Sample records for doe nuclear facilities

  1. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-06-01T23:59:59.000Z

    To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

  2. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-13T23:59:59.000Z

    The Order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of Structures, Systems and Components (SSCs) that are part of the safety basis required by 10 CFR 830.202.1 at hazard category 1, 2 and 3 Department of Energy (DOE) nuclear facilities. Cancels DOE O 433.1. Canceled by DOE O 433.1B.

  3. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Cancels DOE O 433.1A. Admin Chg 1, dated 3-12-2013, cancels DOE O 433.1B.

  4. Maintenance Management Program for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Admin Chg 1, dated 3-12-2013. Cancels DOE O 433.1A.

  5. Human factors methods in DOE nuclear facilities

    SciTech Connect (OSTI)

    Bennett, C.T.; Banks, W.W. (Lawrence Livermore National Lab., CA (United States)); Waters, R.J. (Department of Energy, Washington, DC (United States))

    1993-01-01T23:59:59.000Z

    The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle.

  6. Order Module--DOE O 433.1B, MAINTENANCE MANAGEMENT PROGRAM FOR DOE NUCLEAR FACILITIES

    Broader source: Energy.gov [DOE]

    "The familiar level of this module is designed to summarize the basic information in DOE O 433.1B, Maintenance Management Program for DOE Nuclear Facilities. This Order canceled DOE O 433.1A. This...

  7. Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To establish selection, qualification, and training requirements for management and operating (M&O) contractor personnel involved in the operation, maintenance, and technical support of Department of Energy and National Nuclear Security Administration Category A and B reactors and non-reactor nuclear facilities. Canceled by DOE O 426.2

  8. Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Cancels DOE G 420.1-1.

  9. Improving the regulation of safety at DOE nuclear facilities. Final report

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  10. Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

  11. Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

  12. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13, cancels DOE O 426.2.

  13. A survey of decontamination processes applicable to DOE nuclear facilities

    SciTech Connect (OSTI)

    Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

    1997-05-01T23:59:59.000Z

    The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

  14. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility...

    Energy Savers [EERE]

    the use of the original version. The DOE-STD-3009-2014 training team (led by Garrett Smith: garrett.smith@hq.doe.gov (AU-31), and supported by David Compton, Jeff Woody, and...

  15. DOE's Approach to Nuclear Facility Safety Analysis and Management

    Broader source: Energy.gov [DOE]

    Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

  16. Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities

    SciTech Connect (OSTI)

    Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

    1986-01-01T23:59:59.000Z

    This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

  17. Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-21T23:59:59.000Z

    The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13.

  18. Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-03-28T23:59:59.000Z

    This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

  19. Guideline to good practices for seasonal facility preservation at DOE nuclear facilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    This guide is intended to assist facility maintenance organizations in the review of existing methods and in the development of new methods for establishing a maintenance Seasonal Facility Preservation program. It is expected that each DOE facility may use approaches or methods different from those defined in this guide. The specific guidelines that follow reflect generally accepted industry practices. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of this guideline and actual practice, management should evaluate current practice to determine the need to include/exclude proposed features. A change in maintenance practice would be appropriate if a performance weakness were determined to exist. The development, documentation, and implementation of other features that further enhance these guidelines for specific applications are encouraged.

  20. DOE-STD-1064-94; DOE Standard Guideline to Good Practices For Seasonal Facility Preservation at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998NOT97

  1. DOE-STD-1067; DOE Standard Guideline to Good Practices for Maintenance Facilities, Equipment, and Tools at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998NOT9765-947967-94

  2. Self-imposed self-assessment program at a DOE Nuclear Facility

    SciTech Connect (OSTI)

    Geoffrion, R.R.; Loud, J.J.; Walter, E.C. [Los Alamos National Laboratory, NM (United States)

    1996-12-31T23:59:59.000Z

    The Nuclear Materials and Technology (NMT) Division at Los Alamos National Laboratory (LANL) has implemented a performance-based self-assessment program at the TA-55 plutonium facility. The program was conceptualized and developed by LANL`s internal assessment group, AA-2. The management walkaround program fosters continuous improvement in NMT products and performance of its activities. The program, based on experience from the Institute of Nuclear Power Operations, is endorsed at the site by the U.S. Department of Energy (DOE) Environment, Safety, and Health (ES&H) personnel and by the Defense Nuclear Facility Safety Board. The self-assessment program focuses on how work is actually performed rather than on paperwork or process compliance. Managers critically and continually assess ES&H, conduct of operations, and other functional area requirements.

  3. Office of Nuclear Facility Safety Programs

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

  4. DOE-STD-1070-94; DOE Standard Guidelines for Evalation of Nuclear Facility Training Programs

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994 DOE

  5. Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned

    SciTech Connect (OSTI)

    Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

    2005-11-01T23:59:59.000Z

    From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

  6. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-12T23:59:59.000Z

    The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1.

  7. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-09-09T23:59:59.000Z

    The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1. Admin Chg 1, dated 6-14-13, cancels DOE G 433.1-1A.

  8. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  9. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-09-29T23:59:59.000Z

    The order establishes the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shutdown. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  10. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-12-28T23:59:59.000Z

    To establish the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1. Canceled by DOE O 425.1B.

  11. Experience With Damaged Spent Nuclear Fuel at U.S. DOE Facilities

    SciTech Connect (OSTI)

    Carlsen, Brett; Fillmore, Denzel; Woolstenhulme, Eric [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415 (United States); McCormack, Roger L. [Fluor Hanford Site, Richland, Wash. (United States); Sindelar, Robert; Spieker, Timothy [Savannah River National Laboratory, Savannah River Site Aiken, SC 29808 (United States)

    2006-07-01T23:59:59.000Z

    This report summarizes some of the challenges encountered and solutions implemented to ensure safe storage and handling of damaged spent nuclear fuels (SNF). It includes a brief summary of some SNF storage environments and resulting SNF degradation, experience with handling and repackaging significantly degraded SNFs, and the associated lessons learned. This work provides useful insight and resolutions to many engineering challenges facing SNF handling and storage facilities. The context of this report is taken from a report produced at Idaho National Laboratory and further detailed information, such as equipment design and usage, can be found in the appendices to that report. (authors)

  12. DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...

    Broader source: Energy.gov (indexed) [DOE]

    DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

  13. DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01T23:59:59.000Z

    Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

  14. A Proposed Cost-Benefit Analysis Approach for Evaluating DOE Nuclear Facility Design Options

    Broader source: Energy.gov [DOE]

    Presenter: Dr. Kamiar Jamali, Senior Technical Advisor to the Chief of Defense Nuclear Safety, National Nuclear Security Administration, Office of Nuclear Safety NA-SH

  15. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-26T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

  16. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-12-21T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1A. Canceled by DOE O 425.1C.

  17. Startup and Restart of Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-03-13T23:59:59.000Z

    To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1B. Canceled by DOE O 425.1D

  18. Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-09-05T23:59:59.000Z

    This Guide describes a maintenance management program that would be acceptable to DOE for meeting the requirements of DOE O 433.1. Canceled by DOE G 433.1-1A.

  19. Conduct of Operations Requirements for DOE Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1990-07-09T23:59:59.000Z

    "To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

  20. Development of a criticality safety program guide for DOE nonreactor nuclear facilities

    SciTech Connect (OSTI)

    Hopper, C.M. [Oak Ridge National Lab., TN (United States)

    1994-09-01T23:59:59.000Z

    The objective of this paper was a presentation and discussion of the US DOE`s efforts to develop a NCS program guide for the implementation of 10CFR830.380. Topics of discussion were: (1) introduction/general practices; (2) definition of terms; (3) administration; (4) NCSA guidelines; (5) calculations; (6) conduct of operations; (7) state support; and (8) emergency preparedness.

  1. Nuclear Physics User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    link The 88-Inch Cyclotron, located at the Lawrence Berkeley National Laboratory (LBNL) External link , supports ongoing research programs in nuclear structure, astrophysics,...

  2. DOE-STD-1146-2001; General Technical Base Qualification Standard DOE Defense Nuclear Facilities Technical Personnel

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-954 DOE-STD-1136-2004746-2001

  3. Establishing nuclear facility drill programs

    SciTech Connect (OSTI)

    NONE

    1996-03-01T23:59:59.000Z

    The purpose of DOE Handbook, Establishing Nuclear Facility Drill Programs, is to provide DOE contractor organizations with guidance for development or modification of drill programs that both train on and evaluate facility training and procedures dealing with a variety of abnormal and emergency operating situations likely to occur at a facility. The handbook focuses on conducting drills as part of a training and qualification program (typically within a single facility), and is not intended to included responses of personnel beyond the site boundary, e.g. Local or State Emergency Management, Law Enforcement, etc. Each facility is expected to develop its own facility specific scenarios, and should not limit them to equipment failures but should include personnel injuries and other likely events. A well-developed and consistently administered drill program can effectively provide training and evaluation of facility operating personnel in controlling abnormal and emergency operating situations. To ensure the drills are meeting their intended purpose they should have evaluation criteria for evaluating the knowledge and skills of the facility operating personnel. Training and evaluation of staff skills and knowledge such as component and system interrelationship, reasoning and judgment, team interactions, and communications can be accomplished with drills. The appendices to this Handbook contain both models and additional guidance for establishing drill programs at the Department`s nuclear facilities.

  4. DOE Order Self Study Modules - DOE O 425.1D, Verification of Readiness to Startup or Restart Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5OperateInfrastructure WorkingOrder 482.1 DOE925.1D

  5. DOE Designated Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactor** Lawrence Berkeley National Laboratory Joint Genome Institute - Production Genomics Facility (PGF)** (joint with LLNL, LANL, ORNL and PNNL) Advanced Light Source (ALS)...

  6. DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear PlantsFirst-of-its-KindIdaho |

  7. Nuclear Power Generating Facilities (Maine)

    Broader source: Energy.gov [DOE]

    The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

  8. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  9. DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994 DOE71-94

  10. Guidelines for Evaluation of Nuclear Facility Training Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-22T23:59:59.000Z

    The Guidelines for Evaluation of Nuclear Facility Training Programs establish objectives and criteria for evaluating nuclear facility training programs. The guidance in this standard provides a framework for the systematic evaluation of training programs at nuclear facilities and is based, in part, on established criteria for Technical Safety Appraisals, Tiger Team Assessments, commercial nuclear industry evaluations, and the DOE Training Accreditation Program.

  11. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-12-30T23:59:59.000Z

    The manual defines the process DOE will use to interface with the Defense Nuclear Facilities Safety Board and its staff. Canceled by DOE M 140.1-1A. Does not cancel other directives.

  12. CRAD, Nuclear Facility Construction - Structural Concrete, May...

    Broader source: Energy.gov (indexed) [DOE]

    CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 CRAD, Nuclear Facility Construction - Structural Concrete, May 29, 2009 May 29, 2009 Nuclear Facility...

  13. DOE-STD-1050-93; DOE Standard Guideline to Good Practices For Planning, Scheduling, and Coordination of Maintenance at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide

  14. DOE-STD-1051-93; DOE Standard Guideline to Good Practices For Maintenance Organization and Administration at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide1-93 March 1993

  15. DOE Policy on Decommissioning DOE Facilities Under CERCLA

    Broader source: Energy.gov [DOE]

    In May 1995, the Department of Energy (DOE) issued a policy in collaboration with the Environmental Protection Agency (EPA) for decommissioning surplus DOE facilities consistent with the...

  16. Facility Approvals, Security Surveys, and Nuclear Materials Surveys

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03T23:59:59.000Z

    To establish the Department of Energy (DOE) requirements for granting facility approvals prior to permitting safeguards and security interests on the premises and the conduct of on-site security and/or nuclear material surveys of facilities with safeguards and security interests. Cancels DOE O 5630.7 and DOE O 5634.1. Canceled by DOE 5634.1B.

  17. WIPP Nuclear Facilities Transparency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500IIVasudhaSurface.Laboratory inApprovedRegionalDOE

  18. Capsule review of the DOE research and development and field facilities

    SciTech Connect (OSTI)

    None

    1980-09-01T23:59:59.000Z

    A description is given of the roles of DOE's headquarters, field offices, major multiprogram laboratories, Energy Technology and Mining Technology Centers, and other government-owned, contractor-operated facilities, which are located in all regions of the US. Descriptions of DOE facilities are given for multiprogram laboratories (12); program-dedicated facilities (biomedical and environmental facilities-12, fossil energy facilities-7, fusion energy facility-1, nuclear development facilities-3, physical research facilities-4, safeguards facility-1, and solar facilities-2); and Production, Testing, and Fabrication Facilities (nuclear materials production facilities-5, weapon testing and fabrication complex-8). Three appendices list DOE field and project offices; DOE field facilities by state or territory, names, addresses, and telephone numbers; DOE R and D field facilities by type, contractor names, and names of directors. (MCW)

  19. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-04-14T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  20. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04T23:59:59.000Z

    The Guide was developed in support of DOE O 226.1B to provide guidance that may be useful to DOE line management organizations in meeting the provisions of that order when applied to nuclear facilities.

  1. Facility Approvals, Security Surveys, and Nuclear Materials Surveys

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-09-15T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for granting facility approvals prior to permitting safeguards and security interests on the premises and the conduct of insite security and/or nuclear material surveys of facilities with safeguards and security interests. Cancels DOE 5634.1A. Canceled by DOE O 470.1 dated 9-28-95.

  2. DOE Facility Management Contracts Facility Owner Contractor

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5DOEDOE

  3. Nonreactor Nuclear Safety Design Guide for use with DOE O 420...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CURRENT DOE G 420.1-1A, Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety by Pranab Guha Functional areas: Facility Safety, Nonreactor Nuclear...

  4. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Change, Safety, The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety,...

  5. Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Fusion Nuclear Science Facility (FNSF) ­ Motivation, Role, Required Capabilities YK Martin Peng;1 Managed by UT-Battelle for the Department of Energy Example: fusion nuclear-nonnuclear coupling effects-composites; Nano-structure alloy; PFC designs, etc. · Nuclear-nonnuclear coupling in PFC: - Plasma ion flux induces

  6. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6DEPARTMENT OFUniv. Of

  7. DOE Facility Management Contracts Facility Owner Contractor

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6DEPARTMENT OFUniv.

  8. Independent Activity Report, Defense Nuclear Facilities Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

  9. Notice of Intent to Revise DOE G 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-04-04T23:59:59.000Z

    This revision will incorporate new content devoted to Federal oversight and evaluation of effectiveness of activity-level work planning and control (WP&C) at Hazard Category 1, 2, and 3 nuclear facilities.

  10. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16T23:59:59.000Z

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

  11. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-03-30T23:59:59.000Z

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1A.

  12. Interface with the Defense Nuclear Facilities Safety Board

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-01-26T23:59:59.000Z

    This Manual presents the process the Department of Energy will use to interface with the Defense Nuclear Facilities Safety Board (DNFSB) and its staff. Cancels DOE M 140.1-1.

  13. DOE Facilities Technology Partnering Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-12T23:59:59.000Z

    The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

  14. Nuclear Explosive Safety Manual - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

  15. Improving the Safeguardability of Nuclear Facilities

    SciTech Connect (OSTI)

    T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

    2009-07-01T23:59:59.000Z

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOEs Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

  16. Verification of Readiness to Start Up or Restart Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-04-16T23:59:59.000Z

    The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

  17. Nuclear Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear Facilities Nuclear Facilities

  18. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  19. Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-02-19T23:59:59.000Z

    The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

  20. Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR...

    Broader source: Energy.gov (indexed) [DOE]

    AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY...

  1. The DOE ARM Aerial Facility

    SciTech Connect (OSTI)

    Schmid, Beat; Tomlinson, Jason M.; Hubbe, John M.; Comstock, Jennifer M.; Mei, Fan; Chand, Duli; Pekour, Mikhail S.; Kluzek, Celine D.; Andrews, Elisabeth; Biraud, S.; McFarquhar, Greg

    2014-05-01T23:59:59.000Z

    The Department of Energy Atmospheric Radiation Measurement (ARM) Program is a climate research user facility operating stationary ground sites that provide long-term measurements of climate relevant properties, mobile ground- and ship-based facilities to conduct shorter field campaigns (6-12 months), and the ARM Aerial Facility (AAF). The airborne observations acquired by the AAF enhance the surface-based ARM measurements by providing high-resolution in-situ measurements for process understanding, retrieval-algorithm development, and model evaluation that are not possible using ground- or satellite-based techniques. Several ARM aerial efforts were consolidated into the AAF in 2006. With the exception of a small aircraft used for routine measurements of aerosols and carbon cycle gases, AAF at the time had no dedicated aircraft and only a small number of instruments at its disposal. In this "virtual hangar" mode, AAF successfully carried out several missions contracting with organizations and investigators who provided their research aircraft and instrumentation. In 2009, AAF started managing operations of the Battelle-owned Gulfstream I (G-1) large twin-turboprop research aircraft. Furthermore, the American Recovery and Reinvestment Act of 2009 provided funding for the procurement of over twenty new instruments to be used aboard the G-1 and other AAF virtual-hangar aircraft. AAF now executes missions in the virtual- and real-hangar mode producing freely available datasets for studying aerosol, cloud, and radiative processes in the atmosphere. AAF is also engaged in the maturation and testing of newly developed airborne sensors to help foster the next generation of airborne instruments.

  2. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  3. DOE fundamentals handbook: Nuclear physics and reactor theory

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  4. DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

  5. Nuclear Facility Construction - Structural Concrete, May 29,...

    Broader source: Energy.gov (indexed) [DOE]

    Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0) Nuclear Facility Construction - Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev....

  6. Nuclear Explosive Safety Evaluation Processes - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  7. CRAD, DOE Oversight- Y-12 Enriched Uranium Operations Oxide Conversion Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for a DOE independent oversight assessment of the Y-12 Site Office's programs for oversight of its contractors at the Y-12 Enriched Uranium Operations Oxide Conversion Facility.

  8. Safety Oversight of Decommissioning Activities at DOE Nuclear Sites

    SciTech Connect (OSTI)

    Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

    2008-01-15T23:59:59.000Z

    The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

  9. WIRELESS FOR A NUCLEAR FACILITY

    SciTech Connect (OSTI)

    Shull, D; Joe Cordaro, J

    2007-03-28T23:59:59.000Z

    The introduction of wireless technology into a government site where nuclear material is processed and stored brings new meaning to the term ''harsh environment''. At SRNL, we are attempting to address not only the harsh RF and harsh physical environment common to industrial facilities, but also the ''harsh'' regulatory environment necessitated by the nature of the business at our site. We will discuss our concepts, processes, and expected outcomes in our attempts to surmount the roadblocks and reap the benefits of wireless in our ''factory''.

  10. ALARA training at DOE contractor facilities

    SciTech Connect (OSTI)

    Neeser, J.L.

    1992-05-22T23:59:59.000Z

    ALARA training is an important element of a sound ALARA program. ALARA training at a nuclear facility needs to be conducted for all occupational workers, for radiation workers, for radiation protection technicians, and for all other employees who have ALARA responsibilities. Each of these groups needs to receive ALARA training specific to their responsibilities. This report describes how to develop this training. It also outlines what should be included in an acceptable ALARA training program.

  11. Standard Guide for Preparing Characterization Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01T23:59:59.000Z

    1.1 This standard guide applies to developing nuclear facility characterization plans to define the type, magnitude, location, and extent of radiological and chemical contamination within the facility to allow decommissioning planning. This guide amplifies guidance regarding facility characterization indicated in ASTM Standard E 1281 on Nuclear Facility Decommissioning Plans. This guide does not address the methodology necessary to release a facility or site for unconditional use. This guide specifically addresses: 1.1.1 the data quality objective for characterization as an initial step in decommissioning planning. 1.1.2 sampling methods, 1.1.3 the logic involved (statistical design) to ensure adequate characterization for decommissioning purposes; and 1.1.4 essential documentation of the characterization information. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate saf...

  12. Use of Facility Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-07-12T23:59:59.000Z

    To clarify and modify policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), facility contractor employees located in the Washington, D.C., area. Cancels DOE N 350.5. Certified 12-28-06. Canceled by DOE O 350.2A.

  13. KRS Chapter 278: Nuclear Power Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    No construction shall commence on a nuclear power facility in the Commonwealth until the Public Service Commission finds that the United States government, through its authorized agency, has...

  14. Application of Nuclear Regulatory Commission Regulation Equivalency to Construction of New Nuclear Facilities

    SciTech Connect (OSTI)

    BISHOP, G.E.

    1999-06-02T23:59:59.000Z

    The Spent Nuclear Fuels Project (SNFP) Office of the Department of Energy (DOE), Richland Operations Office, is charged with moving 2.100 metric tons of spent nuclear fuel elements left over from plutonium production into semi-permanent storage at DOE'S Hanford site in Washington state. In anticipation of eventual NRC regulation, the DOE decided to impose NRC requirements on new SNFP facility design and construction, specifically for the Cold Vacuum Drying Facility (CVDF) and the Canister Storage Building (CSB). The SNFP implemented this policy of ''NRC equivalency'' with the goal of achieving a level of nuclear safety equivalent to that of NRC-licensed fuel processing facilities. Appropriate features of the NRC licensing process were adopted. However, the SNFP maintained applicable DOE requirements in tandem with the NRC regulations. Project work is continuing, with the first fuel movement scheduled for November, 2000.

  15. Federal Line Management Oversight of Department of Energy Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-04-25T23:59:59.000Z

    The purpose of this Guide is to provide U.S. Department of Energy (DOE) line management with guidance that may be useful to them in effectively and efficiently implementing the requirements of DOE O 226.1B, Implementation of Department of Energy Oversight Policy, date April 25, 2011, as applied to Federal line management of hazard category 1, 2, and 3 nuclear facilities.

  16. CRAD, DOE Oversight- Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) used for an assessment of the Conduct of Operations Program portion of an Operational Readiness Review at the Los Alamos National Laboratory, Waste Characterization, Reduction, and Repackaging Facility.

  17. DOE-STD-1054-93; DOE Standard Guideline to Good Practices for Control and Calibration of Measuring and Test Equipment (M&TE) at DOE Nuclear Facilities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide1-93 March4-93

  18. Office of Nuclear Safety Basis and Facility Design

    Broader source: Energy.gov [DOE]

    The Office of Nuclear Safety Basis & Facility Design establishes safety basis and facility design requirements and expectations related to analysis and design of nuclear facilities to ensure protection of workers and the public from the hazards associated with nuclear operations.

  19. DOE Office of Science Publishes Update of Landmark Plan: "Facilities...

    Office of Environmental Management (EM)

    Sherwood, (202) 586-5806 Addthis Related Articles Fact Sheet: Facility For Rare Isotope Beams (FRIB) Applicant Selection DOE's Oak Ridge Supercomputer Now World's Fastest for Open...

  20. CRAD, Nuclear Facility Construction - Piping and Pipe Supports...

    Energy Savers [EERE]

    Construction - Structural Steel, May 29, 2009 CRAD, Nuclear Facility Construction - Mechanical Equipment - June 26, 2012 Nuclear Facility Construction - Structural Concrete, May...

  1. DOE/NNSA Facility Management Contracts

    Office of Environmental Management (EM)

    NNSA Facility Management Contracts March 2015 version Facility Owner Contractor Award Date End Date OptionsAward Term Ultimate Potential Expiration Date Contract FY Competed...

  2. Facility for Rare Isotope Beams: The Journey Has Begun on DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific User Facility Facility for Rare Isotope Beams: The Journey Has Begun on DOE's latest Scientific...

  3. Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Research and Development manages and oversees the operation of an exceptional suite of science, technology and engineering facilities that support and further the national...

  4. FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF)

    E-Print Network [OSTI]

    FUSION NUCLEAR SCIENCE PROGRAM & SUPPORTING FUSION NUCLEAR SCIENCE FACILITY (FNSF): UPDATE · It was well recognized there were also critical materials and technology issues that needed to be addressed in order to apply the knowledge we gained about burning plasma state #12;FUSION NUCLEAR SCIENCE PROGRAM

  5. Safety of Accelerator Facilities - DOE Directives, Delegations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

  6. Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS

    Broader source: Energy.gov [DOE]

    The familiar level of this module is divided into two sections that are intended to provide only an overview of the material contained in DOE-STD-1104-2009, which should be consulted for complete...

  7. Code of Federal Regulations Procedural Rules for DOE Nuclear Activities Part II

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is issuing procedural rules to be used in applying its substantive regulations and orders relating to nuclear safety. These procedural rules are intended to be an essential part of the framework through which DOE deals with its contractors, subcontractors, and suppliers to ensure its nuclear facilities are operated in a manner that protects public and worker safety and the environment. In particular, this part sets forth the procedures to implement the provisions of the Price- Anderson Amendments Act of 1988 (PAAA) which subjects DOE contractors to potential civil and criminal penalties for violations of DOE rules, regulations and orders relating to nuclear safety (DOE Nuclear Safety Requirements).

  8. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1

    Broader source: Energy.gov [DOE]

    This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOEs operation of nuclear facilities.

  9. Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-02-07T23:59:59.000Z

    This standard provides a framework for generating Criticality Safety Evaluations (CSE) supporting fissionable material operations at Department of Energy (DOE) nonreactor nuclear facilities. This standard imposes no new criticality safety analysis requirements.

  10. DOE-STD-1104-96 CN-1; Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 December 1995 DOE-STD-1104-96

  11. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

  12. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

  13. DOE Office of Nuclear Energy Transportation Planning, Route Selection...

    Office of Environmental Management (EM)

    DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

  14. US Nuclear Regulatory Commission Input to DOE Request for Information...

    Energy Savers [EERE]

    US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

  15. NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results

    SciTech Connect (OSTI)

    Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

    1992-01-01T23:59:59.000Z

    Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

  16. DOE Initiates Environmental Impact Statement for Global Nuclear...

    Office of Environmental Management (EM)

    Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership...

  17. NNSA and Defense Nuclear Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women | NationalNuclearThailand | National

  18. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilitiesFacility0.1C

  19. Facilities | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities Some of the nation's|

  20. 2011 Facility EMS Annual Report Data (DOE-LM) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    1 Facility EMS Annual Report Data (DOE-LM) 2011 Facility EMS Annual Report Data (DOE-LM) 2011 Facility EMS Annual Report Data (DOE-LM) 2011 More Documents & Publications 2012...

  1. EFFECTIVE IMPLEMENTATION OF DOE RESTART ORDERS AND STANDARDS FOR DEACTIVATION FACILITIES

    SciTech Connect (OSTI)

    Tindal, W.C.; Daniels, D.L.

    2003-02-27T23:59:59.000Z

    Building 9206 at the Y-12 National Security Complex has recently completed an Operational Readiness Review (ORR). The scope of the review covered the transition from a post operation surveillance and maintenance (S&M) mode to a deactivation mode. This process has generated several lessons learned that may be valuable to other Department of Energy (DOE) nuclear facilities.

  2. Item No. 3 process facilities cost estimates and schedules for facilities capability assurance program nuclear facilities modernization - FY 1989 line item, authorization No. D79

    SciTech Connect (OSTI)

    NONE

    1989-07-01T23:59:59.000Z

    Data is presented concerning cost estimates and schedules for process facilities and nuclear facilities modernization.

  3. Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities

    SciTech Connect (OSTI)

    T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

    2009-09-01T23:59:59.000Z

    The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOEs Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

  4. Reports to the DOE Nuclear Data Committee

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

  5. Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)

    SciTech Connect (OSTI)

    VINCENT, Andrew

    2005-07-14T23:59:59.000Z

    In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

  6. Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-07-01T23:59:59.000Z

    This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

  7. Treatment of gaseous effluents at nuclear facilities

    SciTech Connect (OSTI)

    Goossen, W.R.A. [Studiecentrum voor Kernenergie, Mol (Belgium). Dept. of Chemical Engineering] [ed.; Eichholz, G.G.; Tedder, D.W. [eds.] [Georgia Institute of Technology, Atlanta, GA (United States)

    1991-12-31T23:59:59.000Z

    Airborne effluents from nuclear facilities represent the major environmental impact from such plants both under routine conditions or after plant accidents. Effective control of such emissions, therefore, constitutes a major aspect of plant design for nuclear power plants and other facilities in the nuclear fuel cycle. This volume brings together a number of review articles by experts in the various areas of concern and describes some of the removal systems that have been designed for power plants and, particularly, for reprocessing plants. Besides controlling the release of radionuclides, other potentially hazardous effluents, such as nitrous oxides, must be minimized, and these are included in some of the systems described. The various chapters deal with historic developments and current technology in reducing emission of fission products, noble gases, iodine, and tritium, and consider design requirements for practical installations.

  8. CRAD, Nuclear Reactor Facility Operations - December 4, 2014...

    Broader source: Energy.gov (indexed) [DOE]

    4, 2014 CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08, Rev. 0) Nuclear Reactor Faclity Operations Criteria Review and Approach Document (EA CRAD...

  9. Y-12 Removes Nuclear Materials from Two Facilities to Reduce...

    National Nuclear Security Administration (NNSA)

    Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Removes Nuclear Materials from Two Facilities ... Y-12 Removes Nuclear Materials from...

  10. CRAD, Nuclear Facility Safety System- September 25, 2009

    Broader source: Energy.gov [DOE]

    Nuclear Facility Safety System Functionality Inspection Criteria, Inspection Activities, and Lines of Inquiry (HSS CRAD 64-17, Rev 0 )

  11. 359-06/RDS/ Fusion Nuclear Science Facility and Program

    E-Print Network [OSTI]

    359-06/RDS/ rs Fusion Nuclear Science Facility and Program by R.D. Stambaugh Fusion Power, DC #12;359-06/RDS/ rs Mission of a Fusion Nuclear Science Facility (FNSF) Two Candidates: FNSF That Must Be Filled Between ITER and a DEMO * A Fusion Nuclear Science Program and Facility Fills Nearly All

  12. Nuclear Explosive and Weapon Surety Program - DOE Directives...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

  13. DOE/NNSA Facility Management Contracts

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJune 16,April 29,MayBonnevilleTheNNSA Facility

  14. Facility Safety - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsing ZirconiaPolicy andExsolutionFES6FY 2011Facility Engineering

  15. Nuclear Power Facilities (2008) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014Nuclear FacilitiesNuclearNavy

  16. DOE Facility Management Contracts | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at Multipleorder supplies or Department of EnergyDOE site

  17. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Ferguson, S.D.; Fielden, J.M.; Schumann, P.L.

    1989-09-01T23:59:59.000Z

    The 576 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the tenth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title work, publication description, geographic location, subject category, and keywords.

  18. Nuclear facility decommissioning and site remedial actions

    SciTech Connect (OSTI)

    Knox, N.P.; Webb, J.R.; Ferguson, S.D.; Goins, L.F.; Owen, P.T.

    1990-09-01T23:59:59.000Z

    The 394 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eleventh in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's Remedial Action Programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Programs, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Grand Junction Remedial Action Program, (7) Uranium Mill Tailings Management, (8) Technical Measurements Center, (9) Remedial Action Program, and (10) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies.

  19. Guidelines for preparing criticality safety evaluations at Department of Energy non-reactor nuclear facilities

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document contains guidelines that should be followed when preparing Criticality Safety Evaluations that will be used to demonstrate the safety of operations performed at DOE non-reactor nuclear facilities. Adherence to these guidelines will provide consistency and uniformity in criticality safety evaluations (CSEs) across the complex and will document compliance with the requirements of DOE Order 5480.24.

  20. Characterization of emergency preparedness at DOE contractor facilities

    SciTech Connect (OSTI)

    Gillings, J.C.; Murphy, B.L.; Corbit, C.D.; MacLellan, J.A.; Essig, T.H.; Higby, D.P.; Hooker, C.D.; Laughlin, G.J.; Stoetzel, G.A.; Swinth, K.L.

    1984-07-01T23:59:59.000Z

    A study of emergency preparedness capabilities at DOE facilities was initiated following the incident at the Three Mile Island (TMI) Nuclear Power Station. It was designed to parallel but expand on a study on emergency preparedness instrumentation that was conducted in 1970 by Pacific Northwest Laboratory. The 1970 survey findings led to the publication of four reports on performance criteria for radiological emergency instrumentation. Three of these reports - BNWL-1635 (Selby et al. 1972), BNWL-1742 (Anderson et al. 1974) and BNWL-1857 (Andersen et al. 1976) - addressed the criteria for emergency instrumentation at reactors, mixed oxide fuel fabrication plants, and fuel reprocessing plants, respectively. The fourth report, BNWL-1991 (Bramson et al. 1976), addressed evaluation testing and calibration methodology for these instruments. This report is presented in three parts. Part One is a review of the BNWL documents to determine whether they are applicable to state-of-the-art instrument capabilities. The Appendix to Part One provides a comparison between the instrument performance criteria established in BNWL-1991 to applicable American National Standards Institute (ANSI) standards for portable survey and contamination meters, installed radiation and area monitors, effluent monitors, calibration techniques, criticality detection systems, alarm systems, and direct reading dosimeters. Part Two compares the 1970 survey results with the 1980 survey results to identify trends in emergency preparedness. Part Three is a discussion of the results of the 1980 emergency preparedness survey and the supporting data for each of the 15 modules. 8 references. (ACR)

  1. Financing Strategies for Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2005-12-01T23:59:59.000Z

    To help meet our nations energy needs, reprocessing of spent nuclear fuel is being considered more and more as a necessary step in a future nuclear fuel cycle, but incorporating this step into the fuel cycle will require considerable investment. This report presents an evaluation of financing scenarios for reprocessing facilities integrated into the nuclear fuel cycle. A range of options, from fully government owned to fully private owned, was evaluated using a DPL (Dynamic Programming Language) 6.0 model, which can systematically optimize outcomes based on user-defined criteria (e.g., lowest life-cycle cost, lowest unit cost). Though all business decisions follow similar logic with regard to financing, reprocessing facilities are an exception due to the range of financing options available. The evaluation concludes that lowest unit costs and lifetime costs follow a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. Other financing arrangements, however, including regulated utility ownership and a hybrid ownership scheme, led to acceptable costs, below the Nuclear Energy Agency published estimates. Overwhelmingly, uncertainty in annual capacity led to the greatest fluctuations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; the annual operating costs dominate the government case. It is concluded that to finance the construction and operation of such a facility without government ownership could be feasible with measures taken to mitigate risk, and that factors besides unit costs should be considered (e.g., legal issues, social effects, proliferation concerns) before making a decision on financing strategy.

  2. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

  3. Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

  4. DOE Announces Loan Guarantee Applications for Nuclear Power Plant...

    Energy Savers [EERE]

    Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

  5. Update on DOEs Nuclear Energy University Program

    SciTech Connect (OSTI)

    M. J. Lambregts

    2009-04-01T23:59:59.000Z

    The Center for Advanced Energy Studies (CAES) Nuclear Energy University Program Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the TIOs/TDOs, a process was designed and administered which includes two competitive Requests for Proposals (RFPs) and two FOAs in the following areas: (1)Research and Development Grants, (2)Infrastructure improvement, and (3)Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Departments research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

  6. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  7. Federal CHP Potential 1 Does your facility have CHP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    . The Federal building types with greatest CHP potential are hospitals, industrial, and R&D facilities. Figure 1) systems provide thermal energy for buildings or processes while at the same time generating electricity extraordinary efficiency and environmental benefits. The U.S. Department of Energy's (DOE's) Federal Energy

  8. Safety of Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Batandjieva, B.; Warnecke, E.; Coates, R. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: ensuring safety during all stages of facility life cycle is a widely recognised responsibility of the operators, implemented under the supervision of the regulatory body and other competent authorities. As the majority of the facilities worldwide are still in operation or shutdown, there is no substantial experience in decommissioning and evaluation of safety during decommissioning in majority of Member States. The need for cooperation and exchange of experience and good practices on ensuring and evaluating safety of decommissioning was one of the outcomes of the Berlin conference in 2002. On this basis during the last three years IAEA initiated a number of international projects that can assist countries, in particular small countries with limited resources. The main IAEA international projects addressing safety during decommissioning are: (i) DeSa Project on Evaluation and Demonstration of Safety during Decommissioning; (ii) R{sup 2}D{sup 2}P project on Research Reactors Decommissioning Demonstration Project; and (iii) Project on Evaluation and Decommissioning of Former Facilities that used Radioactive Material in Iraq. This paper focuses on the DeSa Project activities on (i) development of a harmonised methodology for safety assessment for decommissioning; (ii) development of a procedure for review of safety assessments; (iii) development of recommendations on application of the graded approach to the performance and review of safety assessments; and (iv) application of the methodology and procedure to the selected real facilities with different complexities and hazard potentials (a nuclear power plant, a research reactor and a nuclear laboratory). The paper also outlines the DeSa Project outcomes and planned follow-up activities. It also summarises the main objectives and activities of the Iraq Project and introduces the R{sup 2}D{sup 2} Project, which is a subject of a complementary paper.

  9. Hazard classification criteria for non-nuclear facilities

    SciTech Connect (OSTI)

    Mahn, J.A.; Walker, S.A.

    1997-03-01T23:59:59.000Z

    Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

  10. Nuclear fuel cycle facility accident analysis handbook

    SciTech Connect (OSTI)

    NONE

    1998-03-01T23:59:59.000Z

    The purpose of this Handbook is to provide guidance on how to calculate the characteristics of releases of radioactive materials and/or hazardous chemicals from nonreactor nuclear facilities. In addition, the Handbook provides guidance on how to calculate the consequences of those releases. There are four major chapters: Hazard Evaluation and Scenario Development; Source Term Determination; Transport Within Containment/Confinement; and Atmospheric Dispersion and Consequences Modeling. These chapters are supported by Appendices, including: a summary of chemical and nuclear information that contains descriptions of various fuel cycle facilities; details on how to calculate the characteristics of source terms for releases of hazardous chemicals; a comparison of NRC, EPA, and OSHA programs that address chemical safety; a summary of the performance of HEPA and other filters; and a discussion of uncertainties. Several sample problems are presented: a free-fall spill of powder, an explosion with radioactive release; a fire with radioactive release; filter failure; hydrogen fluoride release from a tankcar; a uranium hexafluoride cylinder rupture; a liquid spill in a vitrification plant; and a criticality incident. Finally, this Handbook includes a computer model, LPF No.1B, that is intended for use in calculating Leak Path Factors. A list of contributors to the Handbook is presented in Chapter 6. 39 figs., 35 tabs.

  11. The necessity for permanence : making a nuclear waste storage facility

    E-Print Network [OSTI]

    Stupay, Robert Irving

    1991-01-01T23:59:59.000Z

    The United States Department of Energy is proposing to build a nuclear waste storage facility in southern Nevada. This facility will be designed to last 10,000 years. It must prevent the waste from contaminating the ...

  12. Seismic requirements for design of nuclear power plants and nuclear test facilities

    SciTech Connect (OSTI)

    Not Available

    1985-02-01T23:59:59.000Z

    This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

  13. E-Print Network 3.0 - accelerator facilities doe Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JUSTIFICATION MEMO ON REVISION OF DOE O Summary: ON REVISION OF DOE O 5480.19, CONDUCT OF OPERATIONS REQUIREMENTS FOR DOE FACILITIES Executive Summary... will be applicable to DOE...

  14. Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge Operations Nuclear Facility Safety Basis Fundamentals Self-Study Guide Review Questions Name: Organization: Directions: This is an open-book evaluation. Complete the...

  15. TRAINING THE STAFF OF THE REGULATORY BODY FOR NUCLEAR FACILITIES:

    E-Print Network [OSTI]

    Wagramer Strasse; A Competency Framework

    Training the staff of the regulatory body for nuclear facilities: A competency framework November 2001The originating Section of this publication in the IAEA was:

  16. Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11

    Broader source: Energy.gov [DOE]

    It is the policy of the Department of Energy (DOE) to design, construct, operate anddecommission its nuclear facilities in a manner that ensures adequate protection ofworkers, the public, and the...

  17. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilities FusionFacilities

  18. Cleanup of Nuclear Licensed Facility 57

    SciTech Connect (OSTI)

    Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic [Commissariat a l'Energie Atomique, Direction de l'Energie Nucleaire, Direction deleguee des Activites Nucleaires de Saclay, Departement des Reacteurs et des Services Nucleaires, Service d'Assainissement de Fontenay Aux Roses: 18, route du Panorama, BP6, 92265 Fontenay aux Roses Cedex (France)

    2008-01-15T23:59:59.000Z

    This summary describes the operations to clean up the equipment of the Nuclear Licensed Facility 57 (NLF 57). Due to the diversity of the research and development work carried out on the reprocessing of spent fuel in it, this installation is emblematic of many of the technical and organizational issues liable to be encountered in the final closure of nuclear facilities. The French atomic energy commission's center at Fontenay aux Roses (CEA-FAR) was created in 1946 to house pile ZOE. Laboratories for fuel cycle research were installed in existing buildings at the site. Work was later concentrated on spent fuel reprocessing, in a pilot workshop referred to as the 'Usine Pu'. In the early sixties, after the dismantling of these first generation facilities, a radiochemistry laboratory dedicated to research and development work on reprocessing was constructed, designated Building 18. During the same decade, more buildings were added: Building 54, storehouses and offices, Building 91, a hall and laboratories for chemical engineering research on natural and depleted uranium. Together, these three building constitute NLF 57. Building 18 architecture featured four similar modules. Each module had three levels: a sub-level consisting of technical galleries and rooms for the liquid effluent tanks, a ground floor and roof space in which the ventilation was installed. Offices, change rooms, four laboratories and a hall were situated on the ground floor. The shielded lines were installed in the laboratories and the halls. Construction of the building took place between 1959 and 1962, and its commissioning began in 1961. The research and development programs performed in NLF 57 related to studies of the reprocessing of spent fuel, including dry methods and the Purex process, techniques for the treatment of waste (vitrification, alpha waste decontamination, etc.) as well as studies and production of transuranic elements for industry and research. In addition to this work, the necessary methods of analysis for monitoring it were also developed. The research and development program finally ended on 30 June 1995. The NLF 57 cleanup program was intended to reduce the nuclear and conventional hazards and minimize the quantities of HLW and MLW during the subsequent dismantling work. To facilitate the organization of the cleanup work, it was divided into categories by type: - treatment and removal of nuclear material, - removal of radioactive sources, - treatment and removal of aqueous liquid waste, - treatment and removal of organic effluents, - treatment and removal of solid waste, - pumping out of the PETRUS tank, - flushing and decontamination of the tanks, - cleanup of Buildings 18 and 91/54. To estimate the cost of the operations and to monitor the progress of the work, an indicator system was put in place based on work units representative of the operation. The values of the work units were periodically updated on the basis of experience feedback. The cleanup progress is now 92% complete (06/12/31): - treatment and removal of nuclear material: 100%, - removal of radioactive sources: 100%, - treatment and removal of aqueous liquid waste: 64%, - treatment and removal of organic effluents: 87%, - treatment and removal of solid waste: 99%, - pumping out of the PETRUS tank: 69%, - flushing and decontamination of tank: 75%, - section cleaning of Buildings 18 and 91/: 90%. The DRSN/SAFAR is the delegated Project Owner for cleanup and dismantling operations. It is also the prime contractor for the cleanup and dismantling operations. SAFAR itself is responsible for operations relating to the CEA activity and those with technical risks (Removal of nuclear materials, Removal of radioactive sources, Pumping out plutonium and transuranic contaminated solvent and Flushing and decontamination of tanks and pipes). All other operations are sub-contracted to specialist companies. The NLF57 cleanup program as executed is capable of attaining activity levels compatible with a future dismantling operation using known and mastered techniques and producing a

  19. Preparation of SARs for nonreactor nuclear facilities at the Savannah River Plant

    SciTech Connect (OSTI)

    Durant, W.S.

    1981-01-01T23:59:59.000Z

    Safety Analysis Reports for designated nonreactor nuclear facilities at the Savannah River Plant are prepared in accordance with the DOE Savannah River Manual Chapter 52X1. The accident analysis section is based on the Integrated Risk Assessment Plan, a methodology developed by the Savannah River Laboratory for reprocessing facilities. In general, designated facilities contain radioactive, chemical, or other materials to the extent that a credible accident could have a significant detrimental effect on health and safety. The responsibility for specifying which facilities are designated rests with the manager, Savannah River Operations Office.

  20. MANAGING BERYLLIUM IN NUCLEAR FACILITY APPLICATIONS

    SciTech Connect (OSTI)

    R. Rohe; T. N. Tranter

    2011-12-01T23:59:59.000Z

    Beryllium plays important roles in nuclear facilities. Its neutron multiplication capability and low atomic weight make it very useful as a reflector in fission reactors. Its low atomic number and high chemical affinity for oxygen have led to its consideration as a plasma-facing material in fusion reactors. In both applications, the beryllium and the impurities in it become activated by neutrons, transmuting them to radionuclides, some of which are long-lived and difficult to dispose of. Also, gas production, notably helium and tritium, results in swelling, embrittlement, and cracking, which means that the beryllium must be replaced periodically, especially in fission reactors where dimensional tolerances must be maintained. It has long been known that neutron activation of inherent iron and cobalt in the beryllium results in significant {sup 60}Co activity. In 2001, it was discovered that activation of naturally occurring contaminants in the beryllium creates sufficient {sup 14}C and {sup 94}Nb to render the irradiated beryllium 'Greater-Than-Class-C' for disposal in U.S. radioactive waste facilities. It was further found that there was sufficient uranium impurity in beryllium that had been used in fission reactors up to that time that the irradiated beryllium had become transuranic in character, making it even more difficult to dispose of. In this paper we review the extent of the disposal issue, processes that have been investigated or considered for improving the disposability of irradiated beryllium, and approaches for recycling.

  1. Financing Strategies For A Nuclear Fuel Cycle Facility

    SciTech Connect (OSTI)

    David Shropshire; Sharon Chandler

    2006-07-01T23:59:59.000Z

    To help meet the nations energy needs, recycling of partially used nuclear fuel is required to close the nuclear fuel cycle, but implementing this step will require considerable investment. This report evaluates financing scenarios for integrating recycling facilities into the nuclear fuel cycle. A range of options from fully government owned to fully private owned were evaluated using DPL (Decision Programming Language 6.0), which can systematically optimize outcomes based on user-defined criteria (e.g., lowest lifecycle cost, lowest unit cost). This evaluation concludes that the lowest unit costs and lifetime costs are found for a fully government-owned financing strategy, due to government forgiveness of debt as sunk costs. However, this does not mean that the facilities should necessarily be constructed and operated by the government. The costs for hybrid combinations of public and private (commercial) financed options can compete under some circumstances with the costs of the government option. This analysis shows that commercial operations have potential to be economical, but there is presently no incentive for private industry involvement. The Nuclear Waste Policy Act (NWPA) currently establishes government ownership of partially used commercial nuclear fuel. In addition, the recently announced Global Nuclear Energy Partnership (GNEP) suggests fuels from several countries will be recycled in the United States as part of an international governmental agreement; this also assumes government ownership. Overwhelmingly, uncertainty in annual facility capacity led to the greatest variations in unit costs necessary for recovery of operating and capital expenditures; the ability to determine annual capacity will be a driving factor in setting unit costs. For private ventures, the costs of capital, especially equity interest rates, dominate the balance sheet; and the annual operating costs, forgiveness of debt, and overnight costs dominate the costs computed for the government case. The uncertainty in operations, leading to lower than optimal processing rates (or annual plant throughput), is the most detrimental issue to achieving low unit costs. Conversely, lowering debt interest rates and the required return on investments can reduce costs for private industry.

  2. Enforcement handbook: Enforcement of DOE nuclear safety requirements

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

  3. Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

  4. Part of the National Nuclear User Facility Culham Materials

    E-Print Network [OSTI]

    Part of the National Nuclear User Facility Culham Materials Research Facility #12;Introduction from Professor Steve Cowley Culham's Materials Research Facility (MRF) is a valuable addition to the UK's suite and fusion ­ with equipment for the processing and micro-characterisation of radioactive materials, for on

  5. Modern tornado design of nuclear and other potentially hazardous facilities

    SciTech Connect (OSTI)

    Stevenson, J.D. [J.D. Stevenson Consulting Engineer, Cleveland, OH (United States); Zhao, Y. [Battele Energy Systems Group, Columbus, OH (United States)

    1996-01-01T23:59:59.000Z

    Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

  6. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-05-20T23:59:59.000Z

    To establish facility safety requirements for the Department of Energy, including National Nuclear Security Administration. Cancels DOE O 420.1. Canceled by DOE O 420.1B.

  7. Reassignment of boundaries requiring personal dosimetry at a nuclear facility

    E-Print Network [OSTI]

    Fulmer, Philip Clark

    2012-06-07T23:59:59.000Z

    for monitoring in 10CFR20. In fact, one insurer of nuclear facilities recommends that "occupational exposures, no matter how small, should be monitored and documented for claims evaluation purposes" (ANI 1986). This results from the theory that the nuclear... of Advisory Committee: Dr. John W. Poston Although the federal regulations do not require personnel monitoring for external exposure of all radiation workers, many nuclear facilities provide dosimetry to individuals who do not meet the minimum requirements...

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  9. Nuclear Data Capabilities Supported by the DOE NCSP

    E-Print Network [OSTI]

    Danon, Yaron

    Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) · Nuclear Data

  10. Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Fusion Nuclear Science and Technology (FNST) Challenges and Facilities on the Pathway to DEMO Princeton,NJ 7-10 September 2011 1 #12;Fusion Nuclear Science and Technology (FNST) must be the Central Mountain to climb Since we have never done any experiments on FNST in a real fusion nuclear environment, we

  11. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPC DataFacilities

  12. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilities Fusion Energy

  13. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScatteringFacilities Fusion

  14. Facility Ops | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting theScienceEnergyFES(SC) 34Facility

  15. INTEGRATION OF FACILITY MODELING CAPABILITIES FOR NUCLEAR NONPROLIFERATION ANALYSIS

    SciTech Connect (OSTI)

    Gorensek, M.; Hamm, L.; Garcia, H.; Burr, T.; Coles, G.; Edmunds, T.; Garrett, A.; Krebs, J.; Kress, R.; Lamberti, V.; Schoenwald, D.; Tzanos, C.; Ward, R.

    2011-07-18T23:59:59.000Z

    Developing automated methods for data collection and analysis that can facilitate nuclear nonproliferation assessment is an important research area with significant consequences for the effective global deployment of nuclear energy. Facility modeling that can integrate and interpret observations collected from monitored facilities in order to ascertain their functional details will be a critical element of these methods. Although improvements are continually sought, existing facility modeling tools can characterize all aspects of reactor operations and the majority of nuclear fuel cycle processing steps, and include algorithms for data processing and interpretation. Assessing nonproliferation status is challenging because observations can come from many sources, including local and remote sensors that monitor facility operations, as well as open sources that provide specific business information about the monitored facilities, and can be of many different types. Although many current facility models are capable of analyzing large amounts of information, they have not been integrated in an analyst-friendly manner. This paper addresses some of these facility modeling capabilities and illustrates how they could be integrated and utilized for nonproliferation analysis. The inverse problem of inferring facility conditions based on collected observations is described, along with a proposed architecture and computer framework for utilizing facility modeling tools. After considering a representative sampling of key facility modeling capabilities, the proposed integration framework is illustrated with several examples.

  16. CRAD, New Nuclear Facility Documented Safety Analysis and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Safety Requirements - December 2, 2014 (EA CRAD 31-07, Rev. 0) More Documents & Publications CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08...

  17. National Ignition Facility | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other ICF high energy density facilities leading to demonstrate fusion ignition and thermonuclear burn in the laboratory. The NIF is also being used to support basic science and...

  18. High Explosives Application Facility | National Nuclear Security...

    National Nuclear Security Administration (NNSA)

    at the micron scale in its microdetonics laboratory, and utilizing multiple firing tanks for larger scale explosives experiments. No other facility in the world supports such...

  19. Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010

    Broader source: Energy.gov [DOE]

    On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

  20. FDA Exemption Letter, 78EL-01DOE by LSSG for GOCG Facilities

    Broader source: Energy.gov [DOE]

    Food and Drug Administration response to Department of Energy's request for clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  1. ICF Facilities | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

  2. HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPE SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R

    2010-05-02T23:59:59.000Z

    Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions exist. Pipe ruptures at nuclear facilities were attributed to hydrogen explosions inside pipelines, in nuclear facilities, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents an ignition source for hydrogen was questionable, but these accidents, demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein.

  3. DOE-STD-1104

    Office of Environmental Management (EM)

    Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

  4. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect (OSTI)

    Soelberg, Nicolas R. [Idaho National Laboratory, Idaho Falls, ID (United States); Garn, Troy [Idaho National Laboratory, Idaho Falls, ID (United States); Greenhalgh, Mitchell [Idaho National Laboratory, Idaho Falls, ID (United States); Law, Jack [Idaho National Laboratory, Idaho Falls, ID (United States); Jubin, Robert T. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Strachan, Denis M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Thallapally, Praveen K. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)

    2013-07-22T23:59:59.000Z

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing. These can evolve in volatile species in the reprocessing facility off-gas streams, depending on the separations and reprocessing technologies that are used. Radionuclides that have been identified as volatile radionuclides are noble gases (most notably isotopes of Kr and Xe); 3H; 14C; and 129I. Radionuclides that tend to form volatile species that evolve into reprocessing facility off-gas systems are more challenging to efficiently control compared to radionuclides that tend to stay in solid or liquid phases. Future used fuel reprocessing facilities in the United States can require efficient capture of some volatile radionuclides in their off-gas streams to meet regulatory emission requirements. In aqueous reprocessing, these radionuclides are most commonly expected to evolve into off-gas streams in tritiated water [3H2O (T2O) and 3HHO (THO)], radioactive CO2, noble gases, and gaseous HI, I2, or volatile organic iodides. The fate and speciation of these radionuclides from a non-aqueous fuel reprocessing facility is less well known at this time, but active investigations are in progress. An Off-Gas Sigma Team was formed in late FY 2009 to integrate and coordinate the Fuel Cycle Research and Development (FCR&D) activities directed towards the capture and sequestration of the these volatile radionuclides (Jubin 2012a). The Sigma Team concept was envisioned to bring together multidisciplinary teams from across the DOE complex that would work collaboratively to solve the technical challenges and to develop the scientific basis for the capture and immobilization technologies such that the sum of the efforts was greater than the individual parts. The Laboratories currently participating in this effort are Argonne National Laboratory (ANL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and Sandia National Laboratories (SNL). This article focuses on control of volatile radionuclides that evolve during aqueous reprocessing of UNF. In particular, most of the work by the Off-gas Sigma Team has focused on the capture and sequestration of 129I and 85Kr, mainly because, as discussed below, control of 129I can require high efficiencies to meet regulatory requirements, and control of 85Kr using cryogenic processing, which has been the technology demonstrated and used commercially to date, can add considerable cost to a reprocessing facility.

  5. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C. Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-05-31T23:59:59.000Z

    To establish policies and procedures for management of Department of Energy (DOE), including National Nuclear Security Administration (NNSA), management and operating (M&O) and other facility management contractor employees assigned to the Washington, D.C. area. Cancels DOE O 350.2A

  6. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Related Topics Maintaining the Stockpile stockpile stewardship R&D llnl Related News SOLAR POWER PURCHASE FOR DOE LABORATORIES NNSA's Stockpile Stewardship Program Quarterly...

  7. Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants

    SciTech Connect (OSTI)

    Robert Bean; Casey Durst

    2009-10-01T23:59:59.000Z

    This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called Safeguards-by-Design. This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials, published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  9. Evaluation of the Cask Transportation Facility Modifications (CTFM) compliance to DOE order 6430.1A

    SciTech Connect (OSTI)

    ARD, K.E.

    1999-07-14T23:59:59.000Z

    This report was prepared to evaluate the compliance of Cask Transportation Facility Modifications (CTFM) to DOE Order 6430.1A.

  10. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect (OSTI)

    Not Available

    1993-11-01T23:59:59.000Z

    This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

  11. Argonne Leadership Computing Facility (ALCF) | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility (ALCF) Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership...

  12. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers (NSRCs) Projects Accelerator & Detector Research & Development Principal...

  13. DOE NHI: Progress in Nuclear Connection Technologies

    SciTech Connect (OSTI)

    Steven R. Sherman

    2007-06-01T23:59:59.000Z

    The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

  14. Dismantlement and Radioactive Waste Management of DPRK Nuclear Facilities

    SciTech Connect (OSTI)

    Jooho, W.; Baldwin, G. T.

    2005-04-01T23:59:59.000Z

    One critical aspect of any denuclearization of the Democratic Peoples Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for complete, verifiable and irreversible dismantlement, or CVID. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  16. Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...

    Office of Science (SC) Website

    Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

  17. Nuclear Safety Policy - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED SEN-35-91, Nuclear Safety Policy by jnichols Functional areas: Environment, Safety, and Health, Canceled by DOE P 420.1 n3591.pdf -- PDF Document, 20 KB Writer: jnichols...

  18. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect (OSTI)

    N. R. Soelberg; J. D. Law; T. G. Garn; M. Greenhalgh; R. T. Jubin; P. Thallapally; D. M. Strachan

    2013-08-01T23:59:59.000Z

    The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  19. Local Government Implementation of Long-Term Stewardship at Two DOE Facilities

    SciTech Connect (OSTI)

    John Pendergrass; Roman Czebiniak; Kelly Mott; Seth Kirshenberg; Audrey Eidelman; Zachary Lamb; Erica Pencak; Wendy Sandoz

    2003-08-13T23:59:59.000Z

    The Department of Energy (DOE) is responsible for cleaning up the radioactive and chemical contamination that resulted from the production of nuclear weapons. At more than one hundred sites throughout the country DOE will leave some contamination in place after the cleanup is complete. In order to protect human health and the environment from the remaining contamination DOE, U.S. Environmental Protection Agency (EPA), state environmental regulatory agencies, local governments, citizens and other entities will need to undertake long-term stewardship of such sites. Long-term stewardship includes a wide range of actions needed to protect human health in the environment for as long as the risk from the contamination remains above acceptable levels, such as barriers, caps, and other engineering controls and land use controls, signs, notices, records, and other institutional controls. In this report the Environmental Law Institute (ELI) and the Energy Communities Alliance (ECA) examine how local governments, state environmental agencies, and real property professionals implement long-term stewardship at two DOE facilities, Losa Alamos National Laboratory and Oak Ridge Reservation.

  20. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Vol. 18. Part 2. Indexes

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D&D), uranium mill tailings management, and site remedial actions. This report is the eighteenth in a series of bibliographies prepared annually for the U.S. Department of Energy (DOE) Office of Environmental Restoration. Citations to foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - have been included in Part 1 of the report. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D&D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Programs; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluations; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues. Within the 16 sections, the citations are sorted by geographic location. If a geographic location is not specified, the citations are sorted according to the document title. In Part 2 of the report, indexes are provided for author, author affiliation, selected title phrase, selected title word, publication description, geographic location, and keyword.

  1. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  2. ADDRESSING POLLUTION PREVENTION ISSUES IN THE DESIGN OF A NEW NUCLEAR RESEARCH FACILITY

    SciTech Connect (OSTI)

    Cournoyer, Michael E.; Corpion, Juan; Nelson, Timothy O.

    2003-02-27T23:59:59.000Z

    The Chemistry and Metallurgical Research (CMR) Facility was designed in 1949 and built in 1952 at Los Alamos National Laboratory (LANL) to support analytical chemistry, metallurgical studies, and actinide research and development on samples of plutonium and other nuclear materials for the Atomic Energy Commission's nuclear weapons program. These primary programmatic uses of the CMR Facility have not changed significantly since it was constructed. In 1998, a seismic fault was found to the west of the CMR Facility and projected to extend beneath two wings of the building. As part of the overall Risk Management Strategy for the CMR Facility, the Department of Energy (DOE) proposed to replace it by 2010 with what is called the CMR Facility Replacement (CMRR). In an effort to make this proposed new nuclear research facility environmentally sustainable, several pollution prevention/waste minimization initiatives are being reviewed for potential incorporation during the design phase. A two-phase approach is being adopted; the facility is being designed in a manner that integrates pollution prevention efforts, and programmatic activities are being tailored to minimize waste. Processes and procedures that reduce waste generation compared to current, prevalent processes and procedures are identified. Some of these ''best practices'' include the following: (1) recycling opportunities for spent materials; (2) replacing lithium batteries with alternate current adaptors; (3) using launderable contamination barriers in Radiological Control Areas (RCAs); (4) substituting mercury thermometers and manometers in RCAs with mercury-free devices; (5) puncturing and recycling aerosol cans; (6) using non-hazardous low-mercury fluorescent bulbs where available; (7) characterizing low-level waste as it is being generated; and (8) utilizing lead alternatives for radiological shielding. Each of these pollution prevention initiatives are being assessed for their technical validity, relevancy, and cost effectiveness. These efforts partially fulfill expectations of the DOE, other federal agencies, and the State of New Mexico for waste minimization. If the improvements discussed here are implemented, an estimated 1.8 million dollars in cost savings is expected.

  3. Assessment of Space Nuclear Thermal Propulsion Facility and Capability Needs

    SciTech Connect (OSTI)

    James Werner

    2014-07-01T23:59:59.000Z

    The development of a Nuclear Thermal Propulsion (NTP) system rests heavily upon being able to fabricate and demonstrate the performance of a high temperature nuclear fuel as well as demonstrating an integrated system prior to launch. A number of studies have been performed in the past which identified the facilities needed and the capabilities available to meet the needs and requirements identified at that time. Since that time, many facilities and capabilities within the Department of Energy have been removed or decommissioned. This paper provides a brief overview of the anticipated facility needs and identifies some promising concepts to be considered which could support the development of a nuclear thermal propulsion system. Detailed trade studies will need to be performed to support the decision making process.

  4. Use of Facility Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    To clarify and modify policies and procedures for management of Department of Energy (DOE) facility contractor employees located in the Washington, D.C., area. A facility contractor employee is any employee of either a contractor responsible for managing a Department-owned facility, such as a National Laboratory, or a subcontractor of such a contractor. Facility contractor means any contractor performing under a Management and Operating (M&O), Management and Integration (M&I), or Environmental Restoration Management Contractor (ERMC) contract awarded by a DOE contracting officer. Canceled by DOE O 350.2.

  5. Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning

    SciTech Connect (OSTI)

    JACKSON, M.W.

    2002-05-01T23:59:59.000Z

    DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

  6. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    Simonds, J.

    2007-11-06T23:59:59.000Z

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

  7. DOE/EIS-0236, Oakland Operations Office, National Ignition Facility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOEEIS-0236, Oakland Operations Office, National Ignition Facility Final Supplemental Environmental Impact Statement to the Stockpile Stewardship and Management Programmatic...

  8. Licensed reactor nuclear safety criteria applicable to DOE reactors

    SciTech Connect (OSTI)

    Not Available

    1991-04-01T23:59:59.000Z

    The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

  9. An assessment of alternatives and technologies for replacing ozone- depleting substances at DOE facilities

    SciTech Connect (OSTI)

    Purcell, C.W.; Miller, K.B.; Friedman, J.R.; Rapoport, R.D.; Conover, D.R.; Hendrickson, P.L. [Pacific Northwest Lab., Richland, WA (United States); Koss, T.C. [USDOE Assistant Secretary for Environment, Safety, and Health, Washington, DC (United States). Office of Environmental Guidance

    1992-10-01T23:59:59.000Z

    Title VI of the Clean Air Act, as amended, mandates a production phase-out for ozone-depleting substances (ODSs). These requirements will have a significant impact on US Department of Energy (DOE) facilities. Currently, DOE uses ODSs in three major activities: fire suppression (halon), refrigeration and cooling (chlorofluorocarbons [CFCs]), and cleaning that requires solvents (CFCs, methyl chloroform, and carbon tetrachloride). This report provides basic information on methods and strategies to phase out use of ODSs at DOE facilities.

  10. Nuclear Facility Risk Ranking | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiativesNational Environmental PolicySky |NewsFacility Risk Ranking

  11. ICF Facilities | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSL Bubblesstructure theby J. StöhrFacilities

  12. Facilities & Capabilities | Nuclear Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 BudgetNateFacilities and

  13. Facilities & Projects | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5 BudgetNateFacilities and&

  14. DOE Approved Technical Standards | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    the safe operation of DOE's defense nuclear facilities. 09302014 DOE-HDBK-1214-2014 Conduct of Operations Assessment Field Handbook This handbook is designed to assist in...

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1B: Citations with abstracts, sections 10 through 16

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration Program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  16. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 18. Part 1A: Citations with abstracts, sections 1 through 9

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This bibliography contains 3,638 citations with abstracts of documents relevant to environmental restoration, nuclear facility decontamination and decommissioning (D and D), uranium mill tailings management, and site remedial actions. The bibliography contains scientific, technical, financial, and regulatory information that pertains to DOE environmental restoration programs. The citations are separated by topic into 16 sections, including (1) DOE Environmental Restoration program; (2) DOE D and D Program; (3) Nuclear Facilities Decommissioning; (4) DOE Formerly Utilized Sites Remedial Action Program; (5) NORM-Contaminated Site Restoration; (6) DOE Uranium Mill Tailings Remedial Action Project; (7) Uranium Mill Tailings Management; (8) DOE Site-Wide Remedial Actions; (9) DOE Onsite Remedial Action Projects; (10) Contaminated Site Remedial Actions; (11) DOE Underground Storage Tank Remediation; (12) DOE Technology Development, Demonstration, and Evaluation; (13) Soil Remediation; (14) Groundwater Remediation; (15) Environmental Measurements, Analysis, and Decision-Making; and (16) Environmental Management Issues.

  17. Contained Firing Facility | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National Nuclear SecurityContained Firing

  18. Support of the Iraq nuclear facility dismantlement and disposal program

    SciTech Connect (OSTI)

    Coates, Roger [International Atomic Energy Agency - IAEA, Wagramer Strasse 5, P.O. Box 100 - 1400 Vienna (Austria); Cochran, John; Danneels, Jeff [Sandia National Laboratories (United States); Chesser, Ronald; Phillips, Carlton; Rogers, Brenda [Center for Environmental Radiation Studies, Texas Tech University, Lubbock, TX 79409 (United States)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: Iraq's former nuclear facilities contain large quantities of radioactive materials and radioactive waste. The Iraq Nuclear Facility Dismantlement and Disposal Program (the Iraq NDs Program) is a new program to decontaminate and permanently dispose of radioactive wastes in Iraq. The NDs Program is led by the Government of Iraq, under International Atomic Energy Agency (IAEA) auspices, with guidance and assistance from a number of countries. The U.S. participants include Texas Tech University and Sandia National Laboratories. A number of activities are ongoing under the broad umbrella of the Iraq NDs Program: drafting a new nuclear law that will provide the legal basis for the cleanup and disposal activities; assembly and analysis of existing data; characterization of soil contamination; bringing Iraqi scientists to the world's largest symposium on radioactive waste management; touring U.S. government and private sector operating radwaste disposal facilities in the U.S., and hosting a planning workshop on the characterization and cleanup of the Al-Tuwaitha Nuclear Facility. (authors)

  19. EARTHQUAKE CAUSED RELEASES FROM A NUCLEAR FUEL CYCLE FACILITY

    SciTech Connect (OSTI)

    Charles W. Solbrig; Chad Pope; Jason Andrus

    2014-08-01T23:59:59.000Z

    The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure, temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.

  20. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  1. DOE Designated User Facilities Multiple Laboratories * ARM Climate...

    Broader source: Energy.gov (indexed) [DOE]

    * Energy Sciences Network( ESnet) ** * Joint Genome Institute (JGI) - Production Genomics Facility(PGF)** (joint with LLNL, LANL, ORNL and PNNL) * Advanced Light Source (ALS)...

  2. Operation technology of air treatment system in nuclear facilities

    E-Print Network [OSTI]

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01T23:59:59.000Z

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  3. DOE Turns 25 | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransition Documents - 2008 DOE

  4. DOE's Office of Nuclear Energy Honored

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartment ofDepartmentDOE's Office

  5. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  6. Presentation: DOE Nuclear Nonproliferation | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06Nucleon Structure

  7. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A.; Ostrom, Michael J.; Freeman-Pollard, Jhivaun R.

    2013-01-11T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energys (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOEs mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project teams successful integration of the projects core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOEs mission objective, as well as attainment of LEED GOLD certification, which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award.

  8. A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation

    E-Print Network [OSTI]

    Iamsumang, Chonlagarn

    2010-01-01T23:59:59.000Z

    With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to the inclusion of highly enriched material and reprocessing ...

  9. INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY

    SciTech Connect (OSTI)

    Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

    2011-07-01T23:59:59.000Z

    Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

  10. In Situ Decommissioning (ISD) Concepts and Approaches for Excess Nuclear Facilities Decommissioning End State - 13367

    SciTech Connect (OSTI)

    Serrato, Michael G. [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Nuclear Solutions, Aiken, SC 29808 (United States); Musall, John C.; Bergren, Christopher L. [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)] [Savannah River Nuclear Solutions, Aiken, SC 29808 (United States)

    2013-07-01T23:59:59.000Z

    The United States Department of Energy (DOE) currently has numerous radiologically contaminated excess nuclear facilities waiting decommissioning throughout the Complex. The traditional decommissioning end state is complete removal. This commonly involves demolishing the facility, often segregating various components and building materials and disposing of the highly contaminated, massive structures containing tons of highly contaminated equipment and piping in a (controlled and approved) landfill, at times hundreds of miles from the facility location. Traditional demolition is costly, and results in significant risks to workers, as well as risks and costs associated with transporting the materials to a disposal site. In situ decommissioning (ISD or entombment) is a viable alternative to demolition, offering comparable and potentially more protective protection of human health and the environment, but at a significantly reduced cost and worker risk. The Savannah River Site (SRS) has completed the initial ISD deployment for radiologically contaminated facilities. Two reactor (P and R Reactors) facilities were decommissioned in 2011 using the ISD approach through the American Recovery and Reinvestment Act. The SRS ISD approach resolved programmatic, regulatory and technical/engineering issues associated with avoiding the potential hazards and cost associated with generating and disposing of an estimated 124,300 metric tons (153,000 m{sup 3}) of contaminated debris per reactor. The DOE Environmental Management Office of Deactivation and Decommissioning and Facility Engineering, through the Savannah River National Laboratory, is currently investigating potential monitoring techniques and strategies to assess ISD effectiveness. As part of SRS's strategic planning, the site is seeking to leverage in situ decommissioning concepts, approaches and facilities to conduct research, design end states, and assist in regulatory interactions in broad national and international government and private industry decommissioning applications. SRS offers critical services based upon the SRS experience in decommissioning and reactor entombment technology (e.g., grout formulations for varying conditions, structural and material sciences). The SRS ISD approach follows a systems engineering framework to achieve a regulatory acceptable end state based on established protocols, attains the final end state with minimal long stewardship requirements, protects industrial workers, and protects groundwater and the environment. The ISD systems engineering framework addresses key areas of the remedial process planning, technology development and deployment, and assessment to attain the ultimate goal of natural resource stewardship and protecting the public. The development and deployment of the SRS ISD approach has established a path for ISD of other large nuclear facilities in the United States and around the globe as an acceptable remedial alternative for decommissioning nuclear facilities. (authors)

  11. ORAU Wins DOE Facility Management Contractor Small Business Achievemen...

    Energy Savers [EERE]

    On June 12, 2014, at the US Department of Energy's Small Business Forum in Tampa, FL, the Oak Ridge Associated Universities won the FY 2013 Facility Management Contractor Small...

  12. Nuclear space power safety and facility guidelines study

    SciTech Connect (OSTI)

    Mehlman, W.F.

    1995-09-11T23:59:59.000Z

    This report addresses safety guidelines for space nuclear reactor power missions and was prepared by The Johns Hopkins University Applied Physics Laboratory (JHU/APL) under a Department of Energy grant, DE-FG01-94NE32180 dated 27 September 1994. This grant was based on a proposal submitted by the JHU/APL in response to an {open_quotes}Invitation for Proposals Designed to Support Federal Agencies and Commercial Interests in Meeting Special Power and Propulsion Needs for Future Space Missions{close_quotes}. The United States has not launched a nuclear reactor since SNAP 10A in April 1965 although many Radioisotope Thermoelectric Generators (RTGs) have been launched. An RTG powered system is planned for launch as part of the Cassini mission to Saturn in 1997. Recently the Ballistic Missile Defense Office (BMDO) sponsored the Nuclear Electric Propulsion Space Test Program (NEPSTP) which was to demonstrate and evaluate the Russian-built TOPAZ II nuclear reactor as a power source in space. As of late 1993 the flight portion of this program was canceled but work to investigate the attributes of the reactor were continued but at a reduced level. While the future of space nuclear power systems is uncertain there are potential space missions which would require space nuclear power systems. The differences between space nuclear power systems and RTG devices are sufficient that safety and facility requirements warrant a review in the context of the unique features of a space nuclear reactor power system.

  13. U.S. Department of Energy Oak Ridge Operations Nuclear Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Guide Review Questions More Documents & Publications Requirements in DOE O 5480.19, Conduct of Operations Requirements for DOE Facilities Cross-referenced to DOE O 422.1,...

  14. End points for facility deactivation

    SciTech Connect (OSTI)

    Szilagyi, A.P. [Dept. of Energy, Germantown, MD (United States); Negin, C.A. [Oak Technologies, Washington Grove, MD (United States); Stefanski, L.D. [Westinghouse Hanford, Richland, WA (United States)

    1996-12-31T23:59:59.000Z

    DOE`s Office of Nuclear Material and Facility Stabilization mission includes deactivating surplus nuclear facilities. Each deactivation project requires a systematic and explicit specification of the conditions to be established. End Point methods for doing so have been field developed and implemented. These methods have worked well and are being made available throughout the DOE establishment.

  15. Training program requirements for remote equipment operators in nuclear facilities

    SciTech Connect (OSTI)

    Palau, G.L.; Auclair, K.D.

    1986-01-01T23:59:59.000Z

    One of the most neglected areas in the engineering development of remotely operated equipment applications in nuclear environments is the planning of adequate training programs for the equipment operators. Remote equipment accidents cannot be prevented solely by engineered safety features on the equipment. As a result of the experiences in using remote equipment in the recovery effort at Three Mile Island Unit 2 (TMI-2), guidelines for the development of remote equipment operator training programs have been generated. The result is that a successful education and training program can create an environment favorable to the safe and effective implementation of a remote equipment program in a nuclear facility.

  16. Pyroprocessing of Fast Flux Test Facility Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

    2013-10-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

  17. Pyroprocessing of fast flux test facility nuclear fuel

    SciTech Connect (OSTI)

    Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

    2013-07-01T23:59:59.000Z

    Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

  18. Does the Sun work as a nuclear fusion amplifier of

    E-Print Network [OSTI]

    Scafetta, Nicola

    Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? Nicola Scafetta ACRIM oscillates because of planetary motion The Sun is likely very sensitive to these oscillations March 1977); We reconstruct here Sun-centred planetary conjunctions and tidal potentials for the AD 1645

  19. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-08-11T23:59:59.000Z

    DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

  20. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-02-12T23:59:59.000Z

    The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

  1. Observations on the Impact of Leased Facilities to The DOEs Fire Protection Program

    Broader source: Energy.gov [DOE]

    Presenter: Robert F. Bitter, P.E., Staff Engineer - National Nuclear Security Administration's Kansas City Plant

  2. Accelerator Facility Safety Implementation Guide for DOE O 420.2C, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-08-01T23:59:59.000Z

    This document is a guide to understanding and meeting the requirements of DOE O 420.2C, and shares lessons learned based on valuable experience within the community. Cancels DOE G 420.2-1.

  3. Facility Safety (9-23-10)--Withdrawn

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-09-23T23:59:59.000Z

    Withdrawn, 5-19-2014--This approval includes revision of the three implementing Guides: DOE G 420.1-1, Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety; DOE G 420.1-2, Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities; and DOE G 420.1-3, Implementation Guide for DOE Fire Protection and Emergency Services Programs for Use with DOE O 420.1B, Facility Safety

  4. Conceptual design report: Nuclear materials storage facility renovation. Part 7, Estimate data

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This report is organized according to the sections and subsections outlined by Attachment III-2 of DOE Document AL 4700.1, Project Management System. It is organized into seven parts. This document, Part VII - Estimate Data, contains the project cost estimate information.

  5. Nuclear facility decommissioning and site remedial actions: a selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Johnson, C.A.

    1982-09-01T23:59:59.000Z

    This bibliography contains 693 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. Foreign, as well as domestic, literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Uranium Mill Tailings Remedial Action Program, Grand Junction Remedial Action Program, and Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General Studies. The references within each chapter are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for (1) author; (2) corporate affiliation; (3) title; (4) publication description; (5) geographic location; and (6) keywords. An appendix of 202 bibliographic references without abstracts or indexes has been included in this bibliography. This appendix represents literature identified but not abstracted due to time constraints.

  6. DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials

    SciTech Connect (OSTI)

    Veirs, D Kirk [Los Alamos National Laboratory

    2009-01-01T23:59:59.000Z

    Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

  7. DOE Honors Idaho Facility with Safety Award | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5QualityDOEDOEHonors Idaho

  8. Accelerator Facility Safety Implementation Guide for DOE Order 420.2C, Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-08-30T23:59:59.000Z

    This is a guide to understanding and meeting the requirements of DOE Order 420.2C and shares lessons learned based on valuable experience within the community.

  9. DOE Solid-State Lighting in Higher Ed Facilities

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-07-20T23:59:59.000Z

    The focus of the workshop was on higher education facilities because college and university campuses are an important market for lighting products and they use almost every kind of luminaire on the market. This workshop was seen as a chance for SSL manufacturers large and small to get the inside scoop from a group of people that specify, pay for, install, use, maintain, and dispose of lighting systems for nearly every type of application. Workshop attendees explored the barriers to SSL adoption, the applications where SSL products could work better than existing technologies, and where SSL luminaires are currently falling short. This report summarizes the Workshop activities and presentation highlights.

  10. DOE - Office of Legacy Management -- Oxnard Facility - 002

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34 FUSRAPOxnard Facility -

  11. Nuclear power plant simulation facility evaluation methodology: handbook. Volume 1

    SciTech Connect (OSTI)

    Laughery, K.R. Jr.; Carter, R.J.; Haas, P.M.

    1986-01-01T23:59:59.000Z

    This report is Volume 1 of a two-part document which describes a project conducted to develop a methodology to evaluate the acceptability of nuclear power plant (NPP) simulation facilities for use in the simulator-based portion of NRC's operator licensing examination. The proposed methodology is to be utilized during two phases of the simulation facility life-cycle, initial simulator acceptance and recurrent analysis. The first phase is aimed at ensuring that the simulator provides an accurate representation of the reference NPP. There are two components of initial simulator evaluation: fidelity assessment and a direct determination of the simulation facility's adequacy for operator testing. The second phase is aimed at ensuring that the simulation facility continues to accurately represent the reference plant throughout the life of the simulator. Recurrent evaluation is comprised of three components: monitoring reference plant changes, monitoring the simulator's hardware, and examining the data from actual plant transients as they occur. Volume 1 is a set of guidelines which details the steps involved in the two life-cycle phases, presents an overview of the methodology and data collection requirements, and addresses the formation of the evaluation team and the preparation of the evaluation plan. 29 figs.

  12. Lessons Learned from the 200 West Pump and Treatment Facility Construction Project at the US DOE Hanford Site - A Leadership for Energy and Environmental Design (LEED) Gold-Certified Facility - 13113

    SciTech Connect (OSTI)

    Dorr, Kent A.; Freeman-Pollard, Jhivaun R.; Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)] [CH2M HILL Plateau Remediation Company, P.O. Box 1600, MSIN R4-41, 99352 (United States)

    2013-07-01T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built to an accelerated schedule with American Recovery and Reinvestment Act (ARRA) funds. There were many contractual, technical, configuration management, quality, safety, and Leadership in Energy and Environmental Design (LEED) challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility to meet DOE's mission objective of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012. The project team's successful integration of the project's core values and green energy technology throughout design, procurement, construction, and start-up of this complex, first-of-its-kind Bio Process facility resulted in successful achievement of DOE's mission objective, as well as attainment of LEED GOLD certification (Figure 1), which makes this Bio Process facility the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. (authors)

  13. Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility

    Broader source: Energy.gov [DOE]

    Memorandum requesting a clarification of the circumstances under which a DOE Government Owned Contractor Operated (GOCO) facility may be considered a laser manufacturer and subject to FDA laser manufacturer requirements and other points of interpretation of the FDA Exemption Letter, 78EL-01DOE (DOE exemption or exemption) by the LSSG for GOCG facilities.

  14. Application of Engineering and Technical Requirements for DOE...

    Broader source: Energy.gov (indexed) [DOE]

    This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for DOE Nuclear Facilities, was developed by the Chief of Nuclear Safety (CNS)1, Office of...

  15. Access to High Technology User Facilities at DOE National Laboratories |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the BetterHDBK-1209-2012 DOE HANDBOOKDepartment

  16. DOE-STD-1063-2000 - Facility Representatives

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998NOT MEASUREMENT

  17. Remote machine engineering applications for nuclear facilities decommissioning

    SciTech Connect (OSTI)

    Toto, G.; Wyle, H.R.

    1983-01-01T23:59:59.000Z

    Decontamination and decommissioning of a nuclear facility require the application of techniques that protect the worker and the enviroment from radiological contamination and radiation. Remotely operated portable robotic arms, machines, and devices can be applied. The use of advanced systems should enhance the productivity, safety, and cost facets of the efforts; remote automatic tooling and systems may be used on any job where job hazard and other factors justify application. Many problems based on costs, enviromental impact, health, waste generation, and political issues may be mitigated by use of remotely operated machines. The work that man can not do or should not do will have to be done by machines.

  18. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPC Data Center

  19. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPC Data

  20. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPC

  1. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPCFacilities High

  2. User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism inS-4500II Field Emission SEMUsed FuelM07: The HPCFacilities

  3. User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Homeuniversity-research/ The Office

  4. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScattering |CharacteristicsHow1726

  5. Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScattering

  6. Requests by Political Candidates to Tour DOE Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalancedDepartment ofColumbusReportNuclearGas Export Scenarios | Department of

  7. User Facilities and DOE Programs Related to Imaging and Measurement

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andof

  8. DOE High Performance Computing Operational Review (HPCOR): Enabling Data-Driven Scientific Discovery at HPC Facilities

    SciTech Connect (OSTI)

    Gerber, Richard; Allcock, William; Beggio, Chris; Campbell, Stuart; Cherry, Andrew; Cholia, Shreyas; Dart, Eli; England, Clay; Fahey, Tim; Foertter, Fernanda; Goldstone, Robin; Hick, Jason; Karelitz, David; Kelly, Kaki; Monroe, Laura; Prabhat,; Skinner, David; White, Julia

    2014-10-17T23:59:59.000Z

    U.S. Department of Energy (DOE) High Performance Computing (HPC) facilities are on the verge of a paradigm shift in the way they deliver systems and services to science and engineering teams. Research projects are producing a wide variety of data at unprecedented scale and level of complexity, with community-specific services that are part of the data collection and analysis workflow. On June 18-19, 2014 representatives from six DOE HPC centers met in Oakland, CA at the DOE High Performance Operational Review (HPCOR) to discuss how they can best provide facilities and services to enable large-scale data-driven scientific discovery at the DOE national laboratories. The report contains findings from that review.

  9. DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. DepartmentContractMeeting -2014

  10. Independent Oversight Review, DOE Nuclear Facilities - May 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatment andofIndependent- July

  11. Independent Oversight Review, DOE/NNSA Nuclear Facilities - April 2013 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartment ofThe fullTreatment andofIndependent- JulyDepartment

  12. Innovative cement helps DOE safeguard nuclear facilities | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface Emissivity in theSurface. |ArgonneHouseLaboratory

  13. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Facilities User Facilities User Facilities Home User Facilities at a Glance All User Facilities ASCR User Facilities BES User Facilities X-Ray Light Sources...

  14. Use of DOE-2 to Evaluate Evaporative Cooling in Texas Correctional Facilities

    E-Print Network [OSTI]

    Saman, N.; Heneghan, T.; Bou-Saada, T. E.

    1996-01-01T23:59:59.000Z

    , W.K., "Fundamental Concepts Integrating Evaporative Techniques in HVAC Systems," ASHRAE TRANSACTIONS, V. 96, Pt. 1, 1990. 3. McDonald, G.W., M.H. Turietta and R.E. Foster, "Modeling Evaporative Cooling Systems with DOE- 2. ID," ASHRAE...USE OF DOE-2 TO EVALUATE EVAPORATIVE COOLING IN TEXAS CORRECTIONAL FACILITIES Namir Saman, Ph.D., P.E. Tarek Bou-Saada Tia Heneghan Visiting Assistant Professor Research Associate Energy Manager Energy Systems Laboratory Energy Systems...

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 1, Main text. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This publication contains 1035 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions. These citations constitute the thirteenth in a series of reports prepared annually for the US Department of Energy (DOE) Environmental Restoration programs. Citations to foreign and domestic literature of all types. There are 13 major sections of the publication, including: (1) DOE Decontamination and Decommissioning Program; (2) Nuclear Facilities Decommissioning; (3) DOE Formerly Utilized Sites Remedial Action Program; (4) DOE Uranium Mill Tailings Remedial Action Project; (5) Uranium Mill Tailings Management; (6) DOE Environmental Restoration Program; (7) DOE Site-Specific Remedial Actions; (8) Contaminated Site Restoration; (9) Remediation of Contaminated Soil and Groundwater; (10) Environmental Data Measurements, Management, and Evaluation; (11) Remedial Action Assessment and Decision-Making; (12) Technology Development and Evaluation; and (13) Environmental and Waste Management Issues. Bibliographic references are arranged in nine subject categories by geographic location and then alphabetically by first author, corporate affiliation, or publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word.

  16. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06 Agenda 2006UptakeDOE Directives,

  17. U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)

    Broader source: Energy.gov [DOE]

    "This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

  18. Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)

    SciTech Connect (OSTI)

    Van Dyke, Melissa; Martin, James [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

    2004-07-01T23:59:59.000Z

    The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

  19. Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1

    SciTech Connect (OSTI)

    J. Simonds

    2006-09-01T23:59:59.000Z

    This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

  20. Project Title: Nuclear Astrophysics Data from Radioactive Beam Facilities

    SciTech Connect (OSTI)

    Alan A. Chen

    2008-03-27T23:59:59.000Z

    The scientific aims of this project have been the evaluation and dissemination of key nuclear reactions in nuclear astrophysics, with a focus on ones to be studied at new radioactive beam facilities worldwide. These aims were maintained during the entire funding period from 2003 - 2006. In the following, a summary of the reactions evaluated during this period is provided. Year 1 (2003-04): {sup 21}Na(p,{gamma}){sup 22}Mg and {sup 18}Ne({alpha},p){sup 21}Na - The importance of the {sup 21}Na(p,{gamma}){sup 22}Mg and the {sup 18}Ne({alpha},p){sup 21}Na reactions in models of exploding stars has been well documented: the first is connected to the production of the radioisotope {sup 22}Na in nova nucleosynthesis, while the second is a key bridge between the Hot-CNO cycles and the rp-process in X-ray bursts. By the end of Summer 2004, our group had updated these reaction rates to include all published data up to September 2004, and cast the reaction rates into standard analytical and tabular formats with the assistance of Oak Ridge National Laboratory's computational infrastructure for reaction rates. Since September 2004, ongoing experiments on these two reactions have been completed, with our group's participation in both: {sup 21}Na(p,{gamma}){sup 22}Mg at the TRIUMF-ISAC laboratory (DRAGON collaboration), and 18Ne({alpha},p){sup 21}Na at Argonne National Laboratory (collaboration with Ernst Rehm, Argonne). The data from the former was subsequently published and included in our evaluation. Publication from the latter still awaits independent confirmation of the experimental results. Year 2 (2004-05): The 25Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma})14O reactions - For Year 2, we worked on evaluations of the {sup 25}Al(p,{gamma}){sup 26}Si and {sup 13}N(p,{gamma}){sup 14}O reactions, in accordance with our proposed deliverables and following similar standard procedures to those used in Year 1. The {sup 25}Al(p,{gamma}){sup 26}Si reaction is a key uncertainty in the understanding the origin of galactic {sup 26}Al, a target radioisotope for gamma ray astronomy; the {sup 13}N(p,{gamma}){sup 14}O reaction in turn is the trigger reaction for the transition into the Hot-CNO cycles in novae and X-ray bursts. A graduate student of mine, who has been supported part-time by this grant, completed the evaluation of the {sup 25}Al(p,{gamma}){sup 26}Si reaction as part of his plans to measure this reaction at TRIUMF for his Ph.D. thesis project. I also hired a part-time undergraduate student for the 2004-05 academic year to assist with the evaluations, including that of the {sup 13}N(p,{gamma}){sup 14}O reaction. Year 3 (2005-06): The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions - This year's progress was closely coupled to new results coming from our collaboration on the DRAGON spectrometer team at TRIUMF. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti and {sup 26}Al(p,{gamma}){sup 27}Si reactions were both measured, and significant modifications to their respective reaction rates were required. Both are required input toward predicting the respective amounts of Titanium-44 and Aluminum-26 produced in our galaxy, in supernovae, massive stars, and nova explosions. The {sup 26}Al(p,{gamma}){sup 27}Si reaction rate was successfully completed. The {sup 40}Ca({alpha},{gamma}){sup 44}Ti reaction in particular served as the Ph.D. thesis for Christian Ouellet, and therefore the evaluation of this rate fell naturally within his thesis project. Christian successfully defended his thesis in 2007 and is now working for me on the McMaster DOE-funded Nuclear Data Project. In light of the recent data from his thesis, Christian is now putting the final touches on this evaluation, and will disseminate it through the Oak Ridge National Laboratory reaction rate database.

  1. DOE-STD-1072-94; DOE Standard Guideline to Good Practices for Facility Condition Inspections at DOE Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June3-977-942-94 June

  2. Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input

    Broader source: Energy.gov [DOE]

    The study entitled, Approaches used for Clearance of Lands from Nuclear Facilities among Several Countries: Evaluation for Regulatory Input, focuses on the issue of showing compliance with given...

  3. Microsoft Word - 11-21605_Nuclear_Facility_Boundary_White_Paper...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    those specified for the nuclear - industrial facility boundary. g. Functions from NGNP white paper, INLEXT-10-19509, "Structures, Systems, and Components Safety Classification,"...

  4. Twenty-third DOE/NRC nuclear air cleaning and treatment conference

    SciTech Connect (OSTI)

    Bellamy, R.R.; Hayes, J.J.; First, M.W.

    1995-01-01T23:59:59.000Z

    The Twenty-Third Department of Energy/Nuclear Regulatory Commission (DOE/NRC) nuclear Air-Cleaning and Treatment Conference was held July 25-28, 1994, in Buffalo, New York. The conference was also sponsored by the Harvard Air-Cleaning Laboratory and the Internation Society of Nuclear Air Treatment Technologies, a nonprofit organization founded to promote technology transfer in the nuclear air-cleaning and treatment area. A total of 192 air-cleaning specialists attended the conference. The United States and 11 foreign countries were represented. The specialists are affiliated with all aspects of the nuclear industry, including government agencies, educational institutions, utilities, architect-engineers, equipment suppliers, and consultants. The high level of international interests is evident from the 40% of papers sponsored by foreign interests. More than 20% of the attendees as well as several members of the Program Committee were from outside the United States. Major topics discussed at this conference included nuclear air-cleaning codes and standards, waste disposal, particulate filter developments (including testing and performance under stress and after aging), sampling and monitoring of process and effluent streams, off-gasses from fuel reprocessing, adsorbents and adsorption, accident control and analysis, and revised source terms for power-plant accidents. A highlight of the conference concerned operations a at the DOE facility at West Valley, New York, where construction is under way to solidify radioactive waste. A recurrent theme throughout the sessions was that, in spite of the large number of guidance documents available in the form of regulations, codes, standards, and directives, multiple difficulties arise when all are invoked simultaneously. Gas processing needs, rather than controls for civilian power plants, will provide the principal challenge during the next decade for the air-cleaning specialists of the world. 15 refs.

  5. DOE Order Self Study Modules - DOE O 420.1B Facility Safety

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructure Working420.1B FACILITY SAFETY

  6. Development of a techno-economic model to optimization DOE spent nuclear fuel disposition

    SciTech Connect (OSTI)

    Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

    1997-11-01T23:59:59.000Z

    The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

  7. Spent Nuclear Fuel Project path forward: nuclear safety equivalency to comparable NRC-licensed facilities

    SciTech Connect (OSTI)

    Garvin, L.J.

    1995-11-01T23:59:59.000Z

    This document includes the Technical requirements which meet the nuclear safety objectives of the NRC regulations for fuel treatment and storage facilities. These include requirements regarding radiation exposure limits, safety analysis, design and construction. This document also includes administrative requirements which meet the objectives of the major elements of the NRC licensing process. These include formally documented design and safety analysis, independent technical review, and oppportunity for public involvement.

  8. Improved Design of Nuclear Reactor Control System | U.S. DOE...

    Office of Science (SC) Website

    instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF) Developed...

  9. DOE Spent Nuclear Fuel Information In Support of TSPA-VA

    SciTech Connect (OSTI)

    A. Brewer; D. Cresap; D. Fillmore; H. Loo; M. Ebner; R. McCormack

    1998-09-01T23:59:59.000Z

    RW has started the viability assessment (VA) effort to determine the feasibility of Yucca Mountain as the first geologic repository for spent nuclear fuel (SNF) and high-level waste. One component of the viability assessment will be a total system performance assessment (TSPA), based on the design concept and the scientific data and analysis available, describing the repository's probable behavior relative to the overall system performance standards. Thus, all the data collected from the Exploratory Studies Facility to-date have been incorporated into the latest TSPA model. In addition, the Repository Integration Program, an integrated probabilistic simulator, used in the TSPA has also been updated by Golder Associates Incorporated at December 1997. To ensure that the Department of Energy-owned (DOE-owned) SNF continues to be acceptable for disposal in the repository, it will be included in the TSPA-VA evaluation. A number of parameters are needed in the TSPA-VA models to predict the performance of the DOE-owned SNF materials placed into the potential repository. This report documents all of the basis and/or derivation for each of these parameters. A number of properties were not readily available at the time the TSPA-VA data was requested. Thus, expert judgement and opinion was utilized to determine a best property value. The performance of the DOE-owned SNF will be published as part of the TSPA-VA report. Each DOE site will be collecting better data as the DOE SNF program moves closer to repository license application. As required by the RW-0333P, the National Spent Nuclear Fuel Program will be assisting each site in qualifying the information used to support the performance assessment evaluations.

  10. A Multidisciplinary Paradigm and Approach to Protecting Human Health and the Environment, Society, and Stakeholders at Nuclear Facilities - 12244

    SciTech Connect (OSTI)

    Burger, Joanna [Division of Life Sciences, Rutgers University, Piscataway, NJ (United States); Environmental and Occupational Health Sciences Institute, Piscataway, NJ (United States); Gochfeld, Michael [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Environmental and Occupational Medicine, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Clarke, James; Powers, Charles W.; Kosson, David [Consortium for Risk Evaluation with Stakeholder Participation (CRESP), Rutgers University, Piscataway NY, USA and Vanderbilt University, Nashville, TN (United States); Civil and Environmental Engineering, Vanderbilt University, Nashville, TN (United States)

    2012-07-01T23:59:59.000Z

    As the Department of Energy (DOE) continues to remediate its lands, and to consider moving toward long-term stewardship and the development of energy parks on its industrial, remediated land, it is essential to adequately characterize the environment around such facilities to protect society, human health, and the environment. While DOE sites re considering several different land-use scenarios, all of them require adequate protection of the environment. Even if DOE lands are developed for energy parks that are mainly for industrializes sections of DOE lands that will not be remediated to residential standards, there is still the need to consider the protection of human health and the environment. We present an approach to characterization and establishment of teams that will gather the information, and integrate that information for a full range of stakeholders from technical personnel, to public policy makers, and that public. Such information is needed to establish baselines, site new energy facilities in energy parks, protect existing nuclear facilities and nuclear wastes, improve the basis for emergency planning, devise suitable monitoring schemes to ensure continued protection, provide data to track local and regional response changes, and for mitigation, remediation and decommissioning planning. We suggest that there are five categories of information or data needs, including 1) geophysical, sources, fate and transport, 2) biological systems, 3) human health, 4) stakeholder and environmental justice, and 5) societal, economic, and political. These informational needs are more expansive than the traditional site characterization, but encompass a suite of physical, biological, and societal needs to protect all aspects of human health and the environment, not just physical health. We suggest a Site Committee be established that oversees technical teams for each of the major informational categories, with appropriate representation among teams and with a broad involvement of a range of governmental personnel, natural and social scientists, Native Americans, environmental justice communities, and other stakeholders. Such informational teams (and Oversight Committee) would report to a DOE-designated authority or Citizen's Advisory Board. Although designed for nuclear facilities and energy parks on DOE lands, the templates and information teams can be adapted for other hazardous facilities, such as a mercury storage facility at Oak Ridge. (authors)

  11. Mission and Readiness Assessment for Fusion Nuclear Facilities

    SciTech Connect (OSTI)

    G.H. Neilson, et. al.

    2012-12-12T23:59:59.000Z

    Magnetic fusion development toward DEMO will most likely require a number of fusion nuclear facilities (FNF), intermediate between ITER and DEMO, to test and validate plasma and nuclear technologies and to advance the level of system integration. The FNF mission space is wide, ranging from basic materials research to net electricity demonstration, so there is correspondingly a choice among machine options, scope, and risk in planning such a step. Readiness requirements to proceed with a DEMO are examined, and two FNF options are assessed in terms of the contributions they would make to closing DEMO readiness gaps, and their readiness to themselves proceed with engineering design about ten years from now. An advanced tokamak (AT) pilot plant with superconducting coils and a mission to demonstrate net electricity generation would go a long way toward DEMO. As a next step, however, a pilot plant would entail greater risk than a copper-coil FNSF-AT with its more focussed mission and technology requirements. The stellarator path to DEMO is briefly discussed. Regardless of the choice of FNF option, an accompanying science and technology development program, also aimed at DEMO readiness, is absolutely essential.

  12. Nuclear Safety Regulatory Framework

    Broader source: Energy.gov (indexed) [DOE]

    overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

  13. Lessons Learned From The 200 West Pump And Treatment Facility Construction Project At The US DOE Hanford Site - A Leadership For Energy And Environmental Design (LEED) Gold-Certified Facility

    SciTech Connect (OSTI)

    Dorr, Kent A. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Ostrom, Michael J. [CH2M HILL Plateau Remediation Company, Richland, WA (United States); Freeman-Pollard, Jhivaun R. [CH2M HILL Plateau Remediation Company, Richland, WA (United States)

    2012-11-14T23:59:59.000Z

    CH2M Hill Plateau Remediation Company (CHPRC) designed, constructed, commissioned, and began operation of the largest groundwater pump and treatment facility in the U.S. Department of Energy's (DOE) nationwide complex. This one-of-a-kind groundwater pump and treatment facility, located at the Hanford Nuclear Reservation Site (Hanford Site) in Washington State, was built in an accelerated manner with American Recovery and Reinvestment Act (ARRA) funds and has attained Leadership in Energy and Environmental Design (LEED) GOLD certification, which makes it the first non-administrative building in the DOE Office of Environmental Management complex to earn such an award. There were many contractual, technical, configuration management, quality, safety, and LEED challenges associated with the design, procurement, construction, and commissioning of this $95 million, 52,000 ft groundwater pump and treatment facility. This paper will present the Project and LEED accomplishments, as well as Lessons Learned by CHPRC when additional ARRA funds were used to accelerate design, procurement, construction, and commissioning of the 200 West Groundwater Pump and Treatment (2W P&T) Facility to meet DOE's mission of treating contaminated groundwater at the Hanford Site with a new facility by June 28, 2012.

  14. Analysis of the formation, expression, and economic impacts of risk perceptions associated with nuclear facilities

    SciTech Connect (OSTI)

    Allison, T.; Hunter, S.; Calzonetti, F.J.

    1992-10-01T23:59:59.000Z

    This report investigates how communities hosting nuclear facilities form and express perceptions of risk and how these risk perceptions affect local economic development. Information was collected from site visits and interviews with plant personnel, officials of local and state agencies, and community activists in the hosting communities. Six commercial nuclear fuel production facilities and five nuclear facilities operated for the US Department of Energy by private contractors were chosen for analysis. The results presented in the report indicate that the nature of risk perceptions depends on a number of factors. These factors are (1) level of communication by plant officials within the local community, (2) track record of the facility. operator, (3) process through which community and state officials receive information and form opinions, (4) level of economic links each plant has with the local community, and (15) physical characteristics of the facility itself. This report finds that in the communities studied, adverse ask perceptions have not affected business location decisions, employment levels in the local community, tourism, or agricultural development. On the basis of case-study findings, this report recommends that nuclear facility siting programs take the following observations into account when addressing perceptions of risk. First, the quality of a facility`s participation with community activists, interest groups, and state agencies helps to determine the level of perceived risk within a community. Second, the development of strong economic links between nuclear facilities and their host communities will produce a higher level of acceptance of the nuclear facilities.

  15. DOE final report, phase one startup, Waste Receiving and Processing Facility (WRAP)

    SciTech Connect (OSTI)

    Jasen, W.G.

    1998-01-07T23:59:59.000Z

    This document is to validate that the WRAP facility is physically ready to start up phase 1, and that the managers and operators are prepared to safely manage and operate the facility when all pre-start findings have been satisfactorily corrected. The DOE Readiness Assessment (RA) team spent a week on-site at Waste Receiving and Processing Module 1 (WRAP-1) to validate the readiness for phase 1 start up of facility. The Contractor and DOE staff were exceptionally cooperative and contributed significantly to the overall success of the RA. The procedures and Conduct of Operations areas had significant discrepancies, many of which should have been found by the contractor review team. In addition the findings of the contractor review team should have led the WRAP-1 management team to correcting the root causes of the findings prior to the DOE RA team review. The findings and observations include many issues that the team believes should have been found by the contractor review and corrective actions taken. A significantly improved Operational Readiness Review (ORR) process and corrective actions of root causes must be fully implemented by the contractor prior to the performance of the contractor ORR for phase 2 operations. The pre-start findings as a result of this independent DOE Readiness Assessment are presented.

  16. DOE-STD-3026-99; DOE Standard Filter Test Facility Quality Program Plan

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014 Requirements Matrix March

  17. DOE-STD-6003-96; DOE Standard Safety of Magnetic Fusion Facilities: Guidance

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014 Requirements Matrix March4001-20002-96

  18. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

    2008-07-01T23:59:59.000Z

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  19. Selecting a Host DOE Laboratory/Facility | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administrationcontroller systemsBi (2) SrEvaluating the Seasonalsw ' b(SC) SeeingSeizingHow to

  20. Frequently Asked Questions Regarding DOE-STD-1195-2011, Design...

    Office of Environmental Management (EM)

    Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities Frequently Asked Questions Regarding DOE-STD-1195-2011, Design...

  1. Advanced Modeling and Evaluation of the Response of Base-Isolated Nuclear Facility Structures to Vertical Earthquake Excitation

    E-Print Network [OSTI]

    Keldrauk, Eric Scott

    2012-01-01T23:59:59.000Z

    Structures . iii 3 Nuclear Power Plants 3.1 Nuclear FacilityKashiwazaki-Kariwa Nuclear Power Plant 3.3.1 2004 Ch uetsuno seismically-isolated nuclear plant has been constructed

  2. Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program Issues and Strategy for Fusion Nuclear Science Facility (FNSF)

    E-Print Network [OSTI]

    Abdou, Mohamed

    Need for Fusion Nuclear Science and Technology ProgramFusion Nuclear Science and Technology Program ­Issues and Strategy for Fusion Nuclear Science Facility (FNSF) ­Key R&D Areas to begin NOW (modeling 12, 2010 #12;Fusion Nuclear Science and Technology (FNST) FNST is the science engineering technology

  3. TRIGA Mark II nuclear reactor facility. Final report, 1 July 1980--30 June 1995

    SciTech Connect (OSTI)

    Ryan, B.C.

    1997-05-01T23:59:59.000Z

    This report is a final culmination of activities funded through the Department of Energy`s (DOE) University Reactor Sharing Program, Grant DE-FG02-80ER10273, during the period 1 July 1980 through 30 June 1995. Progress reports have been periodically issued to the DOE, namely the Reactor Facility Annual Reports C00-2082/2219-7 through C00-2082/10723-21, which are contained as an appendix to this report. Due to the extent of time covered by this grant, summary tables are presented. Table 1 lists the fiscal year financial obligations of the grant. As listed in the original grant proposals, the DOE grant financed 70% of project costs, namely the total amount spent of these projects minus materials costs and technical support. Thus the bulk of funds was spent directly on reactor operations. With the exception of a few years, spending was in excess of the grant amount. As shown in Tables 2 and 3, the Reactor Sharing grant funded a immense number of research projects in nuclear engineering, geology, animal science, chemistry, anthropology, veterinary medicine, and many other fields. A list of these users is provided. Out of the average 3000 visitors per year, some groups participated in classes involving the reactor such as Boy Scout Merit Badge classes, teacher`s workshops, and summer internships. A large number of these projects met the requirements for the Reactor Sharing grant, but were funded by the University instead.

  4. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High...

  5. Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition

    SciTech Connect (OSTI)

    Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

    1998-02-01T23:59:59.000Z

    The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

  6. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

  7. THE DEACTIVATION DECONTAMINATION & DECOMMISSIONING OF THE PLUTONIUM FINISHING PLANT (PFP) A FORMER PLUTONIUM PROCESSING FACILITY AT DOE HANFORD SITE

    SciTech Connect (OSTI)

    CHARBONEAU, S.L.

    2006-02-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) was constructed as part of the Manhattan Project during World War II. The Manhattan Project was developed to usher in the use of nuclear weapons to end the war. The primary mission of the PFP was to provide plutonium used as special nuclear material (SNM) for fabrication of nuclear devices for the war effort. Subsequent to the end of World War II, the PFP's mission expanded to support the Cold War effort through plutonium production during the nuclear arms race and later the processing of fuel grade mixed plutonium-uranium oxide to support DOE's breeder reactor program. In October 1990, at the close of the production mission for PFP, a shutdown order was prepared by the Department of Energy (DOE) in Washington, DC and issued to the Richland DOE field office. Subsequent to the shutdown order, a team from the Defense Nuclear Facilities Safety Board (DNFSB) analyzed the hazards at PFP associated with the continued storage of certain forms of plutonium solutions and solids. The assessment identified many discrete actions that were required to stabilize the different plutonium forms into stable form and repackage the material in high integrity containers. These actions were technically complicated and completed as part of the PFP nuclear material stabilization project between 1995 and early 2005. The completion of the stabilization project was a necessary first step in deactivating PFP. During stabilization, DOE entered into negotiations with the U.S. Environmental Protection Agency (EPA) and the State of Washington and established milestones for the Deactivation and Decommissioning (D&D) of the PFP. The DOE and its contractor, Fluor Hanford (Fluor), have made great progress in deactivating, decontaminating and decommissioning the PFP at the Hanford Site as detailed in this paper. Background information covering the PFP D&D effort includes descriptions of negotiations with the State of Washington concerning consent-order milestones, milestones completed to date, and the vision of bringing PFP to slab-on-grade. Innovative approaches in planning and regulatory strategies, as well new technologies from within the United States and from other countries and field decontamination techniques developed by workforce personnel, such as the ''turkey roaster'' and the ''lazy Susan'' are covered in detail in the paper. Critical information on issues and opportunities during the performance of the work such as concerns regarding the handling and storage of special nuclear material, concerns regarding criticality safety and the impact of SNM de-inventory at PFP are also provided. The continued success of the PFP D&D effort is due to the detailed, yet flexible, approach to planning that applied innovative techniques and tools, involved a team of experienced independent reviewers, and incorporated previous lessons learned at the Hanford site, Rocky Flats, and commercial nuclear D&D projects. Multi-disciplined worker involvement in the planning and the execution of the work has produced a committed workforce that has developed innovative techniques, resulting in safer and more efficient work evolutions.

  8. Heat barrier for use in a nuclear reactor facility

    DOE Patents [OSTI]

    Keegan, Charles P. (South Huntingdon Twp., Westmoreland County, PA)

    1988-01-01T23:59:59.000Z

    A thermal barrier for use in a nuclear reactor facility is disclosed herein. Generally, the thermal barrier comprises a flexible, heat-resistant web mounted over the annular space between the reactor vessel and the guard vessel in order to prevent convection currents generated in the nitrogen atmosphere in this space from entering the relatively cooler atmosphere of the reactor cavity which surrounds these vessels. Preferably, the flexible web includes a blanket of heat-insulating material formed from fibers of a refractory material, such as alumina and silica, sandwiched between a heat-resistant, metallic cloth made from stainless steel wire. In use, the web is mounted between the upper edges of the guard vessel and the flange of a sealing ring which surrounds the reactor vessel with a sufficient enough slack to avoid being pulled taut as a result of thermal differential expansion between the two vessels. The flexible web replaces the rigid and relatively complicated structures employed in the prior art for insulating the reactor cavity from the convection currents generated between the reactor vessel and the guard vessel.

  9. Control and Accountability of Nuclear Materials

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1994-09-07T23:59:59.000Z

    To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

  10. DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard

    SciTech Connect (OSTI)

    NONE

    1998-05-01T23:59:59.000Z

    This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

  11. SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities

    E-Print Network [OSTI]

    Stephens, Larry M.

    SWAMI: An Autonomous Mobile Robot for Inspection of Nuclear Waste Storage Facilities Ron Fulbright Inspector (SWAMI) is a prototype mobile robot designed to perform autonomous inspection of nuclear waste user interface building tool called UIM/X. Introduction Safe disposal of nuclear waste is a difficult

  12. 1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility

    E-Print Network [OSTI]

    Danon, Yaron

    1Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory RPI LINAC Facility and Nuclear Engineering nacThe Gaerttner Laboratory Capabilities of the RPI LINAC · Pulsed Electron Beam ­ 7ns;4Mechanical, Aerospace and Nuclear Engineering nacThe Gaerttner Laboratory Capabilities of the RPI LINAC

  13. Descriptions of representative contaminated sites and facilities within the DOE complex

    SciTech Connect (OSTI)

    Short, S.M.; Buck, J.W.; Clark, L.L.; Fletcher, J.F.; Glantz, C.S.; Holdren, G.R.; Huesties, L.R.; Williams, M.D. [Pacific Northwest Lab., Richland, WA (United States); Oates, L. [ICF, Richland, WA (United States)] [and others

    1994-10-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) has initiated efforts to prepare a Programmatic Environmental Impact Statement (PEIS) that will analyze the existing environmental restoration and waste management program and evaluate alternatives for an integrated program. The alternatives being evaluated include (1) a {open_quotes}No Action{close_quotes} alternative as required by the National Environmental Policy Act (NEPA), (2) an Applicable, Relevant, and Appropriate Requirements (ARAR)-driven alternative, (3) a land-use-driven alternative, (4) a health-risk-driven alternative, and (5) a combination land-use and health-risk-driven alternative. The analytical approach being taken to evaluate each of these alternatives is to perform a remedial engineering analysis and human health and ecosystem effects analyses on every contaminated site and facility in the DOE complex. One of Pacific Northwest Laboratory`s (PNL) roles in this approach has been to compile the source term and environmental setting data needed to drive each of these analyses. To date, over 10,000 individual contaminated sites and facilities located throughout the DOE complex of installations have been identified and at least some minimal data compiled on each. The PEIS analyses have been appreciably simplified by categorizing all of these contaminated sites and facilities into six broad categories: (1) contaminated buildings, (2) contaminated soils, (3) solid waste sites (e.g., burial grounds), (4) liquid containment structures (e.g., tanks), (5) surface water sites, and (6) contaminated groundwater sites. A report containing a complete description of each of these thousands of contaminated sites and facilities would be tremendously large and unwildy, as would separate reports describing the application of the analytical methodologies to each.

  14. Oak Ridge Leadership Computing Facility (OLCF) | U.S. DOE Office...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research (ASCR) ASCR Home About Research Facilities Accessing ASCR Supercomputers Oak Ridge Leadership Computing Facility (OLCF) Argonne Leadership Computing Facility...

  15. Implementation of the Clean Air Act, Title V operating permit program requirements for the U.S. DOE Oak Ridge Reservation facilities

    SciTech Connect (OSTI)

    Humphreys, M.P. [Dept. of Energy Oak Ridge Operations Office, TN (United States). Environmental Protection Div.

    1998-12-31T23:59:59.000Z

    Title V of the Clean Air Act (CAA) establishes a new permit program requiring major sources and sources subject to Title III (Hazardous Air Pollutants) to obtain a state operating permit. Historically, most states have issued operating permits for individual emission units. Under the Title V permit program, a single permit will be issued for all of the emission units at the facility much like the current National Pollutant Discharge Elimination System (NPDES) permit program. The permit will specify all reporting, monitoring, and record-keeping requirements for the facility. Sources required to obtain permits include (a) major sources that emit 100 tons per year or more of any criteria air contaminant, (b) any source subject to the HAP provisions of Title III, (c) any source subject to the acid rain provisions of Title IV, (d) any source subject to New Source Performance Standards, and (e) any source subject to new source review under the nonattainment or Prevention of Significant Deterioration provisions. The State of Tennessee Title V Operating Permit Program was approved by EPA on August 28, 1996. This paper will provide details of initiatives underway at US Department of Energy (DOE) Oak Ridge Reservation (ORR) Facilities for implementation of requirements under the Title V Operating Permit Program. The ORR encompasses three DOE Facilities: the Y-12 Plant, Oak Ridge National Laboratory (ORNL), and the East Tennessee Technology Park (ETTP). The Y-12 Plant manufactures component parts for the national nuclear weapons program; the ORNL is responsible for research and development activities including nuclear engineering, engineering technologies, and the environmental sciences; and the ETTP conducts a variety of research and development activities and is the home of a mixed waste incinerator. Each of the three DOE Facilities is considered a major source under Title V of the CAA.

  16. Report to the DOE Nuclear Data Committee, 1982

    SciTech Connect (OSTI)

    Haght, R.C.; Struble, G.L.

    1982-03-01T23:59:59.000Z

    The report includes summaries of measurements and calculations of nuclear data applications, and use of nuclear data for reactor safety. (GHT)

  17. DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    activities. Environmental cleanup activities include management of spent nuclear fuel, nuclear materials, and non high-level radioactive waste; deactivation and decommissioning...

  18. Certification of U.S. instrumentation in Russian nuclear processing facilities

    SciTech Connect (OSTI)

    D.H. Powell; J.N. Sumner

    2000-07-12T23:59:59.000Z

    Agreements between the United States (U.S.) and the Russian Federation (R.F.) require the down-blending of highly enriched uranium (HEU) from dismantled Russian Federation nuclear weapons. The Blend Down Monitoring System (BDMS) was jointly developed by the Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) to continuously monitor the enrichments and flow rates in the HEU blending operations at the R.F. facilities. A significant requirement of the implementation of the BDMS equipment in R.F. facilities concerned the certification of the BDMS equipment for use in a Russian nuclear facility. This paper discusses the certification of the BDMS for installation in R.F. facilities, and summarizes the lessons learned from the process that can be applied to the installation of other U.S. equipment in Russian nuclear facilities.

  19. REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES

    SciTech Connect (OSTI)

    Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

    2002-02-25T23:59:59.000Z

    The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

  20. Analysis of the suitability of DOE facilities for treatment of commercial low-level radioactive mixed waste

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This report evaluates the capabilities of the United States Department of Energy`s (DOE`s) existing and proposed facilities to treat 52 commercially generated low-level radioactive mixed (LLMW) waste streams that were previously identified as being difficult-to-treat using commercial treatment capabilities. The evaluation was performed by comparing the waste matrix and hazardous waste codes for the commercial LLMW streams with the waste acceptance criteria of the treatment facilities, as identified in the following DOE databases: Mixed Waste Inventory Report, Site Treatment Plan, and Waste Stream and Technology Data System. DOE facility personnel also reviewed the list of 52 commercially generated LLMW streams and provided their opinion on whether the wastes were technically acceptable at their facilities, setting aside possible administrative barriers. The evaluation tentatively concludes that the DOE is likely to have at least one treatment facility (either existing or planned) that is technically compatible for most of these difficult-to-treat commercially generated LLMW streams. This conclusion is tempered, however, by the limited amount of data available on the commercially generated LLMW streams, by the preliminary stage of planning for some of the proposed DOE treatment facilities, and by the need to comply with environmental statutes such as the Clean Air Act.

  1. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  2. Surface water transport and distribution of uranium in contaminated sediments near a nuclear weapons processing facility

    E-Print Network [OSTI]

    Batson, Vicky Lynn

    1994-01-01T23:59:59.000Z

    The extent of remobilization of uranium from contaminated soils adjacent to a nuclear weapons processing facility during episodic rain events was investigated. In addition, information on the solid phase associations of U in floodplain and suspended...

  3. Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-05-17T23:59:59.000Z

    The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

  4. Report to the DOE Nuclear Data Committee, 1989

    SciTech Connect (OSTI)

    Struble, G.L.; White, R.M.; Resler, D.A.

    1989-02-01T23:59:59.000Z

    This report contains short papers on nuclear data measurements, calculations, and evaluations. (LSP)

  5. Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most

    E-Print Network [OSTI]

    Maroncelli, Mark

    Superconducting Magnet Safety Nuclear Magnetic Resonance (NMR) facilities present unique hazards not found in most laboratory environments. The NMR facilities maintain superconducting magnets which have for asphyxiation. Once energized the field of the superconducting magnet of the spectrometer is always present

  6. User Facilities at a Glance | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Homeuniversity-research/ The Office ofFacilities

  7. BES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News NewsAbout BerkeleyDOEBES User Facilities User

  8. NP User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice ofNP User Facilities User

  9. Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

  10. 2008 DOE Spent Nuclear Fuel and High Level Waste Inventory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with INL Community Outreach Visitor Information Calendar of Events ATR National Scientific User Facility Center for Advanced Energy Studies Light Water Reactor...

  11. REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS

    SciTech Connect (OSTI)

    Richard Metcalf; Robert Bean

    2009-10-01T23:59:59.000Z

    Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEAs Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facilitys general character, purpose, capacity, and location; (2) Description of the facilitys layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

  12. Central Facilities Area Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables

    SciTech Connect (OSTI)

    Lisa Harvego; Brion Bennett

    2011-11-01T23:59:59.000Z

    Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Central Facilities Area facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facilityspecific documents. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool for developing the radioactive waste management basis.

  13. DOE Standard Integration Of Environment,Safety, and Health Into...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities...

  14. Spent nuclear fuel project cold vacuum drying facility operations manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-05-12T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  15. Hot particle laundry monitoring at a nuclear power facility

    E-Print Network [OSTI]

    Farver, Douglas Floyd

    2012-06-07T23:59:59.000Z

    by adjusting a knob on the control console. The control console contains the control unit, the upper detector control system and the nuclear electronics. The ACM-120 uses a microprocessor to analyze the data and monitor for various system malfunctions..., monitoring method, detector type, alarm levels and the storage and disposal limits. In the second part, a detailed evaluation was conducted on three automated laundry monitors; National Nuclear LCM-15A, I. R. T. ACM-120, Interstate Nuclear Services ALM...

  16. All User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News NewsAbout BerkeleyDOE Office of Science

  17. BER User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News NewsAbout BerkeleyDOE Office

  18. DOE Office of Science Publishes Update of Landmark Plan, "Facilities for

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008Contractor Humanof ScienceDOE Office ofthe

  19. ARM Climate Research Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful WorkshopsU.S. DOE224ARM Climate

  20. Facility Operations and User Support | National Nuclear Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:Epitaxial ThinFOR IMMEDIATE5Facilities SomeFacilities

  1. Transportation capabilities study of DOE-owned spent nuclear fuel

    SciTech Connect (OSTI)

    Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

    1994-10-01T23:59:59.000Z

    This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

  2. Development of nuclear diagnostics for the National Ignition Facility ,,invited...

    E-Print Network [OSTI]

    construction at Lawrence Livermore National Laboratory. The NIF project is now more than 80% complete. Song, R. Tommasini, and B. K. Young Lawrence Livermore National Laboratory, Livermore, California 94550 July 2006; published online 5 October 2006 The National Ignition Facility NIF will provide up to 1.8 MJ

  3. Recommended management practices for operation and closure of shallow injection wells at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    The Safe Drinking Water Act established the Underground Injection Control (UIC) program to ensure that underground injection of wastes does not endanger an underground source of drinking water. Under UIC regulations, an injection well is a hole in the ground, deeper than it is wide, that receives wastes or other fluid substances. Types of injection wells range from deep cased wells to shallow sumps, drywells, and drainfields. The report describes the five classes of UIC wells and summarizes relevant regulations for each class of wells and for the UIC program. The main focus of the report is Class IV and V shallow injection wells. Class IV wells are prohibited and should be closed when they are identified. Class V wells are generally authorized by rule, but EPA or a delegated state may require a permit for a Class V well. This report provides recommendations on sound operating and closure practices for shallow injection wells. In addition the report contains copies of several relevant EPA documents that provide additional information on well operation and closure. Another appendix contains information on the UIC programs in 21 states in which there are DOE facilities discharging to injection wells. The appendix includes the name of the responsible regulatory agency and contact person, a summary of differences between the state`s regulations and Federal regulations, and any closure guidelines for Class IV and V wells.

  4. Determination of dilution factors in a nuclear facility

    E-Print Network [OSTI]

    Sandel, Philip Sidney

    1972-01-01T23:59:59.000Z

    location was found to be 909. From the results of this study it was determined that the described method can be used to determine dilu- tion factors in any facility effectively. ACKNOWLEDGENENTS I wish to express my sincere appreciation to Dr. R. D... and diverse studies. Atmospheric dispersion of particles and gases from the atomic energy field is constantly being studied. Emperical dispersion calculations for aerosol releases into the atmosphere are well known ' . In addition, (1, 2) studies...

  5. Underground Facility at Nevada National Security Site | National Nuclear

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched Ferromagnetism in Layeredof2014National Nuclear SecuritySalaryand Astrophysics

  6. KCP celebrates production milestone at new facility | National Nuclear

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApply for Our Jobs / How toNuclearSecurity

  7. Nuclear safety information sharing agreement between NRC and...

    Office of Environmental Management (EM)

    for DOE and NRC to exchange information related to safety issues associated with non-reactor nuclear facilities. The NRC-DOE Inter-Agency nuclear safety information sharing...

  8. DOE - Office of Legacy Management -- Sylvania Corning Nuclear...

    Office of Legacy Management (LM)

    to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 NY.07-2 -...

  9. Nuclear Astrophysics in Rare Isotope Facilities C.A. Bertulania

    E-Print Network [OSTI]

    Bertulani, Carlos A. - Department of Physics and Astronomy, Texas A&M University

    , beam energies should be in the range of a few 10-100 MeV per nucleon [5]. Low energy reactions projectile velocity va, the low energy reaction A + x = B + c is induced at very low (even vanishing and Astronomy, Texas A&M University, Commerce, TX 75429, USA Nuclear reactions in stars are difficult to measure

  10. Nuclear Reactor Safety Design Criteria

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1993-01-19T23:59:59.000Z

    The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

  11. Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2003-10-29T23:59:59.000Z

    To establish policies and procedures for management of DOE, including NNSA, Management and Operating (M&O) and other facility management contractor employees assigned to the Washington, D.C., area. Cancels DOE O 350.2.

  12. A new DOE standard for transuranic waste nuclear safety analysis

    SciTech Connect (OSTI)

    Triay, I.; Chung, D. [U.S. Department of Energy, Washington, D.C. (United States); Woody, J. [Atlas Consulting, Knoxville, TN (United States); Foppe, T. [Carlsbad Technical Assistance Contractor, Carlsbad, NM (United States); Mewhinney, C. [Sandia National Laboratories, Carlsbad, NM (United States); Jennings, S. [Los Alamos National Laboratories, Carlsbad, NM (United States)

    2007-07-01T23:59:59.000Z

    The DOE Office of Environmental Management (EM) observed through onsite assessments and a review of site-specific lessons learned that transuranic (TRU) waste operations could benefit from standardization of assumptions and approaches used to analyze hazards and select controls. EM collected and compared safety analysis information from DOE sites, including a comparison of the type of TRU waste accidents evaluated and controls selected, as well as specific Airborne Release Fractions (ARFs), Respirable Fractions (RFs), and Damage Ratios (DRs) assumed in accident analyses. This paper recounts the efforts by the DOE and its contractors to bring consistency to the safety analysis process supporting TRU waste operations through an integrated re-engineering effort. EM embarked on a process to re-engineer and standardize TRU safety analysis activities complex-wide. The effort involved DOE headquarters, field offices, and contractors. Five teams were formed to analyze and develop the necessary technical basis for a DOE Technical Standard. The teams looked at general issues including Safety Basis (SB), drum integrity and inspection criteria, hazard controls and analysis, safety analysis review and approval process, and implementation of hazard controls. (authors)

  13. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges these issues. 2 #12;FNST is the science, engineering, technology and materials Fusion Nuclear Science & Technology (FNST) FNST is the science, engineering, technology and materials for the fusion nuclear

  14. Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges and Facilities

    E-Print Network [OSTI]

    Abdou, Mohamed

    Fusion Nuclear Science and Technology (FNST)Fusion Nuclear Science and Technology (FNST) Challenges on MFE Roadmapping in the ITER Era Princeton, NJ 7-10 September 2011 1 #12;Fusion Nuclear Science never done any experiments on FNST in a real fusion nuclear environment we must be realistic on what

  15. An Overview of Facilities and Capabilities to Support the Development of Nuclear Thermal Propulsion

    SciTech Connect (OSTI)

    James Werner; Sam Bhattacharyya; Mike Houts

    2011-02-01T23:59:59.000Z

    Abstract. The future of American space exploration depends on the ability to rapidly and economically access locations of interest throughout the solar system. There is a large body of work (both in the US and the Former Soviet Union) that show that Nuclear Thermal Propulsion (NTP) is the most technically mature, advanced propulsion system that can enable this rapid and economical access by its ability to provide a step increase above what is a feasible using a traditional chemical rocket system. For an NTP system to be deployed, the earlier measurements and recent predictions of the performance of the fuel and the reactor system need to be confirmed experimentally prior to launch. Major fuel and reactor system issues to be addressed include fuel performance at temperature, hydrogen compatibility, fission product retention, and restart capability. The prime issue to be addressed for reactor system performance testing involves finding an affordable and environmentally acceptable method to test a range of engine sizes using a combination of nuclear and non-nuclear test facilities. This paper provides an assessment of some of the capabilities and facilities that are available or will be needed to develop and test the nuclear fuel, and reactor components. It will also address briefly options to take advantage of the greatly improvement in computation/simulation and materials processing capabilities that would contribute to making the development of an NTP system more affordable. Keywords: Nuclear Thermal Propulsion (NTP), Fuel fabrication, nuclear testing, test facilities.

  16. Defense Nuclear Facilities Safety Board (DNFSB) Letters and Recommendations

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone Modeling | DepartmentDeep Vadose|

  17. Departmental Representative to the Defense Nuclear Facilities Safety Board

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005Department ofDOE AccidentWasteZone

  18. Nuclear and Facility Safety Directives | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,ScienceWasteand

  19. NNSA Holds Groundbreaking at MOX Facility | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram |

  20. Strengthening Line Management Oversight and Federal Monitoring of Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternational EnergyCommittee onGAS ActNational QualityStrategy141 -- Nuclear

  1. Nuclear Facility Construction- Structural Concrete, May 29, 2009 (HSS CRAD 64-15, Rev. 0)

    Broader source: Energy.gov [DOE]

    This Criteria Review and Approach Document (HSS CRAD 64-15) establishes review criteria and lines of inquiry used by the Office of Independent Oversight's Office of Environment, Safety and Health Evaluations to assess the quality of the manufacturing and placement of concrete used in nuclear facility construction at the Department of Energy

  2. Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    nuclear science R&D using a component testing facility Y.K.M. Peng 1), T.W. Burgess 1), A.J. Carroll 1), C. This use aims to test components in an integrated fusion nuclear environment, for the first time@ornl.gov Abstract. The use of a fusion component testing facility to study and establish, during the ITER era

  3. FINESSE: study of the issues, experiments and facilities for fusion nuclear technology research and development. Interim report. Volume I

    SciTech Connect (OSTI)

    Abdou, M.

    1984-10-01T23:59:59.000Z

    The following chapters are included in this study: (1) fusion nuclear issues, (2) survey of experimental needs, (3) requirements of the experiments, (4) non-fusion facilities, (5) fusion facilities for nuclear experiments, and (6) fusion research and development scenarios. (MOW)

  4. Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael Kruzic

    2007-09-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

  5. Clean-up of Nuclear Licensed Facility 57

    SciTech Connect (OSTI)

    Jeanjacques, Michel; Bremond, Marie Pierre; Marchand, Carole; Poyau, Cecile; Viallefont, Cecile; Gautier, Laurent; Masure, Frederic [CEA, DANS-DRSN-SAFAR (France)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: In the early sixties a radiochemistry laboratory dedicated to Research and Development was built at the French Atomic Energy Commission's centre at Fontenay aux Roses (CEA-FAR); it was named Building 18. More buildings were added during the decade: Building 54, storehouses and offices and Building 91, a hall and laboratories for chemical engineering research into natural and depleted uranium. These three buildings together constitute NLF57. Construction work took place between 1959 and 1962 and the buildings entered operation in 1961. The research and development programs performed in NLF57 involved spent fuel reprocessing studies, waste treatment processes and studies and production of transuranic elements with the related analytical methods development. The research and development program ended on 30 June 1995. The NLF57 clean-up program was launched to reduce the nuclear and conventional hazards and minimise HLW and MLW production during the dismantling work. The clean-up work was divided into categories by type to facilitate its organisation: treatment and removal of nuclear material, removal of radioactive sources, treatment and removal of organic and aqueous effluents, treatment and removal of solid waste, pumping out of the PETRUS tank, flushing and decontamination of the tanks and clean-up of buildings. (authors)

  6. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    SciTech Connect (OSTI)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.; Forrester, T,; McMillan, B.; Shrader, T.; Richterich, L.

    2003-02-26T23:59:59.000Z

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. The first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.

  7. Radioactive Waste Management and Nuclear Facility Decommissioning Progress in Iraq - 13216

    SciTech Connect (OSTI)

    Al-Musawi, Fouad; Shamsaldin, Emad S.; Jasim, Hadi [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq)] [Ministry of Science and Technology (MoST), Al-Jadraya, P.O. Box 0765, Baghdad (Iraq); Cochran, John R. [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)] [Sandia National Laboratories1, New Mexico, Albuquerque New Mexico 87185 (United States)

    2013-07-01T23:59:59.000Z

    Management of Iraq's radioactive wastes and decommissioning of Iraq's former nuclear facilities are the responsibility of Iraq's Ministry of Science and Technology (MoST). The majority of Iraq's former nuclear facilities are in the Al-Tuwaitha Nuclear Research Center located a few kilometers from the edge of Baghdad. These facilities include bombed and partially destroyed research reactors, a fuel fabrication facility and radioisotope production facilities. Within these facilities are large numbers of silos, approximately 30 process or waste storage tanks and thousands of drums of uncharacterised radioactive waste. There are also former nuclear facilities/sites that are outside of Al-Tuwaitha and these include the former uranium processing and waste storage facility at Jesira, the dump site near Adaya, the former centrifuge facility at Rashdiya and the former enrichment plant at Tarmiya. In 2005, Iraq lacked the infrastructure needed to decommission its nuclear facilities and manage its radioactive wastes. The lack of infrastructure included: (1) the lack of an organization responsible for decommissioning and radioactive waste management, (2) the lack of a storage facility for radioactive wastes, (3) the lack of professionals with experience in decommissioning and modern waste management practices, (4) the lack of laws and regulations governing decommissioning or radioactive waste management, (5) ongoing security concerns, and (6) limited availability of electricity and internet. Since its creation eight years ago, the MoST has worked with the international community and developed an organizational structure, trained staff, and made great progress in managing radioactive wastes and decommissioning Iraq's former nuclear facilities. This progress has been made, despite the very difficult implementing conditions in Iraq. Within MoST, the Radioactive Waste Treatment and Management Directorate (RWTMD) is responsible for waste management and the Iraqi Decommissioning Directorate (IDD) is responsible for decommissioning activities. The IDD and the RWTMD work together on decommissioning projects. The IDD has developed plans and has completed decommissioning of the GeoPilot Facility in Baghdad and the Active Metallurgical Testing Laboratory (LAMA) in Al-Tuwaitha. Given this experience, the IDD has initiated work on more dangerous facilities. Plans are being developed to characterize, decontaminate and decommission the Tamuz II Research Reactor. The Tammuz Reactor was destroyed by an Israeli air-strike in 1981 and the Tammuz II Reactor was destroyed during the First Gulf War in 1991. In addition to being responsible for managing the decommissioning wastes, the RWTMD is responsible for more than 950 disused sealed radioactive sources, contaminated debris from the first Gulf War and (approximately 900 tons) of naturally-occurring radioactive materials wastes from oil production in Iraq. The RWTMD has trained staff, rehabilitated the Building 39 Radioactive Waste Storage building, rehabilitated portions of the French-built Radioactive Waste Treatment Station, organized and secured thousands of drums of radioactive waste organized and secured the stores of disused sealed radioactive sources. Currently, the IDD and the RWTMD are finalizing plans for the decommissioning of the Tammuz II Research Reactor. (authors)

  8. DOE-STD-1055-93; DOE Standard Guideline to Good Practices For Maintenance Management Involvement at DOE Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June 19933-93

  9. DOE-STD-1065-94; DOE Standard Guideline to Good Practices For Postmaintenance Testing at DOE Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June3-97 October5-94

  10. DOE-STD-1068-94; DOE Standard Guideline to Good Practices For Maintenance History at DOE Nuclear Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June3-977-94 June

  11. Project Hanford management contract quality assurance program implementation plan for nuclear facilities

    SciTech Connect (OSTI)

    Bibb, E.K.

    1997-10-15T23:59:59.000Z

    During transition from the Westinghouse Hanford Company (WHC) Management and Operations (M and O) contract to the Fluor Daniel Hanford (FDH) Management and Integration (M and I) contract, existing WHC policies, procedures, and manuals were reviewed to determine which to adopt on an interim basis. Both WHC-SP-1131,Hanford Quality Assurance Program and Implementation Plan, and WHC-CM-4-2, Quality Assurance Manual, were adopted; however, it was recognized that revisions were required to address the functions and responsibilities of the Project Hanford Management Contract (PHMC). This Quality Assurance Program Implementation Plan for Nuclear Facilities (HNF-SP-1228) supersedes the implementation portion of WHC-SP-1 13 1, Rev. 1. The revised Quality Assurance (QA) Program is documented in the Project Hanford Quality Assurance Program Description (QAPD), HNF-MP-599. That document replaces the QA Program in WHC-SP-1131, Rev. 1. The scope of this document is limited to documenting the nuclear facilities managed by FDH and its Major Subcontractors (MSCS) and the status of the implementation of 10 CFR 830.120, Quality Assurance Requirements, at those facilities. Since the QA Program for the nuclear facilities is now documented in the QAPD, future updates of the information provided in this plan will be by letter. The layout of this plan is similar to that of WHC-SP-1 13 1, Rev. 1. Sections 2.0 and 3.0 provide an overview of the Project Hanford QA Program. A list of Project Hanford nuclear facilities is provided in Section 4.0. Section 5.0 provides the status of facility compliance to 10 CFR 830.120. Sections 6.0, 7.0, and 8.0 provide requested exemptions, status of open items, and references, respectively. The four appendices correspond to the four projects that comprise Project Hanford.

  12. CHARACTERIZING DOE HANFORD SITE WASTE ENCAPSULATION STORAGE FACILITY CELLS USING RADBALL

    SciTech Connect (OSTI)

    Farfan, E.; Coleman, R.

    2011-03-31T23:59:59.000Z

    RadBall{trademark} is a novel technology that can locate and quantify unknown radioactive hazards within contaminated areas, hot cells, and gloveboxes. The device consists of a colander-like outer tungsten collimator that houses a radiation-sensitive polymer semi-sphere. The collimator has a number of small holes with tungsten inserts; as a result, specific areas of the polymer are exposed to radiation becoming increasingly more opaque in proportion to the absorbed dose. The polymer semi-sphere is imaged in an optical computed tomography scanner that produces a high resolution 3D map of optical attenuation coefficients. A subsequent analysis of the optical attenuation data using a reverse ray tracing or backprojection technique provides information on the spatial distribution of gamma-ray sources in a given area forming a 3D characterization of the area of interest. RadBall{trademark} was originally designed for dry deployments and several tests, completed at Savannah River National Laboratory and Oak Ridge National Laboratory, substantiate its modeled capabilities. This study involves the investigation of the RadBall{trademark} technology during four submerged deployments in two water filled cells at the DOE Hanford Site's Waste Encapsulation Storage Facility.

  13. Disposal of radioactive waste from nuclear research facilities

    E-Print Network [OSTI]

    Maxeiner, H; Kolbe, E

    2003-01-01T23:59:59.000Z

    Swiss radioactive wastes originate from nuclear power plants (NPP) and from medicine (e.g. radiation sources), industry (e.g. fire detectors) and research (e.g. CERN, PSI). Their conditioning, characterisation and documentation has to meet the demands given by the Swiss regulatory authorities including all information needed for a safe disposal in future repositories. For NPP wastes, arisings as well as the processes responsible for the buildup of short and long lived radionuclides are well known, and the conditioning procedures are established. The radiological inventories are determined on a routinely basis using a combined system of measurements and calculational programs. For waste from research, the situation is more complicated. The wide spectrum of different installations combined with a poorly known history of primary and secondary radiation results in heterogeneous waste sorts with radiological inventories quite different from NPP waste and difficult to measure long lived radionuclides. In order to c...

  14. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-02-03T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of the Processing Systems (Garvin 1998) and, the HNF-SD-SNF-DRD-002, 1997, Cold Vacuum Drying Facility Design Requirements, Rev. 3a. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence, and has been developed for the spent nuclear fuel project (SNFP) Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  15. Spent Nuclear Fuel (SNF) Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-07-02T23:59:59.000Z

    This document provides the Operations Manual for the Cold Vacuum Drying Facility (CVDF). The Manual was developed in conjunction with HNF-553, Spent Nuclear Fuel Project Final Safety Analysis Report Annex B--Cold Vacuum Drying Facility. The HNF-SD-SNF-DRD-002, 1999, Cold Vacuum Drying Facility Design Requirements, Rev. 4, and the CVDF Final Design Report. The Operations Manual contains general descriptions of all the process, safety and facility systems in the CVDF, a general CVD operations sequence and references to the CVDF System Design Descriptions (SDDs). This manual has been developed for the SNFP Operations Organization and shall be updated, expanded, and revised in accordance with future design, construction and startup phases of the CVDF until the CVDF final ORR is approved.

  16. DOE Handbook: Guide to good practices for training of technical staff and managers

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    Training programs at DOE facilities should prepare personnel to safely and efficiently operate the facilities in accordance with DOE requirements. This guide contains information that can be used to develop or validate training programs for technical staff and managers at DOE nuclear facilities. Training programs based on the content of this guide should provide assurance that these personnel perform their jobs safely and competently.

  17. Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-12-12T23:59:59.000Z

    he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  18. [6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE).

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) is issuing a final rule regarding Nuclear SafetyManagement. This Part establishes requirements for the safe management of DOE contractor andsubcontractor work at the...

  19. DOE Office of Nuclear Energy | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP |Save05.1BIdaho |in Alaska |Energy DOE

  20. DOE, State of Idaho Sign Agreement on Nuclear Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State of Idaho Sign

  1. Technical Aspects Regarding the Management of Radioactive Waste from Decommissioning of Nuclear Facilities

    SciTech Connect (OSTI)

    Dragolici, F.; Turcanu, C. N.; Rotarescu, G.; Paunica, I.

    2003-02-25T23:59:59.000Z

    The proper application of the nuclear techniques and technologies in Romania started in 1957, once with the commissioning of the Research Reactor VVR-S from IFIN-HH-Magurele. During the last 45 years, appear thousands of nuclear application units with extremely diverse profiles (research, biology, medicine, education, agriculture, transport, all types of industry) which used different nuclear facilities containing radioactive sources and generating a great variety of radioactive waste during the decommissioning after the operation lifetime is accomplished. A new aspect appears by the planning of VVR-S Research Reactor decommissioning which will be a new source of radioactive waste generated by decontamination, disassembling and demolition activities. By construction and exploitation of the Radioactive Waste Treatment Plant (STDR)--Magurele and the National Repository for Low and Intermediate Radioactive Waste (DNDR)--Baita, Bihor county, in Romania was solved the management of radioactive wastes arising from operation and decommissioning of small nuclear facilities, being assured the protection of the people and environment. The present paper makes a review of the present technical status of the Romanian waste management facilities, especially raising on treatment capabilities of ''problem'' wastes such as Ra-266, Pu-238, Am-241 Co-60, Co-57, Sr-90, Cs-137 sealed sources from industrial, research and medical applications. Also, contain a preliminary estimation of quantities and types of wastes, which would result during the decommissioning project of the VVR-S Research Reactor from IFIN-HH giving attention to some special category of wastes like aluminum, graphite and equipment, components and structures that became radioactive through neutron activation. After analyzing the technical and scientific potential of STDR and DNDR to handle big amounts of wastes resulting from the decommissioning of VVR-S Research Reactor and small nuclear facilities, the necessity of up-gradation of these nuclear objectives before starting the decommissioning plan is revealed. A short presentation of the up-grading needs is also presented.

  2. The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project

    SciTech Connect (OSTI)

    Hopper, Calvin Mitchell [ORNL] [ORNL

    2011-01-01T23:59:59.000Z

    In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

  3. Nuclear safety information sharing agreement between NRC and DOE's Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,ScienceWasteandof

  4. NNSS does it again! | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWSNuclear

  5. Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons

    Broader source: Energy.gov [DOE]

    Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

  6. Nuclear Theory and Science of the Facility for Rare Isotope Beams

    E-Print Network [OSTI]

    A. B Balantekin; J. Carlson; D. J. Dean; G. M. Fuller; R. J. Furnstahl; M. Hjorth-Jensen; R. V. F. Janssens; Bao-An Li; W. Nazarewicz; F. M. Nunes; W. E. Ormand; S. Reddy; B. M. Sherrill

    2014-01-24T23:59:59.000Z

    The Facility for Rare Isotope Beams (FRIB) will be a world-leading laboratory for the study of nuclear structure, reactions and astrophysics. Experiments with intense beams of rare isotopes produced at FRIB will guide us toward a comprehensive description of nuclei, elucidate the origin of the elements in the cosmos, help provide an understanding of matter in neutron stars, and establish the scientific foundation for innovative applications of nuclear science to society. FRIB will be essential for gaining access to key regions of the nuclear chart, where the measured nuclear properties will challenge established concepts, and highlight shortcomings and needed modifications to current theory. Conversely, nuclear theory will play a critical role in providing the intellectual framework for the science at FRIB, and will provide invaluable guidance to FRIB's experimental programs. This article overviews the broad scope of the FRIB theory effort, which reaches beyond the traditional fields of nuclear structure and reactions, and nuclear astrophysics, to explore exciting interdisciplinary boundaries with other areas. \\keywords{Nuclear Structure and Reactions. Nuclear Astrophysics. Fundamental Interactions. High Performance Computing. Rare Isotopes. Radioactive Beams.

  7. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

  8. New User Facility | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    New User Facility Web Policies Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 New User Facility...

  9. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27T23:59:59.000Z

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  10. DOE/SNL-TTU scaled wind farm technology facility : research opportunities for study of turbine-turbine interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; White, Jonathan

    2011-09-01T23:59:59.000Z

    The proposed DOE/Sandia Scaled Wind Farm Technology Facility (SWiFT) hosted by Texas Tech University at Reese Technology Center in Lubbock, TX, will provide a facility for experimental study of turbine-turbine interaction and complex wind farm aerodynamics. This document surveys the current status of wind turbine wake and turbine-turbine interaction research, identifying knowledge and data gaps that the proposed test site can potentially fill. A number of turbine layouts is proposed, allowing for up to ten turbines at the site.

  11. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2007-09-16T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

  12. Conceptual design report: Nuclear materials storage facility renovation. Part 5, Structural/seismic investigation. Section A report, existing conditions calculations/supporting information

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. Based upon US Department of Energy (DOE) Albuquerque Operations (DOE/Al) Office and LANL projections, storage space limitations/restrictions will begin to affect LANL`s ability to meet its missions between 1998 and 2002.

  13. The unit cost factors and calculation methods for decommissioning - Cost estimation of nuclear research facilities

    SciTech Connect (OSTI)

    Kwan-Seong Jeong; Dong-Gyu Lee; Chong-Hun Jung; Kune-Woo Lee [Korea Atomic Energy Research Institute, Deokjin-dong 150, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2007-07-01T23:59:59.000Z

    Available in abstract form only. Full text of publication follows: The uncertainties of decommissioning costs increase high due to several conditions. Decommissioning cost estimation depends on the complexity of nuclear installations, its site-specific physical and radiological inventories. Therefore, the decommissioning costs of nuclear research facilities must be estimated in accordance with the detailed sub-tasks and resources by the tasks of decommissioning activities. By selecting the classified activities and resources, costs are calculated by the items and then the total costs of all decommissioning activities are reshuffled to match with its usage and objectives. And the decommissioning cost of nuclear research facilities is calculated by applying a unit cost factor method on which classification of decommissioning works fitted with the features and specifications of decommissioning objects and establishment of composition factors are based. Decommissioning costs of nuclear research facilities are composed of labor cost, equipment and materials cost. Of these three categorical costs, the calculation of labor costs are very important because decommissioning activities mainly depend on labor force. Labor costs in decommissioning activities are calculated on the basis of working time consumed in decommissioning objects and works. The working times are figured out of unit cost factors and work difficulty factors. Finally, labor costs are figured out by using these factors as parameters of calculation. The accuracy of decommissioning cost estimation results is much higher compared to the real decommissioning works. (authors)

  14. Requirements and Design Envelope for Volumetric Neutron Source Fusion Facilities for Fusion Nuclear Technology Development

    SciTech Connect (OSTI)

    Abdou, M [University of California, Los Angeles] [University of California, Los Angeles; Peng, Yueng Kay Martin [ORNL] [ORNL

    1995-01-01T23:59:59.000Z

    The paper shows that timely development of fusion nuclear technology (FNT) components, e.g. blanket, for DEMO requires the construction and operation of a fusion facility parallel to ITER. This facility, called VNS, will be dedicated to testing, developing and qualifying FNT components and material combinations. Without VNS, i.e. with ITER alone, the confidence level in achieving DEMO operating goals has been quantified and is unacceptably low (< 1 %). An attractive design envelope for VNS exists. Tokamak VNS designs with driven plasma (Q ~ 1-3), steady state plasma operation and normal copper toroidal field coils lead to small sized devices with moderate cost.

  15. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01T23:59:59.000Z

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  16. Measurement of Atmospheric Sea Salt Concentration in the Dry Storage Facility of the Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Masumi Wataru; Hisashi Kato; Satoshi Kudo; Naoko Oshima; Koji Wada [Central Research Institute of Electric Power Industry - CRIEPI (Japan); Hirofumi Narutaki [Electric Power Engineering Systems Co. Ltd. (Japan)

    2006-07-01T23:59:59.000Z

    Spent nuclear fuel coming from a Japanese nuclear power plant is stored in the interim storage facility before reprocessing. There are two types of the storage methods which are wet and dry type. In Japan, it is anticipated that the dry storage facility will increase compared with the wet type facility. The dry interim storage facility using the metal cask has been operated in Japan. In another dry storage technology, there is a concrete overpack. Especially in USA, a lot of concrete overpacks are used for the dry interim storage. In Japan, for the concrete cask, the codes of the Japan Society of Mechanical Engineers and the governmental technical guidelines are prepared for the realization of the interim storage as well as the code for the metal cask. But the interim storage using the concrete overpack has not been in progress because the evaluation on the stress corrosion cracking (SCC) of the canister is not sufficient. Japanese interim storage facilities would be constructed near the seashore. The metal casks and concrete overpacks are stored in the storage building in Japan. On the other hand, in USA they are stored outside. It is necessary to remove the decay heat of the spent nuclear fuel in the cask from the storage building. Generally, the heat is removed by natural cooling in the dry storage facility. Air including the sea salt particles goes into the dry storage facility. Concerning the concrete overpack, air goes into the cask body and cools the canister. Air goes along the canister surface and is in contact with the surface directly. In this case, the sea salt in the air attaches to the surface and then there is the concern about the occurrence of the SCC. For the concrete overpack, the canister including the spent fuel is sealed by the welding. The loss of sealability caused by the SCC has to be avoided. To evaluate the SCC for the canister, it is necessary to make clear the amount of the sea salt particles coming into the storage building and the concentration on the canister. In present, the evaluation on that point is not sufficient. In this study, the concentration of the sea salt particles in the air and on the surface of the storage facility are measured inside and outside of the building. For the measurement, two sites of the dry storage facility using the metal cask are chosen. This data is applicable for the evaluation on the SCC of the canister to realize the interim storage using the concrete overpack. (authors)

  17. A HYDROGEN IGNITION MECHANISM FOR EXPLOSIONS IN NUCLEAR FACILITY PIPING SYSTEMS

    SciTech Connect (OSTI)

    Leishear, R.

    2013-03-28T23:59:59.000Z

    Hydrogen explosions may occur simultaneously with water hammer accidents in nuclear facilities, and a theoretical mechanism to relate water hammer to hydrogen deflagrations and explosions is presented herein. Hydrogen and oxygen generation due to the radiolysis of water is a recognized hazard in pipe systems used in the nuclear industry, where the accumulation of hydrogen and oxygen at high points in the pipe system is expected, and explosive conditions may occur. Pipe ruptures in nuclear reactor cooling systems were attributed to hydrogen explosions inside pipelines, i.e., Hamaoka, Nuclear Power Station in Japan, and Brunsbuettel in Germany. Prior to these accidents, an ignition source for hydrogen was not clearly demonstrated, but these accidents demonstrated that a mechanism was, in fact, available to initiate combustion and explosion. A new theory to identify an ignition source and explosion cause is presented here, and further research is recommended to fully understand this explosion mechanism.

  18. Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.

    SciTech Connect (OSTI)

    Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

    2007-10-01T23:59:59.000Z

    The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

  19. DOE/NSF Nuclear Science Advisory Committee Meeting | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S.

  20. DOE/NSF Nuclear Science Advisory Committee Meeting | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S.Science (SC) November 17,

  1. Facility Effluent Monitoring Plan for the Spent Nuclear Fuel (SNF) Project

    SciTech Connect (OSTI)

    HUNACEK, G.S.

    2000-08-01T23:59:59.000Z

    A facility effluent monitoring plan is required by the US. Department of Energy in DOE Order 5400.1 for any operations that involve hazardous materials and radioactive substances that could impact employee or public safety or the environment. This document was prepared using the specific guidelines identified in Westinghouse Hanford Company (WHC)-EP-0438-1, ''A Guide for Preparing Hanford Site Facility Effluent Monitoring Plans'', and assesses effluent monitoring systems and evaluates whether they are adequate to ensure the public health and safety as specified in applicable federal, state, and local requirements. This facility effluent monitoring plan is the third revision to the original annual report. This document is reviewed annually even if there are no operational changes, and it is updated as necessary.

  2. A systematic method for identifying vital areas at complex nuclear facilities.

    SciTech Connect (OSTI)

    Beck, David Franklin; Hockert, John

    2005-05-01T23:59:59.000Z

    Identifying the areas to be protected is an important part of the development of measures for physical protection against sabotage at complex nuclear facilities. In June 1999, the International Atomic Energy Agency published INFCIRC/225/Rev.4, 'The Physical Protection of Nuclear Material and Nuclear Facilities.' This guidance recommends that 'Safety specialists, in close cooperation with physical protection specialists, should evaluate the consequences of malevolent acts, considered in the context of the State's design basis threat, to identify nuclear material, or the minimum complement of equipment, systems or devices to be protected against sabotage.' This report presents a structured, transparent approach for identifying the areas that contain this minimum complement of equipment, systems, and devices to be protected against sabotage that is applicable to complex nuclear facilities. The method builds upon safety analyses to develop sabotage fault trees that reflect sabotage scenarios that could cause unacceptable radiological consequences. The sabotage actions represented in the fault trees are linked to the areas from which they can be accomplished. The fault tree is then transformed (by negation) into its dual, the protection location tree, which reflects the sabotage actions that must be prevented in order to prevent unacceptable radiological consequences. The minimum path sets of this fault tree dual yield, through the area linkage, sets of areas, each of which contains nuclear material, or a minimum complement of equipment, systems or devices that, if protected, will prevent sabotage. This method also provides guidance for the selection of the minimum path set that permits optimization of the trade-offs among physical protection effectiveness, safety impact, cost and operational impact.

  3. Report to the DOE Nuclear Data Committee, 1983

    SciTech Connect (OSTI)

    Haight, R.C.; Struble, G.L.

    1983-02-01T23:59:59.000Z

    Measurements for nuclear data applicactions are described including branching ratio in /sup 7/Be decay, kerma factor for carbon, photoneutron cross sections, neutron differential scattering cross sections, half-life of /sup 77/Kr, stellar neutron capture rates for /sup 86/ /sup 87/ /sup 88/Sr, neutron total cross sections, /sup 142/ /sup 143/ /sup 144/Nd neutron capture nucleo-synthesis, half-life of /sup 163/Ho, thermal neutron fission of /sup 236/Np, revised branching ratios in /sup 237/U and /sup 238/Pu decays, and levels of /sup 244/Cm populated by the beta decay of 10-hour /sup 244/Am and 26-minute /sup 244m/Am. Calculations discussed include systematic test of microscopic optical models for nucleon scattering in the range 7 to 60 MeV, Lanczos method shell-model calculations of GamowTeller strength functions, explosive nucleosynthesis and direct radiative capture rates, and calculation of fission cross sections. Evaluated data libraries are briefly discussed. (WHK)

  4. Report to the DOE Nuclear Data Committee, 1984

    SciTech Connect (OSTI)

    Wong, C.; Haight, R.C.; Struble, G.L.

    1984-02-01T23:59:59.000Z

    Experimental results are discussed for: /sup 6/ /sup 7/Li(n,/sup 4/He) cross sections at 14 MeV, neutron elastic and inelastic scattering from carbon near 14 MeV, neutron capture cross sections for /sup 46/Ca and /sup 48/Ca at stellar temperatures, revised neutron cross sections for /sup 142/ /sup 143/ /sup 144/Nd, fragment angular distribution for neutron fission of /sup 232/Th, neutron differential scattering measurements in the actinide region, nuclear structure of /sup 244/Am, conversion coefficients of the M4 transition in /sup 193m/Ir, gamma-ray and conversion-electron decay of the /sup 238/U shape isomer, and levels of /sup 244/Cm populated by the beta decay of 10-hr /sup 244g/Am and 26-minute /sup 244m/Am. Calculations described include tests of microscopic optical models for neutron and proton scattering on light nuclei in the range 14 to 45 MeV, a new dynamic model for fission, and the necessity of discrete-level modeling in isomer ratio calculations for neutron-induced reactions on deformed nuclei. Also, a reevaluation for ENDL of sigma(n,f) and anti nu p for /sup 235/U and /sup 239/Pu from 100 keV to 20 MeV is described. 31 references. (WHK)

  5. Scenario guidance handbook for emergency-preparedness exercises at nuclear facilities

    SciTech Connect (OSTI)

    Laughlin, G.J.; Martin, G.F.; Desrosiers, A.E.

    1983-01-01T23:59:59.000Z

    As part of the Emergency Preparedness Implementation Appraisal Program conducted by the Nuclear Regulatory Commission (NRC) with the technical assistance of the Pacific Northwest Laboratory (PNL), emergency preparedness exercises are observed on an annual basis at all licensed reactor facilities. One of the significant findings to arise from these observations was that a large number of the commonly observed problems originated in the design of the scenarios used as a basis for each exercise. In an effort to help eliminate some of these problems a scenario guidance handbook has been generated by PNL for the NRC to assist nuclear power plant licensees in developing scenarios for emergency preparedness exercises.

  6. DOE Community- and Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presented by the Tribal Energy Program and the U.S. Department of Energy (DOE) Office of Indian Energy with support from DOE's National Renewable Energy Laboratory, this interactive workshop will...

  7. Risk-Informing Safety Reviews for Non-Reactor Nuclear Facilities

    SciTech Connect (OSTI)

    Mubayi, V.; Azarm, A.; Yue, M.; Mukaddam, W.; Good, G.; Gonzalez, F.; Bari, R.A.

    2011-03-13T23:59:59.000Z

    This paper describes a methodology used to model potential accidents in fuel cycle facilities that employ chemical processes to separate and purify nuclear materials. The methodology is illustrated with an example that uses event and fault trees to estimate the frequency of a specific energetic reaction that can occur in nuclear material processing facilities. The methodology used probabilistic risk assessment (PRA)-related tools as well as information about the chemical reaction characteristics, information on plant design and operational features, and generic data about component failure rates and human error rates. The accident frequency estimates for the specific reaction help to risk-inform the safety review process and assess compliance with regulatory requirements.

  8. Adapting Dismantling and Decommissioning Strategies to a Variety of Nuclear Fuel Cycle Facilities - 12237

    SciTech Connect (OSTI)

    Chambon, Frederic [AREVA Federal Services LLC (United States); Clement, Gilles [AREVA NC (France)

    2012-07-01T23:59:59.000Z

    AREVA has accumulated over 20 years of experience in managing and operating fuel cycle facilities Decontamination and Decommissioning (D and D) projects of many different types and a variety of scales, both as facility owner (at La Hague for example) and as prime contractor to external customers such as the French Atomic Energy Commission (at Marcoule). A specific Business Unit was created in 2008 to capitalize on this experience and to concentrate - in one division - the specific skills required to be successful and cost effective in decommissioning projects. Indeed one of the key lessons learned in the past decades is that decommissioning is a significantly different business as compared to normal operations of a nuclear facility. Almost all the functions of a project need to be viewed from a different angle, challenged and adapted consequently in order to optimize costs and schedule. Three examples follow to illustrate the point: Safety management needs to take into account the ever changing configuration of a plant under D and D (a quite new situation for the authorities). Production of waste is significantly different in term of volume, activities, conditioning and disposal path. Technology is important but technical issues are often less critical than good management and planning. Further examples and lessons learned are developed through reviewing the projects experience basis. AREVA has a long and vast experience in the cleanup and dismantling of a number of very large and complex nuclear facilities. This effort focused initially on AREVA's own plants and is expanding now to other customers. The setup of a specific Business Unit in 2008 to takeover this business allowed concentration of the skills and the lessons learned in a dedicated division so as to provide the best means to optimize safety, performance, costs and schedules. Indeed transitioning from operations to D and D of a nuclear facility is a quantum leap. The assistance from specialized teams can bring significant cost savings. (authors)

  9. The universe in the laboratory - Nuclear astrophysics opportunity at the facility for antiproton and ion research

    SciTech Connect (OSTI)

    Langanke, K. [GSI Helmholtzzentrum fr Schwerionenforschung, Technische Universitt Darmstadt, Frankfurt Institute of Advanced Studies, D-64291 Darmstadt (Germany)

    2014-05-09T23:59:59.000Z

    In the next years the Facility for Antiproton and Ion Research FAIR will be constructed at the GSI Helmholtzze-ntrum fr Schwerionenforschung in Darmstadt, Germany. This new accelerator complex will allow for unprecedented and pathbreaking research in hadronic, nuclear, and atomic physics as well as in applied sciences. This manuscript will discuss some of these research opportunities, with a focus on supernova dynamics and nucleosynthesis.

  10. Conceptual design report: Nuclear materials storage facility renovation. Part 3, Supplemental information

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. It is organized into seven parts. Part I - Design Concept describes the selected solution. Part III - Supplemental Information contains calculations for the various disciplines as well as other supporting information and analyses.

  11. Descriptions of selected accidents that have occurred at nuclear reactor facilities

    SciTech Connect (OSTI)

    Bertini, H.W.

    1980-04-01T23:59:59.000Z

    This report was prepared at the request of the President's Commission on the Accident at Three Mile Island to provide the members of the Commission with some insight into the nature and significance of accidents that have occurred at nuclear reactor facilities in the past. Toward that end, this report presents a brief description of 44 accidents which have occurred throughout the world and which meet at least one of the severity criteria that were established.

  12. Conceptual design report: Nuclear materials storage facility renovation. Part 1, Design concept. Part 2, Project management

    SciTech Connect (OSTI)

    NONE

    1995-07-14T23:59:59.000Z

    The Nuclear Materials Storage Facility (NMSF) at the Los Alamos National Laboratory (LANL) was a Fiscal Year (FY) 1984 line-item project completed in 1987 that has never been operated because of major design and construction deficiencies. This renovation project, which will correct those deficiencies and allow operation of the facility, is proposed as an FY 97 line item. The mission of the project is to provide centralized intermediate and long-term storage of special nuclear materials (SNM) associated with defined LANL programmatic missions and to establish a centralized SNM shipping and receiving location for Technical Area (TA)-55 at LANL. Based on current projections, existing storage space for SNM at other locations at LANL will be loaded to capacity by approximately 2002. This will adversely affect LANUs ability to meet its mission requirements in the future. The affected missions include LANL`s weapons research, development, and testing (WRD&T) program; special materials recovery; stockpile survelliance/evaluation; advanced fuels and heat sources development and production; and safe, secure storage of existing nuclear materials inventories. The problem is further exacerbated by LANL`s inability to ship any materials offsite because of the lack of receiver sites for mate rial and regulatory issues. Correction of the current deficiencies and enhancement of the facility will provide centralized storage close to a nuclear materials processing facility. The project will enable long-term, cost-effective storage in a secure environment with reduced radiation exposure to workers, and eliminate potential exposures to the public. This document provides Part I - Design Concept which describes the selected solution, and Part II - Project Management which describes the management system organization, the elements that make up the system, and the control and reporting system.

  13. Proceedings of the US DOE/UK AEA Workshop on Facility Design

    SciTech Connect (OSTI)

    Not Available

    1986-11-01T23:59:59.000Z

    This document contains the proceeding of a Workshop on Facility Design that was held between the United States Department of Energy and the United Kingdom Atomic Energy Authority, Albuquerque, New Mexico, October 27--29, 1986. The intention of the workshop was to display relevant design criteria and to demonstrate for various US and UK facilities, current and projected criteria and how these criteria have been satisfied by facility design. Specific examples concern small plants, large plants, and waste stores.

  14. Use of international data sets to evaluate and validate pathway assessment models applicable to exposure and dose reconstruction at DOE facilities. Progress report, March--May 1994

    SciTech Connect (OSTI)

    Anspaugh, L.R.; Hendrickson, S.M. [eds.] [Lawrence Livermore National Lab., CA (United States); Hoffman, F.O. [Senes Oak Ridge, Inc., TN (United States). Center for Risk Analysis

    1994-06-01T23:59:59.000Z

    The project described in this report was the result of a Memorandum of Cooperation between the US and the former-USSR following the accident at the Chernobyl Nuclear Power Plant Unit 4. A joint program was established to improve the safety of nuclear power plants and to understand the implications of environmental releases. The task of Working Group 7 was ``to develop jointly methods to project rapidly the health effects of any future nuclear reactor accident.`` The current objective of this project is to evaluate and validate pathway-assessment models applicable to exposure and dose reconstruction at DOE facilities through use of international data sets. This project incorporates data used for the prediction of radionuclide transfer through agricultural and aquatic systems to humans. It also includes participation in two multinational studies, BIOMOVS (Biospheric Model Validation Study) with the Swedish National Institute for Radiation Protection and VAMP (Validation of Model Predictions) with the International Atomic Energy Agency, that address testing the performance of models of radionuclide transport through foodchains. In the future, this project will be considered separately from the Chernobyl Studies Project and the essential activities of former Task 7.1D will be folded within the broader umbrella of the BIOMOVS and VAMP projects. The Working Group Leader of Task 7.1D will continue to provide oversight for this project.

  15. DOE Community-/Facility-Scale Tribal Renewable Energy Project Development and Finance Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    This interactive workshop will walk participants through five steps to help tribes understand the process for and potential pitfalls of developing community- and facility-scale renewable energy...

  16. Official List of SC User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Policies and Processes Definition Official List of SC User Facilities Designation Process User Statistics Collection Practices Science Highlights Frequently Asked Questions...

  17. Nuclear facility decommissioning and site remedial actions. Volume 1. A selected bibliography

    SciTech Connect (OSTI)

    Faust, R.A.; Fore, C.S.; Knox, N.P.

    1980-09-01T23:59:59.000Z

    This bibliography of 633 references represents the first in a series to be produced by the Remedial Actions Program Information Center (RAPIC) containing scientific, technical, economic, and regulatory information concerning the decommissioning of nuclear facilities. Major chapters selected for this bibliography are Facility Decommissioning, Uranium Mill Tailings Cleanup, Contaminated Site Restoration, and Criteria and Standards. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. When the author is not given, the corporate affiliation appears first. If these two levels of authorship are not given, the title of the document is used as the identifying level. Indexes are provided for (1) author(s), (2) keywords, (3) title, (4) technology development, and (5) publication description. An appendix of 123 entries lists recently acquired references relevant to decommissioning of nuclear facilities. These references are also arranged according to one of the four subject categories and followed by author, title, and publication description indexes. The bibliography was compiled from a specialized data base established and maintained by RAPIC to provide information support for the Department of Energy's Remedial Actions Program, under the cosponsorship of its three major components: Surplus Facilities Management Program, Uranium Mill Tailings Remedial Actions Program, and Formerly Utilized Sites Remedial Actions Program. RAPIC is part of the Ecological Sciences Information Center within the Information Center Complex at Oak Ridge National Laboratory.

  18. Nuclear facility decommissioning and site remedial actions: A selected bibliography: Volume 8

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1987-09-01T23:59:59.000Z

    The 553 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the eighth in a series of reports. Foreign and domestic literature of all types - technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of energy's remedial action program. Major chapters are Surplus Facilities Management Program, Nuclear Facilities Decommissioning, Formerly Utilized Sites Remedial Action Program, Facilities Contaminated with Naturally Occurring Radionuclides, Uranium Mill Tailings Remedial Action Program, Uranium Mill Tailings Management, Technical Measurements Center, and General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. The appendix contains a list of frequently used acronyms and abbreviations.

  19. Nuclear facility decommissioning and site remedial actions. Volume 6. A selected bibliography

    SciTech Connect (OSTI)

    Owen, P.T.; Michelson, D.C.; Knox, N.P.

    1985-09-01T23:59:59.000Z

    This bibliography of 683 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the sixth in a series of annual reports prepared for the US Department of Energy's Remedial Action Programs. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's remedial action program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Facilities Contaminated with Natural Radioactivity; (5) Uranium Mill Tailings Remedial Action Program; (6) Grand Junction Remedial Action Program; (7) Uranium Mill Tailings Management; (8) Technical Measurements Center; and (9) General Remedial Action Program Studies. Chapter sections for chapters 1, 2, 5, and 7 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate affiliation or by publication description.

  20. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  1. Central and Eastern United States (CEUS) Seismic Source Characterization (SSC) for Nuclear Facilities Project

    SciTech Connect (OSTI)

    Kevin J. Coppersmith; Lawrence A. Salomone; Chris W. Fuller; Laura L. Glaser; Kathryn L. Hanson; Ross D. Hartleb; William R. Lettis; Scott C. Lindvall; Stephen M. McDuffie; Robin K. McGuire; Gerry L. Stirewalt; Gabriel R. Toro; Robert R. Youngs; David L. Slayter; Serkan B. Bozkurt; Randolph J. Cumbest; Valentina Montaldo Falero; Roseanne C. Perman' Allison M. Shumway; Frank H. Syms; Martitia (Tish) P. Tuttle [Tish

    2012-01-31T23:59:59.000Z

    This report describes a new seismic source characterization (SSC) model for the Central and Eastern United States (CEUS). It will replace the Seismic Hazard Methodology for the Central and Eastern United States, EPRI Report NP-4726 (July 1986) and the Seismic Hazard Characterization of 69 Nuclear Plant Sites East of the Rocky Mountains, Lawrence Livermore National Laboratory Model, (Bernreuter et al., 1989). The objective of the CEUS SSC Project is to develop a new seismic source model for the CEUS using a Senior Seismic Hazard Analysis Committee (SSHAC) Level 3 assessment process. The goal of the SSHAC process is to represent the center, body, and range of technically defensible interpretations of the available data, models, and methods. Input to a probabilistic seismic hazard analysis (PSHA) consists of both seismic source characterization and ground motion characterization. These two components are used to calculate probabilistic hazard results (or seismic hazard curves) at a particular site. This report provides a new seismic source model. Results and Findings The product of this report is a regional CEUS SSC model. This model includes consideration of an updated database, full assessment and incorporation of uncertainties, and the range of diverse technical interpretations from the larger technical community. The SSC model will be widely applicable to the entire CEUS, so this project uses a ground motion model that includes generic variations to allow for a range of representative site conditions (deep soil, shallow soil, hard rock). Hazard and sensitivity calculations were conducted at seven test sites representative of different CEUS hazard environments. Challenges and Objectives The regional CEUS SSC model will be of value to readers who are involved in PSHA work, and who wish to use an updated SSC model. This model is based on a comprehensive and traceable process, in accordance with SSHAC guidelines in NUREG/CR-6372, Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts. The model will be used to assess the present-day composite distribution for seismic sources along with their characterization in the CEUS and uncertainty. In addition, this model is in a form suitable for use in PSHA evaluations for regulatory activities, such as Early Site Permit (ESPs) and Combined Operating License Applications (COLAs). Applications, Values, and Use Development of a regional CEUS seismic source model will provide value to those who (1) have submitted an ESP or COLA for Nuclear Regulatory Commission (NRC) review before 2011; (2) will submit an ESP or COLA for NRC review after 2011; (3) must respond to safety issues resulting from NRC Generic Issue 199 (GI-199) for existing plants and (4) will prepare PSHAs to meet design and periodic review requirements for current and future nuclear facilities. This work replaces a previous study performed approximately 25 years ago. Since that study was completed, substantial work has been done to improve the understanding of seismic sources and their characterization in the CEUS. Thus, a new regional SSC model provides a consistent, stable basis for computing PSHA for a future time span. Use of a new SSC model reduces the risk of delays in new plant licensing due to more conservative interpretations in the existing and future literature. Perspective The purpose of this study, jointly sponsored by EPRI, the U.S. Department of Energy (DOE), and the NRC was to develop a new CEUS SSC model. The team assembled to accomplish this purpose was composed of distinguished subject matter experts from industry, government, and academia. The resulting model is unique, and because this project has solicited input from the present-day larger technical community, it is not likely that there will be a need for significant revision for a number of years. See also Sponsors Perspective for more details. The goal of this project was to implement the CEUS SSC work plan for developing a regional CEUS SSC model. The work plan, formulated by the project manager and a

  2. Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall

    SciTech Connect (OSTI)

    Michael R. Kruzic

    2008-06-01T23:59:59.000Z

    Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 13: Part 2, Indexes. Environmental Restoration Program

    SciTech Connect (OSTI)

    Goins, L.F.; Webb, J.R.; Cravens, C.D.; Mallory, P.K.

    1992-09-01T23:59:59.000Z

    This is part 2 of a bibliography on nuclear facility decommissioning and site remedial action. This report contains indexes on the following: authors, corporate affiliation, title words, publication description, geographic location, subject category, and key word.

  4. Processing capabilties for the elimination of contaminated metal scrapyards at DOE/ORO-managed sites. [Metal smelting facility

    SciTech Connect (OSTI)

    Mack, J.E.; Williams, L.C.

    1982-01-01T23:59:59.000Z

    Capabilities exist for reducing all the contaminated nickel, aluminum, and copper scrap to ingot form by smelting. Processing these metals at existing facilities could be completed in about 5 or 6 years. However, these metals represent only about 20% of the total metal inventories currently on hand at the DOE/ORO-managed sites. No provisions have been made for the ferrous scrap. Most of the ferrous scrap is unclassified and does not require secured storage. Also, the potential resale value of the ferrous scrap at about $100 per ton is very low in comparison. Consequently, this scrap has been allowed to accumulate. With several modifications and equipment additions, the induction melter at PGDP could begin processing ferrous scrap after its commitment to nickel and aluminum. The PGDP smelter is a retrofit installation, and annual throughput capabilities are limited. Processing of the existing ferrous scrap inventories would not be completed until the FY 1995-2000 time frame. An alternative proposal has been the installation of induction melters at the other two enrichment facilities. Conceptual design of a generic metal smelting facility is under way. The design study includes capital and operating costs for scrap preparation through ingot storage at an annual throughput of 10,000 tons per year. Facility design includes an induction melter with the capability of melting both ferrous and nonferrous metals. After three years of operation with scrapyard feed, the smelter would have excess capacity to support on-site decontamination and decomissioning projects or upgrading programs. The metal smelting facility has been proposed for FY 1984 line item funding with start-up operations in FY 1986.

  5. A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea

    SciTech Connect (OSTI)

    Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

    2014-04-15T23:59:59.000Z

    This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

  6. Analysis of Hanford-based Options for Sustainable DOE Facilities on the West Coast

    SciTech Connect (OSTI)

    Warwick, William M.

    2012-06-30T23:59:59.000Z

    Large-scale conventional energy projects result in lower costs of energy (COE). This is true for most renewable energy projects as well. The Office of Science is interested in its facilities meeting the renewable energy mandates set by Congress and the Administration. Those facilities on the west coast include a cluster in the Bay Area of California and at Hanford in central Washington State. Land constraints at the California facilities do not permit large scale projects. The Hanford Reservation has land and solar insolation available for a large scale solar project as well as access to a regional transmission system that can provide power to facilities in California. The premise of this study is that a large-scale solar project at Hanford may be able to provide renewable energy sufficient to meet the needs of select Office of Science facilities on the west coast at a COE that is competitive with costs in California despite the lower solar insolation values at Hanford. The study concludes that although the cost of solar projects continues to decline, estimated costs for a large-scale project at Hanford are still not competitive with avoided power costs for Office of Science facilities on the west coast. Further, although it is possible to transmit power from a solar project at Hanford to California facilities, the costs of doing so add additional costs. Consequently, development of a large- scale solar project at Hanford to meet the renewable goals of Office of Science facilities on the west coast is currently uneconomic. This may change as solar costs decrease and California-based facilities face increasing costs for conventional and renewable energy produced in the state. PNNL should monitor those cost trends.

  7. CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY

    SciTech Connect (OSTI)

    Jordan, J.; Flach, G.

    2012-03-29T23:59:59.000Z

    As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

  8. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  9. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  10. Fusion Energy Sciences User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 FES User Facilities...

  11. High Energy Physics User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 HEP User Facilities...

  12. Basic Energy Sciences User Facilities | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Questions Science Highlights Contact Information Office of Science U.S. Department of Energy 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5430 BES User Facilities...

  13. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 5

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Chilton, B.D.; Baldauf, M.F.

    1984-09-01T23:59:59.000Z

    This bibliography of 756 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fifth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic literature of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - has been included in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; (6) Uranium Mill Tailings Management; and (7) Technical Measurements Center. Chapter sections for chapters 1, 2, 4, and 6 include Design, Planning, and Regulations; Environmental Studies and Site Surveys; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. The Appendix contains a list of frequently used acronyms.

  14. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12. Environmental Restoration Program

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  15. Nuclear facility decommissioning and site remedial actions: A selected bibliography, Volume 12

    SciTech Connect (OSTI)

    Owen, P. T.; Webb, J. R.; Knox, N. P.; Goins, L. F.; Harrell, R. E.; Mallory, P. K.; Cravens, C. D.

    1991-09-01T23:59:59.000Z

    The 664 abstracted references on environmental restoration, nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the twelfth in a series of reports prepared annually for the US Department of Energy Remedial Action Programs. Citations to foreign and domestic literature of all types -- technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions -- have been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy Remedial Action Programs. Major sections are (1) Decontamination and Decommissioning Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) Environmental Restoration Program. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication title. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, subject category, and key word. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects, analyzes, and disseminates information on environmental restoration and remedial actions. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at FTS 624-7764 or (615) 574-7764.

  16. Nuclear Facilities Production Facilities

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of the Yucca0AdministrationNext100 Federal09

  17. Data collection, validation, and description for the Oak Ridge nuclear facilities mortality study

    SciTech Connect (OSTI)

    Watkins, J.P.; Reagan, J.L.; Cragle, D.L.; West, C.M.; Tankersley, W.G. [Oak Ridge Inst. for Science and Education, TN (United States). Center for Epidemiologic Research] Oak Ridge Inst. for Science and Education, TN (United States). Center for Epidemiologic Research; Frome, E.L. [Oak Ridge National Lab., TN (United States)] Oak Ridge National Lab., TN (United States); Crawford-Brown, D.J. [Univ. of North Carolina, Chapel Hill, NC (United States). School of Public Health] Univ. of North Carolina, Chapel Hill, NC (United States). School of Public Health

    1995-06-01T23:59:59.000Z

    To investigate the long-term health effects of protracted occupational exposure to low levels of ionizing radiation, a mortality study was initiated by pooling data for 118,588 workers hired between 1943 and 1982, at three Department of Energy (DOE) facilities in Oak Ridge, Tennessee, with follow-up through 1984. Topics for this discussion will include issues involving the collection and validation of data for individuals in the study cohort, and characteristics of their demographic and radiation exposure data. Since the data were compiled between the late 1960s and the present under the direction of several principal investigators, it was essential to verify data precision and to understand how exposure data were generated prior to beginning any analysis. A stratified random sample of workers in the cohort was chosen for verification of their computerized data as it appeared in the database. Original source documents were reviewed to verify demographic data, as well as internal and external radiation exposure data. Extensive effort was expended to document the personal radiation monitoring policies and types of dosimeters used at each facility over the 42 years included in the study. Characteristics of internal and external exposure data by facility and year were examined by graphical methods with the intent of combining these monitoring data over time and across facilities.

  18. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Master Equipment List

    SciTech Connect (OSTI)

    IRWIN, J.J.

    1999-09-21T23:59:59.000Z

    This document provides the master equipment list (MEL) for the Cold Vacuum Drying Facility (CVDF). The MEL was prepared to comply with DOE Standard 3024-98, Content of System Design Descriptions. The MEL was developed in conjunction with HNF-SD-SNF-SAR-002, Safety Analysis Report for the Cold Vacuum Drying Facility, Phase 2, Supporting Installation of Processing Systems and the CVDF System Design Descriptions (SDD). The MEL identifies the SSCs and their safety functions, the design criteria, codes and standards, and quality assurance requirements that are required for establishing the safety design basis of the SSCs. The MEL also includes operating parameters, manufacturer information, and references the procurement specifications for the SSCs. This MEL shall be updated, expanded, and revised in accordance with future phases of the CVDF SAR, the SDD's, and CVDF operations.

  19. Maximum Reasonable Radioxenon Releases from Medical Isotope Production Facilities and Their Effect on Monitoring Nuclear Explosions

    SciTech Connect (OSTI)

    Bowyer, Ted W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Kephart, Rosara F.; Eslinger, Paul W. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Friese, Judah I. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Miley, Harry S. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Saey, Paul R. [Vienna University of Technology, Atomic Institute of the Austrian Universities, Vienna (Austria)

    2013-01-01T23:59:59.000Z

    Fission gases such as 133Xe are used extensively for monitoring the world for signs of nuclear testing in systems such as the International Monitoring System (IMS). These gases are also produced by nuclear reactors and by fission production of 99Mo for medical use. Recently, medical isotope production facilities have been identified as the major contributor to the background of radioactive xenon isotopes (radioxenon) in the atmosphere (Saey, et al., 2009). These releases pose a potential future problem for monitoring nuclear explosions if not addressed. As a starting point, a maximum acceptable daily xenon emission rate was calculated, that is both scientifically defendable as not adversely affecting the IMS, but also consistent with what is possible to achieve in an operational environment. This study concludes that an emission of 5109 Bq/day from a medical isotope production facility would be both an acceptable upper limit from the perspective of minimal impact to monitoring stations, but also appears to be an achievable limit for large isotope producers.

  20. Nevada Nuclear Waste Storage Investigations: Exploratory Shaft Facility fluids and materials evaluation

    SciTech Connect (OSTI)

    West, K.A.

    1988-11-01T23:59:59.000Z

    The objective of this study was to determine if any fluids or materials used in the Exploratory Shaft Facility (ESF) of Yucca Mountain will make the mountain unsuitable for future construction of a nuclear waste repository. Yucca Mountain, an area on and adjacent to the Nevada Test Site in southern Nevada, USA, is a candidate site for permanent disposal of high-level radioactive waste from commercial nuclear power and defense nuclear activities. To properly characterize Yucca Mountain, it will be necessary to construct an underground test facility, in which in situ site characterization tests can be conducted. The candidate repository horizon at Yucca Mountain, however, could potentially be compromised by fluids and materials used in the site characterization tests. To minimize this possibility, Los Alamos National Laboratory was directed to evaluate the kinds of fluids and materials that will be used and their potential impacts on the site. A secondary objective was to identify fluids and materials, if any, that should be prohibited from, or controlled in, the underground. 56 refs., 19 figs., 11 tabs.

  1. Standard Guide for Environmental Monitoring Plans for Decommissioning of Nuclear Facilities

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01T23:59:59.000Z

    1.1 This guide covers the development or assessment of environmental monitoring plans for decommissioning nuclear facilities. This guide addresses: (1) development of an environmental baseline prior to commencement of decommissioning activities; (2) determination of release paths from site activities and their associated exposure pathways in the environment; and (3) selection of appropriate sampling locations and media to ensure that all exposure pathways in the environment are monitored appropriately. This guide also addresses the interfaces between the environmental monitoring plan and other planning documents for site decommissioning, such as radiation protection, site characterization, and waste management plans, and federal, state, and local environmental protection laws and guidance. This guide is applicable up to the point of completing D&D activities and the reuse of the facility or area for other purposes.

  2. YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).

    SciTech Connect (OSTI)

    Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

    2010-04-28T23:59:59.000Z

    The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

  3. Nuclear facility decommissioning and site remedial actions: A selected bibliography, volume 9

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Michelson, D.C.; Turmer, G.S.

    1988-09-01T23:59:59.000Z

    The 604 abstracted references on nuclear facility decommissioning, uranium mill tailings management, and site remedial actions constitute the ninth in a series of reports prepared annually for the US Department of Energy's Remedial Action Programs. Foreign and domestic literature of all types--technical reports, progress reports, journal articles, symposia proceedings, theses, books, patents, legislation, and research project descriptions--has been included. The bibliography contains scientific, technical, economic, regulatory, and legal information pertinent to the US Department of Energy's remedial action programs. Major sections are (1) Surplus Facilities Management Program, (2) Nuclear Facilities Decommissioning, (3) Formerly Utilized Sites Remedial Action Program, (4) Facilities Contaminated with Naturally Occurring Radionuclides, (5) Uranium Mill Tailings Remedial Action Program, (6) Uranium Mill Tailings Management, (7) Technical Measurements Center, and (8) General Remedial Action Program Studies. Subsections for sections 1, 2, 5, and 6 include: Design, Planning, and Regulations; Environmental Studies and Site Surveys; Health, Safety, and Biomedical Studies; Decontamination Studies; Dismantlement and Demolition; Site Stabilization and Reclamation; Waste Disposal; Remedial Action Experience; and General Studies. Within these categories, references are arranged alphabetically by first author. Those references having no individual author are listed by corporate affiliation or by publication description. Indexes are provided for author, corporate affiliation, title word, publication description, geographic location, and keywords. This report is a product of the Remedial Action Program Information Center (RAPIC), which selects and analyzes information on remedial actions and relevant radioactive waste management technologies. RAPIC staff and resources are available to meet a variety of information needs. Contact the center at (615) 576-0568 or FTS 626-0568.

  4. Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16

    SciTech Connect (OSTI)

    First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

    1991-02-01T23:59:59.000Z

    The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

  5. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  6. Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel

    SciTech Connect (OSTI)

    Dahl, C.A.; Adams, J.P.; Ramer, R.J.

    1998-07-01T23:59:59.000Z

    Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed.

  7. ASCR User Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of GlobalASCR User Facilities User Facilities User

  8. Accessing ASCR Facilities | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility VitalyGate AccessFacilities

  9. Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study

    SciTech Connect (OSTI)

    Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

    1991-01-01T23:59:59.000Z

    In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

  10. Supplemental Requirements for the Use of Management and Operating or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-10-19T23:59:59.000Z

    The Notice supplements review and approval requirements of DOE O 350.2A, Use of Management and Operating (M&O) or Other Facility Management Contractor Employees for Services to DOE in the Washington, D.C., Area, dated 10-29-03.

  11. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect (OSTI)

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01T23:59:59.000Z

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue Universitys Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called Users Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. Users week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

  12. Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository

    SciTech Connect (OSTI)

    Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

    2001-02-01T23:59:59.000Z

    The U.S.Department of Energys (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, EM shall design and fabricate DOE SNF canisters for shipment to RW. (1) It also states, EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71. (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

  13. Nuclear Material Control and Accountability

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-06-27T23:59:59.000Z

    This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

  14. Leak-Path Factor Analysis for the Nuclear Materials Storage Facility

    SciTech Connect (OSTI)

    Shaffer, C.; Leonard, M.

    1999-06-13T23:59:59.000Z

    Leak-path factors (LPFs) were calculated for the Nuclear Materials Storage Facility (NMSF) located in the Plutonium Facility, Building 41 at the Los Alamos National Laboratory Technical Area 55. In the unlikely event of an accidental fire powerful enough to fail a container holding actinides, the subsequent release of oxides, modeled as PuO{sub 2} aerosols, from the facility and into the surrounding environment was predicted. A 1-h nondestructive assay (NDA) laboratory fire accident was simulated with the MELCOR severe accident analysis code. Fire-driven air movement along with wind-driven air infiltration transported a portion of these actinides from the building. This fraction is referred to as the leak-path factor. The potential effect of smoke aerosol on the transport of the actinides was investigated to verify the validity of neglecting the smoke as conservative. The input model for the NMSF consisted of a system of control volumes, flow pathways, and surfaces sufficient to model the thermal-hydraulic conditions within the facility and the aerosol transport data necessary to simulate the transport of PuO{sub 2} particles. The thermal-hydraulic, heat-transfer, and aerosol-transport models are solved simultaneously with data being exchanged between models. A MELCOR input model was designed such that it would reproduce the salient features of the fire per the corresponding CFAST calculation. Air infiltration into and out of the facility would be affected strongly by wind-driven differential pressures across the building. Therefore, differential pressures were applied to each side of the building according to guidance found in the ASHRAE handbook using a standard-velocity head equation with a leading multiplier to account for the orientation of the wind with the building. The model for the transport of aerosols considered all applicable transport processes, but the deposition within the building clearly was dominated by gravitational settling.

  15. Integrating natural resource damage assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  16. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

  17. E AREA LOW LEVEL WASTE FACILITY DOE 435.1 PERFORMANCE ASSESSMENT

    SciTech Connect (OSTI)

    Wilhite, E

    2008-03-31T23:59:59.000Z

    This Performance Assessment for the Savannah River Site E-Area Low-Level Waste Facility was prepared to meet requirements of Chapter IV of the Department of Energy Order 435.1-1. The Order specifies that a Performance Assessment should provide reasonable assurance that a low-level waste disposal facility will comply with the performance objectives of the Order. The Order also requires assessments of impacts to water resources and to hypothetical inadvertent intruders for purposes of establishing limits on radionuclides that may be disposed near-surface. According to the Order, calculations of potential doses and releases from the facility should address a 1,000-year period after facility closure. The point of compliance for the performance measures relevant to the all pathways and air pathway performance objective, as well as to the impact on water resources assessment requirement, must correspond to the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste following the assumed end of active institutional controls 100 years after facility closure. During the operational and institutional control periods, the point of compliance for the all pathways and air pathway performance measures is the SRS boundary. However, for the water resources impact assessment, the point of compliance remains the point of highest projected dose or concentration beyond a 100-m buffer zone surrounding the disposed waste during the operational and institutional control periods. For performance measures relevant to radon and inadvertent intruders, the points of compliance are the disposal facility surface for all time periods and the disposal facility after the assumed loss of active institutional controls 100 years after facility closure, respectively. The E-Area Low-Level Waste Facility is located in the central region of the SRS known as the General Separations Area. It is an elbow-shaped, cleared area, which curves to the northwest, situated immediately north of the Mixed Waste Management Facility. The E-Area Low-Level Waste Facility is comprised of 200 acres for waste disposal and a surrounding buffer zone that extends out to the 100-m point of compliance. Disposal units within the footprint of the low-level waste facilities include the Slit Trenches, Engineered Trenches, Component-in-Grout Trenches, the Low-Activity Waste Vault, the Intermediate-Level Vault, and the Naval Reactor Component Disposal Area. Radiological waste disposal operations at the E-Area Low-Level Waste Facility began in 1994. E-Area Low-Level Waste Facility closure will be conducted in three phases: operational closure, interim closure, and final closure. Operational closure will be conducted during the 25-year operation period (30-year period for Slit and Engineered Trenches) as disposal units are filled; interim closure measures will be taken for some units. Interim closure will take place following the end of operations and will consist of an area-wide runoff cover along with additional grading over the trench units. Final closure of all disposal units in the E-Area Low-Level Waste Facility will take place at the end of the 100-year institutional control period and will consist of the installation of an integrated closure system designed to minimize moisture contact with the waste and to serve as a deterrent to intruders. Radiological dose to human receptors is analyzed in this PA in the all-pathways analysis, the inadvertent intruder analysis and the air pathway analysis, and the results are compared to the relevant performance measures. For the all-pathways analysis, the performance measure of relevance is a 25-mrem/yr EDE to representative members of the public, excluding dose from radon and its progeny in air. For the inadvertent intruder, the applicable performance measures are 100-mrem/yr EDE and 500 mrem/yr EDE for chronic and exposure scenarios, respectively. The relevant performance measure for the air pathway is 10-mrem/yr EDE via the air pathway, excluding dose from radon and its progeny in air. Protecti

  18. Radiological Training for Tritium Facilities DOE-HDBK-1105-2002

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.F 1325.8CHANGE NOTICESuperseding

  19. DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities

    SciTech Connect (OSTI)

    Otey, G.R.

    1989-07-01T23:59:59.000Z

    An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

  20. SAVANNAH RIVER SITE'S H-CANYON FACILITY: IMPACTS OF FOREIGN OBLIGATIONS ON SPECIAL NUCLEAR MATERIAL DISPOSITION

    SciTech Connect (OSTI)

    Magoulas, V.

    2013-06-03T23:59:59.000Z

    The US has a non-proliferation policy to receive foreign and domestic research reactor returns of spent fuel materials of US origin. These spent fuel materials are returned to the Department of Energy (DOE) and placed in storage in the L-area spent fuel basin at the Savannah River Site (SRS). The foreign research reactor returns fall subject to the 123 agreements for peaceful cooperation. These 123 agreements are named after section 123 of the Atomic Energy Act of 1954 and govern the conditions of nuclear cooperation with foreign partners. The SRS management of these foreign obligations while planning material disposition paths can be a challenge.

  1. Closure of hazardous and mixed radioactive waste management units at DOE facilities. [Contains glossary

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA.

  2. Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities

    SciTech Connect (OSTI)

    Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

    1993-06-01T23:59:59.000Z

    Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

  3. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    SciTech Connect (OSTI)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01T23:59:59.000Z

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21-25, 2008. As noted in the report, there was significant teaming between the various participants to best help the GOI. On-the-ground progress is the focus of the Iraq NDs Program and much of the work is a transfer of technical and practical skills and knowledge that Sandia uses day-to-day. On-the-ground progress was achieved in July of 2008 when the GOI began the physical cleanup and dismantlement of the Active Metallurgical Testing Laboratory (LAMA) facility at Al Tuwaitha, near Baghdad.

  4. Nuclear facility decommissioning and site remedial actions: a selected bibliography. Volume 4

    SciTech Connect (OSTI)

    Owen, P.T.; Knox, N.P.; Fielden, J.M.; Faust, R.A.

    1983-09-01T23:59:59.000Z

    This bibliography of 657 references with abstracts on the subject of nuclear facility decommissioning, uranium mill tailings management, and site remedial actions is the fourth in a series of annual reports prepared for the US Department of Energy, Division of Remedial Action Projects. Foreign as well as domestic documents of all types - technical reports, progress reports, journal articles, conference papers, symposium proceedings, theses, books, patents, legislation, and research project descriptions - have been references in this publication. The bibliography contains scientific (basic research as well as applied technology), economic, regulatory, and legal literature pertinent to the US Department of Energy's Remedial Action Program. Major chapters are: (1) Surplus Facilities Management Program; (2) Nuclear Facilities Decommissioning; (3) Formerly Utilized Sites Remedial Action Program; (4) Uranium Mill Tailings Remedial Action Program; (5) Grand Junction Remedial Action Program; and (6) Uranium Mill Tailings Management. Chapter sections for chapters 1 and 2 include: Design, Planning, and Regulations; Site Surveys; Decontamination Studies; Dismantlement and Demolition; Land Decontamination and Reclamation; Waste Disposal; and General studies. The references within each chapter or section are arranged alphabetically by leading author. References having no individual author are arranged by corporate author, or by title. Indexes are provided for the categories of author, corporate affiliation, title, publication description, geographic location, and keywords. Appendix A lists 264 bibliographic references to literature identified during this reporting period but not abstracted due to time constraints. Title and publication description indexes are given for this appendix. Appendix B defines frequently used acronyms, and Appendix C lists the recipients of this report according to their corporate affiliation.

  5. DOE handbook: Design considerations

    SciTech Connect (OSTI)

    NONE

    1999-04-01T23:59:59.000Z

    The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

  6. DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 December

  7. DOE-STD-1151-2002; Facility Representative Functional Area Qualification Standard

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-954March 25, 2015

  8. Safety of Nuclear Explosive Operations

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-08-07T23:59:59.000Z

    This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

  9. Development of an ASTM standard guide on performing vulnerability assessments for nuclear facilities

    SciTech Connect (OSTI)

    Wilkey, D.D.

    1995-09-01T23:59:59.000Z

    This paper describes an effort undertaken by subcommittee C26.12 (Safeguards) of the American Society for Testing and Materials (ASTM) to develop a standard guide for performing vulnerability assessments (VAs). VAs are performed to determine the effectiveness of safeguards and security systems for both domestic and international nuclear facilities. These assessments address a range of threats, including theft of nuclear material and sabotage, and use an array of methods. The approach to performing and documenting VAs is varied and is largely dependent upon the tools used to perform them. This diversity can lead to tools being misused, making validation of VAs more difficult. The development of a standard guide for performing VAs would, if generally accepted, alleviate these concerns. ASTM provides a forum for developing guides that includes a high level of peer review to assure that the result is acceptable to all potential users. Additionally, the ASTM is widely recognized for setting standards, and endorsement by the Society may increase the likelihood of acceptance by the nuclear community. The goal of this work is to develop a guide that is independent of the tools being used to perform the VA and applicable to the spectrum of threats described above.

  10. DOE/NSF Nuclear Science Advisory Committee Meeting April 24-25, 2014 | U.S.

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S. DOESolarCurrentDOEOfficeDOE

  11. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  12. DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 DecemberSTD-1120-2005 Volume 2

  13. Knowledge, Skills, and Abilities for Key Radiation Protection Positions at DOE Facilities

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel2007 |KSRS25RV*) KitchenAid: ENERGY STAR ReferralDOE-STD-1107-97

  14. DOE Office of Science Publishes Update of Landmark Plan: "Facilities for

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThis fact sheet provides an overview

  15. Labs at-a-Glance: Thomas Jefferson National Accelerator Facility | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Home Featured ArticlesScience (SC)Office of

  16. FES User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News(SC) CCIScattering |Characteristics

  17. Official List of SC User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice ofNP UserScienceObserving

  18. Scientific User Facilities (SUF) Division Homepage | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScience Drivers

  19. Argonne Leadership Computing Facility (ALCF) | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 Basic Energy Sciences (BES) BES(SC)

  20. Continuous Electron Beam Accelerator Facility (CEBAF) | U.S. DOE Office of

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJune 2008 BasicCharlesCondensedContactContactScience

  1. Facility for Advanced Accelerator Experimental Tests (FACET) | U.S. DOE

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting theScienceEnergyFES(SC)

  2. Isotope Program Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The Ernest Orlando Lawrence Award Lawrence

  3. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichael J.|

  4. Oak Ridge Leadership Computing Facility (OLCF) | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichaelNormanof Science

  5. Sandia National Laboratories: Z Pulsed Power Facility: How Does the Z

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks WaterWindSandiaWorkshopsAbout

  6. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for

  7. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas Jefferson

  8. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas

  9. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC) Thomas

  10. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC)

  11. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticutPhotos of AECSign Up for(SC) Thomas(SC)(SC)

  12. Neutron Scattering Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios HighRadiobiology: LowNSAC

  13. Office of Science User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios HighRadiobiology: LowNSACNew » New14Oak

  14. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga P.(SC)

  15. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga

  16. Thomas Jefferson National Accelerator Facility | U.S. DOE Office of Science

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply and DemandThiyaga(SC)

  17. User Facilities: Tools for Seeing Atoms | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC)Supply andof Seeing Matter at Atomic

  18. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect (OSTI)

    Belli, P.; Di Marco, A. [INFN, Sezione di Roma Tor Vergata, Rome (Italy); Bernabei, R.; D'Angelo, S. [INFN, Sezione di Roma Tor Vergata, Rome, Italy and Dipartimento di Fisica, Universit di Roma Tor Vergata, Rome (Italy); Cappella, F.; D'Angelo, A.; Incicchitti, A. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Dipartimento di Fisica, Universit di Roma La Sapienza, Rome (Italy); Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S. [INFN, Laboratori Nazionali del Gran Sasso, Assergi (AQ) (Italy); Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I. [Institute for Nuclear Research, Kyiv (Ukraine); Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A. [Kharkiv Institute of Physics and Technology, Kharkiv (Ukraine); Polischuk, O. G. [INFN, Sezione di Roma La Sapienza, Rome, Italy and Institute for Nuclear Research, Kyiv (Ukraine); and others

    2013-12-30T23:59:59.000Z

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2? channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc}?=?137.2keV) was observed for the first time.

  19. Occupational Radiation Exposure at Commercial Nuclear Power Reactors and Other Facilities 2008

    SciTech Connect (OSTI)

    U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research

    2009-12-01T23:59:59.000Z

    This report summarizes the occupational exposure data that are maintained in the U.S. Nuclear Regulatory Commission (NRC) Radiation Exposure Information and Reporting System (REIRS). The bulk of the information contained in the report was compiled from the 2008 annual reports submitted by five of the seven categories1 of NRC licensees subject to the reporting requirements of 10 CFR 20.2206. The annual reports submitted by these licensees consist of radiation exposure records for each monitored individual. These records are analyzed for trends and presented in this report in terms of collective dose and the distribution of dose among the monitored individuals. Because there are no geologic repositories for high-level waste currently licensed and no low-level waste disposal facilities in operation, only five categories will be considered in this report.

  20. Commercial Decommissioning at DOE's Rocky Flats

    SciTech Connect (OSTI)

    Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

    2002-02-25T23:59:59.000Z

    Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.