Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE and Partners Test Enhanced Geothermal Systems Technologies...  

Office of Environmental Management (EM)

DOE and Partners Test Enhanced Geothermal Systems Technologies DOE and Partners Test Enhanced Geothermal Systems Technologies February 20, 2008 - 4:33pm Addthis DOE has embarked on...

2

U.S. DOE Geothermal Electricity Technology Evaluation Model ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar Presentation...

3

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

4

Geothermal Today: 2005 Geothermal Technologies Program Highlights  

SciTech Connect (OSTI)

This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

Not Available

2005-09-01T23:59:59.000Z

5

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

6

Geothermal Technologies Newsletter  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

7

Geothermal Technologies Newsletter Archives  

Broader source: Energy.gov [DOE]

Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

8

Oregon: DOE Advances Game-Changing EGS Geothermal Technology...  

Office of Environmental Management (EM)

demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

9

DOE Awards $20 Million to Develop Geothermal Power Technologies...  

Energy Savers [EERE]

fluid will then be used as the heat source for a heating system, a greenhouse, and a fish farm. This "cascading" use of the geothermal resource is meant to improve the economics...

10

Report on the U.S. DOE Geothermal Technologies Program's 2009 Risk Analysis  

SciTech Connect (OSTI)

NREL conducted an annual program risk analysis on behalf of the U.S. Department of Energy Geothermal Technologies Program (GTP). NREL implemented a probabilistic risk analysis of GTP-sponsored research, development, and demonstration (RD&D) work, primarily for enhanced geothermal systems (EGS). The analysis examined estimates of improvement potential derived from program RD&D work for two types of technology performance metric (TPM): EGS-enabling technologies potential and EGS cost improvement potential. Four risk teams (exploration, wells/pumps/tools, reservoir engineering, and power conversion) comprised of industry experts, DOE laboratory researchers, academic researchers, and laboratory subcontractors estimated the RD&D impacts and TPM-improvement probability distributions. The assessment employed a risk analysis spreadsheet add-in that uses Monte Carlo simulation to drive the Geothermal Electric Technology Evaluation Model (GETEM). The GETEM-based risk analysis used baseline data from the experts' discussion of multiple reports and data sources. Risk results are expressed in terms of each metric's units and/or the program's top-level metric: levelized costs of electricity (LCOE). Results--both qualitative comments and quantitative improvement potential--are thorough and cohesive in three of the four expert groups. This conference paper summarizes the industry's current thinking on various metrics and potential for research improvement in geothermal technologies.

Young, K. R.; Augustine, C.; Anderson, A.

2010-02-01T23:59:59.000Z

11

DOE-Backed Project Will Demonstrate Innovative Geothermal Technology |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's Use ofDOE, NEPA,

12

DOE Merges Traditional and Emerging Energy Technologies in New Geothermal  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve |DepartmentSeptember 17,

13

DOE Awards $20 Million to Develop Geothermal Power Technologies |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aClean Energy Technologies

14

Director, Geothermal Technologies Office  

Broader source: Energy.gov [DOE]

The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

15

Geothermal Resources and Technologies  

Broader source: Energy.gov [DOE]

This page provides a brief overview of geothermal energy resources and technologies supplemented by specific information to apply geothermal systems within the Federal sector.

16

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

17

DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)  

SciTech Connect (OSTI)

This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

Anderson, E. R.

2010-12-14T23:59:59.000Z

18

2008 Geothermal Technologies Market Report  

SciTech Connect (OSTI)

This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

Cross, J.; Freeman, J.

2009-07-01T23:59:59.000Z

19

Video Resources on Geothermal Technologies  

Broader source: Energy.gov [DOE]

Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

20

Geothermal Technologies Program Overview Presentation at Stanford...  

Energy Savers [EERE]

Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Geothermal innovative technologies catalog  

SciTech Connect (OSTI)

The technology items in this report were selected on the basis of technological readiness and applicability to current technology transfer thrusts. The items include technologies that are considered to be within 2 to 3 years of being transferred. While the catalog does not profess to be entirely complete, it does represent an initial attempt at archiving innovative geothermal technologies with ample room for additions as they occur. The catalog itself is divided into five major functional areas: Exploration; Drilling, Well Completion, and Reservoir Production; Materials and Brine Chemistry; Direct Use; and Economics. Within these major divisions are sub-categories identifying specific types of technological advances: Hardware; Software; Data Base; Process/Procedure; Test Facility; and Handbook.

Kenkeremath, D. (ed.)

1988-09-01T23:59:59.000Z

22

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

23

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

24

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

25

Sandia National Laboratories: Geothermal Energy & Drilling Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EnergyGeothermalGeothermal Energy & Drilling Technology Geothermal Energy & Drilling Technology Geothermal energy is an abundant energy resource that comes from tapping the natural...

26

DOE Office of Indian Energy Foundational Course on Geothermal  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Foundational Courses Renewable Energy Technologies GEOTHERMAL Presented by the National Renewable Energy Laboratory Course Outline What we will cover... About the DOE Office of...

27

Funding Opportunity: Geothermal Technologies Program Seeks Technologie...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Program Seeks Technologies to Reduce Levelized Cost of Electricity for Hydrothermal Development and EGS Funding Opportunity: Geothermal Technologies...

28

Geothermal Technologies Office Releases 2012 Annual Report |...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Releases 2012 Annual Report Geothermal Technologies Office Releases 2012 Annual Report January 7, 2013 - 3:56pm Addthis The Geothermal Technologies...

29

GETEM -Geothermal Electricity Technology Evaluation Model | Department...  

Energy Savers [EERE]

GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity...

30

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Broader source: Energy.gov (indexed) [DOE]

Technologies Office Director Doug Hollett Keynotes at National Geothermal Summit, August 6 Geothermal Technologies Office Director Doug Hollett Keynotes at National Geothermal...

31

Enhanced Geothermal Systems Technologies  

Broader source: Energy.gov [DOE]

Geothermal Energy an?d the Enhanced Geothermal Systems Concept The Navy 1 geothermal power plant near Coso Hot Springs, California, is applying EGS technology. Heat is naturally present everywhere in the earth. For all intents and purposes, heat from the earth is inexhaustible. Water is not nearly as ubiquitous in the earth as heat. Most aqueous fluids are derived from surface waters that have percolated into the earth along permeable pathways such as faults. Permeability is a measure of the ease of fluid flow through rock. The permeability of rock results from pores, fractures, joints, faults, and other openings which allow fluids to move. High permeability implies that fluids can flow rapidly through the rock. Permeability and, subsequently, the amount of fluids tend to decrease with depth as openings in the rocks compress from the weight of the overburden.

32

DOE Seeks to Invest up to $90 Million in Advanced Geothermal...  

Energy Savers [EERE]

Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research DOE Seeks to Invest up to 90 Million in Advanced Geothermal Energy Technology and Research...

33

Geothermal: Sponsored by OSTI -- Technologies for Extracting...  

Office of Scientific and Technical Information (OSTI)

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

34

President Obama visits Geothermal Technologies Program Partner...  

Energy Savers [EERE]

President Obama visits Geothermal Technologies Program Partner President Obama visits Geothermal Technologies Program Partner May 2, 2011 - 1:41pm Addthis President Obama visited...

35

The Energy Department's Geothermal Technologies Office Releases...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report The Energy Department's Geothermal Technologies Office Releases 2013 Annual Report February 7,...

36

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

37

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, R.J.; Laney, P.T.

2002-05-14T23:59:59.000Z

38

Geothermal Technologies Program Geoscience and Supporting Technologies 2001 University Research Summaries  

SciTech Connect (OSTI)

The U.S. Department of Energy Office of Wind and Geothermal Technologies (DOE) is funding advanced geothermal research through University Geothermal Research solicitations. These solicitations are intended to generate research proposals in the areas of fracture permeability location and characterization, reservoir management and geochemistry. The work funded through these solicitations should stimulate the development of new geothermal electrical generating capacity through increasing scientific knowledge of high-temperature geothermal systems. In order to meet this objective researchers are encouraged to collaborate with the geothermal industry. These objectives and strategies are consistent with DOE Geothermal Energy Program strategic objectives.

Creed, Robert John; Laney, Patrick Thomas

2002-06-01T23:59:59.000Z

39

Geothermal Technologies Office: Publications  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermal Technologies

40

International Partnership for Geothermal Technology Launches...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership for Geothermal Technology Launches Website November 18, 2008 - 2:52pm Addthis Geothermal energy, with EGS, has the potential to be the world's only renewable baseload...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Oregon: DOE Advances Game-Changing EGS Geothermal Technology at the  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced ScorecardReactor TechnologyOFFICE:ENVIRONMENT |DepartmentNewberry Volcano

42

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

43

DOE Webinar ? Residential Geothermal Heat Pump Retrofits (Presentation)  

Broader source: Energy.gov [DOE]

DOE webinar, Residential Geothermal Heat Pump Retrofits presented at the DOE EERE Webinar Series on Dec. 14, 2010.

44

Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace  

SciTech Connect (OSTI)

Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

Not Available

1989-01-01T23:59:59.000Z

45

Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat

46

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal...  

Office of Environmental Management (EM)

Technologies R&D Program Investments Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies R&D Program Investments: Impacts of a Cluster of Energy...

47

A Technology Roadmap for Strategic Development of Enhanced Geothermal...  

Energy Savers [EERE]

Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE...

48

Geothermal Technologies Subject Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning FunNeuTel2011Programmatic Reports Geothermal Resource

49

Geothermal Technology Breakthrough in Alaska: Harvesting Heat...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

exploration at lower temperatures, thanks to a technology breakthrough that allows geothermal energy to be produced at temperatures below the boiling point (212 degrees...

50

Geothermal Technologies Program Annual Peer Review Presentation...  

Office of Environmental Management (EM)

Annual Peer Review Presentation By Doug Hollett Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett 2012 Peer Review presentation by Doug Hollett,...

51

The National Energy Strategy - The role of geothermal technology development: Proceedings  

SciTech Connect (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. Topics in this year's conference included Hydrothermal Energy Conversion Technology, Hydrothermal Reservoir Technology, Hydrothermal Hard Rock Penetration Technology, Hot Dry Rock Technology, Geopressured-Geothermal Technology and Magma Energy Technology. Each individual paper has been cataloged separately.

Not Available

1990-01-01T23:59:59.000Z

52

Recovery Act - Geothermal Technologies Program:Ground Source...  

Broader source: Energy.gov (indexed) [DOE]

Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps Recovery Act - Geothermal Technologies Program:Ground Source Heat Pumps A detailled description of the...

53

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Evaluation of...

54

Preliminary Technical Risk Analysis for the Geothermal Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Preliminary Technical Risk Analysis for the Geothermal Technologies Program Preliminary Technical Risk Analysis for the Geothermal Technologies Program This report explains the...

55

Energy Department Opens Job Search for Geothermal Technologies...  

Energy Savers [EERE]

Opens Job Search for Geothermal Technologies Office Director Position Energy Department Opens Job Search for Geothermal Technologies Office Director Position April 2, 2015 - 8:40am...

56

U.S. Department of Energy Geothermal Electricity Technology Evaluation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar U.S. Department of Energy Geothermal Electricity Technology Evaluation Model (GETEM) Webinar...

57

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

58

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to...

59

2013 Geothermal Technologies Office Peer Review Technical Report...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geothermal Technologies Office Peer Review Technical Report 2013 Geothermal Technologies Office Peer Review Technical Report March 5, 2014 - 12:00am Addthis Foro Energy, Inc....

60

The Geothermal Technologies Office  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment of EnergyProgram (Alabama)Technology forto lead those8Research and

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Geothermal Data Systems  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

62

DOE 2009 Geothermal Risk Analysis: Methodology and Results (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes the methodology and results for a probabilistic risk analysis of research, development, and demonstration work-primarily for enhanced geothermal systems (EGS)-sponsored by the U.S. Department of Energy Geothermal Technologies Program.

Young, K. R.; Augustine, C.; Anderson, A.

2010-02-01T23:59:59.000Z

63

Geothermal technology publications and related reports: A bibliography, January 1986 through December 1987  

SciTech Connect (OSTI)

Sandia publications resulting from DOE programs in Geothermal Technologies, Magma Energy and Continental Scientific Drilling are listed for reference. The RandD includes borehole-related technologies, in situ processes, and wellbore diagnostics.

Tolendino, C.D. (ed.)

1988-08-01T23:59:59.000Z

64

Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties  

SciTech Connect (OSTI)

These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

Not Available

1993-10-01T23:59:59.000Z

65

Geothermal Drilling and Completion Technology Development Program Annual Progress Report  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the timely development of geothermal resources in the US. The Division of Geothermal Energy (DGE) of the Department of Energy (DOE) has initiated a development program aimed at reducing well costs through improvements in the technology used to drill and complete geothermal wells. Sandia National Laboratories (SNL) has been selected to manage this program for DOE/DGE. Based on analyses of existing well costs, cost reduction goals have been set for the program. These are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987. To meet these goals, technology development in a wide range of areas is required. The near-term goal will be approached by improvements in conventional, rotary drilling technology. The long-term goal will require the development of an advanced drilling and completion system. Currently, the program is emphasizing activities directed at the near-term cost reduction goal, but increased emphasis on advanced system development is anticipated as time progresses. The program is structured into six sub-elements: Drilling Hardware, Drilling Fluids, Completion Technology, Lost Circulation Control Methods, Advanced Drilling Systems, and Supporting Technology. Technology development in each of these areas is conducted primarily through contracts with private industries and universities. Some projects are conducted internally by Sandia. This report describes the program, status, and results of ongoing R and D within the program for the 1980 fiscal year.

Varnado, S. G.

1981-03-01T23:59:59.000Z

66

ORISE: DOE EERE National Geothermal Student Competition  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Science Education U.S. Department of Energy Office of Energy Efficiency and Renewable Energy National Geothermal Student Competition 2013 National Geothermal Student...

67

Does Doctrine Drive Technology or Does Technology Drive Doctrine?  

E-Print Network [OSTI]

Brief No. 4 September 2010 Does Doctrine Drive Technology orDoes Technology Drive Doctrine? Dennis Blasko Summary Wthat emphasizes strategy over technology and may hold some

Blasko, Dennis

2010-01-01T23:59:59.000Z

68

Geothermal Technology Development Program. Annual progress report, October 1983-September 1984  

SciTech Connect (OSTI)

This report describes the status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program. The work reported is sponsored by the Department of Energy/Geothermal Hydropower Technology Division (DOE/GHTD), with program management provided by Sandia National Laboratories. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement. 102 figs., 16 tabs.

Kelsey, J.R. (ed.)

1985-08-01T23:59:59.000Z

69

Geothermal energy technology program summary  

SciTech Connect (OSTI)

The progress to date of the geothermal energy program of the US Department of Energy is briefly summarized, including federal/industry cooperation, program focus, and a budget summary. (ACR)

Not Available

1985-05-01T23:59:59.000Z

70

Geothermal Technology Advancement for Rapid Development of Resources...  

Energy Savers [EERE]

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011 Geothermal Technology Advancement for Rapid Development of Resources in the U.S....

71

Evaluation of Emerging Technology for Geothermal Drilling and...  

Broader source: Energy.gov (indexed) [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications Georgia Bettin Doug Blankenship Presenter: Doug Blankenship Sandia National Laboratories...

72

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

73

Future Technologies to Enhance Geothermal Energy Recovery  

SciTech Connect (OSTI)

Geothermal power is a renewable, low-carbon option for producing base-load (i.e., low-intermittency) electricity. Improved technologies have the potential to access untapped geothermal energy sources, which experts estimate to be greater than 100,000 MWe. However, many technical challenges in areas such as exploration, drilling, reservoir engineering, and energy conversion must be addressed if the United States is to unlock the full potential of Earth's geothermal energy and displace fossil fuels. (For example, see Tester et al., 2006; Green and Nix, 2006; and Western Governors Association, 2006.) Achieving next-generation geothermal power requires both basic science and applied technology to identify prospective resources and effective extraction strategies. Lawrence Livermore National Laboratory (LLNL) has a long history of research and development work in support of geothermal power. Key technologies include advances in scaling and brine chemistry, economic and resource assessment, direct use, exploration, geophysics, and geochemistry. For example, a high temperature, multi-spacing, multi-frequency downhole EM induction logging tool (GeoBILT) was developed jointly by LLNL and EMI to enable the detection and orientation of fractures and conductive zones within the reservoir (Figure 1). Livermore researchers also conducted studies to determine how best to stave off increased salinity in the Salton Sea, an important aquatic ecosystem in California. Since 1995, funding for LLNL's geothermal research has decreased, but the program continues to make important contributions to sustain the nation's energy future. The current efforts, which are highlighted in this report, focus on developing an Engineered Geothermal System (EGS) and on improving technologies for exploration, monitoring, characterization, and geochemistry. Future research will also focus on these areas.

Roberts, J J; Kaahaaina, N; Aines, R; Zucca, J; Foxall, B; Atkins-Duffin, C

2008-07-25T23:59:59.000Z

74

DOE Offers Loan Guarantees to Geothermal Projects in Nevada and...  

Broader source: Energy.gov (indexed) [DOE]

is the developer of Faulkner 1, a 49.5-megawatt (MW) geothermal power project at NGP's Blue Mountain site in northwestern Nevada. DOE is acting as loan guarantor for up to 80% of...

75

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Demonstrate geothermal mineral extraction; Demonstrate technical and economic feasibility; Produce products for market development; Generate operational data and scale up data so a commercial scale plant can be designed and built.

76

Geothermal Technologies Program Fact Sheet  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play FairwayGeothermalClean Domestic

77

Geothermal Technologies - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshortGeothermal Heat Pumps Geothermal Heat Pumps

78

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

79

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1986 Second Annual Report Department of Energy Contract Number through the evaluation of fluid reserves, and the forecastingl of field behavior with time. Injection al series of Proceedings that are a prominent literature source on geothermal energy. The Program

Stanford University

80

-Injection Technology -Geothermal Reservoir Engineering  

E-Print Network [OSTI]

Investigator: Roland N. Home September 1985 First Annual Report Department of Energy Contract Number, and the forecasting of field behavior with time. Injection I I Tec hnology is a research area receiving special on geothermal energy. The Program publishes technical reports on all of its research projects. Research findings

Stanford University

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Proceedings of the technical review on advances in geothermal reservoir technology---Research in progress  

SciTech Connect (OSTI)

This proceedings contains 20 technical papers and abstracts describing most of the research activities funded by the Department of Energy (DOE's) Geothermal Reservoir Technology Program, which is under the management of Marshall Reed. The meeting was organized in response to several requests made by geothermal industry representatives who wanted to learn more about technical details of the projects supported by the DOE program. Also, this gives them an opportunity to personally discuss research topics with colleagues in the national laboratories and universities.

Lippmann, M.J. (ed.)

1988-09-01T23:59:59.000Z

82

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Open Energy Info (EERE)

GEDCO, RARE Technology, and Sercel, Inc. to combine multicomponent seismic technology and rock physics modeling that will lead to the ability to image and analyze geothermal...

83

Geothermal Technologies Office Contacts | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office Contacts Geothermal

84

Geothermal Technologies Office 2012 Peer Review Report  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway GEOTHERMAL TECHNOLOGIES FY14

85

Geothermal Technologies Office Annual Report 2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway GEOTHERMAL TECHNOLOGIES

86

NREL: Geothermal Technologies Home Page  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisition SystemGeothermal

87

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

88

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

89

Programmatic Objectives of the Geothermal Technology Division: Volume 1  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

Meridian Corporation, Alexandria, VA

1989-05-01T23:59:59.000Z

90

The Future of Geothermal Energy  

E-Print Network [OSTI]

The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century #12;The Future of Geothermal Energy Impact of Enhanced Geothermal Systems (EGS and Renewable Energy, Office of Geothermal Technologies, Under DOE Idaho Operations Office Contract DE-AC07-05ID

Laughlin, Robert B.

91

DOE Research and Development for the Geothermal Marketplace  

SciTech Connect (OSTI)

This audience is well aware that the major goal of all geothermal R&D is the successful application of advanced technology in the marketplace. In support of that goal, the Geothermal Technology Division has forged a close link between its research objectives and potentially competitive market applications. Our technical objectives are all expressed in quantified reductions in the cost of geothermal power; these cost reductions are the force that will drive the geothermal industry for the foreseeable future. I agree with the recent statement of Stephen Fye of Unocal that without a legislated incentive for geothermal or disincentive for competing fuels-such as mandated carbon dioxide reductions--any premium the public is willing to pay for the use of this premium fuel will be too small to greatly impact geothermal economics. His conclusion is that the geothermal industry must be fully competitive in the marketplace at current prices. His further conclusion--with which I fully concur--is that the avenue to competitiveness is through research, by both industry and government.

Mock, John E.

1989-03-21T23:59:59.000Z

92

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with program...

93

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications  

Broader source: Energy.gov [DOE]

Evaluation of Emerging Technology for Geothermal Drilling and Logging Applications presentation at the April 2013 peer review meeting held in Denver, Colorado.

94

Geothermal Technologies Program Multi-Year Research, Development...  

Office of Environmental Management (EM)

Program Multi-Year Research, Development and Demonstration Plan presents the status of geothermal energy technologies and details program plans from 2009 through 2015, with...

95

Discussion on a Code Comparison Effort for the Geothermal Technologies...  

Office of Environmental Management (EM)

Effort for the Geothermal Technologies Program Code comparison presentation by Mark White of PNNL at the 2012 Peer Review meeting on May 10. gtp2012peerreviewpnnlwhite.pdf...

96

Final Report: Enhanced Geothermal Systems Technology Phase II...  

Open Energy Info (EERE)

Valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Final Report: Enhanced Geothermal Systems Technology Phase II: Animas Valley, New...

97

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Principal Investigator: Greg Newman, Michael Fehler Organizations: LBL & MIT Track Name April...

98

Geothermal Technologies Program Blue Ribbon Panel Recommendations  

Broader source: Energy.gov [DOE]

This report describes the recommendations of the Geothermal Blue Ribbon Panel, a panel of geothermal experts assembled in March 2011 for a discussion on the future of geothermal energy in the U.S.

99

Geothermal Technologies Office Hosts Collegiate Competition  

Broader source: Energy.gov [DOE]

To further accelerate the adoption of geothermal energy, the United States Department of Energy is sponsoring a Geothermal Case Study Challenge (CSC) to aggregate geothermal data that can help us...

100

A Roadmap for Strategic Development of Geothermal Exploration...  

Office of Environmental Management (EM)

Report -- Geothermal Technologies Office DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. A...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

Steele, B.C.; Pichiarella, L.S. [eds.; Kane, L.S.; Henline, D.M.

1995-01-01T23:59:59.000Z

102

DOE - Office of Legacy Management -- Geothermal  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown SiteOhio Fernald Preserve,NewGeothermal

103

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

SciTech Connect (OSTI)

The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings�¢����quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.

Robert C. Beiswanger, Jr.

2010-05-20T23:59:59.000Z

104

Geothermal Technology Basics | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office ContactsRenewable

105

Geothermal Outreach Publications  

Broader source: Energy.gov [DOE]

Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

106

GEOTHERMAL HEAT PUMPS Jack DiEnna  

E-Print Network [OSTI]

by DOE, "a Geothermal heat pump is a highly efficient RENEWABLE energy technology". #12;ArgumentGEOTHERMAL HEAT PUMPS THE "PLAYBOOK" Jack DiEnna Executive Director The Geothermal National What do we call it... Geothermal, Ground Source, GeoExchange. The feds call it geothermal heat pumps

107

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Glass Buttes Exploration and Drilling: 2010 Geothermal Technologies Program Peer Review Presentation, Walsh, et al, Ormat

Zemach, Ezra

108

DOE Geothermal Data Repository - Tethering Data to Information: Preprint  

SciTech Connect (OSTI)

Data are not inherently information. Without context, data are just numbers, figures, names, or points on a line. By assigning context to data, we can validate ideas, form opinions, and generate knowledge. This is an important distinction to information scientists, as we recognize that the context in which we keep our data plays a big part in generating its value. The mechanisms used to assign this context often include their own data, supplemental to the data being described and defining semantic relationships, commonly referred to as metadata. This paper provides the status of the DOE Geothermal Data Repository (DOE GDR), including recent efforts to tether data submissions to information, discusses the important distinction between data and information, outlines a path to generate useful knowledge from raw data, and details the steps taken in order to become a node on the National Geothermal Data System (NGDS).

Weers, J.; Anderson, A.

2014-02-01T23:59:59.000Z

109

Enhanced Geothermal Systems (EGS) well construction technology evaluation report.  

SciTech Connect (OSTI)

Electricity production from geothermal resources is currently based on the exploitation of hydrothermal reservoirs. Hydrothermal reservoirs possess three ingredients critical to present day commercial extraction of subsurface heat: high temperature, in-situ fluid and high permeability. Relative to the total subsurface heat resource available, hydrothermal resources are geographically and quantitatively limited. A 2006 DOE sponsored study led by MIT entitled 'The Future of Geothermal Energy' estimates the thermal resource underlying the United States at depths between 3 km and 10 km to be on the order of 14 million EJ. For comparison purposes, total U.S. energy consumption in 2005 was 100 EJ. The overwhelming majority of this resource is present in geological formations which lack either in-situ fluid, permeability or both. Economical extraction of the heat in non-hydrothermal situations is termed Enhanced or Engineered Geothermal Systems (EGS). The technologies and processes required for EGS are currently in a developmental stage. Accessing the vast thermal resource between 3 km and 10 km in particular requires a significant extension of current hydrothermal practice, where wells rarely reach 3 km in depth. This report provides an assessment of well construction technology for EGS with two primary objectives: (1) Determining the ability of existing technologies to develop EGS wells. (2) Identifying critical well construction research lines and development technologies that are likely to enhance prospects for EGS viability and improve overall economics. Towards these ends, a methodology is followed in which a case study is developed to systematically and quantitatively evaluate EGS well construction technology needs. A baseline EGS well specification is first formulated. The steps, tasks and tools involved in the construction of this prospective baseline EGS well are then explicitly defined by a geothermal drilling contractor in terms of sequence, time and cost. A task and cost based analysis of the exercise is subsequently conducted to develop a deeper understanding of the key technical and economic drivers of the well construction process. Finally, future research & development recommendations are provided and ranked based on their economic and technical significance.

Capuano, Louis, Jr. (Thermasource Inc.); Huh, Michael; Swanson, Robert (Thermasource Inc.); Raymond, David Wayne; Finger, John Travis; Mansure, Arthur James; Polsky, Yarom; Knudsen, Steven Dell

2008-12-01T23:59:59.000Z

110

DOE Facilities Technology Partnering Programs  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes roles and responsibilities for the oversight, management and administration of technology partnerships and associated technology transfer mechanisms, and clarifies related policies and procedures. Does not cancel other directives.

2001-01-12T23:59:59.000Z

111

United States geothermal technology: Equipment and services for worldwide applications  

SciTech Connect (OSTI)

This document has two intended audiences. The first part, ``Geothermal Energy at a Glance,`` is intended for energy system decision makers and others who are interested in wide ranging aspects of geothermal energy resources and technology. The second part, ``Technology Specifics,`` is intended for engineers and scientists who work with such technology in more detailed ways. The glossary at the end of the document defines many of the specialized terms. A directory of US geothermal industry firms who provide goods and services for clients around the world is available on request.

NONE

1995-05-01T23:59:59.000Z

112

Application of a New Structural Model & Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid Drilling for Geothermal Exploration: McCoy, Churchill County, NV  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Relevance of research: Improve exploration technologies for range-hosted geothermal systems:Employ new concept models and apply existing methods in new ways; Breaking geothermal exploration tasks into new steps, segmenting the problem differently; Testing new models for dilatent structures; Utilizing shallow thermal aquifer model to focus exploration; Refining electrical interpretation methods to map shallow conductive featuresIdentifying key faults as fluid conduits; and Employ soil gas surveys to detect volatile elements and gases common to geothermal systems.

113

Harsh Environment Silicon Carbide Sensor Technology for Geothermal Instrumentation  

Broader source: Energy.gov [DOE]

Project objectives: Develop advanced sensor technology for the direct monitoring of geothermal reservoirs. Engineer sensors to survive and operate in H2O pressures up to 220 bar and temperatures as high as 374o C.

114

DOE Building Technologies Program  

Energy Savers [EERE]

501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

115

Preliminary Technical Risk Analysis for the Geothermal Technologies Program  

SciTech Connect (OSTI)

This report explains the goals, methods, and results of a probabilistic analysis of technical risk for a portfolio of R&D projects in the DOE Geothermal Technologies Program ('the Program'). The analysis is a task by Princeton Energy Resources International, LLC (PERI), in support of the National Renewable Energy Laboratory (NREL) on behalf of the Program. The main challenge in the analysis lies in translating R&D results to a quantitative reflection of technical risk for a key Program metric: levelized cost of energy (LCOE). This requires both computational development (i.e., creating a spreadsheet-based analysis tool) and a synthesis of judgments by a panel of researchers and experts of the expected results of the Program's R&D.

McVeigh, J.; Cohen, J.; Vorum, M.; Porro, G.; Nix, G.

2007-03-01T23:59:59.000Z

116

The Geothermal Technologies Office Congratulates this Year's...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

GEA Honors Awardees December 11, 2013 - 12:00am Addthis On December 10, the Geothermal Energy Association announced its 2013 GEA Honors awards for advances and achievements...

117

Geothermal Technologies Office Director Doug Hollett Keynotes...  

Energy Savers [EERE]

portfolio for the coming years - the Frontier Observatory for Research in Geothermal Energy (FORGE). Click below for the full presentation. To see a listing of all GTO...

118

Geothermal Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal Energy Energy Department Announces 18 Million for Innovative Projects to Advance...

119

GETEM -Geothermal Electricity Technology Evaluation Model  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conversion systems. Previous version of the model included an option to change the tube material (and cost) in the geothermal heat exchangers. This option became inactive when...

120

Geothermal completion technology life-cycle cost model (GEOCOM)  

SciTech Connect (OSTI)

GEOCOM is a model developed to evaluate the cost effectiveness of alternative technologies used in the completion, production, and maintenance of geothermal wells. The model calculates the ratio of life-cycle cost to life-cycle production or injection and thus is appropriate for evaluating the cost effectiveness of a geothermal well even when the most economically profitable well completion strategies do not result in lowest capital costs. The project to develop the GEOCOM model included the establishment of a data base for studying geothermal completions and preliminary case/sensitivity studies. The code has the data base built into its structure as default parameters. These parameters include geothermal resource characteristics; costs of geothermal wells, workovers, and equipment; and other data. The GEOCOM model has been written in ANSI (American National Standard Institute) FORTRAN 1966 version.

Mansure, A.J.; Carson, C.C.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

International Partnership for Geothermal Technology Launches Website |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE Vehicle TechnologiesDepartmentDepartment

122

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids  

SciTech Connect (OSTI)

Executive Summary Simbol Materials studied various methods of extracting valuable minerals from geothermal brines in the Imperial Valley of California, focusing on the extraction of lithium, manganese, zinc and potassium. New methods were explored for managing the potential impact of silica fouling on mineral extraction equipment, and for converting silica management by-products into commercial products.` Studies at the laboratory and bench scale focused on manganese, zinc and potassium extraction and the conversion of silica management by-products into valuable commercial products. The processes for extracting lithium and producing lithium carbonate and lithium hydroxide products were developed at the laboratory scale and scaled up to pilot-scale. Several sorbents designed to extract lithium as lithium chloride from geothermal brine were developed at the laboratory scale and subsequently scaled-up for testing in the lithium extraction pilot plant. Lithium The results of the lithium studies generated the confidence for Simbol to scale its process to commercial operation. The key steps of the process were demonstrated during its development at pilot scale: 1. Silica management. 2. Lithium extraction. 3. Purification. 4. Concentration. 5. Conversion into lithium hydroxide and lithium carbonate products. Results show that greater than 95% of the lithium can be extracted from geothermal brine as lithium chloride, and that the chemical yield in converting lithium chloride to lithium hydroxide and lithium carbonate products is greater than 90%. The product purity produced from the process is consistent with battery grade lithium carbonate and lithium hydroxide. Manganese and zinc Processes for the extraction of zinc and manganese from geothermal brine were developed. It was shown that they could be converted into zinc metal and electrolytic manganese dioxide after purification. These processes were evaluated for their economic potential, and at the present time Simbol Materials is evaluating other products with greater commercial value. Potassium Silicotitanates, zeolites and other sorbents were evaluated as potential reagents for the extraction of potassium from geothermal brines and production of potassium chloride (potash). It was found that zeolites were effective at removing potassium but the capacity of the zeolites and the form that the potassium is in does not have economic potential. Iron-silica by-product The conversion of iron-silica by-product produced during silica management operations into more valuable materials was studied at the laboratory scale. Results indicate that it is technically feasible to convert the iron-silica by-product into ferric chloride and ferric sulfate solutions which are precursors to a ferric phosphate product. However, additional work to purify the solutions is required to determine the commercial viability of this process. Conclusion Simbol Materials is in the process of designing its first commercial plant based on the technology developed to the pilot scale during this project. The investment in the commercial plant is hundreds of millions of dollars, and construction of the commercial plant will generate hundreds of jobs. Plant construction will be completed in 2016 and the first lithium products will be shipped in 2017. The plant will have a lithium carbonate equivalent production capacity of 15,000 tonnes per year. The gross revenues from the project are expected to be approximately $ 80 to 100 million annually. During this development program Simbol grew from a company of about 10 people to over 60 people today. Simbol is expected to employ more than 100 people once the plant is constructed. Simbol Materials’ business is scalable in the Imperial Valley region because there are eleven geothermal power plants already in operation, which allows Simbol to expand its business from one plant to multiple plants. Additionally, the scope of the resource is vast in terms of potential products such as lithium, manganese and zinc and potentially potassium.

Harrison, Stephen [SIMBOL Materials

2014-04-30T23:59:59.000Z

123

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

Systems (EGS) IEA-GIA ExCo - National Geothermal Data System and Online Tools The Role of Geochemistry and Stress on Fracture Development and Proppant Behavior in EGS Reservoirs...

124

2010 DOE EERE Vehicle Technologies Program Merit Review ? Technology...  

Energy Savers [EERE]

Technology Integration 2010 DOE EERE Vehicle Technologies Program Merit Review Technology Integration Technology integration merit review results 2010amr08.pdf More...

125

Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

126

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle Systems DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards...

127

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

LLC demonstrated the PureCycle mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada. This was the second stop on a demonstration tour...

128

Geothermal Resources and Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway AnalysisR&D:Geothermal

129

Geothermal Technologies Program Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstrationOverview Geothermal

130

DOE Geothermal Technologies Office | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentratingRenewable Solutions LLC JumpCrow Lake Wind JumpCuttings AnalysisDCDFJTechnologies

131

Geothermal Reservoir Well Stimulation Program: technology transfer  

SciTech Connect (OSTI)

Each of the following types of well stimulation techniques are summarized and explained: hydraulic fracturing; thermal; mechanical, jetting, and drainhole drilling; explosive and implosive; and injection methods. Current stimulation techniques, stimulation techniques for geothermal wells, areas of needed investigation, and engineering calculations for various techniques. (MHR)

Not Available

1980-05-01T23:59:59.000Z

132

Geothermal Life Cycle Calculator  

SciTech Connect (OSTI)

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

2014-03-11T23:59:59.000Z

133

Geothermal Life Cycle Calculator  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

Sullivan, John

134

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Broader source: Energy.gov (indexed) [DOE]

8.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Technology Validation 2008 Annual Merit Review Results Summary - 16. Technology...

135

Geothermal Technologies FY14 Budget At-a-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway GEOTHERMAL TECHNOLOGIES FY14

136

Geothermal Technologies Program Annual Peer Review Presentation By Doug Hollett  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play FairwayGeothermal Technologies

137

Geothermal Technologies Program Coproduction Fact Sheet  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George WaldmannAnnual Report GeothermalHollett |

138

Geothermal Technologies Office | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined Heat & PowerEnergyDepartmentEmployeeRenewableGeothermal

139

Geothermal R&D Program Technology Transfer Outlook, FY-85 through FY-1989  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. (DJE - 2005)

None

1986-03-01T23:59:59.000Z

140

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Category:Geothermal Technologies | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCTBarreis aCallahanWind FarmAdd a new FederalGeothermal

142

Geothermal Technologies Program Overview Presentation at Stanford  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration

143

An Evaluation of Enhanced Geothermal Systems Technology  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin,An Evaluation of Enhanced Geothermal

144

Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design of a rig  

E-Print Network [OSTI]

Above Ground Geothermal and Allied Technologies Masters Scholarship in Energy & Materials: design into the largest green energy resources; industrial waste heat, biomass combustion and geothermal energy. Research of geothermal energy after completing the degree. Proficiency in English is essential. Contact: mark

Hickman, Mark

145

Federal Geothermal Research Program Update Fiscal Year 1999  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

Not Available

2004-02-01T23:59:59.000Z

146

2014 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Energy Savers [EERE]

DOE Vehicle Technologies Office Annual Merit Review 2014 DOE Vehicle Technologies Office Annual Merit Review The 2014 U.S. Department of Energy (DOE) Fuel Cell Technologies Office...

147

DOE Offers $15 Million Geothermal Heat Recovery Opportunity ...  

Energy Savers [EERE]

FOA also calls for the reduction of the levelized cost of electricity for new methods of geothermal energy production from 0.10 kWh to 0.06 kWh. Applicants must submit an...

148

Geothermal technology publications and related reports: a bibliography, January-December 1981  

SciTech Connect (OSTI)

Titles, authors and abstracts of papers are assembled into areas of Geothermal Technology, Magma and General Geoscience Studies with cross references listed by author.

Hudson, S.R. (ed.)

1982-05-01T23:59:59.000Z

149

Geothermal: Sponsored by OSTI -- Industrial Sector Technology...  

Office of Scientific and Technical Information (OSTI)

Industrial Sector Technology Use Model (ISTUM): industrial energy use in the United States, 1974-2000. Volume 1. Primary model documentation. Final report...

150

Geopressured geothermal drilling and completions technology development needs  

SciTech Connect (OSTI)

Geopressured geothermal formations found in the Texas and Louisiana gulf coast region and elsewhere have the potential to supply large quantities of energy in the form of natural gas and warm brine (200 to 300/sup 0/F). Advances are needed, however, in hardware technology, well design technology, and drilling and completion practices to enable production and testing of exploratory wells and to enable economic production of the resource should further development be warranted. This report identifies needed technology for drilling and completing geopressured geothermal source and reinjection wells to reduce the cost and to accelerate commercial recovery of this resource. A comprehensive prioritized list of tasks to develop necessary technology has been prepared. Tasks listed in this report address a wide range of technology needs including new diagnostic techniques, control technologies, hardware, instrumentation, operational procedure guidelines and further research to define failure modes and control techniques. Tasks are organized into the functional areas of well design, drilling, casing installation, cementing, completions, logging, brine reinjection and workovers.

Maish, A.B.

1981-03-01T23:59:59.000Z

151

Geothermal technology development program. Annual progress report, October 1981-September 1982  

SciTech Connect (OSTI)

The status of ongoing Research and Development (R and D) within the Geothermal Technology Development Program is described. The program emphasizes research in rock penetration mechanics, fluid technology, borehole mechanics, diagnostics technology, and permeability enhancement.

Kelsey, J.R. (ed.)

1983-08-01T23:59:59.000Z

152

Geothermal Technologies Available for Licensing - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCIResearch toAbout DOE's GeothermalNot

153

Geothermal Technologies Program Peer Review Program June 6 -...  

Broader source: Energy.gov (indexed) [DOE]

highlighting activities supporting its goal to reduce the cost of baseload geothermal energy and accelerate the development of geothermal resources. gtppeerreviewplenary...

154

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

155

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells....

156

Seismic Technology Adapted to Analyzing and Developing Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

of geothermal prospects beneath volcanic outcrops. * Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells. *...

157

Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan  

SciTech Connect (OSTI)

Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

Not Available

1994-12-31T23:59:59.000Z

158

Geothermal: Sponsored by OSTI -- ESMERALDA ENERGY COMPANY FINAL...  

Office of Scientific and Technical Information (OSTI)

ESMERALDA ENERGY COMPANY FINAL SCIENTIFIC TECHNICAL REPORT, January 2008, EMIGRANT SLIMHOLE DRILLING PROJECT, DOE GRED III (DE-FC36-04GO14339) Geothermal Technologies Legacy...

159

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, October 1980-December 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development.

Kelsey, J.R. (ed.)

1981-03-01T23:59:59.000Z

160

Geothermal Drilling and Completion Technology Development Program. Quarterly progress report, January 1981-March 1981  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods as they apply to advanced drilling systems.

Kelsey, J.R. (ed.)

1981-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Geothermal Electricity Technology Evaluation Model (GETEM) Development |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial TechnologyDepartment of

162

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR 2009 DOE Hydrogen Program and...

163

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition DOE Fuel Cell Technologies Office: 2013 Fuel Cell Seminar and Energy Exposition Overview of DOE's...

164

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard...  

Broader source: Energy.gov (indexed) [DOE]

Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Fuel Cell Technologies Program - DOD-DOE Workshop: Shipboard APUs Overview Presented at the DOE-DOD...

165

DOE Vehicle Technologies Program 2009 Merit Review Report - Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

1.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage DOE Vehicle...

166

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program Fuel Consumption and Cost Benefits of DOE Vehicle Technologies Program 2012 DOE Hydrogen and Fuel Cells...

167

Federal Geothermal Research Program Update - Fiscal Year 2001  

SciTech Connect (OSTI)

This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

Laney, P.T.

2002-08-31T23:59:59.000Z

168

Geothermal Technologies Office - Webmaster | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)October 2011 |Technologies

169

Geothermal Energy Research and Development Program; Project Summaries  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

170

Post-NEPA environmental investigations at DOE geopressured-geothermal project sites  

SciTech Connect (OSTI)

In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

Reed, A.W.

1985-01-01T23:59:59.000Z

171

DOE and Partners Demonstrate Mobile Geothermal Power System at 2009  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc.,House,Geothermal Energy Expo |

172

Pressure Temperature Log At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformation Mccoy Geothermal Area (DOE

173

Geothermal Program Review IV: proceedings  

SciTech Connect (OSTI)

The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

Not Available

1985-01-01T23:59:59.000Z

174

Monitoring and Modeling Fluid Flow in a Developing Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismicity; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology...

175

Electronic Submersible Pump (ESP) Technology and Limitations with Respect to Geothermal Systems (Fact Sheet)  

SciTech Connect (OSTI)

The current state of geothermal technology has limitations that hinder the expansion of utility scale power. One limitation that has been discussed by the current industry is the limitation of Electric Submersible Pump (ESP) technology. With the exception of a few geothermal fields artificial lift technology is dominated by line shaft pump (LSP) technology. LSP's utilize a pump near or below reservoir depth, which is attached to a power shaft that is attached to a motor above ground. The primary difference between an LSP and an ESP is that an ESP motor is attached directly to the pump which eliminates the power shaft. This configuration requires that the motor is submersed in the geothermal resource. ESP technology is widely used in oil production. However, the operating conditions in an oil field vary significantly from a geothermal system. One of the most notable differences when discussing artificial lift is that geothermal systems operate at significantly higher flow rates and with the potential addition of Enhanced Geothermal Systems (EGS) even greater depths. The depths and flow rates associated with geothermal systems require extreme horsepower ratings. Geothermal systems also operate in a variety of conditions including but not limited to; high temperature, high salinity, high concentrations of total dissolved solids (TDS), and non-condensable gases.

Not Available

2014-09-01T23:59:59.000Z

176

Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...  

Office of Scientific and Technical Information (OSTI)

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

177

Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: A novel 2D VSP imaging technology and patented processing techniques will be used to create accurate, high-resolution reflection images of a classic Basin and Range fault system in a fraction of previous compute times.

178

Geothermal drilling and completion technology development program. Quarterly progress report, January-March 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-04-01T23:59:59.000Z

179

Geothermal drilling and completion technology development program. Annual progress report, October 1979-September 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G. (ed.)

1980-11-01T23:59:59.000Z

180

Geothermal drilling and completion technology development program. Quarterly progress report, October-December 1979  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geothermal drilling and completion technology development program. Quarterly progress report, April-June 1980  

SciTech Connect (OSTI)

The progress, status, and results of ongoing research and development (R and D) within the Geothermal Drilling and Completion Technology Development Program are reported. The program emphasizes the development of geothermal drilling hardware, drilling fluids, completion technology, and lost circulation control methods. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1983 and by 50% by 1987.

Varnado, S.G.

1980-07-01T23:59:59.000Z

182

Geothermal technology publications and related reports: a bibliography, January 1984-December 1985  

SciTech Connect (OSTI)

Technological limitations restrict the commercial availability of US geothermal resources and prevent effective evaluation of large resources, as magma, to meet future US needs. The US Department of Energy has asked Sandia to serve as the lead laboratory for research in Geothermal Technologies and Magma Energy Extraction. In addition, technology development and field support has been provided to the US Continental Scientific Drilling Program. Published results for this work from January 1984 through December 1985 are listed in this bibliography.

Cooper, D.L. (ed.)

1986-09-01T23:59:59.000Z

183

Geothermal drilling ad completion technology development program. Semi-annual progress report, April-September 1979  

SciTech Connect (OSTI)

The progress, status, and results of ongoing Research and Development (R and D) within the Geothermal Drilling and Completion Technology Development Program are described. The program emphasizes the development of geothermal drilling hardware, drilling fluids, and completion technology. Advanced drilling systems are also under development. The goals of the program are to develop the technology required to reduce well costs by 25% by 1982 and by 50% by 1986.

Varnado, S.G. (ed.)

1980-05-01T23:59:59.000Z

184

Geothermal program overview: Fiscal years 1993--1994  

SciTech Connect (OSTI)

The DOE Geothermal Energy Program is involved in three main areas of research: finding and tapping the resource; power generation; and direct use of geothermal energy. This publication summarizes research accomplishments for FY 1993 and 1994 for the following: geophysical and geochemical technologies; slimhole drilling for exploration; resource assessment; lost circulation control; rock penetration mechanics; instrumentation; Geothermal Drilling Organization; reservoir analysis; brine injection; hot dry rock; The Geysers; Geothermal Technology Organization; heat cycle research; advanced heat rejection; materials development; and advanced brine chemistry.

NONE

1995-11-01T23:59:59.000Z

185

DOE Fuel Cell Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebratePartnersDepartment DOE ESPCof EnergyGolden,SubprogramDOE

186

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

1996-02-01T23:59:59.000Z

187

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation`s defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy`s Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE`s capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

188

2012 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Energy Savers [EERE]

Merit Review 2012 DOE Vehicle Technologies Office Annual Merit Review The 2012 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

189

2011 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Energy Savers [EERE]

Merit Review 2011 DOE Vehicle Technologies Office Annual Merit Review The 2011 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

190

DOE Fuel Cell Technologies Program Record, Record # 11003, Fuel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability DOE Fuel Cell Technologies Program Record, Record 11003, Fuel Cell Stack Durability Dated...

191

2009 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Energy Savers [EERE]

Annual Merit Review 2009 DOE Vehicle Technologies Office Annual Merit Review The 2009 DOE Hydrogen Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

192

Penn State DOE Graduate Automotive Technology Education (Gate...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Graduate Automotive Technology Education (Gate) Program for In-Vehicle, High-Power Energy Storage Systems Penn State DOE Graduate Automotive Technology Education (Gate)...

193

DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...  

Energy Savers [EERE]

Energy Storage DOE Vehicle Technologies Program 2009 Merit Review Report - Energy Storage Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview2.pdf...

194

DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweigh...  

Broader source: Energy.gov (indexed) [DOE]

6.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

195

DOE Vehicle Technologies Program 2009 Merit Review Report - Fuels...  

Broader source: Energy.gov (indexed) [DOE]

5.pdf More Documents & Publications 2010 DOE EERE Vehicle Technologies Program Merit Review - Fuels Technologies 2011 Annual Merit Review Results Report - Fuels & Lubricants DOE...

196

DOE Vehicle Technologies Program 2009 Merit Review Report - Advanced...  

Broader source: Energy.gov (indexed) [DOE]

4.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

197

DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms...  

Energy Savers [EERE]

Acronyms DOE Vehicle Technologies Program 2009 Merit Review Report - Acronyms Merit review of DOE Vehicle Technologies Program research efforts 2009meritreview11.pdf More...

198

DOE Vehicle Technologies Program 2009 Merit Review Report - Propulsion...  

Broader source: Energy.gov (indexed) [DOE]

7.pdf More Documents & Publications DOE Vehicle Technologies Program 2009 Merit Review Report - Lightweight Materials DOE Vehicle Technologies Program 2009 Merit Review Report -...

199

DOE Vehicle Technologies Program 2009 Merit Review Report - PI...  

Energy Savers [EERE]

PI and Project Cross Reference DOE Vehicle Technologies Program 2009 Merit Review Report - PI and Project Cross Reference Merit review of DOE Vehicle Technologies Program research...

200

DOE Vehicle Technologies Program 2009 Merit Review Report - Safety...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Safety Codes and Standards DOE Vehicle Technologies Program 2009 Merit Review Report - Safety Codes and Standards Merit review of DOE Vehicle Technologies Program research efforts...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal Program Overview: Fiscal Years 1993-1994  

SciTech Connect (OSTI)

Geothermal energy represents the largest U.S. energy resource base and already provides an important contribution to our nation's energy needs. This overview looks at the basic science behind the various geothermal technologies and provides information on DOE Geothermal Energy Program activities and accomplishments.

Not Available

1995-11-01T23:59:59.000Z

202

Geothermal drilling research in the United States  

SciTech Connect (OSTI)

The high cost of drilling and completing geothermal wells is an impediment to the development of this resource. The Department of Energy (DOE), Division of Geothermal Energy (DGE), is conducting an R and D program directed at reducing well costs through improvements in geothermal drilling and completion technology. This program includes R and D activities in high temperature drilling hardware, drilling fluids, lost circulation control methods, completion technology, and advanced drilling systems. An overview of the program is presented.

Varnado, S.G.; Maish, A.B.

1980-01-01T23:59:59.000Z

203

Hydrothermal spallation drilling and advanced energy conversion technologies for Engineered Geothermal Systems  

E-Print Network [OSTI]

The purpose of this research was to study the various factors affecting the economic and technical feasibility of Engineered Geothermal Systems, with a special emphasis on advanced drilling technologies. The first part of ...

Augustine, Chad R

2009-01-01T23:59:59.000Z

204

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014  

SciTech Connect (OSTI)

The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory] (ORCID:0000000228898620); Richards, Maria C. [SMU Geothermal Laboratory

2014-06-24T23:59:59.000Z

205

NREL - DOE Technology Performance Exchange  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopmentNOxsensorNRECANREL - DOE

206

PROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 1-3, 2010  

E-Print Network [OSTI]

study sponsored by the U.S. Department of Energy (DOE), The Future of Geothermal Energy (MIT, 2006 level geothermal systems model to enable the US Department of Energy's Geothermal Technologies ProgramPROCEEDINGS, Thirty-Fifth Workshop on Geothermal Reservoir Engineering Stanford University

Stanford University

207

PROCEEDINGS, Thirty-Fourth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 9-11, 2009  

E-Print Network [OSTI]

The concept of Enhanced Geothermal Systems (EGS) has long been recognized by geothermal energy experts as being the necessary technology for substantially increasing the contribution of geothermal energy DOE sponsored study led by MIT entitled "The Future of Geothermal Energy", hereafter referred

Stanford University

208

Geothermal Tomorrow 2008  

SciTech Connect (OSTI)

Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

Not Available

2008-09-01T23:59:59.000Z

209

Geothermal: Sponsored by OSTI -- A study of geothermal drilling...  

Office of Scientific and Technical Information (OSTI)

A study of geothermal drilling and the production of electricity from geothermal energy Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

210

Geothermal: Sponsored by OSTI -- GEOTHERMAL / SOLAR HYBRID DESIGNS...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

211

Geothermal: Sponsored by OSTI -- Development of a geothermal...  

Office of Scientific and Technical Information (OSTI)

Development of a geothermal resource in a fractured volcanic formation: Case study of the Sumikawa Geothermal Field, Japan Geothermal Technologies Legacy Collection HelpFAQ | Site...

212

Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...  

Office of Scientific and Technical Information (OSTI)

Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

213

The Geothermal Technologies Office Invests $18 Million for Innovative...  

Broader source: Energy.gov (indexed) [DOE]

of Energy today announced up to 18 million for 32 projects that will advance geothermal energy development in the United States. The selected projects target research and...

214

Monitoring SERC TechnologiesGeothermal/Ground Source Heat Pumps  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Project Leader Dave Peterson about Geothermal/Ground Source Heat Pumps and how to properly monitor its installation.

215

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING MANAGEMENT PROGRAM ("GREMP") -DECEMBER, 1979  

E-Print Network [OSTI]

DOE), Division of Geothermal Energy (DGE) proposed thatof Energy, Division of Geothermal Energy, through Lawrence

Howard, J. H.

2012-01-01T23:59:59.000Z

216

Critical technologies research: Opportunities for DOE  

SciTech Connect (OSTI)

Recent studies have identified a number of critical technologies that are essential to the nation's defense, economic competitiveness, energy independence, and betterment of public health. The National Critical Technologies Panel (NCTP) has identified the following critical technology areas: Aeronautics and Surface Transportation; Biotechnology and Life Sciences; Energy and Environment; Information and Communications; Manufacturing; and Materials. Sponsored by the Department of Energy's Office of Energy Research (OER), the Critical Technologies Research Workshop was held in May 1992. Approximately 100 scientists, engineers, and managers from the national laboratories, industry, academia, and govemment participated. The objective of the Berkeley Workshop was to advance the role of the DOE multiprogram energy laboratories in critical technologies research by describing, defining, and illustrating research areas, opportunities, resources, and key decisions necessary to achieve national research goals. An agenda was developed that looked at DOE's capabilities and options for research in critical technologies and provided a forum for industry, academia, govemment, and the national laboratories to address: Critical technology research needs; existing research activities and resources; capabilities of the national laboratories; and opportunities for national laboratories, industries, and universities. The Workshop included plenary sessions in which presentations by technology and policy leaders set the context for further inquiry into critical technology issues and research opportunities. Separate sessions then focused on each of the following major areas of technology: Advanced materials; biotechnology and life sciences; energy and environment; information and communication; and manufacturing and transportation.

Not Available

1992-12-01T23:59:59.000Z

217

Technology development for DOE SNF management  

SciTech Connect (OSTI)

This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

Hale, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Einziger, R.E. [Pacific Northwest National Lab., Richland, WA (United States); Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-31T23:59:59.000Z

218

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

219

Federal Geothermal Research Program Update - Fiscal Year 2004  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Patrick Laney

2005-03-01T23:59:59.000Z

220

Federal Geothermal Research Program Update Fiscal Year 2004  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or economical.

Not Available

2005-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology Competition: Challenge-X 2008 DOE Merit Review Advanced Vehicle Technology Competition: Challenge-X 2008 DOE Merit Review Presentation from the U.S. DOE Office of...

222

DOE Offers $15 Million Geothermal Heat Recovery Opportunity | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserveDepartmentAugust 2010Energy

223

DOE Announces Geothermal Research Initiative | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance atTEnergy (DOE) announces

224

Geothermal: Sponsored by OSTI -- State geothermal commercialization...  

Office of Scientific and Technical Information (OSTI)

State geothermal commercialization programs in seven Rocky Mountain states. Semiannual progress report, July-December 1980 Geothermal Technologies Legacy Collection HelpFAQ | Site...

225

Geothermal: Sponsored by OSTI -- GEOTHERMAL POWER GENERATION...  

Office of Scientific and Technical Information (OSTI)

GEOTHERMAL POWER GENERATION PLANT Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New...

226

International Partnership for Geothermal Technology - 2012 Peer Review  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10 DOE Vehicle TechnologiesDepartmentDepartment ofDepartment

227

Geothermal energy technology: issues, R and D needs, and cooperative arrangements  

SciTech Connect (OSTI)

In 1986, the National Research Council, through its Energy Engineering Board, formed the Committee on Geothermal Energy Technology. The committee's study addressed major issues in geothermal energy technology, made recommendations for research and development, and considered cooperative arrangements among government, industry, and universities to facilitate RandD under current severe budget constraints. The report addresses four types of geothermal energy: hydrothermal, geopressured, hot dry rock, and magma systems. Hydrothermal systems are the only type that are now economically competitive commercially. Further technology development by the Department of Energy could make the uneconomical hydrothermal resources commercially attractive to the industry. The economics are more uncertain for the longer-term technologies for extracting energy from geopressured, hot dry rock, and magma systems. For some sites, the cost of energy derived from geopressured and hot dry rock systems is projected within a commercially competitive range. The use of magma energy is too far in the future to make reasonable economic calculations.

Not Available

1987-01-01T23:59:59.000Z

228

Flow Test At Flint Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6Theoretical vsFlint Geothermal Area (DOE GTP) Jump to:

229

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

230

Updating the Classification of Geothermal Resources- Presentation  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

231

Updating the Classification of Geothermal Resources  

Broader source: Energy.gov [DOE]

USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

232

Geothermal resource data base: Arizona  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in Arizona up to 1993. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low-Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction. In recent years, the primary growth in geothermal use in Arizona has occurred in aquaculture. Other uses include minor space heating and supply of warm mineral waters for health spas.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-09-01T23:59:59.000Z

233

Analysis of Injection-Induced Micro-Earthquakes in a Geothermal Steam Reservoir, The Geysers Geothermal Field, California  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program, ofwith energy extraction at The Geysers geothermal field. We

Rutqvist, J.

2008-01-01T23:59:59.000Z

234

Geopressured geothermal resource of the Texas and Louisiana Gulf Coast: a technology characterization and environmental assessment  

SciTech Connect (OSTI)

Two aspects of the Texas and Louisiana Gulf Coast geopressured geothermal resource: (1) the technological requirements for well drilling, completion, and energy conversion, and, (2) the environmental impacts of resource exploitation are examined. The information comes from the literature on geopressured geothermal research and from interviews and discussions with experts. The technology characterization section emphasizes those areas in which uncertainty exists and in which further research and development is needed. The environmental assessment section discusses all anticipated environmental impacts and focuses on the two largest potential problems: (a) subsidence and (b) brine disposal.

Usibelli, A.; Deibler, P.; Sathaye, J.

1980-12-01T23:59:59.000Z

235

DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 13012: Fuel Cell System Cost - 2013 This program record from the...

236

DOE Announces Strategic Engineering and Technology Roadmap for...  

Broader source: Energy.gov (indexed) [DOE]

Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era Nuclear Waste DOE Announces Strategic Engineering and Technology Roadmap for Cleanup of Cold War Era...

237

DOE Selects Contractor for California Energy Technology Engineering...  

Broader source: Energy.gov (indexed) [DOE]

California Energy Technology Engineering Center Cleanup DOE Selects Contractor for California Energy Technology Engineering Center Cleanup June 26, 2014 - 12:00pm Addthis Media...

238

DOE Announces Webinars on Natural Gas for Biomass Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Natural Gas for Biomass Technologies, Additive Manufacturing for Fuel Cells, and More DOE Announces Webinars on Natural Gas for Biomass Technologies, Additive Manufacturing for...

239

Federal Geothermal Research Program Update Fiscal Year 2003  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2004-03-01T23:59:59.000Z

240

Federal Geothermal Research Program Update Fiscal Year 2002  

SciTech Connect (OSTI)

The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

Not Available

2003-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geothermal Technologies Office FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway GEOTHERMAL

242

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play FairwayGeothermalCleanDemonstration

243

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive, it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them, is also given.

Lippmann, M.J.; Antunez, E.

1996-01-01T23:59:59.000Z

244

Information systems and technology transfer programs on geothermal energy and other renewable sources of energy  

SciTech Connect (OSTI)

In order to remain competitive it is necessary to stay informed and use the most advanced technologies available. Recent developments in communication, like the Internet and the World Wide Web, enormously facilitate worldwide data and technology transfer. A compilation of the most important sources of data on renewable energies, especially geothermal, as well as lists of relevant technology transfer programs are presented. Information on how to gain access to, and learn more about them is also given.

Lippmann, Marcelo J.; Antunez, Emilio u.

1996-01-24T23:59:59.000Z

245

Community Geothermal Technology Program: Silica bronze project. Final report  

SciTech Connect (OSTI)

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

246

Advanced Geothermal Turbodrill  

SciTech Connect (OSTI)

Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

W. C. Maurer

2000-05-01T23:59:59.000Z

247

Updated U.S. Geothermal Supply Characterization  

SciTech Connect (OSTI)

This paper documents the approach taken to characterize and represent an updated assessment of U.S. geothermal supply for use in forecasting the penetration of geothermal electrical generation in the National Energy Modeling System (NEMS). This work is motivated by several factors: The supply characterization used as the basis of several recent U.S. Department of Energy (DOE) forecasts of geothermal capacity is outdated; additional geothermal resource assessments have been published; and a new costing tool that incorporates current technology, engineering practices, and associated costs has been released.

Petty, S.; Porro, G.

2007-03-01T23:59:59.000Z

248

Enhanced Geothermal Systems | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Geothermal Technologies Office Enhanced Geothermal Systems Enhanced Geothermal Systems The Newberry Volcano near Bend, Oregon is one of five active Energy Department...

249

DOE-Backed Project Will Demonstrate Innovative Geothermal Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EGS is a process of extracting heat from the Earth by creating a subsurface fracture system and circulating water through these fractures using deep well bores. Creating...

250

Data Provision Instructions for All DOE Geothermal Technologies...  

Office of Environmental Management (EM)

data generated from rare earth element analysis may be entered into a NGDS aqueous chemistry structured format available at http:schemas.usgin.orgmodels. The data will be...

251

DOE and Partners Test Enhanced Geothermal Systems Technologies | Department  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S.D.C. -AffordableSanta Susana Fieldof

252

Data Provision Instructions for All DOE Geothermal Technologies Office  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. DepartmenttoJune 16,AprilFrank G. Klotz39AofDanielforFunds

253

DOE and Navy Collaborate on Geothermal Drilling Technology | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc.,House,

254

DOE/OSTI--C146 The Geothermal Technologies Legacy Collection  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganizationElectronic Reading2Q)382 THENETLHot Docs are the

255

Sandia National Laboratories: Sandia Wins DOE Geothermal Technologies  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmitted for US Patent ClimateECEnergyComputationalPresented atSolar

256

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play

257

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

of Geothermal Energy", Geothermal Energy, UNESCO, Paris,U. S . Department of Energy, Geothermal Energy DOE/ET/28442-Western United States, Geothermal Energy Magazine vo. 6, no.

Haven, Kendal F.

2012-01-01T23:59:59.000Z

258

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems; 2010 Geothermal Technology Program Peer Review Report Seismic Fracture Characterization Methods for...

259

Geothermal Case Studies  

SciTech Connect (OSTI)

The US Geological Survey (USGS) resource assessment (Williams et al., 2009) outlined a mean 30GWe of undiscovered hydrothermal resource in the western US. One goal of the Geothermal Technologies Office (GTO) is to accelerate the development of this undiscovered resource. The Geothermal Technologies Program (GTP) Blue Ribbon Panel (GTO, 2011) recommended that DOE focus efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont, et al, 1990) will give operators a single point of information to gather clean, unbiased information on which to build geothermal drilling prospects. To support this effort, the National Renewable Energy laboratory (NREL) has been working with the Department of Energy (DOE) to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In fiscal year 2013, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In fiscal year 2014, ten additional case studies were completed, and additional features were added to the template to allow for more data and the direct citations of data. The template allows for: Data - a variety of data can be collected for each area, including power production information, well field information, geologic information, reservoir information, and geochemistry information. Narratives ? general (e.g. area overview, history and infrastructure), technical (e.g. exploration history, well field description, R&D activities) and geologic narratives (e.g. area geology, hydrothermal system, heat source, geochemistry.) Exploration Activity Catalog - catalog of exploration activities conducted in the area (with dates and references.) NEPA Analysis ? a query of NEPA analyses conducted in the area (that have been catalogued in the OpenEI NEPA database.) In fiscal year 2015, NREL is working with universities to populate additional case studies on OpenEI. The goal is to provide a large enough dataset to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, Katherine

2014-09-30T23:59:59.000Z

260

Geothermal energy program summary  

SciTech Connect (OSTI)

The Geothermal Technology Division (GTD) of the US Department of Energy (DOE) is charged with the lead federal role in the research and development (R D) of technologies that will assist industry in economically exploiting the nation's vast geothermal resources. The GTD R D Program represents a comprehensive, balanced approach to establishing all forms of geothermal energy as significant contributors to the nation's energy supply. It is structured both to maintain momentum in the growth of the existing hydrothermal industry and to develop long-term options offering the greatest promise for practical applications. This volume, Volume 2, contains a detailed compilation of each GTD-funded R D activity performed by national laboratories or under contract to industrial, academic, and nonprofit research institutions.

Not Available

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Effectiveness of Shallow Temperatures Surveys to Target a Geothermal Reservoir at Previously Explored Sites at McGee Mountain, Nevada  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Objectives: To evaluate the cost-effectiveness of two innovative technologies in early-stage geothermal exploration:a) shallow (2m) survey; b) hydroprobe; and Identify a geothermal resource at the project site.

262

Geothermal Technologies Office FY 2016 Budget At-A-Glance  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)October 2011AnnualGeothermal

263

Geothermal Technologies Program Annual Peer Review Presentation By Doug  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermal

264

Geothermal Technologies Program Coproduction Fact Sheet | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES7.pdfFuel Cell VehicleEnergy (5 Activities)OctoberGeothermalEnergy

265

Geothermal Technologies Program GRC Presentation, 10/1/2012  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance forGeospatial Grades:October 1, 2012 Geothermal

266

Life-Cycle Analysis of Geothermal Technologies | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001 Letter Report:Life-Cycle Analysis of Geothermal

267

Geothermal Technologies Program Fact Sheet | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George WaldmannAnnual Report GeothermalHollett |Program Fact

268

Geothermal Technologies Office Home Page | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway GEOTHERMALTechnologies

269

Geothermal Technologies Office: Download GETEM, August 2012 Beta  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal Play Fairway

270

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan: Introduction |

271

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan: Introduction

272

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan:

273

Geothermal Technologies Program Multi-Year Research, Development and  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan:Demonstration

274

Geothermal Technologies Program Peer Review Program June 6 - 10, 2011 |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstrationOverview

275

Assessment of geothermal development in the Imperial Valley of California. Volume 2. Environmental control technology  

SciTech Connect (OSTI)

Environmental control technologies are essential elements to be included in the overall design of Imperial Valley geothermal power systems. Environmental controls applicable to abatement of hydrogen sulfide emissions, cooling tower drift, noise, liquid and solid wastes, and induced subsidence and seismicity are assessed here. For optimum abatement of H{sub 2}S under a variety of plant operating conditions, removal of H{sub 2}S upstream of the steam turbine is recommended. The environmental impact of cooling tower drift will be closely tied to the quality of cooling water supplies. Conventional noise abatement procedures can be applied and no special research and development are needed. Injection technology constitutes the primary and most essential environmental control and liquid waste disposal technology for Imperial Velley geothermal operations. Subsurface injection of fluids is the primary control for managing induced subsidence. Careful maintenance of injection pressure is expected to control induced seismicity. (MHR)

Morris, W.; Hill, J. (eds.)

1980-07-01T23:59:59.000Z

276

Geothermal Technology Advancement for Rapid Development of Resources in the U.S. Webinar, 6-23-2011  

Broader source: Energy.gov [DOE]

Transcript and presentation slides for Funding Opportunity Announcement webinar, DE-FOA-0000522: Geothermal Technology Advancement for Rapid Development of Resources in the U.S., on 6-23-2011.

277

Geothermal: Sponsored by OSTI -- Advanced Seismic Data Analysis...  

Office of Scientific and Technical Information (OSTI)

Advanced Seismic Data Analysis Program (The Hot Pot Project), DOE Award: DE-EE0002839, Phase 1 Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

278

Geothermal: Sponsored by OSTI -- Use of a Geothermal-Solar Hybrid...  

Office of Scientific and Technical Information (OSTI)

Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us |...

279

Mobile Technology Management - DOE Directives, Delegations, and...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

203.2, Mobile Technology Management by Denise Hill Functional areas: Mobile Technology, Information Technology, Information Security The order establishes requirements, assigns...

280

2010 DOE EERE Vehicle Technologies Program Merit Review - Energy...  

Energy Savers [EERE]

Energy Storage 2010 DOE EERE Vehicle Technologies Program Merit Review - Energy Storage Energy storage research and development merit review results 2010amr02.pdf More Documents...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Panel 1, DOE Fuel Cell Technologies Office: Hydrogen for Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

22011 eere.energy.gov DOE Fuel Cell Technologies Office Hydrogen for Energy Storage Workshop on Hydrogen Energy Storage Grid and Transportation Services Sacramento, California Dr....

282

2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle...  

Energy Savers [EERE]

- Vehicle Systems Simulation and Testing 2010 DOE EERE Vehicle Technologies Program Merit Review - Vehicle Systems Simulation and Testing Vehicle systems research and development...

283

DOE Vehicle Technologies Program 2009 Merit Review Report - Power...  

Energy Savers [EERE]

Power Electronics and Electric Motors DOE Vehicle Technologies Program 2009 Merit Review Report - Power Electronics and Electric Motors 2009meritreview3.pdf More Documents &...

284

2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Combustion 2010 DOE EERE Vehicle Technologies Program Merit Review - Advanced Combustion Advanced combustion research and development merit review results 2010amr04.pdf...

285

Vehicle Technologies Office Merit Review 2014: DOE's Effort to...  

Energy Savers [EERE]

Presentation given by Lawrence Livermore National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation...

286

COWBOYS OR COMMANDERS: DOES INFORMATION TECHNOLOGY LEAD TO DECENTRALIZATION?  

E-Print Network [OSTI]

COWBOYS OR COMMANDERS: DOES INFORMATION TECHNOLOGY LEAD TO DECENTRALIZATION? George M. Wyner Thomas) predicted that information technology would lead to the elimination of middle managers and to greater (Eds.), International Conference on Information Systems, Cleveland, International Conference

287

2013 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Broader source: Energy.gov (indexed) [DOE]

3 U.S. Department of Energy (DOE) Fuel Cell Technologies Office (FCTO) and Vehicle Technologies Office (VTO) Annual Merit Review and Peer Evaluation Meeting (AMR) was held May...

288

DOE weapons laboratories' contributions to the nation's defense technology base  

SciTech Connect (OSTI)

The question of how the Department of Energy (DOE) weapons laboratories can contribute to a stronger defense technology base is addressed in testimony before the Subcommittee on Defense Industry and Technology of the Senate Armed Services Committee. The importance of the defense technology base is described, the DOE technology base is also described, and some technology base management and institutional issues are discussed. Suggestions are given for promoting a more stable, long-term relationship between the DOE weapons laboratories and the Department of Defense. 12 refs., 2 figs.

Hecker, S.S.

1988-04-01T23:59:59.000Z

289

Chemical Energy Carriers (CEC) for the Utilization of Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy DOE Geothermal Peer Review 2010 -...

290

Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal...  

Energy Savers [EERE]

presentation by Arlene Anderson and Jon Weers at the 2013 Annual Peer Review in Colorado. gdrpeerreview2013.pdf More Documents & Publications National Geothermal Data System...

291

Working Fluids and Their Effect on Geothermal Turbines  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

292

Numerical modeling of water injection into vapor-dominated geothermal reservoirs  

E-Print Network [OSTI]

Renewable Energy, Office of Geothermal Technologies, of theTransport in Fractured Geothermal Reservoirs, Geothermics,Depletion of Vapor-Dominated Geothermal Reservoirs, Lawrence

Pruess, Karsten

2008-01-01T23:59:59.000Z

293

Geothermal: Sponsored by OSTI -- Final Report: Geothermal Dual...  

Office of Scientific and Technical Information (OSTI)

Final Report: Geothermal Dual Acoustic Tool for Measurement of Rock Stress Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

294

Geothermal: Sponsored by OSTI -- Hulin Geopressure-geothermal...  

Office of Scientific and Technical Information (OSTI)

Hulin Geopressure-geothermal test well: First order levels Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

295

USDOE Technology Transfer, Working with DOE  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Deployment SBIRSTTR - Small Business Innovation Research and Small Business Technology Transfer Advanced Research Projects Agency-Energy (ARPA-E) Oil & Gas Technology Transfer...

296

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Final Report  

SciTech Connect (OSTI)

The objective of our research was to develop and demonstrate seismic data-acquisition and data-processing technologies that allow geothermal prospects below high-velocity rock outcrops to be evaluated. To do this, we acquired a 3-component seismic test line across an area of exposed high-velocity rocks in Brewster County, Texas, where there is high heat flow and surface conditions mimic those found at numerous geothermal prospects. Seismic contractors have not succeeded in creating good-quality seismic data in this area for companies who have acquired data for oil and gas exploitation purposes. Our test profile traversed an area where high-velocity rocks and low-velocity sediment were exposed on the surface in alternating patterns that repeated along the test line. We verified that these surface conditions cause non-ending reverberations of Love waves, Rayleigh waves, and shallow critical refractions to travel across the earth surface between the boundaries of the fast-velocity and slow-velocity material exposed on the surface. These reverberating surface waves form the high level of noise in this area that does not allow reflections from deep interfaces to be seen and utilized. Our data-acquisition method of deploying a box array of closely spaced geophones allowed us to recognize and evaluate these surface-wave noise modes regardless of the azimuth direction to the surface anomaly that backscattered the waves and caused them to return to the test-line profile. With this knowledge of the surface-wave noise, we were able to process these test-line data to create P-P and SH-SH images that were superior to those produced by a skilled seismic data-processing contractor. Compared to the P-P data acquired along the test line, the SH-SH data provided a better detection of faults and could be used to trace these faults upward to the boundaries of exposed surface rocks. We expanded our comparison of the relative value of S-wave and P-wave seismic data for geothermal applications by inserting into this report a small part of the interpretation we have done with 3C3D data across Wister geothermal field in the Imperial Valley of California. This interpretation shows that P-SV data reveal faults (and by inference, also fractures) that cannot be easily, or confidently, seen with P-P data, and that the combination of P-P and P-SV data allows VP/VS velocity ratios to be estimated across a targeted reservoir interval to show where an interval has more sandstone (the preferred reservoir facies). The conclusion reached from this investigation is that S-wave seismic technology can be invaluable to geothermal operators. Thus we developed a strong interest in understanding the direct-S modes produced by vertical-force sources, particularly vertical vibrators, because if it can be demonstrated that direct-S modes produced by vertical-force sources can be used as effectively as the direct-S modes produced by horizontal-force sources, geothermal operators can acquire direct-S data across many more prospect areas than can be done with horizontal-force sources, which presently are limited to horizontal vibrators. We include some of our preliminary work in evaluating direct-S modes produced by vertical-force sources.

Hardage, Bob A; DeAngelo, Michael V; Ermolaeva, Elena; Hardage, Bob A; Remington, Randy; Sava, Diana; Wagner, Donald; Wei, Shuijion

2013-02-28T23:59:59.000Z

297

1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office  

E-Print Network [OSTI]

Storage Engineering Center of Excellence 2013 ·H2USA Launch DOE Fuel Cell Technologies ­ Recent History1 | Fuel Cell Technologies Office eere.energy.gov DOE Fuel Cell Technologies Office Fuel Cell Seminar & Energy Exposition Columbus, Ohio Dr. Sunita Satyapal Director Fuel Cell Technologies Office

298

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

SciTech Connect (OSTI)

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

2013-06-04T23:59:59.000Z

299

Life Cycle analysis data and results for geothermal and other electricity generation technologies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

Sullivan, John

300

Federal Geothermal Research Program Update Fiscal Year 1998  

SciTech Connect (OSTI)

This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

Keller, J.G.

1999-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Base Technologies and Tools for Supercritical Reservoirs Geothermal...  

Open Energy Info (EERE)

SiC) technologies integrated into a MultiChip Module (MCM); greatly increasing the reliability of the overall system (eliminating hundreds of board-level innerconnects) and...

302

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

(EGI) - Demonstrate a low-impact rig technology with potential to reduce the cost of drilling temperature gradient wells (Aerospect) - Identify best locale within designated area...

303

Geothermal Energy Summary  

SciTech Connect (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

304

Doug Hollett, Director Geothermal Technologies Office Geothermal R&D: The DOE Perspective  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent(CRADA and DOW AreaJuneDonna Friend

305

DOE technology information management system database study report  

SciTech Connect (OSTI)

To support the missions of the US Department of Energy (DOE) Special Technologies Program, Argonne National Laboratory is defining the requirements for an automated software system that will search electronic databases on technology. This report examines the work done and results to date. Argonne studied existing commercial and government sources of technology databases in five general areas: on-line services, patent database sources, government sources, aerospace technology sources, and general technology sources. First, it conducted a preliminary investigation of these sources to obtain information on the content, cost, frequency of updates, and other aspects of their databases. The Laboratory then performed detailed examinations of at least one source in each area. On this basis, Argonne recommended which databases should be incorporated in DOE`s Technology Information Management System.

Widing, M.A.; Blodgett, D.W.; Braun, M.D.; Jusko, M.J.; Keisler, J.M.; Love, R.J.; Robinson, G.L. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.

1994-11-01T23:59:59.000Z

306

Impact of geothermal technology improvements on royalty collections on federal lands: Volume II: Appendices  

SciTech Connect (OSTI)

This volume contains the appendices for the ''Impact of Geothermal Technology Improvements on Royalty Collections on Federal Lands, Final Report, Volume I.'' The material in this volume supports the conclusions presented in Volume I and details each Known Geothermal Resource Area's (KGRA's) royalty estimation. Appendix A details the physical characteristics of each KGRA considered in Volume I. Appendix B supplies summary narratives on each state which has a KGRA. The information presented in Appendix C shows the geothermal power plant area proxies chosen for each KGRA considered within the report. It also provides data ranges which fit into the IMGEO model for electric energy cost estimates. Appendix D provides detailed cost information from the IMGEO model if no Geothermal Program RandD goals were completed beyond 1987 and if all the RandD goals were completed by the year 2000. This appendix gives an overall electric cost and major system costs, which add up to the overall electric cost. Appendix E supplies information for avoided cost projections for each state involved in the study that were used in the IMGEO model run to determine at what cost/kWh a 50 MWe plant could come on line. Appendix F supplies the code used in the determination of royalty income, as well as, tabled results of the royalty runs (detailed in Appendix G). The tabled results show royalty incomes, assuming a 10% discount rate, with and without RandD and with and without a $0.01/kWh transmission cost. Individual data sheets for each KGRA royalty income run are presented in Appendix G.

Not Available

1988-10-01T23:59:59.000Z

307

DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...  

Broader source: Energy.gov (indexed) [DOE]

Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop in Washington, DC, August 11-12, 2011. DOE's Hydrogen and Fuel Cell Technologies Manufacturing Sub-Program...

308

DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2: Fuel Cell System Cost - 2013 DOE Fuel Cell Technologies Office Record 14012: Fuel Cell System Cost - 2013 This program record from the U.S. Department of Energy's Fuel Cell...

309

DOE Fuel Cell Technologies Office Record 14009: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09: Industry Deployed Fuel Cell Backup Power (BuP) DOE Fuel Cell Technologies Office Record 14009: Industry Deployed Fuel Cell Backup Power (BuP) This program record from the U.S....

310

DOE Fuel Cell Technologies Office Record 14010: Industry Deployed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

0: Industry Deployed Fuel Cell Powered Lift Trucks DOE Fuel Cell Technologies Office Record 14010: Industry Deployed Fuel Cell Powered Lift Trucks This program record from the U.S....

311

Questions concerning Technology Transfer Practices at DOE Labs...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

concerning Technology Transfer Practices at DOE Labs.txt From: Gary S. Selwyn gary.selwyn@apjet.com Sent: Tuesday, February 10, 2009 7:00 PM To: GC-62 Subject: Questions...

312

DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2024: Hydrogen Production Cost Using Low-Cost Natural Gas DOE Fuel Cell Technologies Office Record 12024: Hydrogen Production Cost Using Low-Cost Natural Gas This program record...

313

Sandia National Laboratories: DOE Bioenergy Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOE InternationalBioenergy

314

Geothermal Technologies Office FY 2016 Budget At-A-Glance | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermal Technologies Office Contacts

315

Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2014 DEER Overview of the U.S. DOE Vehicle Technologies Program Vehicle Technologies Office: 2014 DEER Overview of the U.S. DOE Vehicle Technologies Program DOE rationale for...

316

Comprehensive Evaluation of the Geothermal Resource Potential...  

Broader source: Energy.gov (indexed) [DOE]

data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

317

Integrated Chemical Geothermometry System for Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids.

318

National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration  

SciTech Connect (OSTI)

Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing data are insufficient for promoting geothermal exploration. Authors of this paper are Arlene Anderson, US DOE Geothermal Technologies Office, David Blackwell, Southern Methodist University (SMU), Cathy Chickering (SMU), Toni Boyd, Oregon Institute of Technology’s GeoHeat Center, Roland Horne, Stanford University, Matthew MacKenzie, Uberity, Joe Moore, University of Utah, Duane Nickull, Uberity, Stephen Richard, Arizona Geological Survey, and Lisa Shevenell, University of Nevada, Reno. “NGDS User Centered Design: Meeting the Needs of the Geothermal Community,” discusses the user- centered design approach taken in the development of a user interface solution for the NGDS. The development process is research based, highly collaborative, and incorporates state-of-the-art practices to ensure a quality user interface for the widest and greatest utility. Authors of this paper are Harold Blackman, Boise State University, Suzanne Boyd, Anthro-Tech, Kim Patten, Arizona Geological Survey, and Sam Zheng, Siemens Corporate Research. “Fueling Innovation and Adoption by Sharing Data on the DOE Geothermal Data Repository Node on the National Geothermal Data System,” describes the motivation behind the development of the Geothermal Data Repository (GDR) and its role in the NGDS. This includes the benefits of using the GDR to share geothermal data of all types and DOE’s data submission process. Authors of this paper are Jon Weers, National Renewable Energy Laboratory and Arlene Anderson, US DOE Geothermal Technologies Office. Finally, “Developing the NGDS Adoption of CKAN for Domestic & International Data Deployment,” provides an overview of the “Node-In-A-Box” software package designed to provide data consumers with a highly functional interface to access the system, and to ease the burden on data providers who wish to publish data in the system. It is important to note that this software package constitutes a reference implementation and that the NGDS architecture is based on open standards, which means other server software can make resources available, a

Patten, Kim [Arizona Geological Survey

2013-05-01T23:59:59.000Z

319

DOE New Technology: Sharing New Frontiers, April 1, 1993--September 30, 1993  

SciTech Connect (OSTI)

The purpose of DOE New Technology is to provide information on how to access specific technologies developed through research sponsored by DOE and performed by DOE laboratories or by DOE-contracted researchers. This document describes technologies identified as having potential for commercial applications in addition to a catalog of current patent applications and patents available for licensing from DOE and DOE contractors.

Tamura, A.T.; Henline, D.M. [eds.

1993-12-01T23:59:59.000Z

320

Geothermal Brief: Market and Policy Impacts Update  

SciTech Connect (OSTI)

Utility-scale geothermal electricity generation plants have generally taken advantage of various government initiatives designed to stimulate private investment. This report investigates these initiatives to evaluate their impact on the associated cost of energy and the development of geothermal electric generating capacity using conventional hydrothermal technologies. We use the Cost of Renewable Energy Spreadsheet Tool (CREST) to analyze the effects of tax incentives on project economics. Incentives include the production tax credit, U.S. Department of Treasury cash grant, the investment tax credit, and accelerated depreciation schedules. The second half of the report discusses the impact of the U.S. Department of Energy's (DOE) Loan Guarantee Program on geothermal electric project deployment and possible reasons for a lack of guarantees for geothermal projects. For comparison, we examine the effectiveness of the 1970s DOE drilling support programs, including the original loan guarantee and industry-coupled cost share programs.

Speer, B.

2012-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The joint DoD/DOE Munitions Technology Development Program  

SciTech Connect (OSTI)

The joint Department of Defense (DoD)/Department of Energy (DOE) Munitions Technology Development Program is a cooperative, jointly funded effort of research and development to improve nonnuclear munitions technology across all service mission areas. This program is enabled under a Memorandum of Understanding, approved in 1985 between the DoD and the DOE, that tasks the nuclear weapons laboratories of the DOE to solve problems in conventional defense. The selection of the technical areas to be investigated is based on their importance to the military services, the needs that are common to the conventional and nuclear weapons programs, the expertise of the performing organization, and the perceived benefit to the overall national defense efforts. The research benefits both DoD and DOE programs; therefore, funding, planning, and monitoring are joint activities. Technology Coordination Groups (TCGs), organized by topical areas, serve as technology liaisons between the DoD and DOE for the exchange of information. The members of the TCGs are technical experts who meet semiannually in an informal workshop format to coordinate multiagency requirements, establish project plans, monitor technical activity, and develop classification guidance. A technical advisory committee of senior DoD and DOE managers administers the program and provides guidance on policy and strategy. The abstracts in this volume were collected from the technical progress report for fiscal year 1993. The annual report is organized by major technology areas. Telephone and fax numbers for the principal contacts are provided with each abstract.

Repa, J.V. Jr.

1994-08-01T23:59:59.000Z

322

Technology needs for remediation: Hanford and other DOE sites  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

323

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

324

DOE NHI: Progress in Nuclear Connection Technologies  

SciTech Connect (OSTI)

The U.S. Department of Energy Nuclear Hydrogen Initiative (NHI) is seeking to develop the technologies to enable the large-scale production of hydrogen from water using a nuclear powered heat source. A necessary component in any nuclear powered hydrogen production process is the energy transfer connection between the nuclear plant and the hydrogen plant. This article provides an overview of the research and development work that has been accomplished on the high-temperature heat transfer connection between the nuclear power plant and the hydrogen production plant by the NHI. A description of future work is also provided.

Steven R. Sherman

2007-06-01T23:59:59.000Z

325

vehicle technologies office | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent MagneticVehicle Technologies Office The

326

DOE - NETL Gasification Technology Test Sites  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FY MiddlePLAN-46847 (2) Revision Number:technology

327

DOE Vehicle Technologies Program 2009 Merit Review Report - Technology...  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

328

A prototype catalogue: DOE National Laboratory technologies for infrastructure modernization  

SciTech Connect (OSTI)

The purpose of this report is to provide the Office of Technology Assessment (OTA) with information about selected technologies under development in the Department of Energy (DOE) through its National Laboratory System and its Program Office operations. The technologies selected are those that have the potential to improve the performance of the nation's public works infrastructure. The product is a relational database that we refer to as a prototype catalogue of technologies.'' The catalogue contains over 100 entries of DOE-supported technologies having potential application to infrastructure-related problems. The work involved conceptualizing an approach, developing a framework for organizing technology information, and collecting samples of readily available data to be put into a prototype catalogue. In developing the catalogue, our objectives were to demonstrate the concept and provide readily available information to OTA. As such, the catalogue represents a preliminary product. The existing database is not exhaustive and likely represents only a fraction of relevant technologies developed by DOE. In addition, the taxonomy we used to classify technologies is based on the judgment of project staff and has received minimal review by individuals who have been involved in the development and testing of the technologies. Finally, end users will likely identify framework changes and additions that will strengthen the catalogue approach. The framework for the catalogue includes four components: a description of the technology, along with potential uses and other pertinent information; identification of the source of the descriptive information; identification of a person or group knowledgeable about the technology; and a classification of the described technology in terms of its type, application, life-cycle use, function, and readiness.

Currie, J.W.; Wilfert, G.L.; March, F.

1990-01-01T23:59:59.000Z

329

MEMS Materials and Temperature Sensors for Down Hole Geothermal System Monitoring  

E-Print Network [OSTI]

and operation of geothermal power plants. US DOE EEREpercentage of geothermal electric power generation systemLow-enthalpy geothermal resources for power generation.

Wodin-Schwartz, Sarah

2013-01-01T23:59:59.000Z

330

Guidebook to Geothermal Finance  

SciTech Connect (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

331

Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry  

SciTech Connect (OSTI)

The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

NONE

1999-10-01T23:59:59.000Z

332

DOE Solar Energy Technologies Program: FY 2004 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2004 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2004. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2005-10-01T23:59:59.000Z

333

DOE Solar Energy Technologies Program FY 2005 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2005 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program?s national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2006-03-01T23:59:59.000Z

334

DOE Solar Energy Technologies Program FY 2006 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2006 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program for Fiscal Year 2005. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2007-07-01T23:59:59.000Z

335

DOE Solar Energy Technologies Program 2007 Annual Report  

SciTech Connect (OSTI)

The DOE Solar Energy Technologies Program FY 2007 Annual Report chronicles the R&D results of the U.S. Department of Energy Solar Energy Technologies Program from October 2006 to September 2007. In particular, the report describes R&D performed by the Program's national laboratories (National Renewable Energy Laboratory, Sandia National Laboratories, Oak Ridge National Laboratory, and Brookhaven National Laboratory) and university and industry partners.

Not Available

2008-07-01T23:59:59.000Z

336

Geothermal R&D: The DOE Perspective | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phonegeothermal/900546 Geothermal News

337

Property:Geothermal/DoeFundingLevelToDate | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug PowerAddressDataFormatGeothermal/Contact"

338

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

339

Geothermal: Sponsored by OSTI -- Fracture Characterization in...  

Office of Scientific and Technical Information (OSTI)

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log...

340

Geothermal Energy Production from Low Temperature Resources,...  

Open Energy Info (EERE)

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Oregon Johnson Controls, Inc. Recovery Act: Geothermal Technologies Program Klamath Falls, OR...

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal: Sponsored by OSTI -- ADVANCES IN HYDROGEOCHEMICAL...  

Office of Scientific and Technical Information (OSTI)

ADVANCES IN HYDROGEOCHEMICAL INDICATORS FOR THE DISCOVERY OF NEW GEOTHERMAL RESOURCES IN THE GREAT BASIN, USA Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

342

Geothermal: Sponsored by OSTI -- Temperatures and intervalgeothermal...  

Office of Scientific and Technical Information (OSTI)

Temperatures and interval geothermal-gradient determinations from wells in National Petroleum Reserve in Alaska Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

343

Geothermal Resources and Transmission Planning  

Broader source: Energy.gov [DOE]

This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

344

T-F and S/DOE Gladys McCall No. 1 well, Cameron Parish, Louisiana. Geopressured-geothermal well report, Volume II. Well workover and production testing, February 1982-October 1985. Final report. Part 1  

SciTech Connect (OSTI)

The T-F and S/DOE Gladys McCall No. 1 well was the fourth in a series of wells in the DOE Design Wells Program that were drilled into deep, large geopressured-geothermal brine aquifers in order to provide basic data with which to determine the technological and economic viability of producing energy from these unconventional resources. This brine production well was spudded on May 27, 1981 and drilling operations were completed on November 2, 1981 after using 160 days of rig time. The well was drilled to a total depth of 16,510 feet. The target sands lie at a depth of 14,412 to 15,860 feet in the Fleming Formation of the lower Miocene. This report covers well production testing operations and necessary well workover operations during the February 1982 to October 1985 period. The primary goals of the well testing program were: (1) to determine reservoir size, shape, volume, drive mechanisms, and other reservoir parameters, (2) to determine and demonstrate the technological and economic viability of producing energy from a geopressured-geothermal brine aquifer through long-term production testing, and (3) to determine problem areas associated with such long-term production, and to develop solutions therefor.

Not Available

1985-01-01T23:59:59.000Z

345

Postgraduate Certificate in Geothermal Energy  

E-Print Network [OSTI]

Postgraduate Certificate in Geothermal Energy Technology The University of Auckland The University with this dynamic industry. Why this programme? The Postgraduate Certificate in Geothermal Energy Technology of developing geothermal energy fields. The course content draws on recent advances in technology and leading

Auckland, University of

346

Report on dipole-dipole resistivity and technology transfer at the Ahuachapan Geothermal field Ahuachapan, El Salvador  

SciTech Connect (OSTI)

The Ahuachapan Geothermal Field (AGF) is a 90 megawatt geothermal-sourced powerplant operated by the Comision Ejecutiva Hidroelectrica del Rio Lempa (CEL) of El Salvador. During the period November 1987 through May 1988 a deep resistivity survey and technology transfer was performed at the AGF at the request of Los Alamos National Laboratory (LANL) as part of a United States Agency for International Development (USAID) project. The resistivity surveying is ongoing at the time of this report under the supervision of CEL personnel. LANL and contract personnel were present at the site during performance of the initial surveying for the purpose of technology transfer. This report presents the results and interpretation of the two initial resistivity survey lines performed on site during and shortly after the technology transfer period.

Fink, J.B. (Geophynque International, Tucson, AZ (United States))

1988-08-01T23:59:59.000Z

347

Selling Geothermal Systems The "Average" Contractor  

E-Print Network [OSTI]

Selling Geothermal Systems #12;The "Average" Contractor · History of sales procedures · Manufacturer Driven Procedures · What makes geothermal technology any harder to sell? #12;"It's difficult to sell a geothermal system." · It should

348

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

and Renewable Energy, Geothermal Technologies Program of theHill hot dry rock geothermal energy site, New Mexico. Int J.1. In: Geopressured-Geothermal Energy, 105, Proc. 5th U.S.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

349

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

350

Pressure Temperature Log At Flint Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerdeGeodetically

351

Stanford Geothermal Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the continuous generating capacity of binary-cycle, medium-enthalpy geothermal power with solar thermal technology. SOURCE: Laura Garchar Characterizing and Predicting Resource...

352

DOE SNF technology development necessary for final disposal  

SciTech Connect (OSTI)

Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes.

Hale, D.L.; Fillmore, D.L.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1996-02-01T23:59:59.000Z

353

Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

354

United States, Australia, and Iceland to Promote Geothermal Energy...  

Broader source: Energy.gov (indexed) [DOE]

Partnership for Geothermal Technology (IPGT), which will foster and promote cutting-edge geothermal technologies and help address energy security and address global climate...

355

Demonstration of an Enhanced Geothermal System at the Northwest...  

Broader source: Energy.gov (indexed) [DOE]

Bradys Hot Springs, Nevada Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program...

356

Updated U.S. Geothermal Supply Characterization and Representation for Market Penetration Model Input  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Geothermal Technologies Program (GTP) tasked the National Renewable Energy Laboratory (NREL) with conducting the annual geothermal supply curve update. This report documents the approach taken to identify geothermal resources, determine the electrical producing potential of these resources, and estimate the levelized cost of electricity (LCOE), capital costs, and operating and maintenance costs from these geothermal resources at present and future timeframes under various GTP funding levels. Finally, this report discusses the resulting supply curve representation and how improvements can be made to future supply curve updates.

Augustine, C.

2011-10-01T23:59:59.000Z

357

1992 DOE/Sandia crystalline photovoltaic technology project review meeting  

SciTech Connect (OSTI)

This document serves as the proceedings for the annual project review meeting held by Sandia National Laboratories` Photovoltaic Technology and Photovoltaic Evaluation Departments. It contains information supplied by organizations making presentations at the meeting, which was held July 14--15, 1992 at the Sheraton Old Town Hotel in Albuquerque, New Mexico. Overview sessions covered the Department of Energy (DOE) program, including those at Sandia and the National Renewable Energy Laboratory (NREL), and non-DOE programs, including the EPRI concentrator collector program, The Japanese crystalline silicon program, and some concentrating photovoltaic activities in Europe. Additional sessions included papers on Sandia`s Photovoltaic Device Fabrication Laboratory`s collaborative research, cell processing research, the activities of the participants in the Concentrator Initiative Program, and photovoltaic technology evaluation at Sandia and NREL.

Maish, A. [ed.

1992-07-01T23:59:59.000Z

358

Validation of Innovative Exploration Technologies for Newberry Volcano  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review - 2010. Project summary: To effectively combine numerous exploration technologies to gather important data. Once information is combined into 3-D models, a target drilling location will be determined. Deep well capable of finding commercial quantities of geothermal resource will be drilled to validate methodology.

359

Overview of DOE's field screening technology development activities  

SciTech Connect (OSTI)

The Department of Energy (DOE) has recently created the Office of Environmental Restoration and Waste Management, into which it consolidated those activities. Within this new organization, the Office of Technology Development (OTD) is responsible for research, development, demonstration, testing, and evaluation (RDDT E) activities aimed at meeting DOE cleanup goals, while minimizing cost and risk. Site characterization using traditional drilling, sampling, and analytical methods comprises a significant part of the environmental restoration efforts in terms of both cost and time to accomplish. It can also be invasive and create additional pathways for spread of contaminants. Consequently, DOE is focusing on site characterization as one of the areas in which significant technological advances are possible which will decrease cost, reduce risk, and shorten schedules for achieving restoration goals. DOE is investing considerably in R D and demonstration activities which will improve the abilities to screen chemical, radiological, and physical parameters in the field. This paper presents an overview of the program objectives and status and reviews some of the projects which are currently underway in the area. 1 ref.

Frank, C.W.; Anderson, T.D.; Cooley, C.R.; Hain, K.E.; Lien, S.C.T. (USDOE Office of Environmental Restoration and Waste Management, Washington, DC (USA). Office of Technology Development); Snipes, R.L. (Martin Marietta Energy Systems, Inc., Oak Ridge, TN (USA)); Erickson, M.D. (Argonne National Lab., IL (USA))

1991-01-01T23:59:59.000Z

360

A geothermal resource data base: New Mexico  

SciTech Connect (OSTI)

This report provides a compilation of geothermal well and spring information in New Mexico up to 1993. Economically important geothermal direct-use development in New Mexico and the widespread use of personal computers (PC) in recent years attest to the need for an easily used and accessible data base of geothermal data in a digital format suitable for the PC. This report and data base are a part of a larger congressionally-funded national effort to encourage and assist geothermal direct-use. In 1991, the US Department of Energy, Geothermal Division (DOE/GD) began a Low Temperature Geothermal Resources and Technology Transfer Program. Phase 1 of this program includes updating the inventory of wells and springs of ten western states and placing these data into a digital format that is universally accessible to the PC. The Oregon Institute of Technology GeoHeat Center (OIT) administers the program and the University of Utah Earth Sciences and Resources Institute (ESRI) provides technical direction.

Witcher, J.C. [New Mexico State Univ., Las Cruces, NM (United States). Southwest Technology Development Inst.

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Contaminated concrete: Occurrence and emerging technologies for DOE decontamination  

SciTech Connect (OSTI)

The goals of the Facility Deactivation, Decommissioning, and Material Disposition Focus Area, sponsored by the US Department of Energy (DOE) Office of Technology Development, are to select, demonstrate, test, and evaluate an integrated set of technologies tailored to provide a complete solution to specific problems posed by deactivation, decontamination, and decommissioning, (D&D). In response to these goals, technical task plan (TTP) OR152002, entitled Accelerated Testing of Concrete Decontamination Methods, was submitted by Oak Ridge National Laboratory. This report describes the results from the initial project tasks, which focused on the nature and extent of contaminated concrete, emerging candidate technologies, and matching of emerging technologies to concrete problems. Existing information was used to describe the nature and extent of contamination (technology logic diagrams, data bases, and the open literature). To supplement this information, personnel at various DOE sites were interviewed, providing a broad perspective of concrete contamination. Because characterization is in the initial stage at many sites, complete information is not available. Assimilation of available information into one location is helpful in identifying potential areas of concern in the future. The most frequently occurring radiological contaminants within the DOE complex are {sup 137}Cs, {sup 238}U (and it daughters), and {sup 60}Co, followed closely by {sup 90}Sr and tritium, which account for {minus}30% of the total occurrence. Twenty-four percent of the contaminants were listed as unknown, indicating a lack of characterization information, and 24% were listed as other contaminants (over 100 isotopes) with less than 1% occurrence per isotope.

Dickerson, K.S.; Wilson-Nichols, M.J. [Oak Ridge National Lab., Grand Junction, CO (United States); Morris, M.I. [Oak Ridge National Lab., TN (United States)

1995-08-01T23:59:59.000Z

362

Geothermal progress monitor: Report No. 17  

SciTech Connect (OSTI)

DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

NONE

1995-12-01T23:59:59.000Z

363

Geothermal: Sponsored by OSTI -- User manual for geothermal energy...  

Office of Scientific and Technical Information (OSTI)

User manual for geothermal energy assisted dairy complex computer programs: PREBLD, MODEL0, MODEL1, MODEL2, FRMAT2, PREPI2, NET2, DAIRY and DAIRY1 Geothermal Technologies Legacy...

364

NREL Releases Report on Policy Options to Advance Geothermal...  

Energy Savers [EERE]

Geothermal Exploration Policy Mechanisms, was recently released by the National Renewable Energy Laboratory | photo courtesy of Geothermal Resources Council. A new DOE report,...

365

Development of an Improved Cement for Geothermal Wells  

Broader source: Energy.gov (indexed) [DOE]

temperature fluctuation. * Facilitate the development of geothermal resources in remote locations. 7 | US DOE Geothermal Program eere.energy.gov ScientificTechnical...

366

El Paso County Geothermal Project at Fort Bliss | Department...  

Broader source: Energy.gov (indexed) [DOE]

Project at Fort Bliss El Paso County Geothermal Project at Fort Bliss DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically...

367

Geothermal Progress Monitor. Report No. 18  

SciTech Connect (OSTI)

The near-term challenges of the US geothermal industry and its long-range potential are dominant themes in this issue of the US Department of Energy (DOE) Geothermal Progress Monitor which summarizes calendar-year 1996 events in geothermal development. Competition is seen as an antidote to current problems and a cornerstone of the future. Thus, industry's cost-cutting strategies needed to increase the competitiveness of geothermal energy in world markets are examined. For example, a major challenge facing the US industry today is that the sales contracts of independent producers have reached, or soon will, the critical stage when the prices utilities must pay them drop precipitously, aptly called the cliff. However, Thomas R. Mason, President and CEO of CalEnergy told the DOE 1996 Geothermal Program Review XIV audience that while some of his company's plants have ''gone over the cliff, the world is not coming to an end.'' With the imposition of severe cost-cutting strategies, he said, ''these plants remain profitable... although they have to be run with fewer people and less availability.'' The Technology Development section of the newsletter discusses enhancements to TOUGH2, the general purpose fluid and heat flow simulator and the analysis of drill cores from The Geysers, but the emphasis is on advanced drilling technologies.

NONE

1996-12-31T23:59:59.000Z

368

DOE SuperTruck utilizes ORNL technology to boost fuel economy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Media Relations 865.574.4165 DOE SuperTruck utilizes ORNL technology to boost fuel economy DOE SuperTruck DOE SuperTruck (hi-res image) Listen to the audio The Department of...

369

Geothermal energy: 1992 program overview  

SciTech Connect (OSTI)

Geothermal energy is described in general terms with drawings illustrating the technology. A map of known and potential geothermal resources in the US is included. The 1992 program activities are described briefly. (MHR)

Not Available

1993-04-01T23:59:59.000Z

370

Overview of the DOE High Efficiency Engine Technologies R&D  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

371

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

372

Geothermal energy program summary  

SciTech Connect (OSTI)

This document reviews Geothermal Energy Technology and the steps necessary to place it into service. Specific topics covered are: four types of geothermal resources; putting the resource to work; power generation; FY 1989 accomplishments; hard rock penetration; conversion technology; and geopressured brine research. 16 figs. (FSD)

Not Available

1990-01-01T23:59:59.000Z

373

Assessment of H/sub 2/S control technologies for geothermal power plants  

SciTech Connect (OSTI)

Techniques for controlling hydrogen sulfide (H/sub 2/S) from geothermal development are analyzed. Several technologies for controlling H/sub 2/S emissions from power plants are examined. The Hydrogen Peroxide Combination System, Stretford System and possibly EIC or Coury upstream controls appear capable of compliance with the emission limitations of 100 grams per hour per gross megawatt in 1980 (and 50 q/hr/(g) MW in 1985 or 1990) at the Geysers Dry stream field in Northern California. Unresolved problems still plague all these options. Well field operations result in H/sub 2/S releases from well drilling, well venting and steam stacking. Hydrogen peroxide reduces H/sub 2/S emissions during drilling and venting can be controlled with vent gathering (condensation/reinjection) systems. Steam stacking during power plant outages emit more H/sub 2/S over shorter periods than other field operations. Potential controls for stacking are: (1) upstream abatement, (2) automated well operation, (3) computerized wellfield operation (as of PG and E's Geysers Unit No. 15), and (4) further steamfield interconnection (cross-overs).

Not Available

1980-02-01T23:59:59.000Z

374

Geothermal Energy R&D Program Annual Progress Report Fiscal Year 1993  

SciTech Connect (OSTI)

In this report, the DOE Geothermal Program activities were split between Core Research and Industrial Development. The technical areas covered are: Exploration Technology, Drilling Technology, Reservoir Technology (including Hot Dry Rock Research and The Geyser Cooperation), and Conversion Technology (power plants, materials, and direct use/direct heat). Work to design the Lake County effluent pipeline to help recharge The Geysers shows up here for the first time. This Progress Report is another of the documents that are reasonable starting points in understanding many of the details of the DOE Geothermal Program. (DJE 2005)

None

1994-04-01T23:59:59.000Z

375

Geothermal Literature Review At Roosevelt Hot Springs Geothermal...  

Open Energy Info (EERE)

Technique Geothermal Literature Review Activity Date 1975 - 1975 Usefulness useful DOE-funding Unknown Exploration Basis Petersen, C.A. Masters Thesis at the University of Utah...

376

Dynamic capabilities in related diversification : the case of geothermal technology development by oil companies  

E-Print Network [OSTI]

During the peak oil price period of the 1970s and the first half of the 1980s, 12 major oil firms decided to diversify into the geothermal energy business under the assumption that they could easily leverage their upstream ...

Gar?ia Palma, Rodrigo Salvador

2014-01-01T23:59:59.000Z

377

Geothermal Exploration Case Studies on OpenEI (Presentation)  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

Young, K.; Bennett, M.; Atkins, D.

2014-03-01T23:59:59.000Z

378

Role of Fluid Pressure in the Production Behavior of Enhanced Geothermal Systems with CO2 as Working Fluid  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofenhanced geothermal systems (EGS), predicting larger energy

Pruess, Karsten

2008-01-01T23:59:59.000Z

379

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

380

Gas Flux Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, search Equivalent6894093° Loading69. ItLewickiMaui Area (DOE

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

382

Geothermal Program Review XV: proceedings. Role of Research in the Changing World of Energy Supply  

SciTech Connect (OSTI)

The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XV in Berkeley, March 24-26, 1997. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focussed on {open_quotes}The Role of Research in the Changing World of Energy Supply.{close_quotes} This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Separate abstracts have been indexed to the database for contributions to this conference.

NONE

1997-01-01T23:59:59.000Z

383

Soil Sampling At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardtonManagement,SmartestEnergynot indicated DOE-funding

384

Flow Test At Mccoy Geothermal Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlack Warrior Area (DOE GTP)Flow Test

385

DOE Leverages Fossil Energy Expertise to Develop And Explore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources DOE Leverages Fossil Energy Expertise to Develop And Explore Geothermal Energy Resources...

386

Geothermal energy program summary: Volume 1: Overview Fiscal Year 1988  

SciTech Connect (OSTI)

Geothermal energy is a here-and-now technology for use with dry steam resources and high-quality hydrothermal liquids. These resources are supplying about 6% of all electricity used in California. However, the competitiveness of power generation using lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma still depends on the technology improvements sought by the DOE Geothermal Energy R and D Program. The successful outcome of the R and D initiatives will serve to benefit the US public in a number of ways. First, if a substantial portion of our geothermal resources can be used economically, they will add a very large source of secure, indigenous energy to the nation's energy supply. In addition, geothermal plants can be brought on line quickly in case of a national energy emergency. Geothermal energy is also a highly reliable resource, with very high plant availability. For example, new dry steam plants at The Geysers are operable over 99% of the time, and the small flash plant in Hawaii, only the second in the United States, has an availability factor of 98%. Geothermal plants also offer a viable baseload alternative to fossil and nuclear plants -- they are on line 24 hours a day, unaffected by diurnal or seasonal variations. The hydrothermal power plants with modern emission control technology have proved to have minimal environmental impact. The results to date with geopressured and hot dry rock resources suggest that they, too, can be operated so as to reduce environmental effects to well within the limits of acceptability. Preliminary studies on magma are also encouraging. In summary, the character and potential of geothermal energy, together with the accomplishments of DOE's Geothermal R and D Program, ensure that this huge energy resource will play a major role in future US energy markets. 7 figs.

Not Available

1989-02-01T23:59:59.000Z

387

DOE Seeks to Invest up to $90 Million in Advanced Geothermal Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramof EnergyDepartmentTechnicalTechnology and

388

Geothermal Power and Interconnection: The Economics of Getting...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21 st Century," Massachusetts Institute of Technology, 2006 hereinafter "MIT Report"; and Geothermal...

389

Geothermal: Sponsored by OSTI -- Project Title: Small Scale Electrical...  

Office of Scientific and Technical Information (OSTI)

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

390

Pinpointing America's Geothermal Resources with Open Source Data...  

Broader source: Energy.gov (indexed) [DOE]

National Geothermal Data System is helping researchers and industry developers cultivate geothermal technology applications in energy and direct-use through an open source data...

391

Geothermal: Sponsored by OSTI -- Microhole arrays for improved...  

Office of Scientific and Technical Information (OSTI)

Microhole arrays for improved heat mining from enhanced geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

392

Geothermal: Sponsored by OSTI -- The solubility and kinetics...  

Office of Scientific and Technical Information (OSTI)

The solubility and kinetics of minerals under CO2-EGS geothermal conditions: Comparison of experimental and modeling results Geothermal Technologies Legacy Collection HelpFAQ |...

393

Fracture Characterization in Enhanced Geothermal Systems by Wellbore...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fracture Characterization in Enhanced Geothermal Systems by Wellbore and Reservoir Analysis; 2010 Geothermal Technology Program Peer Review Report Fracture Characterization in...

394

Three-dimensional Modeling of Fracture Clusters in Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Three-dimensional Modeling of Fracture Clusters in Geothermal Reservoirs; 2010 Geothermal Technology Program Peer Review Report Three-dimensional Modeling of Fracture Clusters in...

395

Geothermal: Sponsored by OSTI -- Testing and sampling procedures...  

Office of Scientific and Technical Information (OSTI)

Testing and sampling procedures for geothermal-compressured wells. Final report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search About...

396

Geothermal: Sponsored by OSTI -- Ways to Minimize Water Usage...  

Office of Scientific and Technical Information (OSTI)

Ways to Minimize Water Usage in Engineered Geothermal Systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

397

Geothermal: Sponsored by OSTI -- Application of seismic tomographic...  

Office of Scientific and Technical Information (OSTI)

Application of seismic tomographic techniques in the investigation of geothermal systems Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

398

Accelerating Geothermal Research (Fact Sheet)  

SciTech Connect (OSTI)

Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

Not Available

2014-05-01T23:59:59.000Z

399

Geothermal Progress Monitor, report No. 13  

SciTech Connect (OSTI)

Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

Not Available

1992-02-01T23:59:59.000Z

400

Application of safeguards technology in DOE's environmental restoration program  

SciTech Connect (OSTI)

During the last two decades, the Department of Energy's Office of Safeguards and Security (DOE/OSS) has supported the research and development of safeguards systems analysis methodologies and nondestructive assay (NDS) technology for characterizing, monitoring, and accounting nuclear materials. This paper discusses methodologies and NDA instrumentation developed by the DOE/OSS program that could be applied in the Environmental Restoration Program. NDA instrumentation could be used for field measurements during site characterization and to monitor nuclear materials, heavy metals, and other hazardous materials during site remediation. Systems methodologies can minimize the expenditure of resources and help specify appropriate combinations of NDA instrumentation and chemical analyses to characterize a variety of materials quickly and reduce personnel exposure in hazardous environments. A training program is available to teach fundamental and advanced principles and approaches to characterize and quantify nuclear materials properly and to organize and analyze measurement information for decision making. The ability to characterize the overall volume and distribution of materials at a waste site is difficult because of the inhomogeneous distribution of materials, the requirement for extreme sensitivity, and the lack of resources to collect and chemically analyze a sufficient number of samples. Using a systems study approach based on statistical sampling, the resources necessary to characterize a site can be enhanced by appropriately combining in situ and field NDA measurements with laboratory analyses. 35 refs., 1 figs., 2 tabs.

Eccleston, G.W.; Baker, M.P.; Hansen, W.R.; Lucas, M.C.; Markin, J.T.; Phillips, J.R.

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's  

SciTech Connect (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

Not Available

1991-01-01T23:59:59.000Z

402

Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market  

SciTech Connect (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

Not Available

1992-01-01T23:59:59.000Z

403

Vehicle Technologies Office Merit Review 2014: DOE/DOD Parasitic Energy Loss Collaboration  

Broader source: Energy.gov [DOE]

Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE/DOD parasitic...

404

Vehicle Technologies Office Merit Review 2014: DOE GATE Center of Excellence in Sustainable Vehicle Systems  

Broader source: Energy.gov [DOE]

Presentation given by Clemson University at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about DOE GATE Center of...

405

Fifteenth workshop on geothermal reservoir engineering: Proceedings  

SciTech Connect (OSTI)

The Fifteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 23--25, 1990. Major topics included: DOE's geothermal research and development program, well testing, field studies, geosciences, geysers, reinjection, tracers, geochemistry, and modeling.

Not Available

1990-01-01T23:59:59.000Z

406

Geothermal: Sponsored by OSTI -- Geothermal Energy: Current abstracts  

Office of Scientific and Technical Information (OSTI)

Energy: Current abstracts Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

407

EAC Presentation: DOE's Energy Technology Strategy - March 10...  

Broader source: Energy.gov (indexed) [DOE]

Technology Strategy More Documents & Publications Fuel Cell Technologies Program Overview Expanding the Use of Biogas with Fuel Cell Technologies CCS Task Force - Executive Summary...

408

Creation of an Engineered Geothermal System through Hydraulic...  

Office of Environmental Management (EM)

More Documents & Publications Microearthquake Technology for EGS Fracture Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

409

Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Final Scientific/Technical Report  

SciTech Connect (OSTI)

A large centralized geothermal heat pump system was installed to provide ice making, space cooling, space heating, process water heating, and domestic hot water heating for an ice arena in Eagan Minnesota. This paper provides information related to the design and construction of the project. Additionally, operating conditions for 12 months after start-up are provided.

Nick Rosenberry, Harris Companies

2012-05-04T23:59:59.000Z

410

Geothermal Research and Development Programs  

Broader source: Energy.gov [DOE]

Here you'll find links to laboratories, universities, and colleges conducting research and development (R&D) in geothermal energy technologies.

411

DOE's Hydrogen Fuel Cell Activities: Developing Technology and Validating it through Real-World Evaluation (Presentation)  

SciTech Connect (OSTI)

Presentation prepared for the May 12, 2008 Alternative Fuels and Vehicles Conference that describes DOE's current hydrogen fuel cell technology validation projects.

Wipke, K.; Sprik, S.; Kurtz, J.; Garbak, J.

2008-05-12T23:59:59.000Z

412

US DOE Hydrogen and Fuel Cell Technology - Composites in H2 Storage...  

Broader source: Energy.gov (indexed) [DOE]

DOE Hydrogen and Fuel Cell Technology - Composites in H 2 Storage & Delivery Fiber Reinforced Polymer Composite Manufacturing Workshop Washington, DC January 13, 2014 Scott...

413

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

and Clay Swelling in a Fractured Geothermal Reservoir,Transactions, Geothermal Resources Council, Vol. 28, pp.Renewable Energy, Office of Geothermal Technologies, of the

Pruess, Karsten

2006-01-01T23:59:59.000Z

414

Enhanced geothermal systems (EGS) using CO2 as working fluid - A novelapproach for generating renewable energy with simultaneous sequestration of carbon  

E-Print Network [OSTI]

Brown, D. A Hot Dry Rock Geothermal Energy Concept Utilizingand Renewable Energy, Office of Geothermal Technologies, ofThe resource base for geothermal energy is enormous, but

Pruess, Karsten

2006-01-01T23:59:59.000Z

415

Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings  

SciTech Connect (OSTI)

Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

Not Available

1992-01-01T23:59:59.000Z

416

Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks  

Broader source: Energy.gov [DOE]

Improved seismic imaging of geology across high-velocity Earth surfaces will allow more rigorous evaluation of geothermal prospects beneath volcanic outcrops. Seismic-based quantification of fracture orientation and intensity will result in optimal positioning of geothermal wells.

417

Geothermal Energy: Current abstracts  

SciTech Connect (OSTI)

This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

Ringe, A.C. (ed.)

1988-02-01T23:59:59.000Z

418

Doug Hollett Gives Keynote Presentation at Stanford Geothermal...  

Energy Savers [EERE]

Seismicity Protocol. Addthis Related Articles Energy Department Addresses Largest Gathering of Geothermal Energy Stakeholders DOE Releases Updated Induced Seismicity Protocol...

419

Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange.

420

International technology catalogue: Foreign technologies to support the environmental restoration and waste management needs of the DOE complex  

SciTech Connect (OSTI)

This document represents a summary of 27 foreign-based environmental restoration and waste management technologies that have been screened and technically evaluated for application to the cleanup problems of the Department of Energy (DOE) nuclear weapons complex. The evaluation of these technologies was initiated in 1992 and completed in 1995 under the DOE`s International Technology Coordination Program of the Office of Technology Development. A methodology was developed for conducting a country-by-country survey of several regions of the world where specific environmental technology capabilities and market potential were investigated. The countries that were selected from a rank-ordering process for the survey included: then West Germany, the Netherlands, France, Japan, Taiwan, the Czech and Slovak Republics, and the Former Soviet Union. The notably innovative foreign technologies included in this document were screened initially from a list of several hundred, and then evaluated based on criteria that examined for level of maturity, suitability to the DOE needs, and for potential cost effective application at a DOE site. Each of the selected foreign technologies that were evaluated in this effort for DOE application were subsequently matched with site-specific environmental problem units across the DOE complex using the Technology Needs Assessment CROSSWALK Report. For ease of tracking these technologies to site problem units, and to facilitate their input into the DOE EnviroTRADE Information System, they were categorized into the following three areas: (1) characterization, monitoring and sensors, (2) waste treatment and separations, and (3) waste containment. Technical data profiles regarding these technologies include title and description, performance information, development status, key regulatory considerations, intellectual property rights, institute and contact personnel, and references.

Matalucci, R.V. [ed.] [Sandia National Labs., Albuquerque, NM (United States). International Programs Dept.; Jimenez, R.D.; Esparza-Baca, C. [ed.] [Applied Sciences Lab., Inc., Albuquerque, NM (United States)

1995-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

422

Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Notice establishes DOE policy requirements and responsibilities for remote connections to DOE and contractor information technology systems. The Notice will also ensure compliance with the requirements of DOE O 205.1, Department of Energy Cyber Security Management Program, dated 3-21-03, to protect DOE information and information technology systems commensurate with the risk and magnitude of harm that could result from their unauthorized access, use, disclosure, modification or destruction. DOE N 205.15, dated 3/18/05, extends this directive until 3/18/06. No cancellations.

2004-02-19T23:59:59.000Z

423

Geothermal Energy Development annual report 1979  

SciTech Connect (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

424

Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. The objective of this project is to develop a matrix of the smart geothermal tracer and its interpretation tools.

425

Geothermal technology development program. Quarterly progress report, April-June 1981  

SciTech Connect (OSTI)

The status of ongoing research in rock penetration mechanics, fluid technology, borehole mechanics, and diagnostics technology is reported. (MHR)

Kelsey, J.R. (ed.)

1981-10-01T23:59:59.000Z

426

California low-temperature geothermal resources update: 1993  

SciTech Connect (OSTI)

The US Department of Energy -- Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Geothermal Resources and Technology Transfer Program to bring the inventory of the nation`s low- and moderate-temperature geothermal resources up to date and to encourage development of the resources. The Oregon Institute of Technology, Geo-Heat Center (OIT/GHC) and the University of Utah Research Institute (UURI) established subcontracts and coordinated the project with the state resource teams from the western states that participated in the program. The California Department of Conservation, Division of Mines and Geology (DMG) entered into contract numbered 1092--023(R) with the OIT/GHC to provide the California data for the program. This report is submitted in fulfillment of that contract.

Youngs, L.G.

1994-12-31T23:59:59.000Z

427

Vehicle Technologies Office Merit Review 2014: Overview of the DOE Fuel and Lubricant Technologies R&D  

Broader source: Energy.gov [DOE]

Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of...

428

Application of a New Structural Model and Exploration Technologies...  

Open Energy Info (EERE)

Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to:...

429

Geothermal Technologies Program GRC Presentation, 10/1/2012 | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George WaldmannAnnual Report GeothermalHollett |Program

430

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan:Demonstration

431

Anthony Cugini Named Director of DOE's National Energy Technology Laboratory  

Broader source: Energy.gov [DOE]

Anthony V. Cugini, a senior scientist with a range of research experience and interests over a wide cross section of energy and environmental technologies, has been named director of the U.S. Department of Energy's National Energy Technology Laboratory.

432

2011 DOE Hydrogen Program and Vehicle Technologies Office Annual...  

Broader source: Energy.gov (indexed) [DOE]

Office Plenary Session Program Analysis Ward Analyst Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

433

Southwest Alaska Regional Geothermal Energy Project  

Broader source: Energy.gov (indexed) [DOE]

Project Donna Vukich Gary Friedmann Naknek Electric Association Engineered Geothermal Systems Demonstration Projects May 19, 2010 This presentation does not contain any...

434

Research Initiative Will Demonstrate Low Temperature Geothermal...  

Office of Environmental Management (EM)

configurations, which will be freely available for industry and public education about geothermal renewable energy possibilities. Read the DOE Progress Alert to learn more....

435

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

436

Retrospective Benefit-Cost Evaluation of U.S. DOE Geothermal Technologies  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy fromComments onReplyofRetiring Procurement

437

U.S. DOE Geothermal Electricity Technology Evaluation Model (GETEM) Webinar  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy American Indian Policy1.5

438

Demonstrating and Deploying Private Sector Technologies at DOE Sites - Issues to be Overcome  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Environmental Management (EM) continues to pursue cost-effective, environmental cleanup of the weapons complex sites with a concomitant emphasis on deployment of innovative technologies as a means to this end. The EM Office of Science and Technology (OST) pursues a strategy that entails identification of technologies that have potential applications throughout the DOE complex: at multiple DOE sites and at multiple facilities on those sites. It further encourages a competitive procurement process for the various applications entailed in the remediation of a given facility. These strategies require a competitive private-sector supplier base to help meet EM needs. OST supports technology development and deployment through investments in partnerships with private industry to enhance the acceptance of their technology products within the DOE market. Since 1992, OST and the National Energy Technology Laboratory (NETL) have supported the re search and development of technology products and services offered by the private sector. During this time, NETL has managed over 140 research and development projects involving industrial and university partners. These projects involve research in a broad range of EM related topics, including deactivation and decommissioning, characterization, monitoring, sensors, waste separation, groundwater remediation, robotics, and mixed waste treatment. Successful partnerships between DOE and Industry have resulted in viable options for EM's cleanup needs, and require continued marketing efforts to ensure that these technology solutions are used at multiple DOE sites and facilities.

Bedick, R. C.

2002-02-27T23:59:59.000Z

439

Geothermal program review 16: Proceedings. A strategic plan for geothermal research  

SciTech Connect (OSTI)

The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

NONE

1998-12-31T23:59:59.000Z

440

New River Geothermal Research Program  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES PROGRAM  

E-Print Network [OSTI]

&D needs for hydrogen and fuel cell manufacturing · Report of workshop proceedings including plenary projections show significant growth in Asia and Europe. Annual granted fuel cell patents per country of origin1 | Fuel Cell Technologies Program Source: US DOE 9/9/2011 eere.energy.gov FUEL CELL TECHNOLOGIES

442

DOE and Industry Showcase New Control Systems Security Technologies...  

Broader source: Energy.gov (indexed) [DOE]

led by industry, aimed at moving new technologies closer to commercialization. Vendors and researchers will demonstrate several products at DistribuTECH that are a result...

443

USDOE Technology Transfer, Working with DOE Labs - Arrangements  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

alone, our 17 National Laboratories and 5 facilities engaged in more than 12,000 technology transfer transactions. These included more than 700 CRADAs, 2500 WFO Agreements, more...

444

FY 2008 DOE Vehicle Technologies Office Annual Merit Review ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Management Studies and Modeling IEAHEV Implementing Agreement Ahmad Pesaran National Renewable Energy Laboratory (NREL) (PDF 2.1 MB) Interagency Agreement with Navy-Technology...

445

Vehicle Technologies Office: 2012 DOE Hydrogen and Fuel Cells...  

Broader source: Energy.gov (indexed) [DOE]

Session VTO Analysis Activities: AMR Plenary Overview Ward Technology Integration Smith and Bezanson Vehicle & Systems Simulation & Testing Slezak Materials Schutte Materials...

446

Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)  

SciTech Connect (OSTI)

This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

None

1992-09-18T23:59:59.000Z

447

National Geothermal Data System (NGDS)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The National Geothermal Data System (NGDS) is a DOE-funded distributed network of databases and data sites. Much of the risk of geothermal energy development is associated with exploring for, confirming and characterizing the available geothermal resources. The overriding purpose of the NGDS is to help mitigate this up-front risk by serving as a central gateway for geothermal and relevant related data as well as a link to distributed data sources. Assessing and categorizing the nation's geothermal resources and consolidating all geothermal data through a publicly accessible data system will support research, stimulate public interest, promote market acceptance and investment, and, in turn, the growth of the geothermal industry. Major participants in the NGDS to date include universities, laboratories, the Arizona Geological Survey and Association of American State Geologists (Arizona Geological Survey, lead), the Geothermal Resources Council, and the U.S. Geological Survey. The Geothermal Energy Association is collaborating with the NGDS to insure that it meets the needs of the geothermal industry.

448

DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology  

SciTech Connect (OSTI)

The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

Not Available

2003-10-01T23:59:59.000Z

449

Advanced Vehicle Technology Competition: Challenge-X 2008 DOE...  

Broader source: Energy.gov (indexed) [DOE]

Base Supplies the Students with Cutting Edge Technologies Plug-in hybrid B20 powered diesel through-the-road hybrid E85 powered split parallel hybrid RFG + light weighting...

450

DOE Vehicle Technologies Program 2009 Merit Review Report - Energy...  

Broader source: Energy.gov (indexed) [DOE]

Technologies (BATT) Program Venkat Srinivasan (Lawrence Berkeley National Laboratory (LBNL)) 2-40 3.50 3.25 3.50 2.75 3.28 Electrode Construction and Analysis Vince Battaglia...

451

2010 DOE Vehicle Technologies Office Annual Merit Review | Department...  

Energy Savers [EERE]

June 7-11, 2010 in Washington, DC. The review encompassed all of the work done by the Hydrogen Program and the Vehicle Technologies Office: a total of 271 individual activities...

452

DOE Solar Energy Technologies Program: Overview and Highlights  

SciTech Connect (OSTI)

A non-technical overview of the U.S. Department of Energy's Solar Energy Technologies Program, including sections on photovoltaics (PV), concentrating solar power, and solar heating and lighting R&D.

Not Available

2006-05-01T23:59:59.000Z

453

DOE Vehicle Technologies Program 2009 Merit Review Report  

Broader source: Energy.gov (indexed) [DOE]

Vehicle Technologies Program 8-5 Overview of Clean Cities and Top Accomplishments: Dennis Smith, U.S. Department of Energy 1. Was the Sub-program area adequately covered? Were...

454

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department and by the Geothermal & Hydrology Technologies Division of the U.S. Dept. of Energy, project No.: DE-AT03-80SF11459. -iv

Stanford University

455

Recommendations of the workshop on advanced geothermal drilling systems  

SciTech Connect (OSTI)

At the request of the U.S. Department of Energy, Office of Geothermal Technologies, Sandia National Laboratories convened a group of drilling experts in Berkeley, CA, on April 15-16, 1997, to discuss advanced geothermal drilling systems. The objective of the workshop was to develop one or more conceptual designs for an advanced geothermal drilling system that meets all of the criteria necessary to drill a model geothermal well. The drilling process was divided into ten essential functions. Each function was examined, and discussions were held on the conventional methods used to accomplish each function and the problems commonly encountered. Alternative methods of performing each function were then listed and evaluated by the group. Alternative methods considered feasible or at least worth further investigation were identified, while methods considered impractical or not potentially cost-saving were eliminated from further discussion. This report summarizes the recommendations of the workshop participants. For each of the ten functions, the conventional methods, common problems, and recommended alternative technologies and methods are listed. Each recommended alternative is discussed, and a description is given of the process by which this information will be used by the U.S. DOE to develop an advanced geothermal drilling research program.

Glowka, D.A.

1997-12-01T23:59:59.000Z

456

Geothermal: Sponsored by OSTI -- USER?S GUIDE of TOUGH2-EGS-MP...  

Office of Scientific and Technical Information (OSTI)

Parallel Simulator with Coupled Geomechanics for Fluid and Heat Flow in Enhanced Geothermal Systems VERSION 1.0 Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

457

E-Print Network 3.0 - azufres mexico geothermal Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

geothermal. These technologies... and geothermal energy are relevant to Denmark. Hydro Hydro has little potential in the low lying terrain of Den Source: Ris National...

458

Advancing reactive tracer methods for measuring thermal evolution in CO2-and water-based geothermal reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop reactive tracer method for monitoring thermal drawdown in enhanced geothermal systems.

459

DOE Launches Public Website for Energy Technology Information | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE ExercisesReserve | Departmentof Energy

460

DOE Releases 2010 Wind Technologies Market Report | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOEInfrastructureEnergyRecordsofDepartmentDOE

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Immediate Need for Science and Technology Policy Fellowships...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Immediate Need for Science and Technology Policy Fellowships in the Geothermal Technologies Office Immediate Need for Science and Technology Policy Fellowships in the Geothermal...

462

Geothermometry At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

DOE-funding Unknown Exploration Basis Geothermometry analysis was done on geothermal fluids from the first production well to estimate the reservoirs temperature at deeper...

463

Ground Magnetics At Neal Hot Springs Geothermal Area (U.S. Geothermal...  

Open Energy Info (EERE)

Date 2007 - 2007 Usefulness not indicated DOE-funding Unknown Exploration Basis Gravity and Magnetic surveys were done as part of U.S. Geothermal's geophysical program for...

464

The DOE Hydrogen Baseline Survey: Assessing Knowledge and Opinions about Hydrogen Technology  

E-Print Network [OSTI]

and don't know about the hydrogen economy and hydrogen technologies. The data will ­ Guide educationThe DOE Hydrogen Baseline Survey: Assessing Knowledge and Opinions about Hydrogen Technology Christy Cooper U.S. Department of Energy Hydrogen Program #12;Overview Purpose: To learn what people know

465

One Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design  

E-Print Network [OSTI]

to this problem. The development of energy-efficient technol- ogy (e.g. cars, homes, appliances) is one approach. While important, this is only a partial solution as people do not always use this technology in energy-efficientOne Size Does Not Fit All: Applying the Transtheoretical Model to Energy Feedback Technology Design

Greenberg, Saul

466

Notice of Intent to Revise DOE O 200.1A, Information Technology Management--Withdrawn  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Withdrawn 3-24-14. Although DOE O 200.1A was revised in December 2008, there have been significant changes in IT governance processes and Departmental use of new technologies such as Web 2.0 technologies since that time.

2011-12-15T23:59:59.000Z

467

Technology needs for remediation: Hanford and other DOE sites. Buried Waste Integrated Demonstration Program  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy`s (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL`s Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

468

Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report  

SciTech Connect (OSTI)

Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

Not Available

1983-09-01T23:59:59.000Z

469

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

470

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

471

Low-temperature geothermal water in Utah: A compilation of data for thermal wells and springs through 1993  

SciTech Connect (OSTI)

The Geothermal Division of DOE initiated the Low-Temperature Geothermal Resources and Technology Transfer Program, following a special appropriation by Congress in 1991, to encourage wider use of lower-temperature geothermal resources through direct-use, geothermal heat-pump, and binary-cycle power conversion technologies. The Oregon Institute of Technology (OIT), the University of Utah Research Institute (UURI), and the Idaho Water Resources Research Institute organized the federally-funded program and enlisted the help of ten western states to carry out phase one. This first phase involves updating the inventory of thermal wells and springs with the help of the participating state agencies. The state resource teams inventory thermal wells and springs, and compile relevant information on each sources. OIT and UURI cooperatively administer the program. OIT provides overall contract management while UURI provides technical direction to the state teams. Phase one of the program focuses on replacing part of GEOTHERM by building a new database of low- and moderate-temperature geothermal systems for use on personal computers. For Utah, this involved (1) identifying sources of geothermal date, (2) designing a database structure, (3) entering the new date; (4) checking for errors, inconsistencies, and duplicate records; (5) organizing the data into reporting formats; and (6) generating a map (1:750,000 scale) of Utah showing the locations and record identification numbers of thermal wells and springs.

Blackett, R.E.

1994-07-01T23:59:59.000Z

472

GeoEnergy technology  

SciTech Connect (OSTI)

The goal of the GeoEnergy Technology Program is to improve the understanding and efficiency of energy extraction and conversion from geologic resources, hence maintaining domestic production capability of fossil energy resources and expanding the usage of geothermal energy. The GeoEnergy Technology Program conducts projects for the Department of Energy in four resource areas--coal, oil and gas, synthetic fuels and geothermal energy. These projects, which are conducted collaboratively with private industry and DOE`s Energy Technology Centers, draw heavily on expertise derived from the nuclear weapons engineering capabilities of Sandia. The primary technologies utilized in the program are instrumentation development and application, geotechnical engineering, drilling and well completions, and chemical and physical process research. Studies in all four resource areas are described.

NONE

1980-12-31T23:59:59.000Z

473

DOE Outlines Research Needed to Improve Solar Energy Technologies |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomenthe HouseStudents2.2at MultipleorderNuclearThis fact sheetHeatDOE

474

Microsoft PowerPoint - The DOE Bioenergy Technologies Office  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOE Tribal Leader ForumStatus of the U.S.What we haveBioenergy

475

PENN STATE DOE GRADUATE AUTOMOTIVE TECHNOLOGY EDUCATION (GATE) PROGRAM FOR  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDieselEnergyHistory andPEMFC R&D at the DOE

476

Access to High Technology User Facilities at DOE National Laboratories |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South ValleyASGovLtr.pdfAbout the BetterHDBK-1209-2012 DOE HANDBOOKDepartment

477

2011 DOE Vehicle Technologies KIVA-Development | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment( SampleEnergy back_cover.pdf MoreReview Report: AlgaeCostDOE

478

2014 DOE Vehicle Technologies Office Annual Merit Review | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials2014 Chief Freedom of Information Act (FOIA)Energy DOE

479

2012 DOE Vehicle Technologies Office Annual Merit Review | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' Research PetroleumDepartmentWomen17.2Presentations2 ASER MoreandFY12 DOE -20122,

480

Sandia National Laboratories: DOE Fuel Cell Technologies Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia Involves Wind-FarmCoolDOE DOEactivity EEREFuel

Note: This page contains sample records for the topic "doe geothermal technologies" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Sandia National Laboratories: DOE/Sandia Scaled Wind Farm Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0EnergySandia InvolvesDOE-BER NASA Award for MarginalSandia Scaled

482

2009 Geothermal, Co-Production, and GSHP Supply Curves  

Broader source: Energy.gov (indexed) [DOE]

- Enhanced Geothermal Systems (EGS) (update) - Co-Produced Fluids (new) - Ground Source Heat Pumps (GSHP) (new) Overview 3 | US DOE Geothermal Program eere.energy.gov HydroEGS...

483

Development of an Improved Cement for Geothermal Wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Develop a novel, zeolite-containing lightweight, high temperature, high pressure geothermal cement, which will provide operators with an easy to use, flexible cementing system that saves time and simplifies logistics.

484

Chemical Energy Carriers (CEC) for the Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: Develop chemical energy carrier (CEC) systems to recover thermal energy from enhanced geothermal systems (EGS) in the form of chemical energy, in addition to sensible and latent energy.

485

The Use of DOE Technologies at The World Trade Center Incident: Lessons Learned  

SciTech Connect (OSTI)

In response to the attack of the World Trade Center (WTC) on September 11, 2001, the International Union of Operating Engineers (IUOE) National Hazmat Program (OENHP) assembled and deployed a HAZMAT Emergency Management Team (Team) to the disaster site (Site). The response team consisted of a Certified Industrial Hygienist and a rotating team of industrial hygienists, safety professionals, and certified HAZMAT instructors. Through research funded by the Department of Energy (DOE) Office of Environmental Management (EM) and managed by the National Energy Technology Laboratory (NETL), the IUOE conducted human factors assessments on baseline and innovative technologies during real-world conditions and served as an advocate at the WTC disaster site to identify opportunities for the use and evaluation of DOE technologies. From this work, it is clear that opportunities exist for more DOE technologies to be made readily available for use in future emergencies.

McCabe, B.; Kovach, J.; Carpenter, C.; Blair, D.

2003-02-25T23:59:59.000Z

486

NASA/DOE/DOD nuclear propulsion technology planning: Summary of FY 1991 interagency panel results  

SciTech Connect (OSTI)

Interagency (NASA/DOE/DOD) technical panels worked in 1991 to evaluate critical nuclear propulsion issues, compare nuclear propulsion concepts for a manned Mars mission on a consistent basis, and to continue planning a technology development project for the Space Exploration Initiative (SEI). Panels were formed to address mission analysis, nuclear facilities, safety policy, nuclear fuels and materials, nuclear electric propulsion technology, and nuclear thermal propulsion technology. A summary of the results and recommendations of the panels is presented.

Clark, J.S.; Wickenheiser, T.J.; Doherty, M.P.; Marshall, A.; Bhattacharryya, S.K.; Warren, J.

1992-01-01T23:59:59.000Z

487

Geothermal technology publications and related reports: a bibliography, January 1977-December 1980  

SciTech Connect (OSTI)

This bibliograhy lists titles, authors, abstracts, and reference information for publications which have been published in the areas of drilling technology, logging instrumentation, and magma energy during the period 1977-1980. These publications are the results of work carried on at Sandia National Laboratories and their subcontractors. Some work was also done in conjunction with the Morgantown, Bartlesville, and Pittsburgh Energy Technology Centers.

Hudson, S.R. (ed.)

1981-04-01T23:59:59.000Z

488

Technology for Increasing Geothermal Energy Productivity. Computer Models to Characterize the Chemical Interactions of Goethermal Fluids and Injectates with Reservoir Rocks, Wells, Surface Equiptment  

SciTech Connect (OSTI)

This final report describes the results of a research program we carried out over a five-year (3/1999-9/2004) period with funding from a Department of Energy geothermal FDP grant (DE-FG07-99ID13745) and from other agencies. The goal of research projects in this program were to develop modeling technologies that can increase the understanding of geothermal reservoir chemistry and chemistry-related energy production processes. The ability of computer models to handle many chemical variables and complex interactions makes them an essential tool for building a fundamental understanding of a wide variety of complex geothermal resource and production chemistry. With careful choice of methodology and parameterization, research objectives were to show that chemical models can correctly simulate behavior for the ranges of fluid compositions, formation minerals, temperature and pressure associated with present and near future geothermal systems as well as for the very high PT chemistry of deep resources that is intractable with traditional experimental methods. Our research results successfully met these objectives. We demonstrated that advances in physical chemistry theory can be used to accurately describe the thermodynamics of solid-liquid-gas systems via their free energies for wide ranges of composition (X), temperature and pressure. Eight articles on this work were published in peer-reviewed journals and in conference proceedings. Four are in preparation. Our work has been presented at many workshops and conferences. We also considerably improved our interactive web site (geotherm.ucsd.edu), which was in preliminary form prior to the grant. This site, which includes several model codes treating different XPT conditions, is an effective means to transfer our technologies and is used by the geothermal community and other researchers worldwide. Our models have wide application to many energy related and other important problems (e.g., scaling prediction in petroleum production systems, stripping towers for mineral production processes, nuclear waste storage, CO2 sequestration strategies, global warming). Although funding decreases cut short completion of several research activities, we made significant progress on these abbreviated projects.

Nancy Moller Weare

2006-07-25T23:59:59.000Z

489

1990 DOE/SANDIA crystalline photovoltaic technology project review meeting  

SciTech Connect (OSTI)

This document serves as the proceedings for the annual project review meeting held by Sandia's Photovoltaic Cell Research Division and Photovoltaic Technology Division. It contains information supplied by each organization making a presentation at the meeting, which was held August 7 through 9, 1990 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, concentrator 3-5 cell research, and concentrating collector development.

Ruby, D.S. (ed.)

1990-07-01T23:59:59.000Z

490

Building Technologies Office: DOE Zero Energy Ready Home Partner Locator  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsBSCmemo.pdf BSCmemo.pdfBiopower BasicsEmerging Technologies6 BUDGETAbout

491

Status of the DOE Battery and Electrochemical Technology Program V  

SciTech Connect (OSTI)

The program consists of two activities, Technology Base Research (TBR) managed by the Lawrence Berkeley Laboratory (LBL) and Exploratory Technology Development and Testing (EDT) managed by the Sandia National Laboratories (SNL). The status of the Battery Energy Storage Test (BEST) Facility is presented, including the status of the batteries to be tested. ECS program contributions to the advancement of the lead-acid battery and specific examples of technology transfer from this program are given. The advances during the period December 1982 to June 1984 in the characterization and performance of the lead-acid, iron/nickel-oxide, iron/air, aluminum/air, zinc/bromide, zinc/ferricyanide, and sodium/sulfur batteries and in fuel cells for transport are summarized. Novel techniques and the application of established techniques to the study of electrode processes, especially the electrode/electrolyte interface, are described. Research with the potential of leading to improved ceramic electrolytes and positive electrode container and current-collectors for the sodium/sulfur battery is presented. Advances in the electrocatalysis of the oxygen (air) electrode and the relationship of these advances to the iron/air and aluminum/air batteries and to the fuel cell are noted. The quest for new battery couples and battery materials is reviewed. New developments in the modeling of electrochemical cell and electrode performance with the approaches to test these models are reported.

Roberts, R.

1985-06-01T23:59:59.000Z

492

Residential Geothermal Heat Pump Retrofit Webinar  

Broader source: Energy.gov [DOE]

A webinar by National Renewable Energy Laboratory Senior Engineer Erin Anderson about geothermal heat pump (GHP) technology options, applications, and installation costs for residences.

493

Analysis of Geothermal Reservoir Stimulation Using Geomechanics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Systems; 2010 Geothermal Technology Program Peer Review Report Microseismic Study with LBNL - Monitoring the Effect of Injection of Fluids from the Lake County Pipeline on...

494

California: Next-Generation Geothermal Demonstration Launched...  

Energy Savers [EERE]

hot rock on the margins of existing hydrothermal fields can secure higher field productivity at low cost. The Geothermal Technologies Office researches, develops, and validates...

495

Geothermal: Sponsored by OSTI -- Final Report  

Office of Scientific and Technical Information (OSTI)

Final Report Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot Docs News...

496

Geothermal: Sponsored by OSTI -- Reservoir Pressure Management  

Office of Scientific and Technical Information (OSTI)

Reservoir Pressure Management Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About Publications Advanced Search New Hot...

497

Comprehensive Evaluation of the Geothermal Resource Potential...  

Broader source: Energy.gov (indexed) [DOE]

geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future...

498

Geothermal: Sponsored by OSTI -- Development and application...  

Office of Scientific and Technical Information (OSTI)

of a mass spectrometric system to study volatile components of fluid inclusions Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

499

Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177  

SciTech Connect (OSTI)

In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

2007-05-17T23:59:59.000Z

500

Early growth technology analysis : case studies in solar energy and geothermal energy  

E-Print Network [OSTI]

Public and private organizations try to forecast the future of technological developments and allocate funds accordingly. Based on our interviews with experts from MIT's Entrepreneurship Center, Sloan School of Management, ...

Kaya Firat, Ayse

2010-01-01T23:59:59.000Z