Powered by Deep Web Technologies
Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

DOE SNF technology development necessary for final disposal  

SciTech Connect (OSTI)

Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes.

Hale, D.L.; Fillmore, D.L.; Windes, W.E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

1996-02-01T23:59:59.000Z

2

Assessment of Disposal Options for DOE-Managed High-Level Radioactive...  

Office of Environmental Management (EM)

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste and...

3

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal...  

Broader source: Energy.gov (indexed) [DOE]

to DOE Order 435.1 Low Level Radioactive Waste Disposal Requirements Christine Gelles*, U.S. Department of Energy ; Edward Regnier, U.S. Department of Energy; Andrew Wallo,...

4

Framework for DOE mixed low-level waste disposal: Site fact sheets  

SciTech Connect (OSTI)

The Department of Energy (DOE) is required to prepare and submit Site Treatment Plans (STPS) pursuant to the Federal Facility Compliance Act (FFCAct). Although the FFCAct does not require that disposal be addressed in the STPS, the DOE and the States recognize that treatment of mixed low-level waste will result in residues that will require disposal in either low-level waste or mixed low-level waste disposal facilities. As a result, the DOE is working with the States to define and develop a process for evaluating disposal-site suitability in concert with the FFCAct and development of the STPS. Forty-nine potential disposal sites were screened; preliminary screening criteria reduced the number of sites for consideration to twenty-six. The DOE then prepared fact sheets for the remaining sites. These fact sheets provided additional site-specific information for understanding the strengths and weaknesses of the twenty-six sites as potential disposal sites. The information also provided the basis for discussion among affected States and the DOE in recommending sites for more detailed evaluation.

Gruebel, M.M.; Waters, R.D.; Hospelhorn, M.B.; Chu, M.S.Y. [eds.

1994-11-01T23:59:59.000Z

5

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect (OSTI)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, administration facility, weigh scale, and various staging/storage areas. These facilities were designed and constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the Idaho National Laboratory (INL) facility for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams.

Simonds, J.

2007-11-06T23:59:59.000Z

6

Comparison of low-level waste disposal programs of DOE and selected international countries  

SciTech Connect (OSTI)

The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada`s first demonstration LLW disposal facility.

Meagher, B.G. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Cole, L.T. [Cole and Associates (United States)

1996-06-01T23:59:59.000Z

7

Does Dual Ownership of Waste Imply a Regional Disposal Approach?  

SciTech Connect (OSTI)

The construction of the Nuclear Power Plant Krsko, being located in Slovenia near the Slovenian-Croatian border, was a joint investment by Slovenia and Croatia, two republics of the former Yugoslavia. The plant was completed in 1981 and the commercial operation started early in 1983. The obligations and rights of both investors during the construction and operation were specified in two bilateral contracts signed in 1974 and 1982. These contracts were fairly detailed on construction, operation and exploitation of the nuclear power plant (NPP), but they said very little about future nuclear liabilities. The electricity production was equally shared between the two countries and both parties participated in management of the NPP. In 1991, after Slovenia and Croatia became two independent countries, the agreement on the ownership and exploitation of the NPP Krsko was re-negotiated and a new contract signed in 2003. By the new contract the decommissioning and the disposal of spent fuel (SF) as well as low and intermediate level waste (LILW) is the responsibility of both parties, and the financial resources for covering these liabilities should be equally provided. Regardless of shared ownership of waste, the agreement opts for a single disposal solution for LILW as well as for SF, but the details are left open. More clear elaboration of these responsibilities is given in the programme of the decommissioning and disposal of radioactive waste from the NPP which was jointly prepared by the Slovenian and Croatian waste management organisations in 2004. The programme is clearly opting for only one repository for LILW and one repository for spent fuel, which can be located either in Slovenia or Croatia. Irrespective of the country where such a repository will be sited, dual ownership of waste opens up another dimension of such a solution: will such a repository be regarded as a national facility or as a regional or multinational facility? Both options-national and regional/multinational- may have a strong influence on future agreements on waste disposal, but so far these aspects have not been addressed either in Slovenia or Croatia. The paper brings reflections and discussion on these aspects of waste management in Slovenia and reveals the current situation of the waste disposal project in the country. (authors)

Mele, I. [ARAO - Agency for Radwaste Management, Parmova 53, Si-1000 Ljubljana (Slovenia)

2006-07-01T23:59:59.000Z

8

DOE - Office of Legacy Management -- Pennsylvania Disposal Site - PA 43  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborne Co - OH 34PantexDisposal Site - PA

9

NSNFP Activities in Support of Repository Licensing for Disposal of DOE SNF  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Civilian Radioactive Waste Management is in the process of preparing the Yucca Mountain license application for submission to the Nuclear Regulatory Commission as the nationís first geologic repository for spent nuclear fuel (SNF) and high-level waste. Because the DOE SNF will be part of the license application, there are various components of the license application that will require information relative to the DOE SNF. The National Spent Nuclear Fuel Program (NSNFP) is the organization that directs the research, development, and testing of treatment, shipment, and disposal technologies for all DOE SNF. This report documents the work activities conducted by the NSNFP and discusses the relationship between these NSNFP technical activities and the license application. A number of the NSNFP activities were performed to provide risk insights and understanding of DOE SNF disposal as well as to prepare for anticipated questions from the regulatory agency.

Henry H. Loo; Brett W.. Carlsen; Sheryl L. Morton; Larry L. Taylor; Gregg W. Wachs

2004-09-01T23:59:59.000Z

10

Idaho CERCLA Disposal Facility Complex Compliance Demonstration for DOE Order 435.1  

SciTech Connect (OSTI)

This compliance demonstration document provides an analysis of the Idaho CERCLA Disposal Facility (ICDF) Complex compliance with DOE Order 435.1. The ICDF Complex includes the disposal facility (landfill), evaporation pond, admin facility, weigh scale, decon building, treatment systems, and various staging/storage areas. These facilities were designed and are being constructed to be compliant with DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, and Toxic Substances Control Act polychlorinated biphenyl design and construction standards. The ICDF Complex is designated as the central Idaho National Laboratory (INL) facilityyy for the receipt, staging/storage, treatment, and disposal of INL Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) waste streams. This compliance demonstration document discusses the conceptual site model for the ICDF Complex area. Within this conceptual site model, the selection of the area for the ICDF Complex is discussed. Also, the subsurface stratigraphy in the ICDF Complex area is discussed along with the existing contamination beneath the ICDF Complex area. The designs for the various ICDF Complex facilities are also included in this compliance demonstration document. These design discussions are a summary of the design as presented in the Remedial Design/Construction Work Plans for the ICDF landfill and evaporation pond and the Staging, Storage, Sizing, and Treatment Facility. Each of the major facilities or systems is described including the design criteria.

J. Simonds

2006-09-01T23:59:59.000Z

11

US DOE-EM On-Site Disposal Cell Working Group - Fostering Communication On Performance Assessment Challenges  

SciTech Connect (OSTI)

On-site disposal cells are in use and being considered at several U.S. Department of Energy (USDOE) sites as the final disposition for large amounts of waste associated with cleanup of contaminated areas and facilities. These facilities are typically developed with regulatory oversight from States and/or the US Environmental Protection Agency (USEPA) in addition to USDOE. The facilities are developed to meet design standards for disposal of hazardous waste as well as the USDOE performance based standards for disposal of radioactive waste. The involvement of multiple and different regulators for facilities across separate sites has resulted in some differences in expectations for performance assessments and risk assessments (PA/RA) that are developed for the disposal facilities. The USDOE-EM Office of Site Restoration formed a working group to foster improved communication and sharing of information for personnel associated with these Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) disposal cells and work towards more consistent assumptions, as appropriate, for technical and policy considerations related to performance and risk assessments in support of a Record of Decision and Disposal Authorization Statement. The working group holds teleconferences, as needed, focusing on specific topics of interest. The topics addressed to date include an assessment of the assumptions used for performance assessments and risk assessments (PA/RAs) for on-site disposal cells, requirements and assumptions related to assessment of inadvertent intrusion, DOE Manual 435.1-1 requirements, and approaches for consideration of the long-term performance of liners and covers in the context of PAs. The working group has improved communication among the staff and oversight personnel responsible for onsite disposal cells and has provided a forum to identify and resolve common concerns.

Seitz, Roger R. [Savannah River Site (SRS), Aiken, SC (United States); Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, Germantown, MD (United States); Phifer, Mark [Savannah River Site (SRS), Aiken, SC (United States)

2014-03-01T23:59:59.000Z

12

Shielded Payload Containers Will Enhance the Safety and Efficiency of the DOE's Remote Handled Transuranic Waste Disposal Operations  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) disposal operation currently employs two different disposal methods: one for Contact Handled (CH) waste and another for Remote Handled (RH) waste. CH waste is emplaced in a variety of payload container configurations on the floor of each disposal room. In contrast, RH waste is packaged into a single type of canister and emplaced in pre-drilled holes in the walls of disposal rooms. Emplacement of the RH waste in the walls must proceed in advance of CH waste emplacement. This poses a significant logistical constraint on waste handling operations by requiring significant coordination between waste characterization and preparations for shipping among the various generators. To improve operational efficiency, the Department of Energy (DOE) is proposing a new waste emplacement process for certain RH waste streams that can be safely managed in shielded containers. RH waste with relatively low gamma-emitting activity would be packaged in lead-lined containers, shipped to WIPP in existing certified transportation packages for CH waste, and emplaced in WIPP among the stacks of CH waste containers on the floor of a disposal room. RH waste with high gamma-emitting activity would continue to be emplaced in the boreholes along the walls. The new RH container appears essentially the same as a nominal 208-liter drum, but is built with about 2.5 cm of lead, sandwiched between thick steel sheet. The top and bottom are made of very thick plate steel, for strengthening the package to meet transportation requirements, and provide similar gamma attenuation. This robust configuration provides an overpack for waste that otherwise would be remotely handled. Up to a 3:1 reduction in number of shipments is projected if RH waste were transported in the proposed shielded containers. This paper describes the container design and testing, as well as the regulatory approach used to meet the requirements that apply to WIPP and its associated transportation system. This paper describes the RH transuranic waste inventory that may be candidates for packaging and emplacement in shielded containers. DOE does not propose to use shielded containers to increase the amount of RH waste allowed at WIPP. DOE's approach to gain approval for the transportation of shielded containers and to secure regulatory approval for use of shielded containers from WIPP regulators is discussed. Finally, the paper describes how DOE proposes to count the waste packaged into shielded containers against the RH waste inventory and how this will comply with the volume and radioactivity limitations imposed in the many and sometimes overlapping regulations that apply to WIPP. (authors)

Nelson, R.A. [U. S. Department of Energy, Carlsbad, New Mexico (United States); White, D.S. [Washington Group International, Carlsbad, New Mexico (United States)

2008-07-01T23:59:59.000Z

13

CONTAINMENT OF LOW-LEVEL RADIOACTIVE WASTE AT THE DOE SALTSTONE DISPOSAL FACILITY  

SciTech Connect (OSTI)

As facilities look for permanent storage of toxic materials, they are forced to address the long-term impacts to the environment as well as any individuals living in affected area. As these materials are stored underground, modeling of the contaminant transport through the ground is an essential part of the evaluation. The contaminant transport model must address the long-term degradation of the containment system as well as any movement of the contaminant through the soil and into the groundwater. In order for disposal facilities to meet their performance objectives, engineered and natural barriers are relied upon. Engineered barriers include things like the design of the disposal unit, while natural barriers include things like the depth of soil between the disposal unit and the water table. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) in South Carolina is an example of a waste disposal unit that must be evaluated over a timeframe of thousands of years. The engineered and natural barriers for the SDF allow it to meet its performance objective over the long time frame. Some waste disposal facilities are required to meet certain standards to ensure public safety. These type of facilities require an engineered containment system to ensure that these requirements are met. The Saltstone Disposal Facility (SDF) at the Savannah River Site (SRS) is an example of this type of facility. The facility is evaluated based on a groundwater pathway analysis which considers long-term changes to material properties due to physical and chemical degradation processes. The facility is able to meet these performance objectives due to the multiple engineered and natural barriers to contaminant migration.

Jordan, J.; Flach, G.

2012-03-29T23:59:59.000Z

14

Combination gas-producing and waste-water disposal well. [DOE patent application  

DOE Patents [OSTI]

The present invention is directed to a waste-water disposal system for use in a gas recovery well penetrating a subterranean water-containing and methane gas-bearing coal formation. A cased bore hole penetrates the coal formation and extends downwardly therefrom into a further earth formation which has sufficient permeability to absorb the waste water entering the borehole from the coal formation. Pump means are disposed in the casing below the coal formation for pumping the water through a main conduit towards the water-absorbing earth formation. A barrier or water plug is disposed about the main conduit to prevent water flow through the casing except for through the main conduit. Bypass conduits disposed above the barrier communicate with the main conduit to provide an unpumped flow of water to the water-absorbing earth formation. One-way valves are in the main conduit and in the bypass conduits to provide flow of water therethrough only in the direction towards the water-absorbing earth formation.

Malinchak, R.M.

1981-09-03T23:59:59.000Z

15

Analysis of the technical capabilities of DOE sites for disposal of residuals from the treatment of mixed low-level waste  

SciTech Connect (OSTI)

The US Department of Energy (DOE) has stored or expects to generate over the next five years more than 130,000 m{sup 3} of mixed low-level waste (MLLW). Before disposal, MLLW is usually treated to comply with the land disposal restrictions of the Resource Conservation and Recovery Act. Depending on the type of treatment, the original volume of MLLW and the radionuclide concentrations in the waste streams may change. These changes must be taken into account in determining the necessary disposal capacity at a site. Treatment may remove the characteristic in some waste that caused it to be classified as mixed. Treatment of some waste may, by reduction of the mass, increase the concentrations of some transuranic radionuclides sufficiently so that it becomes transuranic waste. In this report, the DOE MLLW streams were analyzed to determine after-treatment volumes and radionuclide concentrations. The waste streams were reclassified as residual MLLW or low-level or transuranic waste resulting from treatment. The volume analysis indicated that about 89,000 m{sup 3} of waste will require disposal as residual MLLW. Fifteen DOE sites were then evaluated to determine their capabilities for hosting disposal facilities for some or all of the residual MLLW. Waste streams associated with about 90% of the total residual MLLW volume are likely to present no significant issues for disposal and require little additional analysis. Future studies should focus on the remaining waste streams that are potentially problematic by examining site-specific waste acceptance criteria, alternative treatment processes, alternative waste forms for disposal, and pending changes in regulatory requirements.

Waters, R.D.; Gruebel, M.M.; Langkopf, B.S.; Kuehne, P.B.

1997-04-01T23:59:59.000Z

16

DOE Completes Disposal Operations In Panel 5 of the WIPP Underground |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE Challenge Home RecommendedASKOSeptemberDepartment

17

DOE/RL-2011-93  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the end of 2015. * Utilize shielded canisters to accelerate transportation and disposal of remote-handled TRU wastes. * Process and dispose of Large Box TRU, utilizing the...

18

DOE/RL-2012-13  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

by the end of 2015. * Utilize shielded canisters to accelerate transportation and disposal of remote-handled TRU wastes. * Process and dispose of Large Box TRU, utilizing the...

19

Proceedings of the tenth annual DOE low-level waste management conference: Session 3: Disposal technology and facility development  

SciTech Connect (OSTI)

This document contains ten papers on various aspects of low-level radioactive waste management. Topics include: design and construction of a facility; alternatives to shallow land burial; the fate of tritium and carbon 14 released to the environment; defense waste management; engineered sorbent barriers; remedial action status report; and the disposal of mixed waste in Texas. Individual papers were processed separately for the data base. (TEM)

Not Available

1988-12-01T23:59:59.000Z

20

Scoping evaluation of the technical capabilities of DOE sites for disposal of hazardous metals in mixed low-level waste  

SciTech Connect (OSTI)

A team of analysts designed and conducted a scoping evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of the hazardous metals in mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Eight hazardous metals were evaluated: arsenic, barium, cadmium, chromium, lead, mercury, selenium, and silver. The analysis considered transport only through the groundwater pathway. The results are reported as site-specific estimates of maximum concentrations of each hazardous metal in treated mixed low-level waste that do not exceed the performance measures established for the analysis. Also reported are site-specific estimates of travel times of each hazardous metal to the point of compliance.

Gruebel, M.M.; Waters, R.D.; Langkopf, B.S.

1997-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Repackaging SRS Black Box TRU Waste  

SciTech Connect (OSTI)

Historically, large items of TRU Waste, which were too large to be packaged in drums for disposal have been packaged in various sizes of custom made plywood boxes at the Savannah River Site (SRS), for many years. These boxes were subsequently packaged into large steel ''Black Boxes'' for storage at SRS, pending availability of Characterization and Certification capability, to facilitate disposal of larger items of TRU Waste. There are approximately 107 Black Boxes in inventory at SRS, each measuring some 18' x 12' x 7', and weighing up to 45,000 lbs. These Black Boxes have been stored since the early 1980s. The project to repackage this waste into Standard Large Boxes (SLBs), Standard Waste Boxes (SWB) and Ten Drum Overpacks (TDOP), for subsequent characterization and WIPP disposal, commenced in FY04. To date, 10 Black Boxes have been repackaged, resulting in 40 SLB-2's, and 37 B25 overpack boxes, these B25's will be overpacked in SLB-2's prior to shipping to WIPP. This paper will describe experience to date from this project.

Swale, D. J.; Stone, K.A.; Milner, T. N.

2006-01-09T23:59:59.000Z

22

Sampling box  

DOE Patents [OSTI]

An air sampling box that uses a slidable filter tray and a removable filter cartridge to allow for the easy replacement of a filter which catches radioactive particles is disclosed.

Phillips, Terrance D. (617 Chestnut Ct., Aiken, SC 29803); Johnson, Craig (100 Midland Rd., Oak Ridge, TN 37831-0895)

2000-01-01T23:59:59.000Z

23

A Comparison of EnergyPlus to DOE-2.1E: Multiple Cases Ranging from a Sealed Box to a Residential Building  

E-Print Network [OSTI]

of programs for the same cases defined in ANSI/ASHRAE Standard 140. This study expanded upon the previous comparisons to include the simplest case scenario where the building was a sealed box without infiltration, internal load, system or plant...

Andolsun, S.; Culp, C.

24

Nondestructive assay of boxed radioactive waste  

SciTech Connect (OSTI)

Solid radioactive waste must be classified before treatment and disposal methods can be chosen. After treatment and before disposal, the radionuclide contents of a container must be certified. This paper describes the problems related to the nondestructive assay (NDA) of boxed radioactive waste at the Hanford Site and how Westinghouse Hanford Company (WHC) is solving the problems. The waste form and radionuclide content are described. The characteristics of the combined neutron and gamma-based measurement system are described.

Gilles, W.P.; Jasen, W.G.; Roberts, R.J. [Westinghouse Hanford Co., Richland, WA (United States)

1993-12-31T23:59:59.000Z

25

DOE  

Gasoline and Diesel Fuel Update (EIA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"Click worksheet9,1,50022,3,,,,6,1,,781Title:DOBEIA-0202(83/4Q) Short-Term Energy Outlook QuarterlyDOE

26

Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3  

SciTech Connect (OSTI)

Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

2013-07-29T23:59:59.000Z

27

DOE issues Finding of No Significant Impact on Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low Level Radioactive Waste Generated at Idaho Site  

Broader source: Energy.gov [DOE]

Idaho Falls, ID Ė After completing a careful assessment, the U.S. Department of Energy has determined that building a new facility at its Idaho National Laboratory site for continued disposal of remote-handled low level radioactive waste generated by operations at the site will not have a significant impact on the environment.

28

Technology and the Box  

E-Print Network [OSTI]

its explorations of technology in partnership with radicalPadma Maitland Technology and the Box The room is thedisciplines. The theme of ďTechnology and the BoxĒ emerged

Maitland, Padma

2013-01-01T23:59:59.000Z

29

Disposable rabbit  

DOE Patents [OSTI]

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, Leroy C. (Idaho Falls, ID); Trammell, David R. (Rigby, ID)

1986-01-01T23:59:59.000Z

30

Disposal rabbit  

DOE Patents [OSTI]

A disposable rabbit for transferring radioactive samples in a pneumatic transfer system comprises aerated plastic shaped in such a manner as to hold a radioactive sample and aerated such that dissolution of the rabbit in a solvent followed by evaporation of the solid yields solid waste material having a volume significantly smaller than the original volume of the rabbit.

Lewis, L.C.; Trammell, D.R.

1983-10-12T23:59:59.000Z

31

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ¬Ĺ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

32

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste: Volume 3, Site evaluations  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 provides details about the site-selection process, the performance-evaluation methodology, and the overall results of the analysis. Volume 3 contains detailed evaluations of the fifteen sites and discussion of the results for each site.

Waters, R.D.; Gruebel, M.M. [eds.] [eds.

1996-03-01T23:59:59.000Z

33

Depleted uranium disposal options evaluation  

SciTech Connect (OSTI)

The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ``waste,`` but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity.

Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D. [Science Applications International Corp., Idaho Falls, ID (United States). Waste Management Technology Div.

1994-05-01T23:59:59.000Z

34

DOE Media Advisory- DOE extends public comment period on Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energyís Idaho Site  

Broader source: Energy.gov [DOE]

In response to requests from people interested in National Environmental Policy Act activities occurring at the U.S. Department of Energyís Idaho Operations Office, the department has extended the public comment period that began September 1 on the Draft Environmental Assessment for Replacement Capability for Disposal of Remote-Handled Low-Level Radioactive Waste Generated at the U.S. Department of Energyís Idaho Site.

35

Performance evaluation of the technical capabilities of DOE sites for disposal of mixed low-level waste. Volume 2: Technical basis and discussion of results  

SciTech Connect (OSTI)

A team of analysts designed and conducted a performance evaluation to estimate the technical capabilities of fifteen Department of Energy sites for disposal of mixed low-level waste (i.e., waste that contains both low-level radioactive materials and hazardous constituents). Volume 1 summarizes the process for selecting the fifteen sites, the methodology used in the evaluation, and the conclusions derived from the evaluation. Volume 2 first describes the screening process used to determine the sites to be considered in the PEs. This volume then provides the technical details of the methodology for conducting the performance evaluations. It also provides a comparison and analysis of the overall results for all sites that were evaluated. Volume 3 contains detailed evaluations of the fifteen sites and discussions of the results for each site.

Waters, R.D.; Gruebel, M.M.; Hospelhorn, M.B. [and others

1996-03-01T23:59:59.000Z

36

ash disposal site: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

37

ash disposal sites: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

OF PRINCE GEORGE: SNOW DISPOSAL AT THE LANSDOWNE ROAD WASTEWATER TREATMENT CENTRE DOE FRAP WASTEWATER TREATMENT CENTRE ACKNOWLEDGEMENTS Funding for this study was provided...

38

Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE`s Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS.

Price, L. [Science Applications International Corp., Albuquerque, NM (United States)

1994-09-01T23:59:59.000Z

39

Assessment of Preferred Depleted Uranium Disposal Forms  

SciTech Connect (OSTI)

The Department of Energy (DOE) is in the process of converting about 700,000 metric tons (MT) of depleted uranium hexafluoride (DUF6) containing 475,000 MT of depleted uranium (DU) to a stable form more suitable for long-term storage or disposal. Potential conversion forms include the tetrafluoride (DUF4), oxide (DUO2 or DU3O8), or metal. If worthwhile beneficial uses cannot be found for the DU product form, it will be sent to an appropriate site for disposal. The DU products are considered to be low-level waste (LLW) under both DOE orders and Nuclear Regulatory Commission (NRC) regulations. The objective of this study was to assess the acceptability of the potential DU conversion products at potential LLW disposal sites to provide a basis for DOE decisions on the preferred DU product form and a path forward that will ensure reliable and efficient disposal.

Croff, A.G.; Hightower, J.R.; Lee, D.W.; Michaels, G.E.; Ranek, N.L.; Trabalka, J.R.

2000-06-01T23:59:59.000Z

40

The Changing Adventures of Mixed Low-Level Waste Disposal at the Nevada Test Site  

SciTech Connect (OSTI)

After a 15-year hiatus, the United States Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO) began accepting DOE off-site generated mixed low-level radioactive waste (MLLW) for disposal at the Nevada Test Site (NTS) in December 2005. This action was predicated on the acceptance by the Nevada Division of Environmental Protection (NDEP) of a waste analysis plan (WAP). The NNSA/NSO agreed to limit mixed waste disposal to 20,000 cubic meters (approximately 706,000 cubic feet) and close the facility by December 2010 or sooner, if the volume limit is reached. The WAP and implementing procedures were developed based on Hanfordís system of verification to the extent possible so the two regional disposal sites could have similar processes. Since the NNSA/NSO does not have a breaching facility to allow the opening of boxes at the site, verification of the waste occurs by visual inspection at the generator/treatment facility or by Real-Time-Radiography (RTR) at the NTS. This system allows the NTS to effectively, efficiently, and compliantly accept MLLW for disposal. The WAP, NTS Waste Acceptance Criteria, and procedures have been revised based on learning experiences. These changes include: RTR expectations; visual inspection techniques; tamper-indicating device selection; void space requirements; and chemical screening concerns. The NNSA/NSO, NDEP, and the generators have been working together throughout the debugging of the verification processes. Additionally, the NNSA/NSO will continue to refine the MLLW acceptance processes and strive for continual improvement of the program.

DOE /Navarro/NSTec

2007-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Tank Waste Disposal Program redefinition  

SciTech Connect (OSTI)

The record of decision (ROD) (DOE 1988) on the Final Environmental Impact Statement, Hanford Defense High-Level, Transuranic and Tank Wastes, Hanford Site, Richland Washington identifies the method for disposal of double-shell tank waste and cesium and strontium capsules at the Hanford Site. The ROD also identifies the need for additional evaluations before a final decision is made on the disposal of single-shell tank waste. This document presents the results of systematic evaluation of the present technical circumstances, alternatives, and regulatory requirements in light of the values of the leaders and constitutents of the program. It recommends a three-phased approach for disposing of tank wastes. This approach allows mature technologies to be applied to the treatment of well-understood waste forms in the near term, while providing time for the development and deployment of successively more advanced pretreatment technologies. The advanced technologies will accelerate disposal by reducing the volume of waste to be vitrified. This document also recommends integration of the double-and single-shell tank waste disposal programs, provides a target schedule for implementation of the selected approach, and describes the essential elements of a program to be baselined in 1992.

Grygiel, M.L.; Augustine, C.A.; Cahill, M.A.; Garfield, J.S.; Johnson, M.E.; Kupfer, M.J.; Meyer, G.A.; Roecker, J.H. [Westinghouse Hanford Co., Richland, WA (United States); Holton, L.K.; Hunter, V.L.; Triplett, M.B. [Pacific Northwest Lab., Richland, WA (United States)

1991-10-01T23:59:59.000Z

42

Disposable sludge dewatering container and method  

DOE Patents [OSTI]

A device and method for preparing sludge for disposal comprising a box with a thin layer of gravel on the bottom and a thin layer of sand on the gravel layer, an array of perforated piping deployed throughout the gravel layer, and a sump in the gravel layer below the perforated piping array. Standpipes connect the array and sump to an external ion exchanger/fine particulate filter and a pump. Sludge is deposited on the sand layer and dewatered using a pump connected to the piping array, topping up with more sludge as the aqueous component of the sludge is extracted. When the box is full and the free standing water content of the sludge is acceptable, the standpipes are cut and sealed and the lid secured to the box.

Cole, Clifford M. (1905 Cottonwood Dr., Aiken, SC 29803)

1993-01-01T23:59:59.000Z

43

E-Print Network 3.0 - airport strainer box Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

installations - Big box retailers - Grocery Stores - Car Dealerships One Megawatt of CHP Power Source: DOE Office of Energy Efficiency and Renewable Energy, Hydrogen, Fuel...

44

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE`s Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site`s waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-12-31T23:59:59.000Z

45

Optimizing High Level Waste Disposal  

SciTech Connect (OSTI)

If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being evaluated at Idaho National Laboratory and the facilities weíve designed to evaluate options and support optimization.

Dirk Gombert

2005-09-01T23:59:59.000Z

46

Title I Disposal Sites Annual Report  

Broader source: Energy.gov [DOE]

This report presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements.

47

The disposal of orphan wastes using the greater confinement disposal concept  

SciTech Connect (OSTI)

In the United States, radioactive wastes are conventionally classified as high-level wastes, transuranic wastes, or low-level wastes. Each of these types of wastes, by law, has a ``home`` for their final disposal; i.e., high-level wastes are destined for disposal at the proposed repository at Yucca Mountain, transuranic waste for the proposed Waste Isolation Pilot Plant, and low-level waste for shallow-land disposal sites. However, there are some radioactive wastes within the United States Department of Energy (DOE) complex that do not meet the criteria established for disposal of either high-level waste, transuranic waste, or low-level waste. The former are called ``special-case`` or ``orphan`` wastes. This paper describes an ongoing project sponsored by the DOE`s Nevada Operations Office for the disposal of orphan wastes at the Radioactive Waste Management Site at Area 5 of the Nevada Test Site using the greater confinement disposal (GCD) concept. The objectives of the GCD project are to evaluate the safety of the site for disposal of orphan wastes by assessing compliance with pertinent regulations through performance assessment, and to examine the feasibility of this disposal concept as a cost-effective, safe alternative for management of orphan wastes within the DOE complex. Decisions on the use of GCD or other alternate disposal concepts for orphan wastes can be expected to be addressed in a Programmatic Environmental Impact Statement being prepared by DOE. The ultimate decision to use GCD will require a Record of Decision through the National Environmental Policy Act (NEPA) process. 20 refs., 3 figs., 2 tabs.

Bonano, E.J.; Chu, M.S.Y.; Price, L.L.; Conrad, S.H. [Sandia National Labs., Albuquerque, NM (USA); Dickman, P.T. [Department of Energy, Las Vegas, NV (USA). Nevada Operations Office

1991-02-01T23:59:59.000Z

48

Explanation of Significant Differences Between Models used to Assess Groundwater Impacts for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste and Greater-Than-Class C-Like Waste Environmental Impact Statement (DOE/EIS-0375-D) and the  

SciTech Connect (OSTI)

Models have been used to assess the groundwater impacts to support the Draft Environmental Impact Statement for the Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste (DOE-EIS 2011) for a facility sited at the Idaho National Laboratory and the Environmental Assessment for the INL Remote-Handled Low-Level Waste Disposal Project (INL 2011). Groundwater impacts are primarily a function of (1) location determining the geologic and hydrologic setting, (2) disposal facility configuration, and (3) radionuclide source, including waste form and release from the waste form. In reviewing the assumptions made between the model parameters for the two different groundwater impacts assessments, significant differences were identified. This report presents the two sets of model assumptions and discusses their origins and implications for resulting dose predictions. Given more similar model parameters, predicted doses would be commensurate.

Annette Schafer; Arthur S. Rood; A. Jeffrey Sondrup

2011-08-01T23:59:59.000Z

49

DOE/ID-Number  

Broader source: Energy.gov (indexed) [DOE]

for the disposal of spent nuclear fuel and high level nuclear waste at the Deaf Smith County Texas site (DOE 1986c) used a maximum allowable repository temperature of...

50

Waste Disposal (Illinois)  

Broader source: Energy.gov [DOE]

This article lays an outline of waste disposal regulations, permits and fees, hazardous waste management and underground storage tank requirements.

51

BOX SPLINES Hartmut Prautzsch  

E-Print Network [OSTI]

as density functions of the shadows of higher dimensional boxes and half-boxes. Of particular in- terest and their general theory is given in the book by de Boor, H¨ollig and Riemenschneider [10] who also give valuable = ui . Then, Bk(x) represents the density of the "shadow" of k, i.e., Bk(x) = 1 volkk volk-sk(x) , (1

Prautzsch, Hartmut

52

DOE Awards Small Business Contract to Support Cleanup of New...  

Energy Savers [EERE]

Task Order for Disposal of Los Alamos National Lab Waste DOE Awards Support Service Contract DOE Awards Small Business Contract for Support, Planning Services to Office of...

53

Mixed waste disposal facilities at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a key installation of the US Department of Energy (DOE). The site is managed by DOE's Savannah River Field Office and operated under contract by the Westinghouse Savannah River Company (WSRC). The Site's waste management policies reflect a continuing commitment to the environment. Waste minimization, recycling, use of effective pre-disposal treatments, and repository monitoring are high priorities at the site. One primary objective is to safely treat and dispose of process wastes from operations at the site. To meet this objective, several new projects are currently being developed, including the M-Area Waste Disposal Project (Y-Area) which will treat and dispose of mixed liquid wastes, and the Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF), which will store, treat, and dispose of solid mixed and hazardous wastes. This document provides a description of this facility and its mission.

Wells, M.N.; Bailey, L.L.

1991-01-01T23:59:59.000Z

54

Title I Disposal Site  

E-Print Network [OSTI]

The Office of Legacy Management and the Navajo Nation have been discussing an item specified in the Long Term Surveillance Plan (LTSP) for the Mexican Hat site for some time now, and we have come to a resolution on the matter. The LTSP specifies seep sampling at the site to confirm that the disposal cell is operating as designed. Typically, this is to be done for a specific time and then reevaluated, but, in this LTSP there is no time frame given. After 8 years of experience in sampling and observing these six seeps, it has been found that most are not flowing at all, and those that have any water running are so limited in flow that it is difficult to obtain a sample. In addition, several risk assessments have been performed over the years to evaluate the possible ecological risks associated with exposure to this seep water. The analysis indicates there would be no eco-risk based on the historic data to any wildlife or livestock. This information and a full analysis of the situation was submitted to the Navajo Nation for their consideration, and, in further discussions, they have agreed to limit the sampling to only making observations during the annual cell inspection, and if water is observed to be increased compared to historic observations, then sampling will resume. Their agreement to this change is noted in the enclosed copy of their letter to DOE dated July 25, 2006. I have enclosed a copy of this report,

Mr. Bill; Von Till

2006-01-01T23:59:59.000Z

55

User Guide for Disposal of Unwanted Items and Electronic Waste  

E-Print Network [OSTI]

is the Recycle department at 502-6808 o For more information on the UCSF Sustainability program visit: http://sustainability.ucsf.edu/stay_informed/recycling_resources consulting support Ensuring proper reuse, recycle, or disposal Maintaining regulatory and policy compliance metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o

Mullins, Dyche

56

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Disposal options emergency mortality composting procedure · Use of composting during outbreaks #12;Disposal: Science and disinfection of farms and surveillance around affected flocks. " USDA APHIS VS EMD, 2007 #12;Disposal: Science

Benson, Eric R.

57

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Poultry Farm Daily Disposal Methods 0;Disposal: Science and Theory First Composter in Delaware ¬∑ Delmarva was of the first daily composting ¬∑ 120 in USA over next 10 years #12;Disposal: Science and Theory Composting Procedure ¬∑ Mixture ¬≠ 1 ¬Ĺ to 2

Benson, Eric R.

58

Disposal of drilling fluids  

SciTech Connect (OSTI)

Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.

Bryson, W.R.

1983-06-01T23:59:59.000Z

59

RADIOACTIVE WASTE DISPOSAL IN GRANITE  

E-Print Network [OSTI]

RADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. WitherspoonRADIOACTIVE WASTE DISPOSAL IN GRANITE Paul A. Wither spoona repository site in granite are to evaluate the suitability

Witherspoon, P.A.

2010-01-01T23:59:59.000Z

60

Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth...  

Office of Environmental Management (EM)

of Environmental Management (DOE-EM) External Technical Review of the Proposed On-Site Waste Disposal Facility (OSWDF) at the Portsmouth Gaseous Diffusion Plant Why DOE-EM Did...

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Management Policy for Planning, Programming, Budgeting, Operation, Maintenance and Disposal of Real Property  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) management policy for the planning, programming, budgeting, operation, maintenance and disposal of real property owned by the United States and under the custody and control of DOE.

2002-05-20T23:59:59.000Z

62

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · Compostaje de aves de corralRouchey et al., 2005) Investigación previa #12;Disposal: Science and Theory · Se ha evaluado y documentado el, bovino Investigación previa #12;Disposal: Science and Theory · Experimento nro. 1 Impacto de la espuma en

Benson, Eric R.

63

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory ¬∑ Opciones para la eliminaci√≥n ¬∑ ¬ŅQu√© compostaje durante brotes de enfermedades Lista de contenido #12;Disposal: Science and Theory "Ante un brote brotes de IIAP #12;Disposal: Science and Theory ¬∑ En 2004, se despoblaron 100 millones de aves en todo el

Benson, Eric R.

64

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Used in Actual Outbreak · Water #12;Disposal: Science and Theory Water Based Foam Culling Demo · First large scale comparison · Two:46 (m:s) #12;Disposal: Science and Theory WV H5N2 AIV 2007 · AIV positive turkeys ­ 25,000 turkey farm

Benson, Eric R.

65

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory ¬∑ Las recomendaciones de campo se la espuma #12;Disposal: Science and Theory ¬∑ M√ļltiples especies de aves pueden despoblarse con espuma cesaci√≥n #12;Disposal: Science and Theory ¬∑ Dentro de una especie, pueden existir variaciones ¬≠ Los √°nades

Benson, Eric R.

66

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory 0 20 40 60 80 100 Compostaje #12;Disposal: Science and Theory ¬∑ Delmarva fue de las primeras granjas en realizar el compostaje de en EE.UU. en los pr√≥ximos 10 a√Īos. Pionera en compostaje en Delaware #12;Disposal: Science and Theory

Benson, Eric R.

67

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Foaming Options · Compressed Air Foam Systems (CAFS) · Foam Blower · Foam Generator · Nozzle Systems #12;Disposal: Science and Theory Compressed ­ Industry owned response team #12;Disposal: Science and Theory Commercial CAFS for Poultry · Poultry

Benson, Eric R.

68

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Composting · Composting is defined drop #12;Disposal: Science and Theory Composting · Optimal composting ­ Carbon to nitrogen ratio (C;Disposal: Science and Theory Compost Composition · A variety of supplemental carbon materials have been

Benson, Eric R.

69

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · Gassing is a preferred #12;Disposal: Science and Theory Carbon Dioxide Gassing · Carbon dioxide (CO2) one of the standard sensitivity time #12;Disposal: Science and Theory · Argon-CO2 gas depopulation evaluated under laboratory

Benson, Eric R.

70

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · Procedimiento básico ­ Desarrollar una pila de carcasas y lecho. Compostaje masivo de emergencia #12;Disposal: Science and Theory de emergencia #12;Disposal: Science and Theory · Desarrollar planes antes de que ocurra una

Benson, Eric R.

71

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Use of Composting · Composting has ­ British Columbia 2009 #12;Disposal: Science and Theory · Initial farm linked to NY LBM · Two additional and pile procedure Delmarva 2004 #12;Disposal: Science and Theory Delmarva 2004 · Composting used

Benson, Eric R.

72

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Opciones para la producción de espuma espuma · Sistemas de boquilla #12;Disposal: Science and Theory Requisitos estimados: · Tiempo: 2 a 3 compactas ­ Equipo de respuesta propio de la industria Espuma de aire comprimido #12;Disposal: Science

Benson, Eric R.

73

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Summary · Foam is currently a viable ­ Foam application directly to cage #12;Disposal: Science and Theory Legal Status of Foam · Procedure depopulation, culling, and euthanasia #12;Disposal: Science and Theory Acknowledgements · USDA AICAP2 · USDA

Benson, Eric R.

74

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se ha usado como Virginia (2007) ­ British Columbia (2009) Uso del compostaje #12;Disposal: Science and Theory · Primera apilamiento Delmarva (2004) #12;Disposal: Science and Theory · El compostaje se usó para proteger una densa

Benson, Eric R.

75

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Mass Emergency Composting · Basic ­ Create carcass and litter windrow #12;Disposal: Science and Theory Mass Emergency Composting · Basic cover ­ Clean and disinfect house ­ Sample for virus again #12;Disposal: Science and Theory Mass

Benson, Eric R.

76

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Brief History of Foam 2004 ­ Bud and foam 2009 ­ No advantage for gas #12;Disposal: Science and Theory What is foam? · What is fire fighting system. #12;Disposal: Science and Theory Foam Composition · Foam can include ­ Mixture of surfactants

Benson, Eric R.

77

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory 2004 ¬≠ Participaci√≥n de Bud Malone y la espuma 2009 ¬≠ Ninguna ventaja para el gas Breve historia de la espuma #12;Disposal: Science sistema de boquilla ¬ŅQu√© es la espuma? #12;Disposal: Science and Theory ¬∑ La espuma puede incluir: ¬≠ Una

Benson, Eric R.

78

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Foam Generator Setup · Drop off foam generator cart at one end of house #12;Disposal: Science and Theory Foam Generator Setup · Trailer parked generator attached to hose #12;Disposal: Science and Theory Foam Generation Begins · Team of two to operate

Benson, Eric R.

79

Performance Demonstration Program Plan for Nondestructive Assay of Boxed Wastes for the TRU Waste Characterization Program  

SciTech Connect (OSTI)

The Performance Demonstration Program (PDP) for nondestructive assay (NDA) consists of a series of tests to evaluate the capability for NDA of transuranic (TRU) waste throughout the Department of Energy (DOE) complex. Each test is termed a PDP cycle. These evaluation cycles provide an objective measure of the reliability of measurements obtained from NDA systems used to characterize the radiological constituents of TRU waste. The primary documents governing the conduct of the PDP are the Waste Acceptance Criteria for the Waste Isolation Pilot Plant (WAC; DOE 1999a) and the Quality Assurance Program Document (QAPD; DOE 1999b). The WAC requires participation in the PDP; the PDP must comply with the QAPD and the WAC. The WAC contains technical and quality requirements for acceptable NDA. This plan implements the general requirements of the QAPD and applicable requirements of the WAC for the NDA PDP for boxed waste assay systems. Measurement facilities demonstrate acceptable performance by the successful testing of simulated waste containers according to the criteria set by this PDP Plan. Comparison among DOE measurement groups and commercial assay services is achieved by comparing the results of measurements on similar simulated waste containers reported by the different measurement facilities. These tests are used as an independent means to assess the performance of measurement groups regarding compliance with established quality assurance objectives (QAOís). Measurement facilities must analyze the simulated waste containers using the same procedures used for normal waste characterization activities. For the boxed waste PDP, a simulated waste container consists of a modified standard waste box (SWB) emplaced with radioactive standards and fabricated matrix inserts. An SWB is a waste box with ends designed specifically to fit the TRUPACT-II shipping container. SWBís will be used to package a substantial volume of the TRU waste for disposal. These PDP sample components are distributed to the participating measurement facilities that have been designated and authorized by the Carlsbad Field Office (CBFO). The NDA Box PDP materials are stored at these sites under secure conditions to protect them from loss, tampering, or accidental damage. Using removable PDP radioactive standards, isotopic activities in the simulated waste containers are varied to the extent possible over the range of concentrations anticipated in actual waste characterization situations. Manufactured matrices simulate expected waste matrix configurations and provide acceptable consistency in the sample preparation process at each measurement facility. Analyses that are required by the Waste Isolation Pilot Plant (WIPP) to demonstrate compliance with various regulatory requirements and that are included in the PDP may only be performed by measurement facilities that demonstrate acceptable performance in the PDP. These analyses are referred to as WIPP analyses, and the wastes on which they are performed are referred to as WIPP wastes in this document.

Carlsbad Field Office

2001-01-31T23:59:59.000Z

80

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

DOE Withdraws Proposed Rulemaking (Test Procedure) and Proposed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Withdraws Proposed Rulemaking (Test Procedure) and Proposed Coverage Determination (Energy Conservation Standard) for Set-Top Boxes DOE Withdraws Proposed Rulemaking (Test...

82

Long-term surveillance plan for the Burro Canyon disposal cell, Slick Rock, Colorado  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The US Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer.

NONE

1998-05-01T23:59:59.000Z

83

Projection optics box  

DOE Patents [OSTI]

A projection optics box or assembly for use in an optical assembly, such as in an extreme ultraviolet lithography (EUVL) system using 10-14 nm soft x-ray photons. The projection optics box utilizes a plurality of highly reflective optics or mirrors, each mounted on a precision actuator, and which reflects an optical image, such as from a mask, in the EUVL system onto a point of use, such as a target or silicon wafer, the mask, for example, receiving an optical signal from a source assembly, such as a developed from laser system, via a series of highly reflective mirrors of the EUVL system. The plurality of highly reflective optics or mirrors are mounted in a housing assembly comprised of a series of bulkheads having wall members secured together to form a unit construction of maximum rigidity. Due to the precision actuators, the mirrors must be positioned precisely and remotely in tip, tilt, and piston (three degrees of freedom), while also providing exact constraint.

Hale, Layton C. (Livermore, CA); Malsbury, Terry (Tracy, CA); Hudyma, Russell M. (San Ramon, CA); Parker, John M. (Tracy, CA)

2000-01-01T23:59:59.000Z

84

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

85

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

86

Impedance Measurement Box  

ScienceCinema (OSTI)

Energy storage devices, primarily batteries, are now more important to consumers, industries and the military. With increasing technical complexity and higher user expectations, there is also a demand for highly accurate state-of-health battery assessment techniques. IMB incorporates patented, proprietary, and tested capabilities using control software and hardware that can be part of an embedded monitoring system. IMB directly measures the wideband impedance spectrum in seconds during battery operation with no significant impact on service life. It also can be applied to batteries prior to installation, confirming health before entering active service, as well as during regular maintenance. For more information about this project, visit http://www.inl.gov/rd100/2011/impedance-measurement-box/

Christophersen, Jon

2013-05-28T23:59:59.000Z

87

Waste disposal package  

DOE Patents [OSTI]

This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

Smith, M.J.

1985-06-19T23:59:59.000Z

88

Radioactive waste disposal package  

DOE Patents [OSTI]

A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

Lampe, Robert F. (Bethel Park, PA)

1986-01-01T23:59:59.000Z

89

Oil field waste disposal costs at commercial disposal facilities  

SciTech Connect (OSTI)

The exploration and production segment of the U.S. oil and gas industry generates millions of barrels of nonhazardous oil field wastes annually. In most cases, operators can dispose of their oil fields wastes at a lower cost on-site than off site and, thus, will choose on-site disposal. However, a significant quantity of oil field wastes are still sent to off-site commercial facilities for disposal. This paper provides information on the availability of commercial disposal companies in different states, the treatment and disposal methods they employ, and how much they charge. There appear to be two major off-site disposal trends. Numerous commercial disposal companies that handle oil field wastes exclusively are located in nine oil-and gas-producing states. They use the same disposal methods as those used for on-site disposal. In addition, the Railroad Commission of Texas has issued permits to allow several salt caverns to be used for disposal of oil field wastes. Twenty-two other oil- and gas-producing states contain few or no disposal companies dedicated to oil and gas industry waste. The only off-site commercial disposal companies available handle general industrial wastes or are sanitary landfills. In those states, operators needing to dispose of oil field wastes off-site must send them to a local landfill or out of state. The cost of off-site commercial disposal varies substantially, depending on the disposal method used, the state in which the disposal company is located, and the degree of competition in the area.

Veil, J.A.

1997-10-01T23:59:59.000Z

90

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · Field recommendations based of activity ­ Corticosterone ­ EEG, ECG and motion studies · Large scale testing ­ Field scale units Science of Foam #12;Disposal: Science and Theory Cessation Time · Multiple bird species can be depopulated

Benson, Eric R.

91

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Table of Contents · Why Depopulate? · Depopulation Methods · Basics of Foam · Types of Foam Equipment · Science Behind Foam · Implementing Foam Depopulation · Use of Foam in the Field · Conclusions #12;Disposal: Science and Theory "When HPAI outbreaks

Benson, Eric R.

92

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory ¬∑ Se ubica el carret√≥n con el enfriamiento Ventiladores de t√ļnel de viento #12;Disposal: Science and Theory ¬∑ Se estaciona el remolque en uno: Science and Theory ¬∑ Se usa un equipo de dos personas para hacer funcionar el sistema: ¬≠ Operario del

Benson, Eric R.

93

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory · El compostaje se define como la: Science and Theory · Compostaje óptimo ­ Relación carbono/nitrógeno (C:N): 20:1 a 35:1 ­ Contenido de Compostaje #12;Disposal: Science and Theory · Se ha utilizado satisfactoriamente una variedad de materiales

Benson, Eric R.

94

Disposal: Science and Theory Disposal: Science and Theory  

E-Print Network [OSTI]

Disposal: Science and Theory #12;Disposal: Science and Theory Previous Research · Composting, et.al. 2005; Bendfeldt et al., 2006; DeRouchey et al., 2005) #12;Disposal: Science and Theory: Science and Theory Scientific Validation of Composting · Experiment 1 Impact of foam on composting

Benson, Eric R.

95

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-02-01T23:59:59.000Z

96

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-05-01T23:59:59.000Z

97

Long-term surveillance plan for the Gunnison, Colorado disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1996-04-01T23:59:59.000Z

98

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

99

On the power of non-local boxes  

E-Print Network [OSTI]

A non-local box is a virtual device that has the following property: given that Alice inputs a bit at her end of the device and that Bob does likewise, it produces two bits, one at Alice's end and one at Bob's end, such that the XOR of the outputs is equal to the AND of the inputs. This box, inspired from the CHSH inequality, was first proposed by Popescu and Rohrlich to examine the question: given that a maximally entangled pair of qubits is non-local, why is it not maximally non-local? We believe that understanding the power of this box will yield insight into the non-locality of quantum mechanics. It was shown recently by Cerf, Gisin, Massar and Popescu, that this imaginary device is able to simulate correlations from any measurement on a singlet state. Here, we show that the non-local box can in fact do much more: through the simulation of the magic square pseudo-telepathy game and the Mermin-GHZ pseudo-telepathy game, we show that the non-local box can simulate quantum correlations that no entangled pair of qubits can in a bipartite scenario and even in a multi-party scenario. Finally we show that a single non-local box cannot simulate all quantum correlations and propose a generalization for a multi-party non-local box. In particular, we show quantum correlations whose simulation requires an exponential amount of non-local boxes, in the number of maximally entangled qubit pairs.

A. Broadbent; A. A. Methot

2005-11-07T23:59:59.000Z

100

Low level tank waste disposal study  

SciTech Connect (OSTI)

Westinghouse Hanford Company (WHC) contracted a team consisting of Los Alamos Technical Associates (LATA), British Nuclear Fuel Laboratories (BNFL), Southwest Research Institute (SwRI), and TRW through the Tank Waste Remediation System (TWRS) Technical Support Contract to conduct a study on several areas concerning vitrification and disposal of low-level-waste (LLW). The purpose of the study was to investigate how several parameters could be specified to achieve full compliance with regulations. The most restrictive regulation governing this disposal activity is the National Primary Drinking Water Act which sets the limits of exposure to 4 mrem per year for a person drinking two liters of ground water daily. To fully comply, this constraint would be met independently of the passage of time. In addition, another key factor in the investigation was the capability to retrieve the disposed waste during the first 50 years as specified in Department of Energy (DOE) Order 5820.2A. The objective of the project was to develop a strategy for effective long-term disposal of the low-level waste at the Hanford site.

Mullally, J.A.

1994-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

National Environmental Policy Act Compliance Strategy for the Remote-Handled Low-level Waste Disposal Facility  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) needs to have disposal capability for remote-handled low level waste (LLW) generated at the Idaho National Laboratory (INL) at the time the existing disposal facility is full or must be closed in preparation for final remediation of the INL Subsurface Disposal Area in approximately the year 2017.

Peggy Hinman

2010-10-01T23:59:59.000Z

102

Mixed waste characterization, treatment & disposal focus area  

SciTech Connect (OSTI)

The mission of the Mixed Waste Characterization, Treatment, and Disposal Focus Area (referred to as the Mixed Waste Focus Area or MWFA) is to provide treatment systems capable of treating DOE`s mixed waste in partnership with users, and with continual participation of stakeholders, tribal governments, and regulators. The MWFA deals with the problem of eliminating mixed waste from current and future storage in the DOE complex. Mixed waste is waste that contains both hazardous chemical components, subject to the requirements of the Resource Conservation and Recovery Act (RCRA), and radioactive components, subject to the requirements of the Atomic Energy Act. The radioactive components include transuranic (TRU) and low-level waste (LLW). TRU waste primarily comes from the reprocessing of spent fuel and the use of plutonium in the fabrication of nuclear weapons. LLW includes radioactive waste other than uranium mill tailings, TRU, and high-level waste, including spent fuel.

NONE

1996-08-01T23:59:59.000Z

103

Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. This LSTP describes the long-term surveillance program the DOE will implement to ensure the Mexican Hat disposal site performs as designed and is cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed for custody and long-term care, the Nuclear Regulatory Commission (NRC) requires the DOE to submit such a site-specific LTSP.

NONE

1997-06-01T23:59:59.000Z

104

Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste  

SciTech Connect (OSTI)

The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities.

Porter, C.L.; Widmayer, D.A.

1995-09-01T23:59:59.000Z

105

Sweet lake geopressured-geothermal project, Magma Gulf-Technadril/DOE Amoco Fee. Annual report, December 1, 1979-February 27, 1981. Volume I. Drilling and completion test well and disposal well  

SciTech Connect (OSTI)

The Sweet lake site is located approximately 15 miles southeast of Lake Charles in Cameron Parish, Louisiana. A geological study showed that the major structure in this area is a graben. The dip of the beds is northwesterly into the basin. A well drilled into the deep basin would find the target sand below 18,000', at high pressures and temperatures. However, since there is no well control in the basin, the specific site was chosen on the 15,000' contour of the target sand in the eastern, more narrow part of the garben. Those key control wells are present within one mile of the test well. The information acquired by drilling the test well confirmed the earlier geologic study. The target sand was reached at 15,065', had a porosity of over 20% and a permeability to water of 300 md. The original reservoir pressure was 12,060 psi and the bottom hole temperature 299{sup 0}F. There are approximately 250 net feet of sand available for the perforation. The disposal well was drilled to a total depth of 7440'.

Rodgers, R.W. (ed.)

1982-06-01T23:59:59.000Z

106

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-12-01T23:59:59.000Z

107

Long-term surveillance plan for the South Clive Disposal Site, Clive, Utah  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project South Clive disposal site in Clive, Utah. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CRF Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the South Clive disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the South Clive site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the South Clive disposal site performs as designed. The program`s primary activity is site inspections to identify threats to disposal cell integrity.

NONE

1996-03-01T23:59:59.000Z

108

Long-term surveillance plan for the Cheney disposal site near Grand Junction, Colorado  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Cheney disposal site. The site is in Mesa County near Grand Junction, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects public health and safety and the environment. Before each disposal site may be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Cheney disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete and the NRC formally accepts this plan. This document describes the long-term surveillance program the DOE will implement to ensure that the Cheney disposal site performs as designed. The program is based on site inspections to identify potential threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-04-01T23:59:59.000Z

109

Long-term surveillance plan for the Maybell, Colorado Disposal Site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Maybell disposal site in Moffat County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Maybell disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete for the Maybell site and the NRC formally accepts this LTSP. This document describes the long-term surveillance program the DOE will implement to ensure the Maybell disposal site performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. The LTSP is based on the UMTRA Project long-term surveillance program guidance document and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03.

NONE

1997-09-01T23:59:59.000Z

110

Safer Transportation and Disposal of Remote Handled Transuranic Waste - 12033  

SciTech Connect (OSTI)

Since disposal of remote handled (RH) transuranic (TRU) waste at the Waste Isolation Pilot Plant (WIPP) began in 2007, the Department of Energy (DOE) has had difficulty meeting the plans and schedule for disposing this waste. PECOS Management Services, Inc. (PECOS) assessed the feasibility of proposed alternate RH-TRU mixed waste containerisation concepts that would enhance the transportation rate of RH-TRU waste to WIPP and increase the utilization of available WIPP space capacity for RH-TRU waste disposal by either replacing or augmenting current and proposed disposal methods. In addition engineering and operational analyses were conducted that addressed concerns regarding criticality, heat release, and worker exposure to radiation. The results of the analyses showed that the concept, development, and use of a concrete pipe based design for an RH-TRU waste shipping and disposal container could be potentially advantageous for disposing a substantial quantity of RHTRU waste at WIPP in the same manner as contact-handled RH waste. Additionally, this new disposal method would eliminate the hazard associated with repackaging this waste in other containers without the requirement for NRC approval for a new shipping container. (authors)

Rojas, Vicente; Timm, Christopher M.; Fox, Jerry V. [PECOS Management Services, Inc., Albuquerque, NM (United States)

2012-07-01T23:59:59.000Z

111

Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design  

SciTech Connect (OSTI)

IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

Beach, R.; Prahl, D.; Lange, R.

2013-12-01T23:59:59.000Z

112

Disposal of NORM-Contaminated Oil Field Wastes in Salt Caverns  

SciTech Connect (OSTI)

In 1995, the U.S. Department of Energy (DOE), Office of Fossil Energy, asked Argonne National Laboratory (Argonne) to conduct a preliminary technical and legal evaluation of disposing of nonhazardous oil field waste (NOW) into salt caverns. That study concluded that disposal of NOW into salt caverns is feasible and legal. If caverns are sited and designed well, operated carefully, closed properly, and monitored routinely, they can be a suitable means of disposing of NOW (Veil et al. 1996). Considering these findings and the increased U.S. interest in using salt caverns for NOW disposal, the Office of Fossil Energy asked Argonne to conduct further research on the cost of cavern disposal compared with the cost of more traditional NOW disposal methods and on preliminary identification and investigation of the risks associated with such disposal. The cost study (Veil 1997) found that disposal costs at the four permitted disposal caverns in the United States were comparable to or lower than the costs of other disposal facilities in the same geographic area. The risk study (Tomasko et al. 1997) estimated that both cancer and noncancer human health risks from drinking water that had been contaminated by releases of cavern contents were significantly lower than the accepted risk thresholds. Since 1992, DOE has funded Argonne to conduct a series of studies evaluating issues related to management and disposal of oil field wastes contaminated with naturally occurring radioactive material (NORM). Included among these studies were radiological dose assessments of several different NORM disposal options (Smith et al. 1996). In 1997, DOE asked Argonne to conduct additional analyses on waste disposal in salt caverns, except that this time the wastes to be evaluated would be those types of oil field wastes that are contaminated by NORM. This report describes these analyses. Throughout the remainder of this report, the term ''NORM waste'' is used to mean ''oil field waste contaminated by NORM''.

Blunt, D.L.; Elcock, D.; Smith, K.P.; Tomasko, D.; Viel, J.A.; and Williams, G.P.

1999-01-21T23:59:59.000Z

113

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide. 3 figs.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

1995-10-24T23:59:59.000Z

114

The incandescent disposal system  

SciTech Connect (OSTI)

The electrotechnology device being introduced to the low-level waste market is an Incandescent Disposal System (IDS) for volume reduction and vitrification. The process changes the composition of the waste material, usually long molecular chains, into simple molecules and elements. It renders the volume of low-level wastes to a manageable solid vitrified residue, carbon black, and a water discharge. The solid material, which has been vitrified if silica is introduced into the waste stream, is an ideal inert filler. The carbon black is non-leaching and is readily available for vitrification as it comes out of the IDS.

Smith, R.G.

1996-03-01T23:59:59.000Z

115

Radioactive waste material disposal  

DOE Patents [OSTI]

The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

Forsberg, Charles W. (155 Newport Dr., Oak Ridge, TN 37830); Beahm, Edward C. (106 Cooper Cir., Oak Ridge, TN 37830); Parker, George W. (321 Dominion Cir., Knoxville, TN 37922)

1995-01-01T23:59:59.000Z

116

Long-term surveillance plan for the Shiprock Disposal site, Shiprock, New Mexico  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The U.S. Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials (RRM). This LTSP documents the land ownership interests and details how the long-term care of the disposal site will be carried out. It is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program (DOE, 1992a).

Not Available

1994-09-01T23:59:59.000Z

117

Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project  

SciTech Connect (OSTI)

Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

NSTec Environmental Management

2009-01-31T23:59:59.000Z

118

Low-level radioactive mixed waste land disposal facility -- Permanent disposal  

SciTech Connect (OSTI)

Radioactive mixed waste (RMW) disposal at US Department of Energy (DOE) facilities is subject to the Resource Conservation and Recovery Act of 1976 (RCRA) and the Hazardous and Solid Waste Amendments of 1984 (HSWA). Westinghouse Hanford Company, in Richland, Washington, has completed the design of a radioactive mixed waste land disposal facility, which is based on the best available technology compliant with RCRA. When completed, this facility will provide permanent disposal of solid RMW, after treatment, in accordance with the Land Disposal Restrictions. The facility includes a double clay and geosynthetic liner with a leachate collection system to minimize potential leakage of radioactive or hazardous constituents from the landfill. The two clay liners will be capable of achieving a permeability of less than 1 {times} 10{sup {minus}7} cm/s. The two clay liners, along with the two high density polyethylene (HDPE) liners and the leachate collection and removal system, provide a more than conservative, physical containment of any potential radioactive and/or hazardous contamination.

Erpenbeck, E.G.; Jasen, W.G.

1993-03-01T23:59:59.000Z

119

1979 DOE statistical symposium  

SciTech Connect (OSTI)

The 1979 DOE Statistical Symposium was the fifth in the series of annual symposia designed to bring together statisticians and other interested parties who are actively engaged in helping to solve the nation's energy problems. The program included presentations of technical papers centered around exploration and disposal of nuclear fuel, general energy-related topics, and health-related issues, and workshops on model evaluation, risk analysis, analysis of large data sets, and resource estimation.

Gardiner, D.A.; Truett T. (comps. and eds.)

1980-09-01T23:59:59.000Z

120

The Remote Handled Immobilization Low Activity Waste Disposal Facility Environmental Permits & Approval Plan  

SciTech Connect (OSTI)

The purpose of this document is to revise Document HNF-SD-ENV-EE-003, ''Permitting Plan for the Immobilized Low-Activity Waste Project, which was submitted on September 4, 1997. That plan accounted for the interim storage and disposal of Immobilized-Low Activity Waste at the existing Grout Treatment Facility Vaults (Project W-465) and within a newly constructed facility (Project W-520). Project W-520 was to have contained a combination of concrete vaults and trenches. This document supersedes that plan because of two subsequent items: (1) A disposal authorization that was received on October 25, 1999, in a U. S. Department of Energy-Headquarters, memorandum, ''Disposal Authorization Statement for the Department of Energy Hanford site Low-Level Waste Disposal facilities'' and (2) ''Breakthrough Initiative Immobilized Low-Activity Waste (ILAW) Disposal Alternative,'' August 1999, from Lucas Incorporated, Richland, Washington. The direction within the U. S. Department of Energy-Headquarters memorandum was given as follows: ''The DOE Radioactive Waste Management Order requires that a Disposal authorization statement be obtained prior to construction of new low-level waste disposal facility. Field elements with the existing low-level waste disposal facilities shall obtain a disposal authorization statement in accordance with the schedule in the complex-wide Low-Level Waste Management Program Plan. The disposal authorization statement shall be issued based on a review of the facility's performance assessment and composite analysis or appropriate CERCLA documentation. The disposal authorization shall specify the limits and conditions on construction, design, operations, and closure of the low-level waste facility based on these reviews. A disposal authorization statement is a part of the required radioactive waste management basis for a disposal facility. Failure to obtain a disposal authorization statement or record of decision shall result in shutdown of an operational disposal facility or disapproval to initiate construction of a new facility.''

DEFFENBAUGH, M.L.

2000-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radioactive mixed waste disposal  

SciTech Connect (OSTI)

Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste.

Jasen, W.G.; Erpenbeck, E.G.

1993-02-01T23:59:59.000Z

122

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29T23:59:59.000Z

123

WASTE DISPOSAL SECTION CORNELL UNIVERSITY  

E-Print Network [OSTI]

radioactive products as regular trash. All packages must be free of contamination, radiation symbols2/07 WASTE DISPOSAL SECTION CORNELL UNIVERSITY PROCEDURE for DISPOSAL of RADIOACTIVE MATERIALS This procedure has been developed to ensure the safety of those individuals who handle radioactive waste

Pawlowski, Wojtek

124

Review of Yucca Mountain Disposal Criticality Studies  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), Office of Civilian Radioactive Waste Management, submitted a license application for construction authorization of a deep geologic repository at Yucca Mountain, Nevada, in June of 2008. The license application is currently under review by the U.S. Nuclear Regulatory Commission. However,on March 3, 2010 the DOE filed a motion requesting withdrawal of the license application. With the withdrawal request and the development of the Blue Ribbon Commission to seek alternative strategies for disposing of spent fuel, the status of the proposed repository at Yucca Mountain is uncertain. What is certain is that spent nuclear fuel (SNF) will continue to be generated and some long-lived components of the SNF will eventually need a disposition path(s). Strategies for the back end of the fuel cycle will continue to be developed and need to include the insights from the experience gained during the development of the Yucca Mountain license application. Detailed studies were performed and considerable progress was made in many key areas in terms of increased understanding of relevant phenomena and issues regarding geologic disposal of SNF. This paper reviews selected technical studies performed in support of the disposal criticality analysis licensing basis and the use of burnup credit. Topics include assembly misload analysis, isotopic and criticality validation, commercial reactor critical analyses, loading curves, alternative waste package and criticality control studies, radial burnup data and effects, and implementation of a conservative application model in the criticality probabilistic evaluation as well as other information that is applicable to operations regarding spent fuel outside the reactor. This paper summarizes the work and significant accomplishments in these areas and provides a resource for future, related activities.

Scaglione, John M [ORNL] [ORNL; Wagner, John C [ORNL] [ORNL

2011-01-01T23:59:59.000Z

125

Long-term surveillance plan for the Burro Canyon disposal cell Slick Rock, Colorado  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Burro Canyon disposal cell in San Miguel County, Colorado. The U.S. Nuclear Regulatory Commission (NRC) developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites are cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Burro Canyon disposal cell. The general license becomes effective when the NRC concurs with the DOE`s determination that remedial action is complete at the Burro Canyon disposal cell and the NRC formally accepts this LTSP. Attachment 1 contains the concurrence letters from NRC. This LTSP describes the long-term surveillance program the DOE has implemented to ensure that the Burro Canyon disposal cell performs as designed. The program is based on site inspections to identify threats to disposal cell integrity. Ground water monitoring will not be required at the Burro Canyon disposal cell because the ground water protection strategy is supplemental standards based on low yield from the uppermost aquifer. The LTSP is based on the UMTRA Project`s long-term surveillance program guidance and meets the requirements of 10 CFR 40.27(b) and 40 CFR 192.03.

NONE

1997-03-01T23:59:59.000Z

126

Lauren Garcia SU Box 1195  

E-Print Network [OSTI]

Lauren Garcia SU Box 1195 Geos 206 Renewable Energy and the Sustainable Campus Prof. Dethier a lot of fabric in dorms to cover furniture, but how durable is that fabric, how sustainable is it, but it could be applied to any building on campus that houses furniture. I am defining "green" as non

Aalberts, Daniel P.

127

NETL's JIC in a box  

ScienceCinema (OSTI)

The National Energy Technology Laboratory developed the idea of a portable joint information center AKA JIC in-a-box. This video discribes some of the equipment in the portable JIC as well as some of the methodology that NETL developed as a result of this portable JIC concept.

David Anna

2010-01-08T23:59:59.000Z

128

NNSA DP does it again! Collects boxes and boxes of toys | National Nuclear  

National Nuclear Security Administration (NNSA)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartmentNational Nuclear SecurityNationalApplyMaintaining ForNProgram | National NNSASecurity

129

Thermohaline circulation stability : a box model  

E-Print Network [OSTI]

A thorough analysis of the stability of uncoupled and coupled versions of an inter-hemispheric 3-box model of Thermohaline Circulation (THC) is presented. The model consists of a northern high latitudes box, a tropical ...

Lucarini, Valerio

2003-01-01T23:59:59.000Z

130

Long-term surveillance plan for the Ambrosia Lake, New Mexico disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) for the Uranium Mill Tailings Remedial Action (UMTRA) Project Ambrosia Lake disposal site in McKinley County, New Mexico, describes the U.S. Department of Energy`s (DOE) long-term care program for the disposal site. The DOE will carry out this program to ensure that the disposal cell continues to function as designed. This LTSP was prepared as a requirement for acceptance under the U.S. Nuclear Regulatory Commission (NRC) general license for custody and long-term care of residual radioactive materials.

NONE

1996-07-01T23:59:59.000Z

131

Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds  

SciTech Connect (OSTI)

This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order in September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.

Wood, M.I.; Khaleel, R.; Rittmann, P.D.; Lu, A.H.; Finfrock, S.H.; DeLorenzo, T.H. [Westinghouse Hanford Co., Richland, WA (United States); Serne, R.J.; Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States)

1995-06-01T23:59:59.000Z

132

Glove box for water pit applications  

DOE Patents [OSTI]

A glove box assembly that includes a glove box enclosure attached to a longitudinally extending hollow tube having an entranceway, wherein the portion of the tube is in a liquid environment. An elevator member is provided for raising an object that is introduced into the hollow tube from the liquid environment to a gas environment inside the glove box enclosure while maintaining total containment.

Mills, William C. (Richland, WA); Rabe, Richard A. (North Fork, ID)

2005-01-18T23:59:59.000Z

133

Transportation, Aging and Disposal Canister System Performance...  

Office of Environmental Management (EM)

specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. Transportation, Aging and Disposal Canister System Performance...

134

Chapter 37 Land Disposal Restrictions (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes requirements for land disposal of hazardous waste. These include- surface impound exemptions, prohibitions on disposal and storage and treatment standards...

135

ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS...  

Broader source: Energy.gov (indexed) [DOE]

4: PROPERTY DISPOSAL RECORDS (Revision 2) ADMINISTRATIVE RECORDS SCHEDULE 4: PROPERTY DISPOSAL RECORDS (Revision 2) These records pertain to the sales by agencies of real and...

136

Illumination box and camera system  

DOE Patents [OSTI]

A hand portable, field-deployable thin-layer chromatography (TLC) unit and a hand portable, battery-operated unit for development, illumination, and data acquisition of the TLC plates contain many miniaturized features that permit a large number of samples to be processed efficiently. The TLC unit includes a solvent tank, a holder for TLC plates, and a variety of tool chambers for storing TLC plates, solvent, and pipettes. After processing in the TLC unit, a TLC plate is positioned in a collapsible illumination box, where the box and a CCD camera are optically aligned for optimal pixel resolution of the CCD images of the TLC plate. The TLC system includes an improved development chamber for chemical development of TLC plates that prevents solvent overflow.

Haas, Jeffrey S. (San Ramon, CA); Kelly, Fredrick R. (Modesto, CA); Bushman, John F. (Oakley, CA); Wiefel, Michael H. (La Honda, CA); Jensen, Wayne A. (Livermore, CA); Klunder, Gregory L. (Oakland, CA)

2002-01-01T23:59:59.000Z

137

Evaluation of Low-Level Waste Disposal Receipt Data for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

The Los Alamos National Laboratory (LANL or the Laboratory) generates radioactive waste as a result of various activities. Operational or institutional waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D and D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility. U.S. Department of Energy (DOE) Order 435.1 (DOE, 2001) requires that radioactive waste be managed in a manner that protects public health and safety, and the environment. To comply with this order, DOE field sites must prepare and maintain site-specific radiological performance assessments for LLW disposal facilities that accept waste after September 26, 1988. Furthermore, sites are required to conduct composite analyses that account for the cumulative impacts of all waste that has been (or will be) disposed of at the facilities and other sources of radioactive material that may interact with the facilities. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 (LANL, 2008). These analyses estimate rates of radionuclide release from the waste disposed of at the facility, simulate the movement of radionuclides through the environment, and project potential radiation doses to humans for several on-site and off-site exposure scenarios. The assessments are based on existing site and disposal facility data and on assumptions about future rates and methods of waste disposal. The accuracy of the performance assessment and composite analysis depends upon the validity of the data used and assumptions made in conducting the analyses. If changes in these data and assumptions are significant, they may invalidate or call into question certain aspects of the analyses. For example, if the volumes and activities of waste disposed of during the remainder of the disposal facility's lifetime differ significantly from those projected, the doses projected by the analyses may no longer apply. DOE field sites are required to implement a performance assessment and composite analysis maintenance program. The purpose of this program is to ensure the continued applicability of the analyses through incremental improvement of the level of understanding of the disposal site and facility. Site personnel are required to conduct field and experimental work to reduce the uncertainty in the data and models used in the assessments. Furthermore, they are required to conduct periodic reviews of waste receipts, comparing them to projected waste disposal rates. The radiological inventory for Area G was updated in conjunction with Revision 4 of the performance assessment and composite analysis (Shuman, 2008). That effort used disposal records and other sources of information to estimate the quantities of radioactive waste that have been disposed of at Area G from 1959, the year the facility started receiving waste on a routine basis, through 2007. It also estimated the quantities of LLW that will require disposal from 2008 through 2044, the year in which it is assumed that disposal operations at Area G will cease. This report documents the fourth review of Area G disposal receipts since the inventory was updated and examines information for waste placed in the ground during fiscal years (FY) 2008 through 2011. The primary objective of the disposal receipt review is to ensure that the future waste inventory projections developed for the performance assessment and composite analysis are consistent with the actual types and quantities of waste being disposed of at Area G. Toward this end, the disposal data that are the subject of this review are used to update the future waste inventory projections for the disposal facility. These projections are compared to the future inventory projections that were develope

French, Sean B. [Los Alamos National Laboratory; Shuman, Robert [WPS: WASTE PROJECTS AND SERVICES

2012-04-17T23:59:59.000Z

138

Long-term surveillance plan for the Mexican Hat disposal site Mexican Hat, Utah  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Mexican Hat, Utah, disposal site. The U.S. Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Mexican Hat disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the disposal site and the NRC formally accepts this LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Mexican Hat disposal site performs as designed. The program is based on two distinct types of activities: (1) site inspections to identify potential threats to disposal cell integrity, and (2) monitoring of selected seeps to observe changes in flow rates and water quality. The LTSP is based on the UMTRA Project long-term surveillance program guidance and meets the requirements of 10 CFR {section}40.27(b) and 40 CFR {section}192.03. 18 refs., 6 figs., 1 tab.

NONE

1997-05-01T23:59:59.000Z

139

Solid Waste Disposal Facilities (Massachusetts)  

Broader source: Energy.gov [DOE]

These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

140

Optimization of Waste Disposal - 13338  

SciTech Connect (OSTI)

From 2009 through 2011, remediation of areas of a former fuel cycle facility used for government contract work was conducted. Remediation efforts were focused on building demolition, underground pipeline removal, contaminated soil removal and removal of contaminated sediments from portions of an on-site stream. Prior to conducting the remediation field effort, planning and preparation for remediation (including strategic planning for waste characterization and disposal) was conducted during the design phase. During the remediation field effort, waste characterization and disposal practices were continuously reviewed and refined to optimize waste disposal practices. This paper discusses strategic planning for waste characterization and disposal that was employed in the design phase, and continuously reviewed and refined to optimize efficiency. (authors)

Shephard, E.; Walter, N.; Downey, H. [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States)] [AMEC E and I, Inc., 511 Congress Street, Suite 200, Portland, ME 04101 (United States); Collopy, P. [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States)] [AMEC E and I, Inc., 9210 Sky Park Court, Suite 200, San Diego, CA 92123 (United States); Conant, J. [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)] [ABB Inc., 5 Waterside Crossing, Windsor, CT 06095 (United States)

2013-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Solid Waste Disposal Act (Texas)  

Broader source: Energy.gov [DOE]

The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

142

Long-term surveillance plan for the Gunnison, Colorado disposal site. Revision 2  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment. Before each disposal site is licensed, the NRC requires the DOE to submit a site-specific LTSP. This LTSP describes the long-term surveillance program the DOE will implement to ensure that the Gunnison disposal site performs as designed. The program is based on two distinct activities: (1) site inspections to identify threats to disposal cell integrity, and (2) ground water monitoring to demonstrate disposal cell performance.

NONE

1997-02-01T23:59:59.000Z

143

Preliminary Transportation, Aging and Disposal Canister System Performance Specification  

SciTech Connect (OSTI)

This document provides specifications for selected system components of the Transportation, Aging and Disposal (TAD) canister-based system. A list of system specified components and ancillary components are included in Section 1.2. The TAD canister, in conjunction with specialized overpacks will accomplish a number of functions in the management and disposal of spent nuclear fuel. Some of these functions will be accomplished at purchaser sites where commercial spent nuclear fuel (CSNF) is stored, and some will be performed within the Office of Civilian Radioactive Waste Management (OCRWM) transportation and disposal system. This document contains only those requirements unique to applications within Department of Energy's (DOE's) system. DOE recognizes that TAD canisters may have to perform similar functions at purchaser sites. Requirements to meet reactor functions, such as on-site dry storage, handling, and loading for transportation, are expected to be similar to commercially available canister-based systems. This document is intended to be referenced in the license application for the Monitored Geologic Repository (MGR). As such, the requirements cited herein are needed for TAD system use in OCRWM's disposal system. This document contains specifications for the TAD canister, transportation overpack and aging overpack. The remaining components and equipment that are unique to the OCRWM system or for similar purchaser applications will be supplied by others.

C.A Kouts

2006-11-22T23:59:59.000Z

144

Regulatory requirements affecting disposal of asbestos-containing waste  

SciTech Connect (OSTI)

Many U.S. Department of Energy (DOE) facilities are undergoing decontamination and decommissioning (D&D) activities. The performance of these activities may generate asbestos-containing waste because asbestos was formerly used in many building materials, including floor tile, sealants, plastics, cement pipe, cement sheets, insulating boards, and insulating cements. The regulatory requirements governing the disposal of these wastes depend on: (1) the percentage of asbestos in the waste and whether the waste is friable (easily crumbled or pulverized); (2) other physical and chemical characteristics of the waste; and (3) the State in which the waste is generated. This Information Brief provides an overview of the environment regulatory requirements affecting disposal of asbestos-containing waste. It does not address regulatory requirements applicable to worker protection promulgated under the Occupational Safety and Health Act (OSHAct), the Mining Safety and Health Act (MSHA), or the Toxic Substances Control Act (TSCA).

NONE

1995-11-01T23:59:59.000Z

145

Long-term surveillance plan for the Lowman, Idaho, disposal site  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This preliminary final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or an Indian tribe, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1993-09-01T23:59:59.000Z

146

Long-term surveillance plan for the Lowman, Idaho, Disposal site. Revision 1  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Lowman, Idaho, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Lowman disposal site, which will be referred to as the Lowman site throughout this document. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. The radioactive sands at the Lowman site were stabilized on the site. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. The LTSP documents whether the land and interests are owned by the United States or a state, and describes, in detail, how the long-term care of the disposal site will be carried out through the UMTRA Project long-term surveillance program. The Lowman, Idaho, LTSP is based on the DOE`s Guidance for Implementing the UMTRA Project Long-term Surveillance Program, (DOE, 1992).

Not Available

1994-04-01T23:59:59.000Z

147

NRC Monitoring of Salt Waste Disposal at the Savannah River Site - 13147  

SciTech Connect (OSTI)

As part of monitoring required under Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA), the NRC staff reviewed an updated DOE performance assessment (PA) for salt waste disposal at the Saltstone Disposal Facility (SDF). The NRC staff concluded that it has reasonable assurance that waste disposal at the SDF meets the 10 CFR 61 performance objectives for protection of individuals against intrusion (chap.61.42), protection of individuals during operations (chap.61.43), and site stability (chap.61.44). However, based on its evaluation of DOE's results and independent sensitivity analyses conducted with DOE's models, the NRC staff concluded that it did not have reasonable assurance that DOE's disposal activities at the SDF meet the performance objective for protection of the general population from releases of radioactivity (chap.61.41) evaluated at a dose limit of 0.25 mSv/yr (25 mrem/yr) total effective dose equivalent (TEDE). NRC staff also concluded that the potential dose to a member of the public is expected to be limited (i.e., is expected to be similar to or less than the public dose limit in chap.20.1301 of 1 mSv/yr [100 mrem/yr] TEDE) and is expected to occur many years after site closure. The NRC staff used risk insights gained from review of the SDF PA, its experience monitoring DOE disposal actions at the SDF over the last 5 years, as well as independent analysis and modeling to identify factors that are important to assessing whether DOE's disposal actions meet the performance objectives. Many of these factors are similar to factors identified in the NRC staff's 2005 review of salt waste disposal at the SDF. Key areas of interest continue to be waste form and disposal unit degradation, the effectiveness of infiltration and erosion controls, and estimation of the radiological inventory. Based on these factors, NRC is revising its plan for monitoring salt waste disposal at the SDF in coordination with South Carolina Department of Health and Environmental Control (SCDHEC). DOE has completed or begun additional work related to salt waste disposal to address these factors. NRC staff continues to evaluate information related to the performance of the SDF and has been working with DOE and SCDHEC to resolve NRC staff's technical concerns. (authors)

Pinkston, Karen E.; Ridge, A. Christianne; Alexander, George W.; Barr, Cynthia S.; Devaser, Nishka J.; Felsher, Harry D. [U.S. Nuclear Regulatory Commission (United States)] [U.S. Nuclear Regulatory Commission (United States)

2013-07-01T23:59:59.000Z

148

Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INLís contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USCß 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.

Danny Anderson

2014-07-01T23:59:59.000Z

149

EA-1889: Disposal of Decommissioned, Defueled Naval Reactor Plants from USS Enterprise (CVN 65) at the Hanford Site, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA, prepared by the Department of the Navy, evaluates the environmental impacts of the disposal of decommissioned, defueled, naval reactor plants from the USS Enterprise at DOEís Hanford Site, Richland, Washington. DOE participated as a cooperating agency in the preparation of this EA. The Department of the Navy issued its FONSI on August 23, 2012.

150

DOE Applauds Opening of Historic Disposal Facility | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping a TribalResourcesClean CitiesThe

151

DOE - Office of Legacy Management -- Burro Canyon Disposal Cell - 007  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬ĽHill -Elmore - OH 09BureauBurro

152

DOE - Office of Legacy Management -- Cheney Disposal Cell - 008  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬ĽHill -ElmorePlant - NJ 12Cheney

153

DOE - Office of Legacy Management -- Clive Disposal Cell - 036  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬ĽHill -ElmorePlant -OHClifton-

154

DOE - Office of Legacy Management -- Commercial (Burial) Disposal Site  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬ĽHill -ElmorePlantFuelMaxey Flats

155

DOE - Office of Legacy Management -- Estes Gulch Disposal Cell - 010  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬ĽHillNYEra Tool and Engineering Co

156

DOE - Office of Legacy Management -- Maryland Disposal Site - MD 05  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here HomeGunnison-Engineer Depot - OH

157

Erosion Control and Revegetation at DOE's Lowman Disposal Site, Lowman,  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOEElectricalonJustice Environmental JusticeMaturityEnergySzulmanIdaho

158

Maintenance Guide for DOE Low-Level Waste Disposal Facility  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | DepartmentEnergyMagna: Product Capabilities Brochure Magna:Department4 G

159

DOE - Office of Legacy Management -- Commercial (Burial) Disposal...  

Office of Legacy Management (LM)

Name: Location: Evaluation Year: Site Operations: Site Disposition: Radioactive Materials Handled: Primary Radioactive Materials Handled: Radiological Survey(s): Site Status:...

160

DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER  

SciTech Connect (OSTI)

The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.

G. Radulesscu; J.S. Tang

2000-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 RADIOACTIVE WASTE DISPOSAL  

E-Print Network [OSTI]

RSSC RADIOACTIVE WASTE DISPOSAL 08/2011 7-1 CHAPTER 7 RADIOACTIVE WASTE DISPOSAL PAGE I. Radioactive Waste Disposal ............................................................................................ 7-2 II. Radiation Control Technique #2 Instructions for Preparation of Radioactive Waste

Slatton, Clint

162

Long-term surveillance plan for the Rifle, Colorado, Disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the U.S. Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Estes Gulch disposal site in Garfield County, Colorado. The U.S. Environmental Protection Agency (EPA) has developed regulations for the issuance of a general license by the U.S. Nuclear Regulatory Commission (NRC) for the custody and long-term care of UMTRA Project disposal Sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites, will be cared for in a manner that protects the public health and safety and the environment. For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Estes Gulch disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Estes Gulch site and the NRC formally accepts this LTSP.

NONE

1996-09-01T23:59:59.000Z

163

Long-term surveillance plan for the Gunnison, Colorado, disposal site  

SciTech Connect (OSTI)

This long-term surveillance plan (LTSP) describes the US Department of Energy`s (DOE) long-term care program for the Uranium Mill Tailings Remedial Action (UMTRA) Project Gunnison disposal site in Gunnison County, Colorado. The US Nuclear Regulatory Commission (NRC) has developed regulations for the issuance of a general license for the custody and long-term care of UMTRA Project disposal sites in 10 CFR Part 40. The purpose of this general license is to ensure that the UMTRA Project disposal sites will be cared for in a manner that protects the public health and safety and the environment.For each disposal site to be licensed, the NRC requires the DOE to submit a site-specific LTSP. The DOE prepared this LTSP to meet this requirement for the Gunnison disposal site. The general license becomes effective when the NRC concurs with the DOE`s determination of completion of remedial action for the Gunnison site and the NRC formally accepts this LTSP.

NONE

1996-05-01T23:59:59.000Z

164

Overview of Nevada Test Site Radioactive and Mixed Waste Disposal Operations  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office Environmental Management Program is responsible for carrying out the disposal of on-site and off-site generated low-level radioactive waste (LLW) and low-level radioactive mixed waste (MW) at the Nevada Test Site (NTS). Core elements of this mission are ensuring safe and cost-effective disposal while protecting workers, the public, and the environment. This paper focuses on the impacts of new policies, processes, and opportunities at the NTS related to LLW and MW. Covered topics include: the first year of direct funding for NTS waste disposal operations; zero tolerance policy for non-compliant packages; the suspension of mixed waste disposal; waste acceptance changes; DOE Consolidated Audit Program (DOECAP) auditing; the 92-Acre Area closure plan; new eligibility requirements for generators; and operational successes with unusual waste streams.

J.T. Carilli; S.K. Krenzien; R.G. Geisinger; S.J. Gordon; B. Quinn

2009-03-01T23:59:59.000Z

165

Long-term surveillance plan for the Shiprock disposal site, Shiprock, New Mexico  

SciTech Connect (OSTI)

The long-term surveillance plan (LTSP) for the Shiprock, New Mexico, Uranium Mill Tailings Remedial Action (UMTRA) Project disposal site describes the surveillance activities for the Shiprock disposal cell. The US Department of Energy (DOE) will carry out these activities to ensure that the disposal cell continues to function as designed. This final LTSP is being submitted to the US Nuclear Regulatory Commission (NRC) as a requirement for issuance of a general license for custody and long-term care for the disposal site. The general license requires that the disposal cell be cared for in accordance with the provisions of this LTSP. This Shiprock, New Mexico, LTSP documents whether the land and interests are owned by the US or an Indian tribe and describes in detail the long-term care program through the UMTRA Project Office.

Not Available

1993-12-01T23:59:59.000Z

166

Disposable telemetry cable deployment system  

DOE Patents [OSTI]

A disposable telemetry cable deployment system for facilitating information retrieval while drilling a well includes a cable spool adapted for insertion into a drill string and an unarmored fiber optic cable spooled onto the spool cable and having a downhole end and a stinger end. Connected to the cable spool is a rigid stinger which extends through a kelly of the drilling apparatus. A data transmission device for transmitting data to a data acquisition system is disposed either within or on the upper end of the rigid stinger.

Holcomb, David Joseph (Sandia Park, NM)

2000-01-01T23:59:59.000Z

167

UMTRA project disposal cell cover biointrusion sensitivity assessment, Revision 1  

SciTech Connect (OSTI)

This study provides an analysis of potential changes that may take place in a Uranium Mill Tailings Remedial Action (UMTRA) Project disposal cell cover system as a result of plant biointrusion. Potential changes are evaluated by performing a sensitivity analysis of the relative impact of root penetrations on radon flux out of the cell cover and/or water infiltration into the cell cover. Data used in this analysis consist of existing information on vegetation growth on selected cell cover systems and information available from published studies and/or other available project research. Consistent with the scope of this paper, no new site-specific data were collected from UMTRA Project sites. Further, this paper does not focus on the issue of plant transport of radon gas or other contaminants out of the disposal cell cover though it is acknowledged that such transport has the potential to be a significant pathway for contaminants to reach the environment during portions of the design life of a disposal cell where plant growth occurs. Rather, this study was performed to evaluate the effects of physical penetration and soil drying caused by plant roots that have and are expected to continue to grow in UMTRA Project disposal cell covers. An understanding of the biological and related physical processes that take place within the cover systems of the UMTRA Project disposal cells helps the U.S. Department of Energy (DOE) determine if the presence of a plant community on these cells is detrimental, beneficial, or of mixed value in terms of the cover system`s designed function. Results of this investigation provide information relevant to the formulation of a vegetation control policy.

NONE

1995-10-01T23:59:59.000Z

168

Office of the General Counsel Building 460 P.O. Box 5000  

E-Print Network [OSTI]

Office of the General Counsel Building 460 P.O. Box 5000 Upton. NY 11973-5000 Phone 516 344-8629 EN of Energy WY;'W.bnl.gov Memo Date: September 30, 1999 To: George Malosh From: Gregory Fes~ Subject: DOE Te: As above stated #12;DEPARTMENT OF ENERGY TECHNOLOGY PARTNERSHIP 0!\\-1BUDS INTTIATIVE C01\\rf

169

GAO-15-305, DOE Real Property, Better Data and a More Proactive...  

Office of Environmental Management (EM)

5-305, DOE Real Property, Better Data and a More Proactive Approach Needed to Facilitate Property Disposal GAO-15-305, DOE Real Property, Better Data and a More Proactive Approach...

170

MATERIAL HANDLING, STORAGE, AND DISPOSAL  

E-Print Network [OSTI]

Materials shall be stored in a manner that allows easy identification and access to labels, identification entering storage areas. All persons shall be in a safe position while materials are being loadedEM 385-1-1 XX Jun 13 14-1 SECTION 14 MATERIAL HANDLING, STORAGE, AND DISPOSAL 14.A MATERIAL

US Army Corps of Engineers

171

Tuesday, March 16, 2010 On Box Models  

E-Print Network [OSTI]

to illustrate some of the basics of box models that are used frequently in the field of atmospheric chemistry L". You can guess that it was named after Marie Curie, someone who studied radioactive elements. #12 to exposure to contaminants. One tool that modelers use to assess exposure to pollutants is the "box model

Toohey, Darin W.

172

DOE/WIPP-12-3487 Waste Isolation Pilot Plant  

E-Print Network [OSTI]

AND RECOVERY ACT AND SOLID WASTE DISPOSAL ACTDraft DOE/WIPP-12-3487 Waste Isolation Pilot Plant Biennial Environmental Compliance Report United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico

173

Special Analysis: Revision of Saltstone Vault 4 Disposal Limits (U)  

SciTech Connect (OSTI)

New disposal limits have been computed for Vault 4 of the Saltstone Disposal Facility based on several revisions to the models in the existing Performance Assessment and the Special Analysis issued in 2002. The most important changes are the use of a more rigorous groundwater flow and transport model, and consideration of radon emanation. Other revisions include refinement of the aquifer mesh to more accurately model the footprint of the vault, a new plutonium chemistry model accounting for the different transport properties of oxidation states III/IV and V/VI, use of variable infiltration rates to simulate degradation of the closure system, explicit calculation of gaseous releases and consideration of the effects of settlement and seismic activity on the vault structure. The disposal limits have been compared with the projected total inventory expected to be disposed in Vault 4. The resulting sum-of-fractions of the 1000-year disposal limits is 0.2, which indicates that the performance objectives and requirements of DOE 435.1 will not be exceeded. This SA has not altered the conceptual model (i.e., migration of radionuclides from the Saltstone waste form and Vault 4 to the environment via the processes of diffusion and advection) of the Saltstone PA (MMES 1992) nor has it altered the conclusions of the PA (i.e., disposal of the proposed waste in the SDF will meet DOE performance measures). Thus a PA revision is not required and this SA serves to update the disposal limits for Vault 4. In addition, projected doses have been calculated for comparison with the performance objectives laid out in 10 CFR 61. These doses are 0.05 mrem/year to a member of the public and 21.5 mrem/year to an inadvertent intruder in the resident scenario over a 10,000-year time-frame, which demonstrates that the 10 CFR 61 performance objectives will not be exceeded. This SA supplements the Saltstone PA and supersedes the two previous SAs (Cook et al. 2002; Cook and Kaplan 2003).

Cook, J

2005-05-26T23:59:59.000Z

174

Potential for Subsidence at the Low-level Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, Karen Nina; Seitz, Roger Ray

2002-09-01T23:59:59.000Z

175

Potential for Subsidence at the Low-Level Radioactive Waste Disposal Area  

SciTech Connect (OSTI)

U.S. Department of Energy (DOE) Order 435.1, Radioactive Waste Management requires that DOE low-level radioactive waste (LLW) disposal facilities receive a Disposal Authorization Statement (DAS) from DOE-Headquarters. The DAS for the LLW disposal facility at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering and Environmental Laboratory (INEEL) was granted in April 2000 and included a number of conditions that must be addressed. A maintenance plan (Schuman 2000) was prepared that identifies the tasks to be completed to address the conditions in the DAS as well as a schedule for their completion. The need for a subsidence analysis was one of the conditions identified for the DAS, and thus, a task to prepare a subsidence analysis was included in the maintenance plan. This document provides the information necessary to satisfy that requirement.

Keck, K.A.; Seitz, R.R.

2002-09-26T23:59:59.000Z

176

Disposal of NORM waste in salt caverns  

SciTech Connect (OSTI)

Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

1998-07-01T23:59:59.000Z

177

Deep Borehole Disposal Research: Demonstration Site Selection...  

Office of Environmental Management (EM)

Site Selection Guidelines, Borehole Seals Design, and RD&D Needs The U.S. Department of Energy has been investigating deep borehole disposal as one alternative for the disposal...

178

Spent Fuel Disposal Trust Fund (Maine)  

Broader source: Energy.gov [DOE]

Any licensee operating a nuclear power plant in this State shall establish a segregated Spent Nuclear Fuel Disposal Trust Fund in accordance with this subchapter for the eventual disposal of spent...

179

Dredged and Fill Material Disposal (North Dakota)  

Broader source: Energy.gov [DOE]

This chapter provides regulations for the disposal of dredged and fill material. Any entity desiring to dispose of such material must first obtain a permit, and the State Engineer has the...

180

Integrated Disposal Facility FY 2012 Glass Testing Summary Report  

SciTech Connect (OSTI)

PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

2013-03-29T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

A study of offshore benthic communities in natural areas and in areas affected by dredging and dredged material disposal  

E-Print Network [OSTI]

period not less than 24 hours, the remaining organisms were picked out. This 16 technique is similar to that used by Day et a'L. (1971) and has been found to greatly reduce the amount of time necessary for this tedious operation. The organisms... was computed to compare those sites (= stations) affected by dredged material disposal and dredging with the sites in the natural areas. Conversions for the box core and van Veen data to number of individuals/m are as follows: 1. catch/box core x 16 = indiv...

Henry, Clyde Allan

2012-06-07T23:59:59.000Z

182

Waste disposal options report. Volume 1  

SciTech Connect (OSTI)

This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

183

P.O. Box 45339 San Francisco, CA  

E-Print Network [OSTI]

UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P.O. Box 45339 San Francisco, CA 94145-0339 UCSF P

Yamamoto, Keith

184

Dispose of it Properly! Use the following guide to determine what must be considered medical waste. Sharps must go into designated  

E-Print Network [OSTI]

in designated sharps containers (needle boxes, rigid plastic lab containers) Dispose of as trash Ampoules. Sharps must go into designated sharps containers. Chemotherapy wastes can only go into designated black chemotherapy waste containers. Regulated Medical Waste Not Medical Waste Place in red bags in designated

Oliver, Douglas L.

185

Hydro-Balanced Stuffing Box field test  

SciTech Connect (OSTI)

The Hydro-Balanced Stuffing Box is a seal assembly for polished rod pumping installations commonly used in oil and gas pumping well installations to contain produced well fluids. The improved stuffing box was developed and patented by Harold H. Palmour of The Palmour Group of Livingston, TX. The stuffing box is designed to reduce the incidence of seal leakage and to utilize an environmentally safe fluid, so that if there is any leakage, environmental damage is reduced or eliminated. The unit was tested on two wells at the Rocky Mountain Oilfield Testing Center. During the test period, the performance of the stuffing box was measured by monitoring the pressure on the tubing and the inner chamber with a Barton Two-pen recorder. The amount of safe fluid consumed, fluid leakage at the top of the stuffing box, pressure supplied from the nitrogen bottle, ambient temperature, and polish rod temperature was recorded. The stuffing box is capable of providing a better seal between well fluids an d the environment than conventional stuffing boxes. It allows the polished rod to operate cooler and with lubrication, extending the life of the packing elements, and reducing the amount of attention required to prevent leakage.

Giangiacomo, L.A.

1999-05-28T23:59:59.000Z

186

Workers Remove Glove Boxes from Ventilation at Hanford's Plutonium...  

Office of Environmental Management (EM)

boxes inside the facility's former processing area. This work is performed inside plastic enclosures to limit the spread of contamination. Preparing the glove boxes for...

187

Austin E. Quigley Black Box Theater Proposal Form  

E-Print Network [OSTI]

-1- Austin E. Quigley Black Box Theater Proposal Form Sponsoring Organization indicate that you have read the Austin E. Quigley Black Box Theatre Policy and Procedure Guidelines

Hone, James

188

Disposable remote zero headspace extractor  

DOE Patents [OSTI]

The remote zero headspace extractor uses a sampling container inside a stainless steel vessel to perform toxicity characteristics leaching procedure to analyze volatile organic compounds. The system uses an in line filter for ease of replacement. This eliminates cleaning and disassembly of the extractor. All connections are made with quick connect fittings which can be easily replaced. After use, the bag can be removed and disposed of, and a new sampling container is inserted for the next extraction.

Hand, Julie J. (Idaho Falls, ID); Roberts, Mark P. (Arco, ID)

2006-03-21T23:59:59.000Z

189

Sample storage/disposal study  

SciTech Connect (OSTI)

Radioactive waste from defense operations has accumulated at the Hanford Site`s underground waste tanks since the late 1940`s. Each tank must be analyzed to determine whether it presents any harm to the workers at the Hanford Site, the public or the environment. Analyses of the waste aids in the decision making process in preparation of future tank waste stabilization procedures. Characterization of the 177 waste tanks on the Hanford Site will produce a large amount of archived material. This also brings up concerns as to how the excess waste tank sample material from 325 and 222-S Analytical Laboratories will be handled. Methods to archive and/or dispose of the waste have been implemented into the 222-S and 325 Laboratory procedures. As the amount of waste characterized from laboratory analysis grows, an examination of whether the waste disposal system will be able to compensate for this increase in the amount of waste needs to be examined. Therefore, the need to find the safest, most economically sound method of waste storage/disposal is important.

Valenzuela, B.D.

1994-09-29T23:59:59.000Z

190

Feasibility of white-rot fungi for biodegradation of PCP-treated ammunition boxes. Final report  

SciTech Connect (OSTI)

Millions of pounds of wood ammunition boxes treated with the wood preservative pentachiorophenol (PCP) are being stockpiled at military installations, primarily depots, because cost-effective disposal is not readily available. The Army needs cost-effective and environmentally benign treatment methods for destruction and disposal of PCP-treated wood products. This research investigated the use of white-rot fungi to biodegrade PCP-treated wood. Results showed that white-rot fungi effectively decreased the PCP concentration in contaminated hardwood and softwood chips. Under ideal laboratory conditions the fungi reduced the PCP concentration by 80 percent; a field study showed only a 30 percent decrease in PCP concentration. Despite this disparity, this study demonstrated the feasibility of using white-rot fungi to reduce PCP in treated wood.

Scholze, R.J.; Lamar, R.T.; Bolduc, J.; Dietrich, D.

1995-01-01T23:59:59.000Z

191

Corrective Action Plan for Corrective Action Unit 230: Area 22 Sewage Lagoons and Corrective Action Unit 320: Area 22 Desert Rock Airport Strainer Box, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Sewage Lagoons site. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during September 1999, Soil samples were collected using a direct-push method and a backhoe. Soil samples were collected from the sludge bed, sewage lagoons, strainer box, and Imhoff tank areas. Characterization of the manholes associated with the septic system leading to the Imhoff tank was done during March 2000. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Soil sample results indicated that the only constituent of concern (COC) detected above Preliminary Action Levels (PALs) was total petroleum hydrocarbons (TPH) as diesel-range organics. This COC was detected in three samples from the sludge bed at concentrations up to 580 milligrams per kilogram (mg/kg). This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). Excavation of the area during characterization uncovered asphalt debris, four safety poles, and strands of barbed wire. The TPH-impacted soil and debris will be removed and disposed in the NTS Area 6 Hydrocarbon Landfill.

D. S. Tobiason

2000-09-01T23:59:59.000Z

192

ABSORBING WIPP BRINES: A TRU WASTE DISPOSAL STRATEGY  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250- liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WIPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $311k in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R.; Wrights, R. S.

2002-02-25T23:59:59.000Z

193

Absorbing WIPP brines : a TRU waste disposal strategy.  

SciTech Connect (OSTI)

Los Alamos National Laboratory (LANL) has completed experiments involving 15 each, 250-liter experimental test containers of transuranic (TRU) heterogeneous waste immersed in two types of brine similar to those found in the underground portion of the Waste Isolation Pilot Plant (WIPP). To dispose of the waste without removing the brine from the test containers, LANL added commercially available cross-linked polyacrylate granules to absorb the 190 liters of brine in each container, making the waste compliant for shipping to the WlPP in a Standard Waste Box (SWB). Prior to performing the absorption, LANL and the manufacturer of the absorbent conducted laboratory and field tests to determine the ratio of absorbent to brine that would fully absorb the liquid. Bench scale tests indicated a ratio of 10 parts Castile brine to one part absorbent and 6.25 parts Brine A to one part absorbent. The minimum ratio of absorbent to brine was sought because headspace in the containers was limited. However, full scale testing revealed that the ratio should be adjusted to be about 15% richer in absorbent. Additional testing showed that the absorbent would not apply more than 13.8 kPa pressure on the walls of the vessel and that the absorbent would still function normally at that pressure and would not degrade in the approximately 5e-4 Sv/hr radioactive field produced by the waste. Heat generation from the absorption was minimal. The in situ absorption created a single waste stream of 8 SWBs whereas the least complicated alternate method of disposal would have yielded at least an additional 2600 liters of mixed low level liquid waste plus about two cubic meters of mixed low level solid waste, and would have resulted in higher risk of radiation exposure to workers. The in situ absorption saved $3 1 lk in a combination of waste treatment, disposal, material and personnel costs compared to the least expensive alternative and $984k compared to the original plan.

Yeamans, D. R. (David R.); Wright, R. (Robert)

2002-01-01T23:59:59.000Z

194

DOE/ORO/2296 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;DOE/ORO/2296 Oak Ridge Reservation Annual Site Environmental Report for 2008 on the World Project manager, DOE-ORO David Page September 2009 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy under Contract No

Pennycook, Steve

195

DOE/ORO/2261 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;DOE/ORO/2261 Oak Ridge Reservation Annual Site Environmental Report for 2007 on the World, Jane Parrott Project manager, DOE-ORO David Page September 2008 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge, TN 37831-2008 Managed by UT-Battelle, LLC, for the Department of Energy

Pennycook, Steve

196

Optimization Control Strategies for HVAC Terminal Boxes  

E-Print Network [OSTI]

is an important topic in today's building energy management and HVAC control field. The authors developed novel optimized control strategies and operation schedules for the terminal boxes for both occupied and non-occupied hours. The optimized control schedules...

Zhu, Y.; Batten, T.; Noboa, H.; Claridge, D. E.; Turner, W. D.; Liu, M.; Zhou, J.; Cameron, C.; Keeble, D.; Hirchak, R.

2000-01-01T23:59:59.000Z

197

Glove box on vehicular instrument panel  

DOE Patents [OSTI]

A glove box for the upper surface of an automobile dashboard whereby it may be positioned close to the driver. The glove box lid is pivotally supported by arms extending down either side to swing forwardly for opening. A hook is pivotally support adjacent an arm and weighted to swing into engagement with the arm to prevent opening of the lid during abrupt deceleration. A toggle spring assists in maintaining the lid in either the open or closed position.

Atarashi, Kazuya (Saitama, JP)

1985-01-01T23:59:59.000Z

198

Box Splines Hartmut Prautzsch, Wolfgang Boehm  

E-Print Network [OSTI]

as density functions of the shadows of higher dimensional boxes and half­boxes. Of particular interest and their general theory is given in the book by de Boor, H¨ollig and Riemenschneider [10] who also give valuable the density of the ``shadow'' of the unit cube [0; 1) k under the affine map \\Phi(t) = [v 1 : : : v k ]t from

Liblit, Ben

199

Enhanced Stuffing Box Rubbers Test Report  

SciTech Connect (OSTI)

The Rocky Mountain Oilfield Testing Center (RMOTC) and Scott's Oil Field Service tested an enhanced stuffing box rubber at the Naval Petroleum Reserve No. 3. The enhanced stuffing box rubbers have saved money from not having to replace packing as often and not spilling valuable oil on the ground. A reduction in environmental hazards and the cost of cleaning up spilled oil have also been a benefit.

Rochelle, J.

2002-07-01T23:59:59.000Z

200

Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.  

SciTech Connect (OSTI)

A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the types of offsite commercial disposal facilities that are found in each state. In later sections, data are presented by waste type and then by disposal method.

Puder, M. G.; Veil, J. A.

2006-09-05T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste  

SciTech Connect (OSTI)

This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015óeither at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficiently in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.

Kapoor, A. [DOE; Gordon, S. [NSTec; Goldston, W. [Energy Solutions

2013-07-08T23:59:59.000Z

202

Preliminary technical and legal evaluation of disposing of nonhazardous oil field waste into salt caverns  

SciTech Connect (OSTI)

Caverns can be readily formed in salt formations through solution mining. The caverns may be formed incidentally, as a result of salt recovery, or intentionally to create an underground chamber that can be used for storing hydrocarbon products or compressed air or disposing of wastes. The purpose of this report is to evaluate the feasibility, suitability, and legality of disposing of nonhazardous oil and gas exploration, development, and production wastes (hereafter referred to as oil field wastes, unless otherwise noted) in salt caverns. Chapter 2 provides background information on: types and locations of US subsurface salt deposits; basic solution mining techniques used to create caverns; and ways in which salt caverns are used. Later chapters provide discussion of: federal and state regulatory requirements concerning disposal of oil field waste, including which wastes are considered eligible for cavern disposal; waste streams that are considered to be oil field waste; and an evaluation of technical issues concerning the suitability of using salt caverns for disposing of oil field waste. Separate chapters present: types of oil field wastes suitable for cavern disposal; cavern design and location; disposal operations; and closure and remediation. This report does not suggest specific numerical limits for such factors or variables as distance to neighboring activities, depths for casings, pressure testing, or size and shape of cavern. The intent is to raise issues and general approaches that will contribute to the growing body of information on this subject.

Veil, J.; Elcock, D.; Raivel, M.; Caudle, D.; Ayers, R.C. Jr.; Grunewald, B.

1996-06-01T23:59:59.000Z

203

Technology development for DOE SNF management  

SciTech Connect (OSTI)

This paper describes the process used to identify technology development needs for the same management of spent nuclear fuel (SNF) in the US Department of Energy (DOE) inventory. Needs were assessed for each of the over 250 fuel types stores at DOE sites around the country for each stage of SNF management--existing storage, transportation, interim storage, and disposal. The needs were then placed into functional groupings to facilitate integration and collaboration among the sites.

Hale, D.L. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Einziger, R.E. [Pacific Northwest National Lab., Richland, WA (United States); Murphy, J.R. [Westinghouse Savannah River Co., Aiken, SC (United States)

1995-12-31T23:59:59.000Z

204

DOE Oak Ridge Office Freda H. Hopper  

E-Print Network [OSTI]

DOE Oak Ridge Office Freda H. Hopper Small Business Program Manager August 26, 2008 Oak Ridge BUILDING EM DISPOSAL CELL ORISE #12;Oak Ridge Reservation Jun08 2008 © All Rights Reserved 4 Oak Ridge National Laboratory Oak Ridge Institute for Science and Education Y-12 National Security Complex Y-12 Site

205

Update on onshore disposal of offshore drilling wastes  

SciTech Connect (OSTI)

The US Environmental Protection Agency (EPA) is developing effluent limitations guidelines to govern discharges of cuttings from wells drilled using synthetic-based muds. To support this rulemaking, Argonne National Laboratory was asked by EPA and the US Department of Energy (DOE) to collect current information about those onshore commercial disposal facilities that are permitted to receive offshore drilling wastes. Argonne contacted state officials in Louisiana, Texas, California and Alaska to obtain this information. The findings, collected during October and November 1999, are presented by state.

Veil, J. A.

1999-11-29T23:59:59.000Z

206

New Insights for Improving the Designs of Flexible Duct Junction Boxes (Fact Sheet)  

SciTech Connect (OSTI)

IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

Not Available

2014-01-01T23:59:59.000Z

207

Aerosol can waste disposal device  

DOE Patents [OSTI]

Disclosed is a device for removing gases and liquid from containers. The device punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container. 7 figures.

O'Brien, M.D.; Klapperick, R.L.; Bell, C.

1993-12-21T23:59:59.000Z

208

Aerosol can waste disposal device  

DOE Patents [OSTI]

Disclosed is a device for removing gases and liquid from containers. The ice punctures the bottom of a container for purposes of exhausting gases and liquid from the container without their escaping into the atmosphere. The device includes an inner cup or cylinder having a top portion with an open end for receiving a container and a bottom portion which may be fastened to a disposal or waste container in a substantially leak-proof manner. A piercing device is mounted in the lower portion of the inner cylinder for puncturing the can bottom placed in the inner cylinder. An outer cylinder having an open end and a closed end fits over the top portion of the inner cylinder in telescoping engagement. A force exerted on the closed end of the outer cylinder urges the bottom of a can in the inner cylinder into engagement with the piercing device in the bottom of the inner cylinder to form an opening in the can bottom, thereby permitting the contents of the can to enter the disposal container.

O'Brien, Michael D. (Las Vegas, NV); Klapperick, Robert L. (Las Vegas, NV); Bell, Chris (Las Vegas, NV)

1993-01-01T23:59:59.000Z

209

A data base for low-level radioactive waste disposal sites  

SciTech Connect (OSTI)

A computerized database was developed to assist the US Environmental Protection Agency (EPA) in evaluating methods and data for characterizing health hazards associated with land and ocean disposal options for low-level radioactive wastes. The data cover 1984 to 1987. The types of sites considered include Nuclear Regulatory Commission (NRC) licensed commercial disposal sites, EPA National Priority List (NPL) sites, US Department of Energy (DOE) Formerly Utilized Sites Remedial Action Project (FUSRAP) and DOE Surplus Facilities Management Program (SFMP) sites, inactive US ocean disposal sites, and DOE/Department of Defense facilities. Sources of information include reports from EPA, the US Department of Energy (DOE) and the Nuclear Regulatory Commission (NRC), as well as direct communication with individuals associated with specific programs. The data include site descriptions, waste volumes and activity levels, and physical and radiological characterization of low-level wastes. Additional information on mixed waste, packaging forms, and disposal methods were compiled, but are not yet included in the database. 55 refs., 4 figs., 2 tabs.

Daum, M.L.; Moskowitz, P.D.

1989-07-01T23:59:59.000Z

210

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB`S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

211

Waste component recycle, treatment, and disposal integrated demonstration (WeDID) nuclear weapon dismantlement activities  

SciTech Connect (OSTI)

One of the drivers in the dismantlement and disposal of nuclear weapon components is Envirorunental Protection Agency (EPA) guidelines. The primary regulatory driver for these components is the Resource Conservation Recovery Act (RCRA). Nuclear weapon components are heterogeneous and contain a number of hazardous materials including heavy metals, PCB'S, selfcontained explosives, radioactive materials, gas-filled tubes, etc. The Waste Component Recycle, Treatment, Disposal and Integrated Demonstration (WeDID) is a Department of Energy (DOE) Environmental Restoration and Waste Management (ERWM) sponsored program. It also supports DOE Defense Program (DP) dismantlement activities. The goal of WeDID is to demonstrate the end-to-end disposal process for Sandia National Laboratories designed nuclear weapon components. One of the primary objectives of WeDID is to develop and demonstrate advanced system treatment technologies that will allow DOE to continue dismantlement and disposal unhindered even as environmental regulations become more stringent. WeDID is also demonstrating waste minimization techniques by recycling a significant weight percentage of the bulk/precious metals found in weapon components and by destroying the organic materials typically found in these components. WeDID is concentrating on demonstrating technologies that are regulatory compliant, are cost effective, technologically robust, and are near-term to ensure the support of DOE dismantlement time lines. The waste minimization technologies being demonstrated by WeDID are cross cutting and should be able to support a number of ERWM programs.

Wheelis, W.T.

1993-04-12T23:59:59.000Z

212

Electrochemical Apparatus with Disposable and Modifiable Parts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in academia, might be able to afford only a limited inventory, which could stall productivity. Too expensive to be disposable, the cells must be cleaned after each experiment,...

213

WPCF Underground Injection Control Disposal Permit Evaluation...  

Open Energy Info (EERE)

and Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: WPCF Underground Injection Control Disposal Permit Evaluation and Fact Sheet Abstract...

214

Disposal of Draeger Tubes at Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site (SRS) is a Department of Energy (DOE) facility located in Aiken, South Carolina that is operated by the Westinghouse Savannah River Company (WSRC). At SRS Draeger tubes are used to identify the amount and type of a particular chemical constituent in the atmosphere. Draeger tubes rely on a chemical reaction to identify the nature and type of a particular chemical constituent in the atmosphere. Disposal practices for these tubes were identified by performing a hazardous waste evaluation per the Resource Conservation and Recovery Act (RCRA). Additional investigations were conducted to provide guidance for their safe handling, storage and disposal. A list of Draeger tubes commonly used at SRS was first evaluated to determine if they contained any material that could render them as a RCRA hazardous waste. Disposal techniques for Draeger tubes that contained any of the toxic contaminants listed in South Carolina Hazardous Waste Management Regulations (SCHWMR) R.61-79. 261.24 (b) and/or contained an acid in the liquid form were addressed.

Malik, N.P.

2000-10-13T23:59:59.000Z

215

Hanford land disposal restrictions plan for mixed wastes  

SciTech Connect (OSTI)

Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

Not Available

1990-10-01T23:59:59.000Z

216

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain††for the disposal of spent nuclear fuel and high-level...

217

DOE Onboarding  

Broader source: Energy.gov (indexed) [DOE]

First Six Months First Year *Continual Learning *Fraud Awareness *eOPF & ePerformance *ESS & Workflow *DOE Social Media *Networking Opportunity GETTING SETTLED ADJUSTMENT &...

218

DOE PAGES  

Office of Scientific and Technical Information (OSTI)

a useful reference. Find out more Do you have questions about DOE PAGESBeta content, procedures, or policies? More information is available at OSTI's Public Access Policy page and...

219

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 ◊ 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 ◊ 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 ◊ 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30T23:59:59.000Z

220

Chemical Disposal The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program  

E-Print Network [OSTI]

Chemical Disposal Dec, 2011 Chemicals: The Office of Environmental Health & Safety operates a Chemical Waste Disposal Program where all University chemical waste is picked up and sent out for proper disposal. (There are some chemicals that they will not take because of their extreme hazards

Machel, Hans

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Licensing plan for UMTRA project disposal sites. Final [report  

SciTech Connect (OSTI)

The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC`s acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information.

Not Available

1993-09-01T23:59:59.000Z

222

Evaluation of the capabilities of the Hanford Reservation and Envirocare of Utah for disposal of potentially problematic mixed low-level waste streams  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Mixed Waste Focus Area is developing a program to address and resolve issues associated with final waste form performance in treating and disposing of DOE`s mixed low-level waste (MLLW) inventory. A key issue for the program is identifying MLLW streams that may be problematic for disposal. Previous reports have quantified and qualified the capabilities of fifteen DOE sites for MLLW disposal and provided volume and radionuclide concentration estimates for treated MLLW based on the DOE inventory. Scoping-level analyses indicated that 101 waste streams identified in this report (approximately 6,250 m{sup 3} of the estimated total treated MLLW) had radionuclide concentrations that may make their disposal problematic. The radionuclide concentrations of these waste streams were compared with the waste acceptance criteria (WAC) for a DOE disposal facility at Hanford and for Envirocare`s commercial disposal facility for MLLW in Utah. Of the treated MLLW volume identified as potentially problematic, about 100 m{sup 3} exceeds the WAC for disposal at Hanford, and about 4,500 m{sup 3} exceeds the WAC for disposal at Envirocare. Approximately 7% of DOE`s total MLLW inventory has not been sufficiently characterized to identify a treatment process for the waste and was not included in the analysis. In addition, of the total treated MLLW volume, about 30% was associated with waste streams that did not have radionuclide concentration data and could not be included in the determination of potentially problematic waste streams.

Waters, R.D.; Pohl, P.I.; Cheng, W.C.; Gruebel, M.M.; Wheeler, T.A.; Langkopf, B.S.

1998-03-01T23:59:59.000Z

223

Using exploratory data analysis modified Box Plots to enhance Monte Carlo simulated Range Estimating Decision Technology  

E-Print Network [OSTI]

of the thesis is written with the intent of reviewing some of the significant pieces of literature relating to Monte Carlo simulated REDT and exploratory data analysis Box Plots. In 1964 David Hertz published an article in the Harvard Business Review... entitled, "Risk Analysis in Capital Investment" (Hertz 1964). While this article does not directly discuss range estimating, it is the foundation for the current REDT theory. In his atticle, Hertz discussed the problems associated with estimating...

Clutter, David John

1992-01-01T23:59:59.000Z

224

Minimizing WMinimizing WMinimizing WMinimizing WMinimizing Waste Disposal:aste Disposal:aste Disposal:aste Disposal:aste Disposal: Grass ClippingsGrass ClippingsGrass ClippingsGrass ClippingsGrass Clippings  

E-Print Network [OSTI]

Minimizing WMinimizing WMinimizing WMinimizing WMinimizing Waste Disposal:aste Disposal and supplying part of the fertilizer needs of the lawn. Adopt a mowing schedule to keep clippings short enough

Rainforth, Emma C.

225

Depleted uranium: A DOE management guide  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has a management challenge and financial liability in the form of 50,000 cylinders containing 555,000 metric tons of depleted uranium hexafluoride (UF{sub 6}) that are stored at the gaseous diffusion plants. The annual storage and maintenance cost is approximately $10 million. This report summarizes several studies undertaken by the DOE Office of Technology Development (OTD) to evaluate options for long-term depleted uranium management. Based on studies conducted to date, the most likely use of the depleted uranium is for shielding of spent nuclear fuel (SNF) or vitrified high-level waste (HLW) containers. The alternative to finding a use for the depleted uranium is disposal as a radioactive waste. Estimated disposal costs, utilizing existing technologies, range between $3.8 and $11.3 billion, depending on factors such as applicability of the Resource Conservation and Recovery Act (RCRA) and the location of the disposal site. The cost of recycling the depleted uranium in a concrete based shielding in SNF/HLW containers, although substantial, is comparable to or less than the cost of disposal. Consequently, the case can be made that if DOE invests in developing depleted uranium shielded containers instead of disposal, a long-term solution to the UF{sub 6} problem is attained at comparable or lower cost than disposal as a waste. Two concepts for depleted uranium storage casks were considered in these studies. The first is based on standard fabrication concepts previously developed for depleted uranium metal. The second converts the UF{sub 6} to an oxide aggregate that is used in concrete to make dry storage casks.

NONE

1995-10-01T23:59:59.000Z

226

Asset Management Equipment Disposal Form -Refrigerant Recovery  

E-Print Network [OSTI]

enters the waste stream with the charge intact (e.g., motor vehicle air conditioners, refrigeratorsAsset Management Equipment Disposal Form - Refrigerant Recovery Safe Disposal Requirements Under refrigeration, cold storage warehouse refrigeration, chillers, and industrial process refrigeration) has to have

Sin, Peter

227

Oil field waste disposal in salt caverns: An information website  

SciTech Connect (OSTI)

Argonne National Laboratory has completed the construction of a Website for the US Department of Energy (DOE) that provides detailed information on salt caverns and their use for disposing of nonhazardous oil field wastes (NOW) and naturally occurring radioactive materials (NORM). Specific topics in the Website include the following: descriptions of salt deposits and salt caverns within the US, salt cavern construction methods, potential types of wastes, waste emplacement, regulatory issues, costs, carcinogenic and noncarcinogenic human health risks associated with postulated cavern release scenarios, new information on cavern disposal (e.g., upcoming meetings, regulatory issues, etc.), other studies supported by the National Petroleum Technology Office (NPTO) (e.g., considerations of site location, cavern stability, development issues, and bedded salt characterization in the Midland Basin), and links to other associated Web sites. In addition, the Website allows downloadable access to reports prepared on the topic that were funded by DOE. Because of the large quantities of NOW and NORM wastes generated annually by the oil industry, information presented on this Website is particularly interesting and valuable to project managers, regulators, and concerned citizens.

Tomasko, D.; Veil, J. A.

1999-12-10T23:59:59.000Z

228

Performance assessment for the class L-II disposal facility  

SciTech Connect (OSTI)

This draft radiological performance assessment (PA) for the proposed Class L-II Disposal Facility (CIIDF) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US Department of Energy Order 5820.2A. This PA considers the disposal of low-level radioactive wastes (LLW) over the operating life of the facility and the long-term performance of the facility in providing protection to public health and the environment. The performance objectives contained in the order require that the facility be managed to accomplish the following: (1) Protect public health and safety in accordance with standards specified in environmental health orders and other DOE orders. (2) Ensure that external exposure to the waste and concentrations of radioactive material that may be released into surface water, groundwater, soil, plants, and animals results in an effective dose equivalent (EDE) that does not exceed 25 mrem/year to a member of the public. Releases to the atmosphere shall meet the requirements of 40 CFR Pt. 61. Reasonable effort should be made to maintain releases of radioactivity in effluents to the general environment as low as reasonably achievable. (1) Ensure that the committed EDEs received by individual who inadvertently may intrude into the facility after the loss of active institutional control (100 years) will not exceed 100 mrem/year for continuous exposure of 500 mrem for a single acute exposure. (4) Protect groundwater resources, consistent with federal, state, and local requirements.

NONE

1997-03-01T23:59:59.000Z

229

Plans and Progress on Hanford MLLW Treatment and Disposal  

SciTech Connect (OSTI)

Mixed low-level waste (MLLW) contains both low-level radioactive materials and low-level hazardous chemicals. The hazardous component of mixed waste has characteristics identified by any or all of the following statutes: the Resource Conservation and Recovery Act of 1976 (RCRA), as amended; the Toxic Substances Control Act of 1976; and Washington State dangerous waste regulations. The Fluor Hanford Waste Management Project (WMP) is responsible for storing, treating, and disposing of solid MLLW, which includes organic and inorganic solids, organics and inorganic lab packs, debris, lead, mercury, long-length equipment, spent melters, and remote-handled (RH) and oversized MLLW. Hanford has 7,000 cubic meters, or about 25%, of the MLLW in storage at U.S. Department of Energy (DOE) sites. Hanford plans to receive 57,000 cubic meters from on-site generators, or about 50% of DOE's newly generated MLLW. In addition, the Hanford Environment Restoration Program and off-site generators having approved Federal Facility Consent Agreement site treatment plans will most likely send 200 cubic meters of waste to be treated and returned to the generators. Volumes of off-site waste receipts will be affected when the MLLW Record of Decision is issued as part of the process for the Hanford Site Solid Waste Environmental Impact Statement (EIS). The WMP objective relative to MLLW is to treat and dispose of {approx}8000 cubic meters of existing inventory and newly-generated waste by September 30, 2006.

McDonald, K. M.; Blackford, L. T.; Nester, D. E.; Connolly, R. R.; McKenney, D. E.; Moy, S. K.

2003-02-24T23:59:59.000Z

230

DOE Standard: Fire protection design criteria  

SciTech Connect (OSTI)

The development of this Standard reflects the fact that national consensus standards and other design criteria do not comprehensively or, in some cases, adequately address fire protection issues at DOE facilities. This Standard provides supplemental fire protection guidance applicable to the design and construction of DOE facilities and site features (such as water distribution systems) that are also provided for fire protection. It is intended to be used in conjunction with the applicable building code, National Fire Protection Association (NFPA) Codes and Standards, and any other applicable DOE construction criteria. This Standard replaces certain mandatory fire protection requirements that were formerly in DOE 5480.7A, ``Fire Protection``, and DOE 6430.1A, ``General Design Criteria``. It also contains the fire protection guidelines from two (now canceled) draft standards: ``Glove Box Fire Protection`` and ``Filter Plenum Fire Protection``. (Note: This Standard does not supersede the requirements of DOE 5480.7A and DOE 6430.1A where these DOE Orders are currently applicable under existing contracts.) This Standard, along with the criteria delineated in Section 3, constitutes the basic criteria for satisfying DOE fire and life safety objectives for the design and construction or renovation of DOE facilities.

Not Available

1999-07-01T23:59:59.000Z

231

Environmental impact statement for initiation of transuranic waste disposal at the waste isolation pilot plant  

SciTech Connect (OSTI)

WIPP`s long-standing mission is to demonstrate the safe disposal of TRU waste from US defense activities. In 1980, to comply with NEPA, US DOE completed its first environmental impact statement (EIS) which compared impacts of alternatives for TRU waste disposal. Based on this 1980 analysis, DOE decided to construct WIPP in 1981. In a 1990 decision based on examination of alternatives in a 1990 Supplemental EIS, DOE decided to continue WIPP development by proceeding with a testing program to examine WIPP`s suitability as a TRU waste repository. Now, as DOE`s Carlsbad Area Office (CAO) attempts to complete its regulatory obligations to begin WIPP disposal operations, CAO is developing WIPP`s second supplemental EIS (SEIS-II). To complete the SEIS-II, CAO will have to meet a number of challenges. This paper explores both the past and present EISs prepared to evaluate the suitability of WIPP. The challenges in completing an objective comparison of alternatives, while also finalizing other critical-path compliance documents, controlling costs, and keeping stakeholders involved during the decision-making process are addressed.

Johnson, H.E. [U.S. Dept. of Energy, Carlsbad, NM (United States) Carlsbad Area Office; Whatley, M.E. [Westinghouse Electric Corp., Carlsbad, NM (United States). Waste Isolation Div.

1996-08-01T23:59:59.000Z

232

Safety evaluation for packaging CPC metal boxes  

SciTech Connect (OSTI)

This Safety Evaluation for Packaging (SEP) provides authorization for the use of Container Products Corporation (CPC) metal boxes, as described in this document, for the interarea shipment of radioactive contaminated equipment and debris for storage in the Central Waste Complex (CWC) or T Plant located in the 200 West Area. Authorization is granted until November 30, 1995. The CPC boxes included in this SEP were originally procured as US Department of Transportation (DOT) Specification 7A Type A boxes. A review of the documentation provided by the manufacturer revealed the documentation did not adequately demonstrate compliance to the 4 ft drop test requirement of 49 CFR 173.465(c). Preparation of a SEP is necessary to document the equivalent safety of the onsite shipment in lieu of meeting DOT packaging requirements until adequate documentation is received. The equivalent safety of the shipment is based on the fact that the radioactive contents consist of contaminated equipment and debris which are not dispersible. Each piece is wrapped in two layers of no less than 4 mil plastic prior to being placed in the box which has an additional 10 mil liner. Pointed objects and sharp edges are padded to prevent puncture of the plastic liner and wrapping.

Romano, T.

1995-05-15T23:59:59.000Z

233

PO Box 2349 White Salmon, WA 98672  

E-Print Network [OSTI]

PO Box 2349 White Salmon, WA 98672 509.493.4468 www.newbuildings.org COMMERCIAL ROOFTOP HVAC ENERGY from utility-sponsored field service measures on small (typically 3-10 tons) commercial rooftop unitary utility-funded RTU service programs. New Buildings Institute (NBI) staff has been managing the research

234

Salt caverns for oil field waste disposal.  

SciTech Connect (OSTI)

Salt caverns used for oil field waste disposal are created in salt formations by solution mining. When created, caverns are filled with brine. Wastes are introduced into the cavern by pumping them under low pressure. Each barrel of waste injected to the cavern displaces a barrel of brine to the surface. The brine is either used for drilling mud or is disposed of in an injection well. Figure 8 shows an injection pump used at disposal cavern facilities in west Texas. Several types of oil field waste may be pumped into caverns for disposal. These include drilling muds, drill cuttings, produced sands, tank bottoms, contaminated soil, and completion and stimulation wastes. Waste blending facilities are constructed at the site of cavern disposal to mix the waste into a brine solution prior to injection. Overall advantages of salt cavern disposal include a medium price range for disposal cost, large capacity and availability of salt caverns, limited surface land requirement, increased safety, and ease of establishment of individual state regulations.

Veil, J.; Ford, J.; Rawn-Schatzinger, V.; Environmental Assessment; RMC, Consultants, Inc.

2000-07-01T23:59:59.000Z

235

Projected-search methods for box-constrained optimization  

E-Print Network [OSTI]

Search Methods for Unconstrained Optimization 2.1 Newtonís3 Active-Set Methods for Box-Constrained Optimization 3.1for Box-Constrained Optimization . 5.1 Converting to a

Ferry, Michael William

2011-01-01T23:59:59.000Z

236

Product realization of the 2.007 control box  

E-Print Network [OSTI]

A second generation control box using frequency hopping spread spectrum radio was designed and built for use in the Spring 2006 offering of 2.007 Design and Manufacturing I. A third generation control box that could hold ...

Lin, Wey-Jiun

2006-01-01T23:59:59.000Z

237

Large Component Removal/Disposal  

SciTech Connect (OSTI)

This paper describes the removal and disposal of the large components from Maine Yankee Atomic Power Plant. The large components discussed include the three steam generators, pressurizer, and reactor pressure vessel. Two separate Exemption Requests, which included radiological characterizations, shielding evaluations, structural evaluations and transportation plans, were prepared and issued to the DOT for approval to ship these components; the first was for the three steam generators and one pressurizer, the second was for the reactor pressure vessel. Both Exemption Requests were submitted to the DOT in November 1999. The DOT approved the Exemption Requests in May and July of 2000, respectively. The steam generators and pressurizer have been removed from Maine Yankee and shipped to the processing facility. They were removed from Maine Yankee's Containment Building, loaded onto specially designed skid assemblies, transported onto two separate barges, tied down to the barges, th en shipped 2750 miles to Memphis, Tennessee for processing. The Reactor Pressure Vessel Removal Project is currently under way and scheduled to be completed by Fall of 2002. The planning, preparation and removal of these large components has required extensive efforts in planning and implementation on the part of all parties involved.

Wheeler, D. M.

2002-02-27T23:59:59.000Z

238

Processing Irradiated Beryllium For Disposal  

SciTech Connect (OSTI)

The purpose of this research was to develop a process for decontaminating irradiated beryllium that will allow it to be disposed of through normal radwaste channels. Thus, the primary objectives of this ongoing study are to remove the transuranic (TRU) isotopes to less than 100 nCi/g and remove {sup 60}Co, and {sup 137}Cs, to levels that will allow the beryllium to be contact handled. One possible approach that appears to have the most promise is aqueous dissolution and separation of the isotopes by selected solvent extraction followed by precipitation, resulting in a granular form for the beryllium that may be fixed to prevent it from becoming respirable and therefore hazardous. Beryllium metal was dissolved in nitric and fluorboric acids. Isotopes of {sup 241}Am, {sup 239}Pu, {sup 85}Sr, and {sup 137}Cs were then added to make a surrogate beryllium waste solution. A series of batch contacts was performed with the spiked simulant using chlorinated cobalt dicarbollide (CCD) and polyethylene glycol diluted with sulfone to extract the isotopes of Cs and Sr. Another series of batch contacts was performed using a combination of octyl (phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) in tributyl phosphate (TBP) diluted with dodecane for extracting the isotopes of Pu and Am. The results indicate that greater than 99.9% removal can be achieved for each isotope with only three contact stages.

T. J. Tranter; R. D. Tillotson; N. R. Mann; G. R. Longhurst

2005-11-01T23:59:59.000Z

239

SciTech Connect: Deep Borehole Disposal Research: Geological...  

Office of Scientific and Technical Information (OSTI)

Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

240

EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive...  

Broader source: Energy.gov (indexed) [DOE]

00: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste EIS-0200: Managing Treatment, Storage, and Disposal of Radioactive and Hazardous Waste SUMMARY This...

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Westinghouse-DOE integration: Meeting the challenge  

SciTech Connect (OSTI)

The Westinghouse Electric Corporation (WEC) is in a unique position to affect national environmental management policy approaching the 21st Century. Westinghouse companies are management and operating contractors (MOC,s) at several environmentally pivotal government-owned, contractor operated (GOCO) facilities within the Department of Energy`s (DOE`s) nuclear defense complex. One way the WEC brings its companies together is by activating teams to solve specific DOE site problems. For example, one challenging issue at DOE facilities involves the environmentally responsible, final disposal of transuranic and high-level nuclear wastes (TRUs and HLWS). To address these disposal issues, the DOE supports two Westinghouse-based task forces: The TRU Waste Acceptance Criteria Certification Committee (WACCC) and the HLW Vitrification Committee. The WACCC is developing methods to characterize an estimated 176,287 cubic meters of retrievably stored TRUs generated at DOE production sites. Once characterized, TRUs could be safely deposited in the WIPP repository. The Westinghouse HLW Vitrification Committee is dedicated to assess appropriate methods to process an estimated 380,702 cubic meters of HLWs currently stored in underground storage tanks (USTs). As planned, this processing will involve segregating, and appropriately treating, low level waste (LLW) and HLW tank constituents for eventual disposal. The first unit designed to process these nuclear wastes is the SRS Defense Waste Processing Facility (DWPF). Initiated in 1973, the DWPF project is scheduled to begin operations in 1991 or 1992. Westinghouse companies are also working together to achieve appropriate environmental site restoration at DOE sites via the GOCO Environmental Restoration Committee.

Price, S.V.

1992-12-31T23:59:59.000Z

242

A disposable, self-administered electrolyte test  

E-Print Network [OSTI]

This thesis demonstrates the novel concept that it is possible to make a disposable, self-administered electrolyte test to be introduced to the general consumer market. Although ion specific electrodes have been used to ...

Prince, Ryan, 1977-

2003-01-01T23:59:59.000Z

243

Economic assessment of CO? capture and disposal  

E-Print Network [OSTI]

A multi-sector multi-region general equilibrium model of economic growth and emissions is used to explore the conditions that will determine the market penetration of CO2 capture and disposal technology.

Eckaus, Richard S.; Jacoby, Henry D.; Ellerman, A. Denny.; Leung, Wing-Chi.; Yang, Zili.

244

Waste disposal options report. Volume 2  

SciTech Connect (OSTI)

Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

1998-02-01T23:59:59.000Z

245

Groundwater monitoring plan for the proposed state-approved land disposal structure  

SciTech Connect (OSTI)

This document outlines a detection-level groundwater monitoring program for the state-approved land disposal structure (SALDS). The SALDS is an infiltration basin proposed for disposal of treated effluent from the 200 Areas of the Hanford Site. The purpose of this plan is to present a groundwater monitoring program that is capable of determining the impact of effluent disposal at the SALDS on the quality of groundwater in the uppermost aquifer. This groundwater monitoring plan presents an overview of the SALDS, the geology and hydrology of the area, the background and indicator evaluation (detection) groundwater monitoring program, and an outline of a groundwater quality assessment (compliance) program. This plan does not provide a plan for institutional controls to track tritium beyond the SALDS.

Reidel, S.P.

1993-10-13T23:59:59.000Z

246

Long-term surveillance plan for the Falls City Disposal Site, Falls City, Texas. Revision 2  

SciTech Connect (OSTI)

The need for ground water monitoring at the Falls City disposal site was evaluated in accordance with NRC regulations and guidelines established by the DOE in Guidance for Implementing the Long-term Surveillance Program for UMTRA Project Title 1 Disposal Sites (DOE, 1996). Based on evaluation of site characterization data, it has been determined that a program to monitor ground water for demonstration of disposal cell performance based on a set of concentration limits is not appropriate because ground water in the uppermost aquifer is of limited use, and a narrative supplemental standard has been applied to the site that does not include numerical concentration limits or a point of compliance. The limited use designation is based on the fact that ground water in the uppermost aquifer is not currently or potentially a source of drinking water in the area because it contains widespread ambient contamination that cannot be cleaned up using methods reasonably employed by public water supply systems. Background ground water quality varies by orders of magnitude since the aquifer is in an area of redistribution of uranium mineralization derived from ore bodies. The DOE plans to perform post-closure ground water monitoring in the uppermost aquifer as a best management practice (BMP) as requested by the state of Texas.

NONE

1996-11-01T23:59:59.000Z

247

Pesticide fate in an aboveground disposal system  

E-Print Network [OSTI]

PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Submitted to the Graduate College of Texas A 8 M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 'l988... Major Subject: Soil Science PESTICIDE FATE IN AN ABOVEGROUND DISPOSAL SYSTEM A Thesis by BRIAN RICHARD VANDERGLAS Approved as to style and content by: K. W. Brown (Chair of Committee) John M. Sweeten (Member) Jack D. Price (Member) E. C. A...

Vanderglas, Brian Richard

2012-06-07T23:59:59.000Z

248

Solid waste disposal options: an optimum disposal model for the management of municipal solid waste  

E-Print Network [OSTI]

the Solid Waste Disposal Act and shifted the emphasis from disposal practices to recycling, resource recovery, and energy conversion of wastes. ' The Resource Conservation and Recovery Act of 1976 (RCRA) provided for the disposal of solid waste in such a... was constructed in 1930 in New York City. " But waste- to-energy technology development was hindered by poor reliability, poor efficiency, and low cost effectiveness. " The Resource Recovery Act of 1970 and RCRA of 1976, shifted the em- phasis in solid waste...

Haney, Brenda Ann

1989-01-01T23:59:59.000Z

249

Resonantly Interacting Fermions in a Box  

SciTech Connect (OSTI)

We use two fundamental theoretical frameworks to study the finite-size (shell) properties of the unitary gas in a periodic box: (1) an ab initio quantum Monte Carlo (QMC) calculation for boxes containing 4 to 130 particles provides a precise and complete characterization of the finite-size behavior, and (2) a new density functional theory (DFT) fully encapsulates these effects. The DFT predicts vanishing shell structure for systems comprising more than 50 particles, and allows us to extrapolate the QMC results to the thermodynamic limit, providing the tightest bound to date on the ground-state energy of the unitary gas: {xi}{sub S}{<=}0.383(1). We also apply the new functional to few-particle harmonically trapped systems, comparing with previous calculations.

Forbes, Michael McNeil [Institute for Nuclear Theory, University of Washington, Seattle, Washington 98195-1560 (United States); Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gandolfi, Stefano [Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gezerlis, Alexandros [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States); Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

2011-06-10T23:59:59.000Z

250

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2 SunProgrammatic

251

DOE F  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the DOE6 / 06 2

252

DOE-0346  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State oftoDOE-0346

253

DEVELOPMENT QUALIFICATION AND DISPOSAL OF AN ALTERNATIVE IMMOBILIZED LOW-ACTIVITY WASTE FORM AT THE HANFORD SITE  

SciTech Connect (OSTI)

Demonstrating that a waste form produced by a given immobilization process is chemically and physically durable as well as compliant with disposal facility acceptance criteria is critical to the success of a waste treatment program, and must be pursued in conjunction with the maturation of the waste processing technology. Testing of waste forms produced using differing scales of processing units and classes of feeds (simulants versus actual waste) is the crux of the waste form qualification process. Testing is typically focused on leachability of constituents of concern (COCs), as well as chemical and physical durability of the waste form. A principal challenge regarding testing immobilized low-activity waste (ILAW) forms is the absence of a standard test suite or set of mandatory parameters against which waste forms may be tested, compared, and qualified for acceptance in existing and proposed nuclear waste disposal sites at Hanford and across the Department of Energy (DOE) complex. A coherent and widely applicable compliance strategy to support characterization and disposal of new waste forms is essential to enhance and accelerate the remediation of DOE tank waste. This paper provides a background summary of important entities, regulations, and considerations for nuclear waste form qualification and disposal. Against this backdrop, this paper describes a strategy for meeting and demonstrating compliance with disposal requirements emphasizing the River Protection Project (RPP) Integrated Disposal Facility (IDF) at the Hanford Site and the fluidized bed steam reforming (FBSR) mineralized low-activity waste (LAW) product stream.

SAMS TL; EDGE JA; SWANBERG DJ; ROBBINS RA

2011-01-13T23:59:59.000Z

254

Unreviewed Disposal Question Evaluation: Backfill Soil Compaction Requirements  

SciTech Connect (OSTI)

One intent of DOE Order 435.1 (USDOE 1999a ), as expressed in the performance assessment/composite analysis guidance (USDOE 1999c), is to ensure that proposed changes in wasteforms, containers, radionuclide inventories, facility design, and operations are reviewed to ensure that the assumptions, results, and conclusions of the DOE approved performance assessment (PA) (WSRC 2000), and composite analysis (CA) (WSRC 1997), as well as any Special analyses (SA) that might have been performed, remain valid (i.e., that the proposed change is bounded by the PA and CA) and the changes are within the bounds of the Disposal Authorization Statement (USDOE 1999b). The goal is to provide flexibility in day-to-day operation and to require those issues with a significant impact on the PA's conclusions, and therefore the projected compliance with performance objectives/measures, to be identified and brought to the proper level of attention. It should be noted that the term performance measure is used t o describe site specific adaptations of the DOE Order 435.1 Performance Objectives and requirements (e.g., performance measures such as applying drinking water standards to the groundwater impacts assessment). The intent of this document is to provide an evaluation of the issues identified within Problem Identification Report (PIR) number 2002-PIR-26-0050 (Kukraja 2002).

Phifer, M.A.

2003-04-15T23:59:59.000Z

255

Development of Risk Insights for Regulatory Review of a Near-Surface Disposal Facility for Radioactive Waste  

SciTech Connect (OSTI)

Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the Department of Energy (DOE) to consult with the Nuclear Regulatory Commission (NRC) about non-High Level Waste (HLW) determinations. In its consultative role, NRC performs technical reviews of DOE's waste determinations but does not have regulatory authority over DOE's waste disposal activities. The safety of disposal is evaluated by comparing predicted disposal facility performance to the performance objectives specified in NRC regulations for the disposal of low-level waste (10 CFR Part 61 Subpart C). The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. The potential radiological dose to receptors typically is evaluated with a performance assessment (PA) model that simulates the release of radionuclides from the disposal site, transport of radionuclides through the environment, and exposure of potential receptors to residual contamination for thousands of years. This paper describes NRC's development and use of independent performance assessment modeling to facilitate review of DOE's non-HLW determination for the Saltstone Disposal Facility (SDF) at the Savannah River Site. NRC's review of the safety of near-surface disposal of radioactive waste at the SDF was facilitated and focused by risk insights developed with an independent PA model. The main components of NRC's performance assessment model are presented. The development of risk insights that allow the staff to focus review efforts on those areas that are most important to satisfying the performance objectives is discussed. Uncertainty analysis was performed of the full stochastic model using genetic variable selection algorithms. The results of the uncertainty analysis were then used to guide the development of simulations of other scenarios to understand the key risk drivers and risk limiters of the SDF. Review emphasis was placed on those aspects of the disposal system that were expected to drive performance: the physical and chemical performance of the cementitious wasteform and concrete vaults. Refinement of the modeling of the degradation and release from the cementitious wasteform had a significant effect on the predicted dose to a member of the public. (authors)

Esh, D.W.; Ridge, A.C.; Thaggard, M. [U.S. Nuclear Regulatory Commission, Mail Stop T7J8, Washington, DC 20555 (United States)

2006-07-01T23:59:59.000Z

256

DOE/ORO/2119 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;DOE/ORO/2119 Oak Ridge Reservation Annual Site Environmental Report for 2000 on the World Technical coordinators L. W. McMahon J. F. Hughes M. L. Coffey Oak Ridge Y-12 Complex Oak Ridge National. Mulkey Date published: September 2001 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge

Pennycook, Steve

257

DOE/ORO/2185 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;#12;DOE/ORO/2185 Oak Ridge Reservation Annual Site Environmental Report for 2003 Technical coordinators Wayne McMahon Joan Hughes Mike Coffey Oak Ridge Y-12 Complex Oak Ridge National published: September 2004 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge, TN 37831

Pennycook, Steve

258

DOE/ORO/2159 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;DOE/ORO/2159 Oak Ridge Reservation Annual Site Environmental Report for 2002 on the World Technical coordinators Wayne McMahon Joan Hughes Mike Coffey Oak Ridge Y-12 Complex Oak Ridge National: September 2003 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge, TN 37831-2008 Managed

Pennycook, Steve

259

DOE/ORO/2218 Oak Ridge Reservation Annual Site  

E-Print Network [OSTI]

#12;#12;#12;DOE/ORO/2218 Oak Ridge Reservation Annual Site Environmental Report for 2005 Technical coordinators Wayne McMahon Joan Hughes Mike Coffey Oak Ridge Y-12 Complex Oak Ridge National: September 2006 Prepared by Oak Ridge National Laboratory P.O. Box 2008, Oak Ridge, TN 37831-2008 Managed

Pennycook, Steve

260

Risk assessment of landfill disposal sites - State of the art  

SciTech Connect (OSTI)

A risk assessment process can assist in drawing a cost-effective compromise between economic and environmental costs, thereby assuring that the philosophy of 'sustainable development' is adhered to. Nowadays risk analysis is in wide use to effectively manage environmental issues. Risk assessment is also applied to other subjects including health and safety, food, finance, ecology and epidemiology. The literature review of environmental risk assessments in general and risk assessment approaches particularly regarding landfill disposal sites undertaken by the authors, reveals that an integrated risk assessment methodology for landfill gas, leachate or degraded waste does not exist. A range of knowledge gaps is discovered in the literature reviewed to date. From the perspective of landfill leachate, this paper identifies the extent to which various risk analysis aspects are absent in the existing approaches.

Butt, Talib E. [Sustainability Centre in Glasgow (SCG), George Moore Building, 70 Cowcaddens Road, Glasgow Caledonian University, Glasgow G4 0BA, Scotland (United Kingdom)], E-mail: t_e_butt@hotmail.com; Lockley, Elaine [Be Environmental Ltd. Suite 213, Lomeshaye Business Village, Turner Road, Nelson, Lancashire, BB9 7DR, England (United Kingdom); Oduyemi, Kehinde O.K. [Built and Natural Environment, Baxter Building, University of Abertay Dundee, Bell Street, Dundee DD1 1HG, Scotland (United Kingdom)], E-mail: k.oduyemi@abertay.ac.uk

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

262

Disposal R&D in the Used Fuel Disposition Campaign: A Discussion of Opportunities for Active International Collaboration  

SciTech Connect (OSTI)

For DOE's Used Fuel Disposition Campaign (UFDC), international collaboration is a beneficial and cost-effective strategy for advancing disposal science with regards to multiple disposal options and different geologic environments. While the United States disposal program focused solely on Yucca Mountain tuff as host rock over the past decades, several international programs have made significant progress in the characterization and performance evaluation of other geologic repository options, most of which are very different from the Yucca Mountain site in design and host rock characteristics. Because Yucca Mountain was so unique (e.g., no backfill, unsaturated densely fractured tuff), areas of direct collaboration with international disposal programs were quite limited during that time. The decision by the U.S. Department of Energy to no longer pursue the disposal of high-level radioactive waste and spent fuel at Yucca Mountain has shifted UFDC's interest to disposal options and geologic environments similar to those being investigated by disposal programs in other nations. Much can be gained by close collaboration with these programs, including access to valuable experience and data collected over recent decades. Such collaboration can help to efficiently achieve UFDC's long-term goals of conducting 'experiments to fill data needs and confirm advanced modeling approaches' (by 2015) and of having a 'robust modeling and experimental basis for evaluation of multiple disposal system options' (by 2020). This report discusses selected opportunities of active international collaboration, with focus on both Natural Barrier System (NBS) and Engineered Barrier System (EBS) aspects and those opportunities that provide access to field data (and respective interpretation/modeling) or allow participation in ongoing field experiments. This discussion serves as a basis for the DOE/NE-53 and UFDC planning process for FY12 and beyond.

Birkholzer, J.T.

2011-06-01T23:59:59.000Z

263

Biohazardous Waste Disposal GuidelinesDescriptionStorage& LabelingTreatmentDisposal  

E-Print Network [OSTI]

Waste Sharps Waste Solid Lab Waste Liquid Waste Any of these devices if contaminated with biohazardousBiohazardous Waste Disposal GuidelinesDescriptionStorage& packaging LabelingTreatmentDisposal Mixed container. Container must be leakproof, ridgid, puncture resistant, clearly marked for biohazardous waste

Wikswo, John

264

Annual Report for Los Alamos National Laboratory Technical Area 54, Area G Disposal Facility - Fiscal Year 2011  

SciTech Connect (OSTI)

As a condition to the Disposal Authorization Statement issued to Los Alamos National Laboratory (LANL or the Laboratory) on March 17, 2010, a comprehensive performance assessment and composite analysis maintenance program must be implemented for the Technical Area 54, Area G disposal facility. Annual determinations of the adequacy of the performance assessment and composite analysis are to be conducted under the maintenance program to ensure that the conclusions reached by those analyses continue to be valid. This report summarizes the results of the fiscal year 2011 annual review for Area G. Revision 4 of the Area G performance assessment and composite analysis was issued in 2008 and formally approved in 2009. These analyses are expected to provide reasonable estimates of the long-term performance of Area G and, hence, the disposal facility's ability to comply with Department of Energy (DOE) performance objectives. Annual disposal receipt reviews indicate that smaller volumes of waste will require disposal in the pits and shafts at Area G relative to what was projected for the performance assessment and composite analysis. The future inventories are projected to decrease modestly for the pits but increase substantially for the shafts due to an increase in the amount of tritium that is projected to require disposal. Overall, however, changes in the projected future inventories of waste are not expected to compromise the ability of Area G to satisfy DOE performance objectives. The Area G composite analysis addresses potential impacts from all waste disposed of at the facility, as well as other sources of radioactive material that may interact with releases from Area G. The level of knowledge about the other sources included in the composite analysis has not changed sufficiently to call into question the validity of that analysis. Ongoing environmental surveillance activities are conducted at, and in the vicinity of, Area G. However, the information generated by many of these activities cannot be used to evaluate the validity of the performance assessment and composite analysis models because the monitoring data collected are specific to operational releases or address receptors that are outside the domain of the performance assessment and composite analysis. In general, applicable monitoring data are supportive of some aspects of the performance assessment and composite analysis. Several research and development (R and D) efforts have been initiated under the performance assessment and composite analysis maintenance program. These investigations are designed to improve the current understanding of the disposal facility and site, thereby reducing the uncertainty associated with the projections of the long-term performance of Area G. The status and results of R and D activities that were undertaken in fiscal year 2011 are discussed in this report. Special analyses have been conducted to determine the feasibility of disposing of specific waste streams, to address proposed changes in disposal operations, and to consider the impacts of changes to the models used to conduct the performance assessment and composite analysis. These analyses are described and the results of the evaluations are summarized in this report. The Area G disposal facility consists of Material Disposal Area (MDA) G and the Zone 4 expansion area. To date, all disposal operations at Area G have been confined to MDA G. Material Disposal Area G is scheduled to undergo final closure in 2015; disposal of waste in the pits and shafts is scheduled to end in 2013. In anticipation of the closure of MDA G, plans are being made to ship the majority of the waste generated at LANL to off-site locations for disposal. It is not clear at this time if waste that will be disposed of at LANL will be placed in Zone 4 or if disposal operations will move to a new location at the Laboratory. Separately, efforts to optimize the final cover used in the closure of MDA G are underway; a final cover design different than that adopted for the performance assessment and composite analy

French, Sean B. [Los Alamos National Laboratory; Shuman, Rob [WPS: WASTE PROJECTS AND SERVICES

2012-05-22T23:59:59.000Z

265

ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY  

SciTech Connect (OSTI)

The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information.

Romano, Stephen; Welling, Steven; Bell, Simon

2003-02-27T23:59:59.000Z

266

Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0  

SciTech Connect (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

Wickline, Alfred

2005-12-01T23:59:59.000Z

267

Hadronic ?Z box corrections in MÝller scattering  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

The possibility of measuring the parity-violating asymmetry in Moller scattering with sufficient accuracy to determine sin2?W to 0.1% offers a complementary path to the discovery of new physics to that followed at high energy colliders. We present a new calculation of the ?Z box contribution to parity-violating electron-proton scattering, which constitutes an important uncertainty in computing the background to this process. We show that while the ?Z correction grows rapidly with energy, it can be relatively well constrained by data from parity-violating inelastic scattering and parton distribution functions.

Hall, Nathan L. [Adelaide U.; Blunden, Peter G. [Manitoba U.; Melnitchouk, Wally [JLAB; Thomas, Anthony W. [Adelaide U.; Young, Ross D. [Adelaide U.

2014-04-01T23:59:59.000Z

268

Unlocking the Mysteries of the Bounding Box  

E-Print Network [OSTI]

Service is available online at http://www.fs.fed.us/institute/ecoregions/ eco_download.html 16. The ?1:2,000,000-Scale Hydrologic Unit Boundaries? from the US Geological Survey is available online at http://water.usgs.gov/GIS/huc.html 17. Circularity...Coordinates Series A, No. 2 Unlocking the Mysteries of the Bounding Box Persistent URL for citation: http://purl.oclc.org/coordinates/a2.pdf Date of Publication: 08/29/05 Douglas R. Caldwell Douglas R. Caldwell (e-mail: Douglas.R. Caldwell...

Caldwell, Douglas R.

2005-08-29T23:59:59.000Z

269

Test procedure for boxed waste assay system  

SciTech Connect (OSTI)

This document, prepared by Los Alamos National Laboratory`s NMT-4 group, details the test methodology and requirements for Acceptance/Qualification testing of a Boxed Waste Assay System (BWAS) designed and constructed by Pajarito Scientific Corporation. Testing of the BWAS at the Plutonium Facility (TA55) at Los Alamos National Laboratory will be performed to ascertain system adherence to procurement specification requirements. The test program shall include demonstration of conveyor handling capabilities, gamma ray energy analysis, and imaging passive/active neutron accuracy and sensitivity. Integral to these functions is the system`s embedded operating and data reduction software.

Wachter, J. [Los Alamos National Lab., NM (United States)

1994-12-07T23:59:59.000Z

270

Degradation Of Cementitious Materials Associated With Saltstone Disposal Units  

SciTech Connect (OSTI)

The Saltstone facilities at the DOE Savannah River Site (SRS) stabilize and dispose of low-level radioactive salt solution originating from liquid waste storage tanks at the site. The Saltstone Production Facility (SPF) receives treated salt solution and mixes the aqueous waste with dry cement, blast furnace slag, and fly ash to form a grout slurry which is mechanically pumped into concrete disposal cells that compose the Saltstone Disposal Facility (SDF). The solidified grout is termed ďsaltstoneĒ. Cementitious materials play a prominent role in the design and long-term performance of the SDF. The saltstone grout exhibits low permeability and diffusivity, and thus represents a physical barrier to waste release. The waste form is also reducing, which creates a chemical barrier to waste release for certain key radionuclides, notably Tc-99. Similarly, the concrete shell of an SDF disposal unit (SDU) represents an additional physical and chemical barrier to radionuclide release to the environment. Together the waste form and the SDU compose a robust containment structure at the time of facility closure. However, the physical and chemical state of cementitious materials will evolve over time through a variety of phenomena, leading to degraded barrier performance over Performance Assessment (PA) timescales of thousands to tens of thousands of years. Previous studies of cementitious material degradation in the context of low-level waste disposal have identified sulfate attack, carbonation influenced steel corrosion, and decalcification (primary constituent leaching) as the primary chemical degradation phenomena of most relevance to SRS exposure conditions. In this study, degradation time scales for each of these three degradation phenomena are estimated for saltstone and concrete associated with each SDU type under conservative, nominal, and best estimate assumptions. The nominal value (NV) is an intermediate result that is more probable than the conservative estimate (CE) and more defensible than the best estimate (BE). The combined effects of multiple phenomena are then considered to determine the most limiting degradation time scale for each cementitious material. Degradation times are estimated using a combination of analytic solutions from literature and numerical simulation codes provided through the DOE Cementitious Barriers Partnership (CBP) Software Toolbox (http://cementbarriers.org). For the SDU 2 design, the roof, wall, and floor components are projected to become fully degraded under Nominal conditions at 3866, 923, and 1413 years, respectively. For SDU 4 the roof and floor are estimated to be fully degraded under Nominal conditions after 1137 and 1407 years, respectively; the wall is assumed to be fully degraded at time zero in the most recent PA simulations. Degradation of these concrete barriers generally occurs from combined sulfate attack and corrosion of embedded steel following carbonation. Saltstone is projected to degrade very slowly by decalcification, with complete degradation occurring in excess of 200,000 years for any SDU type. Complete results are provided.

Flach, G. P; Smith, F. G. III

2013-03-19T23:59:59.000Z

271

Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

David Duncan

2011-05-01T23:59:59.000Z

272

Medical Waste Disposal Guide Laboratory Version  

E-Print Network [OSTI]

, or c. bundled or placed in a closed rigid container (e.g., cardboard box, coffee can, or plastic bottle in sharps containers; samples in plastic containers may be placed in red bags. 8. Materials must be either a in the trash. 5. Broken or fractured "bio" plasticware must be placed in a sharps container; intact items go

Manning, Sturt

273

Equipment decontamination: A brief survey of the DOE complex  

SciTech Connect (OSTI)

Deactivation at DOE facilities has left a tremendous amount of contaminated equipment behind. In-situ methods are needed to decontaminate the interiors of the equipment sufficiently to allow either free release or land disposal. A brief survey was completed of the DOE complex on their needs for equipment decontamination with in-situ technology to determine (1) the types of contamination problems within the DOE complex, (2) decontamination processes that are being used or are being developed within the DOE, and (3) the methods that are available to dispose of spent decontamination solutions. In addition, potential sites for testing decontamination methods were located. Based on the information obtained from these surveys, the Rocky Flats Plant and the Idaho National Engineering Laboratory appear to be best suited to complete the initial testing of the decontamination processes.

Conner, C.; Chamberlain, D.B; Chen, L.; Vandegrift, G.F.

1995-03-01T23:59:59.000Z

274

Electrochemical apparatus comprising modified disposable rectangular cuvette  

DOE Patents [OSTI]

Electrochemical apparatus includes a disposable rectangular cuvette modified with at least one hole through a side and/or the bottom. Apparatus may include more than one cuvette, which in practice is a disposable rectangular glass or plastic cuvette modified by drilling the hole(s) through. The apparatus include two plates and some means of fastening one plate to the other. The apparatus may be interfaced with a fiber optic or microscope objective, and a spectrometer for spectroscopic studies. The apparatus are suitable for a variety of electrochemical experiments, including surface electrochemistry, bulk electrolysis, and flow cell experiments.

Dattelbaum, Andrew M; Gupta, Gautam; Morris, David E

2013-09-10T23:59:59.000Z

275

DOE HANDBOOK  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese are the2.4Today,Guide forHandbook

276

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE National

277

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

278

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE December

279

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOE

280

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4, 2014DOEDOESeptember

282

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,

283

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

284

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

285

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

286

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

287

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656 April

288

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656

289

DOE News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeau Newman Select80.2 DOE4,(509) 372-8656ÔÉź U .

290

DOE-0336  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto Partner36

291

DOE-0344  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State ofto

292

DOE-0400  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State

293

DOE Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: Crude OilPublicDNALostPlasma PhysicsDOE Plans2

294

DOE-0342  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to UserProduct: CrudeOffice of ScientificSolar Residence by e2DOE5, 2012

295

Harmonic oscillator in a one-dimensional box  

E-Print Network [OSTI]

We study a harmonic molecule confined to a one--dimensional box with impenetrable walls. We explicitly consider the symmetry of the problem for the cases of different and equal masses. We propose suitable variational functions and compare the approximate energies given by the variation method and perturbation theory with accurate numerical ones for a wide range of values of the box length. We analyze the limits of small and large box size.

Paolo Amore; Francisco M. Fernandez

2009-07-31T23:59:59.000Z

296

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title II Disposal Sites  

SciTech Connect (OSTI)

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management in 2013 at six uranium mill tailings disposal sites reclaimed under Title II of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978. These activities verified that the UMTRCA Title II disposal sites remain in compliance with license requirements. DOE manages six UMTRCA Title II disposal sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) established at Title 10 Code of Federal Regulations Part 40.28. Reclamation and site transition activities continue at other sites, and DOE ultimately expects to manage approximately 27 Title II disposal sites. Long-term surveillance and maintenance activities and services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective action; and performing administrative, records, stakeholder services, and other regulatory functions. Annual site inspections and monitoring are conducted in accordance with site-specific long-term surveillance plans (LTSPs) and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up inspections, or corrective action. LTSPs and site compliance reports are available online at http://www.lm.doe.gov

None

2013-11-01T23:59:59.000Z

297

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect (OSTI)

The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

NSTec Environmental Programs

2010-09-14T23:59:59.000Z

298

Michigan Saves' New Marketing PSAs Use Boxing to Solve "Energy...  

Broader source: Energy.gov (indexed) [DOE]

Energy Drama public service announcement (PSA) features a series of boxing parody videos about a couple arguing over conflicting methods to reduce their home energy use. The...

299

DOE/ID-Number  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

light water fuels discharged during the 20 th century and packaged in transport, aging and disposal casks (TADs), the initially small amount of gas reactor used fuels, and...

300

Stakeholder Engagement on the Environmental Impact Statement for the Disposal of Greater-Than-Class C Low-Level Radioactive Waste -12565  

SciTech Connect (OSTI)

The Department of Energy's (DOE) Office of Disposal Operations is responsible for developing a permanent disposal capability for a small volume, but highly radioactive, class of commercial low-level radioactive waste, known as Greater-Than-Class C (GTCC) low-level radioactive waste. DOE has issued a draft environmental impact statement (EIS) and will be completing a final EIS under the National Environmental Policy Act (NEPA) that evaluates a range of disposal alternatives. Like other classes of radioactive waste, proposing and evaluating disposal options for GTCC waste is highly controversial, presents local and national impacts, and generates passionate views from stakeholders. Recent national and international events, such as the cancellation of the Yucca Mountain project and the Fukushima Daiichi nuclear accident, have heighten stakeholder awareness of everything nuclear, including disposal of radioactive waste. With these challenges, the Office of Disposal Operations recognizes that informed decision-making that will result from stakeholder engagement and participation is critical to the success of the GTCC EIS project. This paper discusses the approach used by the Office of Disposal Operations to engage stakeholders on the GTCC EIS project, provides advice based on our experiences, and proffers some ideas for future engagements in today's open, always connected cyber environment. (authors)

Gelles, Christine; Joyce, James; Edelman, Arnold [Office of Environmental Management, Office of Disposal Operations-EM-43 (United States)

2012-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Construction safety in DOE. Part 1, Students guide  

SciTech Connect (OSTI)

This report is the first part of a compilation of safety standards for construction activities on DOE facilities. This report covers the following areas: general safety and health provisions; occupational health and environmental control/haz mat; personal protective equipment; fire protection and prevention; signs, signals, and barricades; materials handling, storage, use, and disposal; hand and power tools; welding and cutting; electrical; and scaffolding.

Handwerk, E.C.

1993-08-01T23:59:59.000Z

302

CSMRI Bagged Soil Disposal Summary Report  

E-Print Network [OSTI]

of radioactive/metals-contaminated soils and similar soils to a solid waste landfill in a letter dated August 26 Radioactive Materials License No. 1094-01. This document serves to provide a summary of the disposal as well. During the 2004 remediation work, approximately 1,870 cubic yards (cy) of radioactive

303

Chemical Container and Glassware Disposal Policy  

E-Print Network [OSTI]

Chemical Container and Glassware Disposal Policy If a barcoded bottle breaks, remove the barcode or take note of the number after safely cleaning up any chemical release. Provide the number to EH be obtained at Chemstores or Biostores. Grossly contaminated glassware (with chemical residue that can

Jia, Songtao

304

Economic disposal of solid oilfield wastes  

SciTech Connect (OSTI)

A variety of solid oilfield wastes, including produced sand, tank bottoms, and crude contaminated soils, are generated during drilling, production, and storage processes. Crude oil and crude-contaminated sands or soils are generally designated as nonhazardous wastes. However, these materials still must be disposed of in an environmentally acceptable manner. The problems can become most pressing as oil fields in urban areas reach the end of their productive lives and the productive lives and the properties are redeveloped for residential use. An economically and environmentally sound solution is to reinject the solid waste into sand formations through slurry fracture muds and cuttings in Alaska, the Gulf of Mexico, and the North Sea; naturally occurring radioactive materials in Alaska and the Gulf of Mexico; and large volumes of produced oily sand in the provinces of Alberta and Saskatchewan, Canada. The technique offers a number of economic and environmental advantages for disposal of solid oilfield wastes. When reinjecting into depleted oil sands, the crude waste is simply being returned to its place of origin. The long-term liability to the operator is eliminated, in marked contrast to surface storage or landfill disposal. Finally, fracture-injection costs are less than typical transport and landfill disposal costs for moderate to large quantities of solid waste

Bruno, M.S.; Qian, H.X.

1995-09-01T23:59:59.000Z

305

Waste Handling and Disposal Biological Safety  

E-Print Network [OSTI]

plumbing services, EHS personnel wastewater treatment plant personnel, and the general public canWaste Handling and Disposal Biological Safety General Biosafety Practices (GBP) Why You Should Care on the next experiment. Are you working with r/sNA, biological toxins, human materials, needles, plasticware

Pawlowski, Wojtek

306

Program Plan for Revision of the Z-Area Saltstone Disposal Facility Performance Assessment  

SciTech Connect (OSTI)

Savannah River National Laboratory (SRNL) and the Saltstone Project, are embarking on the next revision to the Saltstone Disposal Facility (SDF) performance assessment (PA). This program plan has been prepared to outline the general approach, scope, schedule and resources for the PA revision. The plan briefly describes the task elements of the PA process. It discusses critical PA considerations in the development of conceptual models and interpretation of results. Applicable quality assurance (QA) requirements are identified and the methods for implementing QA for both software and documentation are described. The plan identifies project resources supporting the core team and providing project oversight. Program issues and risks are identified as well as mitigation of those risks. Finally, a preliminary program schedule has been developed and key deliverables identified. A number of significant changes have been implemented since the last PA revision resulting in a new design for future SDF disposal units. This revision will encompass the existing and planned disposal units, PA critical radionuclides and exposure pathways important to SDF performance. An integrated analysis of the overall facility layout, including all disposal units, will be performed to assess the impact of plume overlap on PA results. Finally, a rigorous treatment of uncertainty will be undertaken using probabilistic simulations. This analysis will be reviewed and approved by DOE-SR, DOE-HQ and potentially the Nuclear Regulatory Commission (NRC). This revision will be completed and ready for the start of the DOE review at the end of December 2006. This work supports a Saltstone Vault 2 fee-bearing milestone. This milestone includes completion of the Vault 2 module of the PA revision by the end of FY06.

Cook, James R.

2005-12-07T23:59:59.000Z

307

Proposed rulemaking on the storage and disposal of nuclear waste. Cross-statement of the United States Department of Energy  

SciTech Connect (OSTI)

The US DOE cross-statement in the matter of proposed rulemaking in the storage and disposal of nuclear wastes is presented. It is concluded from evidence contained in the document that: (1) spent fuel can be disposed of in a manner that is safe and environmentally acceptable; (2) present plans for establishing geological repositories are an effective and reasonable means of disposal; (3) spent nuclear fuel from licensed facilities can be stored in a safe and environmentally acceptable manner on-site or off-site until disposal facilities are ready; (4) sufficient additional storage capacity for spent fuel will be established; and (5) the disposal and interim storage systems for spent nuclear fuel will be integrated into an acceptable operating system. It was recommended that the commission should promulgate a rule providing that the safety and environmental implications of spent nuclear fuel remaining on site after the anticipated expiration of the facility licenses involved need not be considered in individual facility licensing proceedings. A prompt finding of confidence in the nuclear waste disposal and storage area by the commission is also recommeded. (DMC)

None

1980-09-05T23:59:59.000Z

308

Chestnut Ridge Sediment Disposal Basin (D-025): Summary of closure under Rules Governing Hazardous Waste Management in Tennessee  

SciTech Connect (OSTI)

On February 29, 1988, the Revised Closure Plan for Chestnut Ridge Sediment Disposal Basin,'' Y/TS-390 (Reference 1) was submitted to the United States Department of Energy (DOE) for review and transmittal to the Tennessee Department of Health and Environment (TDHE). The closure activities described in the closure plan have been performed. The purpose of this document is to summarize the closure activities for the Chestnut Ridge Sediment Disposal (CRSDB). The closure of CRSDB is a final closure. The Chestnut Ridge Sediment Disposal Basin (CRSDB), Unit D-025, was an unlined, man-made sediment disposal facility on Chestnut Ridge, south of New Hope Pond (NHP). The CRSDB was constructed during 1972--73 for the disposal of sediments hydraulically dredged from NHP. It was designed to hold approximately 30,000 cubic yards of sediments. Since 1973, the basin had been used for the periodic disposal of sediments excavated from NHP and its appurtenant structures. NHP has previously received discharges form RCRA-related waste streams. 19 refs., 3 figs., 1 tab.

Stone, J.E.

1989-07-01T23:59:59.000Z

309

COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS  

SciTech Connect (OSTI)

The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

THIELGES, J.R.; CHASTAIN, S.A.

2007-06-21T23:59:59.000Z

310

Technical Scope and Approach for the 2004 Composite Analysis of Low Level Waste Disposal at the Hanford Site  

SciTech Connect (OSTI)

A composite analysis is required by U.S. Department of Energy (DOE) Manual 435.1-1 to ensure public safety through the management of active and planned low-level radioactive waste disposal facilities associated with the Hanford Site (DOE/HQ-Manual 435.1-1). A Composite Analysis is defined as ''a reasonably conservative assessment of the cumulative impact from active and planned low-level waste disposal facilities, and all other sources from radioactive contamination that could interact with the low-level waste disposal facility to affect the dose to future members of the public''. At the Hanford Site, a composite analysis is required for continued disposal authorization for the immobilized low-activity waste, tank waste vitrification plant melters, low level waste in the 200 East and 200 West Solid Waste Burial Grounds, and Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) waste in the Environmental Restoration Disposal Facility. The 2004 Composite Analysis will be a site-wide analysis, considering final remedial actions for the Columbia River corridor and the Central Plateau at the Hanford Site. The river corridor includes waste sites and facilities in each of the 100 Areas as well as the 300, 400, and 600 Areas. The remedial actions for the river corridor are being conducted to meet residential land use standards with the vision of the river corridor being devoted to a combination of recreation and preservation. The ''Central Plateau'' describes the region associated with operations and waste sites of the 200 Areas. DOE is developing a strategy for closure of the Central Plateau area by 2035. At the time of closure, waste management activities will shrink to a Core Zone within the Central Plateau. The Core Zone will contain the majority of Hanford's permanently disposed waste

Kincaid, Charles T.; Bryce, Robert W.; Buck, John W.

2004-07-09T23:59:59.000Z

311

Strategy for the Management and Disposal of Used Nuclear Fuel...  

Office of Environmental Management (EM)

Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level Radioactive Waste Strategy for the Management and Disposal of Used Nuclear Fuel and High-Level...

312

Fissile Material Disposition Program: Deep Borehole Disposal Facility PEIS data input report for direct disposal. Direct disposal of plutonium metal/plutonium dioxide in compound metal canisters. Version 3.0  

SciTech Connect (OSTI)

The US Department of Energy (DOE) is examining options for disposing of excess weapons-usable nuclear materials [principally plutonium (Pu) and highly enriched uranium (HEU)] in a form or condition that is substantially and inherently more difficult to recover and reuse in weapons production. This report is the data input report for the Programmatic Environmental Impact Statement (PEIS). The PEIS examines the environmental, safety, and health impacts of implementing each disposition alternative on land use, facility operations, and site infrastructure; air quality and noise; water, geology, and soils; biotic, cultural, and paleontological resources; socioeconomics; human health; normal operations and facility accidents; waste management; and transportation. This data report is prepared to assist in estimating the environmental effects associated with the construction and operation of a Deep Borehole Disposal Facility, an alternative currently included in the PEIS. The facility projects under consideration are, not site specific. This report therefore concentrates on environmental, safety, and health impacts at a generic site appropriate for siting a Deep Borehole Disposal Facility.

Wijesinghe, A.M.; Shaffer, R.J.

1996-01-15T23:59:59.000Z

313

Interface control document between PUREX/UO{sub 3} Plant Transition and Solid Waste Disposal Division  

SciTech Connect (OSTI)

This interface control document (ICD) between PUREX/UO{sub 3} Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division`s expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division.

Duncan, D.R.

1994-06-30T23:59:59.000Z

314

HEU to LEU conversion and blending facility: UNH blending alternative to produce LEU oxide for disposal  

SciTech Connect (OSTI)

The United States Department of Energy (DOE) is examining options for the disposition of surplus weapons-usable fissile materials and storage of all weapons-usable fissile materials. Disposition is a process of use or disposal of material that results in the material being converted to a form that is substantially and inherently more proliferation-resistant than is the original form. Examining options for increasing the proliferation resistance of highly enriched uranium (HEU) is part of this effort. This report provides data to be used in the environmental impact analysis for the uranyl nitrate hexahydrate blending option to produce oxide for disposal. This the Conversion and Blending Facility (CBF) alternative will have two missions (1) convert HEU materials into HEU uranyl nitrate (UNH) and (2) blend the HEU uranyl nitrate with depleted and natural assay uranyl nitrate to produce an oxide that can be stored until an acceptable disposal approach is available. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

NONE

1995-09-01T23:59:59.000Z

315

"Black Box" EMC model for Power Electronics Converter Mikael Foissac  

E-Print Network [OSTI]

"Black Box" EMC model for Power Electronics Converter Mikael Foissac Grenoble Electrical be forecasted accurately, in order to avoid disturbance of the complete system. To quantify the EMC behaviour will then illustrate the method on a complete chopper cell. II. BLACK BOX EMC MODEL Any EMC analysis must account

Paris-Sud XI, Université de

316

Optimal Inventory Control in Cardboard Box Producing Factories  

E-Print Network [OSTI]

Optimal Inventory Control in Cardboard Box Producing Factories: A Case Study Catherine D. Black is a case study in optimal inventory control, applied to Clickabox factory, a South African cardboard box replenishment policy, based largely on experience, was implemented at the factory. The inventory model developed

van Vuuren, Jan H.

317

Use of depleted uranium metal as cask shielding in high-level waste storage, transport, and disposal systems  

SciTech Connect (OSTI)

The US DOE has amassed over 555,000 metric tons of depleted uranium from its uranium enrichment operations. Rather than dispose of this depleted uranium as waste, this study explores a beneficial use of depleted uranium as metal shielding in casks designed to contain canisters of vitrified high-level waste. Two high-level waste storage, transport, and disposal shielded cask systems are analyzed. The first system employs a shielded storage and disposal cask having a separate reusable transportation overpack. The second system employs a shielded combined storage, transport, and disposal cask. Conceptual cask designs that hold 1, 3, 4 and 7 high-level waste canisters are described for both systems. In all cases, cask design feasibility was established and analyses indicate that these casks meet applicable thermal, structural, shielding, and contact-handled requirements. Depleted uranium metal casting, fabrication, environmental, and radiation compatibility considerations are discussed and found to pose no serious implementation problems. About one-fourth of the depleted uranium inventory would be used to produce the casks required to store and dispose of the nearly 15,400 high-level waste canisters that would be produced. This study estimates the total-system cost for the preferred 7-canister storage and disposal configuration having a separate transportation overpack would be $6.3 billion. When credits are taken for depleted uranium disposal cost, a cost that would be avoided if depleted uranium were used as cask shielding material rather than disposed of as waste, total system net costs are between $3.8 billion and $5.5 billion.

Yoshimura, H.R.; Ludwigsen, J.S.; McAllaster, M.E. [and others

1996-09-01T23:59:59.000Z

318

Acceptance of Classified Excess Components for Disposal at Area 5  

SciTech Connect (OSTI)

This slide-show discusses weapons dismantlement and disposal, issues related to classified waste and their solutions.

Poling, Jeanne [National Security Technologies, LLC (United States); Saad, Max [Sandia National Lab., NM (United States)

2012-04-09T23:59:59.000Z

319

DOE Policy on Decommissioning DOE Facilities Under CERCLA | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Policy on Decommissioning DOE Facilities Under CERCLA DOE Policy on Decommissioning DOE Facilities Under CERCLA In May 1995, the Department of Energy (DOE) issued a policy in...

320

Carlsbad Field Office P. O. Box 3090 Ca  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Exceedance of Disposal Room Volatile Organic Compound Concentration of Concern for Carbon Tetrachloride Dear Mr. Bearzi: The purpose of this letter is to notify you of the...

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Disposability Assessment: Aluminum-Based Spent Nuclear Fuel Forms  

SciTech Connect (OSTI)

This report provides a technical assessment of the Melt-Dilute and Direct Al-SNF forms in disposable canisters with respect to meeting the requirements for disposal in the Mined Geologic Disposal System (MGDS) and for interim dry storage in the Treatment and Storage Facility (TSF) at SRS.

Vinson, D.W.

1998-11-06T23:59:59.000Z

322

Landfill Disposal of CCA-Treated Wood with Construction and  

E-Print Network [OSTI]

Landfill Disposal of CCA-Treated Wood with Construction and Demolition (C&D) Debris: Arsenic phased out of many residential uses in the United States, the disposal of CCA-treated wood remains. Catastrophic events have also led to the concentrated disposal of CCA-treated wood, often in unlined landfills

Florida, University of

323

Cost of meeting geothermal liquid effluent disposal regulations  

SciTech Connect (OSTI)

Background information is presented on the characteristics of liquid wastes and the available disposal options. Regulations that may directly or indirectly influence liquid waste disposal are reviewed. An assessment of the available wastewater-treatment systems is provided. A case study of expected liquid-waste-treatment and disposal costs is summarized. (MHR)

Wells, K.D.; Currie, J.W.; Price, B.A.; Rogers, E.A.

1981-06-01T23:59:59.000Z

324

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect (OSTI)

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

325

Radiological dose assessment of Department of Energy Pinellas Plant waste proposed for disposal at Laidlaw Environmental Services of South Carolina, Inc.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Pinellas Plant in Largo, FL is proposing to ship and dispose of hazardous sludge, listed as F006 waste, to the Laidlaw Environmental Services of South Carolina, Inc. (Laidlaw) treatment, storage, and disposal facility in Pinewood, South Carolina. This sludge contains radioactive tritium in concentrations of about 28 pCi/g. The objective of this study is to assess the possible radiological impact to workers at the Laidlaw facility and members of the public due to the handling, processing, and burial of the DOE waste containing tritium.

Socolof, M.L.; Lee, D.W.

1996-05-01T23:59:59.000Z

326

Technical and philosophical aspects of ocean disposal  

E-Print Network [OSTI]

Di sposai . Geological aspects Physical aspects Chemical aspects Biological aspects CHAPTER II. TECHNICAL ASPECTS OF OCEAN DISPOSAL Types of Waste Materials. Dredged materiais. Industrial wastes, DomestIc sewage wa tes Solid wastes Radloact..., can reduce the passage of light through the water column and cause damaging effects to the marine ecosystem. Each of five major oceans has pronounced gyral, or circular current motion (Fiaure 1. 1). The North Atlantic current system is comprised...

Zapatka, Marchi Charisse

1976-01-01T23:59:59.000Z

327

Waste Isolation Pilot Plant disposal phase supplemental environmental impact statement. Implementation plan  

SciTech Connect (OSTI)

The Implementation Plan for the Waste Isolation Pilot Plant Disposal Phase Supplemental Environmental Impact Statement (SEIS-II) has two primary purposes: (1) To report on the results of the scoping process (2) To provide guidance for preparing SEIS-II SEIS-II will be the National Environmental Policy Act (NEPA) review for WIPP`s disposal phase. Chapter 1 of this plan provides background on WIPP and this NEPA review. Chapter 2 describes the purpose and need for action by the Department of Energy (hereafter DOE or the Department), as well as a description of the Proposed Action and alternatives being considered. Chapter 3 describes the work plan, including the schedule, responsibilities, and planned consultations with other agencies and organizations. Chapter 4 describes the scoping process, presents major issues identified during the scoping process, and briefly indicates how issues will be addressed in SEIS-II.

NONE

1996-05-01T23:59:59.000Z

328

Three Mile Island waste management: a DOE Perspective  

SciTech Connect (OSTI)

The Department of Energy (DOE) is conducting waste management research and development activities which are applicable to the cleanup of the Three Mile Island-Unit 2 nuclear reactor. These activities have enabled DOE to provide timely assistance to General Public Utilities (GPU), the utility owner, the Nuclear Regulatory Commission (NRC), and the State of Pennsylvania in their efforts to quickly and safely clean up the damaged reactor. The DOE has been particularly active in evaluating proposed cleanup systems, providing information on waste characteristics, and advising GPU and NRC as to appropriate disposal methods for the waste generated during the cleanup. A description and discussion of some of these activities is presented.

D'Ambrosia, J.T.

1982-01-01T23:59:59.000Z

329

Measure Guideline: Optimizing the Configuration of Flexible Duct Junction Boxes  

SciTech Connect (OSTI)

This measure guideline offers additional recommendations to heating, ventilation, and air conditioning (HVAC) system designers for optimizing flexible duct, constant-volume HVAC systems using junction boxes within Air Conditioning Contractors of America (ACCA) Manual D guidance (Rutkowski, H. Manual D -- Residential Duct Systems, 3rd edition, Version 1.00. Arlington, VA: Air Conditioning Contractors of America, 2009.). IBACOS used computational fluid dynamics software to explore and develop guidance to better control the airflow effects of factors that may impact pressure losses within junction boxes among various design configurations (Beach, R., Prahl, D., and Lange, R. CFD Analysis of Flexible Duct Junction Box Design. Golden, CO: National Renewable Energy Laboratory, submitted for publication 2013). These recommendations can help to ensure that a system aligns more closely with the design and the occupants' comfort expectations. Specifically, the recommendations described herein show how to configure a rectangular box with four outlets, a triangular box with three outlets, metal wyes with two outlets, and multiple configurations for more than four outlets. Designers of HVAC systems, contractors who are fabricating junction boxes on site, and anyone using the ACCA Manual D process for sizing duct runs will find this measure guideline invaluable for more accurately minimizing pressure losses when using junction boxes with flexible ducts.

Beach, R.; Burdick, A.

2014-03-01T23:59:59.000Z

330

2013 Annual Site Inspection and Monitoring Report for Uranium Mill Tailings Radiation Control Act Title I Disposal Sites  

SciTech Connect (OSTI)

This report, in fulfillment of a license requirement, presents the results of long-term surveillance and maintenance activities conducted by the U.S. Department of Energy (DOE) Office of Legacy Management (LM) in 2013 at 19 uranium mill tailings disposal sites established under Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978.1 These activities verified that the UMTRCA Title I disposal sites remain in compliance with license requirements. DOE operates 18 UMTRCA Title I sites under a general license granted by the U.S. Nuclear Regulatory Commission (NRC) in accordance with Title 10 Code of Federal Regulations Part 40.27 (10 CFR 40.27). As required under the general license, a long-term surveillance plan (LTSP) for each site was prepared by DOE and accepted by NRC. The Grand Junction, Colorado, Disposal Site, one of the 19 Title I sites, will not be included under the general license until the open, operating portion of the cell is closed. The open portion will be closed either when it is filled or in 2023. This site is inspected in accordance with an interim LTSP. Long-term surveillance and maintenance services for these disposal sites include inspecting and maintaining the sites; monitoring environmental media and institutional controls; conducting any necessary corrective actions; and performing administrative, records, stakeholder relations, and other regulatory stewardship functions. Annual site inspections and monitoring are conducted in accordance with site-specific LTSPs and procedures established by DOE to comply with license requirements. Each site inspection is performed to verify the integrity of visible features at the site; to identify changes or new conditions that may affect the long-term performance of the site; and to determine the need, if any, for maintenance, follow-up or contingency inspections, or corrective action in accordance with the LTSP. LTSPs and site compliance reports are available on the Internet at http://www.lm.doe.gov/.

none,

2014-03-01T23:59:59.000Z

331

Long-Term Performance of Transuranic Waste Inadvertently Disposed in a Shallow Land Burial Trench at the Nevada Test Site  

SciTech Connect (OSTI)

In 1986, 21 m3 of transuranic (TRU) waste was inadvertently disposed in a shallow land burial trench at the Area 5 Radioactive Waste Management Site on the Nevada Test Site. U.S. Department of Energy (DOE) TRU waste must be disposed in accordance with Title 40, Code of Federal Regulations (CFR), Part 191, Environmental Radiation Protection Standard for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes. The Waste Isolation Pilot Plant is the only facility meeting these requirements. The National Research Council, however, has found that exhumation of buried TRU waste for disposal in a deep geologic repository may not be warranted when the effort, exposures, and expense of retrieval are not commensurate with the risk reduction achieved. The long-term risks of leaving the TRU waste in-place are evaluated in two probabilistic performance assessments. A composite analysis, assessing the dose from all disposed waste and interacting sources of residual contamination, estimates an annual total effective dose equivalent (TEDE) of 0.01 mSv, or 3 percent of the dose constraint. A 40 CFR 191 performance assessment also indicates there is reasonable assurance of meeting all requirements. The 40 CFR 191.15 annual mean TEDE for a member of the public is estimated to reach a maximum of 0.055 mSv at 10,000 years, or approximately 37 percent of the 0.15 mSv individual protection requirement. In both assessments greater than 99 percent of the dose is from co-disposed low-level waste. The simulated probability of the 40 CFR 191.13 cumulative release exceeding 1 and 10 times the release limit is estimated to be 0.0093 and less than 0.0001, respectively. Site characterization data and hydrologic process modeling support a conclusion of no groundwater pathway within 10,000 years. Monte Carlo uncertainty analysis indicates that there is reasonable assurance of meeting all regulatory requirements. Sensitivity analysis indicates that the results are insensitive to TRU waste-related parameters. Limited quantities of TRU waste in a shallow land burial trench can meet DOE performance objectives for disposal of TRU waste and contribute negligibly to disposal site risk. Leaving limited quantities of buried TRU waste in-place may be preferred over retrieval for disposal in a deep geologic repository.

Gregory J. Shott; Vefa Yucel

2009-07-16T23:59:59.000Z

332

Safeguards Approaches for Black Box Processes or Facilities  

SciTech Connect (OSTI)

The objective of this study is to determine whether a safeguards approach can be developed for ďblack boxĒ processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25T23:59:59.000Z

333

Inadvertent Intruder Analysis For The Portsmouth On-Site Waste Disposal Facility (OSWDF)  

SciTech Connect (OSTI)

The inadvertent intruder analysis considers the radiological impacts to hypothetical persons who are assumed to inadvertently intrude on the Portsmouth OSWDF site after institutional control ceases 100 years after site closure. For the purposes of this analysis, we assume that the waste disposal in the OSWDF occurs at time zero, the site is under institutional control for the next 100 years, and inadvertent intrusion can occur over the following 1,000 year time period. Disposal of low-level radioactive waste in the OSWDF must meet a requirement to assess impacts on such individuals, and demonstrate that the effective dose equivalent to an intruder would not likely exceed 100 mrem per year for scenarios involving continuous exposure (i.e. chronic) or 500 mrem for scenarios involving a single acute exposure. The focus in development of exposure scenarios for inadvertent intruders was on selecting reasonable events that may occur, giving consideration to regional customs and construction practices. An important assumption in all scenarios is that an intruder has no prior knowledge of the existence of a waste disposal facility at the site. Results of the analysis show that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, resides on the site and consumes vegetables from a garden established on the site using contaminated soil (chronic agriculture scenario) would receive a maximum chronic dose of approximately 7.0 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE chronic dose limit of 100 mrem/yr. Results of the analysis also showed that a hypothetical inadvertent intruder at the OSWDF who, in the worst case scenario, excavates a basement in the soil that reaches the waste (acute basement construction scenario) would receive a maximum acute dose of approximately 0.25 mrem/yr during the 1000 year period of assessment. This dose falls well below the DOE acute dose limit of 500 mrem/yr. Disposal inventory constraints based on the intruder analysis are well above conservative estimates of the OSWDF inventory and, based on intruder disposal limits; about 7% of the disposal capacity is reached with the estimated OSWDF inventory.

Smith, Frank G.; Phifer, Mark A.

2014-01-22T23:59:59.000Z

334

Regulatory Framework for Salt Waste Disposal and Tank Closure at the Savannah River Site - 13663  

SciTech Connect (OSTI)

The end of the Cold War has left a legacy of approximately 37 million gallons of radioactive waste in the aging waste tanks at the Department of Energy's Savannah River Site (SRS). A robust program is in place to remove waste from these tanks, treat the waste to separate into a relatively small volume of high-level waste and a large volume of low-level waste, and to actively dispose of the low-level waste on-site and close the waste tanks and associated ancillary structures. To support performance-based, risk-informed decision making and to ensure compliance with all regulatory requirements, the U.S. Department of Energy (DOE) and its current and past contractors have worked closely with the South Carolina Department of Health and Environmental Control (SCDHEC), the U.S. Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC) to develop and implement a framework for on-site low-level waste disposal and closure of the SRS waste tanks. The Atomic Energy Act of 1954, as amended, provides DOE the authority to manage defense-related radioactive waste. DOE Order 435.1 and its associated manual and guidance documents detail this radioactive waste management process. The DOE also has a requirement to consult with the NRC in determining that waste that formerly was classified as high-level waste can be safely managed as either low-level waste or transuranic waste. Once DOE makes a determination, NRC then has a responsibility to monitor DOE's actions in coordination with SCDHEC to ensure compliance with the Title 10 Code of Federal Regulations Part 61 (10CFR61), Subpart C performance objectives. The management of hazardous waste substances or components at SRS is regulated by SCDHEC and the EPA. The foundation for the interactions between DOE, SCDHEC and EPA is the SRS Federal Facility Agreement (FFA). Managing this array of requirements and successfully interacting with regulators, consultants and stakeholders is a challenging task but ensures thorough and thoughtful processes for disposing of the SRS low-level waste and the closure of the tank farm facilities. (authors)

Thomas, Steve; Dickert, Ginger [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)] [Savannah River Remediation LLC, Savannah River Site, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

335

DOE-FLEX: DOE's Telework Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order establishes the requirements and responsibilities for the Departments telework program. Cancels DOE N 314.1.

2013-02-11T23:59:59.000Z

336

Evaluation of Background Concentrations of Contaminants in an Unusual Desert Arroyo Near a Uranium Mill Tailings Disposal Cell - 12260  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) Office of Legacy Management (LM) manages 27 sites that have groundwater containing uranium concentrations above background levels. The distal portions of the plumes merge into background groundwater that can have 50 ?g/L or more uranium. Distinguishing background from site-related uranium is often problematic, but it is critical to determining if remediation is warranted, establishing appropriate remediation goals, and evaluating disposal cell performance. In particular, groundwater at disposal cells located on the upper Cretaceous Mancos Shale may have relatively high background concentrations of uranium. Elevated concentrations of nitrate, selenium, and sulfate accompany the uranium. LM used geologic analogs and uranium isotopic signatures to distinguish background groundwater from groundwater contaminated by a former uranium processing site. The same suite of contaminants is present in groundwater near former uranium processing sites and in groundwater seeps emanating from the Mancos Shale over a broad area. The concentrations of these contaminants in Many Devils Wash, located near LM's Shiprock disposal cell, are similar to those in samples collected from many Mancos seeps, including two analog sites that are 8 to 11 km from the disposal cell. Samples collected from Many Devils Wash and the analog sites have high AR values (about 2.0)-in contrast, groundwater samples collected near the tailings disposal cell have AR values near 1.0. These chemical signatures raise questions about the origin of the contamination seeping into Many Devils Wash. (authors)

Bush, Richard P. [U.S. Department of Energy Office of Legacy Management (United States); Morrison, Stan J. [S.M. Stoller Corporation (United States)

2012-07-01T23:59:59.000Z

337

SOx-NOx-Rox Box Flue Gas Cleanup Demonstration: A DOE Assessment  

SciTech Connect (OSTI)

The SNRB{trademark} test program demonstrated the feasibility of controlling multiple emissions from a coal-fired boiler in a single processing unit. The degree of emissions removals for SO{sub 2}, NO{sub x}, and particulates all exceeded the project goals. A high degree of removal for HAPs was also achieved. The SNRB system offers low space requirements, control of multiple pollutants, and operating flexibility. The pneumatic SO{sub 2} sorbent and ammonia injection systems are expected to have high reliability because of their mechanical simplicity. Despite these advantages, the SNRB process may not be an economic choice for applications involving SO{sub 2} removals above about 85%. For lower levels of SO{sub 2} removal, the projected economics for SNRB appear to be more favorable than those of existing processes which involve separate units for the same degree of control for SO{sub 2}, NO{sub x} , and particulates. Specific findings are summarized as follows: (1) SO{sub 2} removal of 85-90% was achieved at a calcium utilization of 40-45%, representing a significant improvement in performance over other dry lime injection processes. (2) When firing 3-4% sulfur coal, compliance with the 1990 CAAA Phase I SO{sub 2} emissions limit of 2.5 lb/10{sup 6} Btu was achieved with a Ca/S molar ratio of less than 1.0. For the Phase II SO{sub 2} emissions limit of 1.2 lb/10{sup 6} Btu, compliance was achieved with a Ca/S molar ratio as low as 1.5. Phase II compliance is the more relevant emissions limit. (3) When using NaHCO{sub 3} as the sorbent, the Phase II SO{sub 2} emissions limit was achieved at a Na{sub 2}/S molar ratio of less than 2.0 (NSR < 1.0). (4) Compliance with the Phase I NO{sub x} emissions limit of 0.45 lb/10{sup 6} Btu for Group 1 boilers was achieved at an NH{sub 3}/NO{sub x} ratio of 0.85, with an ammonia slip of 5 ppm or less. (5) Particulate collection efficiency averaged 99.9%, corresponding to an average emissions rate of 0.018 lb/10{sup 6} Btu. This is significantly lower than the NSPS value of 0.03 lb/10{sup 6} Btu. The high-temperature baghouse design incorporating an SCR catalyst for NO{sub x} reduction was demonstrated successfully. The technology is ready for commercial application. The key feature of the technology is control of SO{sub 2}, NO{sub x}, and particulates in a single process unit. However, this limits its commercial market to applications requiring control of all three components. Also, although the testing demonstrated greater than 90% SO{sub 2} capture, this was achieved at high sorbent/sulfur ratios. For applications requiring a high percentage of sulfur removal, a modern conventional FGD unit with LNBs for NO{sub x} control may be the preferred option.

National Energy Technology Laboratory

2000-12-15T23:59:59.000Z

338

DOE's Proposed Coverage Determination for Set-Top Boxes | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Departmentto Develop Next-GenerationEnergy On November

339

Satellite Television Industry Meeting Regarding DOE Set-Top Box Rulemaking  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September2-SCORECARD-01-24-13 Page 1 of 1ÔāßSandra L. BurrellSarai Geary|

340

PIA - DOE OCIO, Open Government Plan Comment Box | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 The 2002OpticsPeriodical: Volume 5,PET

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

U.S. DOE Set-Top Box Proceeding | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartment of1:Project | Department ANNUALHQ

342

1 Molecular Squares, Boxes, and Cubes 2 Peter H. Dinolfo  

E-Print Network [OSTI]

include the various viologen-derived 26 cyclophanes or boxes of Stoddart and coworkers,[1] --clear 27, of course, can also 36 usefully expand the range of redox, photophysical, and 37 catalytic properties

Dinolfo, Peter H.

343

Operating limit evaluation for disposal of uranium enrichment plant wastes  

SciTech Connect (OSTI)

A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) will accept wastes generated during normal plant operations that are considered to be non-radioactive. However, nearly all solid waste from any source or facility contains small amounts of radioactive material, due to the presence in most materials of trace quantities of such naturally occurring radionuclides as uranium and thorium. This paper describes an evaluation of operating limits, which are protective of public health and the environment, that would allow waste materials containing small amounts of radioactive material to be sent to a new solid waste landfill at PGDP. The operating limits are expressed as limits on concentrations of radionuclides in waste materials that could be sent to the landfill based on a site-specific analysis of the performance of the facility. These limits are advantageous to PGDP and DOE for several reasons. Most importantly, substantial cost savings in the management of waste is achieved. In addition, certain liabilities that could result from shipment of wastes to a commercial off-site solid waste landfill are avoided. Finally, assurance that disposal operations at the PGDP landfill are protective of public health and the environment is provided by establishing verifiable operating limits for small amounts of radioactive material; rather than relying solely on administrative controls. The operating limit determined in this study has been presented to the Commonwealth of Kentucky and accepted as a condition to be attached to the operating permit for the solid waste landfill.

Lee, D.W.; Kocher, D.C.; Wang, J.C.

1996-02-01T23:59:59.000Z

344

Low-level waste inventory, characteristics, generation, and facility assessment for treatment, storage, and disposal alternatives considered in the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect (OSTI)

This report provides technical support information for use in analyzing environmental impacts associated with U.S. Department of Energy (DOE) low-level radioactive waste (LLW) management alternatives in the Waste-Management (WM) Programmatic Environmental Impact Statement (PEIS). Waste loads treated and disposed of for each of the LLW alternatives considered in the DOE WM PEIS are presented. Waste loads are presented for DOE Waste Management (WM) wastes, which are generated from routine operations. Radioactivity concentrations and waste quantities for treatment and disposal under the different LLW alternatives are described for WM waste. 76 refs., 14 figs., 42 tabs.

Goyette, M.L.; Dolak, D.A.

1996-12-01T23:59:59.000Z

345

Report on audit of the US Department of Energy`s identification and disposal of nonessential land  

SciTech Connect (OSTI)

This document presents the results of an audit of four US DOE facilities to determine whether any land holdings are excess to current and anticipated future needs. Facilities audited were the Hanford Site, the Oak Ridge Reservation, the Idaho National Engineering Laboratory, and the Brookhaven Laboratory. Audit findings were that 309,000 acres at the Hanford, Oak Ridge, and Idaho sites were not essential to carrying out current and foreseeable mission requirements. It is recommended that the DOE dispose of the nonessential land holdings, reevaluate requirements for remaining land holdings and dispose of any additional nonessential land, and reevaluate the policy of defining ecosystem management as a valid basis for retaining Department real property. 2 tabs.

NONE

1997-01-01T23:59:59.000Z

346

Facts and issues of direct disposal of spent fuel; Revision 1  

SciTech Connect (OSTI)

This report reviews those facts and issues that affect the direct disposal of spent reactor fuels. It is intended as a resource document for those impacted by the current Department of Energy (DOE) guidance that calls for the cessation of fuel reprocessing. It is not intended as a study of the specific impacts (schedules and costs) to the Savannah River Site (SRS) alone. Commercial fuels, other low enriched fuels, highly enriched defense-production, research, and naval reactor fuels are included in this survey, except as prevented by rules on classification.

Parks, P.B.

1993-10-01T23:59:59.000Z

347

DOE Awards Management and Operating Contract for DOE's Strategic...  

Energy Savers [EERE]

DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve DOE Awards Management and Operating Contract for DOE's Strategic Petroleum Reserve September 18,...

348

Crescent Junction Disposal Site Diversion Channel Design, North Side Disposal Cell Sources of Data:  

E-Print Network [OSTI]

Checked b"t me-Kao a MName A e4719 lProblem Statement: " Design erosion protection for the north slope of the disposal cell to prevent detrimental erosion from surface water flows from upland area, consistent with the requirements of 40 CFR Part 192 and NRC guidance in NUREG 1623.

unknown authors

349

Dr. StrangeBox or : how I learned to stop worrying and love urban big box retail  

E-Print Network [OSTI]

Over the past decade, Big Box retailers have been trying to tap into urban markets after years of explicitly avoiding them in favor of suburban environments. In the past few years, retailers have begun experimenting with ...

Press, Jared Harding

2013-01-01T23:59:59.000Z

350

Evolution of US DOE Performance Assessments Over 20 Years - 13597  

SciTech Connect (OSTI)

Performance assessments (PAs) have been used for many years for the analysis of post-closure hazards associated with a radioactive waste disposal facility and to provide a reasonable expectation of the ability of the site and facility design to meet objectives for the protection of members of the public and the environment. The use of PA to support decision-making for LLW disposal facilities has been mandated in United States Department of Energy (US DOE) directives governing radioactive waste management since 1988 (currently DOE Order 435.1, Radioactive Waste Management). Prior to that time, PAs were also used in a less formal role. Over the past 20+ years, the US DOE approach to conduct, review and apply PAs has evolved into an efficient, rigorous and mature process that includes specific requirements for continuous improvement and independent reviews. The PA process has evolved through refinement of a graded and iterative approach designed to help focus efforts on those aspects of the problem expected to have the greatest influence on the decision being made. Many of the evolutionary changes to the PA process are linked to the refinement of the PA maintenance concept that has proven to be an important element of US DOE PA requirements in the context of supporting decision-making for safe disposal of LLW. The PA maintenance concept is central to the evolution of the graded and iterative philosophy and has helped to drive the evolution of PAs from a deterministic compliance calculation into a systematic approach that helps to focus on critical aspects of the disposal system in a manner designed to provide a more informed basis for decision-making throughout the life of a disposal facility (e.g., monitoring, research and testing, waste acceptance criteria, design improvements, data collection, model refinements). A significant evolution in PA modeling has been associated with improved use of uncertainty and sensitivity analysis techniques to support efficient implementation of the graded and iterative approach. Rather than attempt to exactly predict the migration of radionuclides in a disposal unit, the best PAs have evolved into tools that provide a range of results to guide decision-makers in planning the most efficient, cost effective, and safe disposal of radionuclides. (authors)

Suttora, Linda C. [U.S. Department of Energy, Office of Site Restoration, 19901 Germantown Rd, Germantown, MD 20874-1290 (United States)] [U.S. Department of Energy, Office of Site Restoration, 19901 Germantown Rd, Germantown, MD 20874-1290 (United States); Seitz, Roger R. [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States)] [Savannah River National Laboratory, Savannah River Site, Bldg 773-43A, Aiken, SC 29808 (United States)

2013-07-01T23:59:59.000Z

351

Reactor Pressure Vessel Head Packaging & Disposal  

SciTech Connect (OSTI)

Reactor Pressure Vessel (RPV) Head replacements have come to the forefront due to erosion/corrosion and wastage problems resulting from the susceptibility of the RPV Head alloy steel material to water/boric acid corrosion from reactor coolant leakage through the various RPV Head penetrations. A case in point is the recent Davis-Besse RPV Head project, where detailed inspections in early 2002 revealed significant wastage of head material adjacent to one of the Control Rod Drive Mechanism (CRDM) nozzles. In lieu of making ASME weld repairs to the damaged head, Davis-Besse made the decision to replace the RPV Head. The decision was made on the basis that the required weld repair would be too extensive and almost impractical. This paper presents the packaging, transport, and disposal considerations for the damaged Davis-Besse RPV Head. It addresses the requirements necessary to meet Davis Besse needs, as well as the regulatory criteria, for shipping and burial of the head. It focuses on the radiological characterization, shipping/disposal package design, site preparation and packaging, and the transportation and emergency response plans that were developed for the Davis-Besse RPV Head project.

Wheeler, D. M.; Posivak, E.; Freitag, A.; Geddes, B.

2003-02-26T23:59:59.000Z

352

Municipal solid waste disposal in Portugal  

SciTech Connect (OSTI)

In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

2006-07-01T23:59:59.000Z

353

Remedial Action and Waste Disposal Conduct of OperationsMatrix  

SciTech Connect (OSTI)

This Conduct of Operations (CONOPS) matrix incorporates the Environmental Restoration Disposal Facility (ERDF) CONOPS matrix (BHI-00746, Rev. 0). The ERDF CONOPS matrix has been expanded to cover all aspects of the RAWD project. All remedial action and waste disposal (RAWD) operations, including waste remediation, transportation, and disposal at the ERDF consist of construction-type activities as opposed to nuclear power plant-like operations. In keeping with this distinction, the graded approach has been applied to the developmentof this matrix.

M. A. Casbon.

1999-05-24T23:59:59.000Z

354

Processing and waste disposal representative for fusion breeder blanket systems  

SciTech Connect (OSTI)

This study is an evaluation of the waste handling concepts applicable to fusion breeder systems. Its goal is to determine if breeder blanket waste can be disposed of in shallow land burial, the least restrictive method under US Nuclear Regulatory regulations. The radionuclides expected in the materials used in fusion reactor blankets are described, as are plans for reprocessing and disposal of the components of different breeder blankets. An estimate of the operating costs involved in waste disposal is made.

Finn, P.A.; Vogler, S.

1987-01-01T23:59:59.000Z

355

FY 2006 ANNUAL REVIEW-SALTSTONE DISPOSAL FACILITY PERFORMANCE ASSESSMENT  

SciTech Connect (OSTI)

The Z-Area Saltstone Disposal Facility (SDF) consists of two disposal units, Vaults 1 and 4, described in the Performance Assessment (PA) (WSRC 1992). The FY06 PA Annual Review concludes that both vaults contain much lower levels of radionuclides (curies) than that allowed by the PA. The PA controls established to govern waste operations and monitor disposal facility performance are determined to be adequate.

Crapse, K; Benjamin Culbertson, B

2007-03-15T23:59:59.000Z

356

Ballot box and tinder box : can electoral engineering save multiethnic democracy?  

E-Print Network [OSTI]

The objective of this dissertation is to systematize the existing hypotheses in the electoral engineering literature and to test them in a set of selected case studies in order to answer a central question: does the electoral ...

Liaras, Evangelos

2010-01-01T23:59:59.000Z

357

EIS-0356: Retrieval, Treatment and Disposal of Tank Wastes and Closure of Single-Shell Tanks at the Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed retrieval, treatment, and disposal of the waste being managed in the high-level waste (HLW) tank farms at the Hanford Site near Richland, Washington, and closure of the 149 single-shell tanks (SSTs) and associated facilities in the HLW tank farms.

358

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

359

Evaluation of Options for Permanent Geologic Disposal of Spent...  

Broader source: Energy.gov (indexed) [DOE]

policy decisions regarding strategies for the management and permanent disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW) in the United States requiring...

360

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect (OSTI)

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Low-Level Waste Disposal Alternatives Analysis Report  

SciTech Connect (OSTI)

This report identifies and compares on-site and off-site disposal options for the disposal of contract-handled and remote-handled low-level waste generated by the Idaho National Laboratory and its tenants. Potential disposal options are screened for viability by waste type resulting in a short list of options for further consideration. The most crediable option are selected after systematic consideration of cost, schedule constraints, and risk. In order to holistically address the approach for low-level waste disposal, options are compiled into comprehensive disposal schemes, that is, alternative scenarios. Each alternative scenario addresses the disposal path for all low-level waste types over the period of interest. The alternative scenarios are compared and ranked using cost, risk and complexity to arrive at the recommended approach. Schedule alignment with disposal needs is addressed to ensure that all waste types are managed appropriately. The recommended alternative scenario for the disposal of low-level waste based on this analysis is to build a disposal facility at the Idaho National Laboratory Site.

Timothy Carlson; Kay Adler-Flitton; Roy Grant; Joan Connolly; Peggy Hinman; Charles Marcinkiewicz

2006-09-01T23:59:59.000Z

362

South Carolina Radioactive Waste Transportation and Disposal Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is responsible for regulating the transportation of radioactive waste, with some exceptions, into or within the state for storage, disposal, or...

363

Used Fuel Disposition Campaign Disposal Research and Development...  

Broader source: Energy.gov (indexed) [DOE]

generated by existing and future nuclear fuel cycles. The disposal of SNF and HLW in a range of geologic media has been investigated internationally. Considerable progress has...

364

Southwestern Low-Level Radioactive Waste Disposal Compact (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the state's entrance into the Southwestern Low-Level Radioactive Waste Disposal Compact, which provides for the cooperative management of low-level radioactive waste....

365

Repository Reference Disposal Concepts and Thermal Load Management...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Load Management Analysis A disposal concept consists of three parts: waste inventory (7 waste types examined), geologic setting (e.g., clayshale, salt, crystalline,...

366

Disposable Carbon Nanotube Modified Screen-Printed Biosensor...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Nanotube Modified Screen-Printed Biosensor for Amperometric Detection of Organophosphorus Pesticides and Nerve Disposable Carbon Nanotube Modified Screen-Printed Biosensor...

367

DOE handbook: Tritium handling and safe storage  

SciTech Connect (OSTI)

The DOE Handbook was developed as an educational supplement and reference for operations and maintenance personnel. Most of the tritium publications are written from a radiological protection perspective. This handbook provides more extensive guidance and advice on the null range of tritium operations. This handbook can be used by personnel involved in the full range of tritium handling from receipt to ultimate disposal. Compliance issues are addressed at each stage of handling. This handbook can also be used as a reference for those individuals involved in real time determination of bounding doses resulting from inadvertent tritium releases. This handbook provides useful information for establishing processes and procedures for the receipt, storage, assay, handling, packaging, and shipping of tritium and tritiated wastes. It includes discussions and advice on compliance-based issues and adds insight to those areas that currently possess unclear DOE guidance.

NONE

1999-03-01T23:59:59.000Z

368

Long-term criticality control in radioactive waste disposal facilities using depleted uranium  

SciTech Connect (OSTI)

Plant photosynthesis has created a unique planetary-wide geochemistry - an oxidizing atmosphere with oxidizing surface waters on a planetary body with chemically reducing conditions near or at some distance below the surface. Uranium is four orders of magnitude more soluble under chemically oxidizing conditions than it is under chemically reducing conditions. Thus, uranium tends to leach from surface rock and disposal sites, move with groundwater, and concentrate where chemically reducing conditions appear. Earth`s geochemistry concentrates uranium and can separate uranium from all other elements except oxygen, hydrogen (in water), and silicon (silicates, etc). Fissile isotopes include {sup 235}U, {sup 233}U, and many higher actinides that eventually decay to one of these two uranium isotopes. The potential for nuclear criticality exists if the precipitated uranium from disposal sites has a significant fissile enrichment, mass, and volume. The earth`s geochemistry suggests that isotopic dilution of fissile materials in waste with {sup 238}U is a preferred strategy to prevent long-term nuclear criticality in and beyond the boundaries of waste disposal facilities because the {sup 238}U does not separate from the fissile uranium isotopes. Geological, laboratory, and theoretical data indicate that the potential for nuclear criticality can be minimized by diluting fissile materials with-{sup 238}U to 1 wt % {sup 235}U equivalent.

Forsberg, C.W.

1997-02-19T23:59:59.000Z

369

DOE Mentoring Program  

Broader source: Energy.gov [DOE]

The Office of Learning and Workforce Development coordinates this mentoring program for DOE Federal Employees.

370

DOE Lessons Learned  

Broader source: Energy.gov [DOE]

DOE Lessons Learned Information Services Catches the Eye of Corporations and Educational Institutions

371

COMPOSITE ANALYSIS OF LLW DISPOSAL FACILITIES AT THE U.S. DEPARTMENT OF ENERGY'S SAVANNAH RIVER SITE  

SciTech Connect (OSTI)

Composite Analyses (CA's) are required per DOE Order 435.1 [1], in order to provide a reasonable expectation that DOE low-level waste (LLW) disposal, high-level waste tank closure, and transuranic (TRU) waste disposal in combination with Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), Resource Conservation and Recovery Act (RCRA), and deactivation and decommissioning (D&D) actions, will not result in the need for future remedial actions in order to ensure radiological protection of the public and environment. This Order requires that an accounting of all sources of DOE man-made radionuclides and DOE enhanced natural radionuclides that are projected to remain on the site after all DOE site operations have ceased. This CA updates the previous CA that was developed in 1997. As part of this CA, an inventory of expected radionuclide residuals was conducted, exposure pathways were screened and a model was developed such that a dose to the MOP at the selected points of exposure might be evaluated.

Hiergesell, R; Mark Phifer, M; Frank02 Smith, F

2009-01-08T23:59:59.000Z

372

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, ďProgram and Project Management for the Acquisition of Capital Assets,Ē safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, ďFacility Safety,Ē and the expectations of DOE-STD-1189-2008, ďIntegration of Safety into the Design Process,Ē provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-05-01T23:59:59.000Z

373

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, ďProgram and Project Management for the Acquisition of Capital Assets,Ē safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, ďFacility Safety,Ē and the expectations of DOE-STD-1189-2008, ďIntegration of Safety into the Design Process,Ē provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-08-01T23:59:59.000Z

374

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, ďProgram and Project Management for the Acquisition of Capital Assets,Ē safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, ďFacility Safety,Ē and the expectations of DOE-STD-1189-2008, ďIntegration of Safety into the Design Process,Ē provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2010-10-01T23:59:59.000Z

375

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, ďProgram and Project Management for the Acquisition of Capital Assets,Ē safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, ďFacility Safety,Ē and the expectations of DOE-STD-1189-2008, ďIntegration of Safety into the Design Process,Ē provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Boyd D. Chirstensen

2012-04-01T23:59:59.000Z

376

Safety Design Strategy for the Remote Handled Low-Level Waste Disposal Project  

SciTech Connect (OSTI)

In accordance with the requirements of U.S. Department of Energy (DOE) Order 413.3A, ďProgram and Project Management for the Acquisition of Capital Assets,Ē safety must be integrated into the design process for new or major modifications to DOE Hazard Category 1, 2, and 3 nuclear facilities. The intended purpose of this requirement involves the handling of hazardous materials, both radiological and chemical, in a way that provides adequate protection to the public, workers, and the environment. Requirements provided in DOE Order 413.3A and DOE Order 420.1B, ďFacility Safety,Ē and the expectations of DOE-STD-1189-2008, ďIntegration of Safety into the Design Process,Ē provide for identification of hazards early in the project and use of an integrated team approach to design safety into the facility. This safety design strategy provides the basic safety-in-design principles and concepts that will be used for the Remote-Handled Low-Level Waste Disposal Project.

Gary Mecham

2009-10-01T23:59:59.000Z

377

TWRS Retrieval and Storage Mission and Immobilized Low Activity Waste (ILAW) Disposal Plan  

SciTech Connect (OSTI)

This project plan has a twofold purpose. First, it provides a waste stream project plan specific to the River Protection Project (RPP) (formerly the Tank Waste Remediation System [TWRS] Project) Immobilized Low-Activity Waste (LAW) Disposal Subproject for the Washington State Department of Ecology (Ecology) that meets the requirements of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) Milestone M-90-01 (Ecology et al. 1994) and is consistent with the project plan content guidelines found in Section 11.5 of the Tri-Party Agreement action plan (Ecology et al. 1998). Second, it provides an upper tier document that can be used as the basis for future subproject line-item construction management plans. The planning elements for the construction management plans are derived from applicable U.S. Department of Energy (DOE) planning guidance documents (DOE Orders 4700.1 [DOE 1992] and 430.1 [DOE 1995a]). The format and content of this project plan are designed to accommodate the requirements mentioned by the Tri-Party Agreement and the DOE orders. A cross-check matrix is provided in Appendix A to explain where in the plan project planning elements required by Section 11.5 of the Tri-Party Agreement are addressed.

BURBANK, D.A.

1999-09-01T23:59:59.000Z

378

DOE-FLEX: DOE's Telework Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The directive establishes the requirements and responsibilities for the Departmentís telework program. Canceled by DOE O 314.1.

2011-07-05T23:59:59.000Z

379

Politics and promises of nuclear waste disposal: the view from Nevada  

SciTech Connect (OSTI)

DOE`s betrayal of the principles and standards of the Nuclear Waste Policy Act (NWPA) has distorted the agency`s repository-siting decisions. Leadership is needed to make midcourse corrections and to return to the promise of state-federal cooperation on which the act was built. NWPA managed to incorporate the interests of diverse factions into a decision-making process that was viewed as an equitable and workable solution to the nation`s nuclear waste disposal dilemma. The House of Representatives subcommittees report documents conclusively a substantial and pervasive bias in favor of the selection of sites at Yucca Mountain and Hanford and a politization of the siting process.

Bryan, R.H.

1987-10-01T23:59:59.000Z

380

Sludge utilization and disposal in Virginia  

SciTech Connect (OSTI)

This state-of-the-art study was initiated to determine the problem issues, present knowledge about the issues, and additional research needs in the area of land disposal of municipal sewage sludge. Three questionnaires were developed to survey technically oriented professional, county extension agents, and Virginia NPDES permit holders to obtain these groups' views on problems and deficiencies needing further investigation. Another phase of the study was to conduct an extensive review of the literature on the subject of land application of sewage sludge. Listings of pertinent literature relating to land application with specific interest toward potentially toxic metals, pathogens, nitrogen, and phosphorus were obtained and reviewed. Additional research is needed in the following areas: a method that accurately estimates metal availability within the soil; a method to determine the potential for a disease outbreak from controlled application of treated municipal sewage sludge; a more precise method of N-balancing; the impact of P loading on water quality.

Martens, D.C.; McCart, G.D.; Reneau, R.B. Jr; Simpson, T.W.; Ban-Kiat, T.

1982-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Radioactive waste disposal in thick unsaturated zones  

SciTech Connect (OSTI)

Portions of the Great Basin are undergoing crustal extension and have unsaturated zones as much as 600 meters thick. These areas contain multiple natural barriers capable of isolating solidified toxic wastes from the biosphere for tens of thousands to perhaps hundreds of thousands of years. An example of the potential utilization of such arid zone environments for toxic waste isolation is the burial of transuranic radioactive wastes at relatively shallow depths (15 to 100 meters) in Sedan Crater, Yucca Flat, Nevada. The volume of this man-made crater is several times that of the projected volume of such wastes to the year 2000. Disposal in Sedan Crater could be accomplished at a savings on the order of $0.5 billion, in comparison with current schemes for burial of such wastes in mined repositories at depths of 600 to 900 meters, and with an apparently equal likelihood of waste isolation from the biosphere. 4 figures.

Winograd, I.J.

1981-06-26T23:59:59.000Z

382

Integrated Box Interrogation System (IBIS) Preliminary Design Study  

SciTech Connect (OSTI)

Canberra Industries has won the tendered solicitation, INEEL/EST-99-00121 for boxed waste Nondestructive Assay Development and Demonstration. Canberra will provide the Integrated Box Interrogation System (IBIS) which is a suite of assay instrumentation and a data reduction system that addresses the measurement needs for Boxed Wastes identified in the solicitation and facilitates the associated experimental program and demonstration of system capability. The IBIS system will consist of the next generation CWAM system, i.e. CWAM II, which is a Scanning Passive/Active Neutron interrogation system which we will call a Box Segmented Neutron Scanner (BSNS), combined with a physically separate Box Segmented Gamma-ray Scanning (BSGS) system. These systems are based on existing hardware designs but will be tailored to the large sample size and enhanced to allow the program to evaluate the following measurement criteria:Characterization and correction for matrix heterogeneity Characterization of non-uniform radio-nuclide and isotopic compositions Assay of high density matrices (both high-Z and high moderator contents)Correction for radioactive material physical form - such as self shielding or multiplication effects due to large accumulations of radioactive materials.Calibration with a minimal set of reference standards and representative matrices.THis document summarizes the conceptual design parameters of the IBIS and indicates areas key to the success of the project where development is to be centered. The work presented here is a collaborative effort between scientific staff within Canberra and within the NIS-6 group at LANL.

DR. Stephen Croft; Mr. David Martancik; Dr. Brian Young; Dr. Patrick MJ Chard; Dr. Robert J Estop; Sheila Melton; Gaetano J. Arnone

2003-01-13T23:59:59.000Z

383

A Change in Envirocare's Disposal Cell Design  

SciTech Connect (OSTI)

Envirocare of Utah, Inc. operates a Low Level Radioactive Waste (LLRW) and 11e. disposal facility in the Utah west dessert. Envirocare disposes of LLRW in above ground cells. A seven-foot excavation lined with two feet of clay comprises the cell floor. Approximately 22 feet of waste is then placed in the cell in one-foot thick compacted lifts. The cover system consists of a nine-foot clay radon barrier and three-foot rock erosion barrier. This is required to prevent radon emissions at the surface of the radon barrier from exceeding 20 pCi/m2s, the radon release standard in Criterion 6 of 10 CFR 40. The required thickness of the current clay radon barrier cover was based on the original radon flux model used to evaluate the safety of Envirocare's proposed LLRW and 11e.(2) license operations. Because of the lack of actual measurements, universally conservative values were used for the long-term moisture content and the radon diffusion coefficients of the waste and radon barrier material. Since receiving its license, Envirocare has collected a number of samples from the radon barrier and waste material to determine their actual radon attenuation characteristics, including the long-term moisture content and the associated radon diffusion coefficient. In addition, radon flux measurements have been performed to compare the model calculations with the calculated results. The results from these analyses indicate that the initial modeling input parameters, specifically the long-term moisture content and the radon diffusion coefficient, are more conservative than that needed to ensure compliance with the applicable regulatory requirements.

Rogers, T.

2002-02-25T23:59:59.000Z

384

1 INSTRODUCTION In the concept of geological radioactive waste disposal,  

E-Print Network [OSTI]

1 INSTRODUCTION In the concept of geological radioactive waste disposal, argillite is being of the radioactive waste disposal, the host rock will be subjected to various thermo-hydro-mechanical loadings, thermal solicitation comes from the heat emitting from the radioactive waste packages. On one hand

Boyer, Edmond

385

A model approach to radioactive waste disposal at Sellafield  

E-Print Network [OSTI]

A model approach to radioactive waste disposal at Sellafield R. 5. Haszeldine* and C. Mc of the great environmentalproblems of our age is the safe disposal of radioactive waste for geological time of the BorrowdaleVolcanic Group (BVG).Nirex plan to site their nuclear waste Repository at 650 m below sea- level

Haszeldine, Stuart

386

Successful Opening and Disposal to-Date of Mixed CERCLA Waste at the ORR-EMWMF  

SciTech Connect (OSTI)

On May 28, 2002, the Environmental Management Waste Management Facility (EMWMF) opened for operations on the Department of Energy's Oak Ridge Reservation (ORR). The EMWMF is the centerpiece in the DOE's strategy for ORR environmental cleanup. The 8+ year planned project is an on-site engineered landfill, which is accepting for disposal radioactive, hazardous, toxic and mixed wastes generated by remedial action subcontractors. The opening of the EMWMF on May 28, 2002 marked the culmination of a long development process that began in mid-1980. In late 1999 the Record of Decision was signed and a full year of design for the initial 400, 000-yd3 disposal cell began. In early 2000 Duratek Federal Services, Inc. (Federal Services) began construction. Since then, Federal Services and Bechtel Jacobs Company, LLC (BJC) have worked cooperatively to complete a required DOE readiness evaluation, develop all the Safety Authorization Basis Documentation (ASA's, SER, and UCD's) and prepare procedures and work controlling documents required to safely accept waste. This paper explains the intricacies and economics of designing and constructing the facility.

Corpstein, P.; Hopper, P.; McNutt, R.

2003-02-25T23:59:59.000Z

387

Composite analysis E-area vaults and saltstone disposal facilities  

SciTech Connect (OSTI)

This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potential sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.

Cook, J.R.

1997-09-01T23:59:59.000Z

388

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it...  

National Nuclear Security Administration (NNSA)

plutonium to meet the non-proliferation goals agreed to by the United States and Russia in September 2000. Eliminating immobilization from the disposition pathway saves...

389

DOE to Weigh Alternatives for Greater Than Class C Low-Level Waste Disposal  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergyWeapons StockpileDepartment|

390

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2FleetOutreachPlans |

391

Format and Content Guide for DOE Low-Level Waste Disposal Facility |  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecember 2005DepartmentDecember U.S.Financial Statement:Fire2FleetOutreachPlans

392

Format and Content Guide for DOE Low-Level Waste Disposal Facility  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment of Energy Forest2 G

393

Format and Content Guide for DOE Low-Level Waste Disposal Facility Closure Plans  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescentDepartment of Energy Forest2 G3 G

394

Maintenance Guide for DOE Low-Level Waste Disposal Facility | Department of  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives InitiativesShipping Goal | Department ofMIE WebinarDepartment

395

DOE Announces Preference for Disposal of Hanford Transuranic Tank Waste at  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReport 2009SiteMajor Maintenance

396

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aCleanDepartmentTrinity

397

DOE Awards Task Order for Disposal of Los Alamos National Lab Waste |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aCleanDepartmentTrinityDepartment

398

DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aCleanDepartmentTrinityDepartment|

399

DOE Awards Task Order for Disposal of Los Alamos National Laboratory Waste  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTS AVAILABLEReportEnergyDeveloping aCleanDepartmentTrinityDepartment||

400

DOE Selects Two Contractors for Multiple-Award Waste Disposal Contract |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof EnergyAlliance | Department ofTechnology|PowerDepartment of

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

DOE Will Dispose of 34 Metric Tons of Plutonium by Turning it into Fuel for  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransition Documents - 2008 DOEDOEDOE

402

Assessment of Disposal Options for DOE-Managed High-Level Radioactive Waste  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access toEnergy 5 BTOofthe UnitedandContinentaland

403

Moab Mill Tailings Pile 25 Percent Disposed: DOE Moab Project Reaches  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorgeDoesn't32 MasterAcquisitiTechnologyPotomacRidge |Significant Milestone

404

DOE - Office of Legacy Management -- 11 E (2) Disposal Cell - 037  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are here Home ¬Ľ Sites ¬Ľ Sites PendingHome Last11 E

405

DOE - Office of Legacy Management -- Shallow Land Disposal Area - PA 45  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou are herePAOsborneSavannah River Swamp -Shallow Land

406

Introduction to DOE Order 435.1 Low Level Radioactive Waste Disposal  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.ProgramJulietipDepartmentJune 20,AmongDevelopment andRequirements | Department

407

NNSS Waste Disposal Proves Vital Resource for DOE Complex | Department of  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,FermiJoshuaAugust1 | Energy Efficiency and RenewableDeploying

408

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 3-18-06: DOE N 205.8, Cyber Security Requirements for Wireless Devices and Information Systems, dated 2-11-04; DOE N 205.9, Certification and Accreditation Process for Information Systems Including National Security Systems, dated 02-19-04; DOE N 205.10, Cyber Security Requirements for Risk Management, dated 02-19-04; DOE N 205.11, Security Requirements for Remote Access to DOE and Applicable Contractor Information Technology Systems, dated 2-19-04. DOE N 205.12, Clearing, Sanitizing, and Destroying Information System Storage Media, Memory Devices, and Other Related Hardware, dated 2-19-04.

2005-03-18T23:59:59.000Z

409

PROCEDURES FOR DISPOSING OF WASTE CHEMICALS 1. All containers submitted for disposal must be clearly labeled with the following information  

E-Print Network [OSTI]

-duty plastic bags. Tape all containers of chemically-contaminated dry materials securely shut and label. Container Is - Indicate P (plastic), G (glass), or M (metal). Physical State - Indicate if the material8/99 PROCEDURES FOR DISPOSING OF WASTE CHEMICALS 1. All containers submitted for disposal must

410

Pollution Experiment Plastic box (size between a shoebox and a moving box)  

E-Print Network [OSTI]

across the land and to water systems. Explore the types of pollution and encourage the kids to talk about-point sources). Procedure ASK: What can you tell me about pollution? How does pollution affect water bodies ≠ examples of water bodies? What kind of pollution have you seen in these areas? Have you ever seen a place

Benitez-Nelson, Claudia

411

Technology needs for remediation: Hanford and other DOE sites  

SciTech Connect (OSTI)

Technologies are being developed under the Buried Waste Integrated Demonstration (BWID) program to facilitate remediation of the US Department of Energy's (DOE) buried and stored low-level radioactive, transuranic (TRU), and mixed radioactive and hazardous buried wastes. The BWID program is being coordinated by the Idaho National Engineering Laboratory (INEL) in southeastern Idaho, a DOE site that has large volumes of buried radioactive wastes. The program is currently focusing its efforts on the problems at INEL's Subsurface Disposal Area (SDA) of the Radioactive Waste Management Complex (RWMC). As specific technologies are successfully demonstrated, they will be available for transfer to applications at other DOE buried waste sites. The purpose of this study is to present buried waste technology needs that have been identified for DOE sites other than INEL.

Stapp, D.C.

1993-01-01T23:59:59.000Z

412

Generic Argillite/Shale Disposal Reference Case  

SciTech Connect (OSTI)

Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the properties (parameters) used in these models are different, which not only make inter-model comparisons difficult, but also compromise the applicability of the lessons learned from one model to another model. The establishment of a reference case would therefore be helpful to set up a baseline for model development. A generic salt repository reference case was developed in Freeze et al. (2013) and the generic argillite repository reference case is presented in this report. The definition of a reference case requires the characterization of the waste inventory, waste form, waste package, repository layout, EBS backfill, host rock, and biosphere. This report mainly documents the processes in EBS bentonite and host rock that are potentially important for performance assessment and properties that are needed to describe these processes, with brief description other components such as waste inventory, waste form, waste package, repository layout, aquifer, and biosphere. A thorough description of the generic argillite repository reference case will be given in Jovť Colon et al. (2014).

Zheng, Liange; Jov& #233; Colon, Carlos; Bianchi, Marco; Birkholzer, Jens

2014-08-08T23:59:59.000Z

413

Experimental determination of the elastic cotunneling rate in a hybrid single-electron box  

SciTech Connect (OSTI)

We report measurements of charge configurations and charge transfer dynamics in a hybrid single-electron box composed of aluminum and copper. We used two single-electron transistors (SETs) to simultaneously read out different parts of the box, enabling us to map out stability diagrams of the box and identify various charge transfer processes in the box. We further characterized the elastic cotunneling in the box, which is an important source of error in electron turnstiles consisting of hybrid SETs, and found that the rate was as low as 1?Hz at degeneracy and compatible with theoretical estimates for electron tunneling via virtual states in the central superconducting island of the box.

Sun, Chia-Heng; Tai, Po-Chen; Chen, Yung-Fu, E-mail: yfuchen@ncu.edu.tw [Department of Physics, National Central University, Jhongli 32001, Taiwan (China); Jiang, Jheng-An; Wu, Cen-Shawn [Department of Physics, National Changhua University of Education, Changhua 500, Taiwan (China); Chen, Jeng-Chung [Department of Physics, National Tsing-Hua University, Hsinchu 30013, Taiwan (China)

2014-06-09T23:59:59.000Z

414

Vintage DOE: Accomplishments  

Broader source: Energy.gov [DOE]

This vintage video, from the Office of Scientific and Technical Information and the U.S. Department of Energy Office of Science, does a great job detailing DOE's accomplishments.

415

DOE-STD-1104  

Office of Environmental Management (EM)

Implementation 1 DOE-STD-1104-2014 Roll-out AU Roll-out Contacts 2 Garrett Smith, Director, Nuclear Safety Basis and Facility Design, Office of Nuclear Safety (DOE...

416

Nuclear Dynamics Consequence Analysis (NDCA) for the Disposal of Spent Nuclear Fuel in an Underground Geologic Repository - Volume 3: Appendices  

SciTech Connect (OSTI)

The United States Department of Energy Office of Environmental Management's (DOE/EM's) National Spent Nuclear Fuel Program (NSNFP), through a collaboration between Sandia National Laboratories (SNL) and Idaho National Engineering and Environmental Laboratory (INEEL), is conducting a systematic Nuclear Dynamics Consequence Analysis (NDCA) of the disposal of SNFs in an underground geologic repository sited in unsaturated tuff. This analysis is intended to provide interim guidance to the DOE for the management of the SNF while they prepare for final compliance evaluation. This report presents results from a Nuclear Dynamics Consequence Analysis (NDCA) that examined the potential consequences and risks of criticality during the long-term disposal of spent nuclear fuel owned by DOE-EM. This analysis investigated the potential of post-closure criticality, the consequences of a criticality excursion, and the probability frequency for post-closure criticality. The results of the NDCA are intended to provide the DOE-EM with a technical basis for measuring risk which can be used for screening arguments to eliminate post-closure criticality FEPs (features, events and processes) from consideration in the compliance assessment because of either low probability or low consequences. This report is composed of an executive summary (Volume 1), the methodology and results of the NDCA (Volume 2), and the applicable appendices (Volume 3).

Taylor, L.L.; Wilson, J.R. (INEEL); Sanchez, L.C.; Aguilar, R.; Trellue, H.R.; Cochrane, K. (SNL); Rath, J.S. (New Mexico Engineering Research Institute)

1998-10-01T23:59:59.000Z

417

DOE Sustainability SPOtlight  

Broader source: Energy.gov [DOE]

Newsletter highlights the recipients of the U.S. Department of Energy (DOE) Sustainability Performance Office (SPO) 2014 Sustainability Awards.

418

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

Effective immediately, DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11-1-99, and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99, are extended until 9-30-06, unless sooner rescinded.

2005-09-15T23:59:59.000Z

419

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Notice extends the following directives until 2/16/04: DOE N 205.2, Foreign National Access to DOE Cyber Systems, and DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99-7/1/00.

2003-02-24T23:59:59.000Z

420

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 8-12-04. DOE N 205.2, Foreign National Access to DOE Cyber Systems, dated 11/1/99. DOE N 205.3, Password Generation, Protection, and Use, dated 11/23/99.

2004-02-12T23:59:59.000Z

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Extension of DOE Directives  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The following directives are extended until 8-12-05: DOE N 205.2, Foreign National Access to DOE Cyber Security Systems, dated 11-1-99 and DOE N 205.3, Password Generation, Protection, and Use, dated 11-23-99. No cancellations.

2004-08-12T23:59:59.000Z

422

Computer Science & Engineering Box 352350 Seattle, WA 98195-2350  

E-Print Network [OSTI]

Computer Science & Engineering #12;Box 352350 Seattle, WA 98195-2350 Nonprofit Org US Postage PAID in the Computer Science Department. He is a superb researcher in the design of interactive, visual data, Carnegie Mellon University's Finmeccanica Associate Professor in the School of Computer Science, is widely

Borenstein, Elhanan

423

Energy Savings Assessment for Digital-to-Analog Converter Boxes  

SciTech Connect (OSTI)

The Digital Television (DTV) Converter Box Coupon Program was administered by the U.S. government to subsidize purchases of digital-to-analog converter boxes, with up to two $40 coupons for each eligible household. In order to qualify as Coupon Eligible Converter Boxes (CECBs), these devices had to meet a number of minimum performance specifications, including energy efficiency standards. The Energy Star Program also established voluntary energy efficiency specifications that are more stringent than the CECB requirements. In this study, we measured the power and energy consumptions for a sample of 12 CECBs (including 6 Energy Star labeled models) in-use in homes and estimated aggregate energy savings produced by the energy efficiency policies. Based on the 35 million coupons redeemed through the end of the program, our analysis indicates that between 2500 and 3700 GWh per year are saved as a result of the energy efficiency policies implemented on digital-to-analog converter boxes. The energy savings generated are equivalent to the annual electricity use of 280,000 average US homes.

Cheung, Hoi Ying Iris; Meier, Alan; Brown, Richard

2011-01-18T23:59:59.000Z

424

Automated Black-Box Testing with Abstract VDM Oracles  

E-Print Network [OSTI]

as test oracles for concrete software. The automation of the resulting testing frame-work is based of a target system. For that reason, a mapping between abstract and concrete test data is requiredAutomated Black-Box Testing with Abstract VDM Oracles Bernhard K. Aichernig Technical University

425

Rules and Regulations for the Disposal of Low-Level Radioactive Waste (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to the disposal of low-level radioactive waste, disposal facilities, and applicable fees.

426

DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy...  

Broader source: Energy.gov (indexed) [DOE]

Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements DOE Testing Reveals Samsung Refrigerator Does Not Meet Energy Star Requirements March 16, 2010 - 4:28pm...

427

DOE Announces Publication of Three Reports by the DOE Electricity...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Publication of Three Reports by the DOE Electricity Advisory Committee DOE Announces Publication of Three Reports by the DOE Electricity Advisory Committee January 15, 2009 -...

428

Systems engineering programs for geologic nuclear waste disposal  

SciTech Connect (OSTI)

The design sequence and system programs presented begin with general approximate solutions that permit inexpensive analysis of a multitude of possible wastes, disposal media, and disposal process properties and configurations. It then continues through progressively more precise solutions as parts of the design become fixed, and ends with repository and waste form optimization studies. The programs cover both solid and gaseous waste forms. The analytical development, a program listing, a users guide, and examples are presented for each program. Sensitivity studies showing the effects of disposal media and waste form thermophysical properties and repository layouts are presented as examples.

Klett, R. D.; Hertel, Jr., E. S.; Ellis, M. A.

1980-06-01T23:59:59.000Z

429

Immobilized low-level waste disposal options configuration study  

SciTech Connect (OSTI)

This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed.

Mitchell, D.E.

1995-02-01T23:59:59.000Z

430

Demilitarization and disposal technologies for conventional munitions and energetic materials  

SciTech Connect (OSTI)

Technologies for the demilitarization and disposal of conventional munitions and energetic materials are presented. A hazard separation system has been developed to remove hazardous subcomponents before processing. Electronic component materials separation processes have been developed that provide for demilitarization as well as the efficient recycling of materials. Energetic materials demilitarization and disposal using plasma arc and molten metal technologies are currently being investigated. These regulatory compliant technologies will allow the recycling of materials and will also provide a waste form suitable for final disposal.

Lemieux, A.A.; Wheelis, W.T.; Blankenship, D.M.

1994-09-01T23:59:59.000Z

431

DOE F 5631  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE FDOE3

432

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.34

433

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.342

434

DOE F 5634  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgram |DOE Exercises Option for5 DOE3A DOE5 DOE5 DOE1.3428

435

Board Oversight of the DOE's Scientific and Technical Activities at Yucca Mountain  

E-Print Network [OSTI]

- structing a mined geologic repository for the perma- nent disposal of spent nuclear fuel and high will be transported with the percolating water to the 3 Chapter 1 Board Oversight of the DOE's Scientific of alternating welded and nonwelded tuffs of the mid-Miocene Age, about 10 to 13 million years old. The block

436

Optimal Terminal Box Control for Single Duct Air-Handling Units  

E-Print Network [OSTI]

Terminal boxes maintain room temperature by modulating supply air temperature and airflow in building HVAC systems. Terminal boxes with conventional control sequences often supply inadequate airflow to a conditioned space, resulting in occupant...

Cho, Y.; Vondal, J.; Wang, G.; Liu, M.

2006-01-01T23:59:59.000Z

437

NWTS program criteria for mined geologic disposal of nuclear waste: program objectives, functional requirements, and system performance criteria  

SciTech Connect (OSTI)

At the present time, final repository criteria have not been issued by the responsible agencies. This document describes general objectives, requirements, and criteria that the DOE intends to apply in the interim to the National Waste Terminal Storage (NWTS) Program. These objectives, requirements, and criteria have been developed on the basis of DOE's analysis of what is needed to achieve the National objective of safe waste disposal in an environmentally acceptable and economic manner and are expected to be consistent with anticipated regulatory standards. The qualitative statements in this document address the broad issues of public and occupational health and safety, institutional acceptability, engineering feasibility, and economic considerations. A comprehensive set of criteria, general and project specific, of which these are a part, will constitute a portion of the technical basis for preparation and submittal by the DOE of formal documents to support future license applications for nuclear waste repositories.

None

1981-04-01T23:59:59.000Z

438

Spent nuclear fuel as a waste form for geologic disposal: Assessment and recommendations on data and modeling needs  

SciTech Connect (OSTI)

This study assesses the status of knowledge pertinent to evaluating the behavior of spent nuclear fuel as a waste form in geologic disposal systems and provides background information that can be used by the DOE to address the information needs that pertain to compliance with applicable standards and regulations. To achieve this objective, applicable federal regulations were reviewed, expected disposal environments were described, the status of spent-fuel modeling was summarized, and information regarding the characteristics and behavior of spent fuel was compiled. This compiled information was then evaluated from a performance modeling perspective to identify further information needs. A number of recommendations were made concerning information still needed to enhance understanding of spent-fuel behavior as a waste form in geologic repositories. 335 refs., 22 figs., 44 tabs.

Van Luik, A.E.; Apted, M.J.; Bailey, W.J.; Haberman, J.H.; Shade, J.S.; Guenther, R.E.; Serne, R.J.; Gilbert, E.R.; Peters, R.; Williford, R.E.

1987-09-01T23:59:59.000Z

439

Multipurpose Transportation, Aging, and Disposal Canisters for Used Nuclear Fuel - Getting From Here to There and Beyond  

SciTech Connect (OSTI)

The idea of a universal canister system, in which used fuel can be placed at reactor sites, transported and - without ever needing to be re-opened -, disposed of in a geologic repository, is certainly not new. Originally proposed by DOE in the early 1990's as the Multi-Purpose Canister (MPC) system, this common sense idea has always had considerable appeal as a means to reduce used fuel handling and simplify repository surface facility operations. However, difficulties in launching the development of such a system, in the face of large uncertainties in repository design and limited program funding, caused the original MPC project to be abandoned in 1997. Then, after eight years of inactivity in this area, DOE, while experiencing difficulty completing the repository surface facility design and having missed a December 2004 deadline for submittal of a repository license application to the Nuclear Regulatory Commission (NRC), re-proposed the concept. Under this renewed initiative, the MPC systems were renamed as Transportation, Aging, and Disposal or TAD canister systems. DOE's repository design had advanced significantly at this point and industry, having gained considerable experience through the design, licensing, manufacture, and loading of over 800 used fuel dry storage systems, was well positioned to provide DOE with the meaningful technical input that would be necessary to bring the TAD concept to reality. With a firm foundation on which to build, industry actively engaged DOE in an extensive series of interactions to facilitate TAD development. This paper describes the evolution of the TAD concept through the industry/DOE dialogue that occurred over an 18 month period beginning in January 2006. It discusses the technical issues that were addressed and resolved through this collaboration. Successful completion of this dialogue led to the issuance, by DOE, of a final TAD design specification in July, 2007. This specification is being used by DOE as a fundamental input to the Yucca Mountain license application that DOE expects to submit to the NRC no later than June 2008. DOE is now in the process completing a procurement of TAD demonstrations. As part of these demonstrations, DOE expects industry vendors to seek and obtain storage and transportation licenses for the TADs by 2010 and for utilities to deploy them at reactor sites by 2012. (authors)

McCullum, R. [Nuclear Energy Institute, Washington, DC (United States)

2008-07-01T23:59:59.000Z

440

SHEARING BOX SIMULATIONS OF THE MRI IN A COLLISIONLESS PLASMA Prateek Sharma and Gregory W. Hammett  

E-Print Network [OSTI]

of the MRI in a collision- less plasma, focusing on local simulations in the shearing box limit. Quataert et

Hammett, Greg

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Minor actinide waste disposal in deep geological boreholes  

E-Print Network [OSTI]

The purpose of this investigation was to evaluate a waste canister design suitable for the disposal of vitrified minor actinide waste in deep geological boreholes using conventional oil/gas/geothermal drilling technology. ...

Sizer, Calvin Gregory

2006-01-01T23:59:59.000Z

442

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Used Nuclear Fuels Storage, Transportation, and Disposal Analysis Resource and Data System (UNF-ST&DARDS) Apr 08 2014 10:00 AM - 11:00 AM John M. Scaglione, ORNL staff, Oak Ridge...

443

A microelectronic design for low-cost disposable chemical sensors  

E-Print Network [OSTI]

This thesis demonstrates the novel concept and design of integrated microelectronics for a low-cost disposable chemical sensor. The critical aspects of this chemical sensor are the performance of the microelectronic chip ...

Laval, Stuart S. (Stuart Sean), 1980-

2004-01-01T23:59:59.000Z

444

Low-Level Radioactive Waste Disposal Regional Facility Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act establishes a low-level radioactive waste disposal regional facility siting fund that requires nuclear power reactor constructors and operators to pay to the Department of Environmental...

445

Canister design for deep borehole disposal of nuclear waste  

E-Print Network [OSTI]

The objective of this thesis was to design a canister for the disposal of spent nuclear fuel and other high-level waste in deep borehole repositories using currently available and proven oil, gas, and geothermal drilling ...

Hoag, Christopher Ian

2006-01-01T23:59:59.000Z

446

Supporting Calculations For Submerged Bed Scrubber Condensate Disposal Preconceptual Study  

SciTech Connect (OSTI)

This document provides supporting calculations for the preparation of the Submerged Bed Scrubber Condensate Disposal Preconceptual Study report The supporting calculations include equipment sizing, Hazard Category determination, and LAW Melter Decontamination Factor Adjustments.

Pajunen, A. J.; Tedeschi, A. R.

2012-09-18T23:59:59.000Z

447

Low-Level Radioactive Waste Disposal Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This act provides a comprehensive strategy for the siting of commercial low-level waste compactors and other waste management facilities, and to ensure the proper transportation, disposal and...

448

Proof of Proper Solid Waste Disposal (West Virginia)  

Broader source: Energy.gov [DOE]

This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

449

Waste Disposal Site and Radioactive Waste Management (Iowa)  

Broader source: Energy.gov [DOE]

This section describes the considerations of the Commission in determining whether to approve the establishment and operation of a disposal site for nuclear waste. If a permit is issued, the...

450

Radionuclide limits for vault disposal at the Savannah River Site  

SciTech Connect (OSTI)

The Savannah River Site is developing a facility called the E-Area Vaults which will serve as the new radioactive waste disposal facility beginning early in 1992. The facility will employ engineered below-grade concrete vaults for disposal and above-grade storage for certain long-lived mobile radionuclides. This report documents the determination of interim upper limits for radionuclide inventories and concentrations which should be allowed in the disposal structures. The work presented here will aid in the development of both waste acceptance criteria and operating limits for the E-Area Vaults. Disposal limits for forty isotopes which comprise the SRS waste streams were determined. The limits are based on total facility and vault inventories for those radionuclides which impact groundwater, and or waste package concentrations for those radionuclides which could affect intruders.

Cook, J.R.

1992-02-04T23:59:59.000Z

451

EXECUTIVE SUMMARY OF STATE DATA RELATED TO ABANDONED CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS  

SciTech Connect (OSTI)

This 2003 Spring Semi-Annual Report contains a summary of the Final Technical Report being prepared for the Soil Remediation Requirements at Commercial and Centralized Drilling-Fluid Disposal (CCDD) Sites project funded by the United States Department of Energy under DOE Award No. DE-AC26-99BC15225. The summary describes (1) the objectives of the investigation, (2) a rationale and methodology of the investigation, (3) sources of data, assessment of data quality, and data availability, (4) examples of well documented centralized and commercial drilling-fluid disposal (CCDD) sites and other sites where drilling fluid was disposed of, and (5) examples of abandoned sites and measures undertaken for their assessment and remediation. The report also includes most of the figures, tables, and appendices that will be included in the final report.

H. Seay Nance

2003-03-01T23:59:59.000Z

452

Acquisition, Use, and Disposal of Real Estate  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste andAccess to OUO Access to OUO DOE M 471.3-1,&Acquisition

453

Disposal Authorization Statement | Department of Energy  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power SystemsResources DOE ZeroThree Biorefineries toDirectDiscover and Deliver:

454

Land disposal of water treatment plant sludge -- A feasibility analysis  

SciTech Connect (OSTI)

In this study, the following alternative disposal methods for the Buffalo Pound Water Treatment Sludge were evaluated: landfilling, discharge into sanitary sewers, long-term lagooning, use in manufacturing, co-composting, alum recovery and land application. Land application was chosen at the best disposal alternative. Preliminary design resulted in a 1% dry alum sludge loading rate (25 tonnes/ha), requiring 35 ha over a nine-year period and a phosphorus fertilizer supplement of about 50kg/ha.

Viraraghavan, T.; Multon, L.M.; Wasylenchuk, E.J.

1998-07-01T23:59:59.000Z

455

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

456

Unresolved issues for the disposal of remote-handled transuranic waste in the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The purpose of the Waste Isolation Pilot Plant (WIPP) is to dispose of 176,000 cubic meters of transuranic (TRU) waste generated by the defense activities of the US Government. The envisioned inventory contains approximately 6 million cubic feet of contact-handled transuranic (CH TRU) waste and 250,000 cubic feet of remote handled transuranic (RH TRU) waste. CH TRU emits less than 0.2 rem/hr at the container surface. Of the 250,000 cubic feet of RH TRU waste, 5% by volume can emit up to 1,000 rem/hr at the container surface. The remainder of RH TRU waste must emit less than 100 rem/hr. These are major unresolved problems with the intended disposal of RH TRU waste in the WIPP. (1) The WIPP design requires the canisters of RH TRU waste to be emplaced in the walls (ribs) of each repository room. Each room will then be filled with drums of CH TRU waste. However, the RH TRU waste will not be available for shipment and disposal until after several rooms have already been filled with drums of CH TRU waste. RH TRU disposal capacity will be loss for each room that is first filled with CH TRU waste. (2) Complete RH TRU waste characterization data will not be available for performance assessment because the facilities needed for waste handling, waste treatment, waste packaging, and waste characterization do not yet exist. (3) The DOE does not have a transportation cask for RH TRU waste certified by the US Nuclear Regulatory Commission (NRC). These issues are discussed along with possible solutions and consequences from these solutions. 46 refs.

Silva, M.K.; Neill, R.H.

1994-09-01T23:59:59.000Z

457

Norfolk Southern boxcar blocking/bracing plan for the mixed waste disposal initiative project. Environmental Restoration Program  

SciTech Connect (OSTI)

The US Department of Energy`s (DOE) Environmental Restoration and Waste Management programs will dispose of mixed waste no longer deemed useful. This project is one of the initial activities used to help meet this goal. The project will transport the {approximately}46,000 drums of existing stabilized mixed waste located at the Oak Ridge K-25 Site and presently stored in the K-31 and K-33 buildings to an off-site commercially licensed and permitted mixed waste disposal facility. Shipping and disposal of all {approximately}46,000 pond waste drums ({approximately}1,000,000 ft{sup 3} or 55,000 tons) is scheduled to occur over a period of {approximately}5--10 years. The first shipment of stabilized pond waste should transpire some time during the second quarter of FY 1994. Martin Marietta Energy Systems, Inc., proposes to line each of the Norfolk Southem boxcars with a prefabricated, white, 15-mm low-density polyethylene (LDPE) liner material. To avoid damaging the bottom of the polyethylene floor liner, a minimum .5 in. plywood will be nailed to the boxcars` nailable metal floor. At the end of the Mixed Waste Disposal Initiative (MWDI) Project workers at the Envirocare facility will dismantle and dispose of all the polyethylene liner and plywood materials. Envirocare of Utah, Inc., located in Clive, Utah, will perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Energy Systems. Energy Systems will also perform a health physic survey and chemically and radiologically decontaminate, if necessary, each of the rail boxcars prior to them being released back to Norfolk Southem Railroad.

Seigler, R.S.

1994-01-01T23:59:59.000Z

458

Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements  

E-Print Network [OSTI]

Controlling a Steel Mill with BOXES Michael McGarity, Claude Sammut and David Clements and Chambers (1968) to a large-scale, real-world problem, namely, learning to control a steel mill. By applying BOXES to a model of a skinpass mill (a type of steel mill), we find that the BOXES algorithm can be made

Sammut, Claude

459

PO Box 6050, Irvine, CA 92616-6050 www.extension.uci.edu Accounting Courses  

E-Print Network [OSTI]

PO Box 6050, Irvine, CA 92616-6050 www.extension.uci.edu Accounting Courses (Not a Certificate Program) #12;PO Box 6050, Irvine, CA 92616-6050 www.extension.uci.edu LIST OF COURSES Course # Accounting://learn.uci.edu for more information on how the online courses work. Revised 9/27/12 #12;PO Box 6050, Irvine, CA 92616

Barrett, Jeffrey A.

460

An Area Efficien Low Power High Speed S-Box Implementation Using Power-Gated PLA  

E-Print Network [OSTI]

An Area Efficien Low Power High Speed S-Box Implementation Using Power-Gated PLA Ho Joon Lee- sign of Rijndael S-Box for the SubByte transformation using power-gating and PLA design techniques arrays,VLSI General Terms Cryptography, Power Gate, Low Power Keywords AES, PLA, Power Gate, S-Box 1

Ayers, Joseph

Note: This page contains sample records for the topic "doe disposal box" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

"BLUE BOX" POWER ELECTRONICS CONTROL MODULES FOR LABORATORY-BASED EDUCATION  

E-Print Network [OSTI]

"BLUE BOX" POWER ELECTRONICS CONTROL MODULES FOR LABORATORY-BASED EDUCATION R. S. BALOG, J. W of Illinois at Urbana/Champaign Urbana, Illinois 61801 #12;#12;UILU-ENG-2004-2504 "BLUE BOX" POWER ELECTRONICS of design documents detailing the design and fabrication of "blue box" power electronics control modules

Kimball, Jonathan W.

462

2012 DOE Strategic Sustainability Performance Plan | Department...  

Broader source: Energy.gov (indexed) [DOE]

DOE Strategic Sustainability Performance Plan 2012 DOE Strategic Sustainability Performance Plan The 2012 DOE Strategic Sustainability Performance Plan embodies DOE's...

463

Geological Disposal Concept Selection Aligned with a Voluntarism Process - 13538  

SciTech Connect (OSTI)

The UK's Radioactive Waste Management Directorate (RWMD) is currently at a generic stage in its implementation programme. The UK site selection process is a voluntarist process and, as yet, no communities have decided to participate. RWMD has set out a process to describe how a geological disposal concept would be selected for the range of higher activity wastes in the UK inventory, including major steps and decision making points, aligned with the stages of the UK site selection process. A platform of information is being developed on geological disposal concepts at various stages of implementation internationally and, in order to build on international experience, RWMD is developing its approach to technology transfer. The UK has a range of different types of higher activity wastes with different characteristics; therefore a range of geological disposal concepts may be needed. In addition to identifying key aspects for considering the compatibility of different engineered barrier systems for different types of waste, RWMD is developing a methodology to determine minimum separation distances between disposal modules in a co-located geological disposal facility. RWMD's approach to geological disposal concept selection is intended to be flexible, recognising the long term nature of the project. RWMD is also committed to keeping alternative radioactive waste management options under review; an approach has been developed and periodic reviews of alternative options will be published. (authors)

Crockett, Glenda; King, Samantha [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)] [Nuclear Decommissioning Authority, Building 587, Curie Avenue, Harwell Oxford, Didcot, Oxfordshire, OX11 0RH (United Kingdom)

2013-07-01T23:59:59.000Z

464

DOE/ID-Number  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdfSTD-1040-93Decemberof Energy 6-2013,0 MAPAR Disposal

465

University of Delaware Laboratory Chemical Waste Disposal Guide ALL CHEMICAL WASTE MUST BE DISPOSED OF THROUGH THE  

E-Print Network [OSTI]

experiments and procedures Non-Returnable gas cylinders Batteries Spent solvents, Stains, Strippers, Thinners, Fertilizers Formaldehyde and Formalin Solutions Mercury containing items (other heavy metals) Liquid OR SMALL CONTAINERS IMPORTANT: DO NOT DISPOSE OF REACTIVE, AIR SENSITIVE, OR OXIDIZER SAMPLES

Firestone, Jeremy

466

Irradiated Beryllium Disposal Workshop, Idaho Falls, ID, May 29-30, 2002  

SciTech Connect (OSTI)

In 2001, while performing routine radioactive decay heat rate calculations for beryllium reflector blocks for the Advanced Test Reactor (ATR), it became evident that there may be sufficient concentrations of transuranic isotopes to require classification of this irradiated beryllium as transuranic waste. Measurements on samples from ATR reflector blocks and further calculations confirmed that for reflector blocks and outer shim control cylinders now in the ATR canal, transuranic activities are about five times the threshold for classification. That situation implies that there is no apparent disposal pathway for this material. The problem is not unique to the ATR. The High Flux Isotope Reactor at Oak Ridge National Laboratory, the Missouri University Research Reactor at Columbia, Missouri and other reactors abroad must also deal with this issue. A workshop was held in Idaho Falls Idaho on May 29-30, 2002 to acquaint stakeholders with these findings and consider a path forward in resolving the issues attendant to disposition of irradiated material. Among the findings from this workshop were (1) there is a real potential for the US to be dependent on foreign sources for metallic beryllium within about a decade; (2) there is a need for a national policy on beryllium utilization and disposition and for a beryllium coordinating committee to be assembled to provide guidance on that policy; (3) it appears it will be difficult to dispose of this material at the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico due to issues of Defense classification, facility radioactivity inventory limits, and transportation to WIPP; (4) there is a need for a funded DOE program to seek resolution of these issues including research on processing techniques that may make this waste acceptable in an existing disposal pathway or allow for its recycle.

Longhurst, Glen Reed; Anderson, Gail; Mullen, Carlan K; West, William Howard

2002-07-01T23:59:59.000Z

467

DOE handbook electrical safety  

SciTech Connect (OSTI)

Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

NONE

1998-01-01T23:59:59.000Z

468

1988 DOE model conference proceedings: Volume 4  

SciTech Connect (OSTI)

These Proceedings of the October 3-7, 1988, DOE Model Conference are a compilation of the papers that were presented in the technical or poster sessions at the conference. Papers and posters not submitted for publication are not included in the Proceedings. The Table of Contents lists the titles of papers as well as the names of the presenters. These individuals are not, in all cases, the primary authors of the papers published. The actual title pages, appearing later with the papers, show the primary author(s) and all co-authors. The papers in all three volumes of the Proceedings appear as they were originally submitted for publication and have not been edited or changed in any way. Topics discussed in Volume 4 include site characterization and remediation projects, environmental monitoring and modeling; disposal site selection and facility design, risk assessment, safety and health issues, and site remediation technology.

Not Available

1988-01-01T23:59:59.000Z

469

DOE Radiation Records Contacts List  

Broader source: Energy.gov [DOE]

DOE radiation records contact list for individuals to obtain records of occupational exposure directly from a DOE site.

470

Advancing Performance Assessment for Disposal of Depleted Uranium at Clive Utah - 12493  

SciTech Connect (OSTI)

A Performance Assessment (PA) for disposal of depleted uranium (DU) waste has recently been completed for a potential disposal facility at Clive in northwestern Utah. For the purposes of this PA, 'DU waste' includes uranium oxides of all naturally-occurring isotopes, though depleted in U-235, varying quantities of other radionuclides introduced to the uranium enrichment process in the form of used nuclear reactor fuel (reactor returns), and decay products of all of these radionuclides. The PA will be used by the State of Utah to inform an approval decision for disposal of DU waste at the facility, and will be available to federal regulators as they revisit rulemaking for the disposal of DU. The specific performance objectives of the Clive DU PA relate to annual individual radiation dose within a 10,000-year performance period, groundwater concentrations of specific radionuclides within a 500-year compliance period, and site stability in the longer term. Fate and transport processes that underlie the PA model include radioactive decay and ingrowth, diffusion in gaseous and water phases, water advection in unsaturated and saturated zones, transport caused by plant and animal activity, cover naturalization, natural and anthropogenic erosion, and air dispersion. Fate and transport models were used to support the dose assessment and the evaluation of groundwater concentrations. Exposure assessment was based on site-specific scenarios, since the traditional human exposure scenarios suggested by DOE and NRC guidance are unrealistic for this site. Because the U-238 in DU waste reaches peak radioactivity (secular equilibrium) after 2 million years (My) following its separation, the PA must also evaluate the impact of climate change cycles, including the return of pluvial lakes such as Lake Bonneville. The first draft of the PA has been submitted to the State of Utah for review. The results of this preliminary analysis indicate that doses are very low for the site-specific receptors for the 10,000-year compliance period. This is primarily because DU waste is not highly radioactive within this time frame, the DU waste is assumed to be buried beneath zones exposed by erosion, groundwater concentrations of DU waste constituents do not exceed groundwater protection limits with in the 500-year compliance period, and the first deep lake occurrence will disperse DU waste across a large area, and will ultimately be covered by lake-derived sediment. A probabilistic PA model was constructed that considered DU waste and decay product doses to site-specific receptors for a 10,000-yr performance period, as well as deep-time effects. The quantitative results are summarized in Table VII. Doses (as TEDE) are always less than 5 mSv in a year, and doses to the offsite receptors are always much less than 0.25 mSv in a year. Groundwater concentrations of Tc-99 are always less than its GWPL except when the Tc-99 contaminated waste is disposed below grade. Even in this case, the median groundwater concentration is only 4.18 Bq/L (113 pCi/L), which is more than one order of magnitude less than the GWPL for Tc-99. The results overall suggest that there are disposal configurations that can be used to dispose of the proposed quantities of DU waste that are adequately protective of human health. (authors)

Black, Paul; Tauxe, John; Perona, Ralph; Lee, Robert; Catlett, Kate; Balshi, Mike; Fitzgerald, Mark; McDermott, Greg [Neptune and Company, Inc., Los Alamos, New Mexico 87544 (United States); Shrum, Dan; McCandless, Sean; Sobocinski, Robert; Rogers, Vern [EnergySolutions, LLC, Salt Lake City, Utah 84101 (United States)

2012-07-01T23:59:59.000Z

471

DOE Building Technologies Program  

Energy Savers [EERE]

501c3 * DOE will continue to support SEED, and Lawrence Berkeley National Laboratory (LBNL) will provide oversight of the code, while the permanent management plan is established...

472

DOE Technical Assistance Program  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov What is TAP? DOE's Technical Assistance Program (TAP) supports the Energy Efficiency and Conservation Block Grant Program (EECBG), the State Energy Program...

473

DOE Explosives Safety Manual  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This Manual describes DOE's explosives safety requirements applicable to operations involving the development, testing, handling, and processing of explosives or assemblies containing explosives.

1996-03-29T23:59:59.000Z

474

Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site  

SciTech Connect (OSTI)

The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

NSTec Environmental Programs

2010-10-04T23:59:59.000Z

475

Analysis of environmental regulations governing the disposal of geothermal wastes in California  

SciTech Connect (OSTI)

Federal and California regulations governing the disposal of sludges and liquid wastes associated with the production of electricity from geothermal resources were evaluated. Current disposal practices, near/far term disposal requirements, and the potential for alternate disposal methods or beneficial uses for these materials were determined. 36 refs., 3 figs., 15 tabs. (ACR)

Royce, B.A.

1985-09-01T23:59:59.000Z