Sample records for doe motor vehicle

  1. Motor Vehicle Record Procedure Objective

    E-Print Network [OSTI]

    Kirschner, Denise

    Motor Vehicle Record Procedure Objective Outline the procedure for obtaining motor vehicle record (MVR) through Fleet Services. Vehicle Operator Policy 3. Operators with 7 or more points on their motor vehicle record

  2. Hybrid vehicle motor alignment

    DOE Patents [OSTI]

    Levin, Michael Benjamin (Ann Arbor, MI)

    2001-07-03T23:59:59.000Z

    A rotor of an electric motor for a motor vehicle is aligned to an axis of rotation for a crankshaft of an internal combustion engine having an internal combustion engine and an electric motor. A locator is provided on the crankshaft, a piloting tool is located radially by the first locator to the crankshaft. A stator of the electric motor is aligned to a second locator provided on the piloting tool. The stator is secured to the engine block. The rotor is aligned to the crankshaft and secured thereto.

  3. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  4. Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC)

    E-Print Network [OSTI]

    Commercial Motor Vehicle Roadside Technology Corridor (CMVRTC) Oak Ridge National Laboratory Safety Security Vehicle Technologies Research Brief T he Commercial Motor Vehicle Roadside Technology in Tennessee to demonstrate, test, evaluation, and showcase innovative commercial motor vehicle (CMV) safety

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

  6. COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT

    E-Print Network [OSTI]

    Pilyugin, Sergei S.

    COMMERICAL MOTOR VEHICLE OPERATOR EMPLOYMENT APPLICATION SUPPLEMENT _________________________________________________________ Applicants for positions involving the operation of a commercial motor vehicle must comply with Title 49 CFR: _______________ Please list the following information for each unexpired commercial motor vehicle operator license

  7. Renting Vehicles Renting Vehicles from MSU Motor Pool

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Renting Vehicles Renting Vehicles from MSU Motor Pool Motor Pool/Transportation Services Motor Pool vehicles may ONLY be used for club-related travel). 2) Valid U.S. driver's license in good standing; 3) Completed Vehicle Use Authorization form for all drivers; and 4) Personal medical insurance

  8. Thermoelectric generator for motor vehicle

    DOE Patents [OSTI]

    Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

    1997-04-29T23:59:59.000Z

    A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

  9. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview1.p...

  10. Summary of electric vehicle dc motor-controller tests

    SciTech Connect (OSTI)

    McBrien, E F; Tryon, H B

    1982-09-01T23:59:59.000Z

    Available performance data for production motors are usually of marginal value to the electric vehicle designer. To provide at least a partial remedy to this situation, tests of typical dc propulsion motors and controllers were conducted as part of the DOE Electric Vehicle Program. The objectives of this program were to evaluate the differences in the performance of dc motors when operating with chopper-type controllers and when operating on direct current; and to gain an understanding of the interactions between the motor and the controller which cause these differences. Toward this end, motor-controller tests performed by the NASA Lewis Research Center provided some of the first published data that quantified motor efficiency variations for both ripple-free (straight dc) and chopper modes of operation. Test and analysis work at the University of Pittsburgh explored motor-controller relationships in greater depth. And to provide additional data, 3E Vehicles tested two small motors, both on a dynamometer and in a vehicle, and the Eaton Corporation tested larger motors, using sophisticated instrumentation and digital processing techniques. All the motors tested were direct-current types. Of the separately excited types, seven were series wound and two were shunt wound. One self-excited permanent magnet type was also tested. Four of the series wound motors used brush shifting to obtain good commutation. In almost all cases, controller limitations constrained the test envelope so that the full capability of the motors could not be explored.

  11. 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...

    Energy Savers [EERE]

    - Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

  12. Commercial Motor Vehicle Brake Assessment Tools

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake Assessment Tools Commercial Motor Vehicle Roadside Technology to deceleration in g's ­ Passing score: BE43.5 · Enforcement tool for only 3 years. · Based solely on brake Brake Research · CMVRTC research built on these enforcement tools ­ Correlation Study ­ Level-1 / PBBT

  13. MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS

    E-Print Network [OSTI]

    MOTOR VEHICLE USE PROGRAM DRIVER SAFETY TIPS Observe Speed Limits and Traffic Laws Allow - Employees who drive Institute or privately owned vehicles on Institute business must possess and carry person. Insurance - Employees who operate their privately owned vehicles on Institute business shall

  14. EA-1869: Supplement to General Motors Corp., Electric Vehicle/Battery Manufacturing Application, White Marsh, Maryland, and Wixom, Michigan (DOE/EA-1723-S1)

    Broader source: Energy.gov [DOE]

    Based on the analysis in the Environmental Assessment DOE determined that its proposed action, to award a federal grant to General Motors to establish an electric motor components manufacturing and electric drive assembly facility would result in no significant adverse impacts.

  15. Physical context management for a motor vehicle

    DOE Patents [OSTI]

    Dixon, Kevin R. (Albuquerque, NM); Forsythe, James C. (Sandia Park, NM); Lippitt, Carl E. (Albuquerque, NM); Lippitt, legal representative, Lois Diane (Albuquerque, NM)

    2009-10-27T23:59:59.000Z

    Computer software for and a method of enhancing safety for an operator of a motor vehicle comprising employing a plurality of sensors of vehicle and operator conditions, matching collective output from the sensors against a plurality of known dangerous conditions, and preventing certain activity of the operator if a known dangerous condition is detected.

  16. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    1999-01-01T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor.

  17. Electrical system for a motor vehicle

    DOE Patents [OSTI]

    Tamor, M.A.

    1999-07-20T23:59:59.000Z

    In one embodiment of the present invention, an electrical system for a motor vehicle comprises a capacitor, an engine cranking motor coupled to receive motive power from the capacitor, a storage battery and an electrical generator having an electrical power output, the output coupled to provide electrical energy to the capacitor and to the storage battery. The electrical system also includes a resistor which limits current flow from the battery to the engine cranking motor. The electrical system further includes a diode which allows current flow through the diode from the generator to the battery but which blocks current flow through the diode from the battery to the cranking motor. 2 figs.

  18. Descriptions of Motor Vehicle Collisions by Participants in Emergency DepartmentBased Studies: Are They Accurate?

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    reports in determining motor vehicle crash characteristics.R ESEARCH Descriptions of Motor Vehicle Collisions byThe immediate aftermath of motor vehicle collisions. In:

  19. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    preventing water pollution from motor vehicles would be muchgroundwater pollution; motor-vehicle transportation;the environmental costs of motor vehicle transportation in

  20. Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Lubricating Oil Dominates Primary Organic Aerosol Emissions from Motor Vehicles David R. Worton, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of primary organic characterization of motor vehicle POA emissions in a roadway tunnel with a mass closure of >60%. The observed POA

  1. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles DE-FC26-07NT43122 DOE Peer Review Presentation Lembit Salasoo, Project Manager & Presenter Ayman El-Refaie,...

  2. Electric machine for hybrid motor vehicle

    DOE Patents [OSTI]

    Hsu, John Sheungchun (Oak Ridge, TN)

    2007-09-18T23:59:59.000Z

    A power system for a motor vehicle having an internal combustion engine and an electric machine is disclosed. The electric machine has a stator, a permanent magnet rotor, an uncluttered rotor spaced from the permanent magnet rotor, and at least one secondary core assembly. The power system also has a gearing arrangement for coupling the internal combustion engine to wheels on the vehicle thereby providing a means for the electric machine to both power assist and brake in relation to the output of the internal combustion engine.

  3. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Jakober, Chris A.

    2008-01-01T23:59:59.000Z

    emissions from gasoline and diesel motor vehicles. Environ.of four dilutions of diesel engine exhaust for a subchronicautomobiles and heavy-duty diesel trucks. Environ. Sci.

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

  5. Vehicle Technologies Office Merit Review 2015: DOE's Effort to...

    Office of Environmental Management (EM)

    DOE's Effort to Improve Heavy Vehicle Fuel Efficiency through Improved Aerodynamics Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve Heavy Vehicle Fuel...

  6. Motor Vehicle Administration 6601 Ritchie Highway, N.E.

    E-Print Network [OSTI]

    Miami, University of

    Motor Vehicle Administration 6601 Ritchie Highway, N.E. Glen Burnie, Maryland 21062 For more-Owner's Signature Vehicle Information Year Make Sticker No. Title No. Tag No. Vehicle Identification Number Car Multi-purpose vehicle Truck 1 ton or less Motorcycle Fees: Non Logo Organizational Tags: $15

  7. What does motor efference copy represent? evidence from speech production

    E-Print Network [OSTI]

    Niziolek, CA; Nagarajan, SS; Houde, JF

    2013-01-01T23:59:59.000Z

    What does motor efference copy represent? Evidence fromAbbreviated title: What does motor efference copy represent?SJ, Wang X (2003) Sensory-Motor Interaction in the Primate

  8. Do Motor-Vehicle Users in the US Pay Their Way?

    E-Print Network [OSTI]

    Delucchi, Mark

    2007-01-01T23:59:59.000Z

    expenditures related to motor-vehicle use is a key factor insuch as highway patrol, for motor-vehicle users (Delucchi,fees speci?cally related to motor-vehicle use A2.1. Taxes

  9. 2014 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    DOE Vehicle Technologies Office Annual Merit Review 2014 DOE Vehicle Technologies Office Annual Merit Review The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office...

  10. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable,...

  11. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

  12. Vehicle Rental Procedure Outline the procedure for renting motor pool vehicles at University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Rental Procedure Objective Outline the procedure for renting motor pool vehicles at University of Michigan (U-M). Procedure 1. All policies pertaining to U-M vehicles also pertain to motor pool rental vehicles. 2. Motor pool vehicles can be reserved for a period of a few hours up to one year. 3

  13. DOE Issues Notice of Proposed Rulemaking for Electric Motors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Notice of Proposed Rulemaking for Electric Motors Energy Conservation Standards DOE Issues Notice of Proposed Rulemaking for Electric Motors Energy Conservation Standards November...

  14. DOE Hybrid Electric Vehicle Test Platform

    SciTech Connect (OSTI)

    Gao, Yimin

    2012-03-31T23:59:59.000Z

    Based on the contract NT-42790 to the Department of Energy, Plug-in Hybrid Ethanol Research Platform, Advanced Vehicle Research Center (AVRC) Virginia has successfully developed the phase I electric drive train research platform which has been named as Laboratory Rapid Application Testbed (LabRAT). In phase II, LabRAT is to be upgraded into plug-in hybrid research platform, which will be capable of testing power systems for electric vehicles, and plug-in hybrid electric vehicles running on conventional as well as alternative fuels. LabRAT is configured as a rolling testbed with plentiful space for installing various component configurations. Component connections are modularized for flexibility and are easily replaced for testing various mechanisms. LabRAT is designed and built as a full functional vehicle chassis with a steering system, brake system and four wheel suspension. The rear drive axle offers maximum flexibility with a quickly changeable gear ratio final drive to accommodate different motor speed requirements. The electric drive system includes an electric motor which is mechanically connected to the rear axle through an integrated speed/torque sensor. Initially, a 100 kW UQM motor and corresponding UQM motor controller is used which can be easily replaced with another motor/controller combination. A lithium iron phosphate (LiFePO4) battery pack is installed, which consists of 108 cells of 100 AH capacity, giving the total energy capacity of 32.5 kWh. Correspondingly, a fully functional battery management system (BMS) is installed to perform battery cell operation monitoring, cell voltage balancing, and reporting battery real time operating parameters to vehicle controller. An advanced vehicle controller ECU is installed for controlling the drive train. The vehicle controller ECU receives traction or braking torque command from driver through accelerator and brake pedal position sensors and battery operating signals from the BMS through CAN BUS, and then generates motor torque command (traction or braking) to the motor controller based on the control algorithm software embedded in the vehicle controller ECU. The vehicle controller ECU is a re-programmable electronic control unit. Any control algorithm software developed can be easily downloaded to vehicle controller ECU to test any newly developed control strategy. The flexibility of the control system significantly enhances the practical applicability of the LabRAT. A new test methodology has been developed for the LabRAT simulating any vehicles running on road with different weights from compact passenger car to light duty truck on an AC or eddy current dynamometers without much effort for modification of the system. LabRAT is equipped with a fully functional data acquisition system supplied by CyberMetrix. The measurement points along the drive train are DC electric power between battery pack and motor controller input, AC electric power between motor controller and electric motor, mechanical power between motor and rear axle. The data acquisition system is designed with more capability than current requirements in order to meet the requirements for phase II.

  15. DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...

    Energy Savers [EERE]

    Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

  16. 2012 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2012 DOE Vehicle Technologies Office Annual Merit Review The 2012 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  17. 2011 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2011 DOE Vehicle Technologies Office Annual Merit Review The 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. 2009 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2009 DOE Vehicle Technologies Office Annual Merit Review The 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  19. 2010 DOE Vehicle Technologies Office Annual Merit Review | Department...

    Energy Savers [EERE]

    Merit Review 2010 DOE Vehicle Technologies Office Annual Merit Review The 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  20. DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

  1. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration and Education DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Integration and Education Merit review of DOE Vehicle Technologies Program research...

  2. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Environmental Management (EM)

    Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweigh...

    Broader source: Energy.gov (indexed) [DOE]

    6.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...

    Broader source: Energy.gov (indexed) [DOE]

    4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  5. DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms...

    Energy Savers [EERE]

    Acronyms DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview11.pdf More...

  6. DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...

    Broader source: Energy.gov (indexed) [DOE]

    7.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

  7. DOE Vehicle Technologies Program 2009 Merit Review Report - PI...

    Energy Savers [EERE]

    PI and Project Cross Reference DOE Vehicle Technologies Program 2009 Merit Review Report - PI and Project Cross Reference Merit review of DOE Vehicle Technologies Program research...

  8. Ignition Performance of New and Used Motor Vehicle Upholstery Fabrics

    E-Print Network [OSTI]

    Spearpoint, Michael; Olenick, Stephen M; Torero, Jose L; Steinhaus, Thomas

    2005-01-01T23:59:59.000Z

    This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ...

  9. MIT Electric Vehicle Team Porsche designing a cooling system for the AC24 electric motor

    E-Print Network [OSTI]

    Meenen, Jordan N

    2010-01-01T23:59:59.000Z

    In this thesis I worked on the design and analysis of a cooling system for the electric motor of the MIT Electric Vehicle Team's Porsche 914 Battery Electric Vehicle. The vehicle's Azure Dynamics AC24 motor tended to ...

  10. Fuel-Based On-Road Motor Vehicle Emissions Inventory

    E-Print Network [OSTI]

    Denver, University of

    Fuel-Based On-Road Motor Vehicle Emissions Inventory for the Denver Metropolitan Area Sajal S of Denver 2101 E. Wesley Ave. Denver, CO 80208 #12;Mobile Source Emissions Inventory Methods MOBILE emission factors -g/mile uncertain Vehicle miles traveled -very uncertain Speed correction factors Inventory

  11. "Bait vehicle" technologies and motor vehicle theft along the southwest border.

    SciTech Connect (OSTI)

    Aldridge, Chris D.

    2007-09-01T23:59:59.000Z

    In 2005, over 33% of all the vehicles reported stolen in the United States occurred in the four southwestern border states of California, Arizona, New Mexico, and Texas, which all have very high vehicle theft rates in comparison to the national average. This report describes the utilization of 'bait vehicles' and associated technologies in the context of motor vehicle theft along the southwest border of the U.S. More than 100 bait vehicles are estimated to be in use by individual agencies and auto theft task forces in the southwestern border states. The communications, tracking, mapping, and remote control technologies associated with bait vehicles provide law enforcement with an effective tool to obtain arrests in vehicle theft 'hot spots'. Recorded audio and video from inside the vehicle expedite judicial proceedings as offenders rarely contest the evidence presented. At the same time, law enforcement is very interested in upgrading bait vehicle technology through the use of live streaming video for enhanced officer safety and improved situational awareness. Bait vehicle effectiveness could be enhanced by dynamic analysis of motor theft trends through exploitation of geospatial, timeline, and other analytical tools to better inform very near-term operational decisions, including the selection of particular vehicle types. This 'information-led' capability would especially benefit from more precise and timely information on the location of vehicles stolen in the United States and found in Mexico. Introducing Automated License Plate Reading (ALPR) technology to collect information associated with stolen motor vehicles driven into Mexico could enhance bait vehicle effectiveness.

  12. Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon

    E-Print Network [OSTI]

    Bertini, Robert L.

    Motor Vehicle Crash Fatalities and Injuries: An Analysis of the Relationship of Roadway, Driver, Vehicle Characteristics in Oregon Motor Vehicle Crash Fatalities and Injuries: An Analysis,000 population among Oregon counties from 2000-2005 ranged from 6.64-211.17. In the event of a severe motor

  13. A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A Power Presizing Methodology for Electric Vehicle Traction Motors Bekheira Tabbache1,2 , Sofiane for presizing the power of an electric vehicle traction motor. Based on the vehicle desired performances methodology is validated through extensive simulations for different induction motor-based electric vehicles

  14. EcoCAR Vehicles Get Put to the Test at General Motors' Proving...

    Broader source: Energy.gov (indexed) [DOE]

    EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground EcoCAR Vehicles Get Put to the Test at General Motors' Proving Ground June 13, 2011 - 5:57pm Addthis Virginia...

  15. REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE FORM Issued By: Risk & Safety 20 Oct 2009 REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE

    E-Print Network [OSTI]

    Bolch, Tobias

    REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE FORM Issued By: Risk & Safety 20 Oct 2009 REQUEST TO USE A UNIVERSITY MOTORIZED VEHICLE INSTRUCTIONS: Complete form, attach a photocopy of your drivers University Vehicle License Plate# ____________currently under the control of the Department

  16. MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to

    E-Print Network [OSTI]

    Kirschner, Denise

    MOTOR VEHICLE RECORD AUTHORIZATION This form authorizes Parking and Transportation (PTS) Fleet Services to conduct a motor vehicle record check to verify eligibility to operate University of Michigan (U-M) vehicles. Form Instructions: Complete each section of the form Print and fax

  17. News Release Off-Highway Motor Vehicle Recreation Division

    E-Print Network [OSTI]

    Creek Management Area near Hollister, California The Off-Highway Motor Vehicle Recreation (OHMVR's (BLM) Clear Creek Management Area (CCMA). The report was completed by scientists from the International: http://www.blm.gov/ca/st/en/fo/hollister/clear_creek_management_area.html . #12;

  18. Motor vehicle fuel economy, the forgotten HC control stragegy?

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01T23:59:59.000Z

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  19. Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Electric Vehicle Induction Motor DSVM-DTC with Torque Ripple Minimization Farid Khoucha1 a sensorless DSVM-DTC of an induction motor that propels an electrical vehicle or a hybrid one. The drive uses, as demonstrated in experimental results. Keywords: Electric vehicle (EV), induction motor, Discrete Space Vector

  20. Design and Control of the Induction Motor Propulsion of an Electric Vehicle

    E-Print Network [OSTI]

    Brest, Universit de

    Design and Control of the Induction Motor Propulsion of an Electric Vehicle B. Tabbache1,2 , A for presizing the induction motor propulsion of an Electric Vehicle (EV). Based on the EV desired performances for different induction motor-based EVs using a siding mode control technique. Index Terms--Electric Vehicle (EV

  1. In Nevada, during 2008, about 16,000 motor vehicles were stolen.

    E-Print Network [OSTI]

    Hemmers, Oliver

    vehicles were stolen in 2008, totaling over $6 billion in losses (FBI, 2008). Efforts to control motor brief describes the patterns of motor vehicle theft in Nevada and compares them to national trends are also discussed. The Prevalence of Motor Vehicle Theft Although the general trend is downward, since

  2. On-Road Motor Vehicle Emissions Measurements

    E-Print Network [OSTI]

    Denver, University of

    . Pokharel, Gary A. Bishop and Donald H. Stedman Department of Chemistry and Biochemistry University 1990 1991 1992 1993 1994 1995 1996 1997 1998 Model Year FailureRate(%) Gasoline Vehicles Natural Gas Bi/day382252Diesel trucks Tons/day2730220Gasohol (LTK, PAS) Tons/day3748369Gasoline (LTK, PAS) g per kg of fuel

  3. 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight...

    Energy Savers [EERE]

    Lightweight Materials 2010 DOE EERE Vehicle Technologies Program Merit Review - Lightweight Materials Lightweight materials research and development merit review results...

  4. DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...

    Broader source: Energy.gov (indexed) [DOE]

    5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

  5. Carbonyl Emissions from Gasoline and Diesel Motor Vehicles Chris A. Jakober, 2

    E-Print Network [OSTI]

    1 Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1 Chris A0205CH11231. LBNL752E #12;Carbonyl Emissions from Gasoline and Diesel Motor Vehicles 1Chris A-duty vehicles (LDVs) and heavy-duty diesel powered vehicles (HDDVs) operated on chassis dynamometers were

  6. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    Environmental externalities of motor-vehicle use in the US.Gasoline Cd Co Cr Cu Fe Mn Ni Motor Oil & Grease Antifreezecan often be traced to motor vehicle sources. According to

  7. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, Joseph C. (Ypsilanti, MI); Landman, Ronald G. (Ypsilanti, MI); Patil, Prabhakar B. (Detroit, MI); Reitz, Graydon A. (Farmington Hills, MI)

    1990-01-01T23:59:59.000Z

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission.

  8. Method for controlling a motor vehicle powertrain

    DOE Patents [OSTI]

    Burba, J.C.; Landman, R.G.; Patil, P.B.; Reitz, G.A.

    1990-05-22T23:59:59.000Z

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the position of the gear selector lever operated manually by the vehicle operator, the speed of the power source, the state of the ignition key, and the rate of release of an accelerator pedal. A control algorithm produces input data representing a commanded upshift, a commanded downshift and a torque command and various constant torque signals. A microprocessor processes the input and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake to produce the forward drive, reverse and regenerative operation of the transmission. 7 figs.

  9. SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    SDTC-EKF Control of an Induction Motor Based Electric Vehicle B. Tabbache1,2 , A. Kheloui2 , M torque control of an induction motor based electric vehicle. In this case, stator flux and rotational for an electric vehicle control. Keywords: Sensorless Direct Torque Control (SDTC), Extented Kalman Filter (EKF

  10. Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems in California

    E-Print Network [OSTI]

    Kammen, Daniel M.

    PWP-092 Economic Implications of Net Metering for Stationary and Motor Vehicle Fuel Cell Systems emissions, and petroleum use from motor vehicles, fuel cell vehicles (FCVs) could also act as distributed Fuel Cell Systems in California January 31, 2002 Dr. Timothy E. Lipman Ms. Jennifer L. Edwards Prof

  11. Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION.

    E-Print Network [OSTI]

    Behmer, Spencer T.

    Motor Vehicle Rental Exemption Certificate THIS EXEMPTION CERTIFICATE IS NOT VALID FOR TAX-FREE REGISTRATION. THIS EXEMPTION CERTIFICATE MUST BE ATTACHED TO THE RENTAL CONTRACT. Make of Vehicle Motor or Vehicle Identification Number Year Model Body Style License Number The undersigned claims exemption from

  12. Journal of Asian Electric Vehicles, Volume 9, Number 1, June 2011 Uncontrolled Generation of Traciton Motors in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    magnet synchronous machines (PMSM) are provided with advantages of small size, light weight, and high power density, therefore PMSM are primary choice as traction motors in hybrid vehicles. In addition hybrid vehicles use PMSM [Kassakian , 2000]. However, interior permanent magnet synchronous motor (IPMSM

  13. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  14. 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...

    Energy Savers [EERE]

    Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

  15. 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

  16. 2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

  17. Vehicle Technologies Office Merit Review 2014: DOE's Effort to...

    Office of Environmental Management (EM)

    Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. 2010 DOE EERE Vehicle Technologies Program Merit Review - Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Electronics and Electrical Machines 2010 DOE EERE Vehicle Technologies Program Merit Review - Power Electronics and Electrical Machines APEEM research and development merit...

  19. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Energy Savers [EERE]

    More Documents & Publications EcoCAR the Next Generation IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR...

  20. A Soft-Switching Inverter for High-Temperature Advanced Hybrid Electric Vehicle Traction Motor Drives

    SciTech Connect (OSTI)

    None, None

    2012-01-31T23:59:59.000Z

    The state-of-the-art hybrid electric vehicles (HEVs) require the inverter cooling system to have a separate loop to avoid power semiconductor junction over temperatures because the engine coolant temperature of 105?C does not allow for much temperature rise in silicon devices. The proposed work is to develop an advanced soft-switching inverter that will eliminate the device switching loss and cut down the power loss so that the inverter can operate at high-temperature conditions while operating at high switching frequencies with small current ripple in low inductance based permanent magnet motors. The proposed tasks also include high-temperature packaging and thermal modeling and simulation to ensure the packaged module can operate at the desired temperature. The developed module will be integrated with the motor and vehicle controller for dynamometer and in-vehicle testing to prove its superiority. This report will describe the detailed technical design of the soft-switching inverters and their test results. The experiments were conducted both in module level for the module conduction and switching characteristics and in inverter level for its efficiency under inductive and dynamometer load conditions. The performance will be compared with the DOE original specification.

  1. EA-1723: General Motors LLC Electric Drive Vehicle Battery and Component Manufacturing Initiative Application White Marsh, Maryland and Wixom, Michigan

    Broader source: Energy.gov [DOE]

    DOEs Proposed Action is to provide GM with $105,387,000 in financial assistance in a cost sharing arrangement to facilitate construction and operation of a manufacturing facility to produce electric motor components and assemble an electric drive unit. This Proposed Action through the Vehicle Technologies Program will accelerate the development and production of electric-drive vehicle systems and reduce the United States consumption of petroleum. This Proposed Action will also meaningfully assist in the nations economic recovery by creating manufacturing jobs in the United States in accordance with the objectives of the Recovery Act.

  2. DOE Project on Heavy Vehicle Aerodynamic Drag

    SciTech Connect (OSTI)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04T23:59:59.000Z

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag coefficient of the vehicle. Furthermore, the evaluation of the impact of small changes in radiator or grille dimensions has revealed that the total drag is not particularly sensitive to those changes. This observation leads to two significant conclusions. First, a small increase in radiator size to accommodate heat rejection needs related to new emissions restrictions may be tolerated without significant increases in drag losses. Second, efforts to reduce drag on the tractor requires that the design of the entire tractor be treated in an integrated fashion. Simply reducing the size of the grille will not provide the desired result, but the additional contouring of the vehicle as a whole which may be enabled by the smaller radiator could have a more significant effect.

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    capacity. Furthermore they were interested to see the effect of driving intensity on energy consumption differs for vehicle EV capability. Overall they feel this task is...

  4. Control of a Fuel-Cell Powered DC Electric Vehicle Motor

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Meeting, 2005 www.ntnu.no Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor #12;2 Outline 1) Control of Fuel Cells--Status 2) Dynamic Modelling of Fuel Cells 3) DC

  5. Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation

    E-Print Network [OSTI]

    Yu, Fangqun

    Chemiion evolution in motor vehicle exhaust: Further evidence of its role in nanoparticle formation of the nanoparticles in motor vehicle exhaust. INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols fuel combustion play an important role in the formation of these NPs. The predicted NP properties based

  6. Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

  7. Vehicle Technologies Office Merit Review 2015: Overview of the DOE/VTO Vehicle Systems Program

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the DOE...

  8. Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1,2

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Sensor Fault-Tolerant Control of an Induction Motor Based Electric Vehicle Bekhera Tabbache1://www.lbms.fr Keywords Electric Vehicle (EV), Induction motor, Sensor fault, Fault-tolerant control (FTC), Direct torque a reconfigurable direct torque control of an induction motor-based electric vehicle. The proposed strategy concerns

  9. U.S. Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D.

    E-Print Network [OSTI]

    Kemner, Ken

    U.S. Motor Vehicle Output and Other GDP, 1968-2007 Danilo J. Santini, Ph. D. Senior Economist, and perform publicly and display publicly, by or on behalf of the Government. 1 #12;U.S. Motor Vehicle Output of motor vehicle output" on the rest of the economy over the period 1968-2007. We statistically assess

  10. Toxicological and performance aspects of oxygenated motor vehicle fuels

    SciTech Connect (OSTI)

    NONE

    1996-12-31T23:59:59.000Z

    At the request of the Environmental Protection Agency, the committee reviewed a draft of a federal report that assesses the effects of oxygenated fuels on public health, air quality, fuel economy, engine performance, and water quality. The committee determined that much of the federal report adequately represents what is known about the effects of methyl tertiary-butyl ether (MTBE) -- the most commonly used additive in the federal oxygenated-fuels program -- on health, the environment, and motor vehicles. MTBE, a chemical added to gasoline to reduce carbon monoxide pollution, appears not to pose a substantial human health risk, but more-definitive data are needed to assess short-term health effects and to determine whether this additive is effective in reducing carbon monoxide pollution in cold environments.

  11. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2013 - 2014 July 1, 2013 - June 30, 2014 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  12. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2011 - 2012 July 1, 2011 - June 30, 2012 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  13. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2010 - 2011 July 1, 2010 - June 30, 2011 Enterprise should be used for all in-state vehicle rentals. General Vehicle Rental Notes: Corporate Discount # A valid driver's license and a major credit card (La

  14. In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel)

    E-Print Network [OSTI]

    Harms, Kyle E.

    In-State Contract Vehicle Rental Rates (State Motor Pool Rental Contract for Business Travel) FY 2012 - 2013 July 1, 2012 - June 30, 2013 Enterprise must be used for all in-state vehicle rentals. Corporate Discount # Website Reservations Phone # Base Rental Charges Rental Location Surcharges Vehicle

  15. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the U.S. DOE Vehicle Technologies Program DOE rationale for addressing transportation oil dependency, programs, specifically Vehicle Technologies Program, R&D areas, including...

  16. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    efficiency, purchase price, energy costs, hours of operation, load factor, and utility rebates are taken into account. -Utility rebate program data, which includes minimum qualifying efficiency and rebate dollar values. -Menus and extensive Help screens... in accordance with these two assumptions, the private sector will supply the delivery mechanisms for Motor Challenge tools because they will represent a value added to their existing commercial products. Industry and DOE Drivers Industry and DOE, in general...

  17. Analyzing spatial-temporal patterns of motor vehicle crashes using GIS: a case study in Dallas

    E-Print Network [OSTI]

    Lu, Bing

    2003-01-01T23:59:59.000Z

    This paper uses GIS to analyze the characteristics of temporal and spatial distributions of motor vehicle crashes. These characteristics include that traffic accidents are most likely to occur in the afternoon "rush hour" (4:00 - 6:00PM...

  18. Analyzing spatial-temporal patterns of motor vehicle crashes using GIS: a case study in Dallas

    E-Print Network [OSTI]

    Lu, Bing

    2003-01-01T23:59:59.000Z

    This paper uses GIS to analyze the characteristics of temporal and spatial distributions of motor vehicle crashes. These characteristics include that traffic accidents are most likely to occur in the afternoon "rush hour" (4:00 - 6:00PM...

  19. EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES

    E-Print Network [OSTI]

    Kammen, Daniel M.

    EMISSIONS OF NITROUS OXIDE AND METHANE FROM CONVENTIONAL AND ALTERNATIVE FUEL MOTOR VEHICLES fuel passenger cars, light-duty trucks, and heavy-duty vehicles. 1. Introduction The use of energy/electric hybrid and fuel cell/electric hybrid drivetrain technologies offers the potential for significant

  20. Vehicle Technologies Office Merit Review 2014: Convective Cooling and Passive Stack Improvements in Motors

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  1. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ape08elrefaie...

  2. Scalable, Low-Cost, High Performance IPM Motor for Hybrid Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ape013elrefaie2010o...

  3. Vehicle Technologies Office Merit Review 2014: Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about permanent magnet development...

  4. Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  5. hybrid vehicle systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , .,Shreve; University67Hybrid and Vehicle Systems

  6. Data Needs for Evolving Motor Vehicle Emission Modeling Approaches

    E-Print Network [OSTI]

    Guensler, Randall

    1993-01-01T23:59:59.000Z

    model was originally developed by the TransportationSystems Center of the USDepartment Transportationto support vehicle of energy

  7. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

    1999-09-28T23:59:59.000Z

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  8. Efficient, High-Torque Electric Vehicle Motor: Advanced Electric Vehicle Motors with Low or No Rare Earth Content

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: QM Power will develop a new type of electric motor with the potential to efficiently power future generations of EVs without the use of rare-earth-based magnets. Many of todays EV motors use rare earth magnets to efficiently provide torque to the wheels. QM Powers motors would contain magnets that use no rare earth minerals, are light and compact, and can deliver more power with greater efficiency and at reduced cost. Key innovations in this project include a new motor design with iron-based magnetic materials, a new motor control technique, and advanced manufacturing techniques that substantially reduce the cost of the motor. The ultimate goal of this project is to create a cost-effective EV motor that offers the rough peak equivalent of 270 horsepower.

  9. Subcontract Report: Final Report on Assessment of Motor Technologies for Traction Drives of Hybrid and Electric Vehicles (Subcontract #4000080341)

    SciTech Connect (OSTI)

    Fezzler, Raymond [BIZTEK Consulting, Inc.

    2011-03-01T23:59:59.000Z

    Currently, interior permanent magnet (IPM) motors with rare-earth (RE) magnets are almost universally used for hybrid and electric vehicles (EVs) because of their superior properties, particularly power density. However, there is now a distinct possibility of limited supply or very high cost of RE magnets that could make IPM motors unavailable or too expensive. Because development of electric motors is a critical part of the U.S. Department of Energy (DOE) Advanced Power Electronics and Motors activity, DOE needs to determine which options should be investigated and what barriers should be addressed. Therefore, in order to provide a basis for deciding which research topics should be pursued, an assessment of various motor technologies was conducted to determine which, if any, is potentially capable of meeting FreedomCAR 2015 and 2020 targets. Highest priority was given to IPM, surface mounted permanent magnet (SPM), induction, and switched reluctance (SR) motors. Also of interest, but with lesser emphasis, were wheel motors, multiple-rotor motors, motors with external excitation, and several others that emerged from the assessment. Cost and power density (from a design perspective, the power density criterion translates to torque density) are emerging as the two most important properties of motors for traction drives in hybrid and EVs, although efficiency and specific power also are very important. The primary approach for this assessment involved interviews with original equipment manufacturers (OEMs), their suppliers, and other technical experts. For each technology, the following issues were discussed: (1) The current state-of-the-art performance and cost; (2) Recent trends in the technology; (3) Inherent characteristics of the motor - which ones limit the ability of the technology to meet the targets and which ones aid in meeting the target; (4) What research and development (R&D) would be needed to meet the targets; and (5) The potential for the technology to meet the targets. The interviews were supplemented with information from past Oak Ridge National Laboratory (ORNL) reports, previous assessments that were conducted in 2004, and literature on magnet technology. The results of the assessment validated the DOE strategy involving three parallel paths: (1) there is enough of a possibility that RE magnets will continue to be available, either from sources outside China or from increased production in China, that development of IPM motors using RE magnets should be continued with emphasis on meeting the cost target. (2) yet the possibility that RE magnets may become unavailable or too expensive justifies efforts to develop innovative designs for permanent magnet (PM) motors that do not use RE magnets. Possible other magnets that may be substituted for RE magnets include samarium-cobalt (Sm-Co), Alnico, and ferrites. Alternatively, efforts to develop motors that do not use PMs but offer attributes similar to IPM motors also are encouraged. (3) New magnet materials using new alloys or processing techniques that would be less expensive or have comparable or superior properties to existing materials should be developed if possible. IPM motors are by far the most popular choice for hybrid and EVs because of their high power density, specific power, and constant power-speed ratio (CPSR). Performance of these motors is optimized when the strongest possible magnets - i.e., RE neodymium-iron-boron (NdFeB) magnets - are used.

  10. Journal of Asian Electric Vehicles, Volume 8, Number 1, June 2010 Simplified Thermal Model of PM Motors in Hybrid Vehicle Applications Taking

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    mounted PM synchronous motor (SPMSM) is developed in this paper. Due to the high conductivity of the rare of PM Motors in Hybrid Vehicle Applications Taking into Account Eddy Current Loss in Magnets Xiaofeng, University of Michigan-Dearborn, mi@ieee.org Abstract Permanent Magnet (PM) Motors are popular choices

  11. Rare-Earth-Free Traction Motor: Rare Earth-Free Traction Motor for Electric Vehicle Applications

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: Baldor will develop a new type of traction motor with the potential to efficiently power future generations of EVs. Unlike todays large, bulky EV motors which use expensive, imported rare-earth-based magnets, Baldors motor could be light, compact, contain no rare earth materials, and have the potential to deliver more torque at a substantially lower cost. Key innovations in this project include the use of a unique motor design, incorporation of an improved cooling system, and the development of advanced materials manufacturing techniques. These innovations could significantly reduce the cost of an electric motor.

  12. PM Motor Parametric Design Analyses for a Hybrid Electric Vehicle Traction Drive Application

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-10-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies office has a strong interest in making rapid progress in permanent magnet (PM) machine development. The DOE FreedomCAR program is directing various technology development projects that will advance the technology and hopefully lead to a near-term request for proposals (RFP) for a to-be-determined level of initial production. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This report summarizes the results of these activities as of September 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched-reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory (ORNL), Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle (HEV) traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a high power density.

  13. The 4 phase VSR motor: The ideal prime mover for electric vehicles

    SciTech Connect (OSTI)

    Holling, G.H.; Yeck, M.M.

    1994-12-31T23:59:59.000Z

    4 phase variable switched reluctance motors are gaining acceptance in many applications due to their fault tolerant characteristics. A 4 phase variable switched reluctance motor (VSR) is modelled and its performance is predicted for several operating points for an electric vehicle application. The 4 phase VSR offers fault tolerance, high performance, and an excellent torque to weight ratio. The actual system performance was measured both on a teststand and on an actual vehicle. While the system described is used in a production electric motorscooter, the technology is equally applicable for high efficiency electric cars and buses. 4 refs.

  14. Penn State DOE GATE Center of Exellence for In-Vehicle, High...

    Energy Savers [EERE]

    Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems Penn State DOE GATE Center of Exellence for In-Vehicle, High-Power Energy Storage Systems...

  15. Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications for Ozone Production

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Chemical Composition of Gas-Phase Organic Carbon Emissions from Motor Vehicles and Implications, United States *S Supporting Information ABSTRACT: Motor vehicles are major sources of gas-phase organic the two methods except for products of incomplete combustion, which are not present in uncombusted fuels

  16. Projections of motor vehicle growth, fuel consumption and CO{sub 2} emissions for the next thirty years in China.

    SciTech Connect (OSTI)

    He, D.; Wang, M.

    2000-12-12T23:59:59.000Z

    Since the early 1990s, China's motor vehicles have entered a period of fast growth resultant from the rapid economic expansion. As the largest developing country, the fast growth of China's motor vehicles will have tremendous effects on the world's automotive and fuel market and on global CO{sub 2} emissions. In this study, we projected Chinese vehicle stocks for different vehicle types on the provincial level. First, we reviewed the historical data of China's vehicle growth in the past 10 years and the correlations between vehicle growth and economic growth in China. Second, we investigated historical vehicle growth trends in selected developed countries over the past 50 or so years. Third, we established a vehicle growth scenario based on the historical trends in several developed nations. Fourth, we estimated fuel economy, annual mileage and other vehicle usage parameters for Chinese vehicles. Finally, we projected vehicle stocks and estimated motor fuel use and CO{sub 2} emissions in each Chinese province from 2000 to 2030. Our results show that China will continue the rapid vehicle growth, increase gasoline and diesel consumption and increased CO{sub 2} emissions in the next 30 years. We estimated that by year 2030, Chinese motor vehicle fuel consumption and CO{sub 2} emissions could reach the current US levels.

  17. Efficient Motor System Tools Sponsored by the DOE Motor Challenge Program

    E-Print Network [OSTI]

    Blazewicz, S.; McCoy, G. A.; Olszewski, M.; Scheihing, P.

    1995-01-01T23:59:59.000Z

    motors and motor-dri ven equipment that wi 11 improve indus! ri al energy effic iency, producti vi ty and environmental performance. The overall goal is to increase the market penetration of energy-efficient industrial electric motor systems...

  18. Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Control of a Fuel-Cell Powered DC Electric Vehicle Motor Federico Zenith Sigurd Skogestad Introduction Research in fuel cells receives currently a lot of interest. Fuel cells can be used, in different. However, the dynamics of fuel cells has received comparatively less attention. Control of fuel cells

  19. Motor vehicle fuel economy, the forgotten HC control stragegy. [Hydrocarbon (HC)

    SciTech Connect (OSTI)

    Deluchi, M.; Wang, Quanlu; Greene, D.L.

    1992-06-01T23:59:59.000Z

    Emissions of hydrocarbons from motor vehicles are recognized as major contributors to ozone pollution in urban areas. Petroleum-based motor fuels contain volatile organic compounds (VOC) which, together with oxides of nitrogen, promote the formation of ozone in the troposphere via complex photochemical reactions. VOC emissions from the tailpipe and evaporation from the fuel and engine systems of highway vehicles are believed to account for about 40% of total VOC emissions in any region. But motor fuels also generate emissions throughout the fuel cycle, from crude oil production to refining, storage, transportation, and handling, that can make significant contributions to the total inventory of VOC emissions. Many of these sources of emissions are directly related to the quantity of fuel produced and handled throughout the fuel cycle. It is, therefore, reasonable to expect that a reduction in total fuel throughput might result in a reduction of VOC emissions. In particular, reducing vehicle fuel consumption by increasing vehicle fuel economy should reduce total fuel throughput, thereby cutting total emissions of VOCS. In this report we identify the sources of VOC emissions throughout the motor fuel cycle, quantify them to the extent possible, and describe their dependence on automobile and light truck fuel economy.

  20. PM Motor Parametric Design Analyses for Hybrid Electric Vehicle Traction Drive Application: Interim Report

    SciTech Connect (OSTI)

    Staunton, R.H.

    2004-08-11T23:59:59.000Z

    The Department of Energy's (DOE) Office of FreedomCAR (Cooperative Automotive Research) and Vehicle Technologies has a strong interest in making rapid progress in permanent magnet (PM) machine development. The program is directing various technology development projects that will advance the technology and lead to request for proposals (RFP) for manufacturer prototypes. This aggressive approach is possible because the technology is clearly within reach and the approach is deemed essential, based on strong market demand, escalating fuel prices, and competitive considerations. In response, this study began parallel development paths that included a literature search/review, development and utilization of multiple parametric models to determine the effects of design parameters, verification of the modeling methodology, development of an interior PM (IPM) machine baseline design, development of alternative machine baseline designs, and cost analyses for several candidate machines. This interim progress report summarizes the results of these activities as of June 2004. This report provides background and summary information for recent machine parametric studies and testing programs that demonstrate both the potential capabilities and technical limitations of brushless PM machines (axial gap and radial gap), the IPM machine, the surface-mount PM machines (interior or exterior rotor), induction machines, and switched reluctance machines. The FreedomCAR program, while acknowledging the progress made by Oak Ridge National Laboratory, Delphi, Delco-Remy International, and others in these programs, has redirected efforts toward a ''short path'' to a marketable and competitive PM motor for hybrid electric vehicle traction applications. The program has developed a set of performance targets for the type of traction machine desired. The short-path approach entails a comprehensive design effort focusing on the IPM machine and meeting the performance targets. The selection of the IPM machine reflects industry's confidence in this market-proven design that exhibits a power density surpassed by no other machine design.

  1. Vehicle Technologies Office Merit Review 2014: Scalable Non-Rare Earth Motor Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about scalable non...

  2. Vehicle Technologies Office Merit Review 2014: SAE J2907 Hybrid Motor Ratings Support

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about SAE J2907...

  3. Vehicle Technologies Office Merit Review 2015: Multi-Speed Range Electric Motor R&D

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-speed...

  4. Vehicle Technologies Office Merit Review 2015: Non-Rare Earth Motor Development

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about non-rare earth...

  5. Penn State DOE GATE Center of Exellence for In-Vehicle, High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PENN STATE DOE GATE CENTER OF EXCELLENCE FOR IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS DOE Merit Review, February 28, 2008 Joel Anstrom, Director "This presentation does not...

  6. Motor Vehicle Emission Simulator (MOVES) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreenMoon Lake ElectricInformationMoserVehicle

  7. A guide to surveys of motor vehicle fleets

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

  8. Form 14-305 (Back)(Rev.9-11/6) Motor Vehicle Rental Tax Exemption Certificate

    E-Print Network [OSTI]

    Form 14-305 (Back)(Rev.9-11/6) Motor Vehicle Rental Tax Exemption Certificate This certificate family home z residential treatment center z institution providing basic care z therapeutic camp z

  9. Identifying Contributions of On-road Motor Vehicles to Urban Air Pollution Using Travel Demand Model Data

    E-Print Network [OSTI]

    Wang, Guihua; Bai, Song; Ogden, Joan M.

    2009-01-01T23:59:59.000Z

    of Motor-Vehicle Air Pollution. University of California athave a different pollution episode location issue, as com-TOG have a comparable pollution level, and both are roughly

  10. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  11. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  12. Vehicle Technologies Office Merit Review 2014: Unique Lanthide...

    Office of Environmental Management (EM)

    Motor Construction Presentation given by UQM Technologies, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  13. How Does the Motor Protein Kinesin Move? It Crouches to Step but Resists Pushing!

    E-Print Network [OSTI]

    Lathrop, Daniel P.

    0 02 1 z x d d0 d1 u0 w1 u1 w0 x 0 d x 1 d x 0 dx 1 d z 0 d z 1 d d = 8.2 nm How Does the Motor and sideways loads to kinesin, a molecular motor that moves cargoes along microtubules by pulling on a tether ATP, the motor `crouches,' the point P mo- ving downwards by 0.5-0.7 nm, while inching forwards

  14. Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports

    E-Print Network [OSTI]

    Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports Approved Texas A&M AgriLife Research Procedures 24.01.01.A0.02 Motor Vehicle Accident Reports Page 1 of 1­insurance plan. Employees are responsible for reporting vehicle accidents within 24 hours. REASON FOR PROCEDURE

  15. Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident Reports

    E-Print Network [OSTI]

    Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident Reports 25, 2014 Texas A&M AgriLife Extension Service Procedures 24.01.01.X0.02 Motor Vehicle Accident under a system­wide self­insurance plan. Employees are responsible for reporting vehicle accidents

  16. DOE/BNL Liquid Natural Gas Heavy Vehicle Program

    SciTech Connect (OSTI)

    James E. Wegrzyn; Wai-Lin Litzke; Michael Gurevich

    1998-08-11T23:59:59.000Z

    As a means of lowering greenhouse gas emissions, increasing economic growth, and reducing the dependency on imported oil, the Department of Energy and Brookhaven National Laboratory (DOE/ BNL) is promoting the substitution of liquefied natural gas (LNG) in heavy-vehicles that are currently being fueled by diesel. Heavy vehicles are defined as Class 7 and 8 trucks (> 118,000 pounds GVVV), and transit buses that have a fuel usage greater than 10,000 gallons per year and driving range of more than 300 miles. The key in making LNG market-competitive with all types of diesel fuels is in improving energy efficiency and reducing costs of LNG technologies through systems integration. This paper integrates together the three LNG technologies of: (1) production from landfills and remote well sites; (2) cryogenic fuel delivery systems; and (3) state-of-the-art storage tank and refueling facilities, with market end-use strategies. The program's goal is to develop these technologies and strategies under a ''green'' and ''clean'' strategy. This ''green'' approach reduces the net contribution of global warming gases by reducing levels of methane and carbon dioxide released by heavy vehicles usage to below recoverable amounts of natural gas from landfills and other natural resources. Clean technology refers to efficient use of energy with low environmental emissions. The objective of the program is to promote fuel competition by having LNG priced between $0.40 - $0.50 per gallon with a combined production, fuel delivery and engine systems efficiency approaching 45%. This can make LNG a viable alternative to diesel.

  17. Vehicle Technologies Office Merit Review 2014: DOE/DOD Parasitic Energy Loss Collaboration

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE/DOD parasitic...

  18. Vehicle Technologies Office Merit Review 2015: Overview of the DOE Advanced Batter R&D Program

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about overview of the DOE...

  19. Vehicle Technologies Office Merit Review 2015: North American Electric Traction Drive Supply Chain Analysis: Focus on Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Synthesis Partners at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about North American electric...

  20. Vehicle Technologies Office Merit Review 2014: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  1. Vehicle Technologies Office Merit Review 2014: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  2. Vehicle Technologies Office Merit Review 2015: Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about novel...

  3. Vehicle Technologies Office Merit Review 2015: Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    Presentation given by General Electric Global at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about alternative high...

  4. Vehicle Technologies Office Merit Review 2015: Development of Radically Enhanced alnico Magnets (DREaM) for Traction Drive Motors

    Broader source: Energy.gov [DOE]

    Presentation given by Ames Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Development of Radically...

  5. Projection of Chinese motor vehicle growth, oil demand, and CO{sub 2}emissions through 2050.

    SciTech Connect (OSTI)

    Wang, M.; Huo, H.; Johnson, L.; He, D.

    2006-12-20T23:59:59.000Z

    As the vehicle population in China increases, oil consumption and carbon dioxide (CO{sub 2}) emissions associated with on-road transportation are rising dramatically. During this study, we developed a methodology to project trends in the growth of the vehicle population, oil demand, and CO{sub 2} emissions associated with on-road transportation in China. By using this methodology, we projected--separately--the number of highway vehicles, motorcycles, and rural vehicles in China through 2050. We used three scenarios of highway vehicle growth (high-, mid-, and low-growth) to reflect patterns of motor vehicle growth that have occurred in different parts of the world (i.e., Europe and Asia). All are essentially business-as-usual scenarios in that almost none of the countries we examined has made concerted efforts to manage vehicle growth or to offer serious alternative transportation means to satisfy people's mobility needs. With this caveat, our projections showed that by 2030, China could have more highway vehicles than the United States has today, and by 2035, it could have the largest number of highway vehicles in the world. By 2050, China could have 486-662 million highway vehicles, 44 million motorcycles, and 28 million rural vehicles. These numbers, which assume essentially unmanaged vehicle growth, would result in potentially disastrous effects on the urban infrastructure, resources, and other social and ecological aspects of life in China. We designed three fuel economy scenarios, from conservative to aggressive, on the basis of current policy efforts and expectations of near-future policies in China and in developed countries. It should be noted that these current and near-future policies have not taken into consideration the significant potential for further fuel economy improvements offered by advanced technologies such as electric drive technologies (e.g., hybrid electric vehicles and fuel-cell vehicles). By using vehicle growth projections and potential vehicle fuel economy, we projected that China's on-road vehicles could consume approximately 614-1016 million metric tons of oil per year (12.4-20.6 million barrels per day) and could emit 1.9-3.2 billion metric tons of CO{sub 2} per year in 2050, which will put tremendous pressure on the balance of the Chinese and world oil supply and demand and could have significant implications on climate change. Our analysis shows that, while improvements in vehicle fuel economy are crucial for reducing transportation energy use, containing the growth of the vehicle population could have an even more profound effect on oil use and CO{sub 2} emissions. This benefit is in addition to other societal and environmental benefits--such as reduced congestion, land use, and urban air pollution--that will result from containing vehicle population growth. Developing public transportation systems for personal travel and rail and other modes for freight transportation will be important for containing the growth of motor vehicles in China. Although the population of passenger cars will far exceed that of all truck types in China in the future, our analysis shows that oil use by and CO{sub 2} emissions from the Chinese truck fleet will be far larger than those related to Chinese passenger cars because trucks are very use intensive (more vehicle miles traveled per year) and energy intensive (lower fuel economy). Unfortunately, the potential for improving fuel economy and reducing air pollutant emissions for trucks has not been fully explored; such efforts are needed. Considering the rapid depletion of the world's oil reserve, the heightened global interest in addressing greenhouse gas emissions, and the geopolitical complications of global oil supply and demand, the study results suggest that unmanaged vehicle growth and limited improvements in vehicle fuel efficiency will lead to an unsustainable and unstable transportation system in China. In other words, while our projections do not definitively indicate what will happen in the Chinese transportation sector by 2050, they do demonstrate

  6. Propulsion system for a motor vehicle using a bidirectional energy converter

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH); Gale, Allan Roy (Livonia, MI)

    1999-01-01T23:59:59.000Z

    A motor vehicle propulsion system includes an electrical energy source and a traction motor coupled to receive electrical energy from the electrical energy source. The system also has a first bus provided electrical energy by the electrical energy source and a second bus of relatively lower voltage than the first bus. In addition, the system includes an electrically-driven source of reaction gas for the electrical energy source, the source of reaction gas coupled to receive electrical energy from the first bus. Also, the system has an electrical storage device coupled to the second bus for storing electrical energy at the lower voltage. The system also includes a bidirectional energy converter coupled to convert electrical energy from the first bus to the second bus and from the second bus to the first bus.

  7. Pollution from motor vehicles and aircraft at Stapleton International Airport (abbreviated report)

    SciTech Connect (OSTI)

    Segal, H.M.

    1987-04-01T23:59:59.000Z

    The air-quality impact of the proposed runaway expansion program at Stapleton International Airport is determined in this report. The method of analysis is to model the dispersion of pollutants from motor vehicles and aircraft under both 1-hour and 8-hour worst-case conditions. Results show that aircraft pollution concentrations are reduced and, in some cases, completely disappear when the new runaways are added. This is caused primarily by a reduction in takeoff delays, which are a major objective of the runaway-expansion programs at the report.

  8. Pollution from motor vehicles and aircraft at Stapleton International Airport (abbreviated report). Revision 2

    SciTech Connect (OSTI)

    Segal, H.M.

    1987-09-01T23:59:59.000Z

    The air-quality impact of the proposed runway-expansion program at Stapleton International Airport is determined in this report. The method of analysis is to model the dispersion of pollutants from motor vehicles and aircraft under both 1-hour and 8-hour worst-case conditions. Results show that aircraft pollution concentrations are reduced and, in some cases, completely disappear when the new runways are added. This is caused primarily by a reduction in takeoff delays, which are major objective of the runway-expansion program at the airport.

  9. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  10. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combustion, energy storage technology, electric machines, high power electronics, fuel cells, vehicle simulation modeling, and other critical technologies Explore technical...

  11. A Multi-Country Analysis of Lifecycle Emissions From Transportation Fuels and Motor Vehicles

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    cell vehicle Methanol (M100) fuel-cell vehicle Ethanol (methanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  12. A MULTI-COUNTRY ANALYSIS OF LIFECYCLE EMISSIONS FROM TRANSPORTATION FUELS AND MOTOR VEHICLES

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    cell vehicle Methanol (M100) fuel-cell vehicle Ethanol (methanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  13. Vehicle Technologies Office Merit Review 2014: Advanced Gasoline Turbocharged Direct Injection (GTDI) Engine Development

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Companyh at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced gasoline...

  14. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...

    Broader source: Energy.gov (indexed) [DOE]

    Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

  15. Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2012. Status: 50% complete. Budget FY12 390K (Vehicle System) 50K (Fuel Cell Specific runs) 75K (link with market analysis) Barriers Evaluate the...

  16. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    next step is to show that it can work as designed within complete systems (i.e., fuel cell vehicles and hydrogen refueling infrastructure). Technology validation confirms that...

  17. Alternative High-Performance Motors with Non-Rare Earth Materials...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Performance Motors with Non-Rare Earth Materials Alternative High-Performance Motors with Non-Rare Earth Materials 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  18. Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R. Gentner

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Long-Term Trends in Motor Vehicle Emissions in U.S. Urban Areas Brian C. McDonald and Drew R to estimate long- term trends (1990-2010) in carbon monoxide (CO) emissions from motor vehicles. Non-methane hydrocarbons (NMHC) are estimated using ambient NMHC/CO ratios after controlling for nonvehicular sources

  19. The DOE/NREL Next Generation Natural Gas Vehicle Program - An Overview

    SciTech Connect (OSTI)

    Kevin Walkowicz; Denny Stephens; Kevin Stork

    2001-05-14T23:59:59.000Z

    This paper summarizes the Next Generation Natural Gas Vehicle (NG-NGV) Program that is led by the U.S. Department Of Energy's (DOE's) Office of Heavy Vehicle Technologies (OHVT) through the National Renewable Energy Laboratory (NREL). The goal of this program is to develop and implement one Class 3-6 compressed natural gas (CNG) prototype vehicle and one Class 7-8 liquefied natural gas (LNG) prototype vehicle in the 2004 to 2007 timeframe. OHVT intends for these vehicles to have 0.5 g/bhp-hr or lower emissions of oxides of nitrogen (NOx) by 2004 and 0.2 g/bhp-hr or lower NOx by 2007. These vehicles will also have particulate matter (PM) emissions of 0.01 g/bhp-hr or lower by 2004. In addition to ambitious emissions goals, these vehicles will target life-cycle economics that are compatible with their conventionally fueled counterparts.

  20. ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop

    E-Print Network [OSTI]

    Denver, University of

    ON-ROAD MOTOR VEHICLE EMISSIONS FROM AROUND THE WORLD Donald H. Stedman and Gary A. Bishop@du.edu ABSTRACT In 1993, on-road emissions in Continental Europe showed a pronounced South/North declining gradient for CO, HC and NO fuel specific emissions (gm/kg). Emissions in Hamburg and Rotterdam were

  1. Driving, Aging & Dementia: On-Line Resources Division of Motor Vehicles & Driver Licensing, Missouri Department of Revenue

    E-Print Network [OSTI]

    Driving, Aging & Dementia: On-Line Resources Missouri Division of Motor Vehicles & Driver Licensing for Responsible Driving, Inc. http://www.drivingsafe.org/ Alzheimer's Association, St. Louis Chapter (Driving & Driving (The Hartford Insurance Corp.) http://www.thehartford.com/alzheimers/ Family Conversations

  2. DOE Vehicle Technologies Program 2009 Merit Review Report

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  3. DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

  4. MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    6. 6.1 MOTOR BIKES, MOPEDS, AND MOTOR SCOOTERS Registration and Operation Motor Bikes, Mopeds, and Motor Scooters are defined as motor vehicles and are subject to all regulations governing motor vehicle operation on the grounds of the University. Such a motor vehicle owned and operated by a member

  5. Study of the Advantages of Internal Permanent Magnet Drive Motor with Selectable Windings for Hybrid-Electric Vehicles

    SciTech Connect (OSTI)

    Otaduy, P.J.; Hsu, J.S.; Adams, D.J.

    2007-11-30T23:59:59.000Z

    This report describes research performed on the viability of changing the effectively active number of turns in the stator windings of an internal permanent magnet (IPM) electric motor to strengthen or weaken the magnetic fields in order to optimize the motor's performance at specific operating speeds and loads. Analytical and simulation studies have been complemented with research on switching mechanisms to accomplish the task. The simulation studies conducted examine the power and energy demands on a vehicle following a series of standard driving cycles and the impact on the efficiency and battery size of an electrically propelled vehicle when it uses an IPM motor with turn-switching capabilities. Both full driving cycle electric propulsion and propulsion limited starting from zero to a set speed have been investigated.

  6. Parametric electric motor study

    SciTech Connect (OSTI)

    Adams, D. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States); Stahura, D. [GM-AC Delco Systems, Indianapolis, IN (United States)

    1995-04-30T23:59:59.000Z

    Technology for the axial gap motor was developed by DOE with an investment of approximately $15 million. This development effort is for motor technologies of high power density and high efficiency. Such motors that are also small and light-weight are not available on the commercial market because high-power motors have typically been used in large industrial applications where small size and light weight are not requirements. AC Delco has been developing motors since 1918 and is interested in leveraging its research and development dollars to produce an array of motor systems for vehicles and to develop a future line of propulsion products. The DOE focus of the study was applied to machining applications. The most attractive feature of this motor is the axial air gap, which may make possible the removal of the motor`s stationary component from a total enclosure of the remainder of the machine if the power characteristics are adequate. The objectives of this project were to evaluate alternative electric drive systems for machine tools and automotive electric drive systems and to select a best machine type for each of those applications. A major challenge of this project was to produce a small, light-weight, highly efficient motor at a cost-effective price. The project developed machine and machine drive systems and design criteria for the range of applications. The final results included the creation of a baseline for developing electric vehicle powertrain system designs, conventional vehicle engine support system designs, and advanced machine tool configurations. In addition, an axial gap permanent magnet motor was built and tested, and gave, said one engineer involved, a sterling performance. This effort will commercialize advanced motor technology and extend knowledge and design capability in the most efficient electric machine design known today.

  7. Vehicle Technologies Office Merit Review 2014: Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

  8. Vehicle Technologies Office Merit Review 2015: Penn State DOE Graduate Automotive Technology Education (GATE) Program for In-Vehicle, High-Power Energy Storage Systems

    Broader source: Energy.gov [DOE]

    Presentation given by Pennsylvania State University at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Penn State DOE...

  9. Vehicle Technologies Office Merit Review 2015: Computational Design and Development of a New, Lightweight Cast Alloy for Advanced Cylinder Heads in High-Efficiency, Light-Duty Engines

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  10. Vehicle Technologies Office Merit Review 2015: DOE's Effort to Improve

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group current C3EDepartmentDepartment ofConstruction | DepartmentHeavy Vehicle

  11. Vehicle Technologies Office Merit Review 2015: Lean Miller Cycle System Development for Light-Duty Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about lean miller cycle system...

  12. DOE Webinar on Alternative Fuel and Advanced Vehicle Procurement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeIdleBiologicalCrosscutting SuccessOperationalDOE Plans

  13. Motorization, Vehicle Purchase and Use Behavior in China: A Shanghai Survey????????????????????????????

    E-Print Network [OSTI]

    Ni, Jason

    2008-01-01T23:59:59.000Z

    history, motorization plays an important role, as it is not merely about the substitution of automobiles and

  14. DOE Hosts Workshop on Transition to Electric Vehicles | Department of

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOE F 1300.2Million) Go

  15. 2010 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, so are1703ConferenceThermoelectrics0Energy DOE

  16. 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies1 -2011 DOE Funded

  17. 2011 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell Technologies1 -2011 DOE Funded1

  18. 2014 DOE Vehicle Technologies Office Annual Merit Review | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube platform is always evolving, soFuel Cell2 -of Energy4 AMO2014DOE

  19. 2011 DOE Vehicle Technologies KIVA-Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of BadTHE U.S.Energy MoreEnergyEnergyWednesday, May 25DOE

  20. Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE Vehicle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data|Report |Testing

  1. Vehicle Technologies Office Merit Review 2014: Computational design and development of a new, lightweight cast alloy for advanced cylinder heads in high-efficiency, light-duty engines FOA 648-3a

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about computational design and...

  2. Descriptions of Motor Vehicle Collisions by Participants in Emergency DepartmentBased Studies: Are They Accurate?

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    limit, seat belt use, airbag deployment, vehicle damage,for seat belt use, 94% for airbag deployment, 96% for speedroad condition, 0.87 for airbag deployment, 0.90 for vehicle

  3. Societal lifetime cost of hydrogen fuel cell vehicles

    E-Print Network [OSTI]

    Sun, Yongling; Ogden, J; Delucchi, Mark

    2010-01-01T23:59:59.000Z

    Gasoline Feedstock activities Fuel production Fuel storage,gasoline vehicle ORNL Fuel cell vehicle DOE fuel cell target: $45/kW by 2015, $30/kW by 2020 (onboard H2 storagegasoline vehicle (Table 3) Component manufacturing cost Electric Powertrain (Motor + controller + transmission) Fuel cell system (stack + BOP) Hydrogen storage

  4. Department of Mechanical Engineering Spring 2011 General Motors 2 Variable Height Vehicle Air Dam

    E-Print Network [OSTI]

    Demirel, Melik C.

    Vehicle Air Dam Overview The fundamental issue with fixed air dams is the bottom edge of the dam needs to be high enough to meet defined vehicle ground clearance and front approach angle criteria. Air dams must a solution to this problem by designing an variable height vehicle air dam. Objectives Our mission

  5. Translating Sleep Research: Does Sleep Promote Learning a Functional Motor Task?

    E-Print Network [OSTI]

    Al-Sharman, Alham Jehad

    2013-05-31T23:59:59.000Z

    Sleep has been demonstrated to produce off-line improvements in motor learning in young adults. Evidence of sleep-dependent off-line motor learning has been demonstrated across a wide variety of simple motor tasks that ...

  6. The ANL electrochemical program for DOE on electric vehicle R D

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  7. Impacts of motor vehicle operation on water quality - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel M

    2007-01-01T23:59:59.000Z

    However, refined products such as motor oil and gasoline areused oil in itself is not a dangerous product if handledoil plastic containers can be processed to produce plastic products

  8. Vehicle Technologies Office Merit Review 2014: Overview of the DOE Fuel and Lubricant Technologies R&D

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

  9. Motor Vehicle Fleet Emissions by K I M B E R L Y S . B R A D L E Y ,

    E-Print Network [OSTI]

    Denver, University of

    Motor Vehicle Fleet Emissions by OP-FTIR K I M B E R L Y S . B R A D L E Y , K E V I N B . B R O O concentrations of carbon monoxide (CO), carbon dioxide (CO2), and nitrous oxide (N2O) caused by emissions from to average emissions results obtained from on-road exhaust analysis using individual vehicle remote sensing

  10. Developing a methodology to account for commercial motor vehicles using microscopic traffic simulation models

    E-Print Network [OSTI]

    Schultz, Grant George

    2004-09-30T23:59:59.000Z

    with an increased availability of CMV data. The primary sources of these data are automatic vehicle classification (AVC) and weigh-in-motion (WIM). Microscopic traffic simulation models have been used extensively to model the dynamic and stochastic nature...

  11. Drive-by Motor Vehicle Emissions: Immediate Feedback in Reducing Air

    E-Print Network [OSTI]

    Denver, University of

    , Denver, Colorado 80208 L E N O R A B O H R E N The National Center for Vehicle Emissions Control & Safety system. The Smart Sign used a combination of words, colors, and graphics to connect with its audience

  12. US military expenditures to protect the use of Persian Gulf oil for motor vehicles

    E-Print Network [OSTI]

    Murphy, James J.

    2008 Keywords: Oil importing cost Motor fuel social cost Energy security cost a b s t r a c t Analyses this range, by carefully answering the question: ``If the US highway transportation sector did not use oil wartime subsidies, were $55$96 billion per year or $0.40$0.70 per gallon. In a 2005 update

  13. The ANL electric vehicle battery R D program for DOE-EHP

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  14. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  15. Control of a Linear Switched Reluctance Motor as a Propulsion System for Autonomous Railway Vehicles

    E-Print Network [OSTI]

    Paderborn, Universitt

    . But the additional copper windings in the active stator increase the construction costs. That is the reason why two geometry, winding parameters, and the control should be thoroughly designed using precise dynamic models the vehicles of a convoy, the LSRM needs active translators below the undercarriage whereas the stator located

  16. Inhalation of primary motor vehicle emissions: Effects of urbanpopulation and land area

    SciTech Connect (OSTI)

    Marshall, Julian D.; McKone, Thomas E.; Nazaroff, William W.

    2004-06-14T23:59:59.000Z

    Urban population density can influence transportation demand, as expressed through average daily vehicle-kilometers traveled per capita (VKT). In turn, changes in transportation demand influence total passenger vehicle emissions. Population density can also influence the fraction of total emissions that are inhaled by the exposed urban population. Equations are presented that describe these relationships for an idealized representation of an urban area. Using analytic solutions to these equations, we investigate the effect of three changes in urban population and urban land area (infill, sprawl, and constant-density growth) on per capita inhalation intake of primary pollutants from passenger vehicles. The magnitude of these effects depends on density-emissions elasticity ({var_epsilon}{sub e}), a normalized derivative relating change in population density to change in vehicle emissions. For example, if urban population increases, per capita intake is less with infill development than with constant-density growth if {var_epsilon}{sub e} is less than -0.5, while for {var_epsilon}{sub e} greater than -0.5 the reverse is true.

  17. Vehicle Technologies Office Merit Review 2014: Fuel Properties to Enable Lifted Flame Combustion

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fuel properties to enable...

  18. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    Sept 2, 2004 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program...

  19. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Broader source: Energy.gov (indexed) [DOE]

    August 25, 2005 Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting Tier 2 Bin 5 DOE and Ford Motor Company Advanced CIDI Emission Control System Development Program...

  20. Vehicle Technologies Office Merit Review 2015: Development of Computer-Aided Design Tools for Automotive Batteries

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of computer-aided...

  1. Vehicle Technologies Office Merit Review 2014: Validation of Material Models for Automotive Carbon Fiber Composite Structures

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material models...

  2. Vehicle Technologies Office Merit Review 2015: Polyalkylene Glycol (PAG) Based Lubricant for Light & Medium Duty Axles

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about polyalkylene glycol (PAG)...

  3. Assessment of non-tailpipe hydrocarbon emissions from motor vehicles. Final report

    SciTech Connect (OSTI)

    Pierson, W.R.; Lawson, D.R.; Schorran, D.E.; Fujita, E.M.; Sagebiel, J.C.

    1997-03-01T23:59:59.000Z

    The report evaluates tailpipe and non-tailpipe hydrocarbon (HC) emissions from light-duty spark-ignition vehicles. The sources of information were unpublished data sets, generated mainly from 1990 through 1994, on emissions from volunteer fleets of in-use vehicles, and published Chemical Mass Balance source apportionments of HC in roadway tunnels and in urban air. The objective was to extract as much existing information as possible about magnitudes of running-loss emissions, hot soak emissions, diurnal emissions, and resting loss emissions, in absolute terms and in terms relative to one another and to tailpipe emissions. Relations between pressure- and purge-test failures and actual non-tailpipe emissions were also examined.

  4. Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric Vehicle and03/02 TUEValidationAdvancedProcessConstruction | Department

  5. UQM Patents Non-Rare Earth Magnet Motor under DOE-Supported Project...

    Energy Savers [EERE]

    that do not use rare earth metals will potentially be less expensive and have more stable prices. Non-rare earth motors may also rely more on domestic resources and processing...

  6. Vehicle Technologies Office Merit Review 2015: ICME Guided Development of Advanced Cast Aluminum Alloys for Automotive Engine Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ICME guided development of...

  7. Vehicle Technologies Office Merit Review 2015: Validation of Material Models for Crash Simulation of Automotive Carbon Fiber Composite Structures (VMM)

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about validation of material...

  8. 48669Federal Register / Vol. 65, No. 154 / Wednesday, August 9, 2000 / Proposed Rules Type of motor vehicle

    E-Print Network [OSTI]

    vehicle Service Brake Systems Emergency brake sys- tems: applica- tion and brak- ing distance in feet from initial speed of 20 mph Braking force as a percent- age of gross vehicle or combination weight mph B. Property-carrying vehicles: (1) Single unit vehicles having a manufacturer's GVWR of 10

  9. Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2005-01-01T23:59:59.000Z

    Administration, Annual Energy Outlook 2005, DOE/EIA-0383(Administration, Annual Energy Outlook 1998, DOE/EIA-0383(Administration, Annual Energy Outlook, 1992, DOE-EIA 0383(

  10. MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    Administration, Annual Energy Outlook 2005, DOE/EIA-0383(Administration, Annual Energy Outlook 1998, DOE/EIA-0383(Administration, Annual Energy Outlook, 1992, DOE-EIA 0383(

  11. Impacts of Motor Vehicle Operation on Water Quality in the United States - Clean-up Costs and Policies

    E-Print Network [OSTI]

    Nixon, Hilary; Saphores, Jean-Daniel

    2007-01-01T23:59:59.000Z

    should combine economic incentives, information campaigns,vehicle transportation; economic incentives. 1. Introductionby implementing economic incentives (Nixon and Saphores

  12. Vehicle Technologies Office Merit Review 2014: Development of Modified PAG (polyalkylene glycol) High VI High Fuel Efficient Lubricant for LDV Applications

    Broader source: Energy.gov [DOE]

    Presentation given by Ford Motor Company at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development of modified...

  13. Vehicle Technologies Office Merit Review 2015: A Combined Experimental and Modeling Approach for the Design of High Coulombic Efficiency Si Electrodes

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about a combined experimental and...

  14. The ANL electrochemical program for DOE on electric vehicle R&D. Quarterly progress report, January--March 1991

    SciTech Connect (OSTI)

    Not Available

    1991-12-31T23:59:59.000Z

    This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of January 1 through March 31, 1991. The work is organized into the following six task areas: Project management; battery systems technology; lithium/sulfide batteries; advanced sodium/metal chloride battery; aqueous batteries; and EV Battery performance/life evaluation.

  15. DOE - Office of Legacy Management -- General Motors Co - Flint - MI 07

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTable ofArizonaBuffalo -Elk RiverFrederick FladerMotors Co -

  16. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    E-Print Network [OSTI]

    Ban-Weiss, George A.

    2009-01-01T23:59:59.000Z

    losses when sampling diesel aerosol: A quality assurancefrom on-road gasoline and diesel vehicles. AtmosphericSource apportionment of diesel and spark ignition exhaust

  17. The ANL electric vehicle battery R&D program for DOE-EHP. Quarterly progress report, October--December 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE`s Electric and Hybrid Propulsion Division (DOE-EBP). The goal of DOE-EHP is to advance promising EV propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce petroleum consumption in the transportation sector of the US economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, database management, and technical management of industrial R&D contracts on advanced battery and fuel cell technologies for DOE-EBP. This report summarizes the objectives, background, technical progress, and status of ANL electric vehicle battery R&D tasks for DOE-EHP during the period of October 1, 1990 through December 31, 1990. The work is organized into the following six task areas: 1.0 Project Management; 3.0 Battery Systems Technology; 4.0 Lithium/Sulfide Batteries; 5.0 Advanced Sodium/Metal Chloride Battery; 6.0 Aqueous Batteries; 7.0 EV Battery Performance/Life Evaluation.

  18. The experimental implementation and comparison of active, semiactive, and passive vehicle suspensions utilizing a linear electric motor

    E-Print Network [OSTI]

    Williams, Monte Glen

    1994-01-01T23:59:59.000Z

    of a linear electric motor. The details of the suspensions are explained in full assuming no prior knowledge by the reader. A theoretical quarter car model is developed and used to provide baseline performance criteria. Details of the design...

  19. Electric Motor Thermal Management

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles

    SciTech Connect (OSTI)

    Ban-Weiss, George A.; Lunden, Melissa M.; Kirchstetter, Thomas W.; Harley, Robert A.

    2009-04-10T23:59:59.000Z

    Average particle number concentrations and size distributions from {approx}61,000 light-duty (LD) vehicles and {approx}2500 medium-duty (MD) and heavy-duty (HD) trucks were measured during the summer of 2006 in a San Francisco Bay area traffic tunnel. One of the traffic bores contained only LD vehicles, and the other contained mixed traffic, allowing pollutants to be apportioned between LD vehicles and diesel trucks. Particle number emission factors (particle diameter D{sub p} > 3 nm) were found to be (3.9 {+-} 1.4) x 10{sup 14} and (3.3 {+-} 1.3) x 10{sup 15} kg{sup -1} fuel burned for LD vehicles and diesel trucks, respectively. Size distribution measurements showed that diesel trucks emitted at least an order of magnitude more particles for all measured sizes (10 < D{sub p} < 290 nm) per unit mass of fuel burned. The relative importance of LD vehicles as a source of particles increased as D{sub p} decreased. Comparing the results from this study to previous measurements at the same site showed that particle number emission factors have decreased for both LD vehicles and diesel trucks since 1997. Integrating size distributions with a volume weighting showed that diesel trucks emitted 28 {+-} 11 times more particles by volume than LD vehicles, consistent with the diesel/gasoline emission factor ratio for PM{sub 2.5} mass measured using gravimetric analysis of Teflon filters, reported in a companion paper.

  1. Vehicle Technologies Office Merit Review 2014: The Application of High Energy Ignition and Boosting/Mixing Technology to Increase Fuel Economy in Spark Ignition Gasoline Engines by Increasing EGR Dilution Capability

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the application of high...

  2. DOE Phase II SBIR: Spectrally-Assisted Vehicle Tracking - Final Report

    SciTech Connect (OSTI)

    Villeneuve, Pierre V. [Space Computer Corporation

    2013-02-28T23:59:59.000Z

    The goal of this Phase II SBIR has been to develop a prototype software package to demonstrate spectrally-aided vehicle tracking. The primary application is to show improved target vehicle tracking performance in complex environments where traditional spatial tracker systems may show reduced performance. Examples include scenarios where the target vehicle is obscured by a large structure for an extended period of time, or where the target is engaging in extreme maneuvers amongst other civilian vehicles. The target information derived from spatial processing is unable to differentiate between the green versus the red vehicle. Spectral signature exploitation enables comparison of new candidate targets with existing track signatures. The ambiguity in this confusing scenario is resolved by folding spectral analysis results into each target nomination and association processes. The work performed over the two-year effort was divided into three general areas: algorithm refinement, software prototype development, and prototype performance demonstration. The tasks performed under this Phase II resulted in the completion of a software tool suitable for evaluation and testing of advanced tracking concepts.

  3. Vehicle Technologies Office: 2011 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Motors R&D Annual Progress Report Vehicle Technologies Office: 2012 Advanced Power Electronics and Electric Motors R&D Annual Progress Report Electro-thermal-mechanical...

  4. Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department of EnergyEnergyVehicle Data| DepartmentReportReportVehicle

  5. The design and construction of electronic motor control and network interface hardware for advance concept urban mobility vehicles

    E-Print Network [OSTI]

    Morrissey, Bryan L. (Bryan Lawrence)

    2008-01-01T23:59:59.000Z

    Over the past several years, the Smart Cities Group at MIT's Media Lab has engaged in research to develop several advanced concepts for vehicles to improve urban mobility. This research has focused on developing a modular ...

  6. Motor-Vehicle Infrastructure and Services Provided by the Public Sector: Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark; Murphy, James

    2005-01-01T23:59:59.000Z

    Administration, Monthly Energy Review May 2005 DOE/EIA-Review 2003, 2004; Monthly Energy Review May 2005, 2005).

  7. MOTOR-VEHICLE INFRASTRUCTURE AND SERVICES PROVIDED BY THE PUBLIC SECTOR Report #7 in the series: The Annualized Social Cost of Motor-Vehicle Use in the United States, based on 1990-1991 Data

    E-Print Network [OSTI]

    Delucchi, Mark

    2005-01-01T23:59:59.000Z

    Administration, Monthly Energy Review May 2005 DOE/EIA-Review 2003, 2004; Monthly Energy Review May 2005, 2005).

  8. The reality of virtual limbs: does mirror technique for hand has functional consequences for the motor output?

    E-Print Network [OSTI]

    Bienkiewicz, Marta

    2008-08-22T23:59:59.000Z

    motor imagery brings objectively measurable effects on the motor behaviour, and whether these effects can be enhanced by the application of the mirror technique. Three experiments were conducted involving 32 neurologically healthy participants...

  9. Commercial Vehicle Safety Alliance (CVSA)/Department of Energy (DOE) cooperative agreement final report

    SciTech Connect (OSTI)

    Slavich, Antoinette; Daust, James E.

    1999-10-01T23:59:59.000Z

    This S and T product is a culmination of the activities, including research of the Commercial Vehicle Safety Alliance (CVSA) in developing and implementing inspection procedures and the out-of-service criteria for states and tribes to use when inspecting HRCQ and Transuranic shipments of radioactive materials. The report also contains the results of a pilot study to test the procedures.

  10. Comparative analysis of selected fuel cell vehicles

    SciTech Connect (OSTI)

    NONE

    1993-05-07T23:59:59.000Z

    Vehicles powered by fuel cells operate more efficiently, more quietly, and more cleanly than internal combustion engines (ICEs). Furthermore, methanol-fueled fuel cell vehicles (FCVs) can utilize major elements of the existing fueling infrastructure of present-day liquid-fueled ICE vehicles (ICEVs). DOE has maintained an active program to stimulate the development and demonstration o fuel cell technologies in conjunction with rechargeable batteries in road vehicles. The purpose of this study is to identify and assess the availability of data on FCVs, and to develop a vehicle subsystem structure that can be used to compare both FCVs and ICEV, from a number of perspectives--environmental impacts, energy utilization, materials usage, and life cycle costs. This report focuses on methanol-fueled FCVs fueled by gasoline, methanol, and diesel fuel that are likely to be demonstratable by the year 2000. The comparative analysis presented covers four vehicles--two passenger vehicles and two urban transit buses. The passenger vehicles include an ICEV using either gasoline or methanol and an FCV using methanol. The FCV uses a Proton Exchange Membrane (PEM) fuel cell, an on-board methanol reformer, mid-term batteries, and an AC motor. The transit bus ICEV was evaluated for both diesel and methanol fuels. The transit bus FCV runs on methanol and uses a Phosphoric Acid Fuel Cell (PAFC) fuel cell, near-term batteries, a DC motor, and an on-board methanol reformer. 75 refs.

  11. Tesla Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    465 million loan arrangement with Tesla Motors, Inc. to produce specially designed, all-electric plug-in vehicles; and to develop a manufacturing facility to produce battery...

  12. Performance Evaluation of a Cascaded H-Bridge Multi Level Inverter Fed BLDC Motor Drive in an Electric Vehicle

    E-Print Network [OSTI]

    Emani, Sriram S.

    2011-08-08T23:59:59.000Z

    -emf ................................................................................................. 77 6.8 Regenerative Capability of the Implemented System ....................................... 78 6.9 Fault Analysis .................................................................................................... 79 6.10 Fault Diagnostics... follow the reference drive cycle. e) To evaluate the performance of the batteries during charge and recharge cycles, especially during regeneration which is achieved through the electrical braking. 1.5 Demand for Electric Vehicles In a popular...

  13. Module 8: Fuel Cell Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    This course covers hybrid electric vehicles, electric motors, auxiliary power units, generators, energy storage systems, regenerative braking, control systems

  14. A Lifecycle Emissions Model (LEM): Lifecycle Emissions from Transportation Fuels, Motor Vehicles, Transportation Modes, Electricity Use, Heating and Cooking Fuels, and Materials

    E-Print Network [OSTI]

    Delucchi, Mark

    2003-01-01T23:59:59.000Z

    duty fuel cell vehicles using gasoline, methanol, ethanol,fuel-cell vehicle with a proton-exchange membrane (PEM) and methanolmethanol), fuel feedstocks (e.g. , coal), and vehicle types (e.g. , fuel-cell vehicle).

  15. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01T23:59:59.000Z

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  16. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. [Argonne National Lab., IL (United States); Davies, J. [General Motors of Canada Ltd., Toronto, ON (Canada); Zammit, M. [AC Rochester, NY (United States); Patterson, P. [USDOE, Washington, DC (United States)

    1992-02-01T23:59:59.000Z

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  17. The 1991 natural gas vehicle challenge: Developing dedicated natural gas vehicle technology

    SciTech Connect (OSTI)

    Larsen, R.; Rimkus, W. (Argonne National Lab., IL (United States)); Davies, J. (General Motors of Canada Ltd., Toronto, ON (Canada)); Zammit, M. (AC Rochester, NY (United States)); Patterson, P. (USDOE, Washington, DC (United States))

    1992-01-01T23:59:59.000Z

    An engineering research and design competition to develop and demonstrate dedicated natural gas-powered light-duty trucks, the Natural Gas Vehicle (NGV) Challenge, was held June 6--11, 1191, in Oklahoma. Sponsored by the US Department of Energy (DOE), Energy, Mines, and Resources -- Canada (EMR), the Society of Automative Engineers (SAE), and General Motors Corporation (GM), the competition consisted of rigorous vehicle testing of exhaust emissions, fuel economy, performance parameters, and vehicle design. Using Sierra 2500 pickup trucks donated by GM, 24 teams of college and university engineers from the US and Canada participated in the event. A gasoline-powered control testing as a reference vehicle. This paper discusses the results of the event, summarizes the technologies employed, and makes observations on the state of natural gas vehicle technology.

  18. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2009 DOE Hydrogen Program and Vehicle Technologies...

  19. Advanced Vehicle Electrification & Transportation Sector Electrificati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Transportation Sector Electrification Advanced Vehicle Electrification & Transportation Sector Electrification 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies...

  20. Achieving and Demonstrating Vehicle Technologies Engine Fuel...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Technologies Engine Fuel Efficiency Milestones Achieving and Demonstrating Vehicle Technologies Engine Fuel Efficiency Milestones 2010 DOE Vehicle Technologies and Hydrogen...

  1. Vehicle Technologies Office: Annual Progress Reports | Department...

    Energy Savers [EERE]

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program DOE Vehicle Technologies Office Annual Merit Review Energy Storage Research...

  2. Hydrogen Vehicle and Infrastructure Demonstration and Validation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Demonstration and Validation Hydrogen Vehicle and Infrastructure Demonstration and Validation 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  3. Alveolar breath sampling and analysis to assess exposures to methyl tertiary butyl ether (MTBE) during motor vehicle refueling

    SciTech Connect (OSTI)

    Lindstrom, A.B.; Pleil, J.D. [U.S. Environmental Protection Agency, Research Triangle Park, NC (United States)

    1996-07-01T23:59:59.000Z

    In this study we present a sampling and analytical methodology that can be used to assess consumers` exposures to methyl tertiary butyl ether (MTBE) that may result from routine vehicle refueling operations. The method is based on the collection of alveolar breath samples using evacuated one-liter stainless steel canisters and analysis using a gas chromatograph-mass spectrometer equipped with a patented `valveless` cryogenic preconcentrator. To demonstrate the utility of this approach, a series of breath samples was collected from two individuals (the person pumping the fuel and a nearby observer) immediately before and for 64 min after a vehicle was refueled with premium grade gasoline. Results demonstrate low levels of MTBE in both subjects` breaths before refueling, and levels that increased by a factor of 35 to 100 after the exposure. Breath elimination models fitted to the post exposure measurements indicate that the half-life of MTBE in the first physiological compartment was between 1.3 and 2.9 min. Analysis of the resulting models suggests that breath elimination of MTBE during the 64 min monitoring period was approximately 155 {mu}g for the refueling subject while it was only 30 {mu}g for the nearby observer. This analysis also shows that the post exposure breath elimination of other gasoline constituents was consistent with previously published observations. 20 refs., 3 figs., 4 tabs.

  4. DOE to Provide up to $21.5 million for Research to Improve Vehicle

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov. Are you0and Transparency, and MoreEnergyof Energy DOEEnergy DOE

  5. Advanced Vehicle Technology Competition: Challenge-X 2008 DOE Merit Review

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAcceleratedDepartmentDepartment2 DOE Hydrogen and Fuel Cells1

  6. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle testing and...

  7. Vehicle Technologies Office: 2009 Propulsion Materials R&D Annual...

    Broader source: Energy.gov (indexed) [DOE]

    09propulsionmaterials.pdf More Documents & Publications Magnetic Material for PM Motors Permanent Magnet Development for Automotive Traction Motors Vehicle Technologies Office:...

  8. Vehicle Technologies Office Merit Review 2015: Unique Lanthide...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Unique Lanthide-Free Motor Construction Vehicle Technologies Office Merit Review 2015: Unique Lanthide-Free Motor Construction Presentation given by UQM Technologies, Inc. at 2015...

  9. Analytical Target Cascading Optimization of an Electric Vehicle Powertrain System

    E-Print Network [OSTI]

    Papalambros, Panos

    curves and motor power loss maps produced by an electric vehicle (EV) powertrain system. Three, since the motor performance information (torque curves and power loss map) significantly impacts

  10. Electric Motor R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Advanced Motors

    SciTech Connect (OSTI)

    Knoth, Edward A.; Chelluri, Bhanumathi; Schumaker, Edward J.

    2012-12-14T23:59:59.000Z

    Project Summary Transportation energy usage is predicted to increase substantially by 2020. Hybrid vehicles and fuel cell powered vehicles are destined to become more prominent as fuel prices rise with the demand. Hybrid and fuel cell vehicle platforms are both dependent on high performance electric motors. Electric motors for transportation duty will require sizeable low-speed torque to accelerate the vehicle. As motor speed increases, the torque requirement decreases which results in a nearly constant power motor output. Interior permanent magnet synchronous motors (IPMSM) are well suited for this duty. , , These rotor geometries are configured in straight lines and semi circular arc shapes. These designs are of limited configurations because of the lack of availability of permanent magnets of any other shapes at present. We propose to fabricate rotors via a novel processing approach where we start with magnet powders and compact them into a net shape rotor in a single step. Using this approach, widely different rotor designs can be implemented for efficiency. The current limitation on magnet shape and thickness will be eliminated. This is accomplished by co-filling magnet and soft iron powders at specified locations in intricate shapes using specially designed dies and automatic powder filling station. The process fundamentals for accomplishing occurred under a previous Applied Technology Program titled, ???????????????¢????????????????????????????????Motors and Generators for the 21st Century???????????????¢???????????????????????????????. New efficient motor designs that are not currently possible (or cost prohibitive) can be accomplished by this approach. Such an approach to motor fabrication opens up a new dimension in motor design. Feasibility Results We were able to optimize a IPMSM rotor to take advantage of the powder co-filling and DMC compaction processing methods. The minimum low speed torque requirement of 5 N-m can be met through an optimized design with magnet material having a Br capability of 0.2 T. This level of magnetic performance can be met with a variety of bonded magnet compositions. The torque ripple was found to drop significantly by using thinner magnet segments. The powder co-filling and subsequent compaction processing allow for thinner magnet structures to be formed. Torque ripple can be further reduced by using skewing and pole shaping techniques. The techniques can be incorporated into the rotor during the powder co-filling process.

  12. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, Bernard T. (Livermore, CA); Dreifuerst, Gary R. (Livermore, CA); Post, Richard F. (Walnut Creek, CA)

    1998-01-01T23:59:59.000Z

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An "inside-out" design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then "switched" or "commutated" to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives.

  13. Halbach array DC motor/generator

    DOE Patents [OSTI]

    Merritt, B.T.; Dreifuerst, G.R.; Post, R.F.

    1998-01-06T23:59:59.000Z

    A new configuration of DC motor/generator is based on a Halbach array of permanent magnets. This motor does not use ferrous materials so that the only losses are winding losses and losses due to bearings and windage. An ``inside-out`` design is used as compared to a conventional motor/generator design. The rotating portion, i.e., the rotor, is on the outside of the machine. The stationary portion, i.e., the stator, is formed by the inside of the machine. The rotor contains an array of permanent magnets that provide a uniform field. The windings of the motor are placed in or on the stator. The stator windings are then ``switched`` or ``commutated`` to provide a DC motor/generator much the same as in a conventional DC motor. The commutation can be performed by mechanical means using brushes or by electronic means using switching circuits. The invention is useful in electric vehicles and adjustable speed DC drives. 17 figs.

  14. automatic guided vehicle: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 of 9 Vehicle Buyers' Guide Multidisciplinary Databases and Resources Websites Summary: vehicle. Hybrid Gasoline only: A small battery and electric motor assist the...

  15. automatic guided vehicles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 of 9 Vehicle Buyers' Guide Multidisciplinary Databases and Resources Websites Summary: vehicle. Hybrid Gasoline only: A small battery and electric motor assist the...

  16. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt072vssmackie2012...

  17. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Environmental Management (EM)

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt072vssmackie2011...

  18. Development and Demonstration of a Low Cost Hybrid Drive Train for Medium and Heavy Duty Vehicles

    SciTech Connect (OSTI)

    Strangas, Elias; Schock, Harold; Zhu, Guoming; Moran, Kevin; Ruckle, Trevor; Foster, Shanelle; Cintron-Rivera, Jorge; Tariq, Abdul; Nino-Baron, Carlos

    2011-04-30T23:59:59.000Z

    The DOE sponsored effort is part of a larger effort to quantify the efficiency of hybrid powertrain systems through testing and modeling. The focus of the DOE sponsored activity was the design, development and testing of hardware to evaluate the efficiency of the electrical motors relevant to medium duty vehicles. Medium duty hybrid powertrain motors and generators were designed, fabricated, setup and tested. The motors were a permanent magnet configuration, constructed at Electric Apparatus Corporation in Howell, Michigan. The purpose of this was to identify the potential gains in terms of fuel cost savings that could be realized by implementation of such a configuration. As the electric motors constructed were prototype designs, the scope of the project did not include calculation of the costs of mass production of the subject electrical motors or generator.

  19. Markov Process of Muscle Motors

    E-Print Network [OSTI]

    Yu. Kondratiev; E. Pechersky; S. Pirogov

    2007-06-20T23:59:59.000Z

    We study a Markov random process describing a muscle molecular motor behavior. Every motor is either bound up with a thin filament or unbound. In the bound state the motor creates a force proportional to its displacement from the neutral position. In both states the motor spend an exponential time depending on the state. The thin filament moves at its velocity proportional to average of all displacements of all motors. We assume that the time which a motor stays at the bound state does not depend on its displacement. Then one can find an exact solution of a non-linear equation appearing in the limit of infinite number of the motors.

  20. Electric Drive Vehicle Demonstration and Vehicle Infrastructure Evaluation

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Vehicle Mass Impact on Vehicle Losses and Fuel Economy

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Gasoline Ultra Fuel Efficient Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Advanced Powertrain Research Facility Vehicle Test Cell Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

  4. Development of High Energy Lithium Batteries for Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

  5. 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2014 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  6. 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hybrid Vehicle Systems Technologies 2012 Annual Merit Review Results Report - Hybrid Vehicle Systems Technologies Merit review of DOE Vehicle Technologies research activities...

  7. 2008 Annual Merit Review Results Summary - 14. Vehicle Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4. Vehicle Systems and Simulation 2008 Annual Merit Review Results Summary - 14. Vehicle Systems and Simulation DOE Vehicle Technologies Annual Merit Review 2008meritreview14.pd...

  8. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  9. PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010

    E-Print Network [OSTI]

    Bertini, Robert L.

    PSU TOYOTA ELECTRIC VEHICLE PROGRAM POLICY JULY 2010 Purpose: The University State University Toyota Electric Vehicle Program under which Toyota Motor Sales, U.S.A., Inc. (Toyota Agreement PSU Toyota Electric Vehicle Program Procedures Manual for Individual Users Duration

  10. Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed Electric Power in California

    E-Print Network [OSTI]

    Kempton, Willett; Tomic, Jasna; Letendre, Steven; Brooks, Alec; Lipman, Timothy

    2001-01-01T23:59:59.000Z

    to approximately 40 kW. The hybrid vehicles are of interestat $0.84/therm). The hybrid vehicles in motor-generator modegas reformer, and the hybrid vehicle. However, the simple

  11. Vehicle Technologies Office Merit Review 2014: Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    for High Efficiency, Low Emissions Vehicle Applications Presentation given by Wisconsin Engine Research Consultants at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  12. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems (VTMS) AnalysisModeling Integrated Vehicle Thermal Management Systems (VTMS) AnalysisModeling 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit...

  13. Electric Motor Architecture R&D

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Permanent Magnet Development for Automotive Traction Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  16. Motor Pool Department The Motor Pool Department is responsible for the maintenance of over 550 Georgia Tech state

    E-Print Network [OSTI]

    value of $3,000 or more. · Perform preventive maintenance (PM) on vehicles, LSVs, golf cartsMotor Pool Department The Motor Pool Department is responsible for the maintenance of over 550

  17. Vehicle Technologies Office Merit Review 2015: Vehicle Technologies Office Overview

    Broader source: Energy.gov [DOE]

    Presentation given by U.S. Department of Energy at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Vehicle...

  18. Vehicle Technologies Office Merit Review 2014: Vehicle Communications and Charging Control

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  19. Vehicle Technologies Office Merit Review 2015: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  20. Vehicle Technologies Office Merit Review 2014: Vehicle to Grid Communications and Field Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  1. Vehicle Technologies Office Merit Review 2014: Vehicle Thermal Systems Modeling in Simulink

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle...

  2. Vehicle Technologies Office Merit Review 2015: Advanced Vehicle Test Procedure Development: Hybrid System Power Rating

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced vehicle...

  3. ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric

    E-Print Network [OSTI]

    ECE 438 Electric and Hybrid Vehicles Catalog Description: History of electric traction. Introduction to electric and hybrid-electric vehicle configurations. Vehicle mechanics. Energy sources and storage. Range prediction. Motor for HEVs. Electric drive components. Vehicle transmission system. Credits

  4. Integration of Novel Flux Coupling Motor and Current Source Inverter...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current Source Inverters for HEVs and FCVs Vehicle Technologies Office Merit Review 2014: Wireless Charging Integration of Novel Flux Coupling Motor and Current Source Inverter...

  5. Contained rocket motor burn demonstrations in X-tunnel: Final report for the DoD/DOE Joint Demilitarization Technology Program

    SciTech Connect (OSTI)

    S. W. Allendorf; B. W. Bellow; R. f. Boehm

    2000-05-01T23:59:59.000Z

    Three low-pressure rocket motor propellant burn tests were performed in a large, sealed test chamber located at the X-tunnel complex on the Department of Energy's Nevada Test Site in the period May--June 1997. NIKE rocket motors containing double base propellant were used in two tests (two and four motors, respectively), and the third test used two improved HAWK rocket motors containing composite propellant. The preliminary containment safety calculations, the crack and burn procedures used in each test, and the results of various measurements made during and after each test are all summarized and collected in this document.

  6. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W.T.; Ferrante, T.A.

    1998-10-13T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.

  7. Vehicle for carrying an object of interest

    DOE Patents [OSTI]

    Zollinger, W. Thor (Idaho Falls, ID); Ferrante, Todd A. (Westerville, OH)

    1998-01-01T23:59:59.000Z

    A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.

  8. Analysis of Electric Vehicle Battery Performance Targets

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Vehicle to Grid Communications Field Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. GATE: Energy Efficient Vehicles for Sustainable Mobility

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Multi-Material Lightweight Prototype Vehicle

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Advanced Vehicle Electrification and Transportation Sector Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Houston Zero Emission Delivery Vehicle Deployment Project

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Advanced Technology Vehicle Lab Benchmarking- Level 1

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Medium and Heavy Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Codes and Standards to Support Vehicle Electrification

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Vehicle Mass and Fuel Efficiency Impact Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  19. Advancing Transportation Through Vehicle Electrification- PHEV

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. 59136 Federal Register / Vol. 75, No. 186 / Monday, September 27, 2010 / Rules and Regulations (c) Certain farm vehicle drivers. The

    E-Print Network [OSTI]

    ) Certain farm vehicle drivers. The rules in this part except for 391.15(e) do not apply to a farm vehicle driver except a farm vehicle driver who drives an articulated (combination) commercial motor vehicle, as defined in 390.5. For limited exemptions for farm vehicle drivers of articulated commercial motor

  1. Vehicle Technologies Office Merit Review 2015: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Vehicle Testing & Evaluation

    Broader source: Energy.gov [DOE]

    Presentation given by Intertek at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about testing and evaluating advanced...

  3. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems...

    Energy Savers [EERE]

    & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  4. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Grid Integration

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  5. Vehicle Technologies Office Merit Review 2014: Consumer Vehicle Technology Data

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about consumer...

  6. Page 1 of 9 Vehicle Buyers' Guide

    E-Print Network [OSTI]

    vehicle. Hybrid þ Gasoline only: · A small battery and electric motor assist the engine to give help the hybrid use less fuel per 100km than a regular gasoline vehicle. Plug-in Hybrid þ þ Battery & Gasoline. The vehicle then automatically switches to gasoline. Like a hybrid, when using gasoline, it uses less fuel per

  7. Modular Electric Vehicle Program (MEVP). Final technical report

    SciTech Connect (OSTI)

    NONE

    1994-03-01T23:59:59.000Z

    The Modular Electric Vehicle Program (MEVP) was an EV propulsion system development program in which the technical effort was contracted by DOE to Ford Motor Company. The General Electric Company was a major subcontractor to Ford for the development of the electric subsystem. Sundstrand Power Systems was also a subcontractor to Ford, providing a modified gas turbine engine APU for emissions and performance testing as well as a preliminary design and producibility study for a Gas Turbine-APU for potential use in hybrid/electric vehicles. The four-year research and development effort was cost-shared between Ford, General Electric, Sundstrand Power Systems and DOE. The contract was awarded in response to Ford`s unsolicited proposal. The program objective was to bring electric vehicle propulsion system technology closer to commercialization by developing subsystem components which can be produced from a common design and accommodate a wide range of vehicles; i.e., modularize the components. This concept would enable industry to introduce electric vehicles into the marketplace sooner than would be accomplished via traditional designs in that the economies of mass production could be realized across a spectrum of product offerings. This would eliminate the need to dedicate the design and capital investment to a limited volume product offering which would increase consumer cost and/or lengthen the time required to realize a return on the investment.

  8. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01T23:59:59.000Z

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  9. Vehicle Technologies Office: Data and Analysis for Transportation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Air Quality Information on protecting health and the environment by regulating air pollution from motor vehicles, engines, and the fuels used to operate them, and by...

  10. Developing SAE Safety Standards for Hydrogen and Fuel Cell Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Hydrogen and Fuel Cell Vehicles (FCVs) Presentation by Michael Veenstra, Ford Motor Company, at the U.S. Department of Energy's Polymer and Composite Materials Meeting,...

  11. Light Duty Vehicle CNG Tanks

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light Duty Vehicle CNG Tanks Dane A. Boysen, PhD Program Director Advanced Research Projects Agency-Energy, US DOE dane.boysen@doe.gov Fiber Reinforced Polymer Composite...

  12. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, J.M.; Sereshteh, A.

    1988-08-30T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify the torque commands applied to the motor. 5 figs.

  13. Oscillation control system for electric motor drive

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI); Sereshteh, Ahmad (Union Lake, MI)

    1988-01-01T23:59:59.000Z

    A feedback system for controlling mechanical oscillations in the torsionally complaint drive train of an electric or other vehicle. Motor speed is converted in a processor to estimate state signals in which a plant model which are used to electronically modify thetorque commands applied to the motor.

  14. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption of Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Integrated Vehicle Thermal Management ? Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Updated 5/2/2011 Vehicle Title and Registration Tips

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Updated 5/2/2011 Vehicle Title and Registration Tips To get a new vehicle title the following items attachments for examples) 1. Application for Certificate of Title for a Motor Vehicle - Must be filled out - The title must be signed by original owner - If the vehicle was purchased through a dealership it needs

  17. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov (indexed) [DOE]

    and (1) NIH DoD DOE MOU * Microclimate base study - Electric Vehicle Preparedness * Joint Base Lewis McChord * Candidate bases for evaluation * Vehicle data logging, PEV...

  18. Trip Prediction and Route-Based Vehicle Energy Management

    Broader source: Energy.gov (indexed) [DOE]

    Trip Prediction and Route-Based Vehicle Energy Management 2014 DOE Hydrogen Program and Vehicle Technologies Annual Merit Review June 18 th , 2014 Dominik Karbowski (PI), Aymeric...

  19. Computer-Aided Engineering for Electric Drive Vehicle Batteries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

  20. Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck...

    Energy Savers [EERE]

    Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Vehicle Technologies Office Merit Review 2015: Volvo SuperTruck Presentation given by Volvo Trucks at 2015 DOE...

  1. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

  2. Vehicle Technologies Office Merit Review 2014: Development and...

    Office of Environmental Management (EM)

    Class 8 Highway Vehicle Presentation given by Volvo Trucks at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  3. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2011 DOE Hydrogen and Fuel Cells...

  4. Idaho National Laboratory Testing of Advanced Technology Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss021francfort2011o.pdf More Documents & Publications Vehicle...

  5. Vehicle Operator Policy Outline the requirements for vehicle operators at the University of Michigan (U-M).

    E-Print Network [OSTI]

    Kirschner, Denise

    Vehicle Operator Policy Objective Outline the requirements for vehicle operators at the University be authorized by the using department and adhere to the vehicle use and licensing policies. 4. Operators must have a valid driver license with no more than 6 points on their motor vehicle record (MVR). A valid

  6. U.S. Department of Energy's Motor Challenge Program: A National...

    Broader source: Energy.gov (indexed) [DOE]

    industry needs, and market drivers associated with improving industrial electric motor-driven systems. The key strategies and tactics being employed by the DOE Motor...

  7. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared.

  8. Electric vehicle drive train with rollback detection and compensation

    DOE Patents [OSTI]

    Konrad, C.E.

    1994-12-27T23:59:59.000Z

    An electric vehicle drive train includes a controller for detecting and compensating for vehicle rollback, as when the vehicle is started upward on an incline. The vehicle includes an electric motor rotatable in opposite directions corresponding to opposite directions of vehicle movement. A gear selector permits the driver to select an intended or desired direction of vehicle movement. If a speed and rotational sensor associated with the motor indicates vehicle movement opposite to the intended direction of vehicle movement, the motor is driven to a torque output magnitude as a nonconstant function of the rollback speed to counteract the vehicle rollback. The torque function may be either a linear function of speed or a function of the speed squared. 6 figures.

  9. Vehicle Technologies Office Merit Review 2014: Vehicle Level Model and Control Development and Validation Under Various Thermal Conditions

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about vehicle level...

  10. Vehicle Technologies Office Merit Review 2015: Electric Vehicle Mile Traveled (eVMT): On-road Results and Analysis

    Broader source: Energy.gov [DOE]

    Presentation given by Idaho National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about Electric Vehicle...

  11. Smith Electric Vehicles: Advanced Vehicle Electrification + Transporta...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector Electrification Smith Electric Vehicles: Advanced Vehicle Electrification + Transportation Sector...

  12. Thermally Conductive Organic Dielectrics for Power Electronics and Electric Motors

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Traffic by small teams of molecular motors

    E-Print Network [OSTI]

    Melanie J. I. Mller; Janina Beeg; Rumiana Dimova; Stefan Klumpp; Reinhard Lipowsky

    2008-07-07T23:59:59.000Z

    Molecular motors transport various cargos along cytoskeletal filaments, analogous to trucks on roads. In contrast to vehicles, however, molecular motors do not work alone but in small teams. We describe a simple model for the transport of a cargo by one team of motors and by two teams of motors, which walk into opposite directions. The cooperation of one team of motors generates long-range transport, which we observed experimentally in vitro. Transport by two teams of motors leads to a variety of bidirectional motility behaviour and to dynamic instabilities reminiscent of spontaneous symmetry breaking. We also discuss how cargo transport by teams of motors allows the cell to generate robust long-range bidirectional transport.

  14. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, R.G. Jr.; Boberg, E.S.; Lawrie, R.E.; Castaing, F.J.

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration. 34 figs.

  15. Powertrain system for a hybrid electric vehicle

    DOE Patents [OSTI]

    Reed, Jr., Richard G. (Royal Oak, MI); Boberg, Evan S. (Hazel Park, MI); Lawrie, Robert E. (Whitmore Lake, MI); Castaing, Francois J. (Bloomfield Township, MI)

    1999-08-31T23:59:59.000Z

    A hybrid electric powertrain system is provided including an electric motor/generator drivingly engaged with the drive shaft of a transmission. The electric is utilized for synchronizing the rotation of the drive shaft with the driven shaft during gear shift operations. In addition, a mild hybrid concept is provided which utilizes a smaller electric motor than typical hybrid powertrain systems. Because the electric motor is drivingly engaged with the drive shaft of the transmission, the electric motor/generator is driven at high speed even when the vehicle speed is low so that the electric motor/generator provides more efficient regeneration.

  16. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, G.L.

    1998-05-05T23:59:59.000Z

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotatable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor. 11 figs.

  17. Bent shaft motor

    DOE Patents [OSTI]

    Benavides, Gilbert L. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A nonelectromagnetic motor comprising a base, a bent shaft which is rotable relative to the base wherein the bent shaft comprises a straight portion aligned with a main axis and an offset portion that is offset with respect to the main axis; and a drive means for driving the offset portion of the bent shaft along a generally circular path in a plane perpendicular to the main axis to rotate the bent shaft. The bent shaft and drive means for driving the bent shaft can be selected from piezoelectric, magnetostrictive, rheological and shape memory alloys. The drive means of the nonelectromagnetic motor can additionally comprise a shell which shell surrounds and houses the bent shaft and precesses or gyrates which in turn causes the bent drive shaft to rotate. The nonelectromagnetic motor does not rely on friction for the application of torque upon a rotor.

  18. State Motor Pool Rental Contract for Business Travel Effective January 1, 2010

    E-Print Network [OSTI]

    Harms, Kyle E.

    State Motor Pool Rental Contract for Business Travel Effective January 1, 2010 Base Rental Charges Vehicle Class State Motor Pool Rental Contract Daily Rate* State Motor Pool Rental Contract Weekly Rate* State Motor Pool Rental Contract Monthly Rate* Compact 32 176 640 Mid-size/Intermediate 34 187 680

  19. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01T23:59:59.000Z

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  20. Vehicle security apparatus and method

    DOE Patents [OSTI]

    Veligdan, J.T.

    1996-02-13T23:59:59.000Z

    A vehicle security apparatus for use in a motor vehicle is disclosed, the apparatus comprising an optical key, a receptacle, a receiver and at least one optical fiber. The optical key has a transmitter having at least one first preprogrammed coded signal stored in a first electric circuit. The receptacle receives the optical key and at least one transmittable coded optical signal from the transmitter corresponding to the at least one preprogrammed coded signal stored in the first electric circuit. The receiver compares the at least one transmittable coded optical signal to at least one second preprogrammed coded signal stored in a second electric circuit and the receiver is adapted to trigger switching effects for at least one of enabling starting the motor vehicle and starting the motor vehicle upon determination that the at least one transmittable coded optical signal corresponds to the at least one second preprogrammed signal in the second electric circuit. The at least one optical fiber is operatively connected between the receptacle and the receiver for carrying the optical signal from the receptacle to the receiver. Also disclosed is a method for permitting only authorized use of a motor vehicle. 7 figs.

  1. Electric Motors

    Broader source: Energy.gov [DOE]

    Section 313 of the Energy Independence and Security Act (EISA) of 2007 raised Federal minimum efficiency standards for general-purpose, single-speed, polyphase induction motors of 1 to 500 horsepower (hp). This new standard took effect in December 2010. The new minimum efficiency levels match FEMP's performance requirement for these motors.

  2. Journal of Power Sources xxx (2005) xxxxxx Vehicle-to-grid power fundamentals: Calculating capacity

    E-Print Network [OSTI]

    Firestone, Jeremy

    As the light vehicle fleet moves to electric drive (hybrid, battery, and fuel cell vehicles), an opportunity electricity. © 2005 Elsevier B.V. All rights reserved. Keywords: Electric vehicle; Fuel cell; Plug-in hybrid-drive vehicles (EDVs), that is, vehicles with an electric-drive motor powered by batteries, a fuel cell

  3. Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle Multi-Materials Vehicle R&D Initiative Lightweight 7+ Passenger Vehicle 2011 DOE Hydrogen and Fuel Cells Program,...

  4. Making the case for direct hydrogen storage in fuel cell vehicles

    SciTech Connect (OSTI)

    James, B.D.; Thomas, C.E.; Baum, G.N.; Lomas, F.D. Jr.; Kuhn, I.F. Jr. [Directed Technologies, Inc., Arlington, VA (United States)

    1997-12-31T23:59:59.000Z

    Three obstacles to the introduction of direct hydrogen fuel cell vehicles are often states: (1) inadequate onboard hydrogen storage leading to limited vehicle range; (2) lack of an hydrogen infrastructure, and (3) cost of the entire fuel cell system. This paper will address the first point with analysis of the problem/proposed solutions for the remaining two obstacles addressed in other papers. Results of a recent study conducted by Directed Technologies Inc. will be briefly presented. The study, as part of Ford Motor Company/DOE PEM Fuel Cell Program, examines multiple pure hydrogen onboard storage systems on the basis of weight, volume, cost, and complexity. Compressed gas, liquid, carbon adsorption, and metal hydride storage are all examined with compressed hydrogen storage at 5,000 psia being judged the lowest-risk, highest benefit, near-term option. These results are combined with recent fuel cell vehicle drive cycle simulations to estimate the onboard hydrogen storage requirement for full vehicle range (380 miles on the combined Federal driving schedule). The results indicate that a PNGV-like vehicle using powertrain weights and performance realistically available by the 2004 PNGV target data can achieve approximate fuel economy equivalent to 100 mpg on gasoline (100 mpg{sub eq}) and requires storage of approximately 3.6 kg hydrogen for full vehicle storage quantity allows 5,000 psia onboard storage without altering the vehicle exterior lines or appreciably encroaching on the passenger or trunk compartments.

  5. Overview oi the DOE High Efficiency Engine Technologies R&D

    Broader source: Energy.gov (indexed) [DOE]

    Engine R&D Subprogram Vehicle Technologies Program Overview of the DOE High Efficiency Engine Technologies R&D Presented at the 2010 DOE Hydrogen Program and Vehicle...

  6. DC Fast Charge Impacts on Battery Life and Vehicle Performance

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Advanced Technology Vehicle Lab Benchmarking- Level 2 (in-depth)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. GATE Center of Excellence in Sustainable Vehicle Systems

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. High-Voltage Solid Polymer Batteries for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Vehicle Technologies Office Merit Review 2013: KIVA Development

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Overview of Vehicle and Systems Simulation and Testing

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Updating and Enhancing the MA3T Vehicle Choice Model

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  14. Low Cost Carbon Fiber Composites for Lightweight Vehicle Parts

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Thermoelectric Waste Heat Recovery Program for Passenger Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  16. Idaho National Laboratory Testing of Advanced Technology Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  17. Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  18. Advanced Technology Vehicle Lab Benchmarking - Level 2 (in-depth...

    Broader source: Energy.gov (indexed) [DOE]

    Other Institutions 13 J1711 HEV & PHEV test procedures In-depth Benchmarking DOE technology evaluation * DOE requests * National Lab requests AVTA (Advanced Vehicle Testing...

  19. Vehicle Technologies Office Merit Review 2014: Integrated Vehicle Thermal Management Combining Fluid Loops in Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  20. Vehicle Technologies Office: 2010 Advanced Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    APEEM subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies now under development. Research is...

  1. Advanced Vehicle Technology Analysis & Evaluation Team

    Broader source: Energy.gov [DOE]

    Presentation on Advanced Vehicle Technology Analysis & Evaluation Team to the DOE Systems Analysis Workshop held in Washington, D.C. July 28-29, 2004.

  2. Advancing Transportation Through Vehicle Electrification - PHEV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt067vssbazzi2011o.pdf More Documents & Publications...

  3. Refueling Infrastructure for Alternative Fuel Vehicles: Lessons...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proceedings from the DOE sponsored Refueling Infrastructure for Alternative Fuel Vehicles: Lessons Learned for Hydrogen workshop to understand how lessons from past experiences can...

  4. A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A Sensorless Direct Torque Control Scheme Suitable for Electric Vehicles Farid Khoucha, Khoudir an Electric Vehicle (EV). The proposed scheme uses an adaptive flux and speed observer that is based on a full is a good candidate for EVs propulsion. Index Terms--Electric vehicle, Induction motor, sensorless drive

  5. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, H.T.

    1993-10-19T23:59:59.000Z

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle levitation. 3 figures.

  6. Magnetic levitation configuration incorporating levitation, guidance and linear synchronous motor

    DOE Patents [OSTI]

    Coffey, Howard T. (Darien, IL)

    1993-01-01T23:59:59.000Z

    A propulsion and suspension system for an inductive repulsion type magnetically levitated vehicle which is propelled and suspended by a system which includes propulsion windings which form a linear synchronous motor and conductive guideways, adjacent to the propulsion windings, where both combine to partially encircling the vehicle-borne superconducting magnets. A three phase power source is used with the linear synchronous motor to produce a traveling magnetic wave which in conjunction with the magnets propel the vehicle. The conductive guideway combines with the superconducting magnets to provide for vehicle leviation.

  7. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles: Mach II Design

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles:...

  8. Vehicle Technologies Office Merit Review 2015: E-drive Vehicle Sales Analyses

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about E-drive Vehicle...

  9. Vehicle Technologies Office Merit Review 2015: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  10. Vehicle Technologies Office Merit Review 2014: Multi-Material Lightweight Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by VEHMA at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about multi-material lightweight vehicles.

  11. DOEs Effort to Reduce Truck Aerodynamic Drag through Joint...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08salari.pdf More Documents & Publications DOEs Effort to Reduce...

  12. Winter Motor-Vehicle EMISSIONS in

    E-Print Network [OSTI]

    Denver, University of

    in November 2000 via an environmental impact study decision that only allowed snowcoach use (4, 5 (1). Yellowstone National Park in the U.S. has a long history of balancing tourist access OF DENVER JOHN D. RAY NATIONAL PARK SERVICE APRIL 15, 2006 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 2505 #12

  13. An Economic Approach to Motor Vehicle Theft

    E-Print Network [OSTI]

    Carcach, Carlos

    2010-01-01T23:59:59.000Z

    annual cost of this form of illegal activity at 654 millionthat uses inputs from a market of illegal labour to generatea supply of illegal goods that are traded in a product

  14. EERE-2010-BT-STD-0027 Ex Parte Letter NEMA Motor Training re...

    Broader source: Energy.gov (indexed) [DOE]

    This memorandum memorializes a communication between DOE staff and members of the NEMA Motor and Generator Section in connection with this proceeding. NEMA thanks the DOE for the...

  15. MotorWeek H2 on the Horizon Video

    Broader source: Energy.gov [DOE]

    MotorWeek Host: Fuel cell electric cars, or FCEVs, provide drivers with the same benefits as current gasoline vehicles with a comparable driving range and refueling in just a few minutes. FCEVs don...

  16. berkeleyengineering First-generation airbags, installed in motor

    E-Print Network [OSTI]

    Agogino, Alice M.

    berkeleyengineering 8 9 First-generation airbags, installed in motor vehicles until 1998, decreased Berkeley ME professor Alice Agogino, is because women were not involved in early research, in which airbags

  17. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle...

  18. Animal-Vehicle Collision Data Collection Throughout the United States and Canada

    E-Print Network [OSTI]

    Huijser, Marcel P.; Wagner, Meredith E.; Hardy, Amanda; Clevenger, Anthony P.; Fuller, Julie A.

    2007-01-01T23:59:59.000Z

    involving motor vehicles and large animals in Canada: Finalreport, Transport Canada RoadSafety Directorate, Canada. Williams, A.F. & J.K. Wells.

  19. Canadas Voluntary Agreement on Vehicle Greenhouse Gas Emissions: When the Details Matter

    E-Print Network [OSTI]

    Lutsey, Nicholas P.; Sperling, Dan

    2007-01-01T23:59:59.000Z

    goals. Science 301, 506508. General Motors Canada (GM Canada), 2005. Vehicle emissions & fuels. Canada, 2006. Canadas clean

  20. Urea SCR and DPF System for Diesel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sport Utility Vehicle Meeting Tier II Bin 5 2003 DEER Conference Presentation: Ford Motor Company 2003deerhammerle.pdf More Documents & Publications Urea SCR and DPF System...

  1. Urea SCR and DPF System for Deisel Sport Utility Vehicle Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sport Utility Vehicle Meeting Tier II Bin 5 2002 DEER Conference Presentation: Ford Motor Company 2002deerhammerle.pdf More Documents & Publications Urea SCR and DPF System...

  2. Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling, and Safety of Heavy Vehicles

    SciTech Connect (OSTI)

    Robert J. Englar

    2001-05-14T23:59:59.000Z

    Research is being conducted at the Georgia Tech Research Institute (GTRI) to develop advanced aerodynamic devices to improve the performance, economics, stability, handling and safety of operation of Heavy Vehicles by using previously-developed and flight-tested pneumatic (blown) aircraft technology. Recent wind-tunnel investigations of a generic Heavy Vehicle model with blowing slots on both the leading and trailing edges of the trailer have been conducted under contract to the DOE Office of Heavy Vehicle Technologies. These experimental results show overall aerodynamic drag reductions on the Pneumatic Heavy Vehicle of 50% using only 1 psig blowing pressure in the plenums, and over 80% drag reductions if additional blowing air were available. Additionally, an increase in drag force for braking was confirmed by blowing different slots. Lift coefficient was increased for rolling resistance reduction by blowing only the top slot, while downforce was produced for traction increase by blowing only the bottom. Also, side force and yawing moment were generated on either side of the vehicle, and directional stability was restored by blowing the appropriate side slot. These experimental results and the predicted full-scale payoffs are presented in this paper, as is a discussion of additional applications to conventional commercial autos, buses, motor homes, and Sport Utility Vehicles.

  3. Just build it! : a fully functional concept vehicle using robotic wheels

    E-Print Network [OSTI]

    Schmitt, Peter, S.M. Massachusetts Institute of Technology

    2007-01-01T23:59:59.000Z

    Interest in electric vehicle drive units is resurging with the proliferation of hybrid and electric vehicles. Currently emerging key-technologies are: in-wheel motors, electric braking, integrated steering activators and ...

  4. Premium Efficient Motors

    E-Print Network [OSTI]

    Moser, P. R.

    1984-01-01T23:59:59.000Z

    Premium efficient motors are available which convert electrical energy into mechanical energy with fewer losses than the more standard motors. The fewer losses in these motors are due to changes in the motor design and improved manufacturing methods...

  5. Armored Vehicle

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    This research is focused on designing a new generation of CAD tools that could help a hybrid vehicle designer with the design process to come up with better vehicle configurations. The conventional design process for any type of hybrid...

  6. Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Analysis, Modeling and Neural Network Traction Control of an Electric Vehicle without Differential Terms--Electric vehicle, electric motor, speed estimation, neural networks, traction control. I. INTRODUCTION Recently, Electric Vehicles (EVs) including fuel-cell and hybrid vehicles have been developed very

  7. Topology, design, analysis and thermal management of power electronics for hybrid electric vehicle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    an important role in the success of electric, hybrid and fuel cell vehicles. Typical power electronics circuits/DC converter; electric drives; electric vehicles; fuel cell; hybrid electric vehicles; power electronics, motor for fuel cells and advanced heavy-duty hybrid electric vehicles. He also has experience with alternative

  8. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, S.R.

    1995-09-12T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydraulic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control. 10 figs.

  9. Electric vehicle regenerative antiskid braking and traction control system

    DOE Patents [OSTI]

    Cikanek, Susan R. (Wixom, MI)

    1995-01-01T23:59:59.000Z

    An antiskid braking and traction control system for an electric or hybrid vehicle having a regenerative braking system operatively connected to an electric traction motor, and a separate hydraulic braking system includes one or more sensors for monitoring present vehicle parameters and a processor, responsive to the sensors, for calculating vehicle parameters defining the vehicle behavior not directly measurable by the sensors and determining if regenerative antiskid braking control, requiring hydrualic braking control, or requiring traction control are required. The processor then employs a control strategy based on the determined vehicle state and provides command signals to a motor controller to control the operation of the electric traction motor and to a brake controller to control fluid pressure applied at each vehicle wheel to provide the appropriate regenerative antiskid braking control, hydraulic braking control, and traction control.

  10. In-Use Performance Results of Medium Duty Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.

    2012-07-01T23:59:59.000Z

    This presentation describes a DOE program to monitor and report on vehicle performance and energy utilization of medium-duty and heavy-duty electric vehicles.

  11. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    vehicle component costs (for fuel cells and hydrogenand cost issues for hydrogen and fuel cell vehicles, andFuel economy: Fuel cell system cost: % of DOE 2015 Target

  12. Roadmap for Hydrogen and Fuel Cell Vehicles in California: A Transition Strategy through 2017

    E-Print Network [OSTI]

    Ogden, J; Cunningham, Joshua M; Nicholas, Michael A

    2010-01-01T23:59:59.000Z

    s future commitment to hydrogen and fuel cell vehicles haselimination of the U.S. DOE hydrogen production, deliveryhas recently re-instated hydrogen and fuel cell vehicle

  13. Vehicle Technologies Office Merit Review 2014: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  14. Vehicle Technologies Office Merit Review 2014: Advancing Transportation through Vehicle Electrification Ram 1500 PHEV

    Broader source: Energy.gov [DOE]

    Presentation given by Chrysler LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advancing transportation through...

  15. Vehicle Technologies Office Merit Review 2014: Relationships between Vehicle Mass, Footprint, and Societal Risk

    Broader source: Energy.gov [DOE]

    Presentation given by Lawrence Berkeley National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  16. Vehicle Technologies Office Merit Review 2015: Electric Drive Vehicle Climate Control Load Reduction

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electric...

  17. Vehicle Technologies Office Merit Review 2015: Wireless Charging of Electric Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about wireless...

  18. Vehicle Technologies Office Merit Review 2015: Advanced Technology Vehicle Lab Benchmarking (L1&L2)

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced...

  19. Vehicle Technologies Office Merit Review 2015: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation meeting about development of...

  20. Vehicle Technologies Office Merit Review 2014: Development of High Power Density Driveline for Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about the development...

  1. Semiotics and Advanced Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Why it Matters to Consumers

    E-Print Network [OSTI]

    Heffner, Reid R.

    2007-01-01T23:59:59.000Z

    Hybrid Vehicle? Study #715238, conducted for National Renewableand Renewable Energy, Report DOE/EE-0314 Valdes-Dapena, P. (2005) Hybrids:

  2. Vehicle Technologies Office Merit Review 2014: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  3. Vehicle Technologies Office Merit Review 2015: Medium and Heavy-Duty Vehicle Field Evaluations

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about medium...

  4. Vehicle Technologies Office Merit Review 2014: Pennsylvania Partnership for Promoting Natural Gas Vehicles

    Broader source: Energy.gov [DOE]

    Presentation given by Delaware Valley Regional Planning Commission at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  5. Vehicle Technologies Office Merit Review 2014: ParaChoice: Parametric Vehicle Choice Modeling

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about parametric...

  6. Vehicle Technologies Office Merit Review 2014: Trip Prediction and Route-Based Vehicle Energy Management

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about trip prediction...

  7. UoS Motor Accident Report Form COMPANY DETAILS

    E-Print Network [OSTI]

    Sussex, University of

    UNIV01FL02 UoS Motor Accident Report Form COMPANY DETAILS INSURED: University of Sussex ADDRESS: LOCATION: DESCRIPTION OF HOW ACCIDENT HAPPENED: PLEASE DRAW A SKETCH OF THE ACCIDENT: #12;DRIVER DETAILS: PREVIOUS ACCIDENTS: ADDRESS: VEHICLE DETAILS DATE VEHICLE PURCHASED: MAKE/MODEL: REGISTRATION: MILEAGE

  8. Preliminary Assessment of Overweight Mainline Vehicles

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL; Lascurain, Mary Beth [ORNL

    2011-11-01T23:59:59.000Z

    The Federal Motor Carrier Safety Administration requested information regarding overweight and oversized vehicle traffic entering inspection stations (ISs) in order to develop strategies for future research efforts and possibly help guide regulatory issues involving overweight commercial motor vehicles (CMVs). For a period of one month, inspection stations in Knox County and Greene County, Tennessee, recorded overweight and oversized vehicles that entered these ISs. During this period, 435 CMVs were recorded using an electronic form filled out by enforcement personnel at the IS. Of the 435 CMVs recorded, 381 had weight information documented with them. The majority (52.2%) of the vehicles recorded were five-axle combination vehicles, and 50.6% of all the vehicles were permitted to operate above the legal weight limit in Tennessee, which is 80,000 lb for vehicles with five or more axles. Only 16.8% of the CMVs recorded were overweight gross (11.5% of permitted vehicles) and 54.1% were overweight on an axle group. The low percentage of overweight gross CMVs was because only 45 of the vehicles over 80,000 lb. were not permitted. On average, axles that were overweight were 2,000 lb. over the legal limit for an axle or group of axles. Of the vehicles recorded, 172 vehicles were given a North American Standard (NAS) inspection during the assessment. Of those, 69% of the inspections were driver-only inspections (Level III) and only 25% of the inspections had a vehicle component (such as a Level I or Level II). The remaining 6% of inspections did not have valid Aspen numbers; the type of was inspection unknown. Data collected on the types of trailers of each vehicle showed that about half of the recorded CMVs could realistically be given a Level I (full vehicle and driver) inspection; this estimate was solely based on trailer type. Enforcement personnel at ISs without an inspection pit have difficulty fully inspecting certain vehicles due to low clearance below the trailer. Because of this, overweight and oversized vehicles were normally only given a Level III (driver) inspection; thus, little is known about the safety of these vehicles. The out-of-service (OOS) rate of all the inspected vehicles (driver and vehicle inspections) was 18.6%, while the OOS rate for vehicle inspections (Level I and II) was 52.4%. Future work will focus on performing Level I inspections on five-axle combination tractor-trailers and the types of violations that overweight vehicles may have. This research will be conducted in Tennessee and possibly in other states as well.

  9. Brake blending strategy for a hybrid vehicle

    DOE Patents [OSTI]

    Boberg, Evan S. (Hazel Park, MI)

    2000-12-05T23:59:59.000Z

    A hybrid electric powertrain system is provided including a transmission for driving a pair of wheels of a vehicle and a heat engine and an electric motor/generator coupled to the transmission. A friction brake system is provided for applying a braking torque to said vehicle. A controller unit generates control signals to the electric motor/generator and the friction brake system for controllably braking the vehicle in response to a drivers brake command. The controller unit determines and amount of regenerative torque available and compares this value to a determined amount of brake torque requested for determining the control signals to the electric motor/generator and the friction brake system.

  10. Advanced Vehicle Testing and Evaluation

    SciTech Connect (OSTI)

    Garetson, Thomas

    2013-03-31T23:59:59.000Z

    The objective of the United States (U.S.) Department of Energy?s (DOEs) Advanced Vehicle Testing and Evaluation (AVTE) project was to provide test and evaluation services for advanced technology vehicles, to establish a performance baseline, to determine vehicle reliability, and to evaluate vehicle operating costs in fleet operations. Vehicles tested include light and medium-duty vehicles in conventional, hybrid, and all-electric configurations using conventional and alternative fuels, including hydrogen in internal combustion engines. Vehicles were tested on closed tracks and chassis dynamometers, as well as operated on public roads, in fleet operations, and over prescribed routes. All testing was controlled by procedures developed specifically to support such testing. Testing and evaluations were conducted in the following phases: ? Development of test procedures, which established testing procedures; ? Baseline performance testing, which established a performance baseline; ? Accelerated reliability testing, which determined vehicle reliability; ? Fleet testing, used to evaluate vehicle economics in fleet operation, and ? End of test performance evaluation. Test results are reported by two means and posted by Idaho National Laboratory (INL) to their website: quarterly progress reports, used to document work in progress; and final test reports. This final report documents work conducted for the entirety of the contract by the Clarity Group, Inc., doing business as ECOtality North America (ECOtality). The contract was performed from 1 October 2005 through 31 March 2013. There were 113 light-duty on-road (95), off-road (3) and low speed (15) vehicles tested.

  11. Alternative High-Performance Motors with Non-Rare Earth Materials

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Novel Manufacturing Technologies for High Power Induction and Permanent Magnet Electric Motors (Agreement ID:23726)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. Fact #745: September 17, 2012 Vehicles per Thousand People: U...

    Broader source: Energy.gov (indexed) [DOE]

    The graphs below show the number of motor vehicles per thousand people for various countries. The data for the United States are displayed in the line which goes from 1900 to 2010....

  14. Hybrid vehicle design using global optimisation Wenzhong Gao

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    systems, power system modelling and simulation, alternative power systems, renewable energy and electric electronics, hybrid electric vehicles, electric machines, and renewable energy systems. He). A hybrid powertrain is comprised of electric motors with power electronic converters, energy storage

  15. A New Class of Switched Reluctance Motors without Permanent Magnets

    Broader source: Energy.gov (indexed) [DOE]

    proprietary, confidential, or otherwise restricted information 2011 U.S. DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  16. Implementing Motor Decision Plans

    E-Print Network [OSTI]

    Elliott, R. N.

    The first step to reducing energy costs and increasing reliability in motors is to establish a motor plan. A motor plan allows decisions to be made in advance of motor failure, and increases the options available. By contrast, most motor decisions...

  17. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  18. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02T23:59:59.000Z

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  19. Overview of the DOE Advanced Combustion Engine R&D

    Broader source: Energy.gov (indexed) [DOE]

    petroleum. --EERE Strategic Plan, October 2002-- Overview of the DOE Advanced Combustion Engine R&D Presented at the 2009 DOE Hydrogen Program and Vehicle Technologies Program...

  20. Penn State DOE Graduate Automotive Technology Education (Gate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education...

  1. DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable Natural Gas for Vehicles, and More DOE Announces Webinars on Tribal Renewable Energy Projects, Renewable...

  2. Vehicle Technologies Office: AVTA - Electric Vehicle Charging...

    Energy Savers [EERE]

    Charging Equipment (EVSE) Testing Data Vehicle Technologies Office: AVTA - Electric Vehicle Charging Equipment (EVSE) Testing Data Electric vehicle chargers (otherwise known as...

  3. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Broader source: Energy.gov (indexed) [DOE]

    Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Vehicle Technologies Office: 2008 Advanced Vehicle Technology Analysis...

  4. Commercial Vehicle Classification using Vehicle Signature Data

    E-Print Network [OSTI]

    Liu, Hang; Jeng, Shin-Ting; Andre Tok, Yeow Chern; Ritchie, Stephen G.

    2008-01-01T23:59:59.000Z

    Traffic Measurement and Vehicle Classification with SingleG. Ritchie. Real-time Vehicle Classification using InductiveReijmers, J.J. , "On-line vehicle classification," Vehicular

  5. Clean Transportation Program | 919-515-3480 | www.ncsc.ncsu.edu How to tell if your vehicle is E85 compatible...

    E-Print Network [OSTI]

    FUEL VEHICLES FORD MOTOR COMPANY CONTINUED Make, Model, & Engine Size Year(s) 8th VIN Character Mercury Sable, 3.0L 2002-2004 2 Mercury Grand Marquis (2-valve), 4.6L 2007-2011 V GENERAL MOTORS *2008 & 2009 VEHICLES GENERAL MOTORS CONTINUED *2008 & 2009 FFV models have yellow fuel caps to identify them as E85

  6. Comparison of the Unique Mobility and DOE-developed ac electric drive systems

    SciTech Connect (OSTI)

    Cole, G.H.

    1993-01-01T23:59:59.000Z

    A comparison was made between the most recent DOE-developed AC electric vehicle drive systems and that which is independently under development by Unique Mobility of Golden, Colorado. The DOE-developed AC systems compared in this study are the Single-Shaft Electric Propulsion System (ETX-II) developed by Ford Motor Company and the General Electric Company under contract number DE-AC07-85NV10418, the Dual-Shaft Electric Propulsion (DSEP) System developed by Eaton Corporation under contract number DOE-AC08-84NV-10366, and the anticipated results of the Modular Electric Vehicle (MEV) system currently being developed by Ford and General Electric under contract number DE-AC07-90ID13019. The Unique Mobility brushless DC electric vehicle drive system represents their latest electric drive technology and is being developed in cooperation with BMW Technik Gmbh of Germany. Comparisons of specific volume, specific weight, efficiency and expected vehicle performance are made of the different systems based upon measured system performance data where available. One conclusion presented is that the Unique Mobility drive system under development with BMW appears to provide comparable performance to the AC systems studied.

  7. Edinburgh Motor Assessment (EMAS)

    E-Print Network [OSTI]

    Bak, Thomas

    2013-12-01T23:59:59.000Z

    Edinburgh Motor Assessment (EMAS) is a brief motor screening test, specifically designed for assessment of patients with dementia, aphasia and other cognitive disorders. It focuses, therefore, on those motor symptoms, ...

  8. Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet

    SciTech Connect (OSTI)

    Walkowicz, K.

    2002-05-01T23:59:59.000Z

    Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

  9. Medium- and Heavy-Duty Electric Drive Vehicle Simulation and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis Medium- and Heavy-Duty Electric Drive Vehicle Simulation and Analysis 2012 DOE Hydrogen and Fuel Cells Program...

  10. Advanced Vehicle Testing Activity (AVTA) ? Non-PHEV Evaluations...

    Energy Savers [EERE]

    Non-PHEV Evaluations and Data Collection Advanced Vehicle Testing Activity (AVTA) Non-PHEV Evaluations and Data Collection Presentation from the U.S. DOE Office of Vehicle...

  11. Department of Mechanical Engineering Spring 2013 Active Vehicle Grille

    E-Print Network [OSTI]

    Demirel, Melik C.

    was tasked by General Motors (GM) to design and build active shutters that are mounted directly to the main Motors engineers and developed five possible concepts Reviewed existing patents and current activePENNSTATE Department of Mechanical Engineering Spring 2013 Active Vehicle Grille Overview Active

  12. Vehicle Technologies Office Merit Review 2014: Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    Presentation given by Cooper Tire at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about improving vehicle fuel efficiency...

  13. IN-VEHICLE, HIGH-POWER ENERGY STORAGE SYSTEMS | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office Merit Review 2014: Penn State DOE Graduate GATE Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE GATE Center of Exellence for In-Vehicle,...

  14. Overview of the DOE Hydrogen Program (Presentation)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and performance) Hydrogen Storage - Status 103- to 190-mile range verified in Gen-1 vehicles (DOE Tech Val Program) The Program has identified materials with > 50%...

  15. 2014 DOE Sustainability Awards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to the Department's sustainability mission, including accomplishments in managing pollution, waste, energy, water, and vehicle fleets. Nominations are collected through the DOE...

  16. Vehicle Standards in a Climate Policy Framework WORKING PAPER

    E-Print Network [OSTI]

    Edwards, Paul N.

    limits on tailpipe pollution starting in 1975 (CAA 1970). Following the 1973 oil embargo, the Energy for addressing societal impacts affected by vehicle design since the first automotive air pollution standards were authorized by California's Motor Vehicle Pollution Control Act in 1960. Safety standards were

  17. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    None

    2012-01-01T23:59:59.000Z

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to todays best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  18. Recycling end-of-life vehicles of the future. Final CRADA report.

    SciTech Connect (OSTI)

    Jody, B. J.; Pomykala, J. A.; Spangenberger, J. S.; Daniels, E.; Energy Systems

    2010-01-14T23:59:59.000Z

    Argonne National Laboratory (the Contractor) entered into a Cooperative Research and Development Agreement (CRADA) with the following Participants: Vehicle Recycling Partnership, LLC (VRP, which consists of General Motors [GM], Ford, and Chrysler), and the American Chemistry Council - Plastics Division (ACC-PD). The purpose of this CRADA is to provide for the effective recycling of automotive materials. The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles. The issues, technical requirements, and cost and institutional considerations in achieving that goal are complex and will require a concerted, focused, and systematic analysis, together with a technology development program. The scope and tasks of this program are derived from 'A Roadmap for Recycling End-of-Life Vehicles of the Future,' prepared in May 2001 for the DOE Office of Energy, Efficiency, and Renewable Energy (EERE)-Vehicle Technologies Program. The objective of this research program is to enable the maximum recycling of automotive materials and obsolete vehicles through the development and commercialization of technologies for the separation and recovery of materials from end-of-life vehicles (ELVs). The long-term goals are to (1) enable the optimum recycling of automotive materials, thereby obviating the need for legislative mandates or directives; (2) enable the recovery of automotive materials in a cost-competitive manner while meeting the performance requirements of the applications and markets for the materials; and (3) remove recycling barriers/reasons, real or perceived, to the use of advanced lightweighting materials or systems in future vehicles.

  19. Integrated Computational Materials Engineering Approach to Development of Lightweight 3GAHSS Vehicle Assembly

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Analysis of In-Motion Power Transfer for Multiple Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  1. Establishing Thermo-Electric Generator (TEG) Design Targets for Hybrid Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  2. Advanced Combustion Concepts- Enabling Systems and Solutions (ACCESS) for High Efficiency Light Duty Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  3. Battery Energy Availability and Consumption during Vehicle Charging across Ambient Temperatures and Battery Temperature (conditioning)

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Development of Nanofluids for Cooling Power Electronics for Hybrid Electric Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  5. Robust Nitrogen Oxide/Ammonia Sensors for Vehicle On-board Emissions Control

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  6. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration Activity

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  7. Improving Vehicle Fuel Efficiency Through Tire Design, Materials, and Reduced Weight

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Low-Cost U.S. Manufacturing of Power Electronics for Electric Drive Vehicles

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  9. Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and Inverters

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  10. Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Mitigation of Vehicle Fast Charge Grid Impacts with Renewables and Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  12. Heavy and Overweight Vehicle Defects Interim Report

    SciTech Connect (OSTI)

    Siekmann, Adam [ORNL; Capps, Gary J [ORNL

    2012-12-01T23:59:59.000Z

    The Federal Highway Administration (FHWA), along with the Federal Motor Carrier Safety Administration (FMCSA), has an interest in overweight commercial motor vehicles, how they affect infrastructure, and their impact on safety on the nation s highways. To assist both FHWA and FMCSA in obtaining more information related to this interest, data was collected and analyzed from two separate sources. A large scale nationwide data collection effort was facilitated by the Commercial Vehicle Safety Alliance as part of a special study on overweight vehicles and an additional, smaller set, of data was collected from the state of Tennessee which included a much more detailed set of data. Over a six-month period, 1,873 Level I inspections were performed in 18 different states that volunteered to be a part of this study. Of the 1,873 inspections, a vehicle out-of-service (OOS) violation was found on 44.79% of the vehicles, a rate significantly higher than the national OOS rate of 27.23%. The main cause of a vehicle being placed OOS was brake-related defects, with approximately 30% of all vehicles having an OOS brake violation. Only about 4% of vehicles had an OOS tire violation, and even fewer had suspension and wheel violations. Vehicle weight violations were most common on an axle group as opposed to a gross vehicle weight violation. About two thirds of the vehicles cited with a weight violation were overweight on an axle group with an average amount of weight over the legal limit of about 2,000 lbs. Data collection is scheduled to continue through January 2014, with more potentially more states volunteering to collect data. More detailed data collections similar to the Tennessee data collection will also be performed in multiple states.

  13. Control system and method for a hybrid electric vehicle

    DOE Patents [OSTI]

    Tamor, Michael Alan (Toledo, OH)

    2001-03-06T23:59:59.000Z

    Several control methods are presented for application in a hybrid electric vehicle powertrain including in various embodiments an engine, a motor/generator, a transmission coupled at an input thereof to receive torque from the engine and the motor generator coupled to augment torque provided by the engine, an energy storage device coupled to receive energy from and provide energy to the motor/generator, an engine controller (EEC) coupled to control the engine, a transmission controller (TCM) coupled to control the transmission and a vehicle system controller (VSC) adapted to control the powertrain.

  14. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1998-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  15. Robotic vehicle

    DOE Patents [OSTI]

    Box, W. Donald (Oak Ridge, TN)

    1997-01-01T23:59:59.000Z

    A robotic vehicle for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle.

  16. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1998-08-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendible appendages, each of which is radially extendible relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendible members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  17. Robotic vehicle

    DOE Patents [OSTI]

    Box, W.D.

    1997-02-11T23:59:59.000Z

    A robotic vehicle is described for travel through a conduit. The robotic vehicle includes forward and rear housings each having a hub portion, and each being provided with surface engaging mechanisms for selectively engaging the walls of the conduit such that the housings can be selectively held in stationary positions within the conduit. The surface engaging mechanisms of each housing includes a plurality of extendable appendages, each of which is radially extendable relative to the operatively associated hub portion between a retracted position and a radially extended position. The robotic vehicle also includes at least three selectively extendable members extending between the forward and rear housings, for selectively changing the distance between the forward and rear housings to effect movement of the robotic vehicle. 20 figs.

  18. Electric vehicles move closer to market

    SciTech Connect (OSTI)

    O`Connor, L.

    1995-03-01T23:59:59.000Z

    This article reports that though battery technology is currently limiting the growth of EVs, the search for improvements is spurring innovative engineering developments. As battery makers, automakers, national laboratories, and others continue their search for a practical source of electric power that will make electric vehicles (EVs) more viable, engineers worldwide are making progress in other areas of EV development. Vector control, for example, enables better regulation of motor torque and speed; composite and aluminum parts reduce the vehicle`s weight, which in turn reduces the load on the motor and battery; and flywheel energy storage systems, supercapacitors, regenerative brake systems, and hybrid/electric drive trains increase range and acceleration. Despite efforts to develop an electric vehicle from the ground up, most of the early EVs to be sold in the United States will likely be converted from gasoline-powered vehicles. Chrysler Corp., for example, is expected to sell electric versions of its minivans and build them on the same assembly line as its gasoline-powered vehicles to reduce costs. The pace of engineering development in this field is fast and furious. Indeed, it is virtually impossible to monitor all emerging EV technology. To meet their quotas, the major automakers may even consider buying credits from smaller, innovative EV manufacturers. But whatever stopgap measures vehicle makers take, technology development will be the driving force behind long-term EV growth.

  19. Advanced underground Vehicle Power and Control: The locomotive Research Platform

    SciTech Connect (OSTI)

    Vehicle Projects LLC

    2003-01-28T23:59:59.000Z

    Develop a fuelcell mine locomotive with metal-hydride hydrogen storage. Test the locomotive for fundamental limitations preventing successful commercialization of hydride fuelcells in underground mining. During Phase 1 of the DOE-EERE sponsored project, FPI and its partner SNL, completed work on the development of a 14.4 kW fuelcell power plant and metal-hydride energy storage. An existing battery-electric locomotive with similar power requirements, minus the battery module, was used as the base vehicle. In March 2001, Atlas Copco Wagner of Portland, OR, installed the fuelcell power plant into the base vehicle and initiated integration of the system into the vehicle. The entire vehicle returned to Sandia in May 2001 for further development and integration. Initial system power-up took place in December 2001. A revision to the original contract, Phase 2, at the request of DOE Golden Field Office, established Vehicle Projects LLC as the new prime contractor,. Phase 2 allowed industry partners to conduct surface tests, incorporate enhancements to the original design by SNL, perform an extensive risk and safety analysis, and test the fuelcell locomotive underground under representative production mine conditions. During the surface tests one of the fuelcell stacks exhibited reduced power output resulting in having to replace both fuelcell stacks. The new stacks were manufactured with new and improved technology resulting in an increase of the gross power output from 14.4 kW to 17 kW. Further work by CANMET and Hatch Associates, an engineering consulting firm specializing in safety analysis for the mining industry, both under subcontract to Vehicle Projects LLC, established minimum requirements for underground testing. CANMET upgraded the Programmable Logic Control (PLC) software used to monitor and control the fuelcell power plant, taking into account locomotive operator's needs. Battery Electric, a South Africa manufacturer, designed and manufactured (at no cost to the project) a new motor controller capable of operating the higher rpm motor and different power characteristics of the fuelcells. In early August 2002, CANMET, with the technical assistance of Nuvera Fuel Cells and Battery Electric, installed the new PLC software, installed the new motor controller, and installed the new fuelcell stacks. After minor adjustments, the fuelcell locomotive pulled its first fully loaded ore cars on a surface track. The fuelcell-powered locomotive easily matched the battery powered equivalent in its ability to pull tonnage and equaled the battery-powered locomotive in acceleration. The final task of Phase 2, testing the locomotive underground in a production environment, occurred in early October 2002 in a gold mine. All regulatory requirements to allow the locomotive underground were completed and signed off by Hatch Associates prior to going underground. During the production tests, the locomotive performed flawlessly with no failures or downtime. The actual tests occurred during a 2-week period and involved moving both gold ore and waste rock over a 1,000 meter track. Refueling, or recharging, of the metal-hydride storage took place on the surface. After each shift, the metal-hydride storage module was removed from the locomotive, transported to surface, and filled with hydrogen from high-pressure tanks. The beginning of each shift started with taking the fully recharged metal-hydride storage module down into the mine and re-installing it onto the locomotive. Each 8 hour shift consumed approximately one half to two thirds of the onboard hydrogen. This indicates that the fuelcell-powered locomotive can work longer than a similar battery-powered locomotive, which operates about 6 hours, before needing a recharge.

  20. 192 Int. J. Vehicle Systems Modelling and Testing, Vol. 1, Nos. 1/2/3, 2005 Copyright 2005 Inderscience Enterprises Ltd.

    E-Print Network [OSTI]

    Lewis, Kemper E.

    Development Research Lab, General Motors Research and Development Center, Warren, MI USA E-mail: joe in the Vehicle Development Research Laboratory at the General Motors Research and Development Center in Warren, Michigan. His ten years of experience with General Motors and the Ford Motor Company have broadly spanned

  1. Vehicle Technologies Office Merit Review 2014: Battery Safety Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery safety...

  2. Vehicle Technologies Office Merit Review 2014: Advanced Combustion and Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced combustion and fuels.

  3. Vehicle Technologies Office Merit Review 2014: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  4. Vehicle Technologies Office Merit Review 2014: Performance of...

    Broader source: Energy.gov (indexed) [DOE]

    Performance of Biofuels and Biofuel Blends Vehicle Technologies Office Merit Review 2014: Performance of Biofuels and Biofuel Blends Presentation given by NREL at 2014 DOE Hydrogen...

  5. Vehicle Technologies Office Merit Review 2014: Applied ICME for...

    Broader source: Energy.gov (indexed) [DOE]

    Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about applied ICME for new...

  6. Vehicle Technologies Office Merit Review 2014: Dynamic Feasibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dynamic Feasibility Study Vehicle Technologies Office Merit Review 2014: Dynamic Feasibility Study Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel...

  7. Vehicle Technologies Office Merit Review 2014: Enhanced High...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about enhanced...

  8. Vehicle Technologies Office Merit Review 2014: Intake Air Oxygen...

    Broader source: Energy.gov (indexed) [DOE]

    Robert Bosch at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about intake air oxygen sensors....

  9. Vehicle Technologies Office Merit Review 2014: Development of...

    Broader source: Energy.gov (indexed) [DOE]

    Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about development...

  10. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Broader source: Energy.gov (indexed) [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting es126stefan2012p.pdf More Documents & Publications...

  11. Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    VTO Analysis Portfolio Vehicle Technologies Office Merit Review 2014: VTO Analysis Portfolio Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells...

  12. Vehicle Technologies Office Merit Review 2014: INL Electrochemical...

    Broader source: Energy.gov (indexed) [DOE]

    company name at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about INL electrochemical performance...

  13. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation arravt028apeboan2011...

  14. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt028apeboan2012...

  15. DC Bus Capacitor Manufacturing Facility for Electric Drive Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. apearravt028boan2010...

  16. Vehicle Technologies Office Merit Review 2015: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about engine friction...

  17. Vehicle Technologies Office Merit Review 2015: Abuse Tolerance Improvements

    Broader source: Energy.gov [DOE]

    Presentation given by Sandia National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about abuse tolerance...

  18. Vehicle Technologies Office Merit Review 2015: Unconventional Hydrocarbon Fuels

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and vehicle technologies office annual merit review and peer evaluation meeting about...

  19. Vehicle Electrification is Key to Reducing Petroleum Dependency...

    Broader source: Energy.gov (indexed) [DOE]

    Petroleum Dependency and Greenhouse Gas Emission More Documents & Publications Energy Storage R&D and ARRA Battery Pack Requirements and Targets Validation FY 2009 DOE Vehicle...

  20. Vehicle Technologies Office: U.S. DRIVE 2013 Technical Accomplishments...

    Energy Savers [EERE]

    Energy Storage Technical Team Roadmap Progress of DOE Materials, Manufacturing Process R&D, and ARRA Battery Manufacturing Grants Vehicle Technologies Office: 2009 Energy Storage...

  1. Vehicle Technologies Office Merit Review 2014: PEV Integration with Renewables

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about PEV...

  2. Vehicle Technologies Office Merit Review 2015: Electrochemical Performance Testing

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about electrochemical...

  3. Vehicle Technologies Office Merit Review 2014: Engine Friction Reduction Technologies

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about engine friction...

  4. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  5. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  6. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  7. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  8. Vehicle Technologies Office Merit Review 2014: Reliability of Electrical Interconnects

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  9. Ultra Large Castings for Lightweight Vehicle Structures ?AMD...

    Energy Savers [EERE]

    DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland. merit08mccarty6.pdf More Documents & Publications Ultra Large Castings...

  10. Vehicle Technologies Office Merit Review 2014: High Efficiency...

    Energy Savers [EERE]

    Tolerant Wireless Charging of EVs Presentation given by Hyundai at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  11. Vehicle Technologies Office 2013 Merit Review: A System for Automatica...

    Energy Savers [EERE]

    in a Commercial Truck Tire A presentation given by PPG during the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

  12. Vehicle Technologies Office Merit Review 2014: Voltage Fade,...

    Office of Environmental Management (EM)

    and Outcomes Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Technology...

    Energy Savers [EERE]

    - Level 1 Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  14. Providing Vehicle OEMs Flexible Scale to Accelerate Adoption...

    Office of Environmental Management (EM)

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting arravt025apeshives2012...

  15. Vehicle Technologies Office Merit Review 2014: Low-Temperature...

    Office of Environmental Management (EM)

    Research Presentation given by Sandia National Laboratories at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  16. Vehicle Technologies Office Merit Review 2014: Wireless Charging...

    Office of Environmental Management (EM)

    Charging Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  17. Vehicle Technologies Office Merit Review 2014: Benchmarking EV...

    Office of Environmental Management (EM)

    Technologies Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  18. Vehicle Technologies Office Merit Review 2014: A Materials Approach...

    Office of Environmental Management (EM)

    to Fuel-Efficient Tires Presentation given by PPG Industries at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  19. Vehicle Technologies Office Merit Review 2014: Cummins SuperTruck...

    Office of Environmental Management (EM)

    Diesel Powered Class 8 Trucks Presentation given by Cummins Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

  20. Vehicle Technologies Office Merit Review 2014: CLEERS: Aftertreatment...

    Energy Savers [EERE]

    Analysis Presentation given by Pacific Northwest National Lab at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...