detection capability of firearms, explosives, and metal detectors are provided.

  18. Summary of New DOE-STD-1020-2011 NPH Analysis and Design Criteria for DOE Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssues DOE'sSummary Special Report:1, 2015 - June 5,MaySummary ofSummary

  19. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29T23:59:59.000Z

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  20. Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast

    SciTech Connect (OSTI)

    Warwick, William M.

    2012-06-30T23:59:59.000Z

    Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although it is possible to transmit power from a solar project at Hanford to California facilities, the costs of doing so add additional costs. Consequently, development of a large- scale solar project at Hanford to meet the renewable goals of Office of Science facilities on the west coast is currently uneconomic. This may change as solar costs decrease and California-based facilities face increasing costs for conventional and renewable energy produced in the state. PNNL should monitor those cost trends.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  2. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  3. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  4. Basic Energy Sciences User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BES User Facilities...

  5. Fusion Energy Sciences User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities...

  6. High Energy Physics User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities...

  7. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    SciTech Connect (OSTI)

    West, K.A.

    1988-11-01T23:59:59.000Z

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  8. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-05-18T23:59:59.000Z

    The Order establishes policies and procedures for managing DOE and NNSA management and operating (M&O) contractors and other facility management contractor employees assigned to the Washington, D.C., area.

  9. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andB -Reports|7/%2A en20 Federal Register

  10. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-09-21T23:59:59.000Z

    This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

  11. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28T23:59:59.000Z

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  12. Annual Report To Congress. Department of Energy Activities Relating to the Defense Nuclear Facilities Safety Board, Calendar Year 2003

    SciTech Connect (OSTI)

    none,

    2004-02-28T23:59:59.000Z

    The Department of Energy (Department) submits an Annual Report to Congress each year detailing the Departments activities relating to the Defense Nuclear Facilities Safety Board (Board), which provides advice and recommendations to the Secretary of Energy (Secretary) regarding public health and safety issues at the Departments defense nuclear facilities. In 2003, the Department continued ongoing activities to resolve issues identified by the Board in formal recommendations and correspondence, staff issue reports pertaining to Department facilities, and public meetings and briefings. Additionally, the Department is implementing several key safety initiatives to address and prevent safety issues: safety culture and review of the Columbia accident investigation; risk reduction through stabilization of excess nuclear materials; the Facility Representative Program; independent oversight and performance assurance; the Federal Technical Capability Program (FTCP); executive safety initiatives; and quality assurance activities. The following summarizes the key activities addressed in this Annual Report.

  13. Inventory extension considerations for long-term storage at the nuclear materials storage facility

    SciTech Connect (OSTI)

    Olinger, C.T.; Stanbro, W.D.; Longmire, V.; Argo, P.E.; Nielson, S.M.

    1996-09-01T23:59:59.000Z

    Los Alamos National Laboratory is in the process of modifying its nuclear materials storage facility to a long-term storage configuration. In support of this effort, we examined technical and administrative means to extend periods between physical inventories. Both the frequency and sample size during a physical inventory could significantly impact required sizing of the non-destructive assay (NDA) laboratory as well as material handling capabilities. Several options are being considered, including (1) treating each storage location as a separate vault, (2) minimizing the number of items returned for quantitative analysis by optimizing the use of in situ confirmatory measurements, and (3) utilizing advanced monitoring technologies. Careful consideration of these parameters should allow us to achieve and demonstrate safe and secure storage while minimizing the impact on facility operations and without having to increase the size of the NDA laboratory beyond that required for anticipated shipping and receiving activities.

  14. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  15. Low Prevalence of Chronic Beryllium Disease among Workers at a Nuclear Weapons Research and Development Facility

    SciTech Connect (OSTI)

    Arjomandi, M; Seward, J P; Gotway, M B; Nishimura, S; Fulton, G P; Thundiyil, J; King, T E; Harber, P; Balmes, J R

    2010-01-11T23:59:59.000Z

    To study the prevalence of beryllium sensitization (BeS) and chronic beryllium disease (CBD) in a cohort of workers from a nuclear weapons research and development facility. We evaluated 50 workers with BeS with medical and occupational histories, physical examination, chest imaging with HRCT (N=49), and pulmonary function testing. Forty of these workers also underwent bronchoscopy for bronchoalveolar lavage (BAL) and transbronchial biopsies. The mean duration of employment at the facility was 18 yrs and the mean latency (from first possible exposure) to time of evaluation was 32 yrs. Five of the workers had CBD at the time of evaluation (based on histology or HRCT); three others had evidence of probable CBD. These workers with BeS, characterized by a long duration of potential Be exposure and a long latency, had a low prevalence of CBD.

  16. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  17. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  18. Technology, safety and costs of decommissioning reference nuclear fuel cycle facilities

    SciTech Connect (OSTI)

    Elder, H.K.

    1986-05-01T23:59:59.000Z

    The radioactive wastes expected to result from decommissioning nuclear fuel cycle facilities are reviewed and classified in accordance with 10 CFR 61. Most of the wastes from the MOX plant (exclusive of the lagoon wastes) will require interim storage (11% Class A 49 m/sup 3/; 89% interim storage, 383 m/sup 3/). The MOX plant lagoon wastes are Class A waste (2930 m/sup 3/). All of the wastes from the U-Fab and UF/sub 6/ plants are designated as Class A waste (U-Fab 1090 m/sup 3/, UF/sub 6/ 1259 m/sup 3/).

  19. NGNP Nuclear-Industrial Facility and Design Certification Boundaries White Paper

    SciTech Connect (OSTI)

    Thomas E. Hicks

    2011-07-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project was initiated at Idaho National Laboratory by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act and based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is helium cooled and graphite moderated and can operate at reactor outlet temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, in addition to producing electricity, which is the principal application of current LWRs. These varied industrial applications may involve a standard HTGR modular design using different Energy Conversion Systems. Additionally, some of these process heat applications will require process heat delivery systems to lie partially outside the HTGR operators facility.

  20. Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

  1. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  2. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

    SciTech Connect (OSTI)

    Shaffer, C.; Leonard, M.

    1999-06-13T23:59:59.000Z

    Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.

  3. DOE-HDBK-1113-98; Radiological Safety Training for Uranium Facilities...

    Broader source: Energy.gov (indexed) [DOE]

    contact Judy Foulke on 3-5865 or at Judy.Foulke@eh.doe.gov. Office of Worker Protection Policy and Programs 2 Attachments cc watt achment s : David Compton, DNFSB Representative...

  4. Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel

    SciTech Connect (OSTI)

    Dahl, C.A.; Adams, J.P.; Ramer, R.J.

    1998-07-01T23:59:59.000Z

    Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed.

  5. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

  6. Proceedings of EPRI/DOE workshop on nuclear industry valve problems

    SciTech Connect (OSTI)

    Sprung, J.L. (ed.) [ed.

    1981-01-01T23:59:59.000Z

    Representatives from 29 nuclear industry organizations (11 valve manufacturers, 4 nuclear steam supply system vendors, 5 utilities, 3 national laboratories, 2 architect/engineering firms, the Department of Energy (DOE), EPRI, and 2 others) attended the workshop. Working sessions on key valves and on valve stem and seat leakage developed the following recommendations: (1) establish a small permanent expert staff to collect, analyze, and disseminate information about nuclear valve problems; (2) perform generic key valve programs for pressurized water reactors and for boiling water reactors, and several plant specific key valve programs, the latter to demonstrate the cost-effectiveness of such studies; (3) confirm the identity of, define, and initiate needed longer term research and development programs dealing with seat and stem leakage; and (4) establish an industry working group to review and advise on these efforts. Separate abstracts were prepared for three papers which are included in the appendix. (DLC)

  7. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect (OSTI)

    Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

    1991-01-01T23:59:59.000Z

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  8. Supplemental Requirements for the Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-19T23:59:59.000Z

    The Notice supplements review and approval requirements of DOE O 350.2A, Use of Management and Operating (M&O) or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area, dated 10-29-03.

  9. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Wilhite, E

    2008-03-31T23:59:59.000Z

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

  10. DOE Occupational Radiation Exposure, 2001 report

    SciTech Connect (OSTI)

    none,

    2001-12-31T23:59:59.000Z

    The goal of the U.S. Department of Energy (DOE) is to conduct its operations, including radiological, to ensure the safety and health of all DOE employees, contractors, and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures to levels that are As Low As Reasonably Achievable (ALARA). The 2001 DOE Occupational Radiation Exposure Report provides a summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE, and energy research.

  11. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01T23:59:59.000Z

    The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  12. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  13. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  14. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    SciTech Connect (OSTI)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01T23:59:59.000Z

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

  15. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01T23:59:59.000Z

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  16. Calculation of Fire Severity Factors and Fire Non-Suppression Probabilities For A DOE Facility Fire PRA

    SciTech Connect (OSTI)

    Tom Elicson; Bentley Harwood; Jim Bouchard; Heather Lucek

    2011-03-01T23:59:59.000Z

    Over a 12 month period, a fire PRA was developed for a DOE facility using the NUREG/CR-6850 EPRI/NRC fire PRA methodology. The fire PRA modeling included calculation of fire severity factors (SFs) and fire non-suppression probabilities (PNS) for each safe shutdown (SSD) component considered in the fire PRA model. The SFs were developed by performing detailed fire modeling through a combination of CFAST fire zone model calculations and Latin Hypercube Sampling (LHS). Component damage times and automatic fire suppression system actuation times calculated in the CFAST LHS analyses were then input to a time-dependent model of fire non-suppression probability. The fire non-suppression probability model is based on the modeling approach outlined in NUREG/CR-6850 and is supplemented with plant specific data. This paper presents the methodology used in the DOE facility fire PRA for modeling fire-induced SSD component failures and includes discussions of modeling techniques for: Development of time-dependent fire heat release rate profiles (required as input to CFAST), Calculation of fire severity factors based on CFAST detailed fire modeling, and Calculation of fire non-suppression probabilities.

  17. Program for upgrading nuclear materials protection, control, and accounting at all facilities within the All-Russian Institute of Experimental Physics (VNIIEF)

    SciTech Connect (OSTI)

    Yuferev, V.; Zhikharev, S.; Yakimov, Y. [All-Russian Inst. of Experimental Physics, Moscow (Russian Federation)] [and others

    1998-12-31T23:59:59.000Z

    As part of the Department of Energy-Russian program for strengthening nuclear material protection, control, and accounting (MPC and A), plans have now been formulated to install an integrated MPC and A system at all facilities containing large quantities of weapons-usable nuclear material within the All-Russian Institute of Experimental Physics (VNIIEF, Arzamas-16) complex. In addition to storage facilities, the complex houses a number of critical facilities used to conduct nuclear physics research and facilities for developing procedures for disassembly of nuclear weapons.

  18. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  19. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  20. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  1. Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget » FY 2014 BudgetNate McDowell

  2. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  3. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

    1993-06-01T23:59:59.000Z

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  4. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  5. Record of Decision for the Electrical Interconnection of the COB Energy Facility (DOE/EIS-0343)

    SciTech Connect (OSTI)

    N /A

    2004-08-20T23:59:59.000Z

    The COB Energy Facility would be constructed on a site near the rural community of Bonanza, in Klamath County, Oregon. Generating components of the project would be constructed in either one or two phases, including four air-cooled combustion turbine generators fueled with natural gas, four heat recovery steam generators, and two steam turbines. Additional facilities include a new 7.2-mile-long 500-kV transmission line, a new 4.1-mile-long natural gas pipeline, a 2.8-mile-long water pipeline, a 20-acre wastewater evaporation pond or a 3,770-foot-long irrigation pipeline to deliver wastewater to a 31-acre pasture, a 4.7-acre stormwater infiltration basin, a 1.5-acre stormwater retention pond, and various tanks, buildings, exhaust stacks, parking, and storage areas. Natural gas to fuel the combustion turbines would be supplied by way of a new 4.1-mile-long, 20-inch-diameter pipeline from a Gas Transmission Northwest's Bonanza Compressor Station. The new pipeline would be constructed within private easements adjacent to or near Klamath County road rights-of-way. Although COB Energy Facility generators would use air-cooled condensers, the project would use an average of 72 gallons per minute for steam production and station service, up to a maximum of 210 gallons per minute. The source of this water would be one existing and two new wells near the project site, drawing from a deep aquifer consistent with a State of Oregon water right permit expected to be incorporated into the State energy facility site certificate. Process wastewater would either be used to irrigate pasture or held in a lined pond to evaporate. Sanitary water would be routed to an onsite septic tank then discharged to a leach field. No wastewater would be discharged to surface waters. The COB Energy Facility would interconnect to the FCRTS at Captain Jack Substation, 7.2 miles south of the project site. PERC would construct a new 500-kV transmission line from the project site to Captain Jack Substation. Part of the transmission line would cross public land managed by the Bureau of Land Management. BPA would install additional electrical equipment at Captain Jack Substation. At this time, PERC has not requested specific points of delivery.

  6. Development of an ASTM standard guide on performing vulnerability assessments for nuclear facilities

    SciTech Connect (OSTI)

    Wilkey, D.D.

    1995-09-01T23:59:59.000Z

    This paper describes an effort undertaken by subcommittee C26.12 (Safeguards) of the American Society for Testing and Materials (ASTM) to develop a standard guide for performing vulnerability assessments (VAs). VAs are performed to determine the effectiveness of safeguards and security systems for both domestic and international nuclear facilities. These assessments address a range of threats, including theft of nuclear material and sabotage, and use an array of methods. The approach to performing and documenting VAs is varied and is largely dependent upon the tools used to perform them. This diversity can lead to tools being misused, making validation of VAs more difficult. The development of a standard guide for performing VAs would, if generally accepted, alleviate these concerns. ASTM provides a forum for developing guides that includes a high level of peer review to assure that the result is acceptable to all potential users. Additionally, the ASTM is widely recognized for setting standards, and endorsement by the Society may increase the likelihood of acceptance by the nuclear community. The goal of this work is to develop a guide that is independent of the tools being used to perform the VA and applicable to the spectrum of threats described above.

  7. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07T23:59:59.000Z

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  8. Facility Representatives, DOE-STD-1063-2011, Change Notice 1

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd ofEvaluations in Covered Facilities | Department of

  9. Order Module--DOE O 420.1B, FACILITY SAFETY | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently Asked QuestionsDepartmentGas and Oil ResearchEnergyOnHSSOpti-MN1B, FACILITY SAFETY

  10. ARM Climate Research Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4(SC)PrincipalStaffTheofanis G.FacilitiesX14 AdvancedAprilALCCALCCARM

  11. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  12. REGULATORY STRATEGIES TO MINIMIZE GENERATION OF REGULATED WASTES FROM CLEANUP, CONTINUED USE OR DECOMMISSIONING OF NUCLEAR FACILITIES CONTAMINATED WITH POLYCHLORINATED BIPHENYLS (PCBS) - 11198

    SciTech Connect (OSTI)

    Lowry, N.

    2010-11-05T23:59:59.000Z

    Disposal costs for liquid PCB radioactive waste are among the highest of any category of regulated waste. The high cost is driven by the fact that disposal options are extremely limited. Toxic Substances Control Act (TSCA) regulations require most liquids with PCBs at concentration of {ge} 50 parts-per-million to be disposed by incineration or equivalent destructive treatment. Disposal fees can be as high as $200 per gallon. This figure does not include packaging and the cost to transport the waste to the disposal facility, or the waste generator's labor costs for managing the waste prior to shipment. Minimizing the generation of liquid radioactive PCB waste is therefore a significant waste management challenge. PCB spill cleanups often generate large volumes of waste. That is because the removal of PCBs typically requires the liberal use of industrial solvents followed by a thorough rinsing process. In a nuclear facility, the cleanup process may be complicated by the presence of radiation and other occupational hazards. Building design and construction features, e.g., the presence of open grating or trenches, may also complicate cleanup. In addition to the technical challenges associated with spill cleanup, selection of the appropriate regulatory requirements and approach may be challenging. The TSCA regulations include three different sections relating to the cleanup of PCB contamination or spills. EPA has also promulgated a separate guidance policy for fresh PCB spills that is published as Subpart G of 40 CFR 761 although it is not an actual regulation. Applicability is based on the circumstances of each contamination event or situation. Other laws or regulations may also apply. Identification of the allowable regulatory options is important. Effective communication with stakeholders, particularly regulators, is just as important. Depending on the regulatory path that is taken, cleanup may necessitate the generation of large quantities of regulated waste. Allowable options must be evaluated carefully in order to reduce compliance risks, protect personnel, limit potential negative impacts on facility operations, and minimize the generation of wastes subject to TSCA. This paper will identify critical factors in selecting the appropriate TSCA regulatory path in order to minimize the generation of radioactive PCB waste and reduce negative impacts to facilities. The importance of communicating pertinent technical issues with facility staff, regulatory personnel, and subsequently, the public, will be discussed. Key points will be illustrated by examples from five former production reactors at the DOE Savannah River Site. In these reactors a polyurethane sealant was used to seal piping penetrations in the biological shield walls. During the intense neutron bombardment that occurred during reactor operation, the sealant broke down into a thick, viscous material that seeped out of the piping penetrations over adjacent equipment and walls. Some of the walls were painted with a PCB product. PCBs from the paint migrated into the degraded sealant, creating PCB 'spill areas' in some of these facilities. The regulatory cleanup approach selected for each facility was based on its operational status, e.g., active, inactive or undergoing decommissioning. The selected strategies served to greatly minimize the generation of radioactive liquid PCB waste. It is expected that this information would be useful to other DOE sites, DOD facilities, and commercial nuclear facilities constructed prior to the 1979 TSCA ban on most manufacturing and uses of PCBs.

  13. Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM,

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferAprilOverviewEfficiencyof EnergyOokie MaStateDOE O 452.2D, NUCLEAR

  14. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2009-12-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

  15. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect (OSTI)

    Belli, P.; Di Marco, A. [INFN, Sezione di Roma Tor Vergata, Rome (Italy); Bernabei, R.; D'Angelo, S. [INFN, Sezione di Roma Tor Vergata, Rome, Italy and Dipartimento di Fisica, Universit di Roma Tor Vergata, Rome (Italy); Cappella, F.; D'Angelo, A.; Incicchitti, A. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Dipartimento di Fisica, Universit di Roma La Sapienza, Rome (Italy); Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I. [Institute for Nuclear Research, Kyiv (Ukraine); Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A. [Kharkiv Institute of Physics and Technology, Kharkiv (Ukraine); Polischuk, O. G. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Institute for Nuclear Research, Kyiv (Ukraine); and others

    2013-12-30T23:59:59.000Z

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2? channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc}?=?137.2keV) was observed for the first time.

  16. Commercial Decommissioning at DOE's Rocky Flats

    SciTech Connect (OSTI)

    Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

    2002-02-25T23:59:59.000Z

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

  17. Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 Russian NuclearandJunetrackEllen|JulyR--FOIA SupportDOE's

  18. NP User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLoveReferenceAgendaSecurityAboutAdministrationhighlights/NP

  19. DOE Office of Science Publishes Update of Landmark Plan: "Facilities for

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE FitsEnergyMessagein Alaska |Energy

  20. All User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1USummerNewsDOE Office of ScienceU.S.