Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Vehicle Technologies Office: DOE & Industry Partners Unveil ...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE & Industry Partners Unveil 'More Electric Truck' at Trucking Show to someone by E-mail Share Vehicle Technologies Office: DOE & Industry Partners Unveil 'More Electric Truck'...

2

DOE and Industry Showcase New Control Systems Security Technologies at  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Development » Energy Delivery Systems Technology Development » Energy Delivery Systems Cybersecurity » Control Systems Security News Archive » DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DOE and Industry Showcase New Control Systems Security Technologies at DistribuTECH DistribuTECH Conference Tuesday-Thursday, March 23-25, 2010 Tampa Convention Center Booth #231 Tampa, FL Join the Department of Energy and its industry partners as they showcase six new products and technologies designed to secure the nation's energy infrastructure from cyber attack on Tuesday through Thursday, March 23-25. Visit Booth #231 at the DistribuTECH 2010 Conference & Exhibition in Tampa, FL, to see first-hand demonstrations of several newly commercialized control systems security products-each developed through a

3

Innovative New Industrial Technologies: An Industry/DOE Joint Endeavor  

E-Print Network (OSTI)

The Department of Energys Office of Industrial Programs supports research and development leading to improved energy efficiency and greater overall productivity in the industrial sector. Its basic strategy is a program of cost-shared R&D, incorporating projects with such risk that the private sector will not pursue them independently. This paper describes the Offices major activities, operating premises and research areas. Policy considerations affecting the programs content are identified and criteria applied in project selection are discussed. Achievement of constructive industry involvement in program development and review is viewed as vital to success. This goal, and the means by which it is being pursued, are emphasized.

Gross, T. J.

1986-06-01T23:59:59.000Z

4

DOE Industrial Technologies Program Overview of Nanomanufacturing Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industrial Technologies Program Industrial Technologies Program Overview of Nanomanufacturing Initiative Ron Ott March 26, 2009 Nanotechnology: The purposeful engineering of matter at scales of less than 100 nanometers to achieve size- dependent properties and functions. (Lux Research) Today's Outline * ITP R&D Program * ITP Nanomanufacturing Initiative * Nanomanufacturing Project examples * Questions Industrial Technologies Program (ITP): Mission Improve our nation's energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy * Consumes more energy than any other sector of the economy (~32 quads) * Responsible for ~1,660 MMTCO 2 /year from energy consumption * Manufacturing makes the highest contribution to U.S. GDP (12%) * Produces nearly 1/4th of world

5

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

6

DOE and Industry Showcase New Control Systems Security Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electricity Advisory Committee Technology Development Transmission Planning Smart Grid Energy Delivery Systems Cybersecurity Control Systems Security News Archive Control...

7

CUSTOMER RESPONSE TO BESTPRACTICES TRAINING AND SOFTWARE TOOLS PROVIDED BY DOE'S INDUSTRIAL TECHNOLOGIES PROGRAM  

Science Conference Proceedings (OSTI)

The BestPractices program area, which has evolved into the Save Energy Now (SEN) Initiative, is a component of the U.S. Department of Energy's (DOE's) Industrial Technologies Program (ITP) that provides technical assistance and disseminates information on energy-efficient technologies and practices to U.S. industrial firms. The BestPractices approach to information dissemination includes conducting training sessions which address energy-intensive systems (compressed air, steam, process heat, pumps, motors, and fans) and distributing DOE software tools on those same topics. The current report documents a recent Oak Ridge National Laboratory (ORNL) study undertaken to determine the implementation rate, attribution rate, and reduction factor for industrial end-users who received BestPractices training and registered software in FY 2006. The implementation rate is the proportion of service recipients taking energy-saving actions as a result of the service received. The attribution rate applies to those individuals taking energy-saving actions as a result of the services received and represents the portion of the savings achieved through those actions that is due to the service. The reduction factor is the saving that is realized from program-induced measures as a proportion of the potential savings that could be achieved if all service recipients took action. In addition to examining those factors, the ORNL study collected information on selected characteristics of service recipients, the perceived value of the services provided, and the potential energy savings that can be achieved through implementation of measures identified from the training or software. Because the provision of training is distinctly different from the provision of software tools, the two efforts were examined independently and the findings for each are reported separately.

Schweitzer, Martin [ORNL; Martin, Michaela A [ORNL; Schmoyer, Richard L [ORNL

2008-03-01T23:59:59.000Z

8

Office of Industrial Technologies: Industry partnerships  

SciTech Connect

US industries are making progress in turning the vision of the future into reality: More effective competition in global markets, increased industrial efficiency, more jobs, reduced waste generation and greenhouse gas emissions (to 1990 levels), improved environment. DOE`s Office of Industrial Technologies is catalyzing and supporting industry progress in many ways. This pamphlet gives an overview of OIT.

1995-04-01T23:59:59.000Z

9

Industrial Technologies Available for Licensing - Energy ...  

Industrial Technologies Available for Licensing U.S. Department of Energy (DOE) laboratories and participating research institutions have technologies ...

10

Prospects for pyrolysis technologies in managing municipal, industrial, and DOE cleanup wastes  

DOE Green Energy (OSTI)

Pyrolysis converts portions of municipal solid wastes, hazardous wastes, and special wastes such as tires, medical wastes, and even old landfills into solid carbon and a liquid or gaseous hydrocarbon stream. Pyrolysis heats a carbonaceous waste stream typically to 290--900 C in the absence of oxygen, and reduces the volume of waste by 90% and its weight by 75%. The solid carbon char has existing markets as an ingredient in many manufactured goods, and as an adsorbent or filter to sequester certain hazardous wastes. Pyrolytic gases may be burned as fuel by utilities, or liquefied for use as chemical feedstocks, or low-pollution motor vehicle fuels and fuel additives. This report analyzes the potential applications of pyrolysis in the Long Island region and evaluates for the four most promising pyrolytic systems their technological and commercial readiness, their applicability to regional waste management needs, and their conformity with DOE requirements for environmental restoration and waste management. This summary characterizes their engineering performance, environmental effects, costs, product applications, and markets. Because it can effectively treat those wastes that are inadequately addressed by current systems, pyrolysis can play an important complementing role in the region`s existing waste management strategy. Its role could be even more significant if the region moves away from existing commitments to incineration and MSW composting. Either way, Long Island could become the center for a pyrolysis-based recovery services industry serving global markets in municipal solid waste treatment and hazardous waste cleanup. 162 refs.

Reaven, S.J. [State Univ. of New York, Stony Brook, NY (United States)

1994-12-01T23:59:59.000Z

11

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 2: ITP Emerging Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

127 DOE Industrial Technologies Program 127 DOE Industrial Technologies Program Appendix 2: ITP Emerging Technologies Aluminum ............................................................................................................................................................................ 130 u Direct Chill Casting Model ................................................................................................................................................................130 Chemicals............................................................................................................................................................................ 130

12

NETL: Technology Transfer - DOE  

Home > Technology Transfer. ... and cheaper to design future power plants. ... we welcome the opportunity to build mutually beneficial partnerships with industry, ...

13

Building Technologies Office: 2013 DOE Building Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review to someone by E-mail Share Building Technologies Office: 2013 DOE Building Technologies Office Program Review on Facebook Tweet...

14

NETL: News Release - DOE, Industry Consortium Project Deploys...  

NLE Websites -- All DOE Office Websites (Extended Search)

4 , 2006 DOE, Industry Consortium Project Deploys New Stripper Well Tool Novel Technology Boosts Oil and Gas Production and Efficiency at 200 Sites Nationwide WASHINGTON, DC - A...

15

Industrial Technologies - Energy Innovation Portal  

Industrial Technologies Marketing Summaries Here youll find marketing summaries of industrial technologies available for licensing from U.S. Department of Energy ...

16

Does Bankruptcy Protection Harm the Airline Industry?  

E-Print Network (OSTI)

Does Bankruptcy Protection Harm the Airline Industry?lower fare during bankruptcy does not necessarily mean thatof this opportunity and how does the resulting change aect

Lee, Hwa Ryung

2009-01-01T23:59:59.000Z

17

Industry Partnerships | BNL Technology Commercialization and Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Industry Licensing The Office of Technology Commercialization and Partnerships (TCP) grants licenses for BNL-developed intellectual property to existing and start-up companies that are technically and financially capable of turning early-stage technology into commercial products. Nonexclusive and exclusive licenses are granted. TCP is committed to negotiating fair and reasonable license agreements that are beneficial to both parties. Search available technologies | See DOE Tech Transfer Working Group Licensing Guide (PDF) Sponsored Research BNL has many ways of collaborating with industry on emerging technologies that are geared toward bringing new technologies to the marketplace. Learn more | See Guide to Partnering with DOE's National Laboratories (PDF)

18

Industrial Technologies Success Stories - Energy Innovation Portal  

Bookmark Industrial Technologies Success Stories - Energy Innovation Portal on Google; Bookmark Industrial Technologies Success Stories ...

19

Office of Industrial Technologies research in progress  

DOE Green Energy (OSTI)

The US Department of Energy (DOE) Office of Industrial Technologies (OIT) conducts research and development activities which focus on improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial conservation. The mission of OIT is to increase the utilization of existing energy-efficient equipment and to find and promote new, cost-effective ways for industrial facilities to improve their energy efficiency and minimize waste products. To ensure advancement of the technological leadership of the United States and to improve the competitiveness of American industrial products in world markets, OIT works closely with industrial partners, the staffs of the national laboratories, and universities to identify research and development needs and to solve technological challenges. This report contains summaries of the currently active projects supported by the Office of Industrial Technologies.

Not Available

1993-05-01T23:59:59.000Z

20

Building Technologies Office: Partner with DOE and Emerging Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

with DOE and Emerging Technologies with DOE and Emerging Technologies The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC), building envelope (walls and roof), windows, water heating, appliances, and sensors and controls. Some partnership opportunities are described below. Industries Manufacturers and other developers of building energy efficient technologies are encouraged to apply to one of our funding solicitations, called funding opportunity announcements (FOAs), which are posted on the EERE Funding Opportunity Exchange. Interested industries may also consider partnering with one of the DOE-supported national laboratories (Oak Ridge National Laboratory, Lawrence Berkeley National Laboratory, National Renewable Energy Laboratory, Pacific Northwest National Laboratory, etc.) to jointly develop market-ready products through Cooperative Research and Development Agreements (CRADAs). Please consult with the individual labs to determine their procedures for initiating and developing CRADAs.

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 1: ITP-Sponsored Technologies Commercially Available  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

15 DOE Industrial Technologies Program 15 DOE Industrial Technologies Program Appendix 1: ITP-Sponsored Technologies Commercially Available Aluminum ........................................................................................................................................... 19 u Aluminum Reclaimer for Foundry Applications .................................................................................................................................. 20 u Isothermal Melting................................................................................................................................................................................ 21 Chemicals........................................................................................................................................... 23

22

DOE Fuel Cell Technologies Office  

NLE Websites -- All DOE Office Websites (Extended Search)

500 2007 2013 Cumulative Number of Patents Fuel Cells ProductionDelivery Storage * DOE funding has led to 40 commercial hydrogen and fuel cell technologies and 65 emerging...

23

The Office of Industrial Technologies technical reports  

SciTech Connect

The US Department of Energy's Office of Industrial Technologies (OIT) conducts R D activities which focus on the objectives of improving energy efficiency and providing for fuel flexibility within US industry in the area of industrial energy conservation. The Office also conducts programs to reduce waste generation, increase recycling efforts, and improve the use of wastes as process feedstocks. An active program of technology transfer and education supports these activities and encourages adoption of new technologies. To accomplish these objectives OIT cooperates with the private sector to identify its technological needs and to share R D efforts. R D is conducted to the point that a new technology is shown to work and that it can be transferred to the private sector end-users. This bibliography contains information on all scientific and technical reports sponsored by the DOE Industrial Energy Conservation Program during the years 1988--1990.

Not Available

1992-01-01T23:59:59.000Z

24

High Technology and Industrial Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Semiconductor clean room Semiconductor clean room High Technology and Industrial Systems EETD's research on high technology buildings and industrial systems is aimed at reducing energy consumed by the industrial sector in manufacturing facilities, including high technology industries such as data centers, cleanrooms in the such industries as electronics and pharmaceutical manufacturing, and laboratories, improving the competitiveness of U.S. industry. Contacts William Tschudi WFTschudi@lbl.gov (510) 495-2417 Aimee McKane ATMcKane@lbl.gov (518) 782-7002 Links High-Performance Buildings for High-Tech Industries Industrial Energy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Applications Commercial Buildings Cool Roofs and Heat Islands Demand Response Energy Efficiency Program and Market Trends

25

The future steelmaking industry and its technologies  

SciTech Connect

The objective of this report is to develop a vision of the future steelmaking industry including its general characteristics and technologies. In addition, the technical obstacles and research and development opportunities for commercialization of these technologies are identified. The report is being prepared by the Sloan Steel Industry Competitiveness Study with extensive input from the industry. Industry input has been through AISI (American Iron and Steel Institute), SMA (Steel Manufacturers Association) and contacts with individual company executives and technical leaders. The report identifies the major industry drivers which will influence technological developments in the industry for the next 5--25 years. Initially, the role of past drivers in shaping the current industry was examined to help understand the future developments. Whereas this report concentrates on future technologies other major factors such as national and international competition, human resource management and capital concerns are examined to determine their influence on the future industry. The future industry vision does not specify specific technologies but rather their general characteristics. Finally, the technical obstacles and the corresponding research and development required for commercialization are detailed.

Fruehan, R.J.; Paxton, H.W.; Giarratani, F.; Lave, L. [Carnegie-Mellon Univ., Pittsburgh, PA (United States)]|[Pittsburgh Univ., PA (United States)

1995-01-01T23:59:59.000Z

26

NETL: Technology Transfer - DOE  

Clean power technologies, integrated gasification, carbon capture, and quantum mechanical simulationswords like these mean the future of energy to NETL's in-house ...

27

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Efficient Technologies for Industry Ernst Worrell Staff20036, USA ABSTRACT U.S. industry consumes approximately 37%efficient technologies for industry, focusing on over 50

2004-01-01T23:59:59.000Z

28

Technology Transfer: For Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Available Technologies Licensing Berkeley Lab Technologies Partnering with Berkeley Lab Contact Us Receive Customized Tech Alerts Tech Transfer Site Map Last updated: 09172009...

29

DOE/Industry Matching Grant Program  

SciTech Connect

For the academic year 2001-2002, the Department of Nuclear Engineering and Radiological Sciences received $50,000 of industrial contributions, matched by a DOE grant of $35,000. We used the combined DOE/Industry Matching Grant of $85,000 toward (a) undergraduate merit scholarships and research support, (b) graduate student support, and (c) partial support of a research scientist.

John C. Lee

2003-09-30T23:59:59.000Z

30

DOE Recognizes Midwest Industrial Efficiency Leaders | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Midwest Industrial Efficiency Leaders Midwest Industrial Efficiency Leaders DOE Recognizes Midwest Industrial Efficiency Leaders September 10, 2009 - 12:00am Addthis DETROIT, MI - The U.S. Department of Energy and Michigan Governor Jennifer M. Granholm joined with over 300 industry, state, and federal leaders to recognize industrial efficiency leaders and plot a course to accelerate industrial energy efficiency in the Midwest. As part of the Midwest Industrial Energy Efficiency Exchange that began last night and continued today, Governor Granholm and DOE announced 11 Save Energy Now awards recognizing industry leaders for their exemplary energy saving accomplishments. Attendees at the Energy Efficiency Exchange also had an opportunity to learn about new energy saving technologies and ways to

31

Technologies - Industrial Partnerships Office  

Energy, Utilities, & Power Systems. Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988

32

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for200 emerging energy-efficient technologies in industry, of2000. Emerging Energy-Efficient Industrial Technologies,

2005-01-01T23:59:59.000Z

33

DOE Selects 26 Universities to Assess Industrial Energy Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

26 Universities to Assess Industrial Energy Efficiency 26 Universities to Assess Industrial Energy Efficiency DOE Selects 26 Universities to Assess Industrial Energy Efficiency July 24, 2006 - 4:32pm Addthis Smart use of energy key to America's industrial and manufacturing competitiveness WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced the selection of 26 universities across the country for negotiation of award to set up and operate regional Industrial Assessment Centers (IAC). The centers will employ faculty and students to assist small-to-medium sized American manufacturing plants to use energy more efficiently. Based on DOE's Office of Energy Efficiency and Renewable Energy Industrial Technologies Program requirement, anticipated funding could be up to $6 million over the next two years (FY'07 and FY'08).

34

DOE Building Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview Overview September 2013 Buildings.energy.gov/BPD BuildingsPerformanceDatabase@ee.doe.gov 2 * The BPD statistically analyzes trends in the energy performance and physical & operational characteristics of real commercial and residential buildings. The Buildings Performance Database 3 Design Principles * The BPD contains actual data on existing buildings - not modeled data or anecdotal evidence. * The BPD enables statistical analysis without revealing information about individual buildings. * The BPD cleanses and validates data from many sources and translates it into a standard format. * In addition to the BPD's analysis tools, third parties will be able to create applications using the

35

Technologies - Industrial Partnerships Office  

Industrial Partnerships Office P.O. Box 808, L-795 Livermore, CA 94551 Phone: (925) 422-6416 Fax: (925) 423-8988 Operated by Lawrence Livermore National Security, LLC ...

36

Building Technologies Office: DOE Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenge Home on Twitter Bookmark Building Technologies Office: DOE Challenge Home on Google Bookmark Building Technologies Office: DOE Challenge Home on Delicious Rank Building...

37

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

38

Emerging energy-efficient industrial technologies  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, industry is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology will be essential for meeting these challenges. At some point, businesses are faced with investment in new capital stock. At this decision point, new and emerging technologies compete for capital investment alongside more established or mature technologies. Understanding the dynamics of the decision-making process is important to perceive what drives technology change and the overall effect on industrial energy use. The assessment of emerging energy-efficient industrial technologies can be useful for: (1) identifying R&D projects; (2) identifying potential technologies for market transformation activities; (3) providing common information on technologies to a broad audience of policy-makers; and (4) offering new insights into technology development and energy efficiency potentials. With the support of PG&E Co., NYSERDA, DOE, EPA, NEEA, and the Iowa Energy Center, staff from LBNL and ACEEE produced this assessment of emerging energy-efficient industrial technologies. The goal was to collect information on a broad array of potentially significant emerging energy-efficient industrial technologies and carefully characterize a sub-group of approximately 50 key technologies. Our use of the term ''emerging'' denotes technologies that are both pre-commercial but near commercialization, and technologies that have already entered the market but have less than 5 percent of current market share. We also have chosen technologies that are energy-efficient (i.e., use less energy than existing technologies and practices to produce the same product), and may have additional ''non-energy benefits.'' These benefits are as important (if not more important in many cases) in influencing the decision on whether to adopt an emerging technology. The technologies were characterized with respect to energy efficiency, economics, and environmental performance. The results demonstrate that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. We show that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity and worker safety, and reduced capital costs.

Martin, N.; Worrell, E.; Ruth, M.; Price, L.; Elliott, R.N.; Shipley, A.M.; Thorne, J.

2000-10-01T23:59:59.000Z

39

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Performance for Industrial Refrigeration Systems. M.Sc.the performance of industrial refrigeration systems. SystemIndustrial Technologies Cooling and Storage (Food-4) Refrigeration

2000-01-01T23:59:59.000Z

40

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $14 Million Industry Partnership Projects to Increase DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

DOE Announces $14 Million Industry Partnership Projects to Increase...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Other Agencies You are here Home DOE Announces 14 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces 14 Million Industry...

42

DOE Seeks Industry Proposals for Feasibility Study to Produce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to...

43

Research Projects in Industrial Technology.  

Science Conference Proceedings (OSTI)

The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

United States. Bonneville Power Administration. Industrial Technology Section.

1990-06-01T23:59:59.000Z

44

DOE Announces Up to $7.5 Million in Advanced Technology Research...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

development projects in support of water power technology. DOE plans to award industry-led partnerships to research, develop andor field test advanced water power technologies...

45

EERE-Industrial Technologies Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program EERE-Industrial Technologies Program More Documents & Publications...

46

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

47

DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Awardees for the Industrial Energy Efficiency Grand Awardees for the Industrial Energy Efficiency Grand Challenge DOE Announces Awardees for the Industrial Energy Efficiency Grand Challenge May 5, 2010 - 12:00am Addthis WASHINGTON, DC - The U.S. Department of Energy announced today that 48 research and development projects across the country have been selected as award winners of the Industrial Energy Efficiency Grand Challenge. The grantees will receive a total of $13 million to fund the development of transformational industrial processes and technologies that can significantly reduce greenhouse gas emissions throughout the industrial sector. The funding will be matched by more than $5 million in private industry funding to support a total of $18 million in projects that will enhance America's energy security and strengthen our economy.

48

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2004-01-01T23:59:59.000Z

49

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

1998. Emerging Energy-Saving Technologies and Practices for2000. Emerging Energy-Efficient Industrial Technologies,of cleaner, more energy- efficient technologies can play a

2001-01-01T23:59:59.000Z

50

Characterizing emerging industrial technologies in energy models  

E-Print Network (OSTI)

Efficient and Clean Energy Technologies, 2000. Scenarios ofEmerging Energy-Efficient Industrial Technologies, Lawrenceinformation about energy efficiency technologies, their

Laitner, John A. Skip; Worrell, Ernst; Galitsky, Christina; Hanson, Donald A.

2003-01-01T23:59:59.000Z

51

Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2008 DOE Vehicle FY 2008 DOE Vehicle Technologies Office Annual Merit Review to someone by E-mail Share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Facebook Tweet about Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Twitter Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Google Bookmark Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Delicious Rank Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on Digg Find More places to share Vehicle Technologies Office: FY 2008 DOE Vehicle Technologies Office Annual Merit Review on AddThis.com... Publications

52

Partner with DOE and Emerging Technologies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Partner with DOE and Emerging Technologies Partner with DOE and Emerging Technologies Partner with DOE and Emerging Technologies The U.S. Department of Energy (DOE) seeks partnerships to research and develop energy efficient building technologies, including advanced lighting, heating, ventilating and air conditioning (HVAC), building envelope (walls and roof), windows, water heating, appliances, and sensors and controls. Some partnership opportunities are described below. Industries Manufacturers and other developers of building energy efficient technologies are encouraged to apply to one of our funding solicitations, called funding opportunity announcements (FOAs), which are posted on the EERE Funding Opportunity Exchange. Interested industries may also consider partnering with one of the DOE-supported national laboratories (Oak Ridge

53

Secretary Bodman Announces DOE Technology Transfer Coordinator...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces DOE Technology Transfer Coordinator June 29, 2007 - 2:36pm Addthis Establishes Policy Board; Strengthens DOE Efforts to Bring Energy Options to the Marketplace...

54

DOE Seeks Industry Participation for Engineering Services to Design Next  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Participation for Engineering Services to Design Industry Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant July 23, 2007 - 2:55pm Addthis Gen IV Reactor Capable of Producing Process Heat, Electricity and/or Hydrogen WASHINGTON, DC -The U.S. Department of Energy (DOE) today announced that the Idaho National Laboratory (INL) is issuing a request for expressions of interest from prospective industry teams capable of providing engineering design services to the INL for the conceptual design phase of the Department's Next Generation Nuclear Plant (NGNP). The NGNP seeks to utilize cutting-edge technology in the effort to reduce greenhouse gas emissions by enabling nuclear energy to replace fossil fuels in the

55

DOE Seeks Industry Input on Nickel Disposition Strategy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Input on Nickel Disposition Strategy Industry Input on Nickel Disposition Strategy DOE Seeks Industry Input on Nickel Disposition Strategy March 23, 2012 - 12:00pm Addthis WASHINGTON, D.C. - The Energy Department's prime contractor, Fluor-B&W Portsmouth (FBP), managing the Portsmouth Gaseous Diffusion Plant (GDP), issued a request for Expressions of Interest (EOI) seeking industry input to support the development of an acquisition strategy for potential disposition of DOE nickel. The EOI requests technical, financial, and product market information to review the feasibility of technologies capable of decontaminating the nickel to a level indistinguishable from what is commercially available, such that it could be safely recycled and reused. The EOI scope is for 6,400 tons of nickel to be recovered from the uranium enrichment process

56

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lauds Highly Efficient Industrial Technology Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

57

Department of Energy Lauds Highly Efficient Industrial Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology Department of Energy Lauds Highly Efficient Industrial Technology November 30, 2007 - 4:45pm Addthis DOE Celebrates One-Year Anniversary of Operation of the Energy Efficient "Super Boiler" WASHINGTON, DC - Representing important technology transfer from Department of Energy (DOE) labs to the marketplace, DOE today announced the successful one-year operation of the first generation "Super Boiler," which can deliver 94 percent thermal efficiency, while producing fewer emissions than conventional boiler technologies. By 2020, this technology could save more than 185 trillion British Thermal Units (Btus) of energy - equivalent to the natural gas consumed by more than two million households. The

58

Geothermal reservoir technology research at the DOE Idaho Operations Office  

SciTech Connect

Geothermal reservoir technology research projects managed at the Department of Energy Idaho Falls Operations office (DOE-ID) account for a large portion of the Department of Energy funding for reservoir technology research (approximately 7 million dollars in FY-95). DOE-ID managed projects include industry coupled geothermal exploration drilling, cooperative research projects initiated through the Geothermal Technology Organization (GTO), and other geothermal reservoir technology research projects. A solicitation for cost-shared industry coupled drilling has been completed and one zward has been made in FY-95. Another solicitation for industry coupled drilling may be conducted in the spring of 1996. A separate geothermal research technology research, development and demonstration solicitation will result in multiple year awards over the next 2 years. The goals of these solicitations are to ensure competition for federal money and to get the Government and the geothermal industry the most useful information for their research dollars.

Creed, Bob

1996-01-24T23:59:59.000Z

59

The Office of Industrial Technologies - enhancing the competitiveness, efficiency, and environmental quality of American industry through technology partnerships  

Science Conference Proceedings (OSTI)

A critical component of the Federal Government`s effort to stimulate improved industrial energy efficiency is the DOE`s Office of Industrial Technologies (OIT). OIT funds research, development, and demonstration (RD&D) efforts and transfers the resulting technology and knowledge to industry. This document describes OIT`s program, including the new Industries of the Future (IOF) initiative and the strategic activities that are part of the IOF process. It also describes the energy, economic, and environmental characteristics of the materials and process industries that consume nearly 80% of all energy used by manufacturing in the United States. OIT-supported RD&D activities relating to these industries are described, and quantitative estimates of the potential benefits of many OIT-supported technologies for industry are also provided.

NONE

1997-09-01T23:59:59.000Z

60

DOE-STD-6005-2001; Industrial Hygiene Practices  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

April 30, 200132 April 30, 200132 DOE-STD-6005-2001 April 2001 DOE STANDARD INDUSTRIAL HYGIENE PRACTICES U.S. Department of Energy AREA OCSH Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-6005-2001 iii TABLE OF CONTENTS PARAGRAPH PAGE FOREWORD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v 1. SCOPE

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

in the U.S. iron and steel industry. Although the technologyUnited States iron and steel industry, expressed as share ofnet shape casting in the steel industry . Near net shape

2004-01-01T23:59:59.000Z

62

Research and Technology - Industrial Partnerships Office  

Lawrence Livermore National Laboratory (LLNL) is participating in six industry projects for the advancement of energy technologies using high ...

63

PNNL: Available Technologies: Energy & Utilities Industry  

Industry: Energy & Utilities. Click on the portfolios below to view the technologies that may have potential applications in the Energy & ...

64

PNNL: Available Technologies: Communications & Media Industry  

Industry: Communications & Media. Click on the portfolios below to view the technologies that may have potential applications in the ...

65

Science & Technology Principal Directo rate Industrial ...  

Erik Stenehjem Science & Technology Principal Directo rate Industrial Partnerships Office Erik Stenehjem Director----Roger Werne Deputy Director

66

Enforcement Letter, Amer Industrial Technologies - April 13, 2010 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Amer Industrial Technologies - April 13, 2010 Amer Industrial Technologies - April 13, 2010 Enforcement Letter, Amer Industrial Technologies - April 13, 2010 April 13, 2010 Enforcement Letter issued to Amer Industrial Technologies related to Weld Deficiencies at the Salt Waste Processing Facility at the Savannah River Site, April 13, 2010 This letter refers to the Office of Health, Safety and Security's Office of Enforcement's investigation into the facts and circumstances associated with quality assurance deficiencies in safety significant drain pipe fabricated by Amer Industrial Technologies, Inc. (AIT) as a supplier to Parsons Infrastructure & Technology Group, Inc. (Parsons) for the Salt Waste Processing Facility (SWPF) construction project at the Department of Energy (DOE) Savanuah River Site. The contract between Parsons and AIT was

67

DOE Seeks Industry Proposals for Feasibility Study to Produce...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce...

68

DOE Hydrogen Analysis Repository: All Modular Industry Growth Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

All Modular Industry Growth Assessment (AMIGA) Model All Modular Industry Growth Assessment (AMIGA) Model Project Summary Full Title: All Modular Industry Growth Assessment (AMIGA) Model Project ID: 139 Principal Investigator: Donald Hanson Purpose A comprehensive economic model of energy markets, primarily used to simulate a wide range of technology and policy issues. Performer Principal Investigator: Donald Hanson Organization: Argonne National Laboratory (ANL) Address: 9700 S. Cass Ave. Argonne, IL 60439 Telephone: 630-252-5061 Email: dhanson@anl.gov Additional Performers: Peter Balash, NETL; John Marano, NETL Sponsor(s) Name: Peter Balash Organization: National Energy Technology Laboratory (NETL) Telephone: 412-386-5753 Email: Peter.Balash@NETL.DOE.GOV Period of Performance Start: January 2001 Project Description

69

DOE Solar Energy Technologies Program TPP Final Report - A Value Chain Partnership to Accelerate U.S. PV Industry Growth, GE Global Research  

DOE Green Energy (OSTI)

General Electrics (GE) DOE Solar Energy Technologies TPP program encompassesd development in critical areas of the photovoltaic value chain that affected the LCOE for systems in the U.S. This was a complete view across the value chain, from materials to rooftops, to identify opportunities for cost reductions in order to realize the Department of Energys cost targets for 2010 and 2015. GE identified a number of strategic partners with proven leadership in their respective technology areas to accelerate along the path to commercialization. GE targeted both residential and commercial rooftop scale systems. To achieve these goals, General Electric and its partners investigated three photovoltaic pathways that included bifacial high-efficiency silicon cells and modules, low-cost multicrystalline silicon cells and modules and flexible thin film modules. In addition to these technologies, the balance of system for residential and commercial installations were also investigated. Innovative system installation strategies were pursed as an additional avenue for cost reduction.

Todd Tolliver; Danielle Merfeld; Charles Korman; James Rand; Tom McNulty; Neil Johnson; Dennis Coyle

2009-07-31T23:59:59.000Z

70

Window Industry Technology Roadmap | Open Energy Information  

Open Energy Info (EERE)

Industry Technology Roadmap Industry Technology Roadmap Jump to: navigation, search Logo: Window Industry Technology Roadmap Name Window Industry Technology Roadmap Agency/Company /Organization United States Department of Energy Sector Energy Focus Area Energy Efficiency, Buildings Topics Technology characterizations Resource Type Guide/manual Website http://www.nrel.gov/docs/fy01o References Window Industry Technology Roadmap[1] Abstract The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. Overview "The Window Industry Technology Roadmap is designed to provide clear guidance to both the government and the private sector in planning future investments and initiatives. It serves as a resource for government to

71

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 3: Historical ITP Technology Successes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

157 DOE Industrial Technologies Program 157 DOE Industrial Technologies Program Appendix 3: Historical ITP Technology Successes u Absorption Heat Pump/Refrigeration Unit ........................................................................................................................................160 u Advanced Turbine System..................................................................................................................................................................160 u Aerocylinder Replacement for Single-Action Cylinders....................................................................................................................160 u Aluminum Roofing System................................................................................................................................................................160

72

DOE Announces $14 Million Industry Partnership Projects to Increase Fuel  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4 Million Industry Partnership Projects to Increase 4 Million Industry Partnership Projects to Increase Fuel Efficiency DOE Announces $14 Million Industry Partnership Projects to Increase Fuel Efficiency May 26, 2005 - 1:02pm Addthis WASHINGTON, DC - Secretary of Energy Samuel Bodman today announced a public-private partnership between the Department of Energy, industry and academia aimed at significantly improving the vehicle efficiency of cars and trucks through advances in technology. The partnership consists of six projects with a value including cost share of over $14 million. "Achieving the goal of increased vehicle efficiency will require a coordinated approach involving government agencies, private companies and researchers. Partnerships like this will propel innovation, and eventually lead to a day when our children and grandchildren will call the

73

What is the Industrial Technologies Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Together with our industry partners, we strive to: Together with our industry partners, we strive to: * Accelerate adoption of the many energy-efficient technologies and practices available today * Conduct vigorous technology innovation to radically improve future energy diversity, resource efficiency, and carbon mitigation * Promote a corporate culture of energy efficiency and carbon management What Is the Industrial Technologies Program ? The Industrial Technologies Program (ITP) is the lead federal agency responsible for improving energy efficiency in the largest energy-using sector of the country. Industrial Sector National Initiative Goal: Drive a 25% reduction in industrial energy intensity by 2017. Standards Training Information Assessments * Website * Information Center * Tip Sheets * Case studies * Webcasts * Emerging

74

NREL: Technology Transfer - 22nd Industry Growth Forum ...  

22nd Industry Growth Forum Presentations. ... Technology: Energy storage ... Technology Transfer Home; About Technology Transfer;

75

Satellite Television Industry Meeting Regarding DOE Set-Top Box...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM,...

76

Clean Technology Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Sustainable Industries Organization Sustainable Industries Organization Jump to: navigation, search Name Clean Technology & Sustainable Industries Organization Place Royal Oak, Michigan Zip 48073 Product A non-profit membership industry organization formed to advance the global development and deployment of clean and sustainable technologies References Clean Technology & Sustainable Industries Organization[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Clean Technology & Sustainable Industries Organization is a company located in Royal Oak, Michigan . References ↑ "Clean Technology & Sustainable Industries Organization" Retrieved from "http://en.openei.org/w/index.php?title=Clean_Technology_Sustainable_Industries_Organization&oldid=343669"

77

DOE Hydrogen and Fuel Cells Program Record, Record # 11017: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

analysis, and reporting. DOE Funded 1 (ARRA) as of 122011 DOE Funded 2,3 (Appropriations) as of 102011 DOE Total Industry Funded or on Order (U.S.) 3-6 From 2009 - Record...

78

DOE lost circulation technology development  

DOE Green Energy (OSTI)

Lost circulation is a problem common in both the geothermal and the solution mining industries. In both cases, drilling is on a relatively large scale (geothermal holes can be as large as 26 inches). Lost circulation technology development for geothermal drilling has been in progress at Sandia National Laboratories for more than 15 years. The initial work centered on lost circulation materials, but testing and modeling indicated that if the aperture of a loss zone is very large (larger than the drill bit nozzles) it cannot be plugged by simply adding materials to the drilling fluid. Thus, the lost circulation work evolved to include: (1) Development of metering techniques that accurately measure and characterize drilling fluid inflow and outflow for rapid diagnosis of los circulation and/or fluid balance while drilling. (2) Construction of a laboratory facility for testing drillable straddle packers (to improve the plugging efficiency of cementing operations) and the actual testing of components of the straddle packer. (3) Construction of a laboratory facility for the testing of candidate porous fabrics as a part of a program to develop a porous packer that places polyurethane foam into a loss zone. (4) Implementing (with Halliburton and CalEnergy Company), a program to test cementitious lost circulation material as an alternative to Portland cement.

Glowka, D.A.; Staller, G.E.; Sattler, A.R.

1996-09-01T23:59:59.000Z

79

STATEMENT OF CONSIDERATIONS REQUEST BY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY CHEMICAL INDUSTRY ENVIRONMENTAL TECHNOLOGY PROJECTS, LLC (CIETP) FOR AN ADVANCE WAIVER OF DOMESTIC AND FOREIGN PATENT RIGHTS UNDER DOE COOPERATIVE AGREEMENT NO. DE-FC02-97CH10895; W(A)-97-032; CH-0935 The Petitioner, CIETP, has requested a waiver of domestic and foreign patent rights for all subject inventions arising under the above referenced cooperative agreement and subcontracts entered thereunder. The cooperative agreement is entitled, "DOE/CIETP Vision 2020." Both the DOE and the Petitioner support programs which offer clean, energy efficient, and environmentally sound technologies. This cooperative agreement is a partnership based on these similar missions and strategies to facilitate collaborative effort within the chemical industry which will benefit the

80

Solid-State Lighting: DOE Hosts LED Industry Standards Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Information Information Resources Printable Version Share this resource Send a link to Solid-State Lighting: DOE Hosts LED Industry Standards Workshop to someone by E-mail Share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Facebook Tweet about Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Twitter Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Google Bookmark Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Delicious Rank Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on Digg Find More places to share Solid-State Lighting: DOE Hosts LED Industry Standards Workshop on AddThis.com... Conferences & Meetings Past Conferences Presentations Publications Webcasts Videos Tools

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Federal/Industry Development of Energy-Conserving Technologies for the Chemical and Petroleum Refining Industries  

E-Print Network (OSTI)

Argonne National Laboratory has started a program to identify future RD&D projects that (i) promise cost-effective savings of scarce fuels in the chemical and petroleum refining industries, (ii) are not likely to be pursued by industry alone. This program, sponsored by the Office of Industrial Programs of DOE, defines technology needs from an industry viewpoint, so that recommended projects will complement industry's efforts and result in technologies for which there are clearly identifiable markets. The search for RD&D projects is currently focusing in the following technology categories: (i) reduction of fouling in cooling water systems, (ii) alternatives to conventional distillation and separation, (iii) low level waste heat recovery, (iv) advanced concepts in furnaces and boilers, (v) coal utilization, and (vi) advanced concepts in conversion and processing. The future direction of the program will continue to be dictated largely by industry needs.

Alston, T. G.; Humphrey, J. L.

1981-01-01T23:59:59.000Z

82

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 7: Methodology for Technology Tracking and Assessment of Benefits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

191 DOE Industrial Technologies Program 191 DOE Industrial Technologies Program Appendix 7: Methodology for Technology Tracking and Assessment of Benefits u Technology Tracking............................................................................................................................................ 192 u Methods of Estimating Benefits.............................................................................................................................. 192 u Deriving the ITP Cost/Benefit Curve ...................................................................................................................... 193 Methodology for Technology Tracking and Assessment of Benefits

83

Technology Roadmap Research Program for the Steel Industry  

SciTech Connect

The steel industry's Technology Roadmap Program (TRP) is a collaborative R&D effort jointly sponsored by the steel industry and the United States Department of Energy. The TRP program was designed to develop new technologies to save energy , increase competitiveness, and improve the environment. TRP ran from July, 1997 to December, 2008, with a total program budget of $38 million dollars. During that period 47 R&D projects were performed by 28 unique research organizations; co-funding was provided by DOE and 60 industry partners. The projects benefited all areas of steelmaking and much know-how was developed and transferred to industry. The American Iron and Steel Institute is the owner of all intellectual property developed under TRP and licenses it at commercial rates to all steelmakers. TRP technologies are in widespread use in the steel industry as participants received royalty-free use of intellectual property in return for taking the risk of funding this research.

Joseph R. Vehec

2010-12-30T23:59:59.000Z

84

Industrial Energy Efficient Technology Guide 2007  

Science Conference Proceedings (OSTI)

This report updates the Industrial Energy Efficient Technology Reference Guide, previously known as the Electrotechnology Reference Guide. The last version of the Electrotechnology Reference Guide was published in 1992. This 2007 edition specifically updates information on industrial-sector energy consumption and the status of energy efficient technologies.

2007-07-31T23:59:59.000Z

85

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

86

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

87

DOE Solar Energy Technologies Program 2007 Annual Report  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2008-07-01T23:59:59.000Z

88

DOE Solar Energy Technologies Program FY 2006 Annual Report  

DOE Green Energy (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

89

Effective Transfer of Industrial Energy Conservation Technologies  

E-Print Network (OSTI)

Voluntary participation in industrial energy conservation programs resulted in savings of approximately 1 million barrels of oil equivalent per day in the U.S. during 1981. These energy savings accrued largely from the development, introduction, and acceptance by industry of new energy conserving technologies. These new technologies were developed through cost sharing programs between the Department of Energy and private industry. These joint efforts reduced the risk to industry, thus making them willing to accept and use these new technologies at an accelerated rate. Examples of several technologies that were used by industry at an accelerated rate are described in this paper. These technologies are; textile foam finishing and dyeing, forging furnace modifications, and high efficiency metallic recuperators.

Clement, M.; Vallario, R. W.

1983-01-01T23:59:59.000Z

90

DOE signs Record of Decision selecting Hot Isostatic Pressing Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWS MEDIA CONTACT: Brad Bugger (208) 526-0833 Danielle Miller (208) 526-5709 FOR IMMEDIATE RELEASE: December 28, 2009 DOE signs Record of Decision selecting Hot Isostatic Pressing Technology for Treatment of High Level Waste The U.S. Department of Energy (DOE) has signed the Record of Decision (ROD) for the treatment of high level waste calcine at the Department�s Idaho Site, meeting a legal commitment to the State of Idaho for a decision no later than the end of 2009. DOE today announced its decision to treat high-level waste (HLW) calcine using an industrially mature manufacturing process known as hot isostatic pressing (HIP). DOE selected this technology to treat roughly 5,750 cubic yards of highly radioactive waste generated from the reprocessing of spent nuclear fuel to recover uranium. Reprocessing of spent nuclear fuel was terminated by a DOE policy decision in 1992.

91

DOE Hydrogen and Fuel Cells Program Record, Record # 13008: Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

of nearly 700 U.S. Department of Energy (DOE) fuel cell material handling units has led to almost 5,400 industry installation and on order units with no DOE funding. Data...

92

US DOE Industrial Steam BestPractices Software Tools  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOW RESTRICTED For internal DOW RESTRICTED For internal use only US DOE Industrial Steam BestPractices Software Tools Riyaz Papar, PE, CEM Hudson Technologies Company Phone: (281) 298 0975 Email: rpapar@hudsontech.com - Agenda * Introduction * Steam System BP Tools Suite - SSST - SSAT - 3EPlus * Q & A 1 Steam System Management Objective: Minimize Steam Use, Energy Losses And Most Importantly STEAM COST!! Steam Market Assessment Takeaways * Fuel savings estimates - individual projects - ranged from 0.6 percent to 5.2 percent * Estimated payback periods generally very attractive - Ranged from 2 to 34 months - Most less than 2 years * Potential steam savings in target industries - over 12 percent of fuel use 2 Promising Areas To Achieve Steam Energy and Cost Savings? Use Steam System Scoping Tool (SSST) For

93

The United States Department of Energy Office of Industrial Technology`s Technology Benefits Recording System  

SciTech Connect

The U.S. Department of Energy (DOE) Office of Industrial Technology`s (OIT`s) Technology Benefits Recording System (TBRS) was developed by Pacific Northwest Laboratory (PNL). The TBRS is used to organize and maintain records of the benefits accrued from the use of technologies developed with the assistance of OIT. OIT has had a sustained emphasis on technology deployment. While individual program managers have specific technology deployment goals for each of their ongoing programs, the Office has also established a separate Technology Deployment Division whose mission is to assist program managers and research and development partners commercialize technologies. As part of this effort, the Technology Deployment Division developed an energy-tracking task which has been performed by PNL since 1977. The goal of the energy-tracking task is to accurately assess the energy savings impact of OIT-developed technologies. In previous years, information on OIT-sponsored technologies existed in a variety of forms--first as a hardcopy, then electronically in several spreadsheet formats that existed in multiple software programs. The TBRS was created in 1993 for OIT and was based on information collected in all previous years from numerous industrial contacts, vendors, and plants that have installed OIT-sponsored technologies. The TBRS contains information on technologies commercialized between 1977 and the present, as well as information on emerging technologies in the late development/early commercialization stage of the technology life cycle. For each technology, details on the number of units sold and the energy saved are available on a year-by-year basis. Information regarding environmental benefits, productivity and competitiveness benefits, or impact that the technology may have had on employment is also available.

Hughes, K.R.; Moore, N.L.

1994-09-01T23:59:59.000Z

94

Technology Commercialization Showcase 2008: Industrial ...  

Source: McKinsey & Company, 2007. Industry represents 38% of the total global opportunity to reduce energy demand: 6 Agenda Market Overview ...

95

DOE Seeks Industry Participation for Engineering Services to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Participation for Engineering Services to Design Next Generation Nuclear Plant DOE Seeks Industry Participation for Engineering Services to Design Next Generation Nuclear Plant...

96

NETL: News Release - DOE-Industry Breakthrough Turns Drilling...  

NLE Websites -- All DOE Office Websites (Extended Search)

30, 2002 DOE-Industry Breakthrough Turns Drilling System Into Lightning Fast Computer Network Energy Department Cites Remarkable Advance In 'Smart' Oil, Gas Drilling SAN ANTONIO,...

97

DOE Announces $37 Million for Small Business Research and Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $37 Million for Small Business Research and DOE Announces $37 Million for Small Business Research and Technology DOE Announces $37 Million for Small Business Research and Technology August 20, 2009 - 12:00am Addthis Washington, DC- U.S. Energy Secretary Steven Chu announced today that $37 million in funding from the Recovery Act will be made available to qualified small businesses through the Department's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Today's funding announcement emphasizes the Department's commitment to developing near-term, clean energy technologies while allowing small businesses take part in the new industrial revolution that the sustainable energy economy will bring. "Small businesses are engines of job creation and innovation, and we need

98

Joint DOE/industry photovoltaic system reliability program  

DOE Green Energy (OSTI)

To achieve the lowest life-cycle cost (LCC), photovoltaic (PV) systems must have the optimum mix of low first cost, low operation and maintenance (O&M) cost, and high availability. Additionally, the long-term health of the photovoltaic (PV) industry requires that PV systems work as expected. Although PV modules now enjoy high reliability due to a significant multi-year effort by both the U.S. Department of Energy (DOE) and industry, the same is not always true of PV systems. Even for systems that do operate reliably, customers, suppliers, and manufacturers can benefit from knowing what O&M expenses to expect. This knowledge will reduce technology risk to the customer and improve likelihood of commitment to PV projects. System integrators and utilities may benefit from O&M cost information to improve system designs, to properly price service agreements and warranties, and to optimize maintenance strategies. The DOE and component manufacturers may benefit from identifying cost drivers to optimally focus research and quality assurance resources to improve product reliability. This paper discusses the first of five tasks identified for this project, quantifying system reliability and life cycle cost by collecting, analyzing and reporting data on PV system reliability and cost. Industry participants collect the necessary O&M data on systems they are monitoring. Sandia provides support in the form of assistance identifying data that needs to be collected, helping develop forms or databases to collect the data, and analyzing the data.

Maish, A.B.; Atcitty, C. [Sandia National Labs., NM (United States); Hester, S. [Utility Photo Voltaic Group, Washington, DC (United States)] [and others

1997-06-01T23:59:59.000Z

99

NREL: Technology Transfer - 23rd Industry Growth Forum  

Discover future opportunities for the clean energy industry. Panel Discussions. Explore current technology, ... Technology Transfer Home; About Technology ...

100

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry. Executive summary  

SciTech Connect

This document briefly describes the Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) program. It profiles the energy, economic, and environmental characteristics of OIT`s principal customers--the materials and process industries--that consume nearly 80% of all energy used by industry in the US. OIT-supported research, development, and demonstration (RD and D) activities relating to these industries are described as well as OIT`s crosscutting technology programs that target the needs of multiple US industries. Quantitative estimates of the potential benefits (or metrics) to US industry of many current OIT-supported technologies are also discussed.

NONE

1995-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

PNNL: Available Technologies: Security Industry  

Current Control Technology for Quantum Cascade Laser and Other Applications; Identifying Operator Distraction When Driving or Operating Equipment;

102

Office of Industrial Technologies: Summary of program results  

Science Conference Proceedings (OSTI)

Working in partnership with industry, the US Department of Energy`s (DOE`s) Office of Industrial Technologies (OIT) is helping reduce industrial energy use, emissions, and waste while boosting productivity. Operating within the Office of Energy Efficiency and Renewable Energy (EE), OIT conducts research, development, demonstration, and technology transfer efforts that are producing substantial, measurable benefits to industry. This document summarizes some of the impacts of OIT`s programs through 1997. OIT tracks energy savings as well as other benefits associated with the successfully commercialized technologies resulting from OIT-supported research partnerships. Specifically, a chart shows current and cumulative energy savings as well as cumulative reductions of various air pollutants including particulates, volatile organic compounds (VOCs), nitrogen oxides (NO{sub x}), sulfur oxides (SO{sub x}), and the greenhouse gas, carbon dioxide (CO{sub 2}). The bulk of the document consists of four appendices. Appendix 1 describes the technologies currently available commercially, along with their applications and benefits; Appendix 2 describes the OIT-supported emerging technologies that are likely to be commercialized within the next year or two; Appendix 3 describes OIT-sponsored technologies used in commercial applications in the past that are no longer tracked; and Appendix 4 describes the methodology used to assess and track OIT-supported technologies.

NONE

1999-01-01T23:59:59.000Z

103

Fostering a Renewable Energy Technology Industry  

E-Print Network (OSTI)

LBNL-59116 Fostering a Renewable Energy Technology Industry: An International Comparison of Wind and Renewable Energy, Wind & Hydropower Technologies Program, of the U.S. Department of Energy under Contract No by the Assistant Secretary of Energy Efficiency and Renewable Energy, Wind & Hydropower Technologies Program

104

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE`s current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. [ed.

1992-06-01T23:59:59.000Z

105

Technology acquisition: sourcing technology from industry partners  

E-Print Network (OSTI)

chemicals, oil and gas and biofuels. The research adopts the perspective of an acquiring firm, which is interested in incorporating a new technology into its operations in order to meet a particular business need. Such a business need can be, for example...

Ortiz-Gallardo, Victor Gerardo

2013-07-09T23:59:59.000Z

106

2008 Industrial Technologies Market Report, May 2009  

SciTech Connect

The industrial sector is a critical component of the U.S. economy, providing an array of consumer, transportation, and national defense-related goods we rely on every day. Unlike many other economic sectors, however, the industrial sector must compete globally for raw materials, production, and sales. Though our homes, stores, hospitals, and vehicles are located within our borders, elements of our goods-producing industries could potentially be moved offshore. Keeping U.S. industry competitive is essential to maintaining and growing the U.S. economy. This report begins with an overview of trends in industrial sector energy use. The next section of the report focuses on some of the largest and most energy-intensive industrial subsectors. The report also highlights several emerging technologies that could transform key segments of industry. Finally, the report presents policies, incentives, and drivers that can influence the competitiveness of U.S. industrial firms.

Energetics; DOE

2009-07-01T23:59:59.000Z

107

USDOE Technology Transfer, Map of DOE National Laboratories  

SEARCH DOE TECHNOLOGY TRANSFER INFORMATION. Map of DOE National Laboratories Careers & Internships; Contact Us; Email Updates; Popular Topics . ...

108

Technology innovation in financial services industry  

E-Print Network (OSTI)

Over the last few decades, we have seen an enormous evolution in the financial services industry driven by technology innovations. Indeed, we cannot imagine the current financial system without electronic fund transfers, ...

Roxo da Fonseca, Gustavo J. C. (Gustavo Jos Costa), 1967-

2004-01-01T23:59:59.000Z

109

Building Technologies Office: Partner With DOE and Residential Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Partner With DOE and Partner With DOE and Residential Buildings to someone by E-mail Share Building Technologies Office: Partner With DOE and Residential Buildings on Facebook Tweet about Building Technologies Office: Partner With DOE and Residential Buildings on Twitter Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Google Bookmark Building Technologies Office: Partner With DOE and Residential Buildings on Delicious Rank Building Technologies Office: Partner With DOE and Residential Buildings on Digg Find More places to share Building Technologies Office: Partner With DOE and Residential Buildings on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Technology Research, Standards, & Codes Popular Residential Links

110

Proceedings of the 1992 DOE-industry thermal distribution conference  

Science Conference Proceedings (OSTI)

The subject of the conference was thermal distribution in small buildings. Thermal distribution systems are the ductwork, piping, or other means used to transport heat or cooling effect from the equipment in which the heat or cooling is produced to the building spaces in which it is used. The small buildings category is defined to include single-family residential and multifamily and commercial buildings with less than 10,000 ft{sup 2} floor area. The 1992 DOE-Industry Thermal Distribution Conference was conceived as the beginning of a process of information transfer between the DOE and the industries having a stake in thermal distribution systems, whereby the DOE can make the industry aware of its thinking and planned directions early enough for changes to be made, and whereby the industries represented can provide this input to the DOE on a timely and informed basis. In accordance with this, the objectives of the Conference were: To present--to a representative group of researchers and industry representative--the current industry thinking and DOE's current directions for research in small-building thermal distribution. To obtain from industry and the research community a critique of the DOE priorities and additional ideas concerning how DOE can best assist the industry in promoting energy conservation in thermal distribution systems.

Andrews, J.W. (ed.)

1992-06-01T23:59:59.000Z

111

Building Technologies Office: DOE Challenge Home Partner Locator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building Technologies Office Search Building Technologies Office Search Search Help Building Technologies Office HOME ABOUT EMERGING TECHNOLOGIES RESIDENTIAL BUILDINGS COMMERCIAL BUILDINGS APPLIANCE & EQUIPMENT STANDARDS BUILDING ENERGY CODES EERE » Building Technologies Office » Residential Buildings Share this resource Send a link to Building Technologies Office: DOE Challenge Home Partner Locator to someone by E-mail Share Building Technologies Office: DOE Challenge Home Partner Locator on Facebook Tweet about Building Technologies Office: DOE Challenge Home Partner Locator on Twitter Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Google Bookmark Building Technologies Office: DOE Challenge Home Partner Locator on Delicious Rank Building Technologies Office: DOE Challenge Home Partner

112

The solid state lighting initiative: An industry/DOE collaborative effort  

E-Print Network (OSTI)

Initiative: An Industry/DOE Collaborative Effort SteveInitiative: An Industry/DOE Collaborative Effort SteveDepartment of Energy (DOE) to work with the manufacturers of

Johnson, Steve

2000-01-01T23:59:59.000Z

113

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Early Investment in Shale Gas Technology Producing Results Today DOE's Early Investment in Shale Gas Technology Producing Results Today February 2, 2011 - 12:00pm Addthis...

114

Building Technologies Office: DOE Challenge Home Partner Central  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Challenge Home Partner Central to someone by E-mail Share Building Technologies Office: DOE Challenge Home Partner Central on Facebook Tweet about Building Technologies Office:...

115

DOE Projects to Advance Environmental Science and Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The...

116

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

U.S. industry consumes approximately 37% of the nation's energy to produce 24% of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, E.; Martin, N.; Price, L.; Ruth, M.; Elliott, N.; Shipley, A.; Thorn, J.

2001-05-01T23:59:59.000Z

117

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

U.S. industry consumes approximately 37 percent of the nation's energy to produce 24 percent of the nation's GDP. Increasingly, society is confronted with the challenge of moving toward a cleaner, more sustainable path of production and consumption, while increasing global competitiveness. Technology is essential in achieving these challenges. We report on a recent analysis of emerging energy-efficient technologies for industry, focusing on over 50 selected technologies. The technologies are characterized with respect to energy efficiency, economics and environmental performance. This paper provides an overview of the results, demonstrating that we are not running out of technologies to improve energy efficiency, economic and environmental performance, and neither will we in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity, and reduced capital costs compared to current technologies.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorne, Jennifer

2004-01-01T23:59:59.000Z

118

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 5: Method of Calculating Results for the Save Energy Now Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

181 DOE Industrial Technologies Program 181 DOE Industrial Technologies Program Appendix 5: Method of Calculating Results for the Save Energy Now Initiative u Large Plant Assessments .................................................................................................................................................................... 182 u Training .............................................................................................................................................................................................. 183 u Software Tools Distribution................................................................................................................................................................ 183

119

Industry | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Industry: biomedicine and drug development Biomedical scientists use particle physics technologies to decipher the structure of proteins, information that is key to...

120

DOE Science Showcase - Clean Energy Technology | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

accelerate innovations in clean energy Clean Energy Technology Research from DOE Databases Information Bridge Energy Citations Database DOE R&D Accomplishments DOE Green Energy...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Building Technologies Office: 2013 DOE Building Technologies Office Program  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing efforts, gauge the effectiveness of projects, and design future programs. The meeting also provided an opportunity to promote collaborations, partnerships, and technology transfers. 2013 Program Peer Review Report | 2013 Program Peer Review Presentations

122

Advanced technology options for industrial heating equipment research  

Science Conference Proceedings (OSTI)

This document presents a strategy for a comprehensive program plan that is applicable to the Combustion Equipment Program of the DOE Office of Industrial Technologies (the program). The program seeks to develop improved heating equipment and advanced control techniques which, by improvements in combustion and beat transfer, will increase energy-use efficiency and productivity in industrial processes and allow the preferred use of abundant, low grade and waste domestic fuels. While the plan development strategy endeavors to be consistent with the programmatic goals and policies of the office, it is primarily governed by the needs and concerns of the US heating equipment industry. The program, by nature, focuses on energy intensive industrial processes. According to the DOE Manufacturing Energy Consumption Survey (MECS), the industrial sector in the US consumed about 21 quads of energy in 1988 in the form of coal, petroleum, natural gas and electricity. This energy was used as fuels for industrial boilers and furnaces, for agricultural uses, for construction, as feedstocks for chemicals and plastics, and for steel, mining, motors, engines and other industrial use over 75 percent of this energy was consumed to provide heat and power for manufacturing industries. The largest consumers of fuel energy were the primary metals, chemical and allied products, paper and allied products, and stone, clay and glass industry groups which accounted for about 60% of the total fuel energy consumed by the US manufacturing sector.

Jain, R.C.

1992-10-01T23:59:59.000Z

123

DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ten Projects to Conduct Advanced Turbine Technology Ten Projects to Conduct Advanced Turbine Technology Research DOE Selects Ten Projects to Conduct Advanced Turbine Technology Research August 14, 2013 - 1:44pm Addthis WASHINGTON, D.C. - Ten university projects to conduct advanced turbine technology research under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program have been selected by the U.S. Department of Energy (DOE) for additional development. Developing gas turbines that run with greater cleanness and efficiency than current models is of great benefit both to the environment and the power industry, but development of such advanced turbine systems requires significant advances in high-temperature materials science, an understanding of combustion phenomena, and development of innovative

124

USDOE Technology Transfer, Working with DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency & Renewable and Energy - Commercialization Energy Efficiency & Renewable and Energy - Commercialization Deployment SBIR/STTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer Initiatives USEFUL LINKS Contract Opportunities: FBO.gov FedConnect.net Grant Opportunities DOE Organization Chart Association of University Technology Managers (AUTM) Federal Laboratory Consortium (FLC) Feedback Contact us about Tech Transfer: Mary.McManmon@science.doe.gov Mary McManmon, 202-586-3509 Working with DOE Navigate Home About Us Contact Information Hide Thumbs First Previous Pause Next Last Set Speed Slideshow speed: 5 seconds Move Decontamination New Image Set Autoinduction Autoinduction System The award winning Overnight Express(tm) Autoinduction System developed at

125

In This Issue 1 Leveraging DOE Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

In This Issue In This Issue 1 Leveraging DOE Technologies 2 2009 R&D 100 Award Winner 3 Enrollment Rises in U.S. Clinical Trials 3 Clinical Trials Ongoing Worldwide 4 Increasing Resolution 4 Ensuring Surgical Reproducibility 5 Advancing Medical Research Frontiers: A Patient Perspective 6 Artificial Retina Spinoff Technologies 8 Spotlight: Sandia National Laboratories 9 PET Scans of Brain Responses 10 Novel Software System Enhances Image Resolution 12 Progress Metrics DOE TECHNOLOGIES DRIVE INITIAL SUCCESS OF BIONIC EYE How basic research is being leveraged to enhance quality of life for the blind Using the unique skills and resources of the U.S. Department of Energy's (DOE) national laboratories, in partnership with leading research universities and the private sector,

126

Technology development for DOE SNF management  

SciTech Connect

This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

Hale, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Einziger, R.E. [Pacific Northwest National Lab., Richland, WA (United States); Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-31T23:59:59.000Z

127

Energy-Efficient Industrial Waste Treatment Technologies  

Science Conference Proceedings (OSTI)

Rising energy costs coupled with the continuing need for effective environmental treatment methods have stimulated interest in advanced energy-efficient technologies. EPRI has reviewed a wide variety of electricity-based processes for industrial air pollution control, wastewater treatment, and solid waste treatment along with some closely related competing technologies. These technologies ranged from untested concepts to well-established ones. While most offer process cost savings and improvements over e...

2007-10-31T23:59:59.000Z

128

The solid state lighting initiative: An industry/DOE collaborativeeffort  

SciTech Connect

A new era of technology is emerging in lighting. It is being propelled by the dramatic improvements in performance of solid state light sources. These sources offer an entirely new array of design aspects not achievable with current light sources. At the same time, their performance characteristics continue to improve and are expected to eclipse those of the most common light sources within the near future. High efficiency is one of these performance attributes motivating the Department of Energy (DOE) to work with the manufacturers of this new technology to create a program plan sufficiently comprehensive to support an industry-driven Solid State Lighting Initiative before Congress. The purpose of the initiative is to educate Congress about the potential of this technology to reduce the electric lighting load within the United States and, consequently, to realize the associated environmental benefits. The initiative will solicit congressional support to accelerate the development of solid state technology through investment in the research and development necessary to overcome the technical barriers that currently limit the products to niche markets. While there are multiple technologies being developed as solid state light sources, the two technologies which hold the most promise for application to general illumination are Light Emitting Diodes (LEDs) and Organic Light Emitting Diodes (OLEDs). The form of these sources can be quite different from current sources, allowing exciting new design uses for the products. Being diffuse sources, OLEDs are much lower in intensity per unit area than LEDs. The manufacturing process for OLEDs lends itself to shapes that can be formed to different geometries, making possible luminous panels or flexible luminous materials. Conversely, LEDs are very intense point sources which can be integrated into a small space to create an intense source or used separately for less focused applications. Both OLED and LED sources are expected to be thinner than other comparable sources; this thinness offers additional design opportunities.

Johnson, Steve

2000-10-01T23:59:59.000Z

129

Emerging energy-efficient technologies for industry  

Science Conference Proceedings (OSTI)

For this study, we identified about 175 emerging energy-efficient technologies in industry, of which we characterized 54 in detail. While many profiles of individual emerging technologies are available, few reports have attempted to impose a standardized approach to the evaluation of the technologies. This study provides a way to review technologies in an independent manner, based on information on energy savings, economic, non-energy benefits, major market barriers, likelihood of success, and suggested next steps to accelerate deployment of each of the analyzed technologies. There are many interesting lessons to be learned from further investigation of technologies identified in our preliminary screening analysis. The detailed assessments of the 54 technologies are useful to evaluate claims made by developers, as well as to evaluate market potentials for the United States or specific regions. In this report we show that many new technologies are ready to enter the market place, or are currently under development, demonstrating that the United States is not running out of technologies to improve energy efficiency and economic and environmental performance, and will not run out in the future. The study shows that many of the technologies have important non-energy benefits, ranging from reduced environmental impact to improved productivity. Several technologies have reduced capital costs compared to the current technology used by those industries. Non-energy benefits such as these are frequently a motivating factor in bringing technologies such as these to market. Further evaluation of the profiled technologies is still needed. In particular, further quantifying the non-energy benefits based on the experience from technology users in the field is important. Interactive effects and inter-technology competition have not been accounted for and ideally should be included in any type of integrated technology scenario, for it may help to better evaluate market opportunities.

Worrell, Ernst; Martin, Nathan; Price, Lynn; Ruth, Michael; Elliott, Neal; Shipley, Anna; Thorn, Jennifer

2001-03-20T23:59:59.000Z

130

DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Seeks Proposals to Increase Investment in Industrial Carbon DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects DOE Seeks Proposals to Increase Investment in Industrial Carbon Capture and Sequestration Projects June 15, 2009 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy has issued a Funding Opportunity Announcement soliciting projects to capture and sequester carbon dioxide from industrial sources and to put CO2 to beneficial use. The successful development of advanced technologies and innovative concepts to prevent CO2 from being emitted into the atmosphere is a key component of national efforts to mitigate climate change. DOE anticipates making multiple awards under this FOA. The projects will be cost-shared, with the award recipients providing at least 20 percent of the

131

DOE Webcast: GTI Super Boiler Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Webcast Webcast GTI Super Boiler Technology by Dennis Chojnacki, Senior Engineer by Curt Bermel, Business Development Mgr. R&D > November 20, 2008 November 20, 2008 2 November 20, 2008 2 WHO WE ARE Gas Technology Institute >Leading U.S. research, development, and training organization serving the natural gas industry and energy markets ─ An independent, 501c (3) not-for-profit Serving the Energy Industry Since 1941 > Over 1,000 patents > Nearly 500 products commercialized November 20, 2008 3 November 20, 2008 3 Super Boiler Background > U.S. industrial and commercial steam boilers ─ Consume over 6 quads of natural gas per year ─ Wide range of steam uses from process steam to space heating > Installed base of steam boilers ─ Largely over 30 years old

132

NREL Successfully Transfers VSHOT Technology to Solar Industry  

NREL Successfully Transfers VSHOT Technology to Solar Industry ... The increasing demand for concentrating solar power, ... Technology Transfer Home;

133

DOE Announces Award Selections for Academic-Industry Collaboration -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Award Selections for Academic-Industry Collaboration DOE Announces Award Selections for Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Announces Award Selections for Academic-Industry Collaboration - Synchrophasor Engineering Education Program May 1, 2013 - 1:40pm Addthis The Department of Energy (DOE) has selected seven projects for awards totaling approximately $1.4 million to help colleges and universities better prepare the electricity industry workforce of the future. Use of synchrophasor data from Phasor Measurement Units (PMUs) is considered to be a promising tool to monitor modern electric power systems, and identify and respond to deteriorating or abnormal grid conditions more quickly. Thanks to Recovery Act funding, more than 800 PMUs are being installed at strategic locations across the nation's transmission system. However,

134

NETL: News Release - Three Decades of DOE, Industry Partnership...  

NLE Websites -- All DOE Office Websites (Extended Search)

July 19, 2005 Three Decades of DOE, Industry Partnership Slash Fuel Cell Costs MORGANTOWN, W.VA - From its humble production of 1 watt of power nearly 30 years ago to its...

135

DOE Energy Innovation Portal Connects Innovative Energy Technologies to the  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Innovation Portal Connects Innovative Energy Energy Innovation Portal Connects Innovative Energy Technologies to the Marketplace DOE Energy Innovation Portal Connects Innovative Energy Technologies to the Marketplace February 2, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy's Energy Innovation Portal now has more than 300 business-friendly marketing summaries available to help investors and companies identify and license leading-edge energy efficiency and renewable energy technologies. The Portal is an online tool that links available DOE innovations to the entrepreneurs who can successfully license and commercialize them. By helping to move these innovations from the laboratory to the market, the Portal facilitates an integral step in supporting growing America's clean energy industries and

136

DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Industry Proposals for Feasibility Study to Produce Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants DOE Seeks Industry Proposals for Feasibility Study to Produce Greenhouse Gas-Free Hydrogen at Existing Nuclear Power Plants April 13, 2006 - 10:19am Addthis WASHINGTON, DC - In support of President Bush's Advanced Energy Initiative (AEI), Secretary of Energy Samuel W. Bodman today announced that the U.S. Department of Energy (DOE) will allocate up to $1.6 million this year to fund industry studies on the best ways to utilize energy from existing commercial nuclear reactors for production of hydrogen in a safe and environmentally-sound manner. DOE is seeking industry proposals for these Federal Financial Assistance Awards, worth up to 80 percent of the total

137

Industry Structure Dynamics and the Nature of Technology in The Hearing Instrument Industry  

E-Print Network (OSTI)

Patterns of innovation in industry. Technology Review. Vol.alignment equipment industry. RAND Journal of Economics,in the hearing instrument industry. CISTEMA Working Paper,

Lotz, Peter

1998-01-01T23:59:59.000Z

138

Industrial Solar Technology Corp | Open Energy Information  

Open Energy Info (EERE)

Industrial Solar Technology Corp Industrial Solar Technology Corp Jump to: navigation, search Name Industrial Solar Technology Corp Place Golden, Colorado Zip CO 80403-1 Product IST designs, manufactures, installs and operates large scale parabolic trough collector systems. Coordinates 32.729747°, -95.562678° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.729747,"lon":-95.562678,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Technologies for the oil and gas industry  

DOE Green Energy (OSTI)

This is the final report of a five-month, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors performed a preliminary design study to explore the plausibility of using pulse-tube refrigeration to cool instruments in a hot down-hole environment for the oil and gas industry or geothermal industry. They prepared and distributed a report showing that this appears to be a viable technology.

Goff, S.J.; Swift, G.W.; Gardner, D.L.

1998-12-31T23:59:59.000Z

140

DOE Solar Decathlon: 2007 Building Industry Workshops  

NLE Websites -- All DOE Office Websites (Extended Search)

team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. team Puerto Rico student stands over the team's gray-water pool, which is filled with green plants, and explains to visitors surrounding the pool how it recycles water for reuse. Universidad de Puerto Rico student Wilfredo Rodriguez explains the team's gray-water pool to visitors at the 2007 Solar Decathlon. The pool is used to filter wash water for reuse. Solar Decathlon 2007 Building Industry Workshops Below are descriptions of the workshops offered at the 2007 Solar Decathlon on Building Industry Day, Thursday, October 18, 2007. Solar Applications for Homes Revised Title: Translating Sustainability to Affordable Housing 9:00 a.m. Presenter: ASHRAE and John Quale, Assistant Professor, University of Virginia School of Architecture The focus of the workshop is translating sustainability to affordable

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Industrial Technologies Program Research Plan for Energy-Intensive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and deployment in 2009 and beyond. Technology investments fall under one of four technology platforms: * Industrial Reactions and Separations-New technologies with...

142

Summary of Comments on DOE-Industry Cooperation by Geothermal Industry Panel  

DOE Green Energy (OSTI)

The geothermal industry has matured significantly in recent years, going from early stages of prospect identification and exploration, through drilling and resource assessment, field development and power plant construction, and finally to the operation of mature geothermal fields. All of this has been done within the space of a brief quarter century. Probably no other resource industry in modem times has seen the dramatic growth and maturation as has the geothermal industry. Certainly there has been no comparable speed of development and maturation in, for example, the biomass or solar or wind or photovoltaic resource industries. And nuclear, despite double the number of decades of research and development, and infinitely greater cash outlay, is still sinking under unresolved problems of public health and safety. The enormous and rapid geothermal growth, resulting in the installation and operation of some 2,800 MW of power generation facilities, plus perhaps 2,000 thermal MW of nonelectric facilities, all within the past 25 years, has left unresolved issues in its wake. This has been unavoidable: any new and immensely successful technology inevitably pushes forward so fast on so many fronts that there is not a smooth or complete coverage of all points of importance. The Department of Energy, through its Geothermal Program, has helped the growing geothermal industry in many ways. And this has not been give-aways: the DOE geothermal dollars have enables a reliable, safe, environmentally acceptable technology to come on-line for Americans at an acceptable price at a time when energy has been needed. This is an indigenous, jobs creating, imports-reducing industry. Exports of American geothermal goods and services are being seen all across the world. However, because we are in many ways a highly mature industry, with commercial equity- and debt-financing for typical development projects, and with new interest being expressed by electric utilities in additional geothermal power facilities, we are caught in a ''Catch 22'' that is deeply troubling. We are congratulated--and then ignored--by government officials, and told to move forward ,on our own feet; while at the same time, financiers and electric utilities tell us that for there to be more geothermal development, we must resolve the unresolved issues: better predictive exploration, greater drilling success rates, more accurate reserves assessments, problem-free field operations, lower development costs, improved methodology for risk reduction.

Koening, James B.

1992-01-01T23:59:59.000Z

143

Summary of Comments on DOE-Industry Cooperation by Geothermal Industry Panel  

SciTech Connect

The geothermal industry has matured significantly in recent years, going from early stages of prospect identification and exploration, through drilling and resource assessment, field development and power plant construction, and finally to the operation of mature geothermal fields. All of this has been done within the space of a brief quarter century. Probably no other resource industry in modem times has seen the dramatic growth and maturation as has the geothermal industry. Certainly there has been no comparable speed of development and maturation in, for example, the biomass or solar or wind or photovoltaic resource industries. And nuclear, despite double the number of decades of research and development, and infinitely greater cash outlay, is still sinking under unresolved problems of public health and safety. The enormous and rapid geothermal growth, resulting in the installation and operation of some 2,800 MW of power generation facilities, plus perhaps 2,000 thermal MW of nonelectric facilities, all within the past 25 years, has left unresolved issues in its wake. This has been unavoidable: any new and immensely successful technology inevitably pushes forward so fast on so many fronts that there is not a smooth or complete coverage of all points of importance. The Department of Energy, through its Geothermal Program, has helped the growing geothermal industry in many ways. And this has not been give-aways: the DOE geothermal dollars have enables a reliable, safe, environmentally acceptable technology to come on-line for Americans at an acceptable price at a time when energy has been needed. This is an indigenous, jobs creating, imports-reducing industry. Exports of American geothermal goods and services are being seen all across the world. However, because we are in many ways a highly mature industry, with commercial equity- and debt-financing for typical development projects, and with new interest being expressed by electric utilities in additional geothermal power facilities, we are caught in a ''Catch 22'' that is deeply troubling. We are congratulated--and then ignored--by government officials, and told to move forward ,on our own feet; while at the same time, financiers and electric utilities tell us that for there to be more geothermal development, we must resolve the unresolved issues: better predictive exploration, greater drilling success rates, more accurate reserves assessments, problem-free field operations, lower development costs, improved methodology for risk reduction.

Koening, James B.

1992-01-01T23:59:59.000Z

144

DOE Announces $37 Million for Small Business Research and Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Million for Small Business Research and Million for Small Business Research and Technology DOE Announces $37 Million for Small Business Research and Technology August 20, 2009 - 12:00am Addthis Washington, DC- U.S. Energy Secretary Steven Chu announced today that $37 million in funding from the Recovery Act will be made available to qualified small businesses through the Department's Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) programs. Today's funding announcement emphasizes the Department's commitment to developing near-term, clean energy technologies while allowing small businesses take part in the new industrial revolution that the sustainable energy economy will bring. "Small businesses are engines of job creation and innovation, and we need

145

DOE Announces First Companies to Receive Industrial Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

First Companies to Receive Industrial Energy First Companies to Receive Industrial Energy Efficiency Certification DOE Announces First Companies to Receive Industrial Energy Efficiency Certification December 9, 2010 - 12:00am Addthis WASHINGTON - The U.S. Department of Energy today announced the first industrial plants in the country to be certified under the Superior Energy Performance program -- a new, market-based industrial energy efficiency program. The energy management certification program is accredited by the American National Standards Institute (ANSI) and will serve as a roadmap for industrial facilities to help continually improve their efficiency and maintain market competitiveness. The industrial and manufacturing sectors, which account for roughly one-third of energy use in the United

146

Building Technologies Office: 179D DOE Calculator  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

179D DOE Calculator 179D DOE Calculator EERE » Building Technologies Office » 179D DOE Calculator Printable Version Bookmark and Share What is the 179D federal tax deduction? Section 179D of the Federal Tax Code provides a tax deduction for energy efficiency improvements to commercial buildings. A building may qualify for a tax deduction under Section 179D not to exceed $1.80/ft² for whole building performance or $0.60/ft² for a partially qualifying property for envelope, heating, ventilating, and air conditioning (HVAC), or lighting improvements. In addition, a building may qualify with a reduced installed lighting power under the interim lighting rule. Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information.

147

Technology Transfer: For Industry:SBIR Opportunities  

NLE Websites -- All DOE Office Websites (Extended Search)

For Industry Licensing Overview Frequently Asked Questions Partnering with Berkeley Lab Available Technologies See Also Licensed Technologies Start-up Companies Licensing Interest Form Receive New Tech Alerts Partner Smart with Berkeley Lab (Downloadable Copy, 1.4MB, PDF) Berkeley Lab Economic Impact Report Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs FY2014 Phase 1 Release 1 Selected topic and subtopics contained in this page are designated as Technology Transfer Opportunities (TTOs) from Berkeley Lab. 10. BASIC ENERGY SCIENCES (Phase I $225,000 / Phase II: $1,500,000): Contact: Shanshan Li, Shanshanli@lbl.gov, 510-486-5366 For a description of the technology, publications (if available) and latest patent status, click on the TTO tracking number link.

148

DOE to Invest $6 Million in Midsize Wind Turbine Technology ...  

DOE to Invest $6 Million in Midsize Wind Turbine Technology Development May 25, 2010. The U.S. Department of Energy (DOE) today announced the availability ...

149

NREL: Technology Transfer - DOE Supports and Expands NREL's ...  

National Renewable Energy Laboratory Technology Transfer DOE Supports and Expands NREL's Commercialization Efforts. Through the U.S. Department of Energy's (DOE ...

150

Anthony Cugini Named Director of DOE's National Energy Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Other Agencies You are here Home Anthony Cugini Named Director of DOE's National Energy Technology Laboratory Anthony Cugini Named Director of DOE's National Energy...

151

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Light Duty Vehicle Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Google Bookmark Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Delicious Rank Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications Newsletter Program Presentations Multimedia Conferences & Meetings Annual Merit Review Proceedings Workshop & Meeting Proceedings

152

Photovoltaic industry manufacturing technology. Final report  

DOE Green Energy (OSTI)

This report contains the results of the Photovoltaic (PV) Industry Manufacturing Technology Assessment performed by the Automation and Robotics Research Institute (ARRI) of the University of Texas at Arlington for the National Renewable Energy laboratory. ARRI surveyed eleven companies to determine their state-of-manufacturing in the areas of engineering design, operations management, manufacturing technology, equipment maintenance, quality management, and plant conditions. Interviews with company personnel and plant tours at each of the facilities were conducted and the information compiled. The report is divided into two main segments. The first part of the report presents how the industry as a whole conforms to ``World Class`` manufacturing practices. Conclusions are drawn from the results of a survey as to the areas that the PV industry can improve on to become more competitive in the industry and World Class. Appendix A contains the questions asked in the survey, a brief description of the benefits to performing this task and the aggregate response to the questions. Each company participating in the assessment process received the results of their own facility to compare against the industry as a whole. The second part of the report outlines opportunities that exist on the shop floor for improving Process Equipment and Automation Strategies. Appendix B contains the survey that was used to assess each of the manufacturing processes.

Vanecek, D.; Diver, M.; Fernandez, R. [Automation and Robotics Research Inst., Fort Worth, TX (United States)

1998-08-01T23:59:59.000Z

153

Introduction of New Technologies to Competing Industrial Customers  

Science Conference Proceedings (OSTI)

Motivated by several examples from industry, such as the introduction of a biotechnology-based process innovation in nylon manufacturing, we consider a technology provider that develops and introduces innovations to a market of industrial customers---original ... Keywords: business-to-business, game theory, industrial customers, industrial markets, multistage game, technology adoption, technology introduction

Sanjiv Erat; Stylianos Kavadias

2006-11-01T23:59:59.000Z

154

DOE-STD-1138-2000; Industrial Hygiene Funcational Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

38-2000 38-2000 July 2000 DOE STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-1138-2000 iii APPROVAL DOE-STD-1138-2000 iv INTENTIONALLY BLANK DOE-STD-1138-2000 v TABLE OF CONTENTS

155

DOE Announces Additional Steps in Developing Sustainable Biofuels Industry  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Steps in Developing Sustainable Biofuels Steps in Developing Sustainable Biofuels Industry DOE Announces Additional Steps in Developing Sustainable Biofuels Industry October 7, 2008 - 4:14pm Addthis Releases Results from Preliminary Intermediate Blends Report, Continues Commitment of Commercial Scale Biorefinery, Announces $7 Million for New Biofuels Projects WASHINGTON - Secretary of Energy Samuel W. Bodman and Secretary of Agriculture Ed Schafer today released the National Biofuels Action Plan (NBAP). The Plan, developed by an interagency board co-chaired by DOE and USDA, outlines specific action areas and goals toward achieving renewable fuels production targets. Secretary Bodman also announced additional steps the U.S. Department of Energy (DOE) is taking to support the development of a sustainable biofuels industry: research to enable

156

Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2009 DOE Hydrogen Program and

157

Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2010 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2010 DOE Hydrogen Program and

158

Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

1 DOE Hydrogen 1 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Delicious Rank Vehicle Technologies Office: 2011 DOE Hydrogen Program and

159

DOE Announces Award Selections for Academic-Industry Collaboration -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces Award Selections for Academic-Industry Collaboration Announces Award Selections for Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Announces Award Selections for Academic-Industry Collaboration - Synchrophasor Engineering Education Program May 1, 2013 - 1:40pm Addthis The Department of Energy (DOE) has selected seven projects for awards totaling approximately $1.4 million to help colleges and universities better prepare the electricity industry workforce of the future. Use of synchrophasor data from Phasor Measurement Units (PMUs) is considered to be a promising tool to monitor modern electric power systems, and identify and respond to deteriorating or abnormal grid conditions more quickly. Thanks to Recovery Act funding, more than 800 PMUs are being installed at strategic locations across the nation's transmission system. However,

160

Science and technology for industrial ecology  

SciTech Connect

Scientific and technological communities have a significant role to play and responsibility for the evolution of global sustainability (continuously improving quality of life into the indefinite future). Sustainability is not possible without a substantially improved science and technology basis for industrial ecology. Society needs data and understanding of complex ecological issues to govern itself in a sustainable manner. We should: support and develop multi-disciplinary programs which create the scientific basis for understanding natural and anthropogenic complex systems and for developing environmentally and economically efficient technology; demonstrate a systems-based approach to science and technology issues which is life-cycle comprehensive, integrates environmental considerations, and promotes conservation of natural resources; and encourage development of responsible, technically and scientifically valid, cost-effective environmental laws and practices.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: News Release - DOE Technology Monitors CO2 Injection in...  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2008 DOE Technology Monitors CO2 Injection in Australian Gas Field CSLF Project Demonstrates Unique Carbon Sequestration Technologies WASHINGTON, D.C. - Australia has launched...

162

DOE's Early Investment in Shale Gas Technology Producing Results...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

sands, and methane from coalbeds, DOE developed and stimulated the deployment of advanced exploration and production technologies. These technologies recovered new gas supplies...

163

Industrial Technology Research Institute | Open Energy Information  

Open Energy Info (EERE)

Technology Research Institute Technology Research Institute Jump to: navigation, search Logo: Industrial Technology Research Institute Name Industrial Technology Research Institute Address Rm. 112, Bldg. 24, 195, Sec. 4, Chung Hsing Rd., Place Chutung, Hsinchu Zip 31040 Country Taiwan Sector Marine and Hydrokinetic Company Type Non Profit Technology Point absorber Project ITRI WEC Phone number +886-3-5918579 Website http://www.itri.org.tw Coordinates 24.776467696266°, 121.04182720184° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":24.776467696266,"lon":121.04182720184,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

164

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Photos. From NREL's 21st Industry Growth Forum on Oct. 28-30, 2008, in Denver ...

165

NREL: Technology Transfer - 21st Industry Growth Forum ...  

National Renewable Energy Laboratory Technology Transfer 21 st Industry Growth Forum Presentations. Here you'll find presentations from NREL's 21 st Industry Growth ...

166

Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOD Shipboard APU Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop on Facebook Tweet about Fuel Cell Technologies Office:...

167

DOE Virtual Library of Energy Science and Technology | OSTI,...  

Office of Scientific and Technical Information (OSTI)

DOE Virtual Library of Energy Science and Technology DOE Virtual Library of Energy Science and Technology April 13, 1999 Walter L. Warnick, Ph.D., Director Office of Scientific and...

168

Transparency and Openness in the DOE Quandrennial Technology Review  

Energy.gov (U.S. Department of Energy (DOE))

A letter written under the secretary of science, Steven Koonin, to the meeting participants discussing the DOE Quandrennial Technology Review.

169

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction  

DOE Green Energy (OSTI)

A review team established by the Department of Energy conducted an assessment of the US biomass power industry. The review team visited with more than 50 organizations representing all sectors of the biomass power industry including utilities, independent power producers, component manufacturers, engineering and construction contractors, agricultural organizations, industrial users, and regulatory organizations. DOE solicited industry input for the development of the Biomass Power Division`s Five Year Plan. DOE believed there was a critical need to obtain industry`s insight and working knowledge to develop the near- and long-term plans of the program. At the heart of this objective was the desire to identify near-term initiatives that the program could pursue to help accelerate the further development of biomass power projects.

Not Available

1994-01-01T23:59:59.000Z

170

Influence of Industry Characteristics on Information Technology Outsourcing  

Science Conference Proceedings (OSTI)

Despite the extensive research on information technology (IT) outsourcing, our knowledge and understanding of how industry characteristics impact the use of IT outsourcing remain limited. Drawing upon theories from organization behavior and industrial ... Keywords: Capital Intensity, Industry Concentration, Industry Dynamism, Industry Environments, Industry Munificence, It Outsourcing

Wen Qu; Alain Pinsoneault; Wonseok Oh

2011-04-01T23:59:59.000Z

171

What does it take to start a biodiesel industry?  

Science Conference Proceedings (OSTI)

Learn how Jatropha is being used to make biodiesel in Haiti, and how this effort is helping people in that country build an economy literally from the ground up. What does it take to start a biodiesel industry? Publications aocs articles book book

172

Boost Process Heating Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Process Heating Assessment and Survey Tool (PHAST) can help industrial plants indentify opportunities to save energy.

Not Available

2008-12-01T23:59:59.000Z

173

Improve Chilled Water System Performance, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Chilled Water System Analysis Tool (CWSAT) can help optimize the performance of of industrial chilled water systems.

Not Available

2008-12-01T23:59:59.000Z

174

Tools to Boost Steam System Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program steam software tools can help industrial plants identify steam system improvements to save energy and money.

Not Available

2008-12-01T23:59:59.000Z

175

Frying Technology and PracticesChapter 1 The Frying Industry  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 1 The Frying Industry Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press Downloadable pdf of Chapter

176

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

177

The Role of Emerging Technologies in Improving Energy Efficiency:Examples from the Food Processing Industry  

SciTech Connect

For over 25 years, the U.S. DOE's Industrial Technologies Program (ITP) has championed the application of emerging technologies in industrial plants and monitored these technologies impacts on industrial energy consumption. The cumulative energy savings of more than 160 completed and tracked projects is estimated at approximately 3.99 quadrillion Btu (quad), representing a production cost savings of $20.4 billion. Properly documenting the impacts of such technologies is essential for assessing their effectiveness and for delivering insights about the optimal direction of future technology research. This paper analyzes the impacts that several emerging technologies have had in the food processing industry. The analysis documents energy savings, carbon emissions reductions and production improvements and assesses the market penetration and sector-wide savings potential. Case study data is presented demonstrating the successful implementation of these technologies. The paper's conclusion discusses the effects of these technologies and offers some projections of sector-wide impacts.

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-05-01T23:59:59.000Z

178

Bidding for Industrial Plants: Does Winning a 'Million Dollar Plant' Increase Welfare?  

E-Print Network (OSTI)

for Industrial Plants: Does Winning a Million Dollar Plantfor Industrial Plants: Does Winning a Million Dollar Plantfundamentally, this approach does not offer a framework for

Moretti, Enrico

2004-01-01T23:59:59.000Z

179

Building Technologies Office: Guidelines for Participating in the DOE  

NLE Websites -- All DOE Office Websites (Extended Search)

Guidelines for Guidelines for Participating in the DOE Challenge Home to someone by E-mail Share Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on Facebook Tweet about Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on Twitter Bookmark Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on Google Bookmark Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on Delicious Rank Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on Digg Find More places to share Building Technologies Office: Guidelines for Participating in the DOE Challenge Home on AddThis.com... About Take Action to Save Energy Partner With DOE

180

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE Geothermal Technologies Office | Open Energy Information  

Open Energy Info (EERE)

Office Office Jump to: navigation, search Name Department of Energy - Energy Efficiency and Renewable Energy - Geothermal Technologies Office Short Name DOE GTO Place Washington, District of Columbia Coordinates 38.8869784°, -77.0252967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.8869784,"lon":-77.0252967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

182

Using DOE Industrial Energy Audit Data for Utility Program Design  

E-Print Network (OSTI)

The U.S. Department of Energy (DOE), Energy Analysis and Diagnostic Center Program has offered no-cost energy conservation audits to industrial plants since 1976. The EADC program has maintained a database of detailed plant and audit information since 1980. In 1992, DOE and Baltimore Gas & Electric Company (BG&E) agreed to conduct a joint demonstration project in which the EADC database would be used to assist BG&E in planning demand-side management (DSM) programs for its industrial customers. BG&E identified a variety of useful applications of the database including: estimating conservation potential, identifying conservation measures for inclusion in programs, target marketing of industries, projecting DSM program impacts, and focusing implementation efforts. Over the course of the project, BG&E identified a variety of strengths and limitations associated with the database when used for utility planning. To encourage the use of the data by other utilities and interested parties, DOE is preparing an EADC database package for general distribution in April 1993.

Glaser, C. J.; Packard, C. P.; Parfomak, P.

1993-03-01T23:59:59.000Z

183

Storing Industry's Carbon Dioxide in Real Time | U.S. DOE Office of Science  

Office of Science (SC) Website

Storing Industry's Storing Industry's Carbon Dioxide in Real Time Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Storing Industry's Carbon Dioxide in Real Time Print Text Size: A A A RSS Feeds FeedbackShare Page PNNL researchers are developing new instruments that provide a first live

184

DOE Issues Funding Opportunity for Academic-Industry Collaboration -  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Issues Funding Opportunity for Academic-Industry Collaboration Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering Education Program DOE Issues Funding Opportunity for Academic-Industry Collaboration - Synchrophasor Engineering Education Program November 30, 2012 - 9:09am Addthis Use of synchrophasor data from Phasor Measurement Units (PMUs) is considered to be a promising tool to monitor modern electric power systems. However, only a limited number of professionals, researchers, and students have the knowledge and expertise to understand and analyze the high-speed, time-synchronized data that will be generated by the deployment of synchrophasors. The objectives of this Funding Opportunity Announcement (FOA) are to: enable university researchers and students to gain access to and

185

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Fuel Cell Pre-Solicitation Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation Workshop on Facebook Tweet about Fuel Cell...

186

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation...  

NLE Websites -- All DOE Office Websites (Extended Search)

of the DOE Hydrogen Program (PDF 1.1 MB), JoAnn Milliken, DOE Hydrogen Program Manager SOFC Technology R&D Needs (PDF 1.7 MB), Steven Shaffer, Delphi Chief Engineer, Fuel Cell...

187

Building Technologies Office: Subscribe to the DOE Challenge...  

NLE Websites -- All DOE Office Websites (Extended Search)

Subscribe to the DOE Challenge Home News to someone by E-mail Share Building Technologies Office: Subscribe to the DOE Challenge Home News on Facebook Tweet about Building...

188

Three Argonne projects win DOE funding to improve vehicle technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Three Argonne projects win DOE funding to improve vehicle technologies By Louise Lerner * September 12, 2013 Tweet EmailPrint The U.S. Department of Energy's (DOE) Argonne National...

189

Fuel Cell Technologies Office: 2008 DOE Theory Focus Session...  

NLE Websites -- All DOE Office Websites (Extended Search)

2008 DOE Theory Focus Session on Hydrogen Storage Materials to someone by E-mail Share Fuel Cell Technologies Office: 2008 DOE Theory Focus Session on Hydrogen Storage Materials on...

190

Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordinatio...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Hydrogen and Fuel Cells Coordination Meeting to someone by E-mail Share Fuel Cell Technologies Office: DOE Hydrogen and Fuel Cells Coordination Meeting on Facebook Tweet about...

191

Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE's 10-Year Vision for Plug-in Electric Vehicles to someone by E-mail Share Vehicle Technologies Office: EV Everywhere Grand Challenge: DOE's 10-Year Vision for Plug-in...

192

Solar-Assisted Technology Provides Heat for California Industries  

E-Print Network (OSTI)

Solar-Assisted Technology Provides Heat for California Industries Industrial/Agriculture/Water End 2011 The Issue Solar thermal technology focuses the Sun's rays to heat water, and is a promising renewable resource for California's industrial sector. Commercially available solar water heating

193

Thompson Technology Industries TTI | Open Energy Information  

Open Energy Info (EERE)

TTI TTI Jump to: navigation, search Name Thompson Technology Industries (TTI) Place Novato, California Zip 94949 Sector Solar Product Designer and manufacturer of solar tracking and roof mounting systems. Coordinates 38.106075°, -122.567889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.106075,"lon":-122.567889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

194

DOE Science Showcase - Clean Energy Technology | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Clean Energy Technology DOE's Carbon Sequestration Atlas Secretary Chu Joins 7 Other Agencies in Launching Renewable Energy and Energy Efficiency Export Initiative Secretary Chu's...

195

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE...  

NLE Websites -- All DOE Office Websites (Extended Search)

INAL Office of Fossil Energy Oil & Natural Gas Technology DOE Award No.: DE-FE0010175 Quarterly Research Performance Progress Report (Period ending 06302013) PLANNING OF A MARINE...

196

Technology Transfer | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

(LDRD) Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32Forrestal Building 1000 Independence...

197

HIGHLIGHTS Fossil Energy Techline, "DOE Technology Monitors CO  

NLE Websites -- All DOE Office Websites (Extended Search)

HIGHLIGHTS Fossil Energy Techline, "DOE Technology Monitors CO 2 Injection in Australian Gas Field." On April 2, Australia launched the Otway Basin Pilot Project - the first carbon...

198

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

NLE Websites -- All DOE Office Websites (Extended Search)

failure modes. (4) DOE targets are for real-world applications; refer to Hydrogen, Fuel Cells, & Infrastructure Technologies Program Plan. 3 On Road Durability Through the...

199

Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

Theory Focus Session on Hydrogen Storage Materials to someone by E-mail Share Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen Storage Materials on Facebook...

200

The Use of DOE Technologies at The World Trade Center Incident: Lessons Learned  

SciTech Connect

In response to the attack of the World Trade Center (WTC) on September 11, 2001, the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) assembled and deployed a HAZMAT Emergency Management Team (Team) to the disaster site (Site). The response team consisted of a Certified Industrial Hygienist and a rotating team of industrial hygienists, safety professionals, and certified HAZMAT instructors. Through research funded by the Department of Energy (DOE) Office of Environmental Management (EM) and managed by the National Energy Technology Laboratory (NETL), the IUOE conducted human factors assessments on baseline and innovative technologies during real-world conditions and served as an advocate at the WTC disaster site to identify opportunities for the use and evaluation of DOE technologies. From this work, it is clear that opportunities exist for more DOE technologies to be made readily available for use in future emergencies.

McCabe, B.; Kovach, J.; Carpenter, C.; Blair, D.

2003-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an existing Market Information: Industries End-use(s) EnergyGas Boiler Market Information: Industries End-use(s) Energyelectricity Market Information: Industries End-use(s) Energy

2000-01-01T23:59:59.000Z

202

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy typesNotes Market Information: Industries End-use(s) Energy types

2000-01-01T23:59:59.000Z

203

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

an average industrial electricity price of $0.039/kWh waskWh (the average industrial electricity price in 1996), withprojected 2015 industrial price for electricity in the AEO

2000-01-01T23:59:59.000Z

204

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Shape Casting in the Steel Industry. Near net shape casting/in the U.S. iron and steel industry. Although the technologythe United States Iron and Steel Industry, as Share of Steel

2005-01-01T23:59:59.000Z

205

Technology Commercialization Showcase 2008: DOE Initiatives  

for coal-based power generation, industrial gasification facilities, carbon capture and sequestration and advanced coal gasification. Historical ...

206

Deep Web Technologies' Innovations Contribute to DOE Science Search  

Office of Scientific and Technical Information (OSTI)

Deep Web Technologies' Innovations Contribute to DOE Science Search Deep Web Technologies' Innovations Contribute to DOE Science Search Technology NEWS MEDIA CONTACT: Cathey Daniels, (865) 576-9539 FOR IMMEDIATE RELEASE June 25, 2008 Deep Web Technologies' Innovations Contribute to DOE Science Search Technology Oak Ridge, TN - The 2008 SBIR Small Business of the Year award, announced today by the Department of Energy, acknowledged the web search innovations of Deep Web Technologies, Inc., which has made remarkable advances in an unconventional technology, called federated search. Using federated search, the DOE Office of Scientific and Technical Information (OSTI) has created and deployed groundbreaking tools for making larger quantities of science and technology information available to more people, more quickly and more

207

NETL: News Release - DOE-Funded Technology Slashes NOx, Costs...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 7, 2005 DOE-Funded Technology Slashes NOx, Costs in Coal-Fired Cyclone Boiler Utility Reconsiders Plans to Install Standard NOx-control Technology After Successful Field...

208

Technology Transfer Mechanisms at DOE Facilities  

Collaborative research between DOE Labs and public and/or private entities for the mutual benefit of the parties

209

DOE Solar Decathlon: Stevens Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

of the Stevens Institute of Technology Solar Decathlon 2013 team) he Stevens Institute of Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal...

210

Response to Notice of Inquiry: Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Response to Notice of Inquiry: Technology Transfer Practices at DOE Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. Response to Notice of Inquiry: Technology Transfer Practices at DOE Laboratories (73 FR 2036) by Batelle Energy Alliance, LLC. This letter includes the BEA response (the contractor for Idaho National Laboratory) to the DOE's inquiry regarding suggestions for its Technology Transfer Practices. Recommended improvements include: more flexible transactional agreements to meet the diverse needs of interested parties, more support for commercial investors considering higher risk technologies, the removal of some of the U.S. manufacturing requirements, and more rights

211

DOE's Research Efforts in Developing CCS Technologies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Research Efforts in Developing CCS Technologies DOE's Research Efforts in Developing CCS Technologies DOE's Research Efforts in Developing CCS Technologies May 12, 2011 - 2:24pm Addthis Statement of Scott Klara, Deputy Laboratory Director, National Energy Technology Laboratory before the Committee on Energy and Natural Resources, United States Senate. Thank you Chairman Bingaman, Ranking Member Barrasso, and members of the Committee; I appreciate the opportunity to discuss the Department of Energy's activities to promote the development of carbon capture and storage (CCS) technologies. My testimony will provide an overview of the Department of Energy's (DOE) research efforts in developing CCS technologies. The Administration is still reviewing S. 699 and S 757 and does not have a position on either bill at this time.

212

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Inc. (Alum-1) [ETSU] Energy Technology Support Unit. 1994.In Encyclopedia of Energy Technology and the Environment.Environmental Energy Technologies Division. (Paper-1) (

2000-01-01T23:59:59.000Z

213

DOE's Industrial Assessment Centers (IAC) Program: Results and Benefits  

E-Print Network (OSTI)

Energy efficiency is foundational to the creation of a clean energy economy. Recent studies have speculated on the size of job creation opportunities in the clean energy field, but many of those studies have not adequately involved companies in the energy efficiency industry. The DOEs IAC program is an important federal effort which provides a steady stream of top young engineers into energy efficiency careers, helps small/medium sized manufacturers save energy and copes with the enormous recent increases in fuel costs; and develops energy efficiency expertise in faculty at our top engineering schools. Workforce issues in energy are big and getting bigger. IAC program helps with the ITP goals of establishing relevant Intellectual Capital and developing certified practitioners.

Nimbalker, S.; Martin, M.

2009-05-01T23:59:59.000Z

214

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet from Membrane Technology and Research, Inc. about its pilot-scale industrial membrane system that was funded by the SBIR program.

215

Ministry of Industry and Information Technology | Open Energy...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Ministry of Industry and Information Technology Jump to: navigation, search This article is a stub. You...

216

Lawrence Livermore teams with industry to advance energy technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

release: 03192012 | NR-12-03-01 Lawrence Livermore teams with industry to advance energy technologies using high performance computing Donald B Johnston , LLNL, (925)...

217

DOE Grant Recipients Technologies Available for Licensing ...  

Search Help . Energy Innovation Portal. Home GRANT. Site Map; Printable Version; Share this resource. Send a link to DOE Grant Recipients ...

218

Building Technologies Office: 179D DOE Calculator  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy simulations are required to show compliance with the energy and power cost savings requirements. View more detailed information. What is the 179D DOE Calculator? The...

219

DOE Announces Up to $7 Million for Technology Commercialization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces Up to $7 Million for Technology Commercialization DOE Announces Up to $7 Million for Technology Commercialization Acceleration DOE Announces Up to $7 Million for Technology Commercialization Acceleration August 29, 2008 - 3:20pm Addthis WASHINGTON - DOE Principal Deputy Assistant Secretary for Energy Efficiency and Renewable Energy John Mizroch today announced the availability of up to $7 million to accelerate the movement of clean energy technologies from DOE's world-class national laboratories to the marketplace. The funding will help post-research technologies move toward commercial viability by providing pre-venture capital funding for activities such as prototype development, demonstration projects and market research. The funding will advance President Bush's comprehensive strategy to reduce our nation's

220

Emerging Industrial Innovations for New Energy Efficient Technologies  

E-Print Network (OSTI)

The discussion surrounding industrial efficiency gains typically focuses on industrys own use of energy and the set of technologies that might cost-effectively reduce that consumption. Often overlooked is industrys role as a primary developer of the materials and technologies that can generate large efficiency gains within all other sectors of the economy. For example, its role in developing a new generation of fuel cell vehicles, on demand manufacturing capabilities, or new plastics that double as integrated photovoltaic systems may play an even larger role in the more productive use of our energy resources. This paper explores recent work on industrial innovation, often involving public-private partnerships, and provides a context to understand the role of innovation. It highlights a number of emerging technologies that may foster an even greater energy savings than might be apparent from looking at industrys own energy use patterns alone.

Laitner, J. A.

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Building Technologies Office: DOE Challenge Home  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Challenge Home DOE Challenge Home Since 2008, the U.S. Department of Energy's (DOE) Builders Challenge program has recognized hundreds of leading builders for their achievements in energy efficiency-resulting in over 14,000 energy efficient homes and millions of dollars in energy savings. The DOE Challenge Home - an ambitious successor to the Builders Challenge program - represents a whole new level of home performance, with rigorous requirements that ensure outstanding levels of energy savings, comfort, health, and durability. Find partners & homes Locate top builders and zero net-energy ready homes Find partners & homes Technical Resources Requirements for building and certifying a DOE Challenge Home Technical Resources Become a Partner Complete online registration to become a partner

222

Windows Industry Technology Roadmap: Executive Summary  

SciTech Connect

An industry-led initiative to identify key goals and strategies for the windows industry with an emphasis on energy conservation, enhanced quality, fast delivery, and low installed cost.

DOE Office of Building Technology, State and Community Programs

2001-01-08T23:59:59.000Z

223

2013 DOE Building Technologies Office Program Review | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these assessments will be used to enhance the management of existing efforts, gauge the effectiveness of projects, and design future programs. The meeting also provided an opportunity to promote collaborations, partnerships, and technology transfers. 2013 Program Peer Review Report | 2013 Program Peer Review Presentations

224

DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

.5 Million in Advanced Technology Research to .5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers DOE Announces Up to $7.5 Million in Advanced Technology Research to Harness Energy Potential of Oceans, Tides and Rivers May 5, 2008 - 11:30am Addthis WASHINGTON, DC - As part of the Bush Administration's ongoing commitment to invest in clean energy technologies to meet growing energy demand while reducing greenhouse gas emissions, the U.S. Department of Energy (DOE) has announced up to $7.5 million in federal funding for research and development to help advance the viability and cost-competitiveness of advanced water power systems. Through this Funding Opportunity Announcement (FOA), DOE seeks partnerships with U.S. industry and universities to develop innovative and effective technologies capable of

225

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

developed a CA management training program that is availabletraining programs similar to those developed by DOE for the compressed air system management.training programs similar to those developed by the DOE for the compressed air system management (

2000-01-01T23:59:59.000Z

226

Energy Innovation Portal Brings DOE Technologies to the Market (Fact Sheet)  

SciTech Connect

For venture capitalists, energy entrepreneurs, and industry veterans, finding the right renewable energy or energy efficiency solution used to be like looking for a needle in a haystack. Now, a searchable treasure trove of innovative U.S. Department of Energy (DOE) technologies is available. Created by the National Renewable Energy Laboratory (NREL), the online Energy Innovation Portal helps businesses and entrepreneurs access the intellectual property of DOE's 17 national laboratories and other research partners.

2011-10-01T23:59:59.000Z

227

Energy Innovation Portal Brings DOE Technologies to the Market (Fact Sheet)  

DOE Green Energy (OSTI)

For venture capitalists, energy entrepreneurs, and industry veterans, finding the right renewable energy or energy efficiency solution used to be like looking for a needle in a haystack. Now, a searchable treasure trove of innovative U.S. Department of Energy (DOE) technologies is available. Created by the National Renewable Energy Laboratory (NREL), the online Energy Innovation Portal helps businesses and entrepreneurs access the intellectual property of DOE's 17 national laboratories and other research partners.

Not Available

2011-10-01T23:59:59.000Z

228

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

Competitiveness in the Renewable Energy Sector: The Case ofand Regulation Concerning Renewable Energy ElectricityIndustrial Policy and Renewable Energy Technology.

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

229

Reduce NOx and Improve Energy Efficiency, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program NOx and Energy Assessment Tool (NxEAT) can help petroleum refining and chemical plants improve energy efficiency.

2008-12-01T23:59:59.000Z

230

Biopower Technical Assessment: State of the Industry and the Technology  

DOE Green Energy (OSTI)

This report provides an assessment of the state of the biopower industry and the technology for producing electricity and heat from biomass. Biopower (biomass-to-electricity generation), a proven electricity generating option in the United States and with about 11 GW of installed capacity, is the single largest source of non-hydro renewable electricity. This 11 GW of capacity encompasses about 7.5 GW of forest product industry and agricultural industry residues, about 3.0 GW of municipal solid waste-based generating capacity and 0.5 GW of other capacity such as landfill gas based production. The electricity production from biomass is being used and is expected to continue to be used as base load power in the existing electrical distribution system. An overview of sector barriers to biopower technology development is examined in Chapter 2. The discussion begins with an analysis of technology barriers that must be overcome to achieve successful technology pathways leading to the commercialization of biomass conversion and feedstock technologies. Next, an examination of institutional barriers is presented which encompasses the underlying policies, regulations, market development, and education needed to ensure the success of biopower. Chapter 3 summarizes biomass feedstock resources, characteristics, availability, delivered prices, requirements for processing, and the impediments and barriers to procurement. A discussion of lessons learned includes information on the California biomass energy industry, lessons from commercial biopower plants, lessons from selected DOE demonstration projects, and a short summary of the issues considered most critical for commercial success is presented in Chapter 4. A series of case studies, Chapter 5, have been performed on the three conversion routes for Combined Heat and Power (CHP) applications of biomass--direct combustion, gasification, and cofiring. The studies are based on technology characterizations developed by NREL and EPRI. Variables investigated include plant size and feed cost, and both cost of electricity and cost of steam are estimated using a discounted cash flow analysis. The economic basis for cost estimates is given. Environmental considerations are discussed in Chapter 6. Two primary issues that could create a tremendous opportunity for biomass are global warming and the implementation of Phase II of Title IV of the Clean Air Act Amendment of 1990 (CAAA). The environmental benefits of biomass technologies are among its greatest assets. Global warming is gaining greater salience in the scientific community and among the general population. Biomass use can play an essential role in reducing greenhouse gases, thus reducing the impact on the atmosphere. Cofiring biomass and fossil fuels and the use of integrated biomass gasification combined cycle systems can be an effective strategy for electric utilities to reduce their emissions of greenhouse gases. The final chapter reviews pertinent Federal government policies. U.S. government policies are used to advance energy strategies such as energy security and environmental quality. Many of the benefits of renewable energy are not captured in the traditional marketplace economics. Government policies are a means of converting non-economic benefits to an economic basis, often referred to as ''internalizing'' of ''externalities.'' This may be accomplished by supporting the research, development, and demonstration of new technologies that are not funded by industry because of projected high costs or long development time lines.

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L.

2003-01-01T23:59:59.000Z

231

Steam Challenge: Developing A New DOE Program to Help Industry be Steam Smart  

E-Print Network (OSTI)

Last year, the Alliance to Save Energy, the Department of Energy's Office of Industrial Technologies, and a cadre of private companies and associations formed an innovative "Steam Partnership" with the goal of developing a new, DOE technical assistance program on steam efficiency. In 1997, the Steam Partnership began to define the appropriate activities, tools, and services of a public-private program on steam. Modeled after the successful Motor Challenge program and the newly launched Compressed Air Challenge program, "Steam Challenge" will highlight the importance of steam system efficiency and provide information and technical assistance on technologies for today's industrial steam systems. This paper will introduce Steam Challenge, describe what has been accomplished over the last year, and describe the program's future goals and activities.

Jones, T.; Hart, F.

1998-04-01T23:59:59.000Z

232

Building Technologies Office: DOE Challenge Home  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efficiency-resulting in over 14,000 energy efficient homes and millions of dollars in energy savings. The DOE Challenge Home - an ambitious successor to the Builders Challenge...

233

DOE and Chinese Ministry of Science and Technology Co-Host First Ever  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chinese Ministry of Science and Technology Co-Host First Chinese Ministry of Science and Technology Co-Host First Ever Electric Vehicle Forum DOE and Chinese Ministry of Science and Technology Co-Host First Ever Electric Vehicle Forum September 30, 2009 - 12:00am Addthis Beijing, China - Yesterday, the first-ever U.S.-China Electric Vehicle Forum concluded in Beijing, China, bringing together more than 140 U.S. and Chinese officials from government, industry, academia and advocacy groups to discuss progress made in the electric vehicle industry to date and opportunities for collaboration and progress moving forward. DOE Assistant Secretary for Policy and International Affairs David Sandalow joined with Minister Wan Gang of the Chinese Ministry of Science and Technology to co-host the event and highlight the rapidly growing electric

234

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2005-01-01T23:59:59.000Z

235

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

236

DOE-Supported Project Advances Clean Coal, Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Supported Project Advances Clean Coal, Carbon Capture DOE-Supported Project Advances Clean Coal, Carbon Capture Technology DOE-Supported Project Advances Clean Coal, Carbon Capture Technology January 29, 2013 - 12:00pm Addthis Washington, DC - Researchers at The Ohio State University (OSU) have successfully completed more than 200 hours of continuous operation of their patented Coal-Direct Chemical Looping (CDCL) technology - a one-step process to produce both electric power and high-purity carbon dioxide (CO2). The test, led by OSU Professor Liang-Shih Fan, represents the longest integrated operation of chemical looping technology anywhere in the world to date. The test was conducted at OSU's 25 kilowatt thermal (kWt) CDCL combustion sub-pilot unit under the auspices of DOE's Carbon Capture Program, which is developing innovative environmental control technologies to foster the

237

The Technology Information Environment with Industry (TIE-In): A mechanism for accessing laboratory solutions  

SciTech Connect

The Technology Information Environment with Industry (TIE-In) is a system that helps users obtain laboratory-developed technical solutions without requiring that they duplicate the technical resources (in people, hardware and software) at the national laboratories. TIE-In is based on providing users with controlled access to distributed laboratory resources that are packaged in intelligent user interfaces. These interfaces help users obtain technical solutions without requiring that the user have specialized technical and computer expertise. As a designated DOE Technology Deployment Center/User Facility, industry users can access a broad range of laboratory-developed technologies on a cost-recovery basis. TIE-In will also be used to share laboratory resources with partners in US industry that help the DOE meet future manufacturing needs for the stewardship of our nation`s nuclear weapons stockpile.

Ang, J.A.; Machin, G.D.; Marek, E.L.

1994-12-31T23:59:59.000Z

238

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Up to $17.6 Million for Solar Photovoltaic DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015.

239

Argonne Transportation Technology R&D Center - About Us - DOE, Lithium-ion  

NLE Websites -- All DOE Office Websites (Extended Search)

About Us About Us Transportation Research Focuses on DOE's Energy Resources Goals Open the Door The U.S. Department of Energy's (DOE's) goals call for increasing the efficiency and productivity of energy use, while limiting the environmental impacts. In support of these goals, Argonne's Transportation Technology Research and Development Center (TTRDC) brings together scientists and engineers from many disciplines to find cost-effective solutions to the problems of foreign oil dependency and greenhouse gas emissions. As one of the DOE's lead laboratories for research in hybrid powertrains, batteries, and fuel efficient technologies, Argonne's transportation program is critical to advancing the development of next-generation vehicles. The TTRDC's overall goal is to work with DOE, other federal agencies, and industrial partners to put new transportation technologies on the road that improve the way we live and contribute to a better, cleaner future for all.

240

Technology Transfer: For Industry:SBIR Opportunities  

... our lab is not specialized in solar cell fabrication and hence, our solar cell fabrication tools do not meet industrial standards. For instance, ...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2001-01-01T23:59:59.000Z

242

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

Market Information: Industries Iron and Steel SIC 331 End-use(s) Process heating Energyinformation on energy savings, economic, non-energy benefits, major market

2004-01-01T23:59:59.000Z

243

DOE Congratulates Under Secretary Johnson for Technology Leadership Award |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Congratulates Under Secretary Johnson for Technology Leadership DOE Congratulates Under Secretary Johnson for Technology Leadership Award DOE Congratulates Under Secretary Johnson for Technology Leadership Award May 12, 2010 - 12:00am Addthis Washington, DC - U.S. Department of Energy Under Secretary Kristina M. Johnson has been selected to receive the 2010 Women of Vision Leadership Award from the Anita Borg Institute for Women and Technology (ABI). ABI honors women making significant contributions to technology in the categories of leadership, innovation and social impact. The Women of Vision Awards ceremony will take place Wednesday, May 12th at the Mission City Ballroom in Santa Clara, CA. "Under Secretary Johnson has proven to be a leader in technology and engineering throughout her illustrious career," said Secretary Chu. "The

244

DOE Signs Advanced Enrichment Technology License and Facility Lease |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Enrichment Technology License and Facility Lease Advanced Enrichment Technology License and Facility Lease DOE Signs Advanced Enrichment Technology License and Facility Lease December 8, 2006 - 9:34am Addthis Announces Agreements with USEC Enabling Deployment of Advanced Domestic Technology for Uranium Enrichment WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman today announced the signing of a lease agreement with the United States Enrichment Corporation, Inc. (USEC) for their use of the Department's gas centrifuge enrichment plant (GCEP) facilities in Piketon, OH for their American Centrifuge Plant. The Department of Energy (DOE) also granted a non-exclusive patent license to USEC for use of DOE's centrifuge technology for uranium enrichment at the plant, which will initiate the first successful deployment of advanced domestic enrichment technology in the

245

DOE technology information management system database study report  

SciTech Connect

To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

1994-11-01T23:59:59.000Z

246

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Savings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lightingSavings and a High Likelihood of Success Technology Efficient cell retrofit designs Advanced lighting

2000-01-01T23:59:59.000Z

247

Two Stage Engine Technology - Industrial Partnerships Office  

... there is an increased need for new engine technologies which can increase fuel efficiency and meet strict pollution standards. Description ...

248

NREL: Technology Transfer - NREL's Industry Growth Forum  

... to 7AC Technologies, Inc., a Massachusetts company that is commercializing a novel membrane-based liquid desiccant HVAC system.

249

Access to High Technology User Facilities at DOE National Laboratories |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Access to High Technology User Facilities at DOE National Access to High Technology User Facilities at DOE National Laboratories Access to High Technology User Facilities at DOE National Laboratories In recognition of the nation's expanding need to engage businesses and universities in the areas of commercial and basic science research, the Department has developed two special types of agreements for use at all DOE National Laboratories with approved designated user facilities. For non-commercial, basic science research, researchers may seek to use the Non-proprietary User Agreement. Under this type of agreement, the user pays its own costs of the research with the DOE laboratory, may access specialized laboratory equipment and collaborate with laboratory scientists. The non-proprietary user and the National Laboratory retain

250

Work for the DOE Office of Transportation Technologies - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

of of Transportation Technologies Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Energy System Applications Bookmark and Share DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor Real-time measurement of NOx content in the exhaust gas can provide the

251

NETL: News Release - DOE Taps Universities for Turbine Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2009 DOE Taps Universities for Turbine Technology Science Washington, D.C. -The U.S. Department of Energy announced the selection of three projects under the Office of Fossil...

252

DOE Announces Strategic Engineering and Technology Roadmap for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details...

253

DOE Energy Innovation Portal Connects Innovative Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

than 300 technology marketing summaries and more than 15,000 DOE-funded U.S. patents and patent applications. The guiding principle behind the development of the Portal is to...

254

Questions concerning Technology Transfer Practices at DOE Labs...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

255

DOE Solar Decathlon: Stevens Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Stevens Institute of Technology Stevens Institute of Technology Ecohabit www.stevens.edu/sd2013/ Ecohabit, the U.S. Department of Energy Solar Decathlon 2013 entry from Stevens Institute of Technology, addresses sustainability in all facets-from form, through construction, to the dynamics of its use. The house adapts to its occupants' needs and provides them with feedback on ways to reduce energy use to live more sustainably. Its L shape maximizes views of, and access to, the generous outdoor living space. Design Philosophy Ecohabit aims to redefine the relationship between a house and its occupants. Intelligent energy systems monitor the house, its occupants' behaviors, and regional climate information. In doing so, Ecohabit "cohabits" with its occupants-enabling house and user to learn from each

256

Industrial electronics [Technology 2000 analysis and forecast  

Science Conference Proceedings (OSTI)

Energy savings and higher intelligence are hallmarks of today's highly competitive world of industrial automation. While power electronics devices and systems deliver ever more watts, they also contribute to electromagnetic interference (EMI), and users ...

G. Kaplan

2000-01-01T23:59:59.000Z

257

Emerging energy-efficient industrial technologies  

E-Print Network (OSTI)

Nathan Martin regarding SOFC Fuel Cells. June. (Utilities-3)MCFC), and solid oxide (SOFC). For industrial sectorare the PAFC, MCFC, and the SOFC. Of these, the PAFC is the

2000-01-01T23:59:59.000Z

258

DOE Releases Climate Change Technology Program Strategic Plan | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Releases Climate Change Technology Program Strategic Plan Releases Climate Change Technology Program Strategic Plan DOE Releases Climate Change Technology Program Strategic Plan September 20, 2006 - 9:01am Addthis Plan Outlines Strategies for Reducing Greenhouse Gas Emissions through Development and Deployment of Advanced Technologies WASHINGTON, DC - The U.S. Department of Energy (DOE) today released the Climate Change Technology Program (CCTP) Strategic Plan, which details measures to accelerate the development and reduce the cost of new and advanced technologies that avoid, reduce, or capture and store greenhouse gas emissions. CCTP is the technology component of a comprehensive U.S. strategy introduced by President Bush in 2002 to combat climate change that include measures to slow the growth of greenhouse gas emissions through

259

DOE Projects to Advance Environmental Science and Technology | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology DOE Projects to Advance Environmental Science and Technology August 19, 2009 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has selected nine new projects targeting environmental tools and technology for shale gas and coalbed methane (CBM) production. NETL's goals for these projects are to improve management of water resources, water usage, and water disposal, and to support science that will aid the regulatory and permitting processes required for shale gas development. A primary goal of Fossil Energy's Oil and Natural Gas Program is to enhance the responsible development of domestic natural gas and oil resources that supply the country's energy. A specific objective is to accelerate the

260

Building Technologies Office: Partner with DOE and Emerging Technologi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Buildings News Building Technologies Office Announces 3 Million to Advance Building Automation Software Solutions in Small to Medium-Sized Commercial Buildings March 29,...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Technologies for the Warfighter and Industry  

Science Conference Proceedings (OSTI)

... Engineering Animation grew their company from 20 employees to over 400 after they developed a new set of computer-based technologies for ...

2010-10-05T23:59:59.000Z

262

Advanced Manufacturing Office: Industries and Technologies  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems Combustion Compressed Air Distributed EnergyCombined Heat and Power (CHP) Fuel and Feedstock Flexibility Information & Communications Technology Data Centers...

263

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2004-01-01T23:59:59.000Z

264

Emerging Energy-Efficient Technologies for Industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2005-01-01T23:59:59.000Z

265

Emerging energy-efficient technologies for industry  

E-Print Network (OSTI)

HVAC Advanced lighting technologies Advanced lighting design Advance ASD designs Advanced compressor controls Compressed air system management Motor diagnostics Motor system optimization

2001-01-01T23:59:59.000Z

266

PNNL: Available Technologies: Aerospace & Defense Industry  

Other. Improved Materials for Sampling of Surfaces for Measurement of Explosives and Other Chemicals of Interest; Improved Sensor Technology using Qua ...

267

Technology Transfer: For Industry:SBIR Opportunities  

Technology Transfer Opportunities (TTOs) for SBIR and STTR Programs. FY2013 Phase 1 Release 1. During the FOA open period August 13 - October 16, 2012,

268

Information Technology Solutions - Industrial Partnerships Office  

Information Technology Solutions Development and IP Status A patent application, US2006/0115427 Diagno-sis and assessment of skeletal related disease

269

NETL: News Release - DOE Announces R&D Funding for Microhole Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

January 31, 2005 January 31, 2005 DOE Announces R&D Funding for Microhole Technology Projects Revolutionary New Technology Reduces Drilling Costs, Environmental Impacts TULSA OK - The Department of Energy has marked another key milestone in its research and development (R&D) initiative to develop "microhole" technologies aimed at slashing the costs and reducing the environmental impacts of drilling America's oil and gas wells. DOE announced the award of funding for 10 projects that are designed to push microhole technology another step closer to commerciality and widespread adoption by the U.S. oil and gas industry. The initiative involves developing technologies associated with drilling wells smaller than 4¾ inches in diameter and related downhole micro-instrumentation.

270

Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking  

NLE Websites -- All DOE Office Websites (Extended Search)

Satellite Television Industry Meeting Regarding DOE Set-Top Box Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, representatives of the U.S. satellite television industry, listed below, met with the DOE officials, listed below, at the Forestall Building to discuss matters of concern to the U.S. satellite television industry regarding the pending DOE rulemaking to establish energy conservation standards on set-top boxes (STBs) under title Ill of the Energy Policy and Conservation Act of 1974, as amended. Memo_Ex_Parte_Comm.pdf More Documents & Publications Memorandum Memorializing Ex Parte Communication, DOE impending determination of coverage for commercial and industrial fans, blowers, and

271

DOE - National Energy Technology Laboratory: Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

National Energy Technology Laboratory National Energy Technology Laboratory HIGHLIGHTS NETLOGNEWS MULTIMEDIA FOLLOW NETL Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player netlognews NETL's quarterly R&D newsletter highlighting major research updates and accomplishments of the laboratory. Visit the Netlognews page here. Netlognews January 2014 NETL's award winning multimedia team produces high-quality multimedia content in support of NETL's mission. To find out more, click here. RSS RSS Feed RSS, sometimes known as Really Simple Syndication, is a popular means of sharing content (such as news headlines) without requiring readers to constantly visit a Web site to see what's new. RSS feeds contain headlines and hyperlinks to longer articles or Web pages.

272

U.S. Industries: Partner with DOE to Save Energy and Money  

SciTech Connect

This DOE Industrial Program fact sheet describes Save Energy Now, part of a national campaign to engage the public, the government, and industry in making simple but effective energy-saving choices.

2005-11-01T23:59:59.000Z

273

DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Supported Coal Cleaning Technology Succeeds in Commercial Supported Coal Cleaning Technology Succeeds in Commercial Demonstration DOE-Supported Coal Cleaning Technology Succeeds in Commercial Demonstration January 4, 2011 - 12:00pm Addthis Washington, DC - A novel technology that could help release some of the currently unusable energy in an estimated 2 billion tons of U.S. coal waste has been successfully demonstrated by a Department of Energy (DOE) supported project. The full-scale test of the advanced hyperbaric centrifuge technology at a Jim Walter Resources Inc. coal-cleaning plant in Alabama resulted in the successful reduction of moisture from ultrafine coal waste. The test builds on an eight-year cooperative effort between the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL) and the Virginia

274

Elizondo 'marries' Laboratory technologies to U.S. industry  

NLE Websites -- All DOE Office Websites (Extended Search)

Elizondo 'marries' Laboratory technologies to U.S. industry Stephen P Wampler, LLNL, (925) 423-3107, wampler1@llnl.gov High Resolution Image Catherine Elizondo is a...

275

Responses To Questions Concerning Technology Transfer Practices at DOE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Responses To Questions Concerning Technology Transfer Practices at Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories Responses To Questions Concerning Technology Transfer Practices at DOE Laboratories AllianceForSustainableEnergy Battelle Department of Economic and Community Development Planar Energy Devices Center for Hydrogen Research Electric Power Research Institute (EPRI) APJeT, Inc. Pacific Northwest National Laboratory (PNNL) American Superconductor (AMSC) Economic Development Partnership Campbell Applied Physics, Inc. Oak Ridge Economic Partnership Purdue University Council on Governmental Relations Cummins University of California ORNL Tech Transfer Jet Propulsion Laboratory (JPL) Eastman Chemical Company Sandia National Laboratories Lawrence Livermore National Laboratory Oak Ridge National Laboratory

276

DOE NHI: Progress in Nuclear Connection Technologies  

DOE Green Energy (OSTI)

The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

Steven R. Sherman

2007-06-01T23:59:59.000Z

277

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

278

DOE Taps Universities for Turbine Technology Science | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science DOE Taps Universities for Turbine Technology Science July 16, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy announced the selection of three projects under the Office of Fossil Energy's University Turbine Systems Research (UTSR) Program. University researchers will investigate the chemistry and physics of advanced turbines, with the goal of promoting clean and efficient operation when fueled with coal-derived synthesis gas (syngas) and hydrogen fuels. Development of high-efficiency, ultra-clean turbine systems requires significant advances in high temperature materials science, understanding of combustion phenomena, and innovative cooling techniques to maintain integrity of turbine components. Such necessary technology advancements are

279

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

280

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Merges Traditional and Emerging Energy Technologies in New Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative DOE Merges Traditional and Emerging Energy Technologies in New Geothermal Research Initiative October 2, 2009 - 1:00pm Addthis Washington, DC - A unique Department of Energy (DOE) collaboration aims to generate electricity from a geothermal source stemming from oilfield operations. DOE's Office of Fossil Energy (FE) and the Office of Energy Efficiency and Renewable Energy's (EERE) Geothermal Technologies Program will merge and leverage research capabilities to demonstrate low temperature geothermal electric power generation systems using co-produced water from oilfield operations at FE's Rocky Mountain Oilfield Testing Center (RMOTC). EERE is providing funding for the purchase of a geothermal electricity

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Innovative DOE Technology Demonstrates Potential for Significant Increases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovative DOE Technology Demonstrates Potential for Significant Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields Innovative DOE Technology Demonstrates Potential for Significant Increases in Safe and Responsible Production from Depleted U.S. Oil Fields April 25, 2012 - 1:00pm Addthis Washington, DC - The U.S. Department of Energy announced today that an innovative technology has successfully improved oil recovery at a 106-year old Illinois field by more than 300 percent. This method of extraction could help pull as many as 130 million additional barrels of oil from the depleted field, which is past peak production using traditional drilling. "The Energy Department is making critical investments in innovations today that are helping the U.S. find and develop every available source of

282

Science and technology for industrial ecology  

SciTech Connect

This paper first discusses the challenge offered by natural and anthropogenic systems in all of their complexity and then indicates some areas of research in which specific scientific and technological needs are identifiable.

Gilmartin, T.J.; Allenby, B.R.

1996-07-10T23:59:59.000Z

283

Current developments of microfiltration technology in the dairy industry  

E-Print Network (OSTI)

Review Current developments of microfiltration technology in the dairy industry Luciana V. SABOYAa of them just patented, in the dairy industry. Combination of the use of uniform trans- membrane hydraulic porosity gradient and of new ceramic membrane materials allows nowa- days to get a differential separation

Recanati, Catherine

284

DOE New Technology: Sharing New Frontiers, April 1, 1993--September 30, 1993  

Science Conference Proceedings (OSTI)

The purpose of DOE New Technology is to provide information on how to access specific technologies developed through research sponsored by DOE and performed by DOE laboratories or by DOE-contracted researchers. This document describes technologies identified as having potential for commercial applications in addition to a catalog of current patent applications and patents available for licensing from DOE and DOE contractors.

Tamura, A.T.; Henline, D.M. [eds.

1993-12-01T23:59:59.000Z

285

DOE Technology TF Final-Jun  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 Interim r eport o f T echnology T ransition T ask F orce to the S ecretary o f E nergy A dvisory B oard ( July 2 0, 2 011) DOE i s t he a gency r esponsible f or c reating, d emonstrating, a nd e ncouraging d eployment of e nergy t echnology t hat p rovides r eliable a nd a ffordable e nergy necessary f or a growing e conomy a nd p ersonal u se w ithout a dverse e nvironmental e ffects. E nergy security a nd i mproving e conomic c ompetitiveness a re i mportant a dditional g oals. T he basic p rinciple t hat s hould g overn D OE's i nvolvement i s t hat D OE e ngages w hen t he private s ector i s u nable o r u nwilling t o m ake i nvestments t hat a re i n t he p ublic's interest. There a re f our s tages a t w hich g overnment s upport c an o ccur: ( 1) creation o f n ew i deas (basic r esearch a nd e xploratory d evelopment), ( 2)

286

New DOE Reports on Smart Grid Technologies Seek to Promote Innovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access New DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access...

287

Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Satellite Television Industry Meeting Regarding DOE Set-Top Box Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking On April 3, 2012 at 11:00 AM, representatives of the U.S. satellite television industry, listed below, met with the DOE officials, listed below, at the Forestall Building to discuss matters of concern to the U.S. satellite television industry regarding the pending DOE rulemaking to establish energy conservation standards on set-top boxes (STBs) under title Ill of the Energy Policy and Conservation Act of 1974, as amended. Memo_Ex_Parte_Comm.pdf More Documents & Publications DOE's Proposed Coverage Determination for Set-Top Boxes Ex Parte Memorandum on Set Top Boxes and Network Equipment Docket No. EERE-2012-BT-TP-0046; RIN 1904-AC52

288

DOE Approves Field Test for Promising Carbon Capture Technology |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Approves Field Test for Promising Carbon Capture Technology Approves Field Test for Promising Carbon Capture Technology DOE Approves Field Test for Promising Carbon Capture Technology November 20, 2012 - 12:00pm Addthis Washington, DC - A promising post combustion membrane technology that can separate and capture 90 percent of the carbon dioxide (CO2) from a pulverized coal plant has been successfully demonstrated and received Department of Energy (DOE) approval to advance to a larger-scale field test. In an $18.75 million project funded by the American Recovery and Reinvestment Act of 2009, Membrane Technology and Research Inc. (MTR) and its partners tested the Polaris™ membrane system, which uses a CO2-selective polymeric membrane (micro-porous films which act as semi-permeable barriers to separate two different mediums) material and

289

DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up to $17.6 Million for Solar Photovoltaic Up to $17.6 Million for Solar Photovoltaic Technology Development DOE to Provide Up to $17.6 Million for Solar Photovoltaic Technology Development September 29, 2008 - 3:43pm Addthis WASHINGTON - The U.S. Department of Energy (DOE) today announced up to $17.6 million, subject to annual appropriations, for six early stage photovoltaic (PV) module incubator projects that focus on the initial manufacturing of advanced solar PV technologies. Including the cost share from industry, which will be at least 20 percent, the total research investment is expected to reach up to $35.4 million. These projects support President Bush's Solar America Initiative, which aims to make solar energy cost-competitive with conventional forms of electricity by 2015. Increasing the use of alternative and clean energy technologies such as

290

Selection of melter systems for the DOE/Industrial Center for Waste Vitrification Research  

Science Conference Proceedings (OSTI)

The EPA has designated vitrification as the best developed available technology for immobilization of High-Level Nuclear Waste. In a recent federal facilities compliance agreement between the EPA, the State of Washington, and the DOE, the DOE agreed to vitrify all of the Low Level Radioactive Waste resulting from processing of High Level Radioactive Waste stored at the Hanford Site. This is expected to result in the requirement of 100 ton per day Low Level Radioactive Waste melters. Thus, there is increased need for the rapid adaptation of commercial melter equipment to DOE`s needs. DOE has needed a facility where commercial pilot scale equipment could be operated on surrogate (non-radioactive) simulations of typical DOE waste streams. The DOE/Industry Center for Vitrification Research (Center) was established in 1992 at the Clemson University Department of Environmental Systems Engineering, Clemson, SC, to address that need. This report discusses some of the characteristics of the melter types selected for installation of the Center. An overall objective of the Center has been to provide the broadest possible treatment capability with the minimum number of melter units. Thus, units have been sought which have broad potential application, and which had construction characteristics which would allow their adaptation to various waste compositions, and various operating conditions, including extreme variations in throughput, and widely differing radiological control requirements. The report discusses waste types suitable for vitrification; technical requirements for the application of vitrification to low level mixed wastes; available melters and systems; and selection of melter systems. An annotated bibliography is included.

Bickford, D.F.

1993-12-31T23:59:59.000Z

291

Improve Compressed Air System Performance with AIRMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program AIRMaster+ software tool can help industrial plants optimize compressed air system efficiency.

2008-12-01T23:59:59.000Z

292

Improve the Energy Efficiency of Fan Systems, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet describes how the Industrial Technologies Program Fan System Assessment Tool (FSAT) can help quantify energy consumption and savings opportunities in industrial fan systems.

Not Available

2008-12-01T23:59:59.000Z

293

DOE Report Tracks Maturation of U.S. Wind Industry  

E-Print Network (OSTI)

the Growth of the U.S. Wind Industry The U.S. Department ofAnnual Report on U.S. Wind Power Installation, Cost, andkey trends in the U.S. wind industry, in many cases using

Bolinger, Mark; Wiser, Ryan

2007-01-01T23:59:59.000Z

294

Does Nuclear Insurance Protect Us or the Industry? | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for the nuclear power industry has never been a hot issue for Nevadans because we have no nuclear power plants in the state. But with the prospect of the nuclear power industry's...

295

Technology Transfer: Success Stories: Industry-Lab Research Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry-Lab Collaboration Industry-Lab Collaboration Below are some of Berkeley Lab's collaborative research projects performed with industry. Companies Technologies Applied Materials, Inc. Particle -Free Wafer Processing Boeing, StatOil Hydro Techno Economic Model for Commercial Cellulosic Biorefineries Capintec, Inc. Compact Scintillation Camera for Medical Imaging Catalytica, Inc. Optimized Catalysts For The Cracking of Heavier Petroleum Feedstocks Chiron Corporation High Throughput Assay for Screening Novel Anti-Cancer Compounds CVC-Commonwealth Scientific Corp. Advanced Hard Carbon Plasma Deposition System with Application to the Magnetic Storage Industry E.I. du Pont de Nemours & Company Catalytic Conversion of Chloro-Fluorocarbons over Palladium-Carbon Catalysts Empire Magnetics, Inc.

296

Fuel Cell Technologies Office: DOE Light Duty Vehicle Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Light Duty Vehicle Workshop Light Duty Vehicle Workshop On July 26, 2010, the U.S. Department of Energy (DOE) sponsored a Light Duty Vehicle Workshop in Washington, D.C. Presentations from this workshop appear below as Adobe Acrobat PDFs. Download Adobe Reader. Presentations Overview of Light-Duty Vehicle Studies (PDF 562 KB), Sam Baldwin, Chief Technology Officer, Office of Energy Efficiency and Renewable Energy (EERE), DOE Light Duty Vehicle Pathways (PDF 404 KB), Tien Nguyen, Fuel Cell Technologies Office, EERE, DOE Hydrogen Transition Study (PDF 2.6 MB), Paul N. Leiby, David Greene, Zhenhong Lin, David Bowman, and Sujit Das, Oak Ridge National Laboratory Alternative Transportation Technologies: Hydrogen, Biofuels, Advanced Efficiency, and Plug-in Hybrid Electric Vehicles (PDF 123 KB), Joan Ogden and Mike Ramage, National Research Council

297

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Outlines Research Needed to Improve Solar Energy Technologies Outlines Research Needed to Improve Solar Energy Technologies DOE Outlines Research Needed to Improve Solar Energy Technologies August 12, 2005 - 2:39pm Addthis WASHINGTON, D.C. - To help achieve the Bush Administration's goal of increased use of solar and other renewable forms of energy, the Department of Energy's (DOE) Office of Science has released a report describing the basic research needed to produce "revolutionary progress in bringing solar energy to its full potential in the energy marketplace." The report resulted from a workshop of 200 scientists held earlier this year. "The tax credits contained in the historic energy bill signed by President Bush will greatly help expand the use of renewable energy," said Dr. Raymond L. Orbach, Director of DOE's Office of Science. "This research

298

Efficient Electric Technologies for Industrial Heating: Emerging Activities  

Science Conference Proceedings (OSTI)

Industrial process heating is typically accomplished with fossil- and by-product fuels. However, new high-efficiency electric technologies for process heating applications are under development and commercially available, including three efficient electric process heating technologies covered in this Brief: Induction heating and melting Microwave (MW) heating, drying and curing Radio frequency (RF) heating, drying, and curing These technologies were selected for three reasons. First, in each case there a...

2007-12-18T23:59:59.000Z

299

Environmental technology development through industry partnership  

Science Conference Proceedings (OSTI)

The Coherent Laser Vision System (CLVS) is being developed to provide precision real-time 3D world views to support site characterization and robotic operations and during facilities Decontamination and Decommissioning. Autonomous or semiautonomous robotic operations requires an accurate, up-to-date 3D world view. Existing technologies for real-time 3D imaging, such as AM laser radar, have limited accuracy at significant ranges and have variability in range estimates caused by lighting or surface shading. Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no-moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic to coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system. The precision measurement capability of the coherent laser radar (CLR) technology has already been demonstrated in the form of the CLR 3D Mapper, of which several copies have been delivered or are under order. The CLVS system, in contrast to the CLR 3D Mapper, will have substantially greater imaging speed with a compact no-moving parts scanner, more suitable for real-time robotic operations.

Sebastion, R.L.

1995-12-31T23:59:59.000Z

300

DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP Studies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP Studies DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP Studies March 28, 2008 - 11:49am Addthis Today's announcement follows DOE's award of $16 million last September WASHINGTON, DC - The U.S. Department of Energy (DOE) this week awarded $18.3 million to four industry teams to further develop plans for an initial nuclear fuel recycling center and advanced recycling reactor as part of the Global Nuclear Energy Partnership (GNEP). Today's awards include $5.9 million to EnergySolutions; $5.7 million to the International Nuclear Recycling Alliance, led by AREVA and Mitsubishi Heavy Industries; $5.5 million to General Electric-Hitachi; and $1.3 million to General Atomics. These firms will further develop detailed studies that build on

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Begins Demonstrating CCUS Technology in Project Begins Demonstrating CCUS Technology in Alabama DOE-Sponsored Project Begins Demonstrating CCUS Technology in Alabama August 22, 2012 - 1:00pm Addthis Washington, DC - Carbon dioxide (CO2) injection has begun at the world's first fully integrated coal power and geologic storage project in southwest Alabama, with the goals of assessing integration of the technologies involved and laying the foundation for future use of CO2 for enhanced oil recovery (EOR). The "Anthropogenic Test"--conducted by the Southeast Regional Carbon Sequestration Partnership (SECARB), one of seven partnerships in DOE's Regional Carbon Sequestration Partnerships program--uses CO2 from a newly constructed post-combustion CO2-capture facility at Alabama Power's 2,657-megawatt Barry Electric Generating Plant (Plant Barry). It will help

302

DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Strategic Engineering and Technology Roadmap for Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste March 18, 2008 - 10:52am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today released an Engineering and Technology Roadmap (Roadmap), which details initiatives aimed at reducing the technical risks and uncertainties associated with cleaning up Cold War era nuclear waste over the next ten years. The Roadmap also outlines strategies to minimize such risks and proposes how these strategies would be implemented, furthering the Department's goal of protecting the environment by providing a responsible resolution to the environmental legacy of nuclear weapons production.

303

Development of Advanced Manufacturing Technologies for Renewable Energy Applications, excerpt from 2007 DOE Hydrogen Program Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

65 65 FY 2007 Annual Progress Report DOE Hydrogen Program Objectives This project will address selected key manufacturability issues needing solution in two hydrogen technology areas: storage and the production of components. NCMS will evaluate, identify, and develop manufacturing technologies vital to affordable hydrogen-powered systems. NCMS will leverage manufacturing technologies from other industrial sectors and work with its extensive industrial membership to do feasibility projects on those technologies identified as key to reducing production cost by rendering a system component or subcomponent of the targeted hydrogen-powered systems producible in volume. Technical Barriers This project addresses the following technical barriers from the Manufacturing R&D section of the

304

DOE Announces $1.4 Million for Industry-Laboratory Teams to Study Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Announces $1.4 Million for Industry-Laboratory Teams to Study DOE Announces $1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen DOE Announces $1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen August 14, 2006 - 8:43am Addthis Projects Led by Electric Transportation Applications and GE Global Research WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it intends to fund approximately $1.4 million (subject to negotiation) for two projects to partner with industry to study the economic feasibility of producing hydrogen at existing commercial nuclear power plants. Teams selected by DOE for funding will be headed by Electric Transportation Applications and GE Global Research. Both teams include DOE national laboratories and nuclear utility companies as partners.

305

DOE Announces Award Selections for Academic-Industry Collaboration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

totaling approximately 1.4 million to help colleges and universities better prepare the electricity industry workforce of the future. Use of synchrophasor data from Phasor...

306

DOE Solar Decathlon: News Blog Blog Archive Building Industry...  

NLE Websites -- All DOE Office Websites (Extended Search)

(far left), Rob Minnick, and members of their company's green team attended Building Industry Day. (Credit: Alexis PowersU.S. Department of Energy Solar Decathlon) Consumer...

307

DOE Seeks Industry Participation for Engineering Services to...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

activities supported by the Generation IV nuclear energy systems initiative at DOE's INL. NGNP supports President Bush's Advanced Energy Initiative, which advocates the...

308

DOE's Industrial Energy Efficiency Grand Challenge Solicitation to ...  

Science Conference Proceedings (OSTI)

One of the mission of Energy Efficiency and Renewable Energy (EERE) division of U.S. Department of Energy (DOE) is to strengthen America's energy security,...

309

Demand Response Enabling Technologies and Approaches for Industrial Facilities  

E-Print Network (OSTI)

There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however, there are also huge opportunities for demand response in the industrial sector. This paper describes some of the demand response initiatives that are currently active in New York State, explaining applicability of industrial facilities. Next, we discuss demand response-enabling technologies, which can help an industrial plant effectively address demand response needs. Finally, the paper is concluded with a discussion of case study projects that illustrate application of some of these demand response enabling technologies for process operations. These case studies, illustrating some key projects from the NYSERDA Peak Load Reduction program, will describe the technologies and approaches deployed to achieve the demand reduction at the site, the quantitative impact of the project, and a discussion of the overall successes at each site.

Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

2005-01-01T23:59:59.000Z

310

NETL: News Release - DOE, Penn State To Establish Gas Storage Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

September 11, 2003 September 11, 2003 DOE, Penn State To Establish Gas Storage Technology Consortium Goal is to Improve Performance of the Nation's Underground Gas Storage Infrastructure Map of U.S. natural gas storage sites - click for larger image FOSSIL FACT: The nation's gas industry stores natural gas in more than 400 underground storage reservoirs and salt caverns throughout the country. Click here for larger image UNIVERSITY PARK , PA - The Pennsylvania State University has been selected by the U.S. Department of Energy to establish and operate an underground gas storage technology consortium. The agreement between Penn State and DOE's National Energy Technology Laboratory Strategic Center for Natural Gas will last four-and-a-half years at a total cost of $3 million. The first phase of the agreement will last

311

Food Industry 2000: Food Processing Opportunities, Challenges, New Technology Applications  

Science Conference Proceedings (OSTI)

This report presents a summary of some of the major factors affecting the food processing industry, i. e., economic pressures, consumer concerns and pressures, regulatory restrictions, and general conservatism. The food industry must be responsive to the growing consumer interest in the relationship between diet and general health, to the changes in consumer demographics and desires, and to the opportunities offered by new technology, especially electrotechnologies.

2000-09-18T23:59:59.000Z

312

NETL: News Release - DOE's Tulsa Office to Become Oil Technology Arm of  

NLE Websites -- All DOE Office Websites (Extended Search)

November 1, 2000 November 1, 2000 DOE's Tulsa Office to Become Oil Technology Arm of National Energy Technology Laboratory Will Elevate Status of Petroleum Research Program TULSA, OK - The U.S. Department of Energy's primary field office for petroleum technology in Tulsa, Oklahoma, will become part of the agency's national laboratory complex as an arm of the recently created National Energy Technology Laboratory, Energy Secretary Bill Richardson announced today. Richardson said he was taking the action to "elevate the status of department's petroleum research program." "The future of our domestic petroleum industry will be determined largely by technology, and it is important that we streamline the coordination throughout our research complex in developing advances that can benefit our domestic producers," Richardson said.

313

Fuel Cell Technologies Office: DOE-DOD Shipboard APU Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-DOD Shipboard APU Workshop DOE-DOD Shipboard APU Workshop The U.S. Department of Energy's (DOE) Fuel Cell Technologies Office participated in a Shipboard Auxiliary Power Unit (APU) Workshop hosted by the U.S. Department of Defense's (DOD) Office of Naval Research (ONR) on March 29 in Arlington, Virginia. Workshop objectives were to update the Navy, Military Sea Lift, and Maritime communities on the technical status of fuel cell development applicable to shipboard fuel cells, identify key opportunities for power generation systems, and prioritize associated system characteristics needed for transition. The workshop included an open discussion about user needs, limitations of existing design, and prioritization of next steps. Speakers included Precision Combustion Inc., UTC Power, FuelCell Energy, DOE, DOD, and ONR.

314

NETL: News Release - DOE Researchers Developing Technology to Safely Detect  

NLE Websites -- All DOE Office Websites (Extended Search)

3, 2006 3, 2006 DOE Researchers Developing Technology to Safely Detect Flaws in Plastic Gas Pipelines Tiny, Robot-Borne Sensor to Find Defects, Predict Ruptures Without Disrupting Service WASHINGTON, DC - The Department of Energy's National Energy Technology Laboratory is developing the first technology that can detect flaws in plastic natural gas pipelines without disrupting pipeline operations. It potentially is applicable to almost one-quarter of the Nation's natural gas pipeline system. Safe and inexpensive, the new technology deploys a tiny robot inside plastic pipelines. The robot carries a sensor controlled by a microcomputer which can identify cracks, dents, pinholes, and other anomalies by measuring variations in electric fields on the outside of pipe walls. The technology allows inspection of plastic pipelines from the inside without interrupting the flow of gas, taking them out of service, or digging them up. It can detect potential gas pipeline failures well in advance of a rupture.

315

Science for Energy Technology: Strengthening the Link Between Basic Research and Industry  

SciTech Connect

The nation faces two severe challenges that will determine our prosperity for decades to come: assuring clean, secure, and sustainable energy to power our world, and establishing a new foundation for enduring economic and jobs growth. These challenges are linked: the global demand for clean sustainable energy is an unprecedented economic opportunity for creating jobs and exporting energy technology to the developing and developed world. But achieving the tremendous potential of clean energy technology is not easy. In contrast to traditional fossil fuel-based technologies, clean energy technologies are in their infancy, operating far below their potential, with many scientific and technological challenges to overcome. Industry is ultimately the agent for commercializing clean energy technology and for reestablishing the foundation for our economic and jobs growth. For industry to succeed in these challenges, it must overcome many roadblocks and continuously innovate new generations of renewable, sustainable, and low-carbon energy technologies such as solar energy, carbon sequestration, nuclear energy, electricity delivery and efficiency, solid state lighting, batteries and biofuels. The roadblocks to higher performing clean energy technology are not just challenges of engineering design but are also limited by scientific understanding.Innovation relies on contributions from basic research to bridge major gaps in our understanding of the phenomena that limit efficiency, performance, or lifetime of the materials or chemistries of these sustainable energy technologies. Thus, efforts aimed at understanding the scientific issues behind performance limitations can have a real and immediate impact on cost, reliability, and performance of technology, and ultimately a transformative impact on our economy. With its broad research base and unique scientific user facilities, the DOE Office of Basic Energy Sciences (BES) is ideally positioned to address these needs. BES has laid out a broad view of the basic and grand challenge science needs for the development of future clean energy technologies in a series of comprehensive 'Basic Research Needs' workshops and reports (inside front cover and http://www.sc.doe.gov/bes/reports/list.html) and has structured its programs and launched initiatives to address the challenges. The basic science needs of industry, however, are often more narrowly focused on solving specific nearer-term roadblocks to progress in existing and emerging clean energy technologies. To better define these issues and identify specific barriers to progress, the Basic Energy Sciences Advisory Committee (BESAC) sponsored the Workshop on Science for Energy Technology, January 18-21, 2010. A wide cross-section of scientists and engineers from industry, universities, and national laboratories delineated the basic science Priority Research Directions most urgently needed to address the roadblocks and accelerate the innovation of clean energy technologies. These Priority Research Directions address the scientific understanding underlying performance limitations in existing but still immature technologies. Resolving these performance limitations can dramatically improve the commercial penetration of clean energy technologies. A key conclusion of the Workshop is that in addition to the decadal challenges defined in the 'Basic Research Needs' reports, specific research directions addressing industry roadblocks are ripe for further emphasis. Another key conclusion is that identifying and focusing on specific scientific challenges and translating the results to industry requires more direct feedback and communication and collaboration between industrial and BES-supported scientists. BES-supported scientists need to be better informed of the detailed scientific issues facing industry, and industry more aware of BES capabilities and how to utilize them. An important capability is the suite of BES scientific user facilities, which are seen as playing a key role in advancing the science of clean energy technology.

2010-04-01T23:59:59.000Z

316

Industrial Wastewater Minimization in the Chemicals and Petroleum Industries Industry Technology Commentary  

Science Conference Proceedings (OSTI)

Although water is employed in all major industries, the chemicals and petroleum industries stand out as relying on a vast amount of water for their production needs. In the petroleum industry, more than half of the water is used for cooling, followed by boiler feed (roughly one-third), and then process and other uses. In the chemicals industry, the majority of water is used for cooling, followed by process applications, and then boiler and other uses. Both of these market segments have made great strides...

2011-03-31T23:59:59.000Z

317

DOE - Office of Legacy Management -- Seaway Industrial Park ...  

Office of Legacy Management (LM)

to LaGrone; Authorization for remedial Action at the Seaway Industrial Park and Ashland Oil Co. (I) Sites at Tonawanda, NY, and Mallinckrodt Chemical Co., St. Louis, MO; June 22,...

318

DOE Issues Funding Opportunity for Academic-Industry Collaboration...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

workforce in disciplines that will meet the current and future workforce needs of the electricity industry. A total of approximately 1.1 million is expected to be available...

319

DOE - Office of Legacy Management -- Museum of Science and Industry...  

Office of Legacy Management (LM)

Year: 1985 IL.03-2 IL.03-3 Site Operations: The Metallurgical Laboratory and Argonne National Laboratory occupied space in the Museum of Science and Industry from August...

320

DOE Report Tracks Maturation of U.S. Wind Industry  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andNational Laboratory The wind power industry is in an era ofof developments in the U.S. wind power market, with a

Bolinger, Mark; Wiser, Ryan

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

DOE Energy Technology Prices and Trends | Open Energy Information  

Open Energy Info (EERE)

DOE Energy Technology Prices and Trends DOE Energy Technology Prices and Trends Jump to: navigation, search Tool Summary LAUNCH TOOL Name: DOE Energy Technology Prices and Trends Agency/Company /Organization: United States Department of Energy Sector: Energy Focus Area: Renewable Energy, Non-renewable Energy Phase: Determine Baseline Topics: Market analysis, Technology characterizations Resource Type: Software/modeling tools User Interface: Website Website: energy.gov/prices-trends Country: United States Cost: Free Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

322

NETL: News Release - DOE's Early Investment in Shale Gas Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

2, 2011 2, 2011 DOE's Early Investment in Shale Gas Technology Producing Results Today Washington, DC - A $92 million research investment in the 1970s by the U.S. Department of Energy (DOE) is today being credited with technological contributions that have stimulated development of domestic natural gas from shales. The result: more U.S. jobs, increased energy security, and higher revenues for states and the Federal Government. Spurred by the technological advancements resulting from this investment, U.S. shale gas production continues to grow, amounting to more than 8 billion cubic feet per day, or about 14 percent of the total volume of dry natural gas produced in the United States. DOE's Energy Information Administration (EIA) projects that the shale gas share of U.S. natural gas production will reach 45 percent by 2035. The EIA also projects that 827 trillion cubic feet of natural gas is now recoverable from U.S. shales using currently available technology-an increase of nearly 500 trillion cubic feet over earlier estimates.

323

DOE Solar Decathlon: Building Industry Day Workshop Summaries  

NLE Websites -- All DOE Office Websites (Extended Search)

Behind Solar LED This workshop provided an introduction to solar LED (light-emitting diode) lighting technology and addressed current and potential applications in...

324

Clean Technology & Sustainable Industries Organization | Open Energy  

Open Energy Info (EERE)

Technology & Sustainable Industries Organization Technology & Sustainable Industries Organization Jump to: navigation, search Logo: Clean Technology & Sustainable Industries Organization Name Clean Technology & Sustainable Industries Organization Address 4255 Coolidge Hwy Place Royal Oak, Michigan Zip 48073 Number of employees 1-10 Year founded 2007 Phone number 512.692.7267 Website http://www.ct-si.org/ Coordinates 42.5261046°, -83.1842756° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5261046,"lon":-83.1842756,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

Centers for manufacturing technology: Industrial Advisory Committee Review  

Science Conference Proceedings (OSTI)

An advisory committee, composed of senior managers form industrial- sector companies and major manufacturing trade associations and representatives from appropriate educational institutions, meets semi-annually to review and advise the Oak Ridge Centers for Manufacturing Technology (ORCMT) on its economic security program. Individual papers have been indexed separately for the database.

NONE

1995-10-01T23:59:59.000Z

326

DOE - Office of Legacy Management -- California Institute of Technology -  

Office of Legacy Management (LM)

California Institute of Technology California Institute of Technology - CA 04 FUSRAP Considered Sites Site: California Institute of Technology (CA.04 ) Eliminated from consideration under FUSRAP Designated Name: Not Designated Alternate Name: None Location: Pasadena , California CA.04-1 Evaluation Year: 1989 CA.04-1 Site Operations: Research and development. CA.04-3 Site Disposition: Eliminated - NRC licensed facility CA.04-1 CA.04-3 Radioactive Materials Handled: None indicated Primary Radioactive Materials Handled: No Radiological Survey(s): None Indicated Site Status: Eliminated from consideration under FUSRAP Also see Documents Related to California Institute of Technology CA.04-1 - DOE Letter; Wallo to Carwell; Subject: List of California Sites; May 17, 1989 CA.04-3 - Aerospace Letter; Young to Wallo; Subject: Elimination

327

Alternatives to Industrial Cogeneration: A Pinch Technology Perspective  

E-Print Network (OSTI)

Pinch Technology studies across a broad spectrum of processes confirm that existing plants typically consume 15-40% more thermal energy than they should. Consequently, many cogeneration schemes have been based on thermal requirements and characteristics that are inconsistent with a properly designed and integrated process. Pinch Technology studies also frequently identify projects, based on conventional technology, that require lower capital outlays, achieve more rapid paybacks, and entail less risk than those associated with proposed cogeneration projects. Cogeneration schemes that survive the scrutiny of Pinch Technology are often smaller -- but invariably more cost-effective -- than those being contemplated or now being operated. Most importantly, only the results of such a study truly enable the process operator to evaluate the relative merits of cogeneration and other options for reducing operating costs. Recognizing that cogeneration will, at times, be an appropriate part of an industrial process, utilities have an opportunity to work with their industrial customers using Pinch Technology to insure that the alternatives are properly defined and well understood. Recent case study results show that such cooperation can often yield sounder capital investment decisions and lower operating costs for the industrial operator and load-building and load-retention opportunities for the utility.

Karp, A.

1988-09-01T23:59:59.000Z

328

Heat Pipe Technology for Energy Conservation in the Process Industry  

E-Print Network (OSTI)

Many applications for heat pipe technology have emerged in the relatively short time this technology has been known. Heat pipes incorporated in heat exchangers have been used in tens of thousands of successful heat recovery systems. These systems range from residential and commercial air-to-air heat exchangers to giant air preheaters for the process and utility industries. The heat pipe offers a unique, efficient heat transfer device that can recover valuable thermal energy resulting in reduced equipment and operating costs. Q-dot is the world leader in heat pipe technology and we have applied our expertise in engineering heat recovery products for the process industry. This paper discusses two such products, the heat pipe air preheater and waste heat recovery boiler. These heat pipe products have been used in many successful installations all over the world and some important, distinctive features of these systems will be presented.

Price, B. L. Jr.

1985-05-01T23:59:59.000Z

329

Solar technology and the insurance industry: Issues and applications  

DOE Green Energy (OSTI)

Today's insurance industry strongly emphasizes developing cost-effective hazard mitigation programs, increasing and retaining commercial and residential customers through better service, educating customers on their exposure and vulnerabilities to natural disasters, collaborating with government agencies and emergency management organizations, and exploring the use of new technologies to reduce the financial impact of disasters. Solar technology can be used in underwriting, claims, catastrophe response, loss control, and risk management. This report will address the above issues, with an emphasis on pre-disaster planning and mitigation alternatives. It will also discuss how energy efficiency and renewable technologies can contribute to reducing insurance losses and offer suggestions on how to collaborate with the utility industry and how to develop educational programs for business and consumers.

Deering, A.; Thornton, J. P.

1999-07-01T23:59:59.000Z

330

Whither Industrial Relations: Does It Have a Future in Post-Industrial Society  

E-Print Network (OSTI)

This article addresses the difficulties that industrial relations is experiencing both as a set of practices and as an intellectual tradition. It traces those difficulties to the changes in the basic structures of industrial ...

Piore, Michael J.

331

1992 DOE/Sandia crystalline photovoltaic technology project review meeting  

DOE Green Energy (OSTI)

This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

Maish, A. [ed.

1992-07-01T23:59:59.000Z

332

DOE Announces $1.4 Million for Industry-Laboratory Teams to Study Using  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces $1.4 Million for Industry-Laboratory Teams to Study Announces $1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen DOE Announces $1.4 Million for Industry-Laboratory Teams to Study Using Nuclear Energy for Clean Hydrogen August 14, 2006 - 8:43am Addthis Projects Led by Electric Transportation Applications and GE Global Research WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it intends to fund approximately $1.4 million (subject to negotiation) for two projects to partner with industry to study the economic feasibility of producing hydrogen at existing commercial nuclear power plants. Teams selected by DOE for funding will be headed by Electric Transportation Applications and GE Global Research. Both teams include DOE national laboratories and nuclear utility companies as partners.

333

DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP Studies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8.3 Million to Nuclear Industry Consortia for GNEP 8.3 Million to Nuclear Industry Consortia for GNEP Studies DOE Awards $18.3 Million to Nuclear Industry Consortia for GNEP Studies March 28, 2008 - 11:49am Addthis Today's announcement follows DOE's award of $16 million last September WASHINGTON, DC - The U.S. Department of Energy (DOE) this week awarded $18.3 million to four industry teams to further develop plans for an initial nuclear fuel recycling center and advanced recycling reactor as part of the Global Nuclear Energy Partnership (GNEP). Today's awards include $5.9 million to EnergySolutions; $5.7 million to the International Nuclear Recycling Alliance, led by AREVA and Mitsubishi Heavy Industries; $5.5 million to General Electric-Hitachi; and $1.3 million to General Atomics. These firms will further develop detailed studies that build on

334

Federal Laboratory Technology Transfer  

Science Conference Proceedings (OSTI)

... Department of Energy (DOE) ... and business development involved in successful technology transfer. 8. Government-industry interactions. ...

2012-11-14T23:59:59.000Z

335

TransForum v7n1 - Argonne Leading DOE's Plug-In Hybrid Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

hybrid electric vehicles The U.S. Department of Energys (DOE's) FreedomCAR and Vehicle Technologies Program recently designated Argonne National Laboratory as DOE's lead...

336

AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS  

E-Print Network (OSTI)

Region IX Appropriate Energy Technology Grants Programl___A_THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM:the DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM:

Lucarelli, Bart

2013-01-01T23:59:59.000Z

337

DOE Glass Publications Portal  

Office of Scientific and Technical Information (OSTI)

coated glass products. The Glass IOF is sponsored by the Department of Energy (DOE) Energy Efficiency & Renewable Energy (EERE) Industrial Technologies Program (ITP) which...

338

Information Technology Standards Choices and Industry Structure Outcomes: The Case of the U.S. Home Mortgage Industry  

Science Conference Proceedings (OSTI)

Vertical IS standards prescribe data structures and definitions, document formats, and business processes for particular industries, in contrast to generic information technology (IT) standards, which concern IT characteristics applicable to many industries. ... Keywords: Adoption, Effects Of Standards, Implementation, Industry Structure, Industry-Level Effects, Is Standards, It Choices, Vertical Standards

Rolf T. Wigand; Charles W. Steinfield

2005-11-01T23:59:59.000Z

339

New Membrane Technology Boosts Efficiency in Industrial Gas Processes  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Membrane Technology and Membrane Technology and Research, Inc. (MTR), based in Menlo Park, CA, is a privately- owned developer, manufacturer, and supplier of customized membrane process solutions. Currently, the company's principal membrane products are * VaporSep® systems to remove organic vapors from air and nitrogen * NitroSep TM and fuel gas conditioning systems for natural gas treatment * Hydrogen recovery systems for refinery and other applications MTR's current R&D is extending use of membranes to carbon sequestration and biofuels separations. www.mtrinc.com New Membrane Technology Boosts Efficiency in Industrial Gas Processes Challenge Membrane technology was first commercialized in the 1960s and 1970s for well-known applications such as water filtration

340

Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the Cement Sector  

E-Print Network (OSTI)

St. Louis, Missouri. Energy Technology Support Unit (ETSU),de Beer, 1997. "Energy Efficient Technologies in Industry -and MAIN, 1993. Energy Technology in the Cement Industrial

Sathaye, J.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

342

The photovoltaic manufacturing technology project: A government/industry partnership  

DOE Green Energy (OSTI)

The Photovoltaic Manufacturing Technology (PVMaT) project is a government/industry photovoltaic manufacturing research and development (R&D) project composed of partnerships between the federal government (through the US Department of Energy) and members of the US photovoltaic (PV) industry. It is designed to assist the US PV industry in improving manufacturing processes, accelerating manufacturing cost reductions for PV modules, increasing commercial product performance, and generally laying the groundwork for a substantial scale-up of US-based PV manufacturing plant capabilities. The project is being carried out in three separate phases, each focused on a specific approach to solving the problems identified by the industrial participants. These participants are selected through competitive procurements. Furthermore, the PVMaT project has been specifically structured to ensure that these PV manufacturing R&D subcontract awards are selected with no intention of either directing funding toward specific PV technologies (e.g., amorphous silicon, polycrystalline thin films, etc.), or spreading the awards among a number of technologies (e.g., one subcontract in each area). Each associated subcontract under any phase of this project is, and will continue to be, selected for funding on its own technical and cost merits. Phase 1, the problem identification phase, was completed early in 1991. Phase 2 is now under way. This is the solution phase of the project and addresses problems of specific manufacturers. The envisioned subcontracts under Phase 2 may be up to three years in duration and will be highly cost-shared between the US government and US industrial participants. Phase 3, is also under way. General issues related to PV module development will be studied through various teaming arrangements. 25 refs.

Mitchell, R.L.; Witt, C.E.; Mooney, G.D.

1991-12-01T23:59:59.000Z

343

Jump-Start Your Plant's Energy Savings with Quick PEP, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program Quick Plant Energy Profiler (Quick PEP) can help industrial plants identify energy use and find ways to save money and energy.

Not Available

2008-12-01T23:59:59.000Z

344

Improve Motor System Efficiency with MotorMaster+, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program MotorMaster+ software tool aids industrial plants with finding energy-efficient motor replacement options and managing motor systems.

Not Available

2008-12-01T23:59:59.000Z

345

AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report  

DOE Green Energy (OSTI)

The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

Petersen, G.; Bair, K.; Ross, J. [eds.

1994-03-01T23:59:59.000Z

346

Program on Technology Innovation: Industrial Electrotechnology Development Opportunities  

Science Conference Proceedings (OSTI)

With the industrial sector accounting for about one-third of all energy consumed, continued development of new electrotechnologies will result in improved energy utilization, gross domestic product (GDP) growth, and job creation in this sector. Customers need to be made aware of the operational benefits of energy-efficient technologies, including improved process throughput and quality, reduced energy costs, ease of environmental compliance, enhanced productivity, and greater profits. Utilities can help ...

2009-07-09T23:59:59.000Z

347

An Assessment of carbon reduction technology opportunities in the petroleum refining industry.  

Science Conference Proceedings (OSTI)

The refining industry is a major source of CO{sub 2} emissions in the industrial sector and therefore in the future can expect to face increasing pressures to reduce emission levels. The energy used in refining is impacted by market dictates, crude quality, and environmental regulations. While the industry is technologically advanced and relatively efficient opportunities nevertheless exist to reduce energy usage and CO{sub 2} emissions. The opportunities will vary from refinery to refinery and will necessarily have to be economically viable and compatible with each refiner's strategic plans. Recognizing the many factors involved, a target of 15-20% reduction in CO{sub 2} emissions from the refining sector does not appear to be unreasonable, assuming a favorable investment climate.

Petrick, M.

1998-09-14T23:59:59.000Z

348

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis  

DOE Green Energy (OSTI)

NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

Young, K. R.; Augustine, C.; Anderson, A.

2010-02-01T23:59:59.000Z

349

DOE Joint Genome Institute: Next Gen Sequencing Technology Pinpoint  

NLE Websites -- All DOE Office Websites (Extended Search)

February 12, 2009 February 12, 2009 Next Gen Sequencing Technology Pinpoint "On-Off Switches" in Genomes WALNUT CREEK, CA-Scientists from the U.S. Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, and the University of California, San Diego have developed a set of molecular tools that provide important insight into the complex genomes of multicellular organisms. The strategy promises to clarify the longstanding mystery of the role played by vast stretches of DNA sequence that do not code for the functional units-genes-that nevertheless may have a powerful regulatory influence. The research is described in the 12 February edition of the journal Nature. DOE bioenergy researchers have an interest in identifying these regulatory

350

Improve Overall Plant Efficiency and Fuel Use, Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program combined heat and power (CHP) tool can help identify energy savings in gas turbine-driven systems.

2008-12-01T23:59:59.000Z

351

ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms  

NLE Websites -- All DOE Office Websites (Extended Search)

SUMMER* 2000 SUMMER* 2000 ALSO: ISRC Technologies Meet The Challenge RIM Industry Booms SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery SMART MACHINES The Robotics Revolution ALSO: Smart Scalpel Detects Cancer Cells Shrinking Prostate Glands Without Surgery A QUARTERLY RESEARCH & DEVELOPMENT JOURNAL VOLUME 2, NO. 2 S A N D I A T E C H N O L O G Y ON THE COVER: MARV (Miniature Autonomous Robotic Vehicle) is one of the world's smallest autonomous vehicles, containing all necessary power, sensors, computers, and controls on board. MARV is a three-year-old technology measuring one cubic inch in size. (Photo by Randy Montoya) Sandia Technology is a quarterly journal published by Sandia National Laboratories. Sandia is a multiprogram

352

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cells Hydrogen and Fuel Cells Technologies Manufacturing Sub-program Nancy L. Garland, Ph.D. U.S Department of Energy NREL H 2 /FC Manufacturing R&D Workshop Washington, D.C. August 11-12, 2011 * Goal: Research, develop and demonstrate technologies and processes that reduce the cost of components and systems for fuel cells, and hydrogen production, delivery, and storage; grow the domestic supplier base. * Challenge: Move hydrogen and fuel cells from laboratory-scale production into high-volume, low-cost manufacturing. 2 Goal of Manufacturing sub-program U.S. DOE 8/10/11 3 Budget EMPHASIS  Develop novel, robust, ultrasonic bonding processes for MEAs to reduce MEA-pressing cycle time  Develop real-time, online measurement tools to reduce/eliminate ex situ

353

Sandia/DOE geothermal drilling and completion technology development program  

DOE Green Energy (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of geothermal energy resources. Technological deficiencies in rotary drilling techniques are evidenced when drilling geothermal wells. The Division of Geothermal Energy (DGE) of the US Department of Energy (DOE) has initiated a program aimed at developing new drilling and completion techniques for geothermal wells. The goals of this program are to reduce well costs 25% by 1982 and 50% by 1986. Sandia Laboratories has managed this technology development program since October 1977, and this paper presents an overview of the program. A statement of program goals and structure is given. The content of the FY-79 program is presented and recent results of R and D projects are given. Plans for development of an advanced drilling and completion system are discussed.

Barnette, J.H.

1979-01-01T23:59:59.000Z

354

What Does Industry Expect From An Electrical Utility  

E-Print Network (OSTI)

The electric utility industry is an important supplier to Union Carbide and as such must become a proactive participant in our quality programs which are aimed at continuous improvement in everything we do. The essential ingredients in the supplier quality programs we are developing include: 1. Performance and Delivery, 2. Conformance, 3. Responsiveness, 4. Communications, 5. Supplier Quality Efforts. The electric utility supplying each of our locations is our partner at that location. We do not have the same degree of flexibility to change electricity suppliers that we might have with other suppliers of goods and services. In order for our partnerships to work we must get to know each other better. We need to understand the other guys problems and then find ways to do business that are mutually beneficial to both of us. At Union Carbide our total quality process has started at the top of the corporation and is working its way throughout the organization. Our supplier quality programs are now beginning to take shape and we are relying upon our electric utility suppliers to become active in the final design and implementation of these programs.

Jensen, C. V.

1989-09-01T23:59:59.000Z

355

New techniques and products solve industry problems. [New technology available for the natural gas pipeline industry  

SciTech Connect

Recently introduced technology advances in data handling, manipulation and delivery; new gas and storage marketing products; a nonintrusive pipe-crack arrester; and responsive pipe-coating mill construction show promise for cutting industry costs by increasing efficiency in pipe line construction, repair, rehabilitation, and operations. The products, services and methods described in this new technology survey include: a PC-compatible dataserver that requires no user programming; flexible, responsive gas transportation scheme; evaluation of possible further uses on brittle transmission lines for fiberglass-reinforced resin composite; new multilayer epoxy PE coating mill in Corinth, Greece, near areas where large pipe line construction and rehabilitation projects are contemplated.

Bullion, L.

1993-09-01T23:59:59.000Z

356

Aluminum Industry of the Future - TMS  

Science Conference Proceedings (OSTI)

Jun 30, 2008 ... The U. S. DOE's Industrial Technologies Program provides funding for projects that address industry priorities for energy and the environment.

357

Frying Technology and PracticesChapter 12 Regulatory Requirements for Frying Industryg Industry  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 12 Regulatory Requirements for Frying Industry g Industry Food Science Health Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Nutrition Press Do

358

DOE Technology Transfer Website Features New Tool to Search Tech Transfer  

Office of Scientific and Technical Information (OSTI)

Technology Transfer Website Features New Tool to Search Tech Transfer Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories December 3, 2012 DOE Technology Transfer Website Features New Tool to Search Tech Transfer Information from DOE National Laboratories The Department of Energy (DOE) Technology Transfer website has a new search feature that for the first time allows searching of technology transfer information across the DOE national laboratories. The new tool enables users to search all of DOE's technology transfer information, including inventions, patents and other applied research, available from DOE's national laboratories in real time. Using web-crawling technology, the search capability allows users to enter a single query for a technology transfer term; the search feature returns a

359

REVIEW OF INDUSTRIES AND GOVERNMENT AGENCIES FOR TECHNOLOGIES APPLICABLE TO DEACTIVATION AND DECOMMISSIONING OF NUCLEAR WEAPONS FACILITIES  

Science Conference Proceedings (OSTI)

The Deactivation and Decommissioning Focus Area's (DDFA's) mission is to develop, demonstrate, and deploy improved deactivation and decommissioning (D&D) technologies. This mission requires that emphasis be continually placed on identifying technologies currently employed or under development in other nuclear as well as nonnuclear industries and government agencies. In support of DDFA efforts to clean up the U.S. Department of Energy's (DOE's) radiologically contaminated surplus facilities using technologies that improve worker safety, reduce costs, and accelerate cleanup schedules, a study was conducted to identify innovative technologies developed for use in nonnuclear arenas that are appropriate for D&D applications.

Reilkoff, T. E.; Hetland, M. D.; O'Leary, E. M.

2002-02-25T23:59:59.000Z

360

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 DOE Hydrogen and 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting to someone by E-mail Share Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Facebook Tweet about Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Twitter Bookmark Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting on Google Bookmark Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

NREL: Technology Transfer - DOE-NREL Launch Mid-size Turbine ...  

DOE-NREL Launch Mid-size Turbine Development Project October 30, 2009. Since the early 90s, the wind energy industry has experienced substantial growth in ...

362

Program on Technology Innovation: Advanced Information Technology Requirements for the Electric Power Industry  

Science Conference Proceedings (OSTI)

The EPRI Advanced Information Technology Requirements for the Electric Power Industry workshop was held September 1617, 2008, in Knoxville, Tennessee. It was attended by 15 senior information technology (IT) professionals representing various investor-owned utilities, municipal utilities, rural cooperatives, and regional transmission organizations (RTOs), as well as the Edison Electric Institute and the U.S. Department of Energy. The workshop provided a forum to identify needs and opportunities for indu...

2009-08-24T23:59:59.000Z

363

Program on Technology Innovation: Carbon Nanotube Technology for the Electric Power Industry  

Science Conference Proceedings (OSTI)

A couple decades ago, a new molecular form of carbon exhibiting extraordinary properties was discovered. This resulted in a frenzy of basic and applied research, and tremendous strides have been made. The technology that ensued is still relatively immature, but there is the prospect that the technology may be used in the future for a wide range of applications in the electric power industry. In fact, the three new materials discussed in this report (fullerenes, nanotubes, and graphene) have the potential...

2011-11-22T23:59:59.000Z

364

Program on Technology Innovation: Technology R&D Strategy for the Electric Power Industry: "Wild Cards"  

Science Conference Proceedings (OSTI)

To address the many challenges facing the electric power industry during the next 20 years, an effective process of technology R&D planning is needed. To augment recently completed scenario-based planning, this report identifies the technology and R&D needs that result from 21 additional institutional, political, financial, technical, or social changes ("wild cards") not addressed in the prior scenarios project (see EPRI Report 1014385). This report also identifies key R&D priorities that occur in multip...

2008-03-14T23:59:59.000Z

365

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: Information and communication technology in industry, Wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

366

Wireless communications deployment in industry: a review of issues, options and technologies  

Science Conference Proceedings (OSTI)

Present basis of knowledge management is the efficient share of information. The challenges that modern industrial processes have to face are multimedia information gathering and system integration, through large investments and adopting new technologies. ... Keywords: information and communication technology in industry, wireless networking technologies and industrial application

Esteban Egea-Lopez; Alejandro Martinez-Sala; Javier Vales-Alonso; Joan Garcia-Haro; Josemaria Malgosa-Sanahuja

2005-01-01T23:59:59.000Z

367

Technologies and Policies to Improve Energy Efficiency in Industry  

SciTech Connect

The industrial sector consumes nearly 40% of annual global primary energy use and is responsible for a similar share of global energy-related carbon dioxide (CO2) emissions. Many studies and actual experience indicate that there is considerable potential to reduce the amount of energy used to manufacture most commodities, concurrently reducing CO2 emissions. With the support of strong policies and programs, energy-efficient technologies and measures can be implemented that will reduce global CO2 emissions. A number of countries, including the Netherlands, the UK, and China, have experience implementing aggressive programs to improve energy efficiency and reduce related CO2 emissions from industry. Even so, there is no silver bullet and all options must be pursued if greenhouse gas emissions are to be constrained to the level required to avoid significant negative impacts from global climate change.

Price, Lynn; Price, Lynn

2008-03-01T23:59:59.000Z

368

Plant Energy Profiler Tool for the Chemicals Industry (ChemPEP Tool), Software Tools for Industry, Industrial Technologies Program (ITP) (Fact Sheet)  

SciTech Connect

This fact sheet describes how the Industrial Technologies Program ChemPEP Tool can help chemical plants assess their plant-wide energy consumption.

2008-12-01T23:59:59.000Z

369

NREL: Technology Transfer - DOE Announces Plans for Future ...  

Technologies can include renewable energy and energy efficiency technologies, as well as advanced electricity transmission and distribution technologi ...

370

Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction  

NLE Websites -- All DOE Office Websites (Extended Search)

DOD-DOE Aircraft DOD-DOE Aircraft Petroleum Use Reduction Workshop to someone by E-mail Share Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Facebook Tweet about Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Twitter Bookmark Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Google Bookmark Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Delicious Rank Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on Digg Find More places to share Fuel Cell Technologies Office: DOD-DOE Aircraft Petroleum Use Reduction Workshop on AddThis.com... Publications Program Publications Technical Publications Educational Publications

371

Biomass power industry: Assessment of key players and approaches for DOE and industry interaction. Final report  

DOE Green Energy (OSTI)

This report reviews the status of the US biomass power industry. The topics of the report include current fuels and the problems associated with procuring, transporting, preparing and burning them, competition from natural gas projects because of the current depressed natural gas prices, need for incentives for biomass fueled projects, economics, market potential and expansion of US firms overseas.

None

1993-07-01T23:59:59.000Z

372

Forest products industry of the future: Building a sustainable technology advantage for America`s forest products industry  

Science Conference Proceedings (OSTI)

The US forest, wood, and paper industry ranks as one of the most competitive forest products industries in the world. With annual shipments valued at nearly $267 billion, it employs over 1.3 million people and is currently among the top 10 manufacturing employers in 46 out of 50 states. Retaining this leadership position will depend largely on the industry`s success in developing and using advanced technologies. These technologies will enable manufacturing plants and forestry enterprises to maximize energy and materials efficiency and reduce waste and emissions, while producing high-quality, competitively priced wood and paper products. In a unique partnership, leaders in the forest products industry have teamed with the US Department of Energy`s Office of Industrial Technologies (OIT) to encourage cooperative research efforts that will help position the US forest products industry for continuing prosperity while advancing national energy efficiency and environmental goals.

NONE

1999-02-01T23:59:59.000Z

373

Test results, Industrial Solar Technology parabolic trough solar collector  

DOE Green Energy (OSTI)

Sandia National Laboratories and Industrial Solar Technology are cost-sharing development of advanced parabolic trough technology. As part of this effort, several configurations of an IST solar collector were tested to determine the collector efficiency and thermal losses with black chrome and black nickel receiver selective coatings, combined with aluminized film and silver film reflectors, using standard Pyrex{reg_sign} and anti-reflective coated Pyrex{reg_sign} glass receiver envelopes. The development effort has been successful, producing an advanced collector with 77% optical efficiency, using silver-film reflectors, a black nickel receiver coating, and a solgel anti-reflective glass receiver envelope. For each receiver configuration, performance equations were empirically derived relating collector efficiency and thermal losses to the operating temperature. Finally, equations were derived showing collector performance as a function of input insolation value, incident angle, and operating temperature.

Dudley, V.E. [EG and G MSI, Albuquerque, NM (United States); Evans, L.R.; Matthews, C.W. [Sandia National Labs., Albuquerque, NM (United States)

1995-11-01T23:59:59.000Z

374

DOE/NETL's Mercury Emissions Control Technology R&D Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Mercury Emissions Control Mercury Emissions Control Technology R&D Program LRC and Lignite Industry Meeting August 27-28, 2002 Bismarck, ND Thomas J. Feeley, III, Product Manager Innovations for Existing Plants LigniteResearch_TJF,082702 Presentation Outline * About NETL * IEP Program * Hg Background * Hg and lignite coals * Hg Control R&D LigniteResearch_TJF,082702 About NETL LigniteResearch_TJF,082702 * One of DOE's 17 national labs * Government owned / operated * Sites in: - Pennsylvania - West Virginia - Oklahoma - Alaska * More than 1,100 federal and support contractor employees National Energy Technology Laboratory LigniteResearch_TJF,082702 Electric Power Using Coal Clean Liquid Fuels Natural Gas Coal Production Environmental Control V21 Next Generation Carbon Sequestration Exploration & Production Refining &

375

Advanced Manufacturing Technology Consortia (AMTech) ...  

Science Conference Proceedings (OSTI)

... approach, such as industry, technology, or the ... Are DOE national laboratories (federally funded ... centers, FFRDCs) or energy lab contractors eligible ...

2013-08-05T23:59:59.000Z

376

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

377

Fostering a Renewable Energy Technology Industry: An InternationalComparison of Wind Industry Policy Support Mechanisms  

SciTech Connect

This article examines the importance of national and sub-national policies in supporting the development of successful global wind turbine manufacturing companies. We explore the motivations behind establishing a local wind power industry, and the paths that different countries have taken to develop indigenous large wind turbine manufacturing industries within their borders. This is done through a cross-country comparison of the policy support mechanisms that have been employed to directly and indirectly promote wind technology manufacturing in twelve countries. We find that in many instances there is a clear relationship between a manufacturer's success in its home country market and its eventual success in the global wind power market. Whether new wind turbine manufacturing entrants are able to succeed will likely depend in part on the utilization of their turbines in their own domestic market, which in turn will be influenced by the annual size and stability of that market. Consequently, policies that support a sizable, stable market for wind power, in conjunction with policies that specifically provide incentives for wind power technology to be manufactured locally, are most likely to result in the establishment of an internationally competitive wind industry.

Lewis, Joanna; Wiser, Ryan

2005-11-15T23:59:59.000Z

378

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

NLE Websites -- All DOE Office Websites (Extended Search)

Arrangements Arrangements To see the content of this image, Get Adobe Flash player . Mouse over map to see Laboratory locations and websites. See larger map of DOE National Laboratories. During 2008 alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more than 2800 user facility agreements, and more than 6,000 licenses. They also reported more than 1400 inventions, filing more than 900 patent applications. They were issued nearly 400 patents and logged more than 561,050 downloads of their copyrighted open-source software. Collaborative Research Cooperative Research and Development (CRADA) arrangements allow for collaborative work and either cost-sharing or funds to be provided by the

379

AN ANALYSIS OF THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGY SMALL GRANTS PROGRAM: METHODS AND RESULTS  

E-Print Network (OSTI)

THE ENERGY IMPACTS OF THE DOE APPROPRIATE ENERGY TECHNOLOGYmanufacturer, or otherwise, does not necessarily constituteTHE ENERGY IMPACTS of the DOE APPROPRIATE ENERGY TECHNOLOGY

Lucarelli, Bart

2013-01-01T23:59:59.000Z

380

Using federal technology policy to strength the US microelectronics industry  

Science Conference Proceedings (OSTI)

A review of US and Japanese experiences with using microelectronics consortia as a tool for strengthening their respective industries reveals major differences. Japan has established catch-up consortia with focused goals. These consortia have a finite life targeted from the beginning, and emphasis is on work that supports or leads to product and process-improvement-driven commercialization. Japan`s government has played a key role in facilitating the development of consortia and has used consortia promote domestic competition. US consortia, on the other hand, have often emphasized long-range research with considerably less focus than those in Japan. The US consortia have searched for and often made revolutionary technology advancements. However, technology transfer to their members has been difficult. Only SEMATECH has assisted its members with continuous improvements, compressing product cycles, establishing relationships, and strengthening core competencies. The US government has not been a catalyst nor provided leadership in consortia creation and operation. We propose that in order to regain world leadership in areas where US companies lag foreign competition, the US should create industry-wide, horizontal-vertical, catch-up consortia or continue existing consortia in the six areas where the US lags behind Japan -- optoelectronics, displays, memories, materials, packaging, and manufacturing equipment. In addition, we recommend that consortia be established for special government microelectronics and microelectronics research integration and application. We advocate that these consortia be managed by an industry-led Microelectronics Alliance, whose establishment would be coordinated by the Department of Commerce. We further recommend that the Semiconductor Research Corporation, the National Science Foundation Engineering Research Centers, and relevant elements of other federal programs be integrated into this consortia complex.

Gover, J.E.; Gwyn, C.W.

1994-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

The role of advanced technology in the future of the power generation industry  

Science Conference Proceedings (OSTI)

This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

Bechtel, T.F.

1994-10-01T23:59:59.000Z

382

Fuel Cell Technologies Office: DOE Fuel Cell Pre-Solicitation Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Pre-Solicitation Workshop was held on March 16-17, 2010, to discuss the most relevant fuel cell technology research and development topics in fuel cells and fuel cell systems appropriate for government funding in stationary and transportation applications as well as cross-cutting stack and balance of plant component technology. Fuel Cell Pre-Solicitation Workshop was held on March 16-17, 2010, to discuss the most relevant fuel cell technology research and development topics in fuel cells and fuel cell systems appropriate for government funding in stationary and transportation applications as well as cross-cutting stack and balance of plant component technology. This public workshop, held at the Sheraton Denver West Hotel in Lakewood, Colorado, was attended by more than 150 researchers, fuel cell developers, and other industry representatives. An additional 50 joined the presentations via webinar. Plenary overview presentations were followed by facilitated breakout group discussions, organized into five general topic areas: (1) catalysts, (2) MEAs, components and integration, (3) high-temperature (SOFC) system and balance of plant, (4) low-temperature fuel cell system balance of plant and fuel processors, and (5) long-term innovative technologies. The input from workshop participants and from the DOE Request for Information will be used to assist in the development of potential Fuel Cell Funding Opportunity Announcements in the future.

383

Building Technologies Office: Exceptions to DOE Rules and Regulations  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Use to Save Money. Learn More. News DOE Issues Notice of Proposed Rulemaking for Commercial Refrigeration Equipment Energy Conservation Standard August 29, 2013 DOE Issues...

384

Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE Launches JOBS and DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) to someone by E-mail Share Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) on Facebook Tweet about Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) on Twitter Bookmark Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) on Google Bookmark Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) on Delicious Rank Fuel Cell Technologies Office: DOE Launches JOBS and Economic Impacts of Fuel Cells (JOBS FC) Analysis Model (Text Version) on Digg

385

Fuel Cell Technologies Office: DOE-EERE/NIST Joint Workshop on...  

NLE Websites -- All DOE Office Websites (Extended Search)

DOE-EERENIST Joint Workshop on Combinatorial Materials Science for Applications in Energy to someone by E-mail Share Fuel Cell Technologies Office: DOE-EERENIST Joint Workshop on...

386

Reversal of fortune for industry in DOE low-level waste decision  

SciTech Connect

Thanks to the Energy Department, states have triumphed over industry groups in a battle over the disposition of surcharge money collected for low-level radioactive waste disposal. In a March 31 announcement, the Energy Department ruled against industry groups seeking to prevent certain states from receiving partial rebates of surcharge money collected by DOE from generators of low-level radioactive waste. The rebated money would have gone back to generators had DOE sided with the industry groups, which included the Edison Electric Institute. The surcharge issue became controversial when some states decided to sign 18-month contracts with South Carolina to continue sending waste shipments to an existing disposal site at Barnwell, SC. South Carolina was the only one of three states with an existing low-level disposal site to keep it open to outside shipments; Nevada and Washington closed their disposal sites in June 1992 to all states outside their regional compacts. Industry groups charged that the 18-month contracts for disposal at Barnwell did not meet the statutory requirements for states to receive the surcharge rebates. They maintained the law effectively required states to develop new disposal capacity, rather than continuing to rely on Barnwell or the other two existing sites under a limited duration contract. DOE rejected that reasoning, saying that while the law was designed to encourage new capacity, it did not require it for compliance with the January 1993 milestone.

Lobsenz, G.

1994-04-06T23:59:59.000Z

387

Work for the DOE Office of Power Technology - Nuclear Engineering Division  

NLE Websites -- All DOE Office Websites (Extended Search)

of Power of Power Technology Capabilities Sensors and Instrumentation and Nondestructive Evaluation Overview Energy System Applications Overview DOE Office of Fossil Energy DOE Office of Transportation Technologies Ion-mobility Spectrometry Based NOx Sensor DOE Office of Power Technology Work for Others Safety-Related Applications Homeland Security Applications Biomedical Applications Millimiter Wave Group Papers Other NPNS Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Sensors and Instrumentation and Nondestructive Evaluation Energy System Applications Bookmark and Share DOE Office of Power Technology NDE for Ceramics in Microturbines The concept of distributed energy systems using small gas turbines (< 500

388

NREL: Technology Transfer - DOE-NREL Launch Mid-size Turbine ...  

National Renewable Energy Laboratory Technology Transfer DOE-NREL Launch Mid-size Turbine Development Project October 30, 2009. Since the early 90s, the wind energy ...

389

Prototype Detector and Chip Technology SLAC | U.S. DOE Office...  

Office of Science (SC) Website

Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32Forrestal Building 1000 Independence...

390

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

DOE Green Energy (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

391

Estimating energy-augmenting technological change in developing country industries  

E-Print Network (OSTI)

trend due to the constant energy price bias assumption. ThisIndian industries, Energy price bias (standard error)industries, 19801997 Energy price bias (standard error)

Sanstad, Alan H.; Roy, Joyashree; Sathaye, Jayant A.

2006-01-01T23:59:59.000Z

392

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Renewable Energy Technology. Proceedings of the 2003Technological Issues in Technology Transfer, Special Reportof Renewable Energy Technologies: Wind Power in the United

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

393

Oil-Free Centrifugal Hydrogen Compression Technology Demonstration - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report Hooshang Heshmat Mohawk Innovative Technology, Inc. (MiTi) 1037 Watervliet Shaker Road Albany, NY 12205 Phone: (518) 862-4290 Email: HHeshmat@miti.cc DOE Managers HQ: Erika Sutherland Phone: (202) 586-3152 Email: Erika.Sutherland@ee.doe.gov GO: Katie Randolph Phone: (720) 356-1759 Email: Katie.Randolph@go.doe.gov Contract Number: DE-FG36-08GO18060 Subcontractor: Mitsubishi Heavy Industries, Ltd, Compressor Corporation, Hiroshima, Japan Project Start Date: September 25, 2008 Project End Date: May 30, 2013 Fiscal Year (FY) 2012 Objectives Design a reliable and cost-effective centrifugal compressor for hydrogen pipeline transport and delivery: Eliminate sources of oil/lubricant contamination * Increase efficiency by using high rotational speeds *

394

U.S. and Chinese experts perspectives on IGCC technology for Chinese electric power industry  

SciTech Connect

Although China is a very large and populous nation, and has one of the longest known histories in the world, it has only lately begun to seek its place among modern industrial nations. This move, precipitated by the government`s relatively recently adopted strategic goals of economic development, societal reform and promotion of engagement with other industrial nations, has brought to the fore the serious situation in which the Chinese electric power industry finds itself. Owing to the advanced average age of generation facilities and the technology used in them, serious expansion and modernization of this industry needs to take place, and soon, if it is to support the rapid industrial development already taking place in China. While China does have some oil and gas, coal constitutes its largest indigenous energy supply, by far. Coal has been mined and utilized for years in China. It is used directly to provide heat for homes, businesses and in industrial applications, and used to raise steam for the generation of electricity. The presently dominant coal utilization methods are characterized by low or marginal efficiencies and an almost universal lack of pollution control equipment. Because there is so much of it, coal is destined to be China`s predominant source of thermal energy for decades to come. Realizing these things--the rapidly increasing demand for more electric power than China presently can produce, the need to raise coal utilization efficiencies, and the corresponding need to preserve the environment--the Chinese government moved to commission several official working organizations to tackle these problems.

Hsieh, B.C.B. [Dept. of Energy, Morgantown, WV (United States). Federal Energy Technology Center; Wang Yingshi [Chinese Academy of Sciences, Beijing (China). Inst. of Engineering Thermophysics

1997-11-01T23:59:59.000Z

395

NREL: Technology Transfer - DOE Supports and Expands NREL's ...  

Commercial partners will share 50% or more of project development costs, ... outside industry can submit proposals for commercially beneficial project ...

396

NREL: Technology Transfer - DOE Announces $30 Million to Small ...  

... buildings, fuel cells and vehicles, geothermal, industrial, solar, wind, nuclear, fossil, and electricity delivery and energy reliability. ...

397

The impact of manufacturing offshore on technology development paths in the automotive and optoelectronics industries  

E-Print Network (OSTI)

This dissertation presents a two-case study of the impact of manufacturing offshore on the technology trajectory of the firm and the industry. It looks in particular at the automotive and optoelectronics industries. The ...

Fuchs, Erica R. H. (Erica Renee H.), 1977-

2006-01-01T23:59:59.000Z

398

Defying value-shift : how incumbents regain values in the industry with new technologies  

E-Print Network (OSTI)

Historically, incumbent assembly firms with unquestionable strong positions in such industries as the automobile, consumer electronics, computer and mobile phone industries, have lost power when new technology is introduced; ...

Kuramoto, Yukari

2010-01-01T23:59:59.000Z

399

Technology strategy of competing with industrial design in markets of high-tech consumer products  

E-Print Network (OSTI)

This thesis explores the role of industrial design in the formulation of technology strategy for certain firms that compete in markets of high-tech consumer products. The initial intuition is that the role of industrial ...

Mak, Arthur T

2009-01-01T23:59:59.000Z

400

DOE Technology Transfer Website Features New Tool to Search Tech...  

Office of Scientific and Technical Information (OSTI)

into new, high-paying jobs for America's families. The position was created by the Energy Policy Act of 2005. OSTI, within the DOE Office of Science, is the DOE office that...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Microsoft PowerPoint - 130709 DOE-NETL CO2 Capture Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

an amine- based post-combustion capture technology for CO 2 capture from coal-fired power plant flue gas DOE funding award DE-FE0007453 2013 NETL CO 2 Capture Technology Meeting...

402

Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Share this resource Send a link to Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project Review Meeting to someone by E-mail Share Fuel Cell Technologies Office:...

403

DOE-Supported Technology Passes Scale-Up Test Converting CO DOE-Sponsored Research Improves Gas Turbine Performance  

NLE Websites -- All DOE Office Websites (Extended Search)

into Valuable Materials into Valuable Materials Publications News Release Release Date: June 17, 2013 DOE-Sponsored Research Improves Gas Turbine Performance DOE Lab Receives Award for Work on Drilling Technology An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy. Photo courtesy of Mikro Systems, Inc. Washington, D.C. - An innovative airfoil manufacturing technology that promises to improve the performance of state-of-the-art gas turbines has been commercialized through research sponsored by the U.S. Department of Energy (DOE). The technology - which is expected to contribute to cleaner, more reliable and affordable domestic energy production as well as creating new

404

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Efficiency and Clean Energy Technologies, 2000. ScenariosProgram, 2007. Energy Technology Solutions: Public-PrivatePrice Environmental Energy Technologies Division March 2008

Price, Lynn

2008-01-01T23:59:59.000Z

405

A Global Technology Roadmap on Carbon Capture and Storage in Industry |  

Open Energy Info (EERE)

A Global Technology Roadmap on Carbon Capture and Storage in Industry A Global Technology Roadmap on Carbon Capture and Storage in Industry Jump to: navigation, search Tool Summary LAUNCH TOOL Name: A Global Technology Roadmap on Carbon Capture and Storage in Industry Agency/Company /Organization: United Nations Industrial Development Organization Focus Area: Industry Topics: Pathways analysis, Technology characterizations Resource Type: Publications Website: www.unido.org/index.php?id=1000821 References: A Global Technology Roadmap on Carbon Capture and Storage in Industry[1] CO2 Capture and Storage (CCS) is a key technology option for greenhouse gas (GHG) emissions mitigation. Recent studies suggest that CCS would contribute 19% of the total global mitigation that is needed for halving global GHG emissions by 2050. Overview

406

Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an  

NLE Websites -- All DOE Office Websites (Extended Search)

4: August 26, 4: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? to someone by E-mail Share Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Facebook Tweet about Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Twitter Bookmark Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Google Bookmark Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Delicious Rank Vehicle Technologies Office: Fact #794: August 26, 2013 How Much Does an Average Vehicle Owner Pay in Fuel Taxes Each Year? on Digg

407

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

408

Fuel Cell Technologies Office: DOE Hydrogen Delivery High-Pressure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

409

Fuel Cell Technologies Office: DOE Hydrogen Transition Analysis...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME...

410

Fuel Cell Technologies Office: DOE Announces New Hydrogen Cost...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficiency and Renewable Energy EERE Home | Programs & Offices | Consumer Information Fuel Cell Technologies Office Search Search Help Fuel Cell Technologies Office HOME ABOUT...

411

DOE - Office of Legacy Management -- Pittsburgh Energy Technology...  

Office of Legacy Management (LM)

(NETL). NETL historically has focused on the development of advanced technologies related to coal and natural gas. Also see Documents Related to Pittsburgh Energy Technology Center...

412

Accessing DOE Laboratory Technologies: Legal Mechanisms and Issues  

Federal Non-nuclear Energy Act Atomic Energy Act Stevenson-Wydler Technology Innovation Act of 1980 ... Secretarial Policy Statement on Lab Technology

413

The Role of Emerging Technologies in Improving Energy Efficiency: Examples from the Food Processing Industry  

E-Print Network (OSTI)

2002 Manufacturing Energy Consumption Survey, Washington,impacts on industrial energy consumption. The cumulativeemerging technologies on energy consumption in the U.S. food

Lung, Robert Bruce; Masanet, Eric; McKane, Aimee

2006-01-01T23:59:59.000Z

414

Smart Grid Technologies for Efficiency Improvement of Integrated Industrial Electric System.  

E-Print Network (OSTI)

?? The purpose of this research is to identify the need of Smart Grid Technologies in communication between industrial plants with co-generation capability and the (more)

Balani, Spandana

2011-01-01T23:59:59.000Z

415

Highlights of Biopower Technical Assessment: State of the Industry and the Technology  

SciTech Connect

This report summarizes the findings of the Biopower Technical Assessment, which reviews the state of the biopower industry and the technology for producing electricity and heat from biomass.

Bain, R. L.; Amos, W. P.; Downing, M.; Perlack, R. L.

2003-04-01T23:59:59.000Z

416

" Row: Industry-Specific Technologies within Selected NAICS Codes;"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" 3. Number of Establishments by Usage of Energy-Saving Technologies for Specific Industries, 1998;" " Level: National Data; " " Row: Industry-Specific Technologies within Selected NAICS Codes;" " Column: Usage;" " Unit: Establishment Counts." ,,,,,"RSE" "NAICS"," ",,,,"Row" "Code(a)","Industry-Specific Technology","In Use(b)","Not in Use","Don't Know","Factors" ,,"Total United States" ,"RSE Column Factors:",1.3,0.5,1.5 , 311,"FOOD" ," Infrared Heating",762,13727,2064,1.8 ," Microwave Drying",270,14143,2140,2.5

417

Annual Report on DOE Technology Transfer FY 2007 and 2008  

NLE Websites -- All DOE Office Websites (Extended Search)

Annual Report Annual Report on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2007 and 2008 Prepared by: Office of Laboratory Policy and Evaluation Office of Science and National Nuclear Security Administration U.S. Department of Energy In Coordination With: Technology Transfer Policy Board Technology Transfer Working Group U.S. Department of Energy December 2009 ii TABLE OF CONTENTS Background .......... .................................................................................................................................................1 Technology Partnering Policy .................................................................................................................................1

418

International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex  

SciTech Connect

This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

419

DOE PLANT-WIDE ENERGY ASSESSMENT RESULTS RELATED TO THE U. S. AUTOMOTIVE INDUSTRY  

SciTech Connect

Forty-nine plant-wide energy efficiency assessments have been undertaken under sponsorship of the U.S. Department of Industrial Technologies Program. Plant-wide assessments are comprehensive, systematic investigations of plant energy efficiency, including plant utility systems and process operations. Assessments in industrial facilities have highlighted opportunities for implementing best practices in industrial energy management, including the adoption of new, energy-efficient technologies and process and equipment improvements. Total annual savings opportunities of $201 million have been identified from the 40 completed assessments. Many of the participating industrial plants have implemented efficiency-improvement projects and already have realized total cost savings of more than $81 million annually. This paper provides an overview of the assessment efforts undertaken and presents a summary of the major energy and cost savings identified to date. The paper also discusses specific results from assessments conducted at four plants in the automotive manufacturing operations and supporting industries. These particular assessments were conducted at facilities that produce engine castings, plastic films used for glass laminates, forged components, and at a body spray painting plant.

Kelly Kissock, Arvind Thekdi, Len Bishop

2006-01-05T23:59:59.000Z

420

Carbon Capture and Storage Database (CCS) from DOE's National Energy Technology Laboratory (NETL)  

DOE Data Explorer (OSTI)

NETL's Carbon Capture and Storage (CCS) Database includes active, proposed, canceled, and terminated CCS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCS technology. As of April 2011, the database contained 254 CCS projects worldwide. The 254 projects include 65 capture, 61 storage, and 128 for capture and storage in more than 27 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 20 are actively capturing and injecting CO2. Access to the database requires use of Google Earth, as the NETL CCS database is a layer in Google Earth. Or, users can download a copy of the database in MS-Excel directly from the NETL website.[copied from http://www.netl.doe.gov/technologies/carbon_seq/global/database/index.html

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Technology partnerships: Enhancing the competitiveness, efficiency, and environmental quality of American industry  

SciTech Connect

An overview of the Department of Energy`s Office of Industrial Technologies and its private sector partnerships is presented. Commercial success stories and real-world benefits of the technology partnerships are discussed.

1995-04-01T23:59:59.000Z

422

Considering the customer : determinants and impact of using technology on industry evolution  

E-Print Network (OSTI)

This dissertation raises two questions: How do customers come to understand and use a technology? What is the influence of customers using a technology on industry evolution and competition? I use two historical cases to ...

Kahl, Steven J. (Steven John)

2007-01-01T23:59:59.000Z

423

South Korean technology policies for the industrial competitiveness between Japan and China  

E-Print Network (OSTI)

(cont.) In addition, this paper will propose new technology policies for Korea in order to secure its position as a leader in the information technology (IT) industry, particularly in the context of its relationships with ...

Lee, Sanghoon, S.M. Massachusetts Institute of Technology, Dept. of Urban Studies and Planning

2006-01-01T23:59:59.000Z

424

Frying Technology and PracticesChapter 7 Critical Factors in the Selectrion of an Industrial Fryer  

Science Conference Proceedings (OSTI)

Frying Technology and Practices Chapter 7 Critical Factors in the Selectrion of an Industrial Fryer Food Science Health Nutrition Biochemistry eChapters Food Science & Technology Health - Nutrition - Biochemistry Press ...

425

NETL: News Release - DOE Supports Promising Membrane Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

Production Government-Industry Cost-Shared Project Advances Visionary Power Plant PITTSBURGH, PA - Taking a step closer toward its vision of ultraclean, highly...

426

NREL: Technology Transfer - DOE to Invest in Grid Integration ...  

DOE to Invest in Grid Integration Systems for Solar Energy ... designs and market analyses for such Solar Energy ... SEGIS information on the SAI ...

427

DOE Plan for Transfer and Commercialization of Technology  

Science Conference Proceedings (OSTI)

... DOE Department of Energy, including the National Nuclear Security Administration ... or in which the government retains some reserved rights(for ...

2012-10-31T23:59:59.000Z

428

NREL: Technology Transfer - DOE to Invest up to $24 ...  

DOE to Invest up to $24 Million for Breakthrough Solar Energy ... agreements focusing on conceptual design of hardware components and market analysis.

429

Building Technologies Office: DOE Challenge Home Gaining Recognition...  

NLE Websites -- All DOE Office Websites (Extended Search)

Webinars Building America Residential Research Better Buildings Alliance Solid-State Lighting Events Events are temporarily unavailable. Newsletter Publications DOE Challenge Home...

430

Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Role of Liquid Waste Pretreatment Technologies in Role of Liquid Waste Pretreatment Technologies in Solving the DOE Clean-up Mission W. R. Wilmarth March 5 2009 March 5, 2009 HLW Corporate Board Phoenix AZ HLW Corporate Board, Phoenix, AZ Co-authors M. E. Johnson, CH2M Hill Plateau Remediation Company G. Lumetta, Pacific Northwest National Laboratory N Machara DOE Office of Engineering and Technology N. Machara, DOE Office of Engineering and Technology M. R. Poirier, Savannah River National Laboratory P C S DOE S h Ri P. C. Suggs, DOE Savannah River M. C. Thompson, Savannah River National Laboratory, Retired Retired 2 Background Separations is a fundamental business within DOE. The role of separations today is to expedite waste retrieval The role of separations today is to expedite waste retrieval, processing and closure. Recognized as part of E&T Roadmap

431

Telematics industry dynamics and strategies for converging technologies  

E-Print Network (OSTI)

The Telematics Industry faces tremendous challenges for growth. Regardless of the efforts and investment from vehicle manufacturers and suppliers, telematics has not been that profitable industry that many analyst forecasted ...

Luis, Rodrigo, 1973-

2004-01-01T23:59:59.000Z

432

Technologies and Policies to Improve Energy Efficiency in Industry  

E-Print Network (OSTI)

Petroleum Refineries: An ENERGY STAR Guide for Energy andGlass Industry: An ENERGY STAR Guide for Energy and PlantAssembly Industry: An ENERGY STAR Guide for Energy and Plant

Price, Lynn

2008-01-01T23:59:59.000Z

433

NREL: Technology Transfer - 23rd Industry Growth Forum  

Join NREL at its 23rd Industry Growth Forum on Oct. 1921, 2010, in Denver, Colo. The Industry Growth Forum is the premier event for clean energy ...

434

NREL: Technology Transfer - 21st Industry Growth Forum ...  

Presentation: Biomass to Energy Solutions. Speakers. The following speakers gave presentations at the Industry Growth Forum. Dan E. Arvizu, ...

435

Technology Validation Sub-Program Overview - DOE Hydrogen and Fuel Cells Program FY 2012 Annual Progress Report  

NLE Websites -- All DOE Office Websites (Extended Search)

FY 2012 Annual Progress Report DOE Hydrogen and Fuel Cells Program IntroductIon The Technology Validation sub-program demonstrates, tests, and validates hydrogen and fuel cell technologies and uses the results to provide feedback to the Program's research and development (R&D) activities. This year, the sub-program concluded the National Fuel Cell Electric Vehicle Learning Demonstration, the principal emphasis of the sub-program over the past decade, which encompassed the co- development and integration of hydrogen infrastructure with hydrogen fuel cell-powered vehicles, allowing industry to assess progress toward technology readiness. In addition, the Technology Validation sub-program completed a project on combined hydrogen, heat, and power (tri-generation or CHHP). Continuing efforts

436

DOE Solar Decathlon: 2007 Teams - New York Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology 2007 Solar Decathlon house. If you close your eyes, you can imagine the New York Institute of Technology house on a beach. The entire south wall, a key feature of the...

437

DOE Solar Decathlon: 2007 Teams - Georgia Institute of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology 2007 Solar Decathlon house. The light-filled Georgia Tech house features both state-of-the-art technologies and well-established ones, such as the clerestory, a row of...

438

DOE Hydrogen and Fuel Cells Program: Fuel Cell Technologies Office...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office FY2014 Budget Request Briefing on April 12 Apr 9, 2013 The Fuel Cell Technologies Office will hold a budget briefing for stakeholders on Friday, April...

439

Industry  

NLE Websites -- All DOE Office Websites (Extended Search)

An Exploration of Innovation and An Exploration of Innovation and Energy Efficiency in an Appliance Industry Prepared by Margaret Taylor, K. Sydny Fujita, Larry Dale, and James McMahon For the European Council for an Energy Efficient Economy March 29, 2012 ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY LBNL - 5689E An Exploration of Innovation and Energy Efficiency in an Appliance Industry Abstract This report provides a starting point for appliance energy efficiency policy to be informed by an understanding of: the baseline rate and direction of technological change of product industries; the factors that underlie the outcomes of innovation in these industries; and the ways the innovation system might respond to any given intervention. The report provides an overview of the dynamics of energy efficiency policy and innovation in the appliance

440

Nondestructive Evaluation: Assessment of NDE Technologies and Practices in Other Industries, Volume 2  

Science Conference Proceedings (OSTI)

This report provides a summary of technical information collected on nondestructive evaluation (NDE) technologies that are used in other industries. The purpose of this report is to assess NDE technologies used in other industries to determine if they could be useful for nuclear inspection applications.

2010-10-21T23:59:59.000Z

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Role of mobile technology in the construction industry a case study  

Science Conference Proceedings (OSTI)

The construction industry is facing a number of pressures to decrease costs, improve productivity and have a competitive edge in terms of quality of service and customer satisfaction. Recent advancements in mobile technology provide new avenues for addressing ... Keywords: New Zealand, adoption barriers, construction industry, mobile communications, mobile fax, mobile technologies, productivity, remote site, workflow

Sitalakshmi Venkatraman; Pak Yoong

2009-01-01T23:59:59.000Z

442

Introduction to the Industrial Technologies Program (ITP) Webinar, January 15, 2009  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jim Quinn Jim Quinn Industrial Technologies Program U.S. Department of Energy Introduction to the Industrial Technologies Program (ITP) Webinar January 15, 2009 2 U.S. Industry and Energy Use R&D Program Technology Delivery Partnerships Energy Management Approach Opportunities Outline 3 Industrial Technologies Program (ITP) Mission Improve national energy security, climate, environment, and economic competitiveness by transforming the way U.S. industry uses energy. 4 Industry: Key to U.S. Economic & Energy Security U.S. manufacturing sector * Consumes more energy than any other economic sector (~32 quads) * Produces about 1,670 MMT CO 2 per year from energy use * Makes highest contribution to GDP (12%) * Produces nearly a quarter of world manufacturing output * Supplies >60% of US exports, worth $50

443

Building Technologies Office: DOE Challenge Home Better Business...  

NLE Websites -- All DOE Office Websites (Extended Search)

Homes, first of all, it puts you in a very select group of builders. What we promote right now is only the top 1 percent of builders in the industry are able to meet the...

444

Fuel Cell Technologies Office: 2008 DOE Theory Focus Session...  

NLE Websites -- All DOE Office Websites (Extended Search)

8 DOE Theory Focus Session on Hydrogen Storage Materials The U.S. Department of Energy, through the Office of Science (Basic Energy Sciences) and the Office of Energy Efficiency...

445

Fuel Cell Technologies Office: DOE Theory Focus Session on Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

held a Theory Focus Session on Hydrogen Storage Materials on May 18, 2006 in Crystal City, Va., in conjunction with the DOE Hydrogen Program Annual Merit Review. The meeting...

446

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Team website: solarhouse.mst.edu Photo of members of the Missouri University of Science and Technology Solar Decathlon 2013 team standing in front of a solar-powered house. Enlarge image The Missouri University of Science and Technology Solar Decathlon 2013 team (Courtesy of the Missouri University of Science and Technology Solar Decathlon 2013 team) he Missouri University of Science and Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors,

447

DOE Solar Decathlon: New York Institute of Technology: Instituting  

NLE Websites -- All DOE Office Websites (Extended Search)

New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. New York Institute of Technology's solar house in its permanent location at the U.S. Merchant Marine Academy. Enlarge image Green Machine/Blue Space relies on a hydrogen fuel cell to convert and store energy collected by the house's photovoltaic system. (Courtesy of Kevin Rodgers/U.S. Merchant Marine Academy) Who: New York Institute of Technology What: Green Machine/ Blue Space Where: U.S. Merchant Marine Academy 300 Steamboat Road Kings Point, NY 11024 Map This House Public tours: Not available Solar Decathlon 2005 New York Institute of Technology: Instituting Technology New York Institute of Technology partnered with the U.S. Merchant Marine Academy to develop a solar-powered house for the U.S. Department of Energy Solar Decathlon 2005. The house, called Green Machine/Blue Space, was

448

DOE Solar Decathlon: Team Austria: Vienna University of Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Austria: Vienna University of Technology Austria: Vienna University of Technology Team website: www.solardecathlon.at Photo collage of members of the Vienna University of Technology Solar Decathlon 2013 team. The LISI logo is in the middle. Enlarge image The Vienna University of Technology Solar Decathlon 2013 team (Courtesy of the Vienna University of Technology Solar Decathlon 2013 team) he Vienna University of Technology audiovisual presentation Jury Feedback Architecture Contest Market Appeal Contest Engineering Contest Communications Contest Team Deliverables Project Manual Construction Drawings Menu and Recipes Neither the United States, nor the Department of Energy, nor the Alliance for Sustainable Energy LLC, nor any of their contractors, subcontractors, or their employees make any warranty, express or implied, or assume any

449

DOE Solar Decathlon: Missouri University of Science and Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Missouri University of Science and Technology Missouri University of Science and Technology Chameleon House solarhouse.mst.edu Missouri University of Science and Technology designed Chameleon House for the U.S. Department of Energy Solar Decathlon 2013 to epitomize an adaptable living environment. With versatile features that form a chameleon skin-and spaces designed to maximize flexibility, comfort, and convenience-the Chameleon House flexes easily to meet as many market and regional needs as possible. Design Philosophy Chameleon House rejects a paradigm of technology for technology's sake. Instead, its creators were guided by the belief that technology is important only to the extent that it significantly enhances a user's experience. The design avoids unnecessary complexity in favor of a simple approach that uses seamless engineering of systems to prove that

450

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Spotlights Technology Spotlights Below you will find Solar Decathlon news from the Technology Spotlights archive, sorted by date. Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry,

451

DOE - Office of Legacy Management -- Energy Technology Engineering Center -  

Office of Legacy Management (LM)

Energy Technology Engineering Energy Technology Engineering Center - 044 FUSRAP Considered Sites Site: Energy Technology Engineering Center (044) Designated Name: Alternate Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status: The Energy Technology Engineering Center (ETEC) is a former Department of Energy research laboratory that tested components and systems for liquid metal cooled nuclear reactors. ETEC occupies 90 acres of the Santa Susana Field Laboratory (2700 acres) which is located in the Simi Hills of Ventura County, California. The Rocketdyne Propulsion and Power Division of Boeing owns and operates the Santa Susana Field Laboratory (SSFL). The Department

452

DOE Fuel Cell Technologies Office Record 12002: H2 Production...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fuel Cell Technologies Office Record Record : 12002 Date: February 22, 2012 Title: H2 Production Status & Threshold Costs Plot 2006-2011 Originator: Eric Miller and Sarah...

453

NETL: News Release -DOE-Funded Technology Improves Directional...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy-funded technology has demonstrated the capability to dramatically reduce costs and improve safety and efficiency in drilling America's oil and natural gas wells....

454

DOE Hydrogen Analysis Repository: Clean Energy Technology Economics...  

NLE Websites -- All DOE Office Websites (Extended Search)

and greenhouse gases (GHGs) associated with the use of clean energy technologies for distributed power generation. Performer Principal Investigator: Tim Lipman Organization:...

455

Technology Commercialization Showcase 2008: DOE Wind and Water ...  

highly policy dependent 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% ... energy at Forest City, Hawaii military housing project sites. Title: Technology ...

456

DOE Lab Receives Award for Work on Drilling Technology | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

recognized as an innovator in this area is an honor. The Department of Energy's National Energy Technology Laboratory (NETL) recently received that honor when it was recognized...

457

NETL: News Release - DOE to Sponsor Upcoming Greenhouse Gas Technologi...  

NLE Websites -- All DOE Office Websites (Extended Search)

Conference Web Site WASHINGTON, D. C. - The Department of Energy's Office of Fossil Energy announced today that the 9th International Conference on Greenhouse Gas Technologies...

458

Technology Validation: Fuel Cell Bus Evaluations - DOE Hydrogen...  

NLE Websites -- All DOE Office Websites (Extended Search)

of FCEB design. Using fuel cells in a transit application can help accelerate the learning curve for the technology because of the high mileage accumulated in short periods...

459

Technology Readiness Levels for the DOE Description TRL 2.  

Scientific research begins translation to applied R&D - Lowest level of technology readiness. Scientific research begins to be translated into applied research and

460

NREL: Technology Transfer - 21st Industry Growth Forum Photos  

At the 21st NREL Industry Growth Forum on Oct. 30, 2008, Jay Herrmann of Xcel Energy (far right), Forum Co-Chair Lawrence "Marty" Murphy (far left), ...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

DOE/EA-0767 ENVIRONMENTAL ASSESSMENT CONSTRUCTION AND OPERATION OF AN INDUSTRIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

767 767 ENVIRONMENTAL ASSESSMENT CONSTRUCTION AND OPERATION OF AN INDUSTRIAL SOLID WASTE LANDFILL AT PORTSMOUTH GASEOUS DIFFUSION PLANT PIKETON, OHIO OCTOBER 1995 U.S. DEPARTMENT OF ENERGY OAK RIDGE OPERATIONS OAK RIDGE, TENNESSEE MAST ~P . L...~ I OOTRlSUTiON· O F THIS OOCl,lJlOO IS lIUi&fJtID Ct( OSTI Environmental Assessment Construction and Operation of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant Piketon. Ohio October 1995 Prepared by LOCKHEED MARTIN ENERGY SYSTEMS. INC. Environmental Management and Enrichment Facilities P. O. Box 628 Piketon. Ohio 45661 for the U. S. DEPARTMENT OF ENERGY Under Contract DE-AC05-840R21400 DOE/EA-0767 TABLE OF CONTENTS FIGURES AND TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

462

Science for Energy Technology: The Industry Perspective (2011 EFRC Summit, panel session)  

SciTech Connect

A distinguished panel of industry leaders discussed how basic science impacts energy technology at the 2011 EFRC Summit. Panel members are Jeffrey Wadworth, President and CEO of Battelle Memorial Institute; David E. Carlson, the Chief Scientist for BP Solar; Yet-Ming Chiang, Professor at MIT and the founder of A123 Systems; and Catherine T. Hunt, the R&D Director of Innovation Sourcing and Sustainable Technologies at the Dow Chemical Company. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss 'Science for our Nation's Energy Future.' In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several 'grand challenges' and use-inspired 'basic research needs' recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

Wadsworth, Jeffrey (Battelle Memorial Institute); Carlson, David E. (BP Solar); Chiang, Yet-Ming (MIT and A123 Systems); Hunt, Catherine T. (Dow Chemical)

2011-05-25T23:59:59.000Z

463

Power Quality Mitigation Technology Demonstration at Industrial Customer Sites: Industrial and Utility Harmonic Mitigation Guideline s and Case Studies  

Science Conference Proceedings (OSTI)

However the restructuring of the electric power industry shakes out, the commercial/industrial customer's need for quality power will increase; and customer service will remain a key to retaining current accounts and attracting new customers. The need for demonstrating new harmonics mitigation technologies will thus be an important factor for the wire side of the business as well as for energy service companies. This report provides guidelines for implementing harmonics mitigation demonstration projects ...

2000-11-30T23:59:59.000Z

464

DOE Lab Receives Award for Work on Drilling Technology | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology DOE Lab Receives Award for Work on Drilling Technology June 13, 2013 - 11:52am Addthis DOE Lab Receives Award for Work on Drilling Technology Directional drilling - the drilling of non-vertical wells that helped make the development of shale gas possible -- will continue to play a key role in energy development, and so will the technologies that make it possible. The benefits of directional drilling are tremendous. Think cleaner, cheaper electricity; local economy booms; and decreased dependence on foreign energy. The unconventional oil and gas resources that can be tapped through directional drilling benefit consumers, businesses, and even the transportation sector. So being recognized as an innovator in this area is

465

Industry  

Science Conference Proceedings (OSTI)

This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

2007-12-01T23:59:59.000Z

466

Industrial Distributed Energy: Combined Heat & Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

467

Program on Technology Innovation: Scenario-Based Technology R&D Strategy for the Electric Power Industry: Final Report  

Science Conference Proceedings (OSTI)

To help address the many challenges facing the electric power industry in the next 20 years, an effective process of technology R&D planning is needed. Based on input from a broad range of stakeholders and using a proven scenario planning process, this report presents a comprehensive technology R&D strategy for the next two decades that spans the breadth and depth of challenges and opportunities facing the North American electric utility industry.

2006-12-14T23:59:59.000Z

468

DOE Solar Decathlon: News Blog » Technology Spotlights  

NLE Websites -- All DOE Office Websites (Extended Search)

'Technology Spotlights' 'Technology Spotlights' Technology Spotlight: Solar Water Heating Friday, September 27, 2013 By Solar Decathlon Editor's Note: This post is one of a series of technology spotlights that introduces common technologies used in U.S. Department of Energy Solar Decathlon team houses. Solar water heating systems make hot water for residential uses such as bathing, laundering, and dish washing. Generally less expensive than photovoltaic panels, these systems provide homeowners with a cost-effective way to harness the sun's energy. Photo of a wooden house with PV panels and a solar hot water system on the roof. Middlebury College's U.S. Department of Energy Solar Decathlon 211 entry, Self-Reliance, had two roof-mounted solar hot water collector arrays (right) that circulated glycol through vacuum-insulated borosilicate glass

469

Industry Survey and Assessment of Available Corrosion Mitigation Technologies: 20th Century State of the Art  

Science Conference Proceedings (OSTI)

This report summarizes the findings of searching various industry databases and soliciting information from suppliers regarding available corrosion detection of mitigation technologies. The focus of the search was for methods that can mitigate, detect, or monitor corrosion on pipe-type cable systems; methods appropriate for submarine cables were also considered. Special attention was given to new corrosion technologies or the application of different technologies from associated industries. Information w...

2000-03-31T23:59:59.000Z

470

Industry participation in DOE-sponsored geopressured geothermal resource development. Final report, 1 September 1977-30 April 1979  

DOE Green Energy (OSTI)

A series of DOE/Industry forums were carried out to keep industry advised of the DOE program to develop the geopressured geothermal resources of the Gulf Coast. A total of eighteen meetings were held with registered attendance of 621 representing a good cross section of industry, state, and federal agencies. An Overview Group and four working subgroups - site selection, drilling and testing, environmental/laboratory research, and legal institutional were established to subdivide the DOE programs into areas of interest and expertise. During the contract period three overview, four site selection, three drilling and testing, five environmental/laboratory research and three legal/institutional meetings have been conducted. Interest in and attendance at the meetings continue to grow reflecting increased industry contact with the DOE Geopressured Geothermal Resource Development Program. Two other studies were carried out for DOE under this contract; a Salt Water Disposal Study and an Industry Survey to evaluate the DOE Resource Development Program. The Salt Water Disposal Study reviewed subsurface salt water disposal experience on the Texas and Louisiana Gulf Coast. This preliminary study concluded that subsurface brine disposal should be possible in the areas of interest with adequate evaluation of the geology of each area and a well designed and constructed surface and subsurface facility. The industry survey indicated general satisfaction with the technical design of the resource evaluation program but felt the program should be moving faster.

Coffer, H.F.

1979-01-01T23:59:59.000Z

471

NREL: Technology Transfer - NREL's 20th Industry Growth Forum ...  

Porous Power Technologies, LLC Tim Feaver, CEO Presentation: Microporous Membranes for Highly Efficient Lithium Batteries ... Vortex Hydro Energy, LLC

472

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

473

Questions concerning Technology Transfer Practices at DOE Labs.txt - Notepad  

NLE Websites -- All DOE Office Websites (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn [gary.selwyn@apjet.com] Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions concerning Technology Transfer Practices at DOE Labs In response to the request for written comments, as listed in the Federal Register, Vol 73, No. 229, APJeT, Inc. offers the comments below. APJET is an early-stage, technology company that has licensed technology developed at Los Alamos National Laboratory. APJET has been a licensee for 7 years, has 10 employees in NM and NC, is the largest spin-off from LANL in its history, and the author of these responses is the founder of APJET and a former technical staff member from LANL. Question #3: US Competitiveness It is highly restrictive to require that the recipient of new technology from the

474

DOE Solar Energy Technologies Program: Overview and Highlights  

DOE Green Energy (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

475

DOE Energy Innovation Portal Connects Innovative Energy Technologies...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Technologies to the Marketplace February 2, 2011 - 12:00am Addthis Washington, DC - The U.S. Department of Energy's Energy Innovation Portal now has more than 300...

476

DOE Solar Decathlon: News Blog Blog Archive Technology...  

NLE Websites -- All DOE Office Websites (Extended Search)

application of this technology, although these systems are sometimes used to heat wall panels or even the ceiling. Photo of a section of tiled floor that has been removed to reveal...

477

EAC Presentation: DOE's Energy Technology Strategy- March 10, 2011  

Energy.gov (U.S. Department of Energy (DOE))

PowerPoint Presentation by Steven E. Koonin, Under Secretary for Science at the Department of Energy to the Electricity Advisory Committee, March 10, 2011, on the Department's energy technology...

478

DOE Solar Decathlon: New York Institute of Technology: Suiting...  

NLE Websites -- All DOE Office Websites (Extended Search)

House, designed by the New York Institute of Technology for the U.S. Department of Energy Solar Decathlon 2007, was reassembled at the school's Old Westbury campus in Long...

479

DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology  

DOE Green Energy (OSTI)

The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

Not Available

2003-10-01T23:59:59.000Z

480

Climate Vision: Technology Pathways  

Office of Scientific and Technical Information (OSTI)

Cement Chemical Manufacturing Electric Power Forest Products Iron and Steel Mining Oil and Gas Technology Pathways The DOE's Industries of the Future process helps entire...

Note: This page contains sample records for the topic "doe industrial technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Industry  

E-Print Network (OSTI)

from refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processesfrom refrigeration equipment used in industrial processes

Bernstein, Lenny

2008-01-01T23:59:59.000Z

482

Fluoride Control in the Aluminum Industry: 100 Years of Technology  

Science Conference Proceedings (OSTI)

Jan 1, 2007 ... TMS Member price: 10.00. Non-member price: 25.00. TMS Student Member price : 10.00. Product In Stock. Description The aluminum industry...

483

Integrated demonstrations, integrated programs, and special programs within DOE`s Office of Technology Development  

SciTech Connect

This poster session presents information on integrated demonstrations, integrated programs, and special programs within the EM Office of Technology Development that will accelerate cleanup of sites within the Nuclear Weapons Complex. Presented topics include: Volatile organic compounds in soils and ground water, uranium in soils, underground storage tanks, mixed waste landfills, decontamination and decommissioning, in situ remediation, and separations technology.

Peterson, M.E.; Frank, C.; Stein, S.; Steele, J.

1994-08-01T23:59:59.000Z

484

DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-Funded Primer Underscores Technology Advances, Challenges of DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development DOE-Funded Primer Underscores Technology Advances, Challenges of Shale Gas Development April 14, 2009 - 1:00pm Addthis Washington, D.C. - The U.S. Department of Energy (DOE) announces the release of "Modern Shale Gas Development in the United States: A Primer." The Primer provides regulators, policy makers, and the public with an objective source of information on the technology advances and challenges that accompany deep shale gas development. Natural gas production from hydrocarbon rich deep shale formations, known as "shale gas," is one of the most quickly expanding trends in onshore domestic oil and gas exploration. The lower 48 states have a wide

485

New DOE Reports on Smart Grid Technologies Seek to Promote Innovation,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Reports on Smart Grid Technologies Seek to Promote DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access New DOE Reports on Smart Grid Technologies Seek to Promote Innovation, Privacy and Access October 5, 2010 - 12:00am Addthis Washington, D.C. - In order to implement recommendations made in the Federal Communications Commission's National Broadband Plan, the Department of Energy released two reports today on important policy issues raised by Smart Grid technologies that can promote innovation, cut costs for consumers and modernize our electrical grid. Each report completes a public-information-gathering process begun earlier this year by the Department. DOE General Counsel Scott Blake Harris said, "These reports will allow the Department to better inform a dialogue with state and federal officials as

486

Fuel Cell Technologies Office: DOE Hydrogen Pipeline R&D Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

- Energy Efficiency and Renewable Energy Fuel Cell Technologies Office DOE Hydrogen Pipeline R&D Project Review Meeting On January 5th and 6th, 2005, the FreedomCAR and Fuels...

487

DOE's Under Secretary for Science to Attend the G8 Science and Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE's Under Secretary for Science to Attend the G8 Science and DOE's Under Secretary for Science to Attend the G8 Science and Technology Ministerial in Japan DOE's Under Secretary for Science to Attend the G8 Science and Technology Ministerial in Japan June 13, 2008 - 1:30pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Under Secretary for Science Dr. Raymond L. Orbach will travel to Okinawa, Japan this weekend to participate in the G8 Science and Technology Ministerial hosted on June 15 by Fumio Kishida, Japanese Minister of State for Okinawa and Northern Territories Affairs, Science and Technology Policy, Quality-of-Life Policy, and Regulatory Reform. While in Japan, Dr. Orbach will meet with ministers and other high-level government officials from G8 countries, the European Union, China, India, Korea, Mexico, the Phillipines, and South

488

Thirty-seventh ORNL/DOE conference on analytical chemistry in energy technology: Abstracts of papers  

Science Conference Proceedings (OSTI)

Abstracts only are given for papers presented during the following topical sessions: Opportunities for collaboration: Industry, academic, national laboratories; Developments in sensor technology; Analysis in containment facilities; Improving the quality of environmental data; Process analysis; Field analysis; Radiological separations; Interactive analytical seminars; Measurements and chemical industry initiatives; and Isotopic measurements and mass spectroscopy.

NONE

1997-12-31T23:59:59.000Z

489

Webinars from the Building Technologies Program, DOE Energy Efficiency and Renewable Energy  

DOE Data Explorer (OSTI)

The mission of the Building Technologies Program is to develop technologies, techniques, and tools for making residential and commercial buildings more energy efficient, productive, and affordable. This involves research, development, demonstration, and deployment activities in partnership with industry, government agencies, universities, and national laboratories. The portfolio of activities includes improving the energy efficiency of building components and equipment and their effective integration using whole-building system design techniques. It also involves the development of building energy codes and equipment standards as well as the integration of renewable energy systems into building design and operation [http://www1.eere.energy.gov/buildings/vision.html]. The Building Technologies Program periodically offers webinars that are free and open to the public, but in order to see and hear these programs in real time, you must register in advance. The archive of past webinars, however, allows you to watch past webinars without registration and at your leisure. A sampling of past titles includes: 1) ENERGY STAR Pilot Verification Testing Program; 2) Cost-Effective Triple Pane (R-5) and Low-e Storm Windows; 3) U.S. Department of Energy Commercial Reference Buildings - Benefits and Applications; 4) Calculating Energy Savings of Cool Roofs; 5) Getting to Net Zero Energy through a Performance-Based Design/Build Process; 6) Designing High-Performance Buildings with EnergyPlus; 7) DOE Stakeholder Call: Activities and Programs Relating to Energy Efficiency Retrofits in Residential Buildings; 8) Greensburg, Kansas, and Beyond; 9) Greensburg Americas Model Green Community in Their Own Words. If these are topics that interest you, go to BTPs Webinar page at http://www1.eere.energy.gov/buildings/webinars.html to access links to Building Energy Codes Webcasts, the Retailer Energy Alliance 2008 Supplier Summit Webinar, and the EnergySmart Schools Webinars.