Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Safety Oversight of Decommissioning Activities at DOE Nuclear Sites  

SciTech Connect (OSTI)

The Defense Nuclear Facilities Safety Board (Board) is an independent federal agency established by Congress in 1988 to provide nuclear safety oversight of activities at U.S. Department of Energy (DOE) defense nuclear facilities. The activities under the Board's jurisdiction include the design, construction, startup, operation, and decommissioning of defense nuclear facilities at DOE sites. This paper reviews the Board's safety oversight of decommissioning activities at DOE sites, identifies the safety problems observed, and discusses Board initiatives to improve the safety of decommissioning activities at DOE sites. The decommissioning of former defense nuclear facilities has reduced the risk of radioactive material contamination and exposure to the public and site workers. In general, efforts to perform decommissioning work at DOE defense nuclear sites have been successful, and contractors performing decommissioning work have a good safety record. Decommissioning activities have recently been completed at sites identified for closure, including the Rocky Flats Environmental Technology Site, the Fernald Closure Project, and the Miamisburg Closure Project (the Mound site). The Rocky Flats and Fernald sites, which produced plutonium parts and uranium materials for defense needs (respectively), have been turned into wildlife refuges. The Mound site, which performed R and D activities on nuclear materials, has been converted into an industrial and technology park called the Mound Advanced Technology Center. The DOE Office of Legacy Management is responsible for the long term stewardship of these former EM sites. The Board has reviewed many decommissioning activities, and noted that there are valuable lessons learned that can benefit both DOE and the contractor. As part of its ongoing safety oversight responsibilities, the Board and its staff will continue to review the safety of DOE and contractor decommissioning activities at DOE defense nuclear sites.

Zull, Lawrence M.; Yeniscavich, William [Defense Nuclear Facilities Safety Board, 625 Indiana Ave., NW, Suite 700, Washington, DC 20004-2901 (United States)

2008-01-15T23:59:59.000Z

2

Code of Federal Regulations Procedural Rules for DOE Nuclear Activities Part II  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) is issuing procedural rules to be used in applying its substantive regulations and orders relating to nuclear safety. These procedural rules are intended to be an essential part of the framework through which DOE deals with its contractors, subcontractors, and suppliers to ensure its nuclear facilities are operated in a manner that protects public and worker safety and the environment. In particular, this part sets forth the procedures to implement the provisions of the Price- Anderson Amendments Act of 1988 (PAAA) which subjects DOE contractors to potential civil and criminal penalties for violations of DOE rules, regulations and orders relating to nuclear safety (DOE Nuclear Safety Requirements).

3

Update on DOE’s Nuclear Energy University Program  

SciTech Connect (OSTI)

The Center for Advanced Energy Studies (CAES) Nuclear Energy University Program Office assists the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) by administering its University Program. To promote accountable relationships between universities and the TIOs/TDOs, a process was designed and administered which includes two competitive Requests for Proposals (RFP’s) and two FOAs in the following areas: (1)Research and Development Grants, (2)Infrastructure improvement, and (3)Scholarships and Fellowships. NEUP will also host periodic reviews of university mission-specific R&D that document progress, reinforce accountability, and assess return on investment; sponsor workshops that inform universities of the Department’s research needs to facilitate continued alignment of university R&D with NE missions; and conduct communications activities that foster stakeholder trust, serve as a catalyst for accomplishing NEUP objectives, and provide national visibility of NEUP activities and accomplishments. Year to date efforts to achieve these goals will be discussed.

M. J. Lambregts

2009-04-01T23:59:59.000Z

4

Maintenance Management Program for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To define the program for the management of cost-effective maintenance of Department of Energy (DOE) nuclear facilities. Guidance for compliance with this Order is contained in DOE G 433.1-1, Nuclear Facility Maintenance Management Program Guide for use with DOE O 433.1, which references Federal regulations, DOE directives, and industry best practices using a graded approach to clarify requirements and guidance for maintaining DOE-owned Government property. (Cancels DOE 4330.4B, Chapter II, Maintenance Management Program, dated 2-10-94.) Cancels DOE 4330.4B (in part). Canceled by DOE O 433.1A.

2001-06-01T23:59:59.000Z

5

DOE Office of Nuclear Energy Transportation Planning, Route Selection...  

Office of Environmental Management (EM)

DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues DOE Office of Nuclear Energy Transportation Planning, Route Selection, and Rail Issues...

6

US Nuclear Regulatory Commission Input to DOE Request for Information...  

Energy Savers [EERE]

US Nuclear Regulatory Commission Input to DOE Request for Information Smart Grid Implementation Input US Nuclear Regulatory Commission Input to DOE Request for Information Smart...

7

DOE Initiates Environmental Impact Statement for Global Nuclear...  

Office of Environmental Management (EM)

Environmental Impact Statement for Global Nuclear Energy Partnership Technology Demonstrations DOE Initiates Environmental Impact Statement for Global Nuclear Energy Partnership...

8

Maintenance Management Program for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of Structures, Systems and Components (SSCs) that are part of the safety basis required by 10 CFR 830.202.1 at hazard category 1, 2 and 3 Department of Energy (DOE) nuclear facilities. Cancels DOE O 433.1. Canceled by DOE O 433.1B.

2007-02-13T23:59:59.000Z

9

Maintenance Management Program for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Cancels DOE O 433.1A. Admin Chg 1, dated 3-12-2013, cancels DOE O 433.1B.

2010-04-21T23:59:59.000Z

10

Reports to the DOE Nuclear Data Committee  

SciTech Connect (OSTI)

The report in this document were submitted to the Department of Energy, Nuclear Data Committee (DOE-NDC) in April 1988. The reporting laboratories are those with a substantial program for the measurement of neutron and nuclear cross sections of relevance to the US applied nuclear energy program. Appropriate subjects are microscopic neutron cross sections relevant to the nuclear energy program, including shielding. Inverse reactions where pertinent are included; charged-particle cross sections where relevant to developing and testing nuclear models; gamma ray production, radioactive decay, and theoretical developments in nuclear structure which are applicable to nuclear energy programs; and proton and alpha-particle cross sections, at energies of up to 1 GeV, which are of interest to the space program.

Not Available

1988-05-01T23:59:59.000Z

11

Maintenance Management Program for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines the safety management program required by 10 CFR 830.204(b)(5) for maintenance and the reliable performance of structures, systems and components that are part of the safety basis required by 10 CFR 830.202 at hazard category 1, 2 and 3 DOE nuclear facilities. Admin Chg 1, dated 3-12-2013. Cancels DOE O 433.1A.

2010-04-21T23:59:59.000Z

12

Nuclear & Radiological Activity Center (NRAC)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear & Radiological Activity Center (NRAC) Where nuclear research and deployment capabilities come together to solve nuclear nonproliferation challenges. Skip Navigation Links...

13

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2D Admin Chg 1, Nuclear Explosive Safety by Carl Sykes This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of...

14

Nuclear Explosive Safety - DOE Directives, Delegations, and Requiremen...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

52.2E, Nuclear Explosive Safety by Angela Chambers Functional areas: Safety, Security This Department of Energy (DOE) Order establishes requirements to implement the nuclear...

15

DOE Announces Loan Guarantee Applications for Nuclear Power Plant...  

Energy Savers [EERE]

Loan Guarantee Applications for Nuclear Power Plant Construction DOE Announces Loan Guarantee Applications for Nuclear Power Plant Construction October 2, 2008 - 3:43pm Addthis...

16

Human factors methods in DOE nuclear facilities  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is in the process of developing a series of guidelines for the use of human factors standards, procedures, and methods to be used in nuclear facilities. This paper discusses the philosophy and process being used to develop a DOE human factors methods handbook to be used during the design cycle. The following sections will discuss: (1) basic justification for the project; (2) human factors design objectives and goals; and (3) role of human factors engineering (HFE) in the design cycle.

Bennett, C.T.; Banks, W.W. (Lawrence Livermore National Lab., CA (United States)); Waters, R.J. (Department of Energy, Washington, DC (United States))

1993-01-01T23:59:59.000Z

17

Monitoring international nuclear activity  

SciTech Connect (OSTI)

The LBNL Table of Isotopes website provides primary nuclearinformation to>150,000 different users annually. We have developedthe covert technology to identify users by IP address and country todetermine the kinds of nuclear information they are retrieving. Wepropose to develop pattern recognition software to provide an earlywarning system to identify Unusual nuclear activity by country or regionSpecific nuclear/radioactive material interests We have monitored nuclearinformation for over two years and provide this information to the FBIand LLNL. Intelligence is gleaned from the website log files. Thisproposal would expand our reporting capabilities.

Firestone, R.B.

2006-05-19T23:59:59.000Z

18

Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Establishes radiological protection program requirements that, combined with 10 CFR 835 and its associated implementation guidance, form the basis for a comprehensive program for protection of individuals from the hazards of ionizing radiation in controlled areas. Extended by DOE N 441.3. Cancels DOE 5480.11, DOE 5480.15, DOE N 5400.13, DOE N 5480.11; please note: the DOE radiological control manual (DOE/EH-0256T)

1995-09-29T23:59:59.000Z

19

Order Module--DOE O 433.1B, MAINTENANCE MANAGEMENT PROGRAM FOR DOE NUCLEAR FACILITIES  

Broader source: Energy.gov [DOE]

"The familiar level of this module is designed to summarize the basic information in DOE O 433.1B, Maintenance Management Program for DOE Nuclear Facilities. This Order canceled DOE O 433.1A. This...

20

DOE Selects Savannah River Nuclear Solutions, LLC to Manage and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

activities. Environmental cleanup activities include management of spent nuclear fuel, nuclear materials, and non high-level radioactive waste; deactivation and decommissioning...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nuclear Explosive Safety Manual - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1A Admin Chg 1, Nuclear Explosive Safety Manual by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Nuclear Safety,...

22

Nuclear Data Capabilities Supported by the DOE NCSP  

E-Print Network [OSTI]

Nuclear Data Capabilities Supported by the DOE NCSP Symposium on Nuclear Data for Criticality responsible for developing, implementing, and maintaining nuclear criticality safety. 3 #12;NCSP Technical the Production Codes and Methods for Criticality Safety Engineers (e.g. MCNP, SCALE, & COG) · Nuclear Data

Danon, Yaron

23

Nuclear Explosive Safety Evaluation Processes - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2 Admin Chg 1, Nuclear Explosive Safety Evaluation Processes by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

24

Enforcement handbook: Enforcement of DOE nuclear safety requirements  

SciTech Connect (OSTI)

This Handbook provides detailed guidance and procedures to implement the General Statement of DOE Enforcement Policy (Enforcement Policy or Policy). A copy of this Enforcement Policy is included for ready reference in Appendix D. The guidance provided in this Handbook is qualified, however, by the admonishment to exercise discretion in determining the proper disposition of each potential enforcement action. As discussed in subsequent chapters, the Enforcement and Investigation Staff will apply a number of factors in assessing each potential enforcement situation. Enforcement sanctions are imposed in accordance with the Enforcement Policy for the purpose of promoting public and worker health and safety in the performance of activities at DOE facilities by DOE contractors (and their subcontractors and suppliers) who are indemnified under the Price-Anderson Amendments Act. These indemnified contractors, and their suppliers and subcontractors, will be referred to in this Handbook collectively as DOE contractors. It should be remembered that the purpose of the Department`s enforcement policy is to improve nuclear safety for the workers and the public, and this goal should be the prime consideration in exercising enforcement discretion.

NONE

1995-06-01T23:59:59.000Z

25

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

This document is a compilation and source list of nuclear safety criteria that the Nuclear Regulatory Commission (NRC) applies to licensed reactors; it can be used by DOE and DOE contractors to identify NRC criteria to be evaluated for application to the DOE reactors under their cognizance. The criteria listed are those that are applied to the areas of nuclear safety addressed in the safety analysis report of a licensed reactor. They are derived from federal regulations, USNRC regulatory guides, Standard Review Plan (SRP) branch technical positions and appendices, and industry codes and standards.

Not Available

1993-11-01T23:59:59.000Z

26

DOE NHI: Progress in Nuclear Connection Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

Steven R. Sherman

2007-06-01T23:59:59.000Z

27

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 2  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

28

DOE fundamentals handbook: Nuclear physics and reactor theory  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

29

DOE fundamentals handbook: Nuclear physics and reactor theory. Volume 1  

SciTech Connect (OSTI)

The Nuclear Physics and Reactor Theory Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of nuclear physics and reactor theory. The handbook includes information on atomic and nuclear physics; neutron characteristics; reactor theory and nuclear parameters; and the theory of reactor operation. This information will provide personnel with a foundation for understanding the scientific principles that are associated with various DOE nuclear facility operations and maintenance.

Not Available

1993-01-01T23:59:59.000Z

30

Nuclear Safety Policy - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ARCHIVED SEN-35-91, Nuclear Safety Policy by jnichols Functional areas: Environment, Safety, and Health, Canceled by DOE P 420.1 n3591.pdf -- PDF Document, 20 KB Writer: jnichols...

31

DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...  

Broader source: Energy.gov (indexed) [DOE]

DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by...

32

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Broader source: Energy.gov (indexed) [DOE]

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference...

33

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon...  

Energy Savers [EERE]

DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel Cells Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research Conference on Fuel...

34

Personnel Selection, Qualification, and Training Requirements for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish selection, qualification, and training requirements for management and operating (M&O) contractor personnel involved in the operation, maintenance, and technical support of Department of Energy and National Nuclear Security Administration Category A and B reactors and non-reactor nuclear facilities. Canceled by DOE O 426.2

2001-07-12T23:59:59.000Z

35

Licensed reactor nuclear safety criteria applicable to DOE reactors  

SciTech Connect (OSTI)

The Department of Energy (DOE) Order DOE 5480.6, Safety of Department of Energy-Owned Nuclear Reactors, establishes reactor safety requirements to assure that reactors are sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that adequately protects health and safety and is in accordance with uniform standards, guides, and codes which are consistent with those applied to comparable licensed reactors. This document identifies nuclear safety criteria applied to NRC (Nuclear Regulatory Commission) licensed reactors. The titles of the chapters and sections of USNRC Regulatory Guide 1.70, Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants, Rev. 3, are used as the format for compiling the NRC criteria applied to the various areas of nuclear safety addressed in a safety analysis report for a nuclear reactor. In each section the criteria are compiled in four groups: (1) Code of Federal Regulations, (2) US NRC Regulatory Guides, SRP Branch Technical Positions and Appendices, (3) Codes and Standards, and (4) Supplemental Information. The degree of application of these criteria to a DOE-owned reactor, consistent with their application to comparable licensed reactors, must be determined by the DOE and DOE contractor.

Not Available

1991-04-01T23:59:59.000Z

36

Extension of DOE N 441.1, Radiological Protection for DOE Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends DOE N 441.1, Radiological Protection for DOE Activities, dated 9-30-95 until 6-30-00.

1998-11-20T23:59:59.000Z

37

DOE Turns 25 | National Nuclear Security Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransition Documents - 2008 DOE

38

DOE's Office of Nuclear Energy Honored  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartment ofDepartmentDOE's Office

39

Presentation: DOE Nuclear Nonproliferation | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point07.06Nucleon Structure

40

NSNFP Activities in Support of Repository Licensing for Disposal of DOE SNF  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management is in the process of preparing the Yucca Mountain license application for submission to the Nuclear Regulatory Commission as the nation’s first geologic repository for spent nuclear fuel (SNF) and high-level waste. Because the DOE SNF will be part of the license application, there are various components of the license application that will require information relative to the DOE SNF. The National Spent Nuclear Fuel Program (NSNFP) is the organization that directs the research, development, and testing of treatment, shipment, and disposal technologies for all DOE SNF. This report documents the work activities conducted by the NSNFP and discusses the relationship between these NSNFP technical activities and the license application. A number of the NSNFP activities were performed to provide risk insights and understanding of DOE SNF disposal as well as to prepare for anticipated questions from the regulatory agency.

Henry H. Loo; Brett W.. Carlsen; Sheryl L. Morton; Larry L. Taylor; Gregg W. Wachs

2004-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Mobile Robotics Activities in DOE Laboratories  

SciTech Connect (OSTI)

This paper will briefly outline major activities in Department of Energy (DOE) Laboratories focused on mobile platforms, both Unmanned Ground Vehicles (UGV’s) as well as Unmanned Air Vehicles (UAV’s). The activities will be discussed in the context of the science and technology construct used by the DOE Technology Roadmap for Robotics and Intelligent Machines (RIM)1 published in 1998; namely, Perception, Reasoning, Action, and Integration. The activities to be discussed span from research and development to deployment in field operations. The activities support customers in other agencies. The discussion of "perception" will include hyperspectral sensors, complex patterns discrimination, multisensor fusion and advances in LADAR technologies, including real-world perception. "Reasoning" activities to be covered include cooperative controls, distributed systems, ad-hoc networks, platform-centric intelligence, and adaptable communications. The paper will discuss "action" activities such as advanced mobility and various air and ground platforms. In the RIM construct, "integration" includes the Human-Machine Integration. Accordingly the paper will discuss adjustable autonomy and the collaboration of operator(s) with distributed UGV’s and UAV’s. Integration also refers to the applications of these technologies into systems to perform operations such as perimeter surveillance, large-area monitoring and reconnaissance. Unique facilities and test beds for advanced mobile systems will be described. Given that this paper is an overview, rather than delve into specific detail in these activities, other more exhaustive references and sources will be cited extensively.

Ron Lujan; Jerry Harbour; John T. Feddema; Sharon Bailey; Jacob Barhen; David Reister

2005-03-01T23:59:59.000Z

42

2002 DOE Final Inherently Governmental and Commercial Activities...  

Office of Environmental Management (EM)

Inherently Governmental and Commercial Activities Inventory More Documents & Publications DOE FAIR 2007 (OMB).xls 2003 DOE IGCA Inventory Data for web.xls&0; OMBDOEFAIR2005.xls...

43

Independent Activity Report, Defense Nuclear Facilities Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Defense Nuclear Facilities Safety Board Public Meeting - October 2012 Independent Activity Report, Defense Nuclear Facilities Safety Board Public Meeting - October 2012 October...

44

Does the Sun work as a nuclear fusion amplifier of  

E-Print Network [OSTI]

Does the Sun work as a nuclear fusion amplifier of planetary tidal forcing? Nicola Scafetta ACRIM oscillates because of planetary motion The Sun is likely very sensitive to these oscillations March 1977); We reconstruct here Sun-centred planetary conjunctions and tidal potentials for the AD 1645

Scafetta, Nicola

45

Nonreactor Nuclear Safety Design Guide for use with DOE O 420...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CURRENT DOE G 420.1-1A, Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety by Pranab Guha Functional areas: Facility Safety, Nonreactor Nuclear...

46

DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010...  

Energy Savers [EERE]

Activities Panel Discussion: 2010 SAE World Congress DOE Hydrogen and Fuel Cell Activities Panel Discussion: 2010 SAE World Congress Presentation by Sunita Satyapal at the 2010...

47

DOE (Department of Energy) nuclear weapon R and T (research, development, and testing): Objectives, roles, and responsibilities  

SciTech Connect (OSTI)

An overview of the DOE nuclear weapons research, development, and testing program is given along with a description of the program objectives and the roles and responsibilities of the various involved organizations. The relationship between the DoD and DOE is described and the division of responsibilities for weapon development as well as the coordinated planning and acquisition activities are reviewed. Execution of the RD T program at the nuclear weapons laboratories is outlined. 24 refs., 3 figs.

Otey, G.R.

1989-07-01T23:59:59.000Z

48

Independent Oversight Activity Report, National Nuclear Security...  

Broader source: Energy.gov (indexed) [DOE]

10-14, 2014 Contractor Transition Activities for the National Nuclear Security Administration Production Office IAR-NPO-2014-03-10 This Independent Activity Report documents an...

49

Nonreactor Nuclear Safety Design Guide for use with DOE O 420.1C, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides an acceptable approach for safety design of DOE hazard category 1, 2 and 3 nuclear facilities for satisfying the requirements of DOE O 420.1C. Cancels DOE G 420.1-1.

2012-12-04T23:59:59.000Z

50

DOE Handbook: Implementing Activity-level Work Planning & Control...  

Broader source: Energy.gov (indexed) [DOE]

that Govern Activity-level Work Developing Good Practices and Lessons Learned Linking Safety Culture and the Effectiveness of WP&C Practices DOE Handbook: Implementing...

51

A new DOE standard for transuranic waste nuclear safety analysis  

SciTech Connect (OSTI)

The DOE Office of Environmental Management (EM) observed through onsite assessments and a review of site-specific lessons learned that transuranic (TRU) waste operations could benefit from standardization of assumptions and approaches used to analyze hazards and select controls. EM collected and compared safety analysis information from DOE sites, including a comparison of the type of TRU waste accidents evaluated and controls selected, as well as specific Airborne Release Fractions (ARFs), Respirable Fractions (RFs), and Damage Ratios (DRs) assumed in accident analyses. This paper recounts the efforts by the DOE and its contractors to bring consistency to the safety analysis process supporting TRU waste operations through an integrated re-engineering effort. EM embarked on a process to re-engineer and standardize TRU safety analysis activities complex-wide. The effort involved DOE headquarters, field offices, and contractors. Five teams were formed to analyze and develop the necessary technical basis for a DOE Technical Standard. The teams looked at general issues including Safety Basis (SB), drum integrity and inspection criteria, hazard controls and analysis, safety analysis review and approval process, and implementation of hazard controls. (authors)

Triay, I.; Chung, D. [U.S. Department of Energy, Washington, D.C. (United States); Woody, J. [Atlas Consulting, Knoxville, TN (United States); Foppe, T. [Carlsbad Technical Assistance Contractor, Carlsbad, NM (United States); Mewhinney, C. [Sandia National Laboratories, Carlsbad, NM (United States); Jennings, S. [Los Alamos National Laboratories, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

52

Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1.

2011-09-12T23:59:59.000Z

53

Self-imposed self-assessment program at a DOE Nuclear Facility  

SciTech Connect (OSTI)

The Nuclear Materials and Technology (NMT) Division at Los Alamos National Laboratory (LANL) has implemented a performance-based self-assessment program at the TA-55 plutonium facility. The program was conceptualized and developed by LANL`s internal assessment group, AA-2. The management walkaround program fosters continuous improvement in NMT products and performance of its activities. The program, based on experience from the Institute of Nuclear Power Operations, is endorsed at the site by the U.S. Department of Energy (DOE) Environment, Safety, and Health (ES&H) personnel and by the Defense Nuclear Facility Safety Board. The self-assessment program focuses on how work is actually performed rather than on paperwork or process compliance. Managers critically and continually assess ES&H, conduct of operations, and other functional area requirements.

Geoffrion, R.R.; Loud, J.J.; Walter, E.C. [Los Alamos National Laboratory, NM (United States)

1996-12-31T23:59:59.000Z

54

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1E, Nuclear Explosive and Weapon Surety Program by Angela Chambers Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons...

55

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D, Nuclear Explosive and Weapon Surety Program by cdornburg Functional areas: Defense Nuclear Facility Safety and Health Requirement, Defense Programs, Nuclear Weapons Programs,...

56

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1  

Broader source: Energy.gov [DOE]

This document provides the technical basis for the Department of Energy (DOE) Policy (P) 420.1, Nuclear Safety Policy, dated 2-8-2011. It includes an analysis of the revised Policy to determine whether it provides the necessary and sufficient high-level expectations that will lead DOE to establish and implement appropriate requirements to assure protection of the public, workers, and the environment from the hazards of DOE’s operation of nuclear facilities.

57

Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR...  

Broader source: Energy.gov (indexed) [DOE]

AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY...

58

NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results  

SciTech Connect (OSTI)

Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

1992-01-01T23:59:59.000Z

59

DOE Lighting Program Update: LED Validation Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartmentforDOE Lighting Program Update LED

60

Improving the regulation of safety at DOE nuclear facilities. Final report  

SciTech Connect (OSTI)

The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by DOE itself. The three major recommendations are: under any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

NONE

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

DOE Financial Assistance Awards: Active Project Management  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOE ESPC TASKAgendaj3InformationSource:

62

DOE Co-Spnsors Earth Day Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY MiddlePLAN-46847ApprovedDOE Co-Sponsors Earth

63

High Level Overview of DOE Biomass Logistics II Project Activities  

Broader source: Energy.gov [DOE]

Breakout Session 1B—Integration of Supply Chains I: Breaking Down Barriers High Level Overview of DOE Biomass Logistics II Project Activities Kevin Comer, Associate Principal, Antares Group Inc.

64

Nuclear Explosive and Weapon Surety Program - DOE Directives...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1D Admin Chg 1, Nuclear Explosive and Weapon Surety Program by Carl Sykes Functional areas: Administrative Change, Defense Nuclear Facility Safety and Health Requirement, Defense...

65

Report to the DOE Nuclear Data Committee, 1982  

SciTech Connect (OSTI)

The report includes summaries of measurements and calculations of nuclear data applications, and use of nuclear data for reactor safety. (GHT)

Haght, R.C.; Struble, G.L.

1982-03-01T23:59:59.000Z

66

Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing Department of Energy (DOE), including National Nuclear Security Administration (NNSA), Federal workers with a safe and healthful workplace. Cancels DOE O 440.1A. Certified 6/17/2011. Canceled by DOE O 440.1B Chg 1.

2007-05-17T23:59:59.000Z

67

Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1B  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The guide provides acceptable approaches for implementing requirements for Nuclear Maintenance Management Programs (NMMPs) set forth in DOE O 433.1B. Cancels DOE G 433.1-1. Admin Chg 1, dated 6-14-13, cancels DOE G 433.1-1A.

2011-09-09T23:59:59.000Z

68

Report to the DOE Nuclear Data Committee, 1989  

SciTech Connect (OSTI)

This report contains short papers on nuclear data measurements, calculations, and evaluations. (LSP)

Struble, G.L.; White, R.M.; Resler, D.A.

1989-02-01T23:59:59.000Z

69

DOE Standard 3009-2014, Preparation of Nonreactor Nuclear Facility...  

Energy Savers [EERE]

the use of the original version. The DOE-STD-3009-2014 training team (led by Garrett Smith: garrett.smith@hq.doe.gov (AU-31), and supported by David Compton, Jeff Woody, and...

70

DOD-DOE Workshop on Joint Energy Activities  

SciTech Connect (OSTI)

The general conditions for DOD-DOE interactions were delineated in an October 1978, Memorandum of Understanding (MOU) that identified two basic goals: improving energy efficiency and availability within DOD, and utilizing DOD and DOE expertise and facilities to carry out projects of mutual interest. There has been considerable interaction between DOD and DOE, including a number of proposed joint initiatives but a systematic and coordinated approach for nurturing, maintaining, and expanding these relationships has not been developed. A DOD-DOE Workshop on Joint Energy Activities was held on March 10-12, 1980. The workshop was structured into five working groups - Mobility Fuels, Conservation, Fossil Fuels for Fixed Facilities, Solar and Renewable Energy Sources, and Special Projects - with DOD and DOE cochairmen for each. Over a hundred DOD and DOE management, program, and policymaking representatives were brought together by the workshop Steering Committee to identify specific programs for inclusion in an overall plan for implementing the MOU and to deal with fundamental issues and problems of maintaining future communications. The workshop accomplished its goals, these being to: (1) improve communication among the appropriate key DOD and DOE personnel at all levels and promote information exchange; (2) review ongoing and already-proposed joint DOD and DOE programs; (3) initiate a coordinated, systematic effort to establish joint DOD-DOE energy-security programs; and (4) propose specific programs and projects of mutual interest for inclusion in a follow-on joint-implementation plan.

None

1980-01-01T23:59:59.000Z

71

Improving the regulation of safety at DOE nuclear facilities. Final report: Appendices  

SciTech Connect (OSTI)

The report strongly recommends that, with the end of the Cold War, safety and health at DOE facilities should be regulated by outside agencies rather than by any regulatory scheme, DOE must maintain a strong internal safety management system; essentially all aspects of safety at DOE`s nuclear facilities should be externally regulated; and existing agencies rather than a new one should be responsible for external regulation.

NONE

1995-12-01T23:59:59.000Z

72

DOE nuclear material packaging manual: storage container requirements for plutonium oxide materials  

SciTech Connect (OSTI)

Loss of containment of nuclear material stored in containers such as food-pack cans, paint cans, or taped slip lid cans has generated concern about packaging requirements for interim storage of nuclear materials in working facilities such as the plutonium facility at Los Alamos National Laboratory (LANL). In response, DOE has recently issued DOE M 441.1 'Nuclear Material Packaging Manual' with encouragement from the Defense Nuclear Facilities Safety Board. A unique feature compared to transportation containers is the allowance of filters to vent flammable gases during storage. Defining commonly used concepts such as maximum allowable working pressure and He leak rate criteria become problematic when considering vented containers. Los Alamos has developed a set of container requirements that are in compliance with 441.1 based upon the activity of heat-source plutonium (90% Pu-238) oxide, which bounds the requirements for weapons-grade plutonium oxide. The pre and post drop-test He leak rates depend upon container size as well as the material contents. For containers that are routinely handled, ease of handling and weight are a major consideration. Relatively thin-walled containers with flat bottoms are desired yet they cannot be He leak tested at a differential pressure of one atmosphere due to the potential for plastic deformation of the flat bottom during testing. The He leak rates and He leak testing configuration for containers designed for plutonium bearing materials will be presented. The approach to meeting the other manual requirements such as corrosion and thermal degradation resistance will be addressed. The information presented can be used by other sites to evaluate if their conditions are bounded by LANL requirements when considering procurement of 441.1 compliant containers.

Veirs, D Kirk [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

73

Transportation capabilities study of DOE-owned spent nuclear fuel  

SciTech Connect (OSTI)

This study evaluates current capabilities for transporting spent nuclear fuel owned by the US Department of Energy. Currently licensed irradiated fuel shipping packages that have the potential for shipping the spent nuclear fuel are identified and then matched against the various spent nuclear fuel types. Also included are the results of a limited investigation into other certified packages and new packages currently under development. This study is intended to support top-level planning for the disposition of the Department of Energy`s spent nuclear fuel inventory.

Clark, G.L.; Johnson, R.A.; Smith, R.W. [Packaging Technology, Inc., Tacoma, WA (United States); Abbott, D.G.; Tyacke, M.J. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States)

1994-10-01T23:59:59.000Z

74

DOE's Approach to Nuclear Facility Safety Analysis and Management  

Broader source: Energy.gov [DOE]

Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

75

Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13, cancels DOE O 426.2.

2010-04-21T23:59:59.000Z

76

DOE - Office of Legacy Management -- Sylvania Corning Nuclear...  

Office of Legacy Management (LM)

to SYLVANIA CORNING NUCLEAR CORP., INC., SYLVANIA LABORATORIES NY.07-1 - Letter, Smith to Norris, Contract at (30-1)-1293- U Metal Requirements, March 5, 1953 NY.07-2 -...

77

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information.) Appendices A and B are Official Use Only. Point of contact is Adam Boyd (NA-82), 202-586-0010. Cancels DOE O 457.1 and DOE M 457.1-1.

2013-08-26T23:59:59.000Z

78

Overview of DOE's field screening technology development activities  

SciTech Connect (OSTI)

The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref.

Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T. (USDOE Office of Environmental Restoration and Waste Management, Washington, DC (USA). Office of Technology Development); Snipes, R.L. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA)); Erickson, M.D. (Argonne National Lab., IL (USA))

1991-01-01T23:59:59.000Z

79

DOE-STD-1070-94; DOE Standard Guidelines for Evalation of Nuclear Facility Training Programs  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994 DOE

80

Promulgating Nuclear Safety Requirements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Applies to all Nuclear Safety Requirements Adopted by the Department to Govern the Conduct of its Nuclear Activities. Cancels DOE P 410.1. Canceled by DOE N 251.85.

1996-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Damaged Spent Nuclear Fuel at U.S. DOE Facilities Experience and Lessons Learned  

SciTech Connect (OSTI)

From a handling perspective, any spent nuclear fuel (SNF) that has lost its original technical and functional design capabilities with regard to handling and confinement can be considered as damaged. Some SNF was damaged as a result of experimental activities and destructive examinations; incidents during packaging, handling, and transportation; or degradation that has occurred during storage. Some SNF was mechanically destroyed to protect proprietary SNF designs. Examples of damage to the SNF include failed cladding, failed fuel meat, sectioned test specimens, partially reprocessed SNFs, over-heated elements, dismantled assemblies, and assemblies with lifting fixtures removed. In spite of the challenges involved with handling and storage of damaged SNF, the SNF has been safely handled and stored for many years at DOE storage facilities. This report summarizes a variety of challenges encountered at DOE facilities during interim storage and handling operations along with strategies and solutions that are planned or were implemented to ameliorate those challenges. A discussion of proposed paths forward for moving damaged and nondamaged SNF from interim storage to final disposition in the geologic repository is also presented.

Brett W. Carlsen; Eric Woolstenhulme; Roger McCormack

2005-11-01T23:59:59.000Z

82

Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect (OSTI)

This document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies.

NONE

1995-08-01T23:59:59.000Z

83

Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

1997-12-12T23:59:59.000Z

84

[6450-01-P], DEPARTMENT OF ENERGY, 10 CFR Part 830, Nuclear Safety Management, AGENCY: Department of Energy (DOE).  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) is issuing a final rule regarding Nuclear SafetyManagement. This Part establishes requirements for the safe management of DOE contractor andsubcontractor work at the...

85

DOE Office of Nuclear Energy | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of1WIPP |Save05.1BIdaho |in Alaska |Energy DOE

86

DOE, State of Idaho Sign Agreement on Nuclear Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State of Idaho Sign

87

Nuclear safety information sharing agreement between NRC and DOE's Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,ScienceWasteandof

88

NNSS does it again! | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclearhas 'Natitude' | National NuclearAdministrator| NEWSNuclear

89

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons  

Broader source: Energy.gov [DOE]

Restructuring the DOE Laboratory Complex to Advance Clean Energy, Environmental Sustainability, and a Global Future without Nuclear Weapons - December Commission meeting

90

Nonreactor Nuclear Safety Design Criteria and Explosive Safety Criteria Guide for Use with DOE O 420.1, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide provides guidance on the application of requirements for nonreactor nuclear facilities and explosives facilities of Department of Energy (DOE) O 420.1, Facility Safety, Section 4.1, Nuclear and Explosives Safety Design Criteria. No cancellation.

2000-03-28T23:59:59.000Z

91

PERFORMANCE ASSESSMENT ASSISTANCE ACTIVITIES IN THE DOE COMPLEX  

SciTech Connect (OSTI)

The United States Department of Energy Office of Environmental Management (DOE-EM) has established a Performance Assessment Community of Practice (PA CoP) to foster the sharing of information among performance assessment (PA) and risk assessment practitioners, regulators and oversight personnel. The general intent is to contribute to continuous improvement in the consistency, technical adequacy and quality of implementation of PAs and risk assessments around the DOE Complex. The PA CoP activities have involved commercial disposal facilities and international participants to provide a global perspective. The PA CoP has also sponsored annual technical exchanges as a means to foster improved communication and to share lessons learned from on-going modelling activities. The PA CoP encourages activities to provide programmatic and technical assistance in the form of sharing experience and lessons learned with practitioners during the development of PAs and risk assessments. This assistance complements DOE-EM reviews through the Low-Level Waste Disposal Facility Federal Review Group (LFRG) that are conducted after modelling efforts are completed. Such up-front assistance is providing additional value in terms of improving consistency and sharing of information. There has been a substantial increase in the amount of assistance being provided. The assistance has been well received by practitioners and regulators that have been involved. The paper highlights assistance and sharing of information that has been conducted in the last two years to support activities underway in support of proposed disposal facilities at Paducah, Portsmouth, and the Idaho National Laboratory and tank closure at Hanford.

Seitz, R.

2012-01-23T23:59:59.000Z

92

NAIS: Nuclear activation-based imaging spectroscopy  

SciTech Connect (OSTI)

In recent years, the development of high power laser systems led to focussed intensities of more than 10{sup 22} W/cm{sup 2} at high pulse energies. Furthermore, both, the advanced high power lasers and the development of sophisticated laser particle acceleration mechanisms facilitate the generation of high energetic particle beams at high fluxes. The challenge of imaging detector systems is to acquire the properties of the high flux beam spatially and spectrally resolved. The limitations of most detector systems are saturation effects. These conventional detectors are based on scintillators, semiconductors, or radiation sensitive films. We present a nuclear activation-based imaging spectroscopy method, which is called NAIS, for the characterization of laser accelerated proton beams. The offline detector system is a combination of stacked metal foils and imaging plates (IP). After the irradiation of the stacked foils they become activated by nuclear reactions, emitting gamma decay radiation. In the next step, an autoradiography of the activated foils using IPs and an analysis routine lead to a spectrally and spatially resolved beam profile. In addition, we present an absolute calibration method for IPs.

Günther, M. M.; Britz, A.; Harres, K.; Hoffmeister, G.; Nürnberg, F.; Otten, A.; Pelka, A.; Roth, M. [Institut für Kernphysik, Schlossgartenstr. 9, Technische Universität Darmstadt, D-64289 Darmstadt (Germany)] [Institut für Kernphysik, Schlossgartenstr. 9, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); Clarke, R. J. [Central Laser Facility, Rutherford Appelton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom)] [Central Laser Facility, Rutherford Appelton Laboratory, Chilton, Didcot, Oxon OX11 0QX (United Kingdom); Vogt, K. [GSI – Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)] [GSI – Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany)

2013-07-15T23:59:59.000Z

93

DOE-STD-1064-94; DOE Standard Guideline to Good Practices For Seasonal Facility Preservation at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998NOT97

94

DOE-STD-1067; DOE Standard Guideline to Good Practices for Maintenance Facilities, Equipment, and Tools at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998NOT9765-947967-94

95

DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY  

SciTech Connect (OSTI)

Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

96

All Active DOE Technical Standards Document | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval ofAll Active DOE Technical

97

DOE/NSF Nuclear Science Advisory Committee Meeting | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S.

98

DOE/NSF Nuclear Science Advisory Committee Meeting | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S.Science (SC) November 17,

99

Report to the DOE Nuclear Data Committee, 1983  

SciTech Connect (OSTI)

Measurements for nuclear data applicactions are described including branching ratio in /sup 7/Be decay, kerma factor for carbon, photoneutron cross sections, neutron differential scattering cross sections, half-life of /sup 77/Kr, stellar neutron capture rates for /sup 86/ /sup 87/ /sup 88/Sr, neutron total cross sections, /sup 142/ /sup 143/ /sup 144/Nd neutron capture nucleo-synthesis, half-life of /sup 163/Ho, thermal neutron fission of /sup 236/Np, revised branching ratios in /sup 237/U and /sup 238/Pu decays, and levels of /sup 244/Cm populated by the beta decay of 10-hour /sup 244/Am and 26-minute /sup 244m/Am. Calculations discussed include systematic test of microscopic optical models for nucleon scattering in the range 7 to 60 MeV, Lanczos method shell-model calculations of GamowTeller strength functions, explosive nucleosynthesis and direct radiative capture rates, and calculation of fission cross sections. Evaluated data libraries are briefly discussed. (WHK)

Haight, R.C.; Struble, G.L.

1983-02-01T23:59:59.000Z

100

Report to the DOE Nuclear Data Committee, 1984  

SciTech Connect (OSTI)

Experimental results are discussed for: /sup 6/ /sup 7/Li(n,/sup 4/He) cross sections at 14 MeV, neutron elastic and inelastic scattering from carbon near 14 MeV, neutron capture cross sections for /sup 46/Ca and /sup 48/Ca at stellar temperatures, revised neutron cross sections for /sup 142/ /sup 143/ /sup 144/Nd, fragment angular distribution for neutron fission of /sup 232/Th, neutron differential scattering measurements in the actinide region, nuclear structure of /sup 244/Am, conversion coefficients of the M4 transition in /sup 193m/Ir, gamma-ray and conversion-electron decay of the /sup 238/U shape isomer, and levels of /sup 244/Cm populated by the beta decay of 10-hr /sup 244g/Am and 26-minute /sup 244m/Am. Calculations described include tests of microscopic optical models for neutron and proton scattering on light nuclei in the range 14 to 45 MeV, a new dynamic model for fission, and the necessity of discrete-level modeling in isomer ratio calculations for neutron-induced reactions on deformed nuclei. Also, a reevaluation for ENDL of sigma(n,f) and anti nu p for /sup 235/U and /sup 239/Pu from 100 keV to 20 MeV is described. 31 references. (WHK)

Wong, C.; Haight, R.C.; Struble, G.L.

1984-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

A survey of decontamination processes applicable to DOE nuclear facilities  

SciTech Connect (OSTI)

The objective of this survey was to select an appropriate technology for in situ decontamination of equipment interiors as part of the decommissioning of U.S. Department of Energy nuclear facilities. This selection depends on knowledge of existing chemical decontamination methods. This report provides an up-to-date review of chemical decontamination methods. According to available information, aqueous systems are probably the most universally used method for decontaminating and cleaning metal surfaces. We have subdivided the technologies, on the basis of the types of chemical solvents, into acid, alkaline permanganate, highly oxidizing, peroxide, and miscellaneous systems. Two miscellaneous chemical decontamination methods (electrochemical processes and foam and gel systems) are also described. A concise technical description of various processes is given, and the report also outlines technical considerations in the choice of technologies, including decontamination effectiveness, waste handing, fields of application, and the advantages and limitations in application. On the basis of this survey, six processes were identified for further evaluation. 144 refs., 2 tabs.

Chen, L.; Chamberlain, D.B.; Conner, C.; Vandegrift, G.F.

1997-05-01T23:59:59.000Z

102

Personnel Selection, Training, Qualification, and Certification Requirements for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes selection, training, qualification, and certification requirements for contractor personnel who can impact the safety basis through their involvement in the operation, maintenance, and technical support of Hazard Category 1, 2, and 3 nuclear facilities. Cancels DOE O 5480.20A. Admin Chg 1, dated 7-29-13.

2010-04-21T23:59:59.000Z

103

DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect (OSTI)

The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document and to DOE Order 1300.2A. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this TSL are those recorded as of July 1, 1996.

NONE

1996-08-01T23:59:59.000Z

104

Summary of nuclear fuel reprocessing activities around the world  

SciTech Connect (OSTI)

This review of international practices for nuclear fuel reprocessing was prepared to provide a nontechnical summary of the current status of nuclear fuel reprocessing activities around the world. The sources of information are widely varied.

Mellinger, P.J.; Harmon, K.M.; Lakey, L.T.

1984-11-01T23:59:59.000Z

105

Guide to radiological accident considerations for siting and design of DOE nonreactor nuclear facilities  

SciTech Connect (OSTI)

This guide was prepared to provide the experienced safety analyst with accident analysis guidance in greater detail than is possible in Department of Energy (DOE) Orders. The guide addresses analysis of postulated serious accidents considered in the siting and selection of major design features of DOE nuclear facilities. Its scope has been limited to radiological accidents at nonreactor nuclear facilities. The analysis steps addressed in the guide lead to evaluation of radiological dose to exposed persons for comparison with siting guideline doses. Other possible consequences considered are environmental contamination, population dose, and public health effects. Choices of models and parameters leading to estimation of source terms, release fractions, reduction and removal factors, dispersion and dose factors are discussed. Although requirements for risk analysis have not been established, risk estimates are finding increased use in siting of major nuclear facilities, and are discussed in the guide. 3 figs., 9 tabs.

Elder, J.C.; Graf, J.M.; Dewart, J.M.; Buhl, T.E.; Wenzel, W.J.; Walker, L.J.; Stoker, A.K.

1986-01-01T23:59:59.000Z

106

Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump  

E-Print Network [OSTI]

#12;Overview of DOE-Sponsored Heat Pump Research DOE research activities related to residential and commercial heat pump technology are supported by the Office of Building Energy Research and Development%) allocated to elec- tric and heat-actuated heat pump research. The remaining 15% is allocated to appliance

Oak Ridge National Laboratory

107

DOE technical standards list: Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect (OSTI)

The body of this document contains a listing of DOE employees and DOE contractors who have submitted form DOE F 1300.2, Record of Non-Government Standards Activity, which is attached to the end of this document. Additional names were added from rosters supplied by non-Government standards bodies. The committees or governing bodies in which the person participates is listed after each name. An asterisk preceding the committee notation indicates that the person has identified himself or herself as the DOE representative on that committee. Appendices to this document are also provided to sort the information by the parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees. DOE employees and contractors listed in this technical standards list are those recorded as of May 1, 1999.

NONE

1999-05-01T23:59:59.000Z

108

DOE Technical Standards List. Directory of DOE and contractor personnel involved in non-government standards activities  

SciTech Connect (OSTI)

This is a periodic report on the level of agency participation in non-Government standards activities. This technical standards list is intended to assist US Department of Energy (DOE) management and other personnel involved in the DOE technical Standards Program by identifying those participating individuals. The body of this document contains a listing of DOE employees and DOE contractors who have submitted a Record of Non-Government Standards Activity. Additional names were added from rosters supplied by non-Government standards bodies. Appendices to this document are provided to list the information by parent employment organization, by non-Government standards activity, and by the proper names of the non-Government standards organizations and committees.

NONE

1997-06-01T23:59:59.000Z

109

Program Activities | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

110

Enforcement Guidance Supplement 99-02: DOE Enforcement Activities of Internal Dosimetry Program Requirements  

Broader source: Energy.gov [DOE]

Section 1.3 of the Operational Procedure entitled Enforcement of DOE Nuclear Safety Requirements under Price-Anderson Amendments Act of 1988, published in June 1998, provides the opportunity for the Office of Enforcement and Investigation (EH Enforcement) to issue clarifying guidance in a timely manner with respect to the processes used in its enforcement activities. The focus of this enforcement guidance clarifies internal dosimetry program requirements identified by the Department of Energy’s nuclear safety requirements in 10 CFR 835 (Occupational Radiation Protection Programs) and 10 CFR 830.120 (Quality Assurance Requirements). To develop the enforcement guidance, EH Enforcement convened a DOE working group which included representatives from the Field Office elements and the Office of Worker Protection Programs and Hazards Management, which is the office responsible for the content and technical clarifications of 10 CFR 835. The guide discusses the following areas: (1) prospective determination of employees that are “likely to receive” 100 millirem (mrem) or greater per 10 CFR 835.402, (Individual Monitoring); (2) application of enforcement policy in taking credit for respiratory protection in prospective determinations; (3) use of contractor’s policies regarding personnel internal exposure to radioactive material; (4) As Low As Reasonably Achievable (ALARA) programs; (5) clarification of enforcement with regard to internal dosimetry programs; and Final Comments.

111

Proceedings of the 21st DOE/NRC nuclear air cleaning conference; Volume 2, Sessions 9--16  

SciTech Connect (OSTI)

The 21st meeting of the Department of Energy/Nuclear Regulatory Commission (DOE/NRC) Nuclear Air Cleaning Conference was held in San Diego, CA on August 13--16, 1990. The proceedings have been published as a two volume set. Volume 2 contains sessions covering adsorbents, nuclear codes and standards, modelling, filters, safety, containment venting and a review of nuclear air cleaning programs around the world. Also included is the list of attendees and an index of authors and speakers. (MHB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

112

Deployment evaluation methodology for the electrometallurgical treatment of DOE-EM spent nuclear fuel  

SciTech Connect (OSTI)

Part of the Department of Energy (DOE) spent nuclear fuel (SNF) inventory may require some type of treatment to meet acceptance criteria at various disposition sites. The current focus for much of this spent nuclear fuel is the electrometallurgical treatment process under development at Argonne National Laboratory. Potential flowsheets for this treatment process are presented. Deployment of the process for the treatment of the spent nuclear fuel requires evaluation to determine the spent nuclear fuel program need for treatment and compatibility of the spent nuclear fuel with the process. The evaluation of need includes considerations of cost, technical feasibility, process material disposition, and schedule to treat a proposed fuel. A siting evaluation methodology has been developed to account for these variables. A work breakdown structure is proposed to gather life-cycle cost information to allow evaluation of alternative siting strategies on a similar basis. The evaluation methodology, while created specifically for the electrometallurgical evaluation, has been written such that it could be applied to any potential treatment process that is a disposition option for spent nuclear fuel. Future work to complete the evaluation of the process for electrometallurgical treatment is discussed.

Dahl, C.A.; Adams, J.P.; Ramer, R.J.

1998-07-01T23:59:59.000Z

113

Innovative nuclear thermal propulsion technology evaluation: Results of the NASA/DOE Task Team study  

SciTech Connect (OSTI)

In response to findings from two NASA/DOE nuclear propulsion workshops held in the summer of 1990, six task teams were formed to continue evaluation of various nuclear propulsion concepts. The Task Team on Nuclear Thermal Propulsion (NTP) created the Innovative Concepts Subpanel to evaluate thermal propulsion concepts which did not utilize solid fuel. The Subpanel endeavored to evaluate each of the concepts on a level technological playing field,'' and to identify critical technologies, issues, and early proof-of-concept experiments. The concepts included the liquid core fission, the gas core fission, the fission foil reactors, explosively driven systems, fusion, and antimatter. The results of the studies by the panel will be provided. 13 refs., 6 figs., 2 tabs.

Howe, S. (Los Alamos National Lab., NM (United States)); Borowski, S. (National Aeronautics and Space Administration, Cleveland, OH (United States). Lewis Research Center); Motloch, C. (EG and G Idaho, Inc., Idaho Falls, ID (United States)); Helms, I. (Nuclear Utility Services, Damascus, MD (United States)); Diaz, N.; Anghaie, S. (Florida Univ., Gainesville, FL (United States)); Latham, T. (United

1991-01-01T23:59:59.000Z

114

Standardized DOE Spent Nuclear Fuel Canister and Transportation System for Shipping to the National Repository  

SciTech Connect (OSTI)

The U.S.Department of Energy’s (DOE) National Spent Nuclear Fuel Program (NSNFP), located at the Idaho National Engineering and Environmental Laboratory (INEEL), has been chartered with the responsibility for developing spent nuclear fuel (SNF) standardized canisters and a transportation cask system for shipping DOE SNF to the national repository. The mandate for this development is outlined in the Memorandum of Agreement for Acceptance of Department of Energy Spent Nuclear Fuel and High-Level Radioactive Waste that states, “EM shall design and fabricate … DOE SNF canisters for shipment to RW.” (1) It also states, “EM shall be responsible for the design, NRC certification, and fabrication of the transportation cask system for DOE SNF canisters or bare DOE SNF in accordance with 10 CFR Part 71.” (2) In fulfillment of these requirements, the NSNFP has developed four SNF standardized canister configurations and has conceptually designed a versatile transportation cask system for shipping the canisters to the national repository.1 The standardized canister sizes were derived from the national repository waste package design for co-disposal of SNF with high-level waste (HLW). One SNF canister can be placed in the center of the waste package or one can be placed in one of five radial positions, replacing a HLW canister. The internal cavity of the transportation cask was derived using the same logic, matching the size of the internal cavity of the waste package. The size of the internal cavity for the transportation cask allows the shipment of multiple canister configurations with the application of a removable basket design. The standardized canisters have been designed to be loaded with DOE SNF, placed into interim storage, shipped to the national repository, and placed in a waste package without having to be reopened. Significant testing has been completed that clearly demonstrates that the standardized canisters can safely achieve their intended design goals. The transportation cask system will include all of the standard design features, with the addition of dual containment for the shipment of failed fuel. The transportation cask system will also meet the rigorous licensing requirements of the Nuclear Regulatory Commission (NRC) to ensure that the design and the methods of fabrication employed will result in a shipping cask that will safely contain the radioactive materials under all credible accident scenarios. The standardization of the SNF canisters and the versatile design of the transportation cask system will eliminate a proliferation of designs and simplify the operations at the user sites and the national repository.

Pincock, David Lynn; Morton, Dana Keith; Lengyel, Arpad Leslie

2001-02-01T23:59:59.000Z

115

Twenty-third DOE/NRC nuclear air cleaning and treatment conference  

SciTech Connect (OSTI)

The Twenty-Third Department of Energy/Nuclear Regulatory Commission (DOE/NRC) nuclear Air-Cleaning and Treatment Conference was held July 25-28, 1994, in Buffalo, New York. The conference was also sponsored by the Harvard Air-Cleaning Laboratory and the Internation Society of Nuclear Air Treatment Technologies, a nonprofit organization founded to promote technology transfer in the nuclear air-cleaning and treatment area. A total of 192 air-cleaning specialists attended the conference. The United States and 11 foreign countries were represented. The specialists are affiliated with all aspects of the nuclear industry, including government agencies, educational institutions, utilities, architect-engineers, equipment suppliers, and consultants. The high level of international interests is evident from the 40% of papers sponsored by foreign interests. More than 20% of the attendees as well as several members of the Program Committee were from outside the United States. Major topics discussed at this conference included nuclear air-cleaning codes and standards, waste disposal, particulate filter developments (including testing and performance under stress and after aging), sampling and monitoring of process and effluent streams, off-gasses from fuel reprocessing, adsorbents and adsorption, accident control and analysis, and revised source terms for power-plant accidents. A highlight of the conference concerned operations a at the DOE facility at West Valley, New York, where construction is under way to solidify radioactive waste. A recurrent theme throughout the sessions was that, in spite of the large number of guidance documents available in the form of regulations, codes, standards, and directives, multiple difficulties arise when all are invoked simultaneously. Gas processing needs, rather than controls for civilian power plants, will provide the principal challenge during the next decade for the air-cleaning specialists of the world. 15 refs.

Bellamy, R.R.; Hayes, J.J.; First, M.W.

1995-01-01T23:59:59.000Z

116

Technical Basis for U. S. Department of Energy Nuclear Safety Policy, DOE Policy 420.1, 7/11  

Broader source: Energy.gov [DOE]

It is the policy of the Department of Energy (DOE) to design, construct, operate anddecommission its nuclear facilities in a manner that ensures adequate protection ofworkers, the public, and the...

117

DOE Spent Nuclear Fuel Information In Support of TSPA-VA  

SciTech Connect (OSTI)

RW has started the viability assessment (VA) effort to determine the feasibility of Yucca Mountain as the first geologic repository for spent nuclear fuel (SNF) and high-level waste. One component of the viability assessment will be a total system performance assessment (TSPA), based on the design concept and the scientific data and analysis available, describing the repository's probable behavior relative to the overall system performance standards. Thus, all the data collected from the Exploratory Studies Facility to-date have been incorporated into the latest TSPA model. In addition, the Repository Integration Program, an integrated probabilistic simulator, used in the TSPA has also been updated by Golder Associates Incorporated at December 1997. To ensure that the Department of Energy-owned (DOE-owned) SNF continues to be acceptable for disposal in the repository, it will be included in the TSPA-VA evaluation. A number of parameters are needed in the TSPA-VA models to predict the performance of the DOE-owned SNF materials placed into the potential repository. This report documents all of the basis and/or derivation for each of these parameters. A number of properties were not readily available at the time the TSPA-VA data was requested. Thus, expert judgement and opinion was utilized to determine a best property value. The performance of the DOE-owned SNF will be published as part of the TSPA-VA report. Each DOE site will be collecting better data as the DOE SNF program moves closer to repository license application. As required by the RW-0333P, the National Spent Nuclear Fuel Program will be assisting each site in qualifying the information used to support the performance assessment evaluations.

A. Brewer; D. Cresap; D. Fillmore; H. Loo; M. Ebner; R. McCormack

1998-09-01T23:59:59.000Z

118

Development of a techno-economic model to optimization DOE spent nuclear fuel disposition  

SciTech Connect (OSTI)

The purpose of the National Spent Nuclear Fuel (NSNF) Program conducted by Lockheed Martin Idaho Technology Co. (LMITCO) at the Idaho National Engineering and Environmental Laboratory (INEEL) is to evaluate what to do with the spent nuclear fuel (SNF) in the Department of Energy (DOE) complex. Final disposition of the SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on the fuel type and the current locations of the fuel. One of the first steps associated with selecting one or more sites for treating the SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the electrometallurgical treatment process for fuels at several locations. The set of questions addresses all issues associated with the design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs will be applied to determine the life-cycle cost of each option. This technique can also be applied to other treatment techniques for treating spent nuclear fuel.

Ramer, R.J.; Plum, M.M.; Adams, J.P.; Dahl, C.A.

1997-11-01T23:59:59.000Z

119

Nuclear Activity in UZC Compact Groups of Galaxies  

E-Print Network [OSTI]

We analyse the level of nuclear activity in galaxies belonging to UZC-CGs. Spectra are available for 868 galaxies (90% of the whole catalog); 67 % of them show nuclear activity (AGN or Star formation). To carry out a detailed study about the nuclear activity and its relationship with properties of the host galaxy and parent group we select a sample of 215 groups with spectra available for all their members. From the analysis of this sample and using diagnostic diagrams to do the nuclear classification we found that 37% of emission galaxies host an HII nuclear region, 43% an AGN and 20% a Transition Object. AGNs are located mainly in bright early type galaxies meanwhile HII are in fainter and later types. Groups dominated by HII show significant lower velocity dispersions and larger sizes than groups dominated by AGNs or TO.

M. A. Martinez; A. del Olmo; P. Focardi; J. Perea

2006-11-02T23:59:59.000Z

120

activates nuclear transcription: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

activates nuclear transcription First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Regulation of Nuclear...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

activated nuclear transcription: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

activated nuclear transcription First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Regulation of Nuclear...

122

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY  

E-Print Network [OSTI]

ENVIRONMENTAL EFFECTS IN GALAXIES: MOLECULAR GAS AND NUCLEAR ACTIVITY DUILIA DE MELLO and TOMMY;ENVIRONMENTAL EFFECTS IN GALAXIES 69 a. log(MH2 /LB) versus Morphology b. Kolmogorov-Smirnov Statistic Figure 2 in dense envir- onments and in the field and to study whether there is any correlation between nuclear

Maia, Marcio Antonio Geimba

123

DOE/NSF Nuclear Science Advisory Committee Meeting April 24-25, 2014 | U.S.  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,Bios High Energy PhysicsU.S. DOESolarCurrentDOEOfficeDOE

124

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

125

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

126

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell  

E-Print Network [OSTI]

High-Activity Dealloyed Catalysts 2010 DOE Hydrogen Program Fuel Cell Project Kick-active-area fuel cells, to be made available for DOE testing Reduce catalyst cost while achieving the required · Subcontractors: ­ Technical University of Berlin ­ Johnson Matthey Fuel Cells ­ Massachusetts Institute

127

Development of a Techno-Economic Model to Optimize DOE Spent Nuclear Fuel Disposition  

SciTech Connect (OSTI)

The National Spent Nuclear Fuel (NSNF) Program is evaluating final disposition of spent nuclear fuel (SNE) in the Department of Energy (DOE) complex. Final disposition of SNF may require that the fuel be treated to minimize material concerns. The treatments may range from electrometallurgical treatment (EMT) and chemical dissolution to engineering controls. Treatment options and treatment locations will depend on fuel type and location of the fuel. One of the first steps associated with selecting one or more sites for treating SNF in the DOE complex is to determine the cost of each option. An economic analysis will assist in determining which fuel treatment alternative attains the optimum disposition of SNF at the lowest possible cost to the government and the public. For this study, a set of questions was developed for the EMT process for fuels at several locations. The set of questions addresses all issues associated with design, construction, and operation of a production facility. A matrix table was developed to determine questions applicable to various fuel treatment options. A work breakdown structure (WBS) was developed to identify a treatment process and costs from initial design to shipment of treatment products to final disposition. Costs can be applied to determine the life cycle cost of each option. This technique can also be applied to other treatment techniques for treating SNF.

Ramer, R. J.; Plum, M. M.; Adams, J. P.; Dahl, C. A.

1998-02-01T23:59:59.000Z

128

Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2  

SciTech Connect (OSTI)

The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.

MANN, F.M.

2000-08-01T23:59:59.000Z

129

DOE  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

130

Overview of DOE Hydrogen and Fuel Cell Activities  

E-Print Network [OSTI]

#12;U.S. Energy Consumption U.S. Primary Energy Consumption by Source and Sector 3 #12;4 Fuel Cells and oil consumption. DOE Program Record #9002, www.hydrogen.energy.gov/program_records.html. #12 of Energy Fuel Cell Technologies Program Gordon Research Conference: Fuel Cells, Rhode Island August 1, 2010

131

Sensor Fusion for Nuclear Proliferation Activity Monitoring  

SciTech Connect (OSTI)

The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

Adel Ghanem, Ph D

2007-03-30T23:59:59.000Z

132

DOE Lighting Program Update: LED Validation Activities | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve |

133

Active Labor Unions Interfacing with DOE - June 2014 | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE MMeeting | Department of

134

Merit Review of BER Activities at the DOE Laboratories | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouis Baker,MedicineMembersScience

135

Order Module--DOE O 452.1D, NUCLEAR EXPLOSIVE AND WEAPON SURETY PROGRAM, DOE O 452.2D, NUCLEAR EXPLOSIVE SAFETY  

Broader source: Energy.gov [DOE]

"To prevent accidents and inadvertent or unauthorized use of U.S. nuclear weapons and nuclear explosives. In conjunction with the Department of Defense (DoD), to protect the public health and...

136

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network [OSTI]

- structing a mined geologic repository for the perma- nent disposal of spent nuclear fuel and high will be transported with the percolating water to the 3 Chapter 1 Board Oversight of the DOE's Scientific of alternating welded and nonwelded tuffs of the mid-Miocene Age, about 10 to 13 million years old. The block

137

International Activities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial

138

A Proposed Cost-Benefit Analysis Approach for Evaluating DOE Nuclear Facility Design Options  

Broader source: Energy.gov [DOE]

Presenter: Dr. Kamiar Jamali, Senior Technical Advisor to the Chief of Defense Nuclear Safety, National Nuclear Security Administration, Office of Nuclear Safety NA-SH

139

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of...  

Office of Science (SC) Website

Global Nuclear Energy Initiative at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications of...

140

DOE's Fuel Cell Catalyst R&D Activities  

Broader source: Energy.gov (indexed) [DOE]

Test and Polarization Curve Protocols (http:www.uscar.orgcommandsfilesdownload.php?filesid267), Catalyst Support Cycle and Metrics (Table 2). Activity loss is based on...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DOE's New Checklist Helps Plants Assess Energy Management Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

simple checklist can help a facility assess whether Superior Energy Performance (SEP) or ISO 50001 are practical next steps, or if foundational energy management activities...

142

Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines requirements for the protection of sensitive improvised nuclear device information and provides a framework to support DOE activities related to nuclear counterterrorism. (A supplemental DOE Manual, Control of and Access to Improvised Nuclear Device Information, provides requirements and procedures for protecting Sigma 20 information. The Manual is Official Use Only, and is not available on the Directives Portal. The point of contact for the Manual is Randall Weidman, NA-121.2, 202-586-4582.) Canceled by DOE O 457.1A

2006-02-07T23:59:59.000Z

143

Overview of DOE Hydrogen and Fuel Cell Activities  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthewith2009 DOETransmission and0DOE

144

DOE Financial Assistance Awards: Active Project Management | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top FiveDepartmentfor06/2015)09 I. Steps Taken5 DOE F 1324.5Energy Financial

145

DOE's New Checklist Helps Plants Assess Energy Management Activities |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergy DOE Theory Focus SessionDepartment of Energy Technical Assistance

146

White Paper on DOE-HEP Accelerator Modeling Science Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignIn OctoberWhite House

147

Activity Based Costing - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

outlines the Activity Based Costing method and discusses applicable uses of ABC. g4301-1chp24.pdf -- PDF Document, 11 KB Writer: John Makepeace Subjects: Administration Management...

148

Performance measures for evaluating public participation activities in DOE`s Office of Environmental Management  

SciTech Connect (OSTI)

Public participation in decision-making in the United States has become a dominant theme throughout the public sector and is increasingly used in the private sector. Recent reports by the National Research Council and the Commission on Risk Assessment and Risk Management, set up jointly by the White House and Congress, conclude that risk decisions must increasingly be structured in such a manner as to involve stakeholders meaningfully in the processes and activities leading to decisions and, perhaps, through decision implementation. Both of these reports indicate that decisions may take longer but be better if officials: (1) bring all interested and affected parties to the table at the beginning of the risk-discussion process; (2) identify relevant concerns, losses, exposures and other information the parties have; (3) address significant concerns through appropriate research; and (4) present findings in an understandable, accessible way. This report is intended to facilitate subsequent evaluations of public participation activities and programs.

Carnes, S.A.; Schweitzer, M.; Peelle, E.B.; Wolfe, A.K.; Munro, J.F.

1996-08-01T23:59:59.000Z

149

DOE Standard Integration Of Environment,Safety, and Health Into...  

Broader source: Energy.gov (indexed) [DOE]

of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities...

150

Nuclear Facility Maintenance Management Program Guide for Use with DOE O 433.1  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Guide describes a maintenance management program that would be acceptable to DOE for meeting the requirements of DOE O 433.1. Canceled by DOE G 433.1-1A.

2001-09-05T23:59:59.000Z

151

DOE-STD-1082-94; DOE Standard Preparation, Review, and Approval of Implementaiton Plans For Nuclear Safety Requirements  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994857-9482-94

152

DOE-STD-1146-2001; General Technical Base Qualification Standard DOE Defense Nuclear Facilities Technical Personnel  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-954 DOE-STD-1136-2004746-2001

153

Guide for the Mitigation of Natural Phenomena Hazards for DOE Nuclear Facilities and NonNuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document provides guidance in implementing the Natural Phenomena Hazard (NPH) mitigation requirements of DOE O 420.1, Facility Safety, Section 4.4, "Natural Phenomena Hazards Mitigation." This Guide does not establish or invoke any new requirements. Any apparent conflicts arising from the NPH guidance would defer to the requirements in DOE O 420.1. No cancellation.

2000-03-28T23:59:59.000Z

154

DOE-STD-1071-94; DOE Standard Guideline to Good Practices for Material Receipt, Inspection, Handling, Storage, Retrieval, and Issuance at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 DOE-STD-1070-94 June 1994 DOE71-94

155

Notice of Intent to Revise DOE O 457.1, Nuclear Counterterrorism  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Intent is to revise DOE O 457.1 and include the content of DOE M 457.1-1 as appendices to the revised order.

2013-02-07T23:59:59.000Z

156

UMCP-BG and E collaboration in nuclear power engineering in the framework of DOE-Utility Nuclear Power Engineering Education Matching Grant Program  

SciTech Connect (OSTI)

The DOE-Utility Nuclear Power Engineering Education Matching Grant Program has been established to support the education of students in Nuclear Engineering Programs to maintain a knowledgeable workforce in the United States in order to keep nuclear power as a viable component in a mix of energy sources for the country. The involvement of the utility industry ensures that this grant program satisfies the needs and requirements of local nuclear energy producers and at the same time establishes a strong linkage between education and day-to-day nuclear power generation. As of 1997, seventeen pairs of university-utility partners existed. UMCP was never a member of that group of universities, but applied for the first time with a proposal to Baltimore Gas and Electric Company in January 1999 [1]. This proposal was generously granted by BG&E [2,3] in the form of a gift in the amount of $25,000 from BG&E's Corporate Contribution Program. Upon the arrival of a newly appointed Director of Administration in the Department of Materials and Nuclear Engineering, the BG&E check was deposited into the University's Maryland Foundation Fund. The receipt of the letter and the check enabled UMCP to apply for DOE's matching funds in the same amount by a proposal.

Wolfe, Lothar PhD

2000-03-01T23:59:59.000Z

157

National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3  

SciTech Connect (OSTI)

This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

NONE

1995-07-01T23:59:59.000Z

158

Does a Kalb-Ramond field make spacetime optically active  

E-Print Network [OSTI]

A spacetime with torsion produced by a Kalb-Ramond field coupled gravitationally to the Maxwell field, in accordance with a recent proposal by two of us (PM and SS), is argued to lead to an optical activity in synchrotron radiation from cosmologically distant radio sources. We suggest that this could qualitatively explain observational data from a large number of radio sources displaying such polarization asymmetry (after eliminating effects of Faraday rotation due to magnetized galactic plasma). Possible implications for heterotic string theory are also outlined.

Sayan Kar; Parthasarathi Majumdar; Soumitra Sengupta; Aninda Sinha

2000-09-24T23:59:59.000Z

159

Does solar structure vary with solar magnetic activity?  

E-Print Network [OSTI]

We present evidence that solar structure changes with changes in solar activity. We find that the adiabatic index, Gamma_1, changes near the second helium ionization, i.e., at a depth of about 0.98 R_sun. We believe that this change is a result of the change in the effective equation of state caused by magnetic fields. Inversions should be able to detect the changes in Gamma_1 if mode sets with reliable and precise high-degree modes are available.

Sarbani Basu; Anna Mandel

2004-11-15T23:59:59.000Z

160

Does High[Plasma]-Beta Dynamics "Load" Active Regions?  

E-Print Network [OSTI]

Using long-duration observations in the He II 304 Angstrom passband of the Solar and Heliospheric Observatory (SOHO) Extreme-ultraviolet Imaging Telescope (EIT) we investigate the spatial and temporal appearance of impulsive intensity fluctuations in the pixel light curves. These passband intensity fluctuations come from plasma emitting in the chromosphere, transition region and lowest portions of the corona. We see that they are spatially tied to the supergranular scale and that their rate of occurrence is tied to the unsigned imbalance of the magnetic field in which they are observed. The signature of the fluctuations (in space and time) is consistent with their creation by magnetoconvection forced reconnection that is driven by the flow field in the high-beta plasma. The signature of the intensity fluctuations around an active region suggest that the bulk of the mass and energy supplied into the active region complex observed in the hotter coronal plasma is supplied by this process, dynamically forcing the looped structure from beneath.

Scott W. McIntosh

2007-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

DOE-DP-STD-3016-99; DOE Limited Standard Hazard Analysis Reports for Nuclear Explosive Operations  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's Use

162

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

163

Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

164

Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science...  

Office of Science (SC) Website

Nuclear Science Advisory Committee (NSAC) News & Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building 1000 Independence...

165

Risk Assessment in Support of DOE Nuclear Safety, Risk Information Notice, June 2010  

Broader source: Energy.gov [DOE]

On August 12, 2009, the Defense Nuclear Facilities Safety Board(DNFSB) issued Recommendation 2009?1, Risk Assessment Methodologies at Defense Nuclear Facilities. Thisrecommendation focused on the...

166

DOE Order Self Study Modules - DOE O 425.1D, Verification of Readiness to Startup or Restart Nuclear Facilities  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5OperateInfrastructure WorkingOrder 482.1 DOE925.1D

167

NEW - DOE O 452.1E, Nuclear Explosive and Weapon Surety Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

All nuclear explosives and nuclear explosive operations require special safety, security, and use control consideration because of the potentially unacceptable consequences of an accident or unauthorized act; therefore, a Nuclear Explosive and Weapon Surety (NEWS) Program is established to prevent unintended/unauthorized detonation and deliberate unauthorized use of nuclear explosives.

168

Proposed risk evaluation guidelines for use by the DOE-AL Nuclear Explosive Safety Division in evaluating proposed shipments of nuclear components  

SciTech Connect (OSTI)

The licensing requirements of 10 CFR 71 (US Code of Federal Regulations) are the primary criteria used to license proposed US Department of Energy (DOE) shipments of nuclear components. However, if a shipment cannot meet 10 CFR 71 requirements, a Transportation System Risk Assessment (TSRA) is prepared to document: (1) the degree of compliance of proposed DOE shipments of nuclear components with applicable federal regulations, and (2) the risk associated with the proposed shipments. The Nuclear Explosive Safety Division (NESD) of the Department of Energy, Albuquerque Area Office (DOE-AL) is responsible for evaluating TSRAs and for preparing Safety Evaluation Reports (SERs) to authorize the off-site transport. Hazards associated with the transport may include the presence of fissile material, chemically and radiologically toxic uranium, and ionizing radiation. The Nuclear Regulatory Commission (NRC) has historically considered only radiological hazards in licensing the transport of radiological material because the US Department of Transportation considers licensing requirements of nonradiological (i.e., chemically toxic) hazards. The requirements of 10 CFR 71 are based primarily on consideration of radiological hazards. For completeness, this report provides information for assessing the effects of chemical toxicity. Evaluating the degree of compliance with the requirements of 10 CFR 71 is relatively straightforward. However, there are few precedents associated with developing TSRA risk assessments for packages that do not comply with all of the requirements of 10 CFR 71. The objective of the task is to develop Risk Evaluation Guidelines for DOE-AL to use when evaluating a TSRA. If the TSRA shows that the Risk Evaluation Guidelines are not exceeded, then from a risk perspective the TSRA should be approved if there is evidence that the ALARA (as low as reasonably achievable) principle has been applied.

Just, R.A.; Love, A.F.

1997-10-01T23:59:59.000Z

169

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes Department of Energy and National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the Department of Defense. Cancels DOE O 452.6.

2009-05-14T23:59:59.000Z

170

Occupational employment in nuclear-related activities, 1981  

SciTech Connect (OSTI)

1981 employment in nuclear-related activities is described, and compared to previous years. Employment characteristics examined include detailed occupations of scientists, engineers, and technicians; worker involvement in research and development activities; employment by industrial segment (e.g., reactor operation and maintenance, weapons production, and commercial laboratory services); employment by establishment type (government-owned, contractor-operated (GOCO), private, and nonprofit); regional employment; and employment by establishment size. Total 1981 nuclear-related employment is estimated to be 249,500 - a growth of 22,600 workers over the 1977 total. GOCO workers make up 36.9% of this total. Among all the nuclear-related workers, scientists comprise 5.1%, engineers, 15.3%; and technicians, 17.5%; the remaining 62.1% is composed of managers, skilled craft and clerical workers, and other support services. Research and development involvement has declined from the 1977 survey results, with 60.4% of scientists and 27.0% of engineers currently involved in R and D. The largest single industrial segment activity is weapons development (16.9% of total employment), followed closely by reactor operation and maintenance employment (16.7%). There has been considerable change in the distribution of employment by industrial segment from 1977 to 1981; the reactor and reactor component design and manufacturing segment fell by over 9700 workers while reactor operation and maintenance employment grew by over 24,000 workers.

Baker, J.G.; Olsen, K.

1982-04-01T23:59:59.000Z

171

At DOE, body blows to Fusion, Nuclear Physics, and Particle Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

news.sciencemag.orgscienceinsider201202at-doe-body-blows-to-fusion-nucl.html Submitted: Monday, February 13...

172

Integrating natural resource damage assessment and environmental restoration activities at DOE facilities  

SciTech Connect (OSTI)

Environmental restoration activities are currently under way at many U.S. Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

NONE

1993-10-01T23:59:59.000Z

173

Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities  

SciTech Connect (OSTI)

Environmental restoration activities are currently under way at many US Department of Energy (DOE) sites under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). DOE is the CERCLA lead response agency for these activities. Section 120 of CERCLA also could subject DOE to liability for natural resource damages resulting from hazardous substance releases at its sites. A Natural Resource Damage Assessment (NRDA) process is used to determine whether natural resources have been injured and to calculate compensatory monetary damages to be used to restore the natural resources. In addition to restoration costs, damages may include costs of conducting the damage assessment and compensation for interim losses of natural resource services that occur before resource restoration is complete. Natural resource damages represent a potentially significant source of additional monetary claims under CERCLA, but are not well known or understood by many DOE staff and contractors involved in environmental restoration activities. This report describes the requirements and procedures of NRDA in order to make DOE managers aware of what the process is designed to do. It also explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, showing how the technical and cost analysis concepts of NRDA can be borrowed at strategic points in the CERCLA process to improve decisionmaking and more quickly restore natural resource services at the lowest total cost to the public.

Not Available

1993-10-01T23:59:59.000Z

174

Proceedings of the 21st DOE/NRC Nuclear Air Cleaning Conference; Sessions 1--8  

SciTech Connect (OSTI)

Separate abstracts have been prepared for the papers presented at the meeting on nuclear facility air cleaning technology in the following specific areas of interest: air cleaning technologies for the management and disposal of radioactive wastes; Canadian waste management program; radiological health effects models for nuclear power plant accident consequence analysis; filter testing; US standard codes on nuclear air and gas treatment; European community nuclear codes and standards; chemical processing off-gas cleaning; incineration and vitrification; adsorbents; nuclear codes and standards; mathematical modeling techniques; filter technology; safety; containment system venting; and nuclear air cleaning programs around the world. (MB)

First, M.W. [ed.] [Harvard Univ., Boston, MA (United States). Harvard Air Cleaning Lab.

1991-02-01T23:59:59.000Z

175

DOE-STD-1050-93; DOE Standard Guideline to Good Practices For Planning, Scheduling, and Coordination of Maintenance at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide

176

DOE-STD-1051-93; DOE Standard Guideline to Good Practices For Maintenance Organization and Administration at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide1-93 March 1993

177

Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12, cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13, cancels DOE O 440.1B Chg 1.

2007-05-17T23:59:59.000Z

178

Integrating Natural Resource Damage Assessment and environmental restoration activities at DOE facilities  

SciTech Connect (OSTI)

Environmental restoration activities are currently under way at several sites owned by the US Department of Energy (DOE) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. DOE is the CERCLA lead response agency for these activities. Section 120(a) of the Superfund Amendments and Reauthorization Act also subjects DOE to liability under Section 107 of CERCLA for natural resource damages resulting from hazardous substance releases at its sites. The Natural Resource Damage Assessment (NRDA) process, by which natural resource injuries are determined and compensatory monetary damages are calculated, is not well known or understood by DOE staff and contractors involved in environmental restoration activities. Nevertheless, natural resource liabilities are potentially a significant source of additional monetary claims for CERCLA hazardous substance releases. This paper describes the requirements of NRDA and explains how to integrate the NRDA and CERCLA Remedial Investigation/Feasibility Study processes, in order to more quickly restore environmental services at the lowest total cost to the public. The first section of the paper explains the statutory and regulatory mandates for the NRDA process. The second section briefly describes the four phases of the NRDA process, while the third section examines the three steps in the assessment phase in considerable detail. Finally, the last section focuses on the integration of the CERCLA and NRDA processes.

Bascietto, J.J. [Dept. of Energy, Washington, DC (US). RCRA/CERCLA Div.; Dunford, R.W. [Research Triangle Inst., Research Triangle Park, NC (US); Sharples, F.E.; Suter, G.W. II [Oak Ridge National Lab., TN (US)

1993-06-01T23:59:59.000Z

179

Photo Album Of FAPAC - NM Activities | National Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheStevenAdministration Album Of FAPAC - NM Activities |

180

Worker Protection Program for DOE (Including the National Nuclear Security Administration) Federal Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes the framework for an effective worker protection program that will reduce or prevent injuries, illnesses, and accidental losses by providing DOE and NNSA Federal workers with a safe and healthful workplace. Chg 1 dated 8-21-12. Cancels DOE M 440.1-1A. Admin Chg 1, dated 3-14-13.

2007-05-17T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Development of a criticality safety program guide for DOE nonreactor nuclear facilities  

SciTech Connect (OSTI)

The objective of this paper was a presentation and discussion of the US DOE`s efforts to develop a NCS program guide for the implementation of 10CFR830.380. Topics of discussion were: (1) introduction/general practices; (2) definition of terms; (3) administration; (4) NCSA guidelines; (5) calculations; (6) conduct of operations; (7) state support; and (8) emergency preparedness.

Hopper, C.M. [Oak Ridge National Lab., TN (United States)

1994-09-01T23:59:59.000Z

182

Nuclear Physics User Facilities | U.S. DOE Office of Science...  

Office of Science (SC) Website

link The 88-Inch Cyclotron, located at the Lawrence Berkeley National Laboratory (LBNL) External link , supports ongoing research programs in nuclear structure, astrophysics,...

183

Improved Design of Nuclear Reactor Control System | U.S. DOE...  

Office of Science (SC) Website

instrumentation: Improved Design of Nuclear Reactor Control System Developed at: Oak Ridge National Laboratory, Holifield Radioactive Ion Beam Facility (HRIBF) Developed...

184

DOE Seeks to Invest up to $15 Million in Funding for Nuclear...  

Energy Savers [EERE]

following areas: Used Fuel Separations Technology, Advanced Nuclear Fuel Development, Fast Burner Reactors and Advanced Transmutation Systems, Advanced Fuel Cycle Systems...

185

DOE standard: Integration of environment, safety, and health into facility disposition activities. Volume 1: Technical standard  

SciTech Connect (OSTI)

This Department of Energy (DOE) technical standard (referred to as the Standard) provides guidance for integrating and enhancing worker, public, and environmental protection during facility disposition activities. It provides environment, safety, and health (ES and H) guidance to supplement the project management requirements and associated guidelines contained within DOE O 430.1A, Life-Cycle Asset Management (LCAM), and amplified within the corresponding implementation guides. In addition, the Standard is designed to support an Integrated Safety Management System (ISMS), consistent with the guiding principles and core functions contained in DOE P 450.4, Safety Management System Policy, and discussed in DOE G 450.4-1, Integrated Safety Management System Guide. The ISMS guiding principles represent the fundamental policies that guide the safe accomplishment of work and include: (1) line management responsibility for safety; (2) clear roles and responsibilities; (3) competence commensurate with responsibilities; (4) balanced priorities; (5) identification of safety standards and requirements; (6) hazard controls tailored to work being performed; and (7) operations authorization. This Standard specifically addresses the implementation of the above ISMS principles four through seven, as applied to facility disposition activities.

NONE

1998-05-01T23:59:59.000Z

186

FP7 EURATOM for Nuclear Research and Training Activities Work Programme  

E-Print Network [OSTI]

FP7 EURATOM for Nuclear Research and Training Activities Work Programme Call Fiche Call Identifier Funding Schemes Fission-2007-1.1.1: Phenomenology and performance assessment Collaborative project assessment methodologies Coordination action Reactor Systems: Nuclear installation safety Fission-2007

De Cindio, Fiorella

187

Uranium from Seawater Program Review; Fuel Resources Uranium from Seawater Program DOE Office of Nuclear Energy  

SciTech Connect (OSTI)

For nuclear energy to remain sustainable in the United States, economically viable sources of uranium beyond terrestrial ores must be developed. The goal of this program is to develop advanced adsorbents that can extract uranium from seawater at twice the capacity of the best adsorbent developed by researchers at the Japan Atomic Energy Agency (JAEA), 1.5 mg U/g adsorbent. A multidisciplinary team from Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, and the University of Texas at Austin was assembled to address this challenging problem. Polymeric adsorbents, based on the radiation grafting of acrylonitrile and methacrylic acid onto high surface-area polyethylene fibers followed by conversion of the nitriles to amidoximes, have been developed. These poly(acrylamidoxime-co-methacrylic acid) fibers showed uranium adsorption capacities for the extraction of uranium from seawater that exceed 3 mg U/g adsorbent in testing at the Pacific Northwest National Laboratory Marine Sciences Laboratory. The essence of this novel technology lies in the unique high surface-area trunk material that considerably increases the grafting yield of functional groups without compromising its mechanical properties. This technology received an R&D100 Award in 2012. In addition, high surface area nanomaterial adsorbents are under development with the goal of increasing uranium adsorption capacity by taking advantage of the high surface areas and tunable porosity of carbon-based nanomaterials. Simultaneously, de novo structure-based computational design methods are being used to design more selective and stable ligands and the most promising candidates are being synthesized, tested and evaluated for incorporation onto a support matrix. Fundamental thermodynamic and kinetic studies are being carried out to improve the adsorption efficiency, the selectivity of uranium over other metals, and the stability of the adsorbents. Understanding the rate-limiting step of uranium uptake from seawater is also essential in designing an effective uranium recovery system. Finally, economic analyses have been used to guide these studies and highlight what parameters, such as capacity, recyclability, and stability, have the largest impact on the cost of extraction of uranium from seawater. Initially, the cost estimates by the JAEA for extraction of uranium from seawater with braided polymeric fibers functionalized with amidoxime ligands were evaluated and updated. The economic analyses were subsequently updated to reflect the results of this project while providing insight for cost reductions in the adsorbent development through “cradle-to-grave” case studies for the extraction process. This report highlights the progress made over the last three years on the design, synthesis, and testing of new materials to extract uranium for seawater. This report is organized into sections that highlight the major research activities in this project: (1) Chelate Design and Modeling, (2) Thermodynamics, Kinetics and Structure, (3) Advanced Polymeric Adsorbents by Radiation Induced Grafting, (4) Advanced Nanomaterial Adsorbents, (5) Adsorbent Screening and Modeling, (6) Marine Testing, and (7) Cost and Energy Assessment. At the end of each section, future research directions are briefly discussed to highlight the challenges that still remain to reduce the cost of extractions of uranium for seawater. Finally, contributions from the Nuclear Energy University Programs (NEUP), which complement this research program, are included at the end of this report.

none,

2013-07-01T23:59:59.000Z

188

Worker Protection Program for DOE (including the National Nuclear Security Administration) Federal Employees Guide for Use with DOE O 440.1B  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Guide provides suggestions and alternative approaches that DOE elements may consider in implementing their worker protection program. Cancels DOE G 440.1-1.

2007-06-04T23:59:59.000Z

189

Safety of Nuclear Explosive Operations  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes responsibilities and requirements to ensure the safety of routine and planned nuclear explosive operations and associated activities and facilities. Cancels DOE O 452.2A and DOE G 452.2A-1A. Canceled by DOE O 452.2C.

2001-08-07T23:59:59.000Z

190

Inspection of surveillance equipment and activities at DOE Field Office, Richland  

SciTech Connect (OSTI)

The purpose of this inspection was to review surveillance activities by the Department of Energy's (DOE) Field Office, Richland (RL) and contractor employees at the RL Hanford site for efficiency and economy and compliance with laws and regulations. The scope included surveillance activities, procedures, training, types of surveillance equipment, and management controls over the equipment and activities. We also looked at Departmental policies and procedures regarding the equipment and activities. Allegations of illegal surveillance that came to our attention during the course of this inspection were referred to the Department of Justice. As part of our review, inspectors were on-site at RL from February 11, 1991, through March 1, 1991. Follow-up trips to RL were also made in April, May, and June 1991. We also conducted interviews at Albuquerque, Savannah River, and Germantown of former RL employees and RL contractors who were on travel. Officials from DOE's Office of General Counsel (OGC), Office of Security Affairs, and Office of Safeguards and Security (S S) were also interviewed regarding the Department's purchase and possession of wiretapping and eavesdropping devices. We obtained 75 signed sworn statements from 55 individuals during the course of the inspection. 1 fig., 1 tab.

Not Available

1991-09-30T23:59:59.000Z

191

Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns  

SciTech Connect (OSTI)

Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

2003-02-27T23:59:59.000Z

192

E-Print Network 3.0 - active nuclear wastes Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

disposal site for transuranic (TRU) radio- active waste created during... , americium, curium, and neptunium are created during the produc- tion of nuclear weapons. Transuranic...

193

Nuclear Physics Related Brochures | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichaelNorman Rasmussen,Nuclear

194

Applications of Nuclear Science Archives | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanieUseful2-3, Applications of Nuclear

195

Nuclear Wallet Cards at BNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut RegionsScienceHampshireWallet Cards at BNL Nuclear

196

DOE-STD-1104  

Office of Environmental Management (EM)

Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

197

Twenty-first DOE/NRC nuclear air-cleaning conference  

SciTech Connect (OSTI)

The Twenty-First Department of Energy/Nuclear Regulatory Commission Nuclear Air-Cleaning Conference was held August 12-16, 1990, in San Diego, California. A total of 232 air-cleaning specialists attended the conference. The United States and 14 foreign countries were represented, and the specialists were affiliated with government agencies, educational institutions, and the nuclear industry. Several major topics were discussed during the conference, including development and use of industry codes and standards; chemical processing off-gas cleaning; particulate filter developments, including filter testing and filter response to physical stress; development of adsorbents, including laboratory testing and in-place testing; incineration and vitrification; containment venting; reactor operations, including design and modeling; and measurement systems capable of verifying safe operation. The conference continued to provide a forum for direct and efficient interchange of technical and philosophical information among the participants. The high level of foreign participation and interest continues, as evidenced by over one half of the papers being sponsored by foreign interests, and one quarter of the attendees being from outside the United States. Further evidence of international interest was seen in a plenary session devoted to nuclear air-cleaning programs in nine different countries. A common concern throughout many of the sessions was the development of meaningful standards, their implementation for existing air-cleaning system, and the use of these standards by regulatory agencies. 13 refs., 2 tabs.

Bellamy, R.R. [Nuclear Regulatory Commission, Washington, DC (United States); Moeller, D.W.; First, M.W. [Harvard Univ., Cambridge, MA (United States)

1991-01-01T23:59:59.000Z

198

Radiochemistry Student, Postdoc and Invited Speaker Support for New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE  

SciTech Connect (OSTI)

The Division of Nuclear Chemistry and Technology (NUCL) of the American Chemistry Society (ACS) is sponsoring a symposium entitled "New Directions in Isotope Production, Nuclear Forensics and Radiochemistry Supported by the DOE" at the 240th ACS National Meeting in Boston, MA 22-26 August 2010. Radiochemistry and nuclear science is a critical area of research and funding for which the DOE has provided support over the years. Radiochemistry is undergoing a renaissance in interdisciplinary areas including medicine, materials, nanotechnology, nuclear forensics and energy. For example, interest in nuclear energy is growing in response to global warming. The field of nuclear forensics has grown significantly since 9/11 in response to potential terror threats and homeland security. Radioactive molecular imaging agents and targeted radiotherapy are revolutionizing molecular medicine. The need for radiochemists is growing, critical, and global. The NUCL Division of the ACS has been involved in various areas of radiochemistry and nuclear chemistry for many years, and is the host of the DOE supported Nuclear Chemistry Summer Schools. This Symposium is dedicated to three of the critical areas of nuclear science, namely isotope production, nuclear forensics and radiochemistry. An important facet of this meeting is to provide support for young radiochemistry students/postdoctoral fellows to attend this Symposium as participants and contributors. The funding requested from DOE in this application will be used to provide bursaries for U.S. students/postdoctoral fellows to enable them to participate in this symposium at the 240th ACS National Meeting, and for invited scientists to speak on the important issues in these areas.

Jurisson, Silvia, S.

2011-04-11T23:59:59.000Z

199

Nuclear activation technique for analysis of laser induced energetic protons  

E-Print Network [OSTI]

. For that purpose, we have developed a method in which the particles induce nuclear reactions in a stack of copper for medical applications [6]). In addition, nuclear reaction yields and nuclear decay rates might be studied radioactive nuclei. In a stack of samples, each foil acts as a low energy proton filter for the following ones

Paris-Sud XI, Université de

200

DOE Completes Annual Determination of the Adequacy of the Nuclear Waste  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment ofEnergy -Buildings DOE

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Workforce Transition Model for DOE-AL non-nuclear reconfiguration  

SciTech Connect (OSTI)

The Pacific Northwest Laboratory (PNL) was tasked by the US Department of Energy Albuquerque Field Office (DOE-AL) to develop a workforce assessment and transition planning tool to support integrated decision making at a single DOE installation. The planning tool permits coordinated, integrated workforce planning to manage growth, decline, or transition within a DOE installation. The tool enhances the links and provides commonality between strategic, programmatic, and operations planners and human resources. Successful development and subsequent complex-wide implementation of the model will also facilitate planning at the national level by enforcing a consistent format on data that are now collected by installations in corporate-specific formats that are not amenable to national-level analyses. The workforce assessment and transition planning tool consists of two components: the Workforce Transition Model and the Workforce Budget Constraint Model. The Workforce Transition Model, the preponderant of the two, assists decision makers to identify and evaluates alternatives for transitioning the current workforce to meet the skills required to support projected workforce requirements. The Workforce Budget Constraint Model helps estimate the number of personnel that will be affected given a workforce budget increase or decrease and assists in identifying how the corresponding hiring or layoffs should be distributed across the common occupational classification system (COCS) occupations. The conceptual models and the computer implementation are described.

Stahlman, E.J.; Lewis, R.E.

1993-10-01T23:59:59.000Z

202

Nuclear Resonance Fluorescence at MIT | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut RegionsScienceHampshire

203

DOE/NE Sponsors a U.S. - Kazakhstan Civilian Nuclear Energy Workshop at  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTankless orAChiefAppropriation FYGStrategicSiteThreeDOE-Wide9Idaho

204

Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

205

Notice of Intent to Revise Department of Energy Order 426.2 Change 1, Personnel Selection, Training, Qualification and Certification Requirements for DOE Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Office of Nuclear Safety consulted field and Headquarters (HQ) offices on whether or not a revision is warranted for DOE O 426.2. As a result, certain aspects of DOE O 426.2 were identified as needing clarification and revision. Based on this feedback, the revision is intended to clarify educational requirements, certification requirements, and applicability. Addressing these concerns should improve operating training programs, and result in less time focused on managing ambiguous or possibly unnecessary requirements.

2015-02-19T23:59:59.000Z

206

Experience With Damaged Spent Nuclear Fuel at U.S. DOE Facilities  

SciTech Connect (OSTI)

This report summarizes some of the challenges encountered and solutions implemented to ensure safe storage and handling of damaged spent nuclear fuels (SNF). It includes a brief summary of some SNF storage environments and resulting SNF degradation, experience with handling and repackaging significantly degraded SNFs, and the associated lessons learned. This work provides useful insight and resolutions to many engineering challenges facing SNF handling and storage facilities. The context of this report is taken from a report produced at Idaho National Laboratory and further detailed information, such as equipment design and usage, can be found in the appendices to that report. (authors)

Carlsen, Brett; Fillmore, Denzel; Woolstenhulme, Eric [Idaho National Laboratory, P.O. Box 1625 Idaho Falls, ID 83415 (United States); McCormack, Roger L. [Fluor Hanford Site, Richland, Wash. (United States); Sindelar, Robert; Spieker, Timothy [Savannah River National Laboratory, Savannah River Site Aiken, SC 29808 (United States)

2006-07-01T23:59:59.000Z

207

ADMINISTRATIVE CHANGE TO DOE O 474.2, NUCLEAR MATERIAL CONTROL AND ACCOUNTABILITY  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNationalRestart of the Review of theOFFICEACME | National Nuclear SecurityO 474.2 Chg

208

DOE Offers Conditional Loan Guarantee for Front End Nuclear Facility in  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclear PlantsFirst-of-its-KindIdaho |

209

Nuclear Physics (NP) Homepage | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticles News News Home Featured ArticlesScience

210

Nuclear Science Advisory Committee (NSAC) Homepage | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman Resources HumanOffice ofNP UserScience (SC) NSAC

211

Applications of Nuclear Science | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHuman ResourcesScienceHomeAboutLightAllenAnthonyOffice of

212

Nuclear Safeguards and Nonproliferation Support | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichaelNorman

213

Nuclear Theory Helps Forecast Neutron Star Temperatures | U.S. DOE Office  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960 The ErnestLouisMichaelNormanof Science (SC)

214

NNSA DP does it again! Collects boxes and boxes of toys | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National NNSASecurity

215

DOE/NNSA Strategic Performance Evaluation Plan (PEP) FOR Consolidated Nuclear Security, LLC  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartmentStewardshipAdministration| National NuclearSafeguards and

216

Ukraine Loads U.S. Nuclear Fuel into Power Plant as Part of DOE-Ukraine  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research Petroleum ReserveDepartment of EnergyDepartment ofRemarksNuclear Fuel

217

Streamlining the Nuclear Force | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanie Sparks Deputy Director

218

Streamlining the Nuclear Force | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960RealStephanie Sparks Deputy DirectorStreamlining the

219

Safeguarding Nuclear Fuel Processing | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman,BiosScience (SC) Regional &ReviewSLACSafeguarding

220

Global Nuclear Energy Initiative at LBNL | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National Science2Gcreport(SC) GettingGlobal

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Improved Design of Nuclear Reactor Control System | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut Regions National11-12, 2005Idaho RegionsIllinoisScience

222

Neutron Detectors for Detection of Nuclear Materials at LANL| U.S. DOE  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut RegionsScience (SC)MissouriNebraska

223

Nuclear Reaction Cross Sections Database at BNL | U.S. DOE Office of  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadoreConnecticut RegionsScienceHampshire RegionsNorthNovemberScience

224

REPORT OF THE TASK FORCE ON NUCLEAR NONPROLIFERATION  

Broader source: Energy.gov [DOE]

The Secretary of Energy on December 20, 2013 established the Secretary of Energy Advisory Board (SEAB) Task Force on Nuclear Nonproliferation and charged the Task Force to advise the DOE on future areas of emphasis for its nuclear nonproliferation activities

225

Guideline to good practices for seasonal facility preservation at DOE nuclear facilities  

SciTech Connect (OSTI)

This guide is intended to assist facility maintenance organizations in the review of existing methods and in the development of new methods for establishing a maintenance Seasonal Facility Preservation program. It is expected that each DOE facility may use approaches or methods different from those defined in this guide. The specific guidelines that follow reflect generally accepted industry practices. Therefore, deviation from any particular guideline would not, in itself, indicate a problem. If substantive differences exist between the intent of this guideline and actual practice, management should evaluate current practice to determine the need to include/exclude proposed features. A change in maintenance practice would be appropriate if a performance weakness were determined to exist. The development, documentation, and implementation of other features that further enhance these guidelines for specific applications are encouraged.

Not Available

1994-06-01T23:59:59.000Z

226

active nuclear receptors: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

nuclear receptors First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Regulation of Nuclear Receptor...

227

1979 DOE statistical symposium  

SciTech Connect (OSTI)

The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

Gardiner, D.A.; Truett T. (comps. and eds.)

1980-09-01T23:59:59.000Z

228

INMM 55th Annual Meeting, July 2024, 2014, Atlanta Marriott Marquis, Atlanta, Georgia, USA Transport Security for Nuclear and Other Radioactive Materials --A DOE Training Course  

E-Print Network [OSTI]

Laboratory. The course was developed by Argonne for the U.S. Department of Energy Packaging Certification of Energy, Washington, D.C. 20585 ABSTRACT In early December of 2013, a weeklong training course on security Transport Security for Nuclear and Other Radioactive Materials -- A DOE Training Course Ronald B. Pope, Yung

Kemner, Ken

229

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency  

Broader source: Energy.gov [DOE]

Safety Reports Series No. 11, Developing Safety Culture in Nuclear Activities: Practical Suggestions to Assist Progress, International Atomic Energy Agency

230

Three Mile Island waste management: a DOE Perspective  

SciTech Connect (OSTI)

The Department of Energy (DOE) is conducting waste management research and development activities which are applicable to the cleanup of the Three Mile Island-Unit 2 nuclear reactor. These activities have enabled DOE to provide timely assistance to General Public Utilities (GPU), the utility owner, the Nuclear Regulatory Commission (NRC), and the State of Pennsylvania in their efforts to quickly and safely clean up the damaged reactor. The DOE has been particularly active in evaluating proposed cleanup systems, providing information on waste characteristics, and advising GPU and NRC as to appropriate disposal methods for the waste generated during the cleanup. A description and discussion of some of these activities is presented.

D'Ambrosia, J.T.

1982-01-01T23:59:59.000Z

231

Worker Safety and Health Program for DOE (Including the National Nuclear Security Administration) Federal and Contractor Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document was developed to assist the Department of Energy (DOE or the Department) Federal and contractor employees in effectively developing, managing, and implementing a worker safety and health program. Cancels DOE G 440.1-1A and DOE G 440.1-8. Adm Chg 1, dated 3-22-13, cancels DOE G 440.1-1B.

2011-10-20T23:59:59.000Z

232

Activation of retinal tyrosine hydroxylase: tolerance induced by chronic treatment with haloperidol does not modify response to light  

SciTech Connect (OSTI)

A single dose of haloperidol administered to rats in the dark increases the activity of retinal tyrosine hydroxylase. The ability of haloperidol to activate the enzyme is diminished 24 hr after terminating 22 to 30 days of treatment with haloperidol. The retinal enzyme is also tolerant to activation by treatment with chlorpromazine. In contrast, exposure of the animals to light activates the enzyme to the same extent in chronic haloperidol-treated and control animals. Thus, chronic haloperidol treatment does not modify the ability of the retinal enzyme system to respond to the physiological stimulus, light. Apparently, activation of retinol tyrosine hydroxylase by haloperidol and light occurs by independent mechanisms.

Cohen, J.; Neff, N.H.

1982-05-01T23:59:59.000Z

233

Notice of Intent to Revise DOE G 226.1-2, Federal Line Management Oversight of Department of Energy Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This revision will incorporate new content devoted to Federal oversight and evaluation of effectiveness of activity-level work planning and control (WP&C) at Hazard Category 1, 2, and 3 nuclear facilities.

2013-04-04T23:59:59.000Z

234

OECD/NEA Ongoing activities related to the nuclear fuel cycle  

SciTech Connect (OSTI)

As part of its role in encouraging international collaboration, the OECD Nuclear Energy Agency is coordinating a series of projects related to the Nuclear Fuel Cycle. The Nuclear Science Committee (NSC) Working Party on Scientific Issues of the Nuclear Fuel Cycle (WPFC) comprises five different expert groups covering all aspects of the fuel cycle from front to back-end. Activities related to fuels, materials, physics, separation chemistry, and fuel cycles scenarios are being undertaken. By publishing state-of-the-art reports and organizing workshops, the groups are able to disseminate recent research advancements to the international community. Current activities mainly focus on advanced nuclear systems, and experts are working on analyzing results and establishing challenges associated to the adoption of new materials and fuels. By comparing different codes, the Expert Group on Advanced Fuel Cycle Scenarios is aiming at gaining further understanding of the scientific issues and specific national needs associated with the implementation of advanced fuel cycles. At the back end of the fuel cycle, separation technologies (aqueous and pyrochemical processing) are being assessed. Current and future activities comprise studies on minor actinides separation and post Fukushima studies. Regular workshops are also organized to discuss recent developments on Partitioning and Transmutation. In addition, the Nuclear Development Committee (NDC) focuses on the analysis of the economics of nuclear power across the fuel cycle in the context of changes of electricity markets, social acceptance and technological advances and assesses the availability of the nuclear fuel and infrastructure required for the deployment of existing and future nuclear power. The Expert Group on the Economics of the Back End of the Nuclear Fuel Cycle (EBENFC), in particular, is looking at assessing economic and financial issues related to the long term management of spent nuclear fuel. (authors)

Cornet, S.M. [OECD Nuclear Energy Agency, 12 Boulevard des Iles, 92130 Issy-les-Moulineaux (France); McCarthy, K. [Idaho Nat. Lab. - P.O. Box 1625, Idaho Falls, ID 83415-3860 (United States); Chauvin, N. [CEA Saclay, Nuclear Energy Division, 91191 Gif/Yvette (France)

2013-07-01T23:59:59.000Z

235

The Development, Content, Design, and Conduct of the 2011 Piloted US DOE Nuclear Criticality Safety Program Criticality Safety Engineering Training and Education Project  

SciTech Connect (OSTI)

In May 1973 the University of New Mexico conducted the first nationwide criticality safety training and education week-long short course for nuclear criticality safety engineers. Subsequent to that course, the Los Alamos Critical Experiments Facility (LACEF) developed very successful 'hands-on' subcritical and critical training programs for operators, supervisors, and engineering staff. Since the inception of the US Department of Energy (DOE) Nuclear Criticality Technology and Safety Project (NCT&SP) in 1983, the DOE has stimulated contractor facilities and laboratories to collaborate in the furthering of nuclear criticality as a discipline. That effort included the education and training of nuclear criticality safety engineers (NCSEs). In 1985 a textbook was written that established a path toward formalizing education and training for NCSEs. Though the NCT&SP went through a brief hiatus from 1990 to 1992, other DOE-supported programs were evolving to the benefit of NCSE training and education. In 1993 the DOE established a Nuclear Criticality Safety Program (NCSP) and undertook a comprehensive development effort to expand the extant LACEF 'hands-on' course specifically for the education and training of NCSEs. That successful education and training was interrupted in 2006 for the closing of the LACEF and the accompanying movement of materials and critical experiment machines to the Nevada Test Site. Prior to that closing, the Lawrence Livermore National Laboratory (LLNL) was commissioned by the US DOE NCSP to establish an independent hands-on NCSE subcritical education and training course. The course provided an interim transition for the establishment of a reinvigorated and expanded two-week NCSE education and training program in 2011. The 2011 piloted two-week course was coordinated by the Oak Ridge National Laboratory (ORNL) and jointly conducted by the Los Alamos National Laboratory (LANL) classroom education and facility training, the Sandia National Laboratory (SNL) hands-on criticality experiments training, and the US DOE National Criticality Experiment Research Center (NCERC) hands-on criticality experiments training that is jointly supported by LLNL and LANL and located at the Nevada National Security Site (NNSS) This paper provides the description of the bases, content, and conduct of the piloted, and future US DOE NCSP Criticality Safety Engineer Training and Education Project.

Hopper, Calvin Mitchell [ORNL] [ORNL

2011-01-01T23:59:59.000Z

236

COMPUTER-BASED PROCEDURE FOR FIELD ACTIVITIES: RESULTS FROM THREE EVALUATIONS AT NUCLEAR POWER PLANTS  

SciTech Connect (OSTI)

Nearly all activities that involve human interaction with the systems of a nuclear power plant are guided by procedures. The paper-based procedures (PBPs) currently used by industry have a demonstrated history of ensuring safety; however, improving procedure use could yield tremendous savings in increased efficiency and safety. One potential way to improve procedure-based activities is through the use of computer-based procedures (CBPs). Computer-based procedures provide the opportunity to incorporate context driven job aids, such as drawings, photos, just-in-time training, etc into CBP system. One obvious advantage of this capability is reducing the time spent tracking down the applicable documentation. Additionally, human performance tools can be integrated in the CBP system in such way that helps the worker focus on the task rather than the tools. Some tools can be completely incorporated into the CBP system, such as pre-job briefs, placekeeping, correct component verification, and peer checks. Other tools can be partly integrated in a fashion that reduces the time and labor required, such as concurrent and independent verification. Another benefit of CBPs compared to PBPs is dynamic procedure presentation. PBPs are static documents which limits the degree to which the information presented can be tailored to the task and conditions when the procedure is executed. The CBP system could be configured to display only the relevant steps based on operating mode, plant status, and the task at hand. A dynamic presentation of the procedure (also known as context-sensitive procedures) will guide the user down the path of relevant steps based on the current conditions. This feature will reduce the user’s workload and inherently reduce the risk of incorrectly marking a step as not applicable and the risk of incorrectly performing a step that should be marked as not applicable. As part of the Department of Energy’s (DOE) Light Water Reactors Sustainability Program, researchers at Idaho National Laboratory (INL) along with partners from the nuclear industry have been investigating the design requirements for computer-based work instructions (including operations procedures, work orders, maintenance procedures, etc.) to increase efficiency, safety, and cost competitiveness of existing light water reactors.

Oxstrand, Johanna [Idaho National Laboratory; Bly, Aaron [Idaho National Laboratory; LeBlanc, Katya [Idaho National Laboratory

2014-09-01T23:59:59.000Z

237

Technosocial Modeling for Determining the Status and Nature of a State’s Nuclear Activities  

SciTech Connect (OSTI)

The International Atomic Energy Agency State Evaluation Process: The Role of Information Analysis in Reaching Safeguards Conclusions (Mathews et al. 2008), several examples of nonproliferation models using analytical software were developed that may assist the IAEA with collecting, visualizing, analyzing, and reporting information in support of the State Evaluation Process. This paper focuses on one of the examples a set of models developed in the Proactive Scenario Production, Evidence Collection, and Testing (ProSPECT) software that evaluates the status and nature of a state’s nuclear activities. The models use three distinct subject areas to perform this assessment: the presence of nuclear activities, the consistency of those nuclear activities with national nuclear energy goals, and the geopolitical context in which those nuclear activities are taking place. As a proof-of-concept for the models, a crude case study was performed. The study, which attempted to evaluate the nuclear activities taking place in Syria prior to September 2007, yielded illustrative, yet inconclusive, results. Due to the inconclusive nature of the case study results, changes that may improve the model’s efficiency and accuracy are proposed.

Gastelum, Zoe N.; Harvey, Julia B.

2009-09-25T23:59:59.000Z

238

DOE Office of Basic Sciences: An Overview of Basic Research Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Basic Energy Sciences Overview Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC ) Grid Storage and the Energy Frontier...

239

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

SciTech Connect (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

240

DOE Carbon-based Hydrogen Storage Center of Excellence: Center Highlights and NREL Activities (Presentation)  

SciTech Connect (OSTI)

Presented at the 2006 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Annual Merit Review in Washington, D.C., May 16-19, 2006.

Blackburn, J. L.; Curtis, C.; Davis, M.; Dillon, A. C.; Engtrakul, C.; Gennett, T.; Heben, M. J.; Jones, K. M.; Kim, Y.-H.; Parilla, P. A.; Simpson, L. J.; Whitney, E. S.; Zhang, S. B.; Zhao, Y.

2006-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Global Nuclear Security  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Global Nuclear Security Both DOE and the National Nuclear Security Administration are working to reduce the risk of nuclear proliferation and provide technologies to improve...

242

Worker Safety and Health Program for DOE (Including the National Nuclear Security Administration) Federal and Contractor Employees  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document was developed to assist the Department of Energy (DOE or the Department) Federal and contractor employees in effectively developing, managing, and implementing a worker safety and health program. Cancels DOE G 440.1-1A and DOE G 440.1-8. Adm Chg 1, dated 3-22-13.

2011-10-20T23:59:59.000Z

243

Nuclear Weapon Surety Interface with the Department of Defense  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order prescribes how the Department of Energy participates with the Department of Defense (DoD) to ensure the surety (safety, security and control) of military nuclear weapon systems deployed around the world. The Order establishes National Nuclear Security Administration requirements and responsibilities for addressing joint nuclear weapon and nuclear weapon system surety activities in conjunction with the DoD. Cancels DOE O 5610.13. Canceled by DOE O 452.6A.

2006-10-19T23:59:59.000Z

244

Environmental data and analyses for the proposed management of spent nuclear fuel on the DOE Oak Ridge Reservation  

SciTech Connect (OSTI)

DOE needs to continue the safe and efficient management of SNF on ORR, based on the requirement for future SNF storage capacity and implementation of the ROD for the PEIS. DOE is proposing to implement the ROD through proper management of SNF on ORR, including the possible construction and operation of a dry cask storage facility. This report describes the potentially affected environment and analyzes impacts on various resources due to the proposed action. The information provided in this report is intended to support the Environmental Assessment being prepared for the proposed activities. Construction of the dry cask storage facility would result in minimal or no impacts on groundwater, surface water, and ecological resources. Contaminated soils excavated during construction would result in negligible risk to human health and to biota. Except for noise from trucks and equipment, operation of the dry cask storage facility would not be expected to have any impact on vegetation, wildlife, or rare plants or animals. Noise impacts would be minimal. Operation exposures to the average SNF storage facility worker would not exceed approximately 0.40 mSv/year (40 mrem/year). The off-site population dose within an 80-km (50-mile) radius of ORR from SNF operations would be less than 0.052 person-Sv/year (5.2 person-rem/year). Impacts from incident-free transportation on ORR would be less than 1.36 X 10{sup -4} occupational fatal cancers and 4.28 X 10{sup -6} public fatal cancers. Credible accident scenarios that would result in the greatest probable risks would cause less than one in a million cancer fatalities to workers and the public.

Socolof, M.L.; Curtis, A.H.; Blasing, T.J. [and others

1995-08-01T23:59:59.000Z

245

Nuclear Waste Fund Activities Management Team | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment of Energy Advanced1, 2014NuclearCommission,ScienceWaste Fund

246

DOE/ID-Number  

Broader source: Energy.gov (indexed) [DOE]

for the disposal of spent nuclear fuel and high level nuclear waste at the Deaf Smith County Texas site (DOE 1986c) used a maximum allowable repository temperature of...

247

Comments on 10 CFR 820, 830, 835 proposed safety rules for DOE nuclear activities  

SciTech Connect (OSTI)

The objective of this paper was a discussion of LANL`s comments to draft 10CFR 820, 830, and 835. In general comments, LANL recognized the authority of the governing organization but contended that: (1) the rules/approach needed major revision, (2) the rules are counterproductive, and (3) teamwork is reg`d in order to meet the goals.

Bergman, G. [Los Alamos National Lab., NM (United States)

1994-09-01T23:59:59.000Z

248

10 C.F.R. Part 820 - Procedural Rules for DOE Nuclear Activities |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombinedDepartment ofCareersWind Vision:#EnergyFaceoff Rounds Begin!()* I

249

10 C.F.R. 820: Procedural Rules for DOE Nuclear Activities | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( Sample of Shipment Notice) FederalLANDFILLStatementEnergy 20:

250

NEUTRON MULTIPLICITY AND ACTIVE WELL NEUTRON COINCIDENCE VERIFICATION MEASUREMENTS PERFORMED FOR MARCH 2009 SEMI-ANNUAL DOE INVENTORY  

SciTech Connect (OSTI)

The Analytical Development (AD) Section field nuclear measurement group performed six 'best available technique' verification measurements to satisfy a DOE requirement instituted for the March 2009 semi-annual inventory. The requirement of (1) yielded the need for SRNL Research Operations Department Material Control & Accountability (MC&A) group to measure the Pu content of five items and the highly enrich uranium (HEU) content of two. No 14Q-qualified measurement equipment was available to satisfy the requirement. The AD field nuclear group has routinely performed the required Confirmatory Measurements for the semi-annual inventories for fifteen years using sodium iodide and high purity germanium (HpGe) {gamma}-ray pulse height analysis nondestructive assay (NDA) instruments. With appropriate {gamma}-ray acquisition modeling, the HpGe spectrometers can be used to perform verification-type quantitative assay for Pu-isotopics and HEU content. The AD nuclear NDA group is widely experienced with this type of measurement and reports content for these species in requested process control, MC&A booking, and holdup measurements assays Site-wide. However none of the AD HpGe {gamma}-ray spectrometers have been 14Q-qualified, and the requirement of reference 1 specifically excluded a {gamma}-ray PHA measurement from those it would accept for the required verification measurements. The requirement of reference 1 was a new requirement for which the Savannah River National Laboratory (SRNL) Research Operations Department (ROD) MC&A group was unprepared. The criteria for exemption from verification were: (1) isotope content below 50 grams; (2) intrinsically tamper indicating or TID sealed items which contain a Category IV quantity of material; (3) assembled components; and (4) laboratory samples. Therefore all (SRNL) Material Balance Area (MBA) items with greater than 50 grams total Pu or greater than 50 grams HEU were subject to a verification measurement. The pass/fail criteria of reference 7 stated 'The facility will report measured values, book values, and statistical control limits for the selected items to DOE SR...', and 'The site/facility operator must develop, document, and maintain measurement methods for all nuclear material on inventory'. These new requirements exceeded SRNL's experience with prior semi-annual inventory expectations, but allowed the AD nuclear field measurement group to demonstrate its excellent adaptability and superior flexibility to respond to unpredicted expectations from the DOE customer. The requirements yielded five SRNL items subject to Pu verification and two SRNL items subject to HEU verification. These items are listed and described in Table 1.

Dewberry, R.; Ayers, J.; Tietze, F.; Klapper, K.

2010-02-05T23:59:59.000Z

251

DOE technical standards list: Department of Energy standards index  

SciTech Connect (OSTI)

This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31) on the basis of currently available technical information. Periodic updates of this TSL will be issued as additional information is received on standardization documents being issued, adopted, or canceled by DOE. This document was prepared for use by personnel involved in the selection and use of DOE technical standards and other Government and non-Government standards. This TSL provides listings of current DOE technical standards, non-Government standards that have been adopted by DOE, other standards-related documents in which DOE has a recorded interest, and canceled DOE technical standards. Information on new DOE technical standards projects, technical standards released for coordination, recently published DOE technical standards, and activities of non-Government standards bodies that may be of interest to DOE is published monthly in Standards Actions.

NONE

1999-05-01T23:59:59.000Z

252

DOE's Fuel Cell Catalyst R&D Activities | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host a BoothDevelopmentDOE'sDOE's Fuel

253

Status Update on Action 2b: Revision of DOE G 226.1-2 with new Guidance for Activity-level Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by Roger Claycomb, Work Control Program Manager, DOE Idaho Operations Office. Strengthen guidance and formality associated with contractor implementation and Federal monitoring of activity-level WP&C. Develop a DOE Guide on Federal oversight and evaluation of the effectiveness of Activity-Level WP&C.

254

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, or successor directive, for routine and planned nuclear explosive operations (NEOs).

2015-01-26T23:59:59.000Z

255

DOE/EIS-0251; Supplemental Analysis For a Container System for the Management of DOE Spent Nuclear Fuel Located at the INEEL  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix DOE-STD-3009-2014of Energy 6-2013,EA - 0942ID-10636

256

DOE-STD-1053-93; DOE Standard Guideline to Good Practices For Control of Maintenance Activities at DOE Nuclear Facilities  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2ConsolidatedDepartment2-932-24562 Revision4-93 June 19933-93 March

257

DOE occupational radiation exposure 1996 report  

SciTech Connect (OSTI)

The goal of the US Department of Energy (DOE) is to conduct its radiological operations to ensure the health and safety of all DOE employees including contractors and subcontractors. The DOE strives to maintain radiation exposures to its workers below administrative control levels and DOE limits and to further reduce these exposures and releases to levels that are ``As Low As Reasonably Achievable`` (ALARA). The DOE Occupational Radiation Exposure Report, 1996 provides summary and analysis of the occupational radiation exposure received by individuals associated with DOE activities. The DOE mission includes stewardship of the nuclear weapons stockpile and the associated facilities, environmental restoration of DOE and precursor agency sites, and energy research. Collective exposure at DOE has declined by 80% over the past decade due to a cessation in opportunities for exposure during the transition in DOE mission from weapons production to cleanup, deactivation and decommissioning, and changes in reporting requirements and dose calculation methodology. In 1996, the collective dose decreased by 10% from the 1995 value due to decreased doses at five of the seven highest-dose DOE sites. For 1996, these sites attributed the reduction in collective dose to the completion of several decontamination and decommissioning projects, reduced spent fuel storage activities, and effective ALARA practices. This report is intended to be a valuable tool for managers in their management of radiological safety programs and commitment of resources.

NONE

1996-12-31T23:59:59.000Z

258

MOLECULAR GAS AND NUCLEAR ACTIVITY IN ULTRALUMINOUS INFRARED GALAXIES WITH DOUBLE NUCLEI  

E-Print Network [OSTI]

an assumption that the radio and infrared emission arise from supernovae and dust heating by massive starsMOLECULAR GAS AND NUCLEAR ACTIVITY IN ULTRALUMINOUS INFRARED GALAXIES WITH DOUBLE NUCLEI A. S August 2 ABSTRACT High-resolution CO(1 ! 0) observations of five ultraluminous infrared galaxies [ULIGs

Evans, Aaron S.

259

News & Updates - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Workplace NEW - DOE O 452.2E, Nuclear Explosive Safety NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations NEW - DOE P 481.1, DOE's Policy Regarding Laboratories, Plants and...

260

Technical cooperation between IAE/NNC and U.S. DOE National Laboratories on nuclear export controls in Kazakhstan -- a status report  

SciTech Connect (OSTI)

The US Department of Energy (DOE) sponsors technical cooperative agreements, also known as Lab to Lab agreements, between its National Laboratories and similar institutions in the Newly Independent States (NIS) for the purpose of sharing some of the experience and expertise on nuclear export controls and nonproliferation of the former with their NIS counterparts so that, in turn, they can provide technical support to their respective governments in nonproliferation matters. In Kazakhstan, two separate technical cooperative agreements involving the Institute of Atomic Energy of the National Nuclear Center, Argonne National Laboratory, and Los Alamos National Laboratory were established in 1996. The tasks carried out during the first year of these technical cooperative agreements are described and the objectives and end products of the tasks are discussed.

Picologlou, B. [Argonne National Lab., IL (United States); Cernicek, A. [Los Alamos National Lab., NM (United States); Pakhnitz, V.; Koltysheva, G. [Inst. of Atomic Energy/NNC (Kazakhstan)

1997-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs). Cancels DOE O 452.2C. Admin Chg 1, dated 7-10-13, cancels DOE O 452.2D.

2009-04-14T23:59:59.000Z

262

DOE-STD-1120-2005; Integration of Environment Safety and Health into Facility Disposition Activities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 December

263

Proceedings of the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT)  

SciTech Connect (OSTI)

These proceedings contain papers prepared for the 22nd Annual DoD/DOE Seismic Research Symposium: Planning for Verification of and Compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT), held 13-15 September 2000 in New Orleans, Louisiana. These papers represent the combined research related to ground-based nuclear explosion monitoring funded by the National Nuclear Security Administration (NNSA), Defense Threat Reduction Agency (DTRA), Air Force Technical Applications Center (AFTAC), Department of Defense (DoD), US Army Space and Missile Defense Command, Defense Special Weapons Agency (DSWA), and other invited sponsors. The scientific objectives of the research are to improve the United States capability to detect, locate, and identify nuclear explosions. The purpose of the meeting is to provide the sponsoring agencies, as well as potential users, an opportunity to review research accomplished during the preceding year and to discuss areas of investigation for the coming year. For the researchers, it provides a forum for the exchange of scientific information toward achieving program goals, and an opportunity to discuss results and future plans. Paper topics include: seismic regionalization and calibration; detection and location of sources; wave propagation from source to receiver; the nature of seismic sources, including mining practices; hydroacoustic, infrasound, and radionuclide methods; on-site inspection; and data processing.

Nichols, James W., LTC [Editor

2000-09-15T23:59:59.000Z

264

DOE and NRCan Agreement to Enhance Collaboration in Civilian...  

Energy Savers [EERE]

DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy Research and Development DOE and NRCan Agreement to Enhance Collaboration in Civilian Nuclear Energy...

265

Manual of functions, assignments, and responsibilities for nuclear safety: Revision 2  

SciTech Connect (OSTI)

The FAR Manual is a convenient easy-to-use collection of the functions, assignments, and responsibilities (FARs) of DOE nuclear safety personnel. Current DOE directives, including Orders, Secretary of Energy Notices, and other assorted policy memoranda, are the source of this information and form the basis of the FAR Manual. Today, the majority of FARs for DOE personnel are contained in DOE`s nuclear safety Orders. As these Orders are converted to rules in the Code of Federal Regulations, the FAR Manual will become the sole source for information relating to the functions, assignments, responsibilities of DOE nuclear safety personnel. The FAR Manual identifies DOE directives that relate to nuclear safety and the specific DOE personnel who are responsible for implementing them. The manual includes only FARs that have been extracted from active directives that have been approved in accordance with the procedures contained in DOE Order 1321.1B.

Not Available

1994-10-15T23:59:59.000Z

266

Reports and Activities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960Real Property Management

267

Overview of the International R&D Recycling Activities of the Nuclear Fuel Cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last 30 years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence on the price of uranium. However the management of used nuclear fuel remains the “Achilles’ Heel” of this energy source since the storage of used nuclear fuel is increasing as evidenced by the following number with 2,000 tons of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 spent fuel assemblies stored in dry cask and 88,000 stored in pools. Two options adopted by several countries will be presented. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of used nuclear fuel into a geologic formation. One has to remind that only 30% of the worldwide used nuclear fuel are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-10-01T23:59:59.000Z

268

Johnny Walks to School - Does Jane? Sex Differences in Children's Active Travel to School  

E-Print Network [OSTI]

of the Safe Routes to School Legislation: Urban Form Changess Active Transportation to School. ” American Journal ofCalifornia’s Safe Routes to School Program. ” Journal of the

McMillan, Tracy; Day, Kristen; Boarnet, Marlon; Alfonzo, Mariela; Anderson, Craig

2006-01-01T23:59:59.000Z

269

Merit Review of BER Activities at the DOE Laboratories | U.S...  

Office of Science (SC) Website

Laboratories BER announces research opportunities on the Office of Science Grants web site. The site includes a description of the research activity and the required process...

270

Discrimination of nuclear explosions against civilian sources based on atmospheric xenon isotopic activity ratios  

SciTech Connect (OSTI)

A global monitoring system for atmospheric xenon radioactivity is being established as part of the International Monitoring System that will be used to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) once the treaty has entered into force. This paper studies isotopic activity ratios to support interpretation of observed atmospheric concentrations of 135Xe, 133mXe, 133Xe and 131mXe. The goal is to distinguish nuclear explosion sources from civilian releases. Simulations of nuclear explosions, empirical data for both test and reactor releases as well as observations by measurement stations of the International Noble Gas Experiment (INGE) are used to provide a proof of concept for the isotopic ratio based method for source discrimination.

Kalinowski, Martin B.; Axelssson, A.; Bean, Marc; Blanchard, X.; Bowyer, Ted W.; Brachet, G.; McIntyre, Justin I.; Peters, Jana; Pistner, Christoph; Raith, Maria; Ringbom, Anders; Saey, P. R.; Schlosser, C.; Stocki, Trevor J.; Taffary, T.; Ungar, R. Kurt

2010-05-01T23:59:59.000Z

271

An Overview Comparison of Tank Closure Activities at Certain DOE Site  

SciTech Connect (OSTI)

This paper presents a summary-level comparison of the similarities and differences of tank closure programs at the four primary radioactive waste tank sites in the US Department of Energy (DOE) complex. The sites are Hanford, Idaho National Engineering and Environmental Laboratory (INEEL), Oak Ridge Reservation (ORR), and the Savannah River Site (SRS). The depth of our understanding of the closure programs varies with the amount of detailed information each of the four sites has provided to date. This paper was prepared using the best available information, including direct communications with key tank closure personnel at each of the sites. Many of the current schedules are under review for possible acceleration.

LUKE, J.J.

2003-01-01T23:59:59.000Z

272

Overview of DOE Hydrogen and Fuel Cell Activities: 2010 Gordon Research  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergyDepartment ofOil's Impact on OurSemprius Confidential 1Aluminum1 DOE3

273

DOE-STD-1042-93 CN-1; Guide to Good Practices for Control Area Activities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide to

274

DOE-STD-1120-2005; Integration of Environment, Safety, and Health into Facility Disposition Activities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 DecemberSTD-1120-2005 Volume 2

275

What Does the Sun Give Us? (5 Activities) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of Dept.| WEATHERIZATION5 | Energy EfficiencyDo You Think ofofDoes

276

Does Increased Exercise or Physical Activity Alter Ad-Libitum Daily Energy Intake or Macronutrient Composition in Healthy Adults? A Systematic Review  

E-Print Network [OSTI]

Background The magnitude of the negative energy balance induced by exercise may be reduced due to compensatory increases in energy intake. Objective To address the question: Does increased exercise or physical activity alter ad-libitum daily...

Donnelly, Joseph E.; Herrmann, Stephen D.; Lambourne, Kate; Szabo, Amanda N.; Honas, Jeffery J.; Washburn, Richard A.

2014-01-15T23:59:59.000Z

277

Unclassified Controlled Nuclear Information  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prevent unauthorized dissemination of Unclassified Controlled Nuclear Information (UCNI). Cancels DOE 5635.4 and DOE 5650.3A

1995-09-25T23:59:59.000Z

278

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 5660.1B.

2009-08-17T23:59:59.000Z

279

Critical analysis of the Hanford spent nuclear fuel project activity based cost estimate  

SciTech Connect (OSTI)

In 1997, the SNFP developed a baseline change request (BCR) and submitted it to DOE-RL for approval. The schedule was formally evaluated to have a 19% probability of success [Williams, 1998]. In December 1997, DOE-RL Manager John Wagoner approved the BCR contingent upon a subsequent independent review of the new baseline. The SNFP took several actions during the first quarter of 1998 to prepare for the independent review. The project developed the Estimating Requirements and Implementation Guide [DESH, 1998] and trained cost account managers (CAMS) and other personnel involved in the estimating process in activity-based cost (ABC) estimating techniques. The SNFP then applied ABC estimating techniques to develop the basis for the December Baseline (DB) and documented that basis in Basis of Estimate (BOE) books. These BOEs were provided to DOE in April 1998. DOE commissioned Professional Analysis, Inc. (PAI) to perform a critical analysis (CA) of the DB. PAI`s review formally began on April 13. PAI performed the CA, provided three sets of findings to the SNFP contractor, and initiated reconciliation meetings. During the course of PAI`s review, DOE directed the SNFP to develop a new baseline with a higher probability of success. The contractor transmitted the new baseline, which is referred to as the High Probability Baseline (HPB), to DOE on April 15, 1998 [Williams, 1998]. The HPB was estimated to approach a 90% confidence level on the start of fuel movement [Williams, 1998]. This high probability resulted in an increased cost and a schedule extension. To implement the new baseline, the contractor initiated 26 BCRs with supporting BOES. PAI`s scope was revised on April 28 to add reviewing the HPB and the associated BCRs and BOES.

Warren, R.N.

1998-09-29T23:59:59.000Z

280

Reports and Activities | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 IndustrialIsadore Perlman, 1960Real Property Management IntegratedReferenceReports

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Handbook: Implementing Activity-level Work Planning & Control at  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2Consolidated Edison5 byElectricRegistration2.4HQ F 472.1Nuclear

282

Nuclear Waste Technical Review Board Strategic Plan FY 20082013  

E-Print Network [OSTI]

on compliance activities, in conduct- ing its evaluation, the Board will encourage DOE through its science its review of DOE activities into three technical areas: preclosure operations, including surface-facility design and operations and the transport of spent nuclear fuel and high-level radioactive waste from

283

DOE Approved Technical Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

the safe operation of DOE's defense nuclear facilities. 09302014 DOE-HDBK-1214-2014 Conduct of Operations Assessment Field Handbook This handbook is designed to assist in...

284

Dry, portable calorimeter for nondestructive measurement of the activity of nuclear fuel  

DOE Patents [OSTI]

The activity of a quantity of heat-producing nuclear fuel is measured rapidly, accurately and nondestructively by a portable dry calorimeter comprising a preheater, an array of temperature-controlled structures comprising a thermally guarded temperature-controlled oven, and a calculation and control unit. The difference between the amounts of electric power required to maintain the oven temperature with and without nuclear fuel in the oven is measured to determine the power produced by radioactive disintegration and hence the activity of the fuel. A portion of the electronic control system is designed to terminate a continuing sequence of measurements when the standard deviation of the variations of the amount of electric power required to maintain oven temperature is within a predetermined value.

Beyer, Norman S. (Elmhurst, IL); Lewis, Robert N. (Clarendon Hills, IL); Perry, Ronald B. (Hinsdale, IL)

1976-01-01T23:59:59.000Z

285

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECN/NEA activities reports; not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I.W.; Patridge, M.D.

1991-05-01T23:59:59.000Z

286

Integrated treatment and handling of highly activated components from nuclear facilities  

SciTech Connect (OSTI)

A complete Underwater Treatment System (UTS) is described for activated/contaminated components of various origins in the nuclear industry. The system comprises different kinds of cutting/compacting equipment: the USC (Underwater Shear/compactor), the SCS (Stellite Corner Shear), the VLS (Velocity Limiter Shear) and the LCS (Light Crusher Shear). Transfer and loading equipment, the STB (Shielded Transfer Bell) provides safe and economic loading of containers with cut components. Operating experience and performance data are presented.

Schneider, K.A.; Kiolbassa, A.; Rose, K.A. [NUKEM GmbH, Alzenau (Germany); Raymont, J.M. Jr. [WasteChem, Houston, TX (United States)

1993-12-31T23:59:59.000Z

287

Lead Research and Development Activity for DOE's High Temperature, Low Relative Humidity Membrane Program (Topic 2)  

SciTech Connect (OSTI)

The Department of Energy’s High Temperature, Low Relative Humidity Membrane Program was begun in 2006 with the Florida Solar Energy Center (FSEC) as the lead organization. During the first three years of the program, FSEC was tasked with developing non-Nafion® proton exchange membranes with improved conductivity for fuel cells. Additionally, FSEC was responsible for developing protocols for the measurement of in-plane conductivity, providing conductivity measurements for the other funded teams, developing a method for through-plane conductivity and organizing and holding semiannual meetings of the High Temperature Membrane Working Group (HTMWG). The FSEC membrane research focused on the development of supported poly[perfluorosulfonic acid] (PFSA) – Teflon membranes and a hydrocarbon membrane, sulfonated poly(ether ether ketone). The fourth generation of the PFSA membrane (designated FSEC-4) came close to, but did not meet, the Go/No-Go milestone of 0.1 S/cm at 50% relative humidity at 120 °C. In-plane conductivity of membranes provided by the funded teams was measured and reported to the teams and DOE. Late in the third year of the program, DOE used this data and other factors to decide upon the teams to continue in the program. The teams that continued provided promising membranes to FSEC for development of membrane electrode assemblies (MEAs) that could be tested in an operating fuel cell. FSEC worked closely with each team to provide customized support. A logic flow chart was developed and discussed before MEA fabrication or any testing began. Of the five teams supported, by the end of the project, membranes from two of the teams were easily manufactured into MEAs and successfully characterized for performance. One of these teams exceeded performance targets, while the other requires further optimization. An additional team developed a membrane that shows great promise for significantly reducing membrane costs and increasing membrane lifetime.

James Fenton, PhD; Darlene Slattery, PhD; Nahid Mohajeri, PhD

2012-09-05T23:59:59.000Z

288

DOE-STD-1054-93; DOE Standard Guideline to Good Practices for Control and Calibration of Measuring and Test Equipment (M&TE) at DOE Nuclear Facilities  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-93 December 31,1998 Guide1-93 March4-93

289

DOE technical standards list: Directory of points of contact for the DOE Technical Standards Program  

SciTech Connect (OSTI)

This Department of Energy (DOE) technical standards list (TSL) has been prepared by the Office of Nuclear Safety Policy and Standards (EH-31). This TSL is approved for use by all DOE Components (i.e., all DOE Headquarters and field organizations, management and operating contractors, and laboratories). This TSL supplements DOE manuals, directives, orders, and standards. It provides basic and fundamental information for DOE Component personnel involved in identifying standardization documents. It also provides listings of points of contact within DOE and identifies links to points of contact within the Department of Defense (DoD) for coordination of standardization activities. This TSL will be updated to reflect changes in organizations, addresses, and responsibilities as necessary.

NONE

1998-01-01T23:59:59.000Z

290

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13.

2010-04-16T23:59:59.000Z

291

Supplement analysis for a container system for the management of DOE spent nuclear fuel located at the INEEL  

SciTech Connect (OSTI)

The Council on Environmental Quality (CEQ) regulations for implementing the NEPA, 40 CFR 1502.9 (c), directs federal agencies to prepare a supplement to an environmental impact statement when an agency makes substantial changes in the Proposed Action that are relevant to environmental concerns, or there are significant new circumstances or information relevant to environmental concerns and bearing on the Proposed Action or impacts. When it is unclear whether a supplemental environmental impact statement is required, DOE regulations (10 CFR 1021.314) direct the preparation of a supplement analysis to assist in making that determination. This supplement analysis evaluates the impacts of employing dual-purpose canisters (DPCs) to prepare DOE SNF located at the INEEL for interim onsite storage and transport outside the State of Idaho. Impacts associated with DPC manufacturing, loading and storage of DOE-ID SNF into DPCs, transport of loaded DPCs outside Idaho, and the cumulative impacts are compared with the impacts previously analyzed in the SNF and INEL EIS and the Navy Container System EIS. This SA provides information to determine whether: (1) an existing EIS should be supplemented; (2) a new EIS should be prepared; or (3) no further NEPA documentation is required.

NONE

1999-03-12T23:59:59.000Z

292

Laboratory and Field Testing of Commercially Available Detectors for the Identification of Chemicals of Interest in the Nuclear Fuel Cycle for the Detection of Undeclared Activities  

SciTech Connect (OSTI)

Traditionally, IAEA inspectors have focused on the detection of nuclear indicators as part of infield inspection activities. The ability to rapidly detect and identify chemical as well as nuclear signatures can increase the ability of IAEA inspectors to detect undeclared activities at a site. Identification of chemical indicators have been limited to use in the analysis of environmental samples. Although IAEA analytical laboratories are highly effective, environmental sample processing does not allow for immediate or real-time results to an IAEA inspector at a facility. During a complementary access inspection, under the Additional Protocol, the use of fieldable technologies that can quickly provide accurate information on chemicals that may be indicative of undeclared activities can increase the ability of IAEA to effectively and efficiently complete their mission. The Complementary Access Working Group (CAWG) is a multi-laboratory team with members from Brookhaven National Laboratory, Idaho National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratory. The team identified chemicals at each stage of the nuclear fuel cycle that may provide IAEA inspectors with indications that proliferation activities may be occurring. The group eliminated all indicators related to equipment, technology and training, developing a list of by-products/effluents, non-nuclear materials, nuclear materials, and other observables. These proliferation indicators were prioritized based on detectability from a conduct of operations (CONOPS) perspective of a CA inspection (for example, whether an inspector actually can access the S&O or whether it is in process with no physical access), and the IAEA’s interest in the detection technology in conjunction with radiation detectors. The list was consolidated to general categories (nuclear materials from a chemical detection technique, inorganic chemicals, organic chemicals, halogens, and miscellaneous materials). The team then identified commercial off the shelf (COTS) chemical detectors that may detect the chemicals of interest. Three chemical detectors were selected and tested both in laboratory settings and in field operations settings at Idaho National Laboratory. The instruments selected are: Thermo Scientific TruDefender FT (FTIR), Thermo Scientific FirstDefender RM (Raman), and Bruker Tracer III SD (XRF). Functional specifications, operability, and chemical detectability, selectivity, and limits of detection were determined. Results from the laboratory and field tests will be presented. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Carla Miller; Mary Adamic; Stacey Barker; Barry Siskind; Joe Brady; Warren Stern; Heidi Smartt; Mike McDaniel; Mike Stern; Rollin Lakis

2014-07-01T23:59:59.000Z

293

Verification of Readiness to Start Up or Restart Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes requirements for verifying readiness for startup of new Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations, and for restart of existing Hazard Category 1, 2, and 3 nuclear facilities, activities, and operations that have been shut down. Cancels DOE O 425.1C. Adm Chg 1, dated 4-2-13, cancels DOE O 425.1D.

2010-04-16T23:59:59.000Z

294

Nuclear Matter and Nuclear Dynamics  

E-Print Network [OSTI]

Highlights on the recent research activity, carried out by the Italian Community involved in the "Nuclear Matter and Nuclear Dynamics" field, will be presented.

M Colonna

2009-02-26T23:59:59.000Z

295

L Al N l D t N dLos Alamos Nuclear Data Needs and Activities From Experiment  

E-Print Network [OSTI]

L Al N l D t N dLos Alamos Nuclear Data Needs and Activities ­ From Experiment Th h A li ti Kawano, Patrick Talou, Morgan White LA-UR-11-10498LA UR 11 10498 Presented at: RPI Nuclear Data 2011 Symposium for Criticality Safety and Reactor Applications A il 27 2011 Operated by Los Alamos National

Danon, Yaron

296

Overview of the international R&D recycling activities of the nuclear fuel cycle  

SciTech Connect (OSTI)

Nuclear power has demonstrated over the last thirty years its capacity to produce base-load electricity at a low, predictable and stable cost due to the very low economic dependence of the price of uranium. However the management of used nuclear fuel (UNF) remains the “Achilles’ heel of this energy source since the storage of UNF is increasing as evidenced by the following number with 2,000 to 2,300 of UNF produced each year by the 104 US nuclear reactor units which equates to a total of 62,000 UNF assemblies stored in dry cask storage and 88,000 stored in pools. Alarmingly, more than half of US commercial reactor sites have filled their pools to capacity and have had to add dry cask storage facilities. Two options adopted by several countries will be discussed. The first one adopted by Europe, Japan and Russia consists of recycling the used nuclear fuel after irradiation in a nuclear reactor. Ninety six percent of uranium and plutonium contained in the spent fuel could be reused to produce electricity and are worth recycling. The separation of uranium and plutonium from the wastes is realized through the industrial PUREX process so that they can be recycled for re-use in a nuclear reactor as a mixed oxide (MOX) fuel. The second option undertaken by Finland, Sweden and the United States implies the direct disposal of UNF into a geologic formation. One has to remind that only 30% of the worldwide UNF are currently recycled, the larger part being stored (90% in pool) waiting for scientific or political decisions. A third option is emerging with a closed fuel cycle which will improve the global sustainability of nuclear energy. This option will not only decrease the volume amount of nuclear waste but also the long-term radiotoxicity of the final waste, as well as improving the long-term safety and the heat-loading of the final repository. At the present time, numerous countries are focusing on the R&D recycling activities of the ultimate waste composed of fission products and minor actinides (americium and curium). Several new chemical extraction processes, such as TRUSPEAK, EXAM, or LUCA processes are pursued worldwide and their approaches will be highlighted.

Patricia Paviet-Hartmann

2012-12-01T23:59:59.000Z

297

Annual DOE active solar heating and cooling contractors' review meeting. Premeeting proceedings and project summaries  

SciTech Connect (OSTI)

Ninety-three project summaries are presented which discuss the following aspects of active solar heating and cooling: Rankine solar cooling systems; absorption solar cooling systems; desiccant solar cooling systems; solar heat pump systems; solar hot water systems; special projects (such as the National Solar Data Network, hybrid solar thermal/photovoltaic applications, and heat transfer and water migration in soils); administrative/management support; and solar collector, storage, controls, analysis, and materials technology. (LEW)

None,

1981-09-01T23:59:59.000Z

298

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the requirements of DOE O 452.2D, Nuclear Explosive Safety.

2009-04-14T23:59:59.000Z

299

Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece  

SciTech Connect (OSTI)

Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

2008-01-15T23:59:59.000Z

300

Idaho National Laboratory Ten-year Site Plan (2012 through 2021) -- DOE-NE's National Nuclear Capability -- Developing and Maintaining the INL Infrastructure  

SciTech Connect (OSTI)

To meet long-term objectives to transform the Idaho National Laboratory (INL), we are providing an integrated, long-term vision of infrastructure requirements that support research, development and demonstration (RD&D) goals outlined in the DOE strategic plans, including the NE Roadmap and reports such as Facilities for the Future of Nuclear Energy Research: A Twenty-year Outlook. The goal of the INL Ten-year Site Plan (TYSP) is to clearly link RD&D mission goals and INL core capabilities with infrastructure requirements (single and multi-program), establish the 10-year end-state vision for INL complexes, identify and prioritize infrastructure and capability gaps, as well as the most efficient and economic approaches to closing those gaps.

Cal Ozaki

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network [OSTI]

03715, Institute of Nuclear Materials Management 50th Annual04602, Institute of Nuclear Materials Management 51st AnnualInstitute of Nuclear Materials Management 51st Annual

Croft, S.

2012-01-01T23:59:59.000Z

302

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility was used in the early to mid-1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles in the immediate area. Identified as Corrective Action Unit 115, the TCA facility was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the ''Federal Facility Agreement and Consent Order''. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously provided technical decisions are made by an experienced decision maker within the site conceptual site model, identified in the Data Quality Objective process. Facility closure involved a seven-step decommissioning strategy. Key lessons learned from the project included: (1) Targeted preliminary investigation activities provided a more solid technical approach, reduced surprises and scope creep, and made the working environment safer for the D&D worker. (2) Early identification of risks and uncertainties provided opportunities for risk management and mitigation planning to address challenges and unanticipated conditions. (3) Team reviews provided an excellent mechanism to consider all aspects of the task, integrated safety into activity performance, increase team unity and ''buy-in'' and promoted innovative and time saving ideas. (4) Development of CED protocols ensured safety and control. (5) The same proven D&D strategy is now being employed on the larger ''sister'' facility, Test Cell C.

Michael R. Kruzic

2007-09-16T23:59:59.000Z

303

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

304

Ranking the importance of nuclear reactions for activation and transmutation events  

E-Print Network [OSTI]

Pathways-reduced analysis is one of the techniques used by the Fispact-II nuclear activation and transmutation software to study the sensitivity of the computed inventories to uncertainties in reaction cross-sections. Although deciding which pathways are most important is very helpful in for example determining which nuclear data would benefit from further refinement, pathways-reduced analysis need not necessarily define the most critical reaction, since one reaction may contribute to several different pathways. This work examines three different techniques for ranking reactions in their order of importance in determining the final inventory, viz. a pathways based metric (PBM), the direct method and one based on the Pearson correlation coefficient. Reasons why the PBM is to be preferred are presented.

Arter, Wayne; Relton, Samuel D; Higham, Nicholas J

2015-01-01T23:59:59.000Z

305

NRC - regulator of nuclear safety  

SciTech Connect (OSTI)

The U.S. Nuclear Regulatory Commission (NRC) was formed in 1975 to regulate the various commercial and institutional uses of nuclear energy, including nuclear power plants. The agency succeeded the Atomic Energy Commission, which previously had responsibility for both developing and regulating nuclear activities. Federal research and development work for all energy sources, as well as nuclear weapons production, is now conducted by the U.S. Department of Energy. Under its responsibility to protect public health and safety, the NRC has three principal regulatory functions: (1) establish standards and regulations, (2) issue licenses for nuclear facilities and users of nuclear materials, and (3) inspect facilities and users of nuclear materials to ensure compliance with the requirements. These regulatory functions relate to both nuclear power plants and to other uses of nuclear materials - like nuclear medicine programs at hospitals, academic activities at educational institutions, research work, and such industrial applications as gauges and testing equipment. The NRC places a high priority on keeping the public informed of its work. The agency recognizes the interest of citizens in what it does through such activities as maintaining public document rooms across the country and holding public hearings, public meetings in local areas, and discussions with individuals and organizations.

NONE

1997-05-01T23:59:59.000Z

306

Nuclear nonproliferation: Concerns with US delays in accepting foregin research reactors` spent fuel  

SciTech Connect (OSTI)

One key US nonproliferation goal is to discourage use of highly enriched uranium fuel (HEU), which can be used to make nuclear bombs, in civilian nuclear programs worldwide. DOE`s Off-Site Fuels Policy for taking back spent HEU from foreign research reactors was allowed to expire due to environmental reasons. This report provides information on the effects of delays in renewing the Off-Site Fuels Policy on US nonproliferation goals and programs (specifically the reduced enrichment program), DOE`s efforts to renew the fuels policy, and the price to be charged to the operators of foreign reactors for DOE`s activities in taking back spent fuel.

NONE

1994-03-25T23:59:59.000Z

307

Status Update on Action 2a: Implementation Handbook for Activity-level Work Planning and Control  

Broader source: Energy.gov [DOE]

Slide Presentation by James Winter, NA-00-10. DOE Handbook: Implementing Activity-Level Work Planning & Control at Nuclear Facilities. Project Justification Statement submitted 1-29-13, with focus upon improved implementation of WP&C and activity-level work. Provides the background, project plan, and key elements of a new DOE handbook on implementing activity-level work planning and control at DOE nuclear facilities.

308

THE NUCLEAR INFRARED EMISSION OF LOW-LUMINOSITY ACTIVE GALACTIC NUCLEI  

SciTech Connect (OSTI)

We present high-resolution mid-infrared (MIR) imaging, nuclear spectral energy distributions (SEDs), and archival Spitzer spectra for 22 low-luminosity active galactic nuclei (LLAGNs; L{sub bol} {approx}< 10{sup 42} erg s{sup -1}). Infrared (IR) observations may advance our understanding of the accretion flows in LLAGNs, the fate of the obscuring torus at low accretion rates, and, perhaps, the star formation histories of these objects. However, while comprehensively studied in higher-luminosity Seyferts and quasars, the nuclear IR properties of LLAGNs have not yet been well determined. We separate the present LLAGN sample into three categories depending on their Eddington ratio and radio emission, finding different IR characteristics for each class. (1) At the low-luminosity, low-Eddington-ratio (log L{sub bol}/L{sub Edd} < -4.6) end of the sample, we identify 'host-dominated' galaxies with strong polycyclic aromatic hydrocarbon bands that may indicate active (circum-)nuclear star formation. (2) Some very radio-loud objects are also present at these low Eddington ratios. The IR emission in these nuclei is dominated by synchrotron radiation, and some are likely to be unobscured type 2 AGNs that genuinely lack a broad-line region. (3) At higher Eddington ratios, strong, compact nuclear sources are visible in the MIR images. The nuclear SEDs of these galaxies are diverse; some resemble typical Seyfert nuclei, while others lack a well-defined MIR 'dust bump'. Strong silicate emission is present in many of these objects. We speculate that this, together with high ratios of silicate strength to hydrogen column density, could suggest optically thin dust and low dust-to-gas ratios, in accordance with model predictions that LLAGNs do not host a Seyfert-like obscuring torus. We anticipate that detailed modeling of the new data and SEDs in terms of accretion disk, jet, radiatively inefficient accretion flow, and torus components will provide further insights into the nuclear structures and processes of LLAGNs.

Mason, R. E. [Gemini Observatory, Northern Operations Center, 670 N. A'ohoku Place, Hilo, HI 96720 (United States); Lopez-Rodriguez, E.; Packham, C. [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, P.O. Box 112055, Gainesville, FL 32611 (United States); Alonso-Herrero, A. [Instituto de Fisica de Cantabria, CSIC-UC, Avenida de los Castros s/n, 39005 Santander (Spain); Levenson, N. A.; Radomski, J. [Gemini Observatory, Southern Operations Center, c/o AURA, Casilla 603, La Serena (Chile); Ramos Almeida, C. [Instituto de Astrofisica de Canarias, C/Via Lactea, s/n, E-38205, La Laguna, Tenerife (Spain); Colina, L. [Departamento de Astrofisica, Centro de Astrobiologia (CSIC/INTA), Instituto Nacional de Tecnica Aeroespacial, Crta de Torrejon a Ajalvir, km 4, 28850 Torrejon de Ardoz, Madrid (Spain); Elitzur, M. [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Aretxaga, I. [Instituto Nacional de Astrofisica, Optica y Electronica (INAOE), Aptdo. Postal 51 y 216, 72000 Puebla (Mexico); Roche, P. F. [Astrophysics, Department of Physics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH (United Kingdom); Oi, N. [Department of Astronomy, School of Science, Graduate University for Advanced Studies (SOKENDAI), Mitaka, Tokyo 181-8588 (Japan)

2012-07-15T23:59:59.000Z

309

Nuclear Emergency Search Team  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy for Nuclear Emergency Search Team (NEST) operations to malevolent radiological incidents. This directive does not cancel another directive. Canceled by DOE O 153.1.

1991-09-20T23:59:59.000Z

310

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements and procedures for the management of nuclear materials within the Department of Energy (DOE). Cancels DOE 5660.1A. Canceled by DOE O 410.2.

1994-05-26T23:59:59.000Z

311

Management of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish requirements for the lifecycle management of DOE owned and/or managed accountable nuclear materials. Cancels DOE O 410.2. Admin Chg 1 dated 4-10-2014, cancels DOE O 410.2.

2009-08-17T23:59:59.000Z

312

Calculations of Induced Activity in the ATLAS Experiment for Nuclear Waste Zoning.  

E-Print Network [OSTI]

Extensive calculations were performed with the general activation formula using the fluxes of high-energy hadrons and low-energy neutrons previously obtained from simulations with the GCALOR code of the ATLAS detector. Three sets of proton cross-sections were used for hadrons energy above 20 MeV: (a) one set calculated with the YIELDX code (i.e., the Silberberg-Tsao formula of partial proton spallation cross-sections), (b) one set calculated with the Rudstam formula, and (c) the â??best-estimate' dataset which was a compilation of the available experimental and calculated data. In the energy region below 20 MeV, neutron activation cross-sections were taken from evaluated nuclear data files. The activity of each nuclide for a predefined operation scenario (i.e., number and duration of irradiation and shutdown cycles) was normalized to reference values taken from the European or Swiss legislations, to obtain an aggregate estimate of the radiological hazard comparable with a nuclear waste zoning definition cr...

Morev, M N

2007-01-01T23:59:59.000Z

313

Report of the Integrated Program Planning Activity for the DOE Fusion Energy Sciences Program  

SciTech Connect (OSTI)

This report of the Integrated Program Planning Activity (IPPA) has been prepared in response to a recommendation by the Secretary of Energy Advisory Board that, ''Given the complex nature of the fusion effort, an integrated program planning process is an absolute necessity.'' We, therefore, undertook this activity in order to integrate the various elements of the program, to improve communication and performance accountability across the program, and to show the inter-connectedness and inter-dependency of the diverse parts of the national fusion energy sciences program. This report is based on the September 1999 Fusion Energy Sciences Advisory Committee's (FESAC) report ''Priorities and Balance within the Fusion Energy Sciences Program''. In its December 5,2000, letter to the Director of the Office of Science, the FESAC has reaffirmed the validity of the September 1999 report and stated that the IPPA presents a framework and process to guide the achievement of the 5-year goals listed in the 1999 report. The National Research Council's (NRC) Fusion Assessment Committee draft final report ''An Assessment of the Department of Energy's Office of Fusion Energy Sciences Program'', reviewing the quality of the science in the program, was made available after the IPPA report had been completed. The IPPA report is, nevertheless, consistent with the recommendations in the NRC report. In addition to program goals and the related 5-year, 10-year, and 15-year objectives, this report elaborates on the scientific issues associated with each of these objectives. The report also makes clear the relationships among the various program elements, and cites these relationships as the reason why integrated program planning is essential. In particular, while focusing on the science conducted by the program, the report addresses the important balances between the science and energy goals of the program, between the MFE and IFE approaches, and between the domestic and international aspects of the program. The report also outlines a process for establishing a database for the fusion research program that will indicate how each research element fits into the overall program. This database will also include near-term milestones associated with each research element, and will facilitate assessments of the balance within the program at different levels. The Office of Fusion Energy Sciences plans to begin assembling and using the database in the Spring of 2001 as we receive proposals from our laboratories and begin to prepare our budget proposal for Fiscal Year 2003.

None

2000-12-01T23:59:59.000Z

314

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes requirements to implement the nuclear explosive safety (NES) elements of DOE O 452.1E, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations (NEOs).

2014-07-10T23:59:59.000Z

315

Nuclear Rocket Facility Decommissioning Project: Controlled Explosive Demolition of Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site (NTS), the Test Cell A (TCA) Facility (Figure 1) was used in the early to mid-1960s for testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program, to further space travel. Nuclear rocket testing resulted in the activation of materials around the reactors and the release of fission products and fuel particles. The TCA facility, known as Corrective Action Unit 115, was decontaminated and decommissioned (D&D) from December 2004 to July 2005 using the Streamlined Approach for Environmental Restoration (SAFER) process, under the Federal Facility Agreement and Consent Order. The SAFER process allows environmental remediation and facility closure activities (i.e., decommissioning) to occur simultaneously, provided technical decisions are made by an experienced decision maker within the site conceptual site model. Facility closure involved a seven-step decommissioning strategy. First, preliminary investigation activities were performed, including review of process knowledge documentation, targeted facility radiological and hazardous material surveys, concrete core drilling and analysis, shield wall radiological characterization, and discrete sampling, which proved to be very useful and cost-effective in subsequent decommissioning planning and execution and worker safety. Second, site setup and mobilization of equipment and personnel were completed. Third, early removal of hazardous materials, including asbestos, lead, cadmium, and oil, was performed ensuring worker safety during more invasive demolition activities. Process piping was to be verified void of contents. Electrical systems were de-energized and other systems were rendered free of residual energy. Fourth, areas of high radiological contamination were decontaminated using multiple methods. Contamination levels varied across the facility. Fixed beta/gamma contamination levels ranged up to 2 million disintegrations per minute (dpm)/100 centimeters squared (cm2) beta/gamma. Removable beta/gamma contamination levels seldom exceeded 1,000 dpm/100 cm2, but, in railroad trenches on the reactor pad containing soil on the concrete pad in front of the shield wall, the beta dose rates ranged up to 120 milli-roentgens per hour from radioactivity entrained in the soil. General area dose rates were less than 100 micro-roentgens per hour. Prior to demolition of the reactor shield wall, removable and fixed contaminated surfaces were decontaminated to the best extent possible, using traditional decontamination methods. Fifth, large sections of the remaining structures were demolished by mechanical and open-air controlled explosive demolition (CED). Mechanical demolition methods included the use of conventional demolition equipment for removal of three main buildings, an exhaust stack, and a mobile shed. The 5-foot (ft), 5-inch (in.) thick, neutron-activated reinforced concrete shield was demolished by CED, which had never been performed at the NTS.

Michael R. Kruzic

2008-06-01T23:59:59.000Z

316

AKT activation drives the nuclear localization of CSE1L and a pro-oncogenic transcriptional activation in ovarian cancer cells  

SciTech Connect (OSTI)

The human homolog of the yeast cse1 gene (CSE1L) is over-expressed in ovarian cancer. CSE1L forms complex with Ran and importin-? and has roles in nucleocytoplasmic traffic and gene expression. CSE1L accumulated in the nucleus of ovarian cancer cell lines, while it was localized also in the cytoplasm of other cancer cell lines. Nuclear localization depended on AKT, which was constitutively active in ovarian cancer cells, as the CSE1L protein translocated to the cytoplasm when AKT was inactivated. Moreover, the expression of a constitutively active AKT forced the translocation of CSE1L from the cytoplasm to the nucleus in other cancer cells. Nuclear accrual of CSE1L was associated to the nuclear accumulation of the phosphorylated Ran Binding protein 3 (RanBP3), which depended on AKT as well. Also in samples of human ovarian cancer, AKT activation was associated to nuclear accumulation of CSE1L and phosphorylation of RanBP3. Expression profiling of ovarian cancer cells after CSE1L silencing showed that CSE1L was required for the expression of genes promoting invasion and metastasis. In agreement, CSE1L silencing impaired motility and invasiveness of ovarian cancer cells. Altogether these data show that in ovarian cancer cells activated AKT by affecting RanBP3 phosphorylation determines the nuclear accumulation of CSE1L and likely the nuclear concentration of transcription factors conveying pro-oncogenic signals. - highlights: • CSE1L is a key player in nucleocytoplasmic traffic by forming complex with Ran. • AKT phosphorylates RanBP3 that regulates the nucleocytoplasmic gradient of Ran. • The activated oncogenic AKT drives the nuclear accumulation of CSE1L. • CSE1L in the nucleus up-regulates genes conveying pro-oncogenic signals. • CSE1L might contribute to tumor progression driven by the activated oncogenic AKT.

Lorenzato, Annalisa; Biolatti, Marta [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Delogu, Giuseppe [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Capobianco, Giampiero [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Farace, Cristiano [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); Dessole, Salvatore; Cossu, Antonio; Tanda, Francesco [Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari (Italy); Madeddu, Roberto [Department of Biomedical Sciences-Histology, University of Sassari, Sassari (Italy); National Institute of Biostructures and Biosystems, Rome (Italy); Olivero, Martina [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy); Di Renzo, Maria Flavia, E-mail: mariaflavia.direnzo@unito.it [Department of Oncology, University of Torino School of Medicine, Torino (Italy); Institute for Cancer Research at Candiolo, Candiolo, Torino (Italy)

2013-10-15T23:59:59.000Z

317

Nuclear translocation of phospholipase C-zeta, an egg-activating factor, during early embryonic development  

SciTech Connect (OSTI)

Phospholipase C-zeta (PLC{zeta}), a strong candidate of the egg-activating sperm factor, causes intracellular Ca{sup 2+} oscillations and egg activation, and is subsequently accumulated into the pronucleus (PN), when expressed in mouse eggs by injection of RNA encoding PLC{zeta}. Changes in the localization of expressed PLC{zeta} were investigated by tagging with a fluorescent protein. PLC{zeta} began to translocate into the PN formed at 5-6 h after RNA injection and increased there. Observation in the same embryo revealed that PLC{zeta} in the PN dispersed to the cytoplasm upon nuclear envelope breakdown and translocated again into the nucleus after cleavage. The dynamics was found in the second mitosis as well. When RNA was injected into fertilization-originated 1-cell embryos or blastomere(s) of 2-8-cell embryos, the nuclear localization of expressed PLC{zeta} was recognized in every embryo up to blastocyst. Thus, PLC{zeta} exhibited alternative cytoplasm/nucleus localization during development. This supports the view that the sperm factor could control cell cycle-dependent generation of Ca{sup 2+} oscillations in early embryogenesis.

Sone, Yoshie [Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666 (Japan); Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-8241 (Japan); Ito, Masahiko [Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666 (Japan); Shirakawa, Hideki [Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666 (Japan); Shikano, Tomohide [Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666 (Japan); Takeuchi, Hiroyuki [Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-8241 (Japan); Kinoshita, Katsuyuki [Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo 113-8241 (Japan); Miyazaki, Shunichi [Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo 162-8666 (Japan)]. E-mail: shunm@research.twmu.ac.jp

2005-05-13T23:59:59.000Z

318

Safety Software Quality Assurance Functions, Responsibilities, and Authorities for Nuclear Facilities and Activities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To assign roles and responsibilities for improving the quality of safety software. DOE N 411.2 (archived) extends this Notice until 01/31/2005. DOE N 411.3 extends this Notice until 1/31/06. Canceled by DOE O 414.1C. does not cancel other directives.

2003-08-27T23:59:59.000Z

319

GKTC ACTIVITIES TO PROVIDE NUCLEAR MATERIAL PHYSICAL PROTECTION, CONTROL AND ACCOUNTING TRAINING FOR 2011-2012  

SciTech Connect (OSTI)

The GKTC was created at the Kyiv Institute of Nuclear Research as a result of collaborative efforts between the United States and Ukraine. The GKTC has been designated by the Ukrainian Government to provide the MPC&A training and methodological assistance to nuclear facilities and nuclear specialists. In 2010 the GKTC has conducted the planned assessment of training needs of Ukrainian MPC&A specialists. The objective of this work is to acquire the detailed information about the number of MPC&A specialists and guard personnel, who in the coming years should receive the further advanced training. As a result of the performed training needs evaluation the GKTC has determined that in the coming years a number of new training courses need to be developed. Some training courses are already in the process of development. Also taking into account the specific of activity on the guarding of nuclear facilities, GKTC has begun to develop the specialized training courses for the guarding unit personnel. The evaluation of needs of training of Ukrainian specialists on the physical protection shows that without the technical base of learning is not possible to satisfy the needs of Ukrainian facilities, in particular, the need for further training of specialists who maintains physical protection technical means, provides vulnerability assessment and testing of technical means. To increase the training effectiveness and create the basis for specialized training courses holding the GKTC is now working on the construction of an Interior (non-classified) Physical Protection Training Site. The objective of this site is to simulate the actual conditions of the nuclear facility PP system including the complex of engineering and technical means that will help the GKTC training course participants to consolidate the knowledge and gain the practical skills in the work with PP system engineering and technical means for more effective performance of their official duties. This paper briefly describes the practical efforts applied to the provision of physical protection specialists advanced training in Ukraine and real results on the way to implement such efforts in 2011-2012.

Romanova, Olena; Gavrilyuk, Victor I.; Kirischuk, Volodymyr; Gavrilyuk-Burakova, Anna; Diakov, Oleksii; Drapey, Sergiy; Proskurin, Dmitry; Dickman, Deborah A.; Ferguson, Ken

2011-10-01T23:59:59.000Z

320

Office of Nuclear Facility Safety Programs  

Broader source: Energy.gov [DOE]

The Office of Nuclear Facility Safety Programs establishes nuclear safety requirements related to safety management programs that are essential to the safety of DOE nuclear facilities.

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Active DOE Standards Managers  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout -------------------------ISM ChampionsTECHNICAL

322

Final Report for the DOE-BES Program Mechanistic Studies of Activated Hydrogen Release from Amine-Boranes  

SciTech Connect (OSTI)

Effective storage of hydrogen presents one of the most significant technical gaps to successful implementation of the hydrogen economy, particularly for transportation applications. Amine boranes, such as ammonia borane H3NBH3 and ammonia triborane H3NB3H7, have been identified as promising, high-capacity chemical hydrogen storage media containing potentially readily released protic (N-H) and hydridic (B-H) hydrogens. At the outset of our studies, dehydrogenation of ammonia borane had been studied primarily in the solid state, but our DOE sponsored work clearly demonstrated that ionic liquids, base-initiators and/or metal-catalysts can each significantly increase both the rate and extent of hydrogen release from amine boranes under moderate conditions. Our studies also showed that depending upon the activation method, hydrogen release from amine boranes can occur by very different mechanistic steps and yield different types of spent-fuel materials. The fundamental understanding that was developed during this grant of the pathways and controlling factors for each of these hydrogen-release mechanisms is now enabling continuing discovery and optimization of new chemical-hydride based hydrogen storage systems.

Larry G. Sneddon; R. Thomas Baker

2013-01-13T23:59:59.000Z

323

A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544  

E-Print Network [OSTI]

NA-24), National Nuclear Security Administration, U.S.nuclear energy together with the emergence of alternative fuel cycles. Introduction Energy security

Croft, S.

2012-01-01T23:59:59.000Z

324

Certification for DOE M 441.1-1 and DOE O 5480.30  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

On the basis of our review, we have determined that DOE M 441.1-1 and DOE O 5480.30 continue to be relevant and effective. They remain a necessary part of the DOE nuclear safety requirements system.

2010-11-18T23:59:59.000Z

325

Control and Accountability of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE O 474.1 prescribes Department of Energy (DOE) requirements for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission (NRC). Cancels DOE 5633.3B

1999-08-11T23:59:59.000Z

326

Control and Accountability of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order prescribes DOE minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission {NRC). Cancels DOE O 5633.3. Canceled by DOE O 5633.3B.

1993-02-12T23:59:59.000Z

327

Westinghouse-DOE integration: Meeting the challenge  

SciTech Connect (OSTI)

The Westinghouse Electric Corporation (WEC) is in a unique position to affect national environmental management policy approaching the 21st Century. Westinghouse companies are management and operating contractors (MOC,s) at several environmentally pivotal government-owned, contractor operated (GOCO) facilities within the Department of Energy`s (DOE`s) nuclear defense complex. One way the WEC brings its companies together is by activating teams to solve specific DOE site problems. For example, one challenging issue at DOE facilities involves the environmentally responsible, final disposal of transuranic and high-level nuclear wastes (TRUs and HLWS). To address these disposal issues, the DOE supports two Westinghouse-based task forces: The TRU Waste Acceptance Criteria Certification Committee (WACCC) and the HLW Vitrification Committee. The WACCC is developing methods to characterize an estimated 176,287 cubic meters of retrievably stored TRUs generated at DOE production sites. Once characterized, TRUs could be safely deposited in the WIPP repository. The Westinghouse HLW Vitrification Committee is dedicated to assess appropriate methods to process an estimated 380,702 cubic meters of HLWs currently stored in underground storage tanks (USTs). As planned, this processing will involve segregating, and appropriately treating, low level waste (LLW) and HLW tank constituents for eventual disposal. The first unit designed to process these nuclear wastes is the SRS Defense Waste Processing Facility (DWPF). Initiated in 1973, the DWPF project is scheduled to begin operations in 1991 or 1992. Westinghouse companies are also working together to achieve appropriate environmental site restoration at DOE sites via the GOCO Environmental Restoration Committee.

Price, S.V.

1992-12-31T23:59:59.000Z

328

Nuclear Fabrication Consortium  

SciTech Connect (OSTI)

This report summarizes the activities undertaken by EWI while under contract from the Department of Energy (DOE) � Office of Nuclear Energy (NE) for the management and operation of the Nuclear Fabrication Consortium (NFC). The NFC was established by EWI to independently develop, evaluate, and deploy fabrication approaches and data that support the re-establishment of the U.S. nuclear industry: ensuring that the supply chain will be competitive on a global stage, enabling more cost-effective and reliable nuclear power in a carbon constrained environment. The NFC provided a forum for member original equipment manufactures (OEM), fabricators, manufacturers, and materials suppliers to effectively engage with each other and rebuild the capacity of this supply chain by : � Identifying and removing impediments to the implementation of new construction and fabrication techniques and approaches for nuclear equipment, including system components and nuclear plants. � Providing and facilitating detailed scientific-based studies on new approaches and technologies that will have positive impacts on the cost of building of nuclear plants. � Analyzing and disseminating information about future nuclear fabrication technologies and how they could impact the North American and the International Nuclear Marketplace. � Facilitating dialog and initiate alignment among fabricators, owners, trade associations, and government agencies. � Supporting industry in helping to create a larger qualified nuclear supplier network. � Acting as an unbiased technology resource to evaluate, develop, and demonstrate new manufacturing technologies. � Creating welder and inspector training programs to help enable the necessary workforce for the upcoming construction work. � Serving as a focal point for technology, policy, and politically interested parties to share ideas and concepts associated with fabrication across the nuclear industry. The report the objectives and summaries of the Nuclear Fabrication Consortium projects. Full technical reports for each of the projects have been submitted as well.

Levesque, Stephen

2013-04-05T23:59:59.000Z

329

International nuclear fuel cycle fact book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source or information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.

1988-01-01T23:59:59.000Z

330

Commercial Decommissioning at DOE's Rocky Flats  

SciTech Connect (OSTI)

Due in large part to the number of nuclear facilities that make up the DOE complex, DOE-EM work has historically been paperwork intensive and driven by extensive regulations. Requirements for non-nuclear facilities are often grouped with those of nuclear facilities, driving up costs. Kaiser-Hill was interested in applying a commercial model to demolition of these facilities and wanted to apply necessary and sufficient standards to the work activities, but avoid applying unnecessary requirements. Faced with demolishing hundreds of uncontaminated or non-radiologically contaminated facilities, Kaiser-Hill has developed a subcontracting strategy to drastically reduce the cost of demolishing these facilities at Rocky Flats. Aiming to tailor the demolition approach of such facilities to more closely follow commercial practices, Kaiser-Hill recently released a Request for Proposals (RFP) for the demolition of the site's former central administration facility. The RFP significantly reduced requirements for compliance with specific DOE directives. Instead, the RFP required subcontractors to comply with health and safety requirements commonly found in the demolition of similar facilities in a commercial setting. This resulted in a number of bids from companies who have normally not bid on DOE work previously and at a reduced cost over previous approaches. This paper will discuss the details of this subcontracting strategy.

Freiboth, C.; Sandlin, N.; Schubert, A.; Hansen, S.

2002-02-25T23:59:59.000Z

331

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes specific nuclear explosive safety (NES) program requirements to implement the DOE NES standards and other NES criteria for routine and planned nuclear explosive operations. Cancels DOE O 452.2B. Canceled by DOE O 452.2D.

2006-06-12T23:59:59.000Z

332

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety evaluation requirement of DOE O 452.2D, Nuclear Explosive Safety. Does not cancel other directives. Admin Chg 1, 7-10-13.

2009-04-14T23:59:59.000Z

333

Comparative Evaluation of Cutting Methods of Activated Concrete from Nuclear Power Plant Decommissioning - 13548  

SciTech Connect (OSTI)

The amount of radioactive wastes from decommissioning of a nuclear power plant varies greatly depending on factors such as type and size of the plant, operation history, decommissioning options, and waste treatment and volume reduction methods. There are many methods to decrease the amount of decommissioning radioactive wastes including minimization of waste generation, waste reclassification through decontamination and cutting methods to remove the contaminated areas. According to OECD/NEA, it is known that the radioactive waste treatment and disposal cost accounts for about 40 percentage of the total decommissioning cost. In Korea, it is needed to reduce amount of decommissioning radioactive waste due to high disposal cost, about $7,000 (as of 2010) per a 200 liter drum for the low- and intermediate-level radioactive waste (LILW). In this paper, cutting methods to minimize the radioactive waste of activated concrete were investigated and associated decommissioning cost impact was assessed. The cutting methods considered are cylindrical and volume reductive cuttings. The study showed that the volume reductive cutting is more cost-effective than the cylindrical cutting. Therefore, the volume reductive cutting method can be effectively applied to the activated bio-shield concrete. (authors)

Kim, HakSoo; Chung, SungHwan; Maeng, SungJun [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)] [Central Research Institute, Korea Hydro and Nuclear Power Co. Ltd., 1312-70 Yuseong-daero, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

2013-07-01T23:59:59.000Z

334

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive safety elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety Program, for routine and planned nuclear explosive operations. Cancels DOE O 452.2C. Admin Chg 1, 7-10-13

2009-04-14T23:59:59.000Z

335

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED WITH MOBILIZED ACTIVATION  

E-Print Network [OSTI]

International Symposium on Fusion Nuclear Technology (ISFNT-5) SAFETY ISSUES ASSOCIATED;International Symposium on Fusion Nuclear Technology (ISFNT-5) heat from in-vessel systems with high neutron Symposium on Fusion Nuclear Technology (ISFNT-5) A design must adequately transfer heat from plasma

California at Los Angeles, University of

336

NUCLEAR RADIO JET FROM A LOW-LUMINOSITY ACTIVE GALACTIC NUCLEUS IN NGC 4258  

SciTech Connect (OSTI)

The nearby low-luminosity active galactic nucleus (LLAGN) NGC 4258 has a weak radio continuum component at the galactic center. We investigate its radio spectral properties on the basis of our new observations using the Nobeyama Millimeter Array at 100 GHz and archival data from the Very Large Array at 1.7-43 GHz and the James Clerk Maxwell telescope at 347 GHz. The NGC 4258 nuclear component exhibits (1) an intra-month variable and complicated spectral feature at 5-22 GHz and (2) a slightly inverted spectrum at 5-100 GHz ({alpha} {approx} 0.3; F {sub {nu}}{proportional_to}{nu}{sup {alpha}}) in time-averaged flux densities, which are also apparent in the closest LLAGN M81. These similarities between NGC 4258 and M81 in radio spectral natures in addition to previously known core shift in their AU-scale jet structures produce evidence that the same mechanism drives their nuclei. We interpret the observed spectral property as the superposition of emission spectra originating at different locations with frequency-dependent opacity along the nuclear jet. Quantitative differences between NGC 4258 and M81 in terms of jet/counter jet ratio, radio loudness, and degree of core shift can be consistently understood by fairly relativistic speeds ({Gamma} {approx}> 3) of jets and their quite different inclinations. The picture established from the two closest LLAGNs is useful for understanding the physical origin of unresolved and flat/inverted spectrum radio cores that are prevalently found in LLAGNs, including Sgr A*, with starved supermassive black holes in the present-day universe.

Doi, Akihiro [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [The Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuou-ku, Sagamihara, Kanagawa 252-5210 (Japan); Kohno, Kotaro [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)] [Institute of Astronomy, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Kameno, Seiji [Department of Physics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan)] [Department of Physics, Faculty of Science, Kagoshima University, 1-21-35 Korimoto, Kagoshima, Kagoshima 890-0065 (Japan); Inoue, Makoto [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China)] [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hada, Kazuhiro [INAF, Istituto di Radioastronomia, via Gobetti 101, Bologna I-40129 (Italy)] [INAF, Istituto di Radioastronomia, via Gobetti 101, Bologna I-40129 (Italy); Sorai, Kazuo [Department of Physics, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810 (Japan)] [Department of Physics, Graduate School of Science, Hokkaido University, Kita 10 Nishi 8, Sapporo 060-0810 (Japan)

2013-03-01T23:59:59.000Z

337

Volatilization of Fission Products from Metallic Melts in the Melt-Dilute Treatment Technology Development for Al-Based DOE Spent Nuclear Fuels  

SciTech Connect (OSTI)

The melt-dilute treatment technology is being developed to facilitate the ultimate disposition of highly enriched Al-Base DOE spent nuclear fuels in a geologic repository such as that proposed for Yucca Mountain. Currently, approximately 28 MTHM is expected to be returned to the Savannah River Site from domestic and foreign research reactors. The melt-dilute treatment technology will melt the fuel assemblies to reduce their volume and alloys them with depleted uranium to isotopically dilute the 235U concentration. The resulting alloy is cast into a form for long term geologic repository storage. Benefits accrued from the melt-dilute process include the potential for significant volume reduction; reduced criticality potential, and proliferation concerns. A critical technology element in the development of the melt-dilute process is the development of offgas system requirements. The volatilization of radioactive species during the melting stage of the process primarily constitutes the offgas in this process. Several of the species present following irradiation of a fuel assembly have been shown to be volatile or semi-volatile under reactor core melt-down conditions. Some of the key species that have previously been studied are krypton, iodine, and cesium. All of these species have been shown to volatilize during melting experiments however, the degree to which they are released is highly dependent upon atmosphere, fuel burnup, temperature, and fuel composition. With this in mind an analytical and experimental program has been undertaken to assess the volatility and capture of species under the melt-dilute operating conditions.

Adams, T.

1999-11-18T23:59:59.000Z

338

INTERPRETATION REGARDING THE APPLICATION OF DOE TECHNICAL STANDARD...  

Office of Environmental Management (EM)

THE APPLICATION OF DOE TECHNICAL STANDARD 1027-92, HAZARD CATEGORIZATION AND ACCIDENT ANALYSIS TECHNIQUES FOR COMPLIANCE WITH DOE ORDER 5480.23, NUCLEAR SAFETY ANALYSIS REPORTS,...

339

DOE Awards Small Business Task Order for Technical Support to...  

Office of Environmental Management (EM)

nuclear energy research. Addthis Related Articles DOE Awards Support Service Contract DOE Awards Small Business Task Order for Technical Support to the Office of...

340

DOE Standard on Development and Use of Probabilistic Risk Assessment...  

Broader source: Energy.gov (indexed) [DOE]

on Development and Use of Probabilistic Risk Assessment in DOE Nuclear Safety Applications (draft), December 2010 DOE Standard on Development and Use of Probabilistic Risk...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

DOE Draft Standard, Development and Use of Probabilistic Risk...  

Broader source: Energy.gov (indexed) [DOE]

DOE Draft Standard, Development and Use of Probabilistic Risk Assessments in Department of Energy Nuclear Safety Applications, 1210 DOE Draft Standard, Development and Use of...

342

DOE Seeks Industry Participation for Engineering Services to...  

Broader source: Energy.gov (indexed) [DOE]

Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

343

2014 | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

of Nuclear Energy (NE) National Nuclear Security Administration (NNSA) Office of Electricity Delievery and Energy Reliability (OE) Non-DOE Interagency Collaboration...

344

Application of Engineering and Technical Requirements for DOE...  

Broader source: Energy.gov (indexed) [DOE]

This Standard Review Plan (SRP), Application of Engineering and Technical Requirements for DOE Nuclear Facilities, was developed by the Chief of Nuclear Safety (CNS)1, Office of...

345

TESTING DIAGNOSTICS OF NUCLEAR ACTIVITY AND STAR FORMATION IN GALAXIES AT z > 1  

SciTech Connect (OSTI)

We present some of the first science data with the new Keck/MOSFIRE instrument to test the effectiveness of different AGN/SF diagnostics at z {approx} 1.5. MOSFIRE spectra were obtained in three H-band multi-slit masks in the GOODS-S field, resulting in 2 hr exposures of 36 emission-line galaxies. We compare X-ray data with the traditional emission-line ratio diagnostics and the alternative mass-excitation and color-excitation diagrams, combining new MOSFIRE infrared data with previous HST/WFC3 infrared spectra (from the 3D-HST survey) and multiwavelength photometry. We demonstrate that a high [O III]/H{beta} ratio is insufficient as an active galactic nucleus (AGN) indicator at z > 1. For the four X-ray-detected galaxies, the classic diagnostics ([O III]/H{beta} versus [N II]/H{alpha} and [S II]/H{alpha}) remain consistent with X-ray AGN/SF classification. The X-ray data also suggest that 'composite' galaxies (with intermediate AGN/SF classification) host bona fide AGNs. Nearly {approx}2/3 of the z {approx} 1.5 emission-line galaxies have nuclear activity detected by either X-rays or the classic diagnostics. Compared to the X-ray and line ratio classifications, the mass-excitation method remains effective at z > 1, but we show that the color-excitation method requires a new calibration to successfully identify AGNs at these redshifts.

Trump, Jonathan R.; Barro, Guillermo; Koo, David C.; Faber, S. M. [University of California Observatories/Lick Observatory and Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Konidaris, Nicholas P. [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, MC 105-24, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kocevski, Dale D.; Yan, Renbin [Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506 (United States); Juneau, Stephanie [Irfu/Service d'Astrophysique, CEA-Saclay, Orme des Merisiers, F-91191 Gif-sur-Yvette Cedex (France); Weiner, Benjamin J. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); McLean, Ian S. [Department of Physics and Astronomy, UCLA, Los Angeles, CA 90095 (United States); Perez-Gonzalez, Pablo G.; Villar, Victor [Departamento de Astrofisica, Facultad de CC. Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

2013-01-20T23:59:59.000Z

346

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Rogers, Adam Zachary; Simmons, R. F.; Palethorpe, S. J.

1999-03-01T23:59:59.000Z

347

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

Herbst, A.K.; Rogers, A.Z.; McCray, J.A.; Simmons, R.F.; Palethorpe, S.J.

1999-03-01T23:59:59.000Z

348

Nuclear Explosive Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Manual provides supplemental details on selected topics to support the requirements of DOE O 452.2D, Nuclear Explosive Safety, dated 4/14/09. Cancels DOE M 452.2-1. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-1A.

2009-04-14T23:59:59.000Z

349

Nuclear Explosive Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive provides supplemental details to support the requirements of DOE O 452.2C, Nuclear Explosive Safety, dated 6-12-06. Canceled by DOE M 452.2-1A.

2006-06-12T23:59:59.000Z

350

Annual report to Congress. Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 2000  

SciTech Connect (OSTI)

This Annual Report to the Congress describes the Department of Energy's activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board. During 2000, the Department completed its implementation and proposed closure of one Board recommendation and completed all implementation plan milestones associated with two additional Board recommendations. Also in 2000, the Department formally accepted two new Board recommendations and developed implementation plans in response to those recommendations. The Department also made significant progress with a number of broad-based safety initiatives. These include initial implementation of integrated safety management at field sites and within headquarters program offices, issuance of a nuclear safety rule, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2001-03-01T23:59:59.000Z

351

Nuclear Safety Regulatory Framework  

Broader source: Energy.gov (indexed) [DOE]

overall Nuclear Safety Policy & ESH Goals Safety Basis Review and Approval In the DOE governance model, contractors responsible for the facility develop the safety basis and...

352

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, Calendar Year 1999  

SciTech Connect (OSTI)

This is the tenth Annual Report to the Congress describing Department of Energy activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of Energy regarding public health and safety issues at the Department's defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department's defense nuclear facilities. During 1999, Departmental activities resulted in the closure of nine Board recommendations. In addition, the Department has completed all implementation plan milestones associated with three Board recommendations. One new Board recommendation was received and accepted by the Department in 1999, and a new implementation plan is being developed to address this recommendation. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, opening of a repository for long-term storage of transuranic wastes, and continued progress on stabilizing excess nuclear materials to achieve significant risk reduction.

None

2000-02-01T23:59:59.000Z

353

Annual report to Congress: Department of Energy activities relating to the Defense Nuclear Facilities Safety Board, calendar year 1998  

SciTech Connect (OSTI)

This is the ninth Annual Report to the Congress describing Department of Energy (Department) activities in response to formal recommendations and other interactions with the Defense Nuclear Facilities Safety Board (Board). The Board, an independent executive-branch agency established in 1988, provides advice and recommendations to the Secretary of energy regarding public health and safety issues at the Department`s defense nuclear facilities. The Board also reviews and evaluates the content and implementation of health and safety standards, as well as other requirements, relating to the design, construction, operation, and decommissioning of the Department`s defense nuclear facilities. The locations of the major Department facilities are provided. During 1998, Departmental activities resulted in the proposed closure of one Board recommendation. In addition, the Department has completed all implementation plan milestones associated with four other Board recommendations. Two new Board recommendations were received and accepted by the Department in 1998, and two new implementation plans are being developed to address these recommendations. The Department has also made significant progress with a number of broad-based initiatives to improve safety. These include expanded implementation of integrated safety management at field sites, a renewed effort to increase the technical capabilities of the federal workforce, and a revised plan for stabilizing excess nuclear materials to achieve significant risk reduction.

NONE

1999-02-01T23:59:59.000Z

354

The joint DoD/DOE Munitions Technology Development Program  

SciTech Connect (OSTI)

The joint Department of Defense (DoD)/Department of Energy (DOE) Munitions Technology Development Program is a cooperative, jointly funded effort of research and development to improve nonnuclear munitions technology across all service mission areas. This program is enabled under a Memorandum of Understanding, approved in 1985 between the DoD and the DOE, that tasks the nuclear weapons laboratories of the DOE to solve problems in conventional defense. The selection of the technical areas to be investigated is based on their importance to the military services, the needs that are common to the conventional and nuclear weapons programs, the expertise of the performing organization, and the perceived benefit to the overall national defense efforts. The research benefits both DoD and DOE programs; therefore, funding, planning, and monitoring are joint activities. Technology Coordination Groups (TCGs), organized by topical areas, serve as technology liaisons between the DoD and DOE for the exchange of information. The members of the TCGs are technical experts who meet semiannually in an informal workshop format to coordinate multiagency requirements, establish project plans, monitor technical activity, and develop classification guidance. A technical advisory committee of senior DoD and DOE managers administers the program and provides guidance on policy and strategy. The abstracts in this volume were collected from the technical progress report for fiscal year 1993. The annual report is organized by major technology areas. Telephone and fax numbers for the principal contacts are provided with each abstract.

Repa, J.V. Jr.

1994-08-01T23:59:59.000Z

355

Control and Accountability of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe Department of Energy (DOE) requirements, including those for the National Nuclear Security Administration (NNSA), for nuclear material control and accountability (MC&A) for DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission (NRC). DOE N 251.60, dated 11-19-04, extends this directive until 11-19-05. Cancels DOE O 474.1.

2000-11-20T23:59:59.000Z

356

DOE Corporate FEOSH  

Broader source: Energy.gov [DOE]

The Department of Energy (DOE) Federal Employee Occupational Safety and Health (FEOSH) Program web site is the connection to current safety and health news and issues: Departmental special emphasis initiatives, upcoming activities, resources, contacts, and much, much more.

357

annual doe llwmp: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for use by all Department of Energy (DOE) and National Nuclear Security Administration (NNSA) sites and all contractors for DOE- owned or DOE-leased, Hazard Category 1, 2, or 3...

358

Control and Accountability of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To prescribe the Department of Energy (DOE) minimum requirements and procedures for control and accountability of nuclear materials at DOE-owned and -leased facilities and DOE-owned nuclear materials at other facilities which are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE O 5633.2A and DOE O 5633.3A. Canceled by DOE O 474.1

1994-09-07T23:59:59.000Z

359

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

A. K. Herbst; J. A. McCray; R. J. Kirkham; J. Pao; S. H. Hinckley

1999-09-30T23:59:59.000Z

360

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-99 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1999, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed on radionuclide leaching, microbial degradation, waste neutralization, and a small mockup for grouting the INTEC underground storage tank residual heels.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Hinckley, Steve Harold

1999-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Order Module--DOE-STD-1104-2009, REVIEW AND APPROVAL OF NUCLEAR FACILITY SAFETY BASIS AND SAFETY DESIGN BASIS DOCUMENTS  

Broader source: Energy.gov [DOE]

The familiar level of this module is divided into two sections that are intended to provide only an overview of the material contained in DOE-STD-1104-2009, which should be consulted for complete...

362

The Italian Activities in the Field of Nuclear Waste Management - 12439  

SciTech Connect (OSTI)

The Italian situation in the field of nuclear waste management is characterized by a relative small quantity of wastes, as a consequence of the giving up of energy production by nuclear generation in 1986. Notwithstanding this situation, Italy is a unique case study since the country needs to undertake the final decommissioning of four shut-down NPPs (size 100-200 MWe), each one different from the others. Therefore all the regulatory, technical, and financial actions are needed in the same way as if there was actual nuclear generation. Furthermore, the various non-power generating applications of nuclear energy still require management, a legal framework, a regulatory body, an industrial structure, and technical know-how. Notwithstanding the absence of energy production from nuclear sources, the country has the burden of radioactive waste management from the previous nuclear operations, which obliges it to implement at first a robust legislative framework, then to explore all the complex procedures to achieve the localization of the national interim storage facility, not excluding the chance to have a European regional facility for geologic disposal, under the clauses of the Council Directive of 19 July 2011 'Establishing a Community Framework for the Responsible and Safe Management of Radioactive Waste'. Then, as far as industrial, medical and R and D aspects, the improvement of the legislative picture, the creation of a regulatory body, is a good start for the future, to achieve the best efficiency of the Italian system. (authors)

Giorgiantoni, Giorgio; Marzo, Giuseppe A.; Sepielli, Massimo [ENEA, C. R. Casaccia, Roma (Italy)

2012-07-01T23:59:59.000Z

363

DOE Cooperative Research and Development Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. Cancels DOE O 483.1 Admin Chg 1 and DOE M 483.1-1.

2013-11-06T23:59:59.000Z

364

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

365

International Nuclear Fuel Cycle Fact Book  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops, etc. The data listed do not reflect any one single source but frequently represent a consolidation/combination of information.

Leigh, I W; Mitchell, S J

1990-01-01T23:59:59.000Z

366

Nuclear material safeguards for enrichments plants: Part 4, Gas Centrifuge Enrichment Plant: Diversion scenarios and IAEA safeguards activities: Safeguards training course  

SciTech Connect (OSTI)

This publication is Part 4 of a safeguards training course in Nuclear Material Safeguards for enrichment plants. This part of the course deals with diversion scenarios and safeguards activities at gas centrifuge enrichment plants.

Not Available

1988-10-01T23:59:59.000Z

367

PRELIMINARY NUCLEAR CRITICALITY NUCLEAR SAFETY EVLAUATION FOR THE CONTAINER SURVEILLANCE AND STORAGE CAPABILITY PROJECT  

SciTech Connect (OSTI)

Washington Safety Management Solutions (WSMS) provides criticality safety services to Washington Savannah River Company (WSRC) at the Savannah River Site. One activity at SRS is the Container Surveillance and Storage Capability (CSSC) Project, which will perform surveillances on 3013 containers (hereafter referred to as 3013s) to verify that they meet the Department of Energy (DOE) Standard (STD) 3013 for plutonium storage. The project will handle quantities of material that are greater than ANS/ANSI-8.1 single parameter mass limits, and thus required a Nuclear Criticality Safety Evaluation (NCSE). The WSMS methodology for conducting an NCSE is outlined in the WSMS methods manual. The WSMS methods manual currently follows the requirements of DOE-O-420.1B, DOE-STD-3007-2007, and the Washington Savannah River Company (WSRC) SCD-3 manual. DOE-STD-3007-2007 describes how a NCSE should be performed, while DOE-O-420.1B outlines the requirements for a Criticality Safety Program (CSP). The WSRC SCD-3 manual implements DOE requirements and ANS standards. NCSEs do not address the Nuclear Criticality Safety (NCS) of non-reactor nuclear facilities that may be affected by overt or covert activities of sabotage, espionage, terrorism or other security malevolence. Events which are beyond the Design Basis Accidents (DBAs) are outside the scope of a double contingency analysis.

Low, M; Matthew02 Miller, M; Thomas Reilly, T

2007-04-30T23:59:59.000Z

368

presentations | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

International Activity Project Information Project Portfolio Publications Coal Gasification Magazine Solicitations FAQs Overview of DOE's C&CBTL Program (Dec 2014) The C&CBTL...

369

DOE standard: Radiological control  

SciTech Connect (OSTI)

The Department of Energy (DOE) has developed this Standard to assist line managers in meeting their responsibilities for implementing occupational radiological control programs. DOE has established regulatory requirements for occupational radiation protection in Title 10 of the Code of Federal Regulations, Part 835 (10 CFR 835), ``Occupational Radiation Protection``. Failure to comply with these requirements may lead to appropriate enforcement actions as authorized under the Price Anderson Act Amendments (PAAA). While this Standard does not establish requirements, it does restate, paraphrase, or cite many (but not all) of the requirements of 10 CFR 835 and related documents (e.g., occupational safety and health, hazardous materials transportation, and environmental protection standards). Because of the wide range of activities undertaken by DOE and the varying requirements affecting these activities, DOE does not believe that it would be practical or useful to identify and reproduce the entire range of health and safety requirements in this Standard and therefore has not done so. In all cases, DOE cautions the user to review any underlying regulatory and contractual requirements and the primary guidance documents in their original context to ensure that the site program is adequate to ensure continuing compliance with the applicable requirements. To assist its operating entities in achieving and maintaining compliance with the requirements of 10 CFR 835, DOE has established its primary regulatory guidance in the DOE G 441.1 series of Guides. This Standard supplements the DOE G 441.1 series of Guides and serves as a secondary source of guidance for achieving compliance with 10 CFR 835.

Not Available

1999-07-01T23:59:59.000Z

370

International nuclear fuel cycle fact book. [Contains glossary  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need has developed for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book was compiled to meet that need. The information contained has been obtained from nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NEA activities reports; proceedings of conferences and workshops; and so forth. Sources do not agree completely with each other, and the data listed herein does not reflect any one single source but frequently is a consolidation/combination of information. Lack of space as well as the intent and purpose of the Fact Book limit the given information to that pertaining to the Nuclear Fuel Cycle and to data considered of primary interest or most helpful to the majority of users.

Leigh, I.W.; Lakey, L.T.; Schneider, K.J.; Silviera, D.J.

1987-01-01T23:59:59.000Z

371

Manual for Control And Accountability of Nuclear Materials  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

DOE M 474.1-1 prescribes Department of Energy (DOE) requirements and procedures for nuclear material control and accountability (MC&A). This Manual supplements DOE O 474.1, Control and Accountability of Nuclear Materials.

1999-08-11T23:59:59.000Z

372

Generation IV Nuclear Energy Systems ...  

E-Print Network [OSTI]

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

373

An overview of research activities on materials for nuclear applications at the INL Safety, Tritium and Applied Research facility  

SciTech Connect (OSTI)

The Safety, Tritium and Applied Research facility at the Idaho National Laboratory is a US Department of Energy National User Facility engaged in various aspects of materials research for nuclear applications related to fusion and advanced fission systems. Research activities are mainly focused on the interaction of tritium with materials, in particular plasma facing components, liquid breeders, high temperature coolants, fuel cladding, cooling and blanket structures and heat exchangers. Other activities include validation and verification experiments in support of the Fusion Safety Program, such as beryllium dust reactivity and dust transport in vacuum vessels, and support of Advanced Test Reactor irradiation experiments. This paper presents an overview of the programs engaged in the activities, which include the US-Japan TITAN collaboration, the US ITER program, the Next Generation Power Plant program and the tritium production program, and a presentation of ongoing experiments as well as a summary of recent results with emphasis on fusion relevant materials.

P. Calderoni; P. Sharpe; M. Shimada

2009-09-01T23:59:59.000Z

374

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

Not Available

1994-06-01T23:59:59.000Z

375

FUSRAP - 45 DOE cleanup projects across the country  

SciTech Connect (OSTI)

The Formerly Utilized Sites Remedial Action Program (FUSRAP) is a U.S. Department of Energy (DOE) program designed to address radiological contamination exceeding acceptable cleanup standards at 45 sites throughout the United States. The DOE and its predecessor agencies, the Manhattan Engineer District (MED) and the Atomic Energy Commission (AEC), used many of these sites for processing and storing uranium and thorium ores as part of the nation`s early nuclear production activities. While some of the sites are owned by the federal government, most of the sites were, and are, privately owned.

Price, L.K. [Dept. of Energy, Oak Ridge, TN (United States); Harbert, R.R.; Palau, G.L.

1994-12-31T23:59:59.000Z

376

Complexity of Groundwater Contaminants at DOE Sites  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

Hazen, T.C.; Faybishenko, B.; Jordan, P.

2010-12-03T23:59:59.000Z

377

Sandia National Laboratories: DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE International Energy

378

The Fuel Cell Mobile Light Project - A DOE Market Transformation...  

Broader source: Energy.gov (indexed) [DOE]

The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity The Fuel Cell Mobile Light Project - A DOE Market Transformation Activity Presentation slides from the...

379

DOE-STD-1104-96 CN-1; Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93 DOE-STD-1040-9395-95 December 1995 DOE-STD-1104-96

380

NuclearNuclear ""BurningBurning"" of Nuclearof Nuclear ""WasteWaste"" Constantine P. Tzanos  

E-Print Network [OSTI]

as a geologic repository for disposal of spent nuclear fuel and high level radioactive waste. #12;The YuccaNuclearNuclear ""BurningBurning"" of Nuclearof Nuclear ""WasteWaste"" Constantine P. Tzanos Argonne-level radioactive waste that has accumulated at 72 commercial and 4 DOE sites. s U.S. Congress adopted the Nuclear

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Ligand binding proteins: roles in ligand transfer and activation of nuclear receptors  

E-Print Network [OSTI]

different cellular functions: steroidogenic acute regulatory protein (StAR), hepatocyte nuclear factor-4a (HNF-4a) and acyl-CoA binding protein (ACBP). First, StAR mediates delivery of cholesterol to inner mitochondrial membrane in steroidogenesis by a...

Petrescu, Anca Daniela

2004-09-30T23:59:59.000Z

382

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6. Admin Chg 1, 8-3-11.

2011-06-27T23:59:59.000Z

383

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shutdown. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

1995-09-29T23:59:59.000Z

384

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements for startup of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1. Canceled by DOE O 425.1B.

1998-12-28T23:59:59.000Z

385

DOE Onboarding  

Broader source: Energy.gov (indexed) [DOE]

First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

386

DOE PAGES  

Office of Scientific and Technical Information (OSTI)

a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

387

Potential External (non-DOE) Constraints on U.S. Fuel Cycle Options  

SciTech Connect (OSTI)

The DOE Fuel Cycle Technologies (FCT) Program will be conducting a screening of fuel cycle options in FY2013 to help focus fuel cycle R&D activities. As part of this screening, performance criteria and go/no-go criteria are being identified. To help ensure that these criteria are consistent with current policy, an effort was initiated to identify the status and basis of potentially relevant regulations, laws, and policies that have been established external to DOE. As such regulations, laws, and policies may be beyond DOE’s control to change, they may constrain the screening criteria and internally-developed policy. This report contains a historical survey and analysis of publically available domestic documents that could pertain to external constraints on advanced nuclear fuel cycles. “External” is defined as public documents outside DOE. This effort did not include survey and analysis of constraints established internal to DOE.

Steven J. Piet

2012-07-01T23:59:59.000Z

388

Does H2O improve the catalytic activity of Au1-4/MgO towards CO oxidation?  

E-Print Network [OSTI]

The present density functional theory study addresses the question whether the presence of H2O influences the catalytic activity of small gold clusters, Au1-4/MgO(100), towards the oxidation of carbon monoxide. To this end, we studied the (co-)adsorption of H2O and CO/O2 on these gold clusters. The ground state structures in the presence of all three molecular species, that we found, are Au1O2/MgO and Au2-4CO/MgO with H2O adsorbed on the surface in the proximity of the clusters-molecule complex. In this configuration the catalytic activity of Au1-4/MgO is indifferent to the presence of H2O. We also found that a stable, highly activated hydroperoxyl-hydroxyl complex, O2H\\dot\\dot OH, can be formed on Au1,3/MgO. For the catalytic active system Au8/MgO, it has been predicted that this complex opens an alternative catalytic reaction pathway towards CO oxidation. Our results suggest that this water mediated catalytic cycle is unlikely to occur on Au1,3/MgO. In the case of Au1/MgO the cycle is interrupted by the dis...

Amft, Martin

2011-01-01T23:59:59.000Z

389

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, Alan Keith; Mc Cray, John Alan; Kirkham, Robert John; Pao, Jenn Hai; Argyle, Mark Don; Lauerhass, Lance; Bendixsen, Carl Lee; Hinckley, Steve Harold

2000-11-01T23:59:59.000Z

390

Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program FY-2000 Status Report  

SciTech Connect (OSTI)

The Low-Activity Waste Process Technology Program anticipated that grouting will be used for disposal of low-level and transuranic wastes generated at the Idaho Nuclear Technology Engineering Center (INTEC). During fiscal year 2000, grout formulations were studied for transuranic waste derived from INTEC liquid sodium-bearing waste and for projected newly generated low-level liquid waste. Additional studies were completed using silica gel and other absorbents to solidify sodium-bearing wastes. A feasibility study and conceptual design were completed for the construction of a grout pilot plant for simulated wastes and demonstration facility for actual wastes.

Herbst, A.K.; McCray, J.A.; Kirkham, R.J.; Pao, J.; Argyle, M.D.; Lauerhass, L.; Bendixsen, C.L.; Hinckley, S.H.

2000-10-31T23:59:59.000Z

391

X-RAY NUCLEAR ACTIVITY IN S{sup 4}G BARRED GALAXIES: NO LINK BETWEEN BAR STRENGTH AND CO-OCCURRENT SUPERMASSIVE BLACK HOLE FUELING  

SciTech Connect (OSTI)

Stellar bars can lead to gas inflow toward the center of a galaxy and stimulate nuclear star formation. However, there is no compelling evidence on whether they also feed a central supermassive black hole: by measuring the fractions of barred active and inactive galaxies, previous studies have yielded conflicting results. In this paper, we aim to understand the lack of observational evidence for bar-driven active galactic nucleus (AGN) activity by studying a sample of 41 nearby (d < 35 Mpc) barred galaxies from the Spitzer Survey for Stellar Structure in Galaxies. We use Chandra observations to measure nuclear 2-10 keV X-ray luminosities and estimate Eddington ratios, together with Spitzer 3.6 ?m imaging to quantify the strength of the stellar bar in two independent ways: (1) from its structure, as traced by its ellipticity and boxiness, and (2) from its gravitational torque Q{sub b} , taken as the maximum ratio of the tangential force to the mean background radial force. In this way, rather than discretizing the presence of both stellar bars and nuclear activity, we are able to account for the continuum of bar strengths and degrees of AGN activity. We find nuclear X-ray sources in 31 out of 41 galaxies with median X-ray luminosity and Eddington ratio of L{sub X} = 4.3 × 10{sup 38} erg s{sup –1} and L{sub bol}/L{sub Edd} = 6.9 × 10{sup –6}, respectively, consistent with low-luminosity AGN activity. Including upper limits for those galaxies without nuclear detections, we find no significant correlation between any of the bar strength indicators and the degree of nuclear activity, irrespective of galaxy luminosity, stellar mass, Hubble type, or bulge size. Strong bars do not favor brighter or more efficient nuclear activity, implying that at least for the low-luminosity regime, supermassive black hole fueling is not closely connected to large-scale features.

Cisternas, Mauricio; Knapen, Johan H.; González-Martín, Omaira; Erroz-Ferrer, Santiago [Instituto de Astrofísica de Canarias, E-38205 La Laguna, Tenerife (Spain); Gadotti, Dimitri A.; Kim, Taehyun [European Southern Observatory, Casilla 19001, Santiago 19 (Chile); Díaz-García, Simón; Laurikainen, Eija; Salo, Heikki; Comerón, Sébastien; Laine, Jarkko [Division of Astronomy, Department of Physical Sciences, University of Oulu, Oulu FI-90014 (Finland); Ho, Luis C. [The Observatories of the Carnegie Institution for Science, 813 Santa Barbara Street, Pasadena, CA 91101 (United States); Elmegreen, Bruce G. [IBM T. J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, NY 10598 (United States); Zaritsky, Dennis; Hinz, Joannah L. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Sheth, Kartik [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States); Athanassoula, E.; Bosma, Albert [Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Gil de Paz, Armando [Departamento de Astrofísica, Universidad Complutense de Madrid, E-28040 Madrid (Spain); Holwerda, Benne W., E-mail: mauricio@iac.es [European Space Agency, ESTEC, Keplerlaan 1, 2200 AG Noordwijk (Netherlands); and others

2013-10-10T23:59:59.000Z

392

Nuclear Fuel Cycle & Vulnerabilities  

SciTech Connect (OSTI)

The objective of safeguards is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection. The safeguards system should be designed to provide credible assurances that there has been no diversion of declared nuclear material and no undeclared nuclear material and activities.

Boyer, Brian D. [Los Alamos National Laboratory

2012-06-18T23:59:59.000Z

393

Does active commuting improve psychological wellbeing? Longitudinal evidence from eighteen waves of the British Household Panel Survey  

E-Print Network [OSTI]

-invariant and correlated with observed explanatory variables); ? and ? were the coefficients, and uit was the error term (assumed to be independent, identically distributed). Sensitivity analyses explored the impact of excluding groups of individuals with the shortest... .004 (0.066) Commuting time-active travel Time × walk 0.008? (0.042) Time × bike ?0.001 (0.827) Commuting time-public transport Time × train 0.003 (0.124) Time × bus/coach 0.003 (0.160) Commuting time-car Time × car ?0.003? (0.040) Observations 109,169 96...

Martin, Adam; Goryakin, Yevgeniy; Suhrcke, Marc

2014-08-23T23:59:59.000Z

394

The Application of High-Resolution Gamma-Ray Spectrometry (HRGS) to Nuclear Safeguards, Nonproliferation, and Arms Control Activities  

SciTech Connect (OSTI)

While well-developed methodologies exist for the employment of high- resolution gamma ray spectrometry (HRGS) in determining the isotopic composition of plutonium samples, the potential capabilities of such measurements in determining the properties of nuclear materials otherwise remain largely unexploited. These measurements contain information sufficiently detailed such that not only can the isotopic composition of uranium and plutonium materials be determined, but the details of the spectrum obtained will depend reproducibly upon other factors including the total mass, density, chemical composition, and geometrical configuration of the material, and for certain materials, the elapsed time since chemical processing. The potential thus exists to obtain a `gamma-ray fingerprint` for typical containers or assemblies of nuclear material which will then serve to identify that class of item in a later confirmatory measurement. These measurements have the additional advantage that, by comparison with active interrogation techniques which usually require the introduction of some extraneous form of radiation or other intrusive activity, they are totally passive, and thus impose only minimal additional safety or regulatory burdens on the operators. In the application of these measurements to the verification of treaty-limited items, where the information acquired may be sensitive in nature, the use of the CIVET (Controlled Intrusiveness Verification Technique) approach, where a computer-based interface is employed to limit access to the information obtained, may be followed.

Kane, Walter R.; Lemley, James R.; Forman, Leon

1997-12-31T23:59:59.000Z

395

Submitted to HuffingtonPost.com Obama's Iran Nuclear Deadline: A Grand Bargain is Still Possible if Both Sides  

E-Print Network [OSTI]

Submitted to HuffingtonPost.com Obama's Iran Nuclear Deadline: A Grand Bargain is Still Possible Obama and Secretary of State Clinton have promised "crippling" new sanctions will be imposed on Iran by year's end if Iran does not seriously engage in negotiations on its nuclear activities. Tehran clearly

O'Donnell, Tom

396

Supplement Analysis of Environmental Effects of Changes in DOE's Preferred Alternative for Management of Spent Nuclear Fuel from the K basins at the Hanford Site, Richland, Washington  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security AdministrationcontrollerNanocrystalline Gallium OxideSuminDeposition ofSupplement

397

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The manual establishes a program for the control and accountability of nuclear materials within the Department of Energy. Cancels: DOE M 474.1-1B DOE M 474.1-2A

2005-08-26T23:59:59.000Z

398

U.S. Department of Energy, Oak Ridge Operations Office Nuclear Facility Safety Basis Fundamentals Self-Study Guide [Fulfills ORO Safety Basis Competency 1, 2 (Part 1), or 7 (Part 1)  

Broader source: Energy.gov [DOE]

"This self-study guide provides an overview of safety basis terminology, requirements, and activities that are applicable to DOE and Oak Ridge Operations Office (ORO) nuclear facilities on the Oak...

399

Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

Not Available

1994-06-01T23:59:59.000Z

400

Nuclear Safety Information Agreement Between the U.S. Nuclear...  

Office of Environmental Management (EM)

Operations (NRC)), Jim O'Brien, Director, Office of Nuclear Safety (EHSS DOE), Robert Johnson (Chief, Fuel Manufacturing Branch (NRC)) Front Row: Matt Moury, Associate Under...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Report of the Nuclear Energy Research Advisory Committee, Subcommittee on Nuclear Laboratory Requirements  

Broader source: Energy.gov [DOE]

As an element of its plans to return the U.S. Department of Energy (DOE) site in eastern Idaho to its historic mission of nuclear technology development, the DOE asked its Nuclear Energy Research...

402

Security and Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This directive establishes requirements and responsibilities to prevent the deliberate unauthorized use of U.S. nuclear explosives and U.S. nuclear weapons. Cancels DOE O 452.4.

2001-12-17T23:59:59.000Z

403

LONG-TERM STEWARDSHIP AT DOE HANFORD SITE - 12575  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Hanford Site is located in southeast Washington and consists of 1,518 square kilometers (586 square miles) of land. Established in 1943 as part of the Manhattan Project, Hanford workers produced plutonium for our nation's nuclear defense program until the mid 1980's. Since then, the site has been in cleanup mode that is being accomplished in phases. As we achieve remedial objectives and complete active cleanup, DOE will manage Hanford land under the Long-Term Stewardship (LTS) Program until completion of cleanup and the site becomes ready for transfer to the post cleanup landlord - currently planned for DOE's Office of Legacy Management (LM). We define Hanford's LTS Program in the ''Hanford Long-Term Stewardship Program Plan,'' (DOE/RL-201 0-35)[1], which describes the scope including the relationship between the cleanup projects and the LTS Program. DOE designed the LTS Program to manage and provide surveillance and maintenance (S&M) of institutional controls and associated monitoring of closed waste sites to ensure the protection of human health and the environment. DOE's Richland Operations Office (DOE-RL) and Hanford cleanup and operations contractors collaboratively developed this program over several years. The program's scope also includes 15 key activities that are identified in the DOE Program Plan (DOE/RL-2010-35). The LTS Program will transition 14 land segments through 2016. The combined land mass is approximately 570 square kilometers (220 square miles), with over 1,300 active and inactive waste sites and 3,363 wells. Land segments vary from buffer zone property with no known contamination to cocooned reactor buildings, demolished support facilities, and remediated cribs and trenches. DOE-RL will transition land management responsibilities from cleanup contractors to the Mission Support Contract (MSC), who will then administer the LTS Program for DOE-RL. This process requires an environment of cooperation between the contractors and DOE-RL. Information Management (IM) is a key part of the LTS program. The IM Program identifies, locates, stores, protects and makes accessible Hanford LTS records and data to support the transfer of property ultimately to LM. As such, DOE-RL manages the Hanford LTS Program in a manner consistent with LM's goals, policies, and procedures.

MOREN RJ; GRINDSTAFF KD

2012-01-11T23:59:59.000Z

404

Management of Heavy Isotope in the DOE Complex  

SciTech Connect (OSTI)

Currently each Department Of Energy (DOE) Program office manages its own nuclear materials through activities such as production, processing, storage, transportation, and disposition. However, recognizing the need to strengthen its strategic approach to the integrated life-cycle management of nuclear materials, DOE established the Nuclear Materials Management Stewardship Initiative (NMMSI) in January 2000. The NMMSI's first visible product was the Integrated Nuclear Material Management Plan in which it was generally recommended that DOE take a cross-cutting look at managing its nuclear materials, and specifically recommended that four Nuclear Material Management Groups (NMMGs) be formed. These groups were established to facilitate management of nuclear materials for which DOE has or may have responsibility, including many presently not in DOE's direct control. One of these NMMGs, the Heavy Isotope Management Group (HIMG) was established at Oak Ridge National Laboratory in Dec ember 2000, to facilitate management of (a) actinide and their decay products (except sealed sources) and (b) isotopically enriched stable and radioactive isotopes except uranium and lithium, but excluding thorium, uranium, spent fuel, and weapons or reactor grade plutonium which are addressed by other NMMGs. Despite its short duration and relatively limited funding, the HIMG has facilitated the disposition of heavy isotopes from Lawrence Berkeley National Laboratory (LBNL), Rocky Flats Environmental Technology Site (RFETS), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Lawrence Livermore National Laboratory (LLNL), and Idaho National Engineering and Environmental Laboratory (INEEL). The primary disposition options have been to facilitate reuse of valuable heavy isotopes by matching custodians of unwanted materials with other users that seek such materials for new applications. This approach has the dual advantages of avoiding custodian disposal costs plus cost to the user of obtaining newly produced material. The HIMG has also prepared issue papers on neptunium and americium/curium that identify the resources, potential uses, and disposal pathways for the materials across the DOE Complex. In the future the HIMG expects to comprehensively identify the status of the U.S. heavy isotope inventory, prepare additional issue papers and plans charting the future of this inventory, and to facilitate execution of the plan.

Canon, R.; Croff, A.; Boyd, L.

2002-02-27T23:59:59.000Z

405

E-Print Network 3.0 - active galactic nuclear Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Pulsars... you'd . . . Active Galactic . . . X-ray binaries Pulsars and relatives Gamma-ray bursts Gravitational... 2 of 36 Go Back Full Screen Close Quit 1. Introduction to the...

406

Nuclear Material Control and Accountability  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes performance objectives, metrics, and requirements for developing, implementing, and maintaining a nuclear material control and accountability program within DOE/NNSA and for DOE-owned materials at other facilities that are exempt from licensing by the Nuclear Regulatory Commission. Cancels DOE M 470.4-6, Admin Chg 1, 8-26-05. Admin Chg 2, dated 11-19-12, cancels DOE M 474.2 Admin Chg 1.

2011-06-27T23:59:59.000Z

407

Frequently Asked Questions Regarding DOE-STD-1195-2011, Design...  

Office of Environmental Management (EM)

Design of Safety Significant Safety Instrumented Systems Used at DOE Non-Reactor Nuclear Facilities Frequently Asked Questions Regarding DOE-STD-1195-2011, Design...

408

National Spent Nuclear Fuel Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

need to safely and efficiently manage all DOE-owned spent nuclear fuel and high level waste and prepare it for disposal. The National Spent Nuclear Fuel Program is addressing...

409

The Planning, Licensing, Modifications, and Use of a Russian Vessel for Shipping Spent Nuclear Fuel by Sea in Support of the DOE RRRFR Program  

SciTech Connect (OSTI)

The Russian Research Reactor Fuel Return (RRRFR) Program, under the U.S. Department of Energy’s Global Threat Reduction Initiative, began returning Russian-supplied high-enriched uranium (HEU) spent nuclear fuel (SNF), stored at Russian-designed research reactors throughout the world, to Russia in January 2006. During the first years of making HEU SNF shipments, it became clear that the modes of transportation needed to be expanded from highway and railroad to include sea and air to meet the extremely aggressive commitment of completing the first series of shipments by the end of 2010. The first shipment using sea transport was made in October 2008 and used a non-Russian flagged vessel. The Russian government reluctantly allowed a one-time use of the foreign-owned vessel into their highly secured seaport, with the understanding that any future shipments would be made using a vessel owned and operated by a Russian company. ASPOL-Baltic of St. Petersburg, Russia, owns and operates a small fleet of vessels and has a history of shipping nuclear materials. ASPOL-Baltic’s vessels were licensed for shipping nuclear materials; however, they were not licensed to transport SNF materials. After a thorough review of ASPOL Baltic’s capabilities and detailed negotiations, it was agreed that a contract would be let with ASPOL-Baltic to license and refit their MCL Trader vessel for hauling SNF in support of the RRRFR Program. This effort was funded through a contract between the RRRFR Program, Idaho National Laboratory, and Radioactive Waste Management Plant of Swierk, Poland. This paper discusses planning, Russian and international maritime regulations and requirements, Russian authorities’ reviews and approvals, licensing, design, and modifications made to the vessel in preparation for SNF shipments. A brief summary of actual shipments using this vessel, experiences, and lessons learned also are described.

Michael Tyacke; Dr. Igor Bolshinsky; Wlodzimierz Tomczak; Sergey Naletov; Oleg Pichugin

2001-10-01T23:59:59.000Z

410

DOE 2012 Occupational Radiation Exposure October 2013  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Analysis within the Office of Health, Safety and Security (HSS) publishes the annual DOE Occupational Radiation Exposure Report to provide an overview of the status of radiation protection practices at DOE (including the National Nuclear Security Administration [NNSA]). The DOE 2012 Occupational Radiation Exposure Report provides an evaluation of DOE-wide performance regarding compliance with Title 10, Code of Federal Regulations (C.F.R.), Part 835, Occupational Radiation Protection dose limits and as low as reasonably achievable (ALARA) process requirements. In addition, the report provides data to DOE organizations responsible for developing policies for protection of individuals from the adverse health effects of radiation. The report provides a summary and an analysis of occupational radiation exposure information from the monitoring of individuals involved in DOE activities. Over the past 5-year period, the occupational radiation exposure information is analyzed in terms of aggregate data, dose to individuals, and dose by site. As an indicator of the overall amount of radiation dose received during the conduct of operations at DOE, the report includes information on collective total effective dose (TED). The TED is comprised of the effective dose (ED) from external sources, which includes neutron and photon radiation, and the internal committed effective dose (CED), which results from the intake of radioactive material into the body. The collective ED from photon exposure decreased by 23% between 2011 and 2012, while the neutron dose increased by 5%. The internal dose components of the collective TED decreased by 7%. Over the past 5-year period, 99.99% of the individuals receiving measurable TED have received doses below the 2 roentgen equivalent in man (rems) (20 millisievert [mSv]) TED administrative control level (ACL), which is well below the DOE regulatory limit of 5 rems (50 mSv) TED annually. The occupational radiation exposure records show that in 2012, DOE facilities continued to comply with DOE dose limits and ACLs and worked to minimize exposure to individuals. The DOE collective TED decreased 17.1% from 2011 to 2012. The collective TED decreased at three of the five sites with the largest collective TED. u Idaho Site – Collective dose reductions were achieved as a result of continuing improvements at the Advanced Mixed Waste Treatment Project (AMWTP) through the planning of drum movements that reduced the number of times a container is handled; placement of waste containers that created highradiation areas in a centralized location; and increased worker awareness of high-dose rate areas. In addition, Idaho had the largest decrease in the total number of workers with measurable TED (1,143 fewer workers). u Hanford Site (Hanford) – An overall reduction of decontamination and decommissioning (D&D) activities at the Plutonium Finishing Plant (PFP) and Transuranic (TRU) retrieval activities resulted in collective dose reductions. u Savannah River Site (SRS) – Reductions were achieved through ALARA initiatives employed site wide. The Solid Waste Management Facility used extended specialty tools, cameras and lead shield walls to facilitate removal of drums. These tools and techniques reduce exposure time through improved efficiency, increase distance from the source of radiation by remote monitoring, shield the workers to lower the dose rate, and reduce the potential for contamination and release of material through repacking of waste. Overall, from 2011 to 2012, there was a 19% decrease in the number of workers with measurable dose. Furthermore, due to a slight decrease in both the DOE workforce (7%) and monitored workers (10%), the ratio of workers with measurable doses to monitored workers decreased to 13%. Another primary indicator of the level of radiation exposure covered in this report is the average measurable dose, which normalizes the collective dose over the population of workers who actually received a measurable dose. The average measurable TED in

none,

2012-02-02T23:59:59.000Z

411

An overview of the Nuclear Materials Focus Area research program  

SciTech Connect (OSTI)

The Nuclear Material Focus Area (NMFA) is responsible for providing comprehensive needs identification, integration of technology research and development activities, and technology deployment for stabilization, packaging, and interim storage of surplus nuclear materials within the DOE complex. The NMFA was chartered in April 1999 by the Office of Science and Technology (OST), an organizational component of the US Department of Energy's (DOE) Office of Environmental Management (EM). OST manages a national program to conduct basic and applied research, and technology development, demonstration, and deployment assistance that is essential to completing a timely and cost-effective cleanup of the DOE nuclear weapons complex. DOE/EM provides environmental research results, as well as cleanup technologies and systems, to meet high-priority end-user needs, reduce EM's major cost centers and technological risks, and accelerate technology deployments. The NMFA represents the segment of EM that focuses on technological solutions for re-using, transforming, and disposing excess nuclear materials and is jointly managed by the DOE Albuquerque Operations Office and the DOE Idaho Operations Office.

ROBERSON,GARY D.; POLANSKY,GARY F.; OSBORNE,KEN K.; RANDALL,VIRGINIA

2000-02-25T23:59:59.000Z

412

Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges  

SciTech Connect (OSTI)

The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

Snoj, L. [Josef Stefan Inst., Jamova cesta 39, SI-1000 Ljubljana (Slovenia); Sklenka, L.; Rataj, J. [Dept. of Nuclear Reactor, Czech Technical Univ. in Prague, V Holesovickach 2, 180 00 Prague 8 (Czech Republic); Boeck, H. [Vienna Univ. of Technology/Atominstitut, Stadionallee 2, 1020 Vienna (Austria)

2012-07-01T23:59:59.000Z

413

Modeling of UF{sub 6} enrichment with gas centrifuges for nuclear safeguards activities  

SciTech Connect (OSTI)

The physical modeling of uranium isotopes ({sup 235}U, {sup 238}U) separation process by centrifugation of is a key aspect for predicting the nuclear fuel enrichment plant performances under surveillance by the Nuclear Safeguards Authorities. In this paper are illustrated some aspects of the modeling of fast centrifuges for UF{sub 6} gas enrichment and of a typical cascade enrichment plant with the Theoretical Centrifuge and Cascade Simulator (TCCS). The background theory for reproducing the flow field characteristics of a centrifuge is derived from the work of Cohen where the separation parameters are calculated using the solution of a differential enrichment equation. In our case we chose to solve the hydrodynamic equations for the motion of a compressible fluid in a centrifugal field using the Berman - Olander vertical velocity radial distribution and the solution was obtained using the Matlab software tool. The importance of a correct estimation of the centrifuge separation parameters at different flow regimes, lies in the possibility to estimate in a reliable way the U enrichment plant performances, once the separation external parameters are set (feed flow rate and feed, product and tails assays). Using the separation parameters of a single centrifuge allow to determine the performances of an entire cascade and, for this purpose; the software Simulink was used. The outputs of the calculation are the concentrations (assays) and the flow rates of the enriched (product) and depleted (tails) gas mixture. These models represent a valid additional tool, in order to verify the compliance of the U enrichment plant operator declarations with the 'on site' inspectors' measurements.

Mercurio, G.; Peerani, P.; Richir, P.; Janssens, W.; Eklund, G. [European Commission, Joint Research Centre, Institute for Transuranium Elements Via Fermi, 2749-TP181,20127 Ispra (Italy)

2012-09-26T23:59:59.000Z

414

Management of the Department of Energy Nuclear Weapons Complex  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order defines and affirms the authorities and responsibilities of the National Nuclear Security Administration (NNSA) for the management of the Department of Energy Nuclear Weapons Complex and emphasizes that the management of the United States nuclear weapons stockpile is the DOE's highest priority for the NNSA and the DOE Nuclear Weapons Complex. Cancels DOE O 5600.1.

2005-06-08T23:59:59.000Z

415

Resolving piping analysis issues to minimize impact on installation activities during refueling outage at nuclear power plants  

SciTech Connect (OSTI)

While it is required to maintain piping code compliance for all phases of installation activities during outages at a nuclear plant, it is equally essential to reduce challenges to the installation personnel on how plant modification work should be performed. Plant betterment activities that incorporate proposed design changes are continually implemented during the outages. Supporting analysis are performed to back these activities for operable systems. The goal is to reduce engineering and craft man-hours and minimize outage time. This paper outlines how plant modification process can be streamlined to facilitate construction teams to do their tasks that involve safety related piping. In this manner, installation can proceed by minimizing on the spot analytical effort and reduce downtime to support the proposed modifications. Examples are provided that permit performance of installation work in any sequence. Piping and hangers including the branch lines are prequalified and determined operable. The system is up front analyzed for all possible scenarios. The modification instructions in the work packages is flexible enough to permit any possible installation sequence. The benefit to this approach is large enough in the sense that valuable outage time is not extended and on site analytical work is not required.

Bhavnani, D. [Public Service Electric and Gas Co., Hancocks Bridge, NJ (United States)

1996-12-01T23:59:59.000Z

416

DOE Seeks Public-Private Sector Expressions of Interest for Global...  

Energy Savers [EERE]

Public-Private Sector Expressions of Interest for Global Nuclear Energy Partnership Initiative DOE Seeks Public-Private Sector Expressions of Interest for Global Nuclear Energy...

417

Active Detection and Imaging of Nuclear Materials with High-Brightness Gamma Rays  

SciTech Connect (OSTI)

A Compton scattering {gamma}-ray source, capable of producing photons with energies ranging from 0.1 MeV to 0.9 MeV has been commissioned and characterized, and then used to perform nuclear resonance fluorescence (NRF) experiments. The performances of the two laser systems (one for electron production, one for scattering), the electron photoinjector, and the linear accelerator are also detailed, and {gamma}-ray results are presented. The key source parameters are the size (0.01 mm{sup 2}), horizontal and vertical divergence (6 x 10 mrad{sup 2}), duration (10 ps), spectrum and intensity (10{sup 5} photons/shot). These parameters are summarized by the peak brightness, 1.5 x 10{sup 15} photons/mm{sup 2}/mrad{sup 2}/s/0.1% bandwidth, measured at 478 keV. Additional measurements of the flux as a function of the timing difference between the drive laser pulse and the relativistic photo-electron bunch, {gamma}-ray beam profile, and background evaluations are presented. These results are systematically compared to theoretical models and computer simulations. NRF measurements performed on {sup 7}Li in LiH demonstrate the potential of Compton scattering photon sources to accurately detect isotopes in situ.

Barty, C J; Gibson, D J; Albert, F; Anderson, S G; Anderson, G G; Betts, S M; Berry, R D; Fisher, S E; Hagmann, C A; Johnson, M S; Messerly, M J; Phan, H H; Semenov, V A; Shverdin, M Y; Tremaine, A M; Hartemann, F V; Siders, C W; McNabb, D P

2009-02-26T23:59:59.000Z

418

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2 SunProgrammatic

419

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2

420

DOE-0346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State oftoDOE-0346

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Dysregulation of nuclear factor kappa B activity and osteopontin expression in oxidant-induced atherogenesis  

E-Print Network [OSTI]

?????????????????.. 14 Fig. 3 A schematic representation of NF-? B activation????????.. 16 Fig. 4 A schematic representation of the allylamine model??????.? 24 Fig. 5 Metabolism and toxicity of acrolein?????????????.. 26 Fig. 6 Metabolism and toxicity of hydrogen... to acrolein and hydrogen peroxide in the vessel wall by semicarbazide-sensitive amine oxidase (SSAO). 24 Early experiments by Boor and Nelson demonstrated ?vigorous? acrolein production in aortic homogenates isolated from rats and humans, a levels six times...

Williams, Edward Spencer

2004-09-30T23:59:59.000Z

422

Control and Accountability of Nuclear Materials: Responsibilities and Authorities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order prescribes the Department of Energy (DOE) policies, responsibilities, and authorities for control and accountability of nuclear materials. Cancels DOE O 5633.2.

1992-09-23T23:59:59.000Z

423

International Nuclear Fuel Cycle Fact Book. Revision 12  

SciTech Connect (OSTI)

As the US Department of Energy (DOE) and DOE contractors have become increasingly involved with other nations in nuclear fuel cycle and waste management cooperative activities, a need exists costs for a ready source of information concerning foreign fuel cycle programs, facilities, and personnel. This Fact Book has been compiled to meet that need. The information contained in the International Nuclear Fuel Cycle Fact Book has been obtained from many unclassified sources: nuclear trade journals and newsletters; reports of foreign visits and visitors; CEC, IAEA, and OECD/NMEA activities reports; and proceedings of conferences and workshops. The data listed typically do not reflect any single source but frequently represent a consolidation/combination of information.

Leigh, I.W.

1992-05-01T23:59:59.000Z

424

Active DOE Technical Standards Projects  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of Energy 601DepartmentContract.4 (February 2038TECHNICAL STANDARDS

425

Final report on activities and findings under DOE grant “Interactive Photochemistry in Earth System Models to Assess Uncertainty in Ozone and Greenhouse Gases”  

SciTech Connect (OSTI)

Atmospheric chemistry controls the abundances and hence climate forcing of important greenhouse gases including N2O, CH4, HFCs, CFCs, and O3. Attributing climate change to human activities requires, at a minimum, accurate models of the chemistry and circulation of the atmosphere that relate emissions to abundances. This DOE-funded research provided realistic, yet computationally optimized and affordable, photochemical modules to the Community Earth System Model (CESM) that augment the CESM capability to explore the uncertainty in future stratospheric-tropospheric ozone, stratospheric circulation, and thus the lifetimes of chemically controlled greenhouse gases from climate simulations. To this end, we have successfully implemented Fast-J (radiation algorithm determining key chemical photolysis rates) and Linoz v3.0 (linearized photochemistry for interactive O3, N2O, NOy and CH4) packages in LLNL-CESM and for the first time demonstrated how change in O2 photolysis rate within its uncertainty range can significantly impact on the stratospheric climate and ozone abundances. From the UCI side, this proposal also helped LLNL develop a CAM-Superfast Chemistry model that was implemented for the IPCC AR5 and contributed chemical-climate simulations to CMIP5.

Prather, Michael J. [UCI

2014-11-07T23:59:59.000Z

426

Security and Use Control of Nuclear Explosives and Nuclear Weapons  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Order establishes requirements to implement the nuclear explosive security and use control elements of DOE O 452.1D, Nuclear Explosive and Weapon Surety (NEWS) Program, to ensure authorized use, when directed by proper authority, and protect against deliberate unauthorized acts/deliberate unauthorized use. Cancels DOE O 452.4A.

2010-01-22T23:59:59.000Z

427

News - DOE Directives, Delegations, and Requirements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Explosive and Weapon Surety Program - Read More... NEW - DOE O 422.1 Admin Chg 2, Conduct of Operations - by Diane Johnson - last modified Jan 05, 2015 03:39 PM The...

428

DOE Strengthens Collaboration at Intergovernmental Meeting  

Broader source: Energy.gov [DOE]

NEW ORLEANS – EM and stakeholders met to discuss and collaborate on issues impacting nuclear cleanup across the complex. More than 150 people traveled to New Orleans for the 11th combined Intergovernmental Meeting with the DOE.

429

DOE Marks First Anniversary of EPAct & Releases National Electric...  

Energy Savers [EERE]

progress in delivering clean energy alternatives and spurring investment in renewable and nuclear energy. DOE also released the National Electric Transmission Congestion Study...

430

NNSA project receives DOE Secretary's Award for Project Management...  

National Nuclear Security Administration (NNSA)

project receives DOE Secretary's Award for Project Management Improvement | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the...

431

DOE issues Finding of No Significant Impact for the Environmental...  

Office of Environmental Management (EM)

the Environmental Assessment on Resumption of Transient Testing of Nuclear Fuels and Materials at Idaho National Laboratory DOE issues Finding of No Significant Impact for the...

432

DOE Announces Strategic Engineering and Technology Roadmap for...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era...

433

2014 Annual Workforce Analysis and Staffing Plan Report - DOE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

workforce, addressing the health effects legacy of the Nation's nuclear weapons program, and conducting national and international health studies. * Minimizing DOE's...

434

DOE Seeks Industry Proposals for Feasibility Study to Produce...  

Energy Savers [EERE]

Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse...

435

DOE Cooperative Research and Development Agreements  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) policy, requirements, and responsibilities for the oversight, management, and administration of Cooperative Research and Development Agreement (CRADA) activities at DOE facilities. No cancellation.

2001-01-12T23:59:59.000Z

436

A Proposed Framework For Planning Deactivation And Decommissioning Engineering And Design Activities To Meet The Requirements Of DOE Order 413.3A, Program And Project Management For The Acquisition Of Capital Assets  

SciTech Connect (OSTI)

This paper applies the DOE O 413.3A Design/Engineering requirements to Deactivation and Decommissioning (D and D) projects. A list of 41 activities for which Design/Engineering is generally required and which are relevant and common to many D and D projects was generated. For several activities in this list, examples of the level of development and/or types of deliverables that might be expected at the completion of the conceptual, preliminary and final project design phases described in the Order are provided. This paper also discusses tailoring the application of the Order to a facility based on the complexity of the facility's engineered systems and the hazards existing in the facility. DOE D and D projects are expected to meet the requirements of DOE O 413.3A. For D and D engineering and design activities only, this paper provides guidance for applying these requirements to the Order. A list of 41 typical D and D engineering and design activities has been provided. The Order divides projects into conceptual, preliminary and final design phases. Development of each of the 41 activities can also be organized in conceptual, preliminary and final levels. In general, at the conceptual level project engineers should be determining the what (i.e., the scope) for each activity. At the preliminary level they should be resolving how the activity will be accomplished. At the final level, all the engineering and design details for the activity should be completed so that the activity is ready to implement in the field. It may not be appropriate that development of each individual activity correspond to the current phase of the project. For example, at CD-2 (end of the preliminary design phase) not all activities need be developed to the same level of detail. Only those that are truly significant to the project baseline must be developed to the level of detail necessary to create a reliable project baseline. (authors)

Santos, J.K.; Gladden, J.B. [Savannah River National Laboratory (SRNL), Savannah River Site, Aiken, SC (United States); Szilagyi, A.P. [United States Department of Energy (DOE), Washington, DC (United States); Negin, C.; Urland, C. [Project Enhancement Corporation, Germantown, MD (United States)

2008-07-01T23:59:59.000Z

437

Safety Software Guide Perspectives for the Design of New Nuclear Facilities (U)  

SciTech Connect (OSTI)

In June of this year, the Department of Energy (DOE) issued directives DOE O 414.1C and DOE G 414.1-4 to improve quality assurance programs, processes, and procedures among its safety contractors. Specifically, guidance entitled, ''Safety Software Guide for use with 10 CFR 830 Subpart A, Quality Assurance Requirements, and DOE O 414.1C, Quality Assurance, DOE G 414.1-4'', provides information and acceptable methods to comply with safety software quality assurance (SQA) requirements. The guidance provides a roadmap for meeting DOE O 414.1C, ''Quality Assurance'', and the quality assurance program (QAP) requirements of Title 10 Code of Federal Regulations (CFR) 830, Subpart A, Quality Assurance, for DOE nuclear facilities and software application activities. [1, 2] The order and guide are part of a comprehensive implementation plan that addresses issues and concerns documented in Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 2002-1. [3] Safety SQA requirements for DOE as well as National Nuclear Security Administration contractors are necessary to implement effective quality assurance (QA) processes and achieve safe nuclear facility operations. DOE G 414.1-4 was developed to provide guidance on establishing and implementing effective QA processes tied specifically to nuclear facility safety software applications. The Guide includes software application practices covered by appropriate national and international consensus standards and various processes currently in use at DOE facilities. While the safety software guidance is considered to be of sufficient rigor and depth to ensure acceptable reliability of safety software at all DOE nuclear facilities, new nuclear facilities are well suited to take advantage of the guide to ensure compliant programs and processes are implemented. Attributes such as the facility life-cycle stage and the hazardous nature of each facility operations are considered, along with the category and level of importance of the software. The discussion provided herein illustrates benefits of applying the Safety Software Guide to work activities dependent on software applications and directed toward the design of new nuclear facilities. In particular, the Guide-based systematic approach with software enables design processes to effectively proceed and reduce the likelihood of rework activities. Several application examples are provided for the new facility.

VINCENT, Andrew

2005-07-14T23:59:59.000Z

438

NEW - DOE O 420.1 Chg 1, Facility Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

439

Nuclear Energy: Policies and Technology for the 21st Century...  

Broader source: Energy.gov (indexed) [DOE]

Energy: Policies and Technology for the 21st Century Nuclear Energy: Policies and Technology for the 21st Century The Department of Energy (DOE) Nuclear Energy Advisory Committee...

440

Enforcement Notice of Intent to Investigate, Consolidated Nuclear...  

Broader source: Energy.gov (indexed) [DOE]

Consolidated Nuclear Security Enforcement Notice of Intent to Investigate, Consolidated Nuclear Security September 3, 2014 The DOE Office of Enforcement issued a Notice of Intent...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Nuclear Fuels Storage and Transportation Planning Project (NFST...  

Office of Environmental Management (EM)

Nuclear Fuel Storage and Transportation Planning Project Overview DOE Office of Nuclear Energy Task Force for Strategic Developments to Blue Ribbon Commission Recommendations...

442

DOE handbook: Design considerations  

SciTech Connect (OSTI)

The Design Considerations Handbook includes information and suggestions for the design of systems typical to nuclear facilities, information specific to various types of special facilities, and information useful to various design disciplines. The handbook is presented in two parts. Part 1, which addresses design considerations, includes two sections. The first addresses the design of systems typically used in nuclear facilities to control radiation or radioactive materials. Specifically, this part addresses the design of confinement systems and radiation protection and effluent monitoring systems. The second section of Part 1 addresses the design of special facilities (i.e., specific types of nonreactor nuclear facilities). The specific design considerations provided in this section were developed from review of DOE 6430.1A and are supplemented with specific suggestions and considerations from designers with experience designing and operating such facilities. Part 2 of the Design Considerations Handbook describes good practices and design principles that should be considered in specific design disciplines, such as mechanical systems and electrical systems. These good practices are based on specific experiences in the design of nuclear facilities by design engineers with related experience. This part of the Design Considerations Handbook contains five sections, each of which applies to a particular engineering discipline.

NONE

1999-04-01T23:59:59.000Z

443

Nuclear & Particle Physics, Astrophysics, Cosmology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

production, nuclear weapons, and nuclear threat reduction Proton radiography, muon tomography, proton active interrogation, wide-angle, fast-response optical telescopes, and...

444

DOE outlines complex cleanup options  

SciTech Connect (OSTI)

The Energy Department said last week it will consider four different strategies for cleanup of its nuclear weapons complex in a draft programmatic environmental impact statement due for release this summer. In an implementation plan released for public comment February 17, DOE also said the EIS would look at centralized, decentralized and regional approaches to management of six types of radioactive and hazardous wastes. Other issues to be addressed in the EIS are development of innovative cleanup technology, budgeting and prioritization, job cutbacks and worker retraining, waste minimization and community involvement in cleanup decisions. However, DOE said it had decided not to address spent nuclear fuel storage in the EIS, as had been previously planned. Instead, spent fuel storage options will be reviewed in another environmental study being done under court order for DOE's Idaho National Engineering Laboratory. Findings from the INEL study will be incorporated in the department-wide EIS for environmental restoration and waste management.

Lobsenz, G.

1994-02-25T23:59:59.000Z

445

Nuclear Explosive Safety Evaluation Processes  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual provides supplemental details to support the nuclear explosive safety (NES) evaluation requirement of Department of Energy (DOE) Order (O) 452.2D, Nuclear Explosive Safety, dated 4/14/09. Admin Chg 1, dated 7-10-13, cancels DOE M 452.2-2.

2009-04-14T23:59:59.000Z

446

Nuclear Reactor Safety Design Criteria  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes nuclear safety criteria applicable to the design, fabrication, construction, testing, and performance requirements of nuclear reactor facilities and safety class structures, systems, and components (SSCs) within these facilities. Cancels paragraphs 8a and 8b of DOE 5480.6. Cancels DOE O 5480.6 in part. Certified 11-18-10.

1993-01-19T23:59:59.000Z

447

Standard Guide for Preparing Waste Management Plans for Decommissioning Nuclear Facilities  

E-Print Network [OSTI]

1.1 This guide addresses the development of waste management plans for potential waste streams resulting from decommissioning activities at nuclear facilities, including identifying, categorizing, and handling the waste from generation to final disposal. 1.2 This guide is applicable to potential waste streams anticipated from decommissioning activities of nuclear facilities whose operations were governed by the Nuclear Regulatory Commission (NRC) or Agreement State license, under Department of Energy (DOE) Orders, or Department of Defense (DoD) regulations. 1.3 This guide provides a description of the key elements of waste management plans that if followed will successfully allow for the characterization, packaging, transportation, and off-site treatment or disposal, or both, of conventional, hazardous, and radioactive waste streams. 1.4 This guide does not address the on-site treatment, long term storage, or on-site disposal of these potential waste streams. 1.5 This standard does not purport to address ...

American Society for Testing and Materials. Philadelphia

2010-01-01T23:59:59.000Z

448

Overview and History of DOE's Hanford Site - 12502  

SciTech Connect (OSTI)

Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level, and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses

Flynn, Karen; McCormick, Matt [US DOE (United States)

2012-07-01T23:59:59.000Z

449

DOE/ID-Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Organization NEI Nuclear Energy Institute NPIC & HMIT Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies NPP Nuclear Power Plant NRC Nuclear...

450

Analysis of a Nuclear Accident: Fission and Activation Product Releases from the Fukushima Daiichi Nuclear Facility as Remote Indicators of Source Identification, Extent of Release, and State of Damaged Spent Nuclear Fuel  

SciTech Connect (OSTI)

Evidence of the release Pu from the Fukushima Daiichi nuclear power station to the local environment and surrounding communities and estimates on fraction of total fuel inventory released

Schwantes, Jon M.; Orton, Christopher R.; Clark, Richard A.

2011-12-05T23:59:59.000Z

451

Conduct of Operations Requirements for DOE Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

"To provide requirements and guidelines for Departmental Elements, including the National Nuclear Security Administration (NNSA), to use in developing directives, plans, and/or procedures relating to the conduct of operations at DOE facilities. The implementation of these requirements and guidelines should result in improved quality and uniformity of operations. Change 2, 10-23-2001. Canceled by DOE O 422.1.

1990-07-09T23:59:59.000Z

452

DOE explosives safety manual  

SciTech Connect (OSTI)

The Department of Energy (DOE) policy requires that all DOE activities be conducted in a manner that protects the safety of the public and provides a safe and healthful workplace for employees. DOE has also prescribed that all personnel be protected in any explosives operation undertaken. The level of safety provided shall be at least equivalent to that of the best industrial practice. The risk of death or serious injury shall be limited to the lowest practicable minimum. DOE and contractors shall continually review their explosives operations with the aim of achieving further refinements and improvements in safety practices and protective features. This manual describes the Department's explosive safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives. It is intended to reflect the state-of-the-art in explosives safety. In addition, it is essential that applicable criteria and requirements for implementing this policy be readily available and known to those responsible for conducting DOE programs.

Not Available

1991-10-01T23:59:59.000Z

453

Rocketdyne Propulsion and Power DOE Operations annual site environmental report 1997  

SciTech Connect (OSTI)

This annual report discusses environmental monitoring at two manufacturing and test sites operated in the Los Angeles area by Rocketdyne Propulsion and Power of Boeing North American, Inc. These are identified as Area 4 of the SSFL and the De Soto site. These sites have been used for research and development (R and D), engineering, and testing in a broad range of technical fields primarily in energy research and nuclear reactor technology. The De Soto site had research and development laboratories involved with nuclear research. This work was terminated in 1995 and only D and D activities will have potential for impact on the environment. Since 1956, Area 4 has been used for work with nuclear materials, including fabricating nuclear reactor fuels, testing nuclear reactors, and dissembling used fuel elements. This work ended in 1988 and subsequent efforts have been directed toward decommissioning and decontamination of the former nuclear facilities. The primary purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies responsible for oversight. Information presented here concentrates on Area 4 at SSFL, which is the only area at SSFL where DOE operations were performed.

Robinson, K.S. [ed.

1998-11-23T23:59:59.000Z

454

Nuclear safety information sharing agreement between NRC and...  

Office of Environmental Management (EM)

for DOE and NRC to exchange information related to safety issues associated with non-reactor nuclear facilities. The NRC-DOE Inter-Agency nuclear safety information sharing...

455

Qualitative and Quantitative Assessment of Nuclear Materials Contained in High-Activity Waste Arising from the Operations at the 'SHELTER' Facility  

SciTech Connect (OSTI)

As a result of the nuclear accident at the Chernobyl NPP in 1986, the explosion dispeesed nuclear materials contained in the nuclear fuel of the reactor core over the destroyed facilities at Unit No. 4 and over the territory immediately adjacent to the destroyed unit. The debris was buried under the Cascade Wall. Nuclear materials at the SHELTER can be characterized as spent nuclear fuel, fresh fuel assemblies (including fuel assemblies with damaged geometry and integrity, and individual fuel elements), core fragments of the Chernobyl NPP Unit No. 4, finely-dispersed fuel (powder/dust), uranium and plutonium compounds in water solutions, and lava-like nuclear fuel-containing masses. The new safe confinement (NSC) is a facility designed to enclose the Chernobyl NPP Unit No. 4 destroyed by the accident. Construction of the NSC involves excavating operations, which are continuously monitored including for the level of radiation. The findings of such monitoring at the SHELTER site will allow us to characterize the recovered radioactive waste. When a process material categorized as high activity waste (HAW) is detected the following HLW management operations should be involved: HLW collection; HLW fragmentation (if appropriate); loading HAW into the primary package KT-0.2; loading the primary package filled with HAW into the transportation cask KTZV-0.2; and storing the cask in temporary storage facilities for high-level solid waste. The CDAS system is a system of 3He tubes for neutron coincidence counting, and is designed to measure the percentage ratio of specific nuclear materials in a 200-liter drum containing nuclear material intermixed with a matrix. The CDAS consists of panels with helium counter tubes and a polyethylene moderator. The panels are configured to allow one to position a waste-containing drum and a drum manipulator. The system operates on the ‘add a source’ basis using a small Cf-252 source to identify irregularities in the matrix during an assay. The platform with the source is placed under the measurement chamber. The platform with the source material is moved under the measurement chamber. The design allows one to move the platform with the source in and out, thus moving the drum. The CDAS system and radioactive waste containers have been built. For each drum filled with waste two individual measurements (passive/active) will be made. This paper briefly describes the work carried out to assess qualitatively and quantitatively the nuclear materials contained in high-level waste at the SHELTER facility. These efforts substantially increased nuclear safety and security at the facility.

Cherkas, Dmytro

2011-10-01T23:59:59.000Z

456

March 2006, Report of the ADVANCED NUCLEAR TRANSFORMATION TECHNOLOGY SUBCOMMITTEE of the NUCLEAR ENERGY RESEARCH ADVISORY COMMITTEE  

Broader source: Energy.gov [DOE]

The Global Nuclear Energy Partnership (GNEP) marks a major change in the direction of the DOE’s nuclear energy R&D program. It is a coherent plan to test technologies that promise to markedly...

457

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE 5480.31. Canceled by DOE O 425.1A.

1995-10-26T23:59:59.000Z

458

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1A. Canceled by DOE O 425.1C.

2000-12-21T23:59:59.000Z

459

Startup and Restart of Nuclear Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish the requirements for the Department of Energy, including the National Nuclear Security Administration (NNSA), for start up of new nuclear facilities and for the restart of existing nuclear facilities that have been shut down. Cancels DOE O 425.1B. Canceled by DOE O 425.1D

2003-03-13T23:59:59.000Z

460

DOE HANDBOOK  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4Today,Guide forHandbook

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE National

462

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

463

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE December

464

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

465

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

466

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

467

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,

468

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

469

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

470

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

471

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

472

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

473

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656

474

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 U .

475

DOE-0336  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner36

476

DOE-0344  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto

477

DOE-0400  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State

478

DOE Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

479

DOE-0342  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by e2DOE5, 2012

480

General Engineer (Nuclear Safety)  

Broader source: Energy.gov [DOE]

The Chief of Nuclear Safety (CNS) reports the US/M&P; in serving as the Central Technical Authority (CTA) for M&P; activities, ensuring the Departments nuclear safety policies and...

Note: This page contains sample records for the topic "doe nuclear activities" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

State of Nevada, Agency for Nuclear Projects/Nuclear Waste Project Office narrative report, January 1992  

SciTech Connect (OSTI)

The Agency for Nuclear Projects/Nuclear Waste Project Office (NWPO) is the State of Nevada agency designated by State law to monitor and oversee US Department of Energy (DOE) activities relative to the possible siting, construction, operation and closure of a high-level nuclear waste repository at Yucca Mountain and to carry out the State of Nevada`s responsibilities under the Nuclear Waste Policy Act of 1982. During the reporting period the NWPO continued to work toward the five objectives designed to implement the Agency`s oversight responsibilities: (1) Assure that the health and safety of Nevada`s citizens are adequately protected with regard to any federal high-level radioactive waste program within the State; (2) Take the responsibilities and perform the duties of the State of Nevada as described in the Nuclear Waste Policy Act of 1982 (Public Law 97-425) and the Nuclear Waste Policy Amendments Act of 1987; (3) Advise the Governor, the State Commission on Nuclear Projects and the Nevada State Legislature on matters concerning the potential disposal of high-level radioactive waste in the State; (4) Work closely and consult with affected local governments and State agencies; (5) Monitor and evaluate federal planning and activities regarding high-level radioactive waste disposal. Plan and conduct independent State studies regarding the proposed repository.

NONE

1992-12-31T23:59:59.000Z

482

Comparative Analysis Between US NRC Requirements and US DOE Orders - 13402  

SciTech Connect (OSTI)

Small modular reactor (SMR) is a nuclear reactor design approach that is expected to herald in a new era of clean energy in the U.S. These reactors are less than one-third the size of conventional large nuclear power reactors, and have factory-fabricated components that may be transported by rail or truck to a site selected to house a small nuclear reactor. To facilitate the licensing of these smaller nuclear reactor designs, the Nuclear Regulatory Commission (NRC) is in the process of developing a regulatory infrastructure to support licensing review of these unique reactor designs. As part of these activities, the NRC has been meeting with the Department of Energy (DOE) and with individual SMR designers to discuss potential policy, licensing, and key technical differences in SMR designs. It is anticipated by the NRC that such licensing interaction and guidance early in the design process will contribute towards minimizing complexity while adding stability and predictability in the licensing and subsequent regulation of new reactor designs such as SMRs. In conjunction with the current NRC initiative of developing the SMR licensing process, early communication and collaboration in the identification and resolution of any potential technical and licensing differences between NRC requirements and similar requirements applicable at DOE sites would help to expedite demonstration and implementation of SMR technology in the US. In order to foster such early communication, Savannah River Nuclear Solutions (SRNS) has begun taking the first steps in identifying and evaluating potential licensing gaps that may exist between NRC and DOE requirements in siting SMRs at DOE sites. A comparison between the existing NRC regulations for Early Site Permits and the DOE Orders was undertaken to establish the degree of correlation between NRC requirements and compliance methods in place at DOE sites. The ability to use existing data and information to expedite the development of the Environmental Report is being evaluated at the Savannah River Site as a case study for application across the DOE Complex. This paper will present areas of direct correlation as well as those where the need for site specific data for either DOE operations or NRC compliance warrant additional interaction between the agencies. Areas where further refinement of the SMR technologies may drive collaborative development of revised regulations through such means as industry consensus standards will also be highlighted. Both NRC and DOE have requirements that mandate public involvement in their processes. The importance and value of early engagement with the public as well as collaborating regulatory agencies is of critical importance when deploying new technologies. (authors)

Chakraborti, Sayan [MRIGlobal, 425 Volker Blvd, Kansas City, MO 64110 (United States)] [MRIGlobal, 425 Volker Blvd, Kansas City, MO 64110 (United States); Stone, Lynn; Hyatt, Jeannette [Savannah River Nuclear Solutions (United States)] [Savannah River Nuclear Solutions (United States)

2013-07-01T23:59:59.000Z

483

Integrated Safety Management System Guide (Volume 1) for use with Safety Management System Policies (DOE P 450.4, DOE P 450.5, and DOE P 450.6); The Functions, Responsibilities, and Authorities Manual; and DOE Acquisition Regulation  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Department of Energy (DOE) Integrated Safety Management System (ISMS) Guide is approved for use by the Office of Environment, Safety and Health (EH) and the National Nuclear Security Administration (NNSA). This Guide is available for use by all DOE components and their contractors. This Guide is a consensus document coordinated by EH and prepared under the direction of the DOE Safety Management Implementation Team (SMIT). Replaces DOE G 450.4-1A. Canceled by DOE G 450.4-1C.

2001-03-01T23:59:59.000Z

484

The 1987 Federal field exercise: The DOE experience  

SciTech Connect (OSTI)

The second full-scale field exercise of the Federal Radiological Emergency Response Plan (FRERP) was held at the Zion Nuclear Power Station, Zion, Illinois, in June 1987. The exercise incorporated the annual compliance exercise for the Zion plant and involved the operating utility, Commonwealth Edison Company, the states of Illinois and Wisconsin, local governments, volunteer groups, and representatives from 12 federal agencies. The 3-day exercise was played from many locations in the Zion area; Springfield, Illinois; Madison, Wisconsin; and Washington, DC. Approximately 1000 people participated in the exercise, which used a scenario in which an accident at the plant resulted in the release of radioactive material outside the plant boundary. The US Department of Energy (DOE) had major responsibilities during the planning, playing, and critiquing of the exercise; these functions are outlined in the report. This document describes the DOE participation in the planning and response during the exercise. During a radiological emergency, the FRERP gives DOE the responsibility for coordinating the federal radiological monitoring and assessment activities in support of the states and the cognizant federal agency. At Zion, a self-sufficient Federal Radiological Monitoring and Assessment Center was established by DOE at a nearby fairground in which over 200 people from DOE, the two states, and other federal agencies participated. Before the field exercise, a tabletop exercise and a dry run were held for training purposes. 5 refs., 6 figs.

Adler, M.V.; Gant, K.S.

1989-06-01T23:59:59.000Z

485

Commercial nuclear power 1990  

SciTech Connect (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

486

DOE Approved Technical Standards | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

and "Investigation of Abnormal Events" are elements of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities...