Sample records for documented safety analysis

  1. CRAD, Nuclear Safety Delegations for Documented Safety Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Safety Delegations for Documented Safety Analysis Approval - January 8, 2015 (EA CRAD 31-09, Rev. 0) CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval -...

  2. B PLANT DOCUMENTED SAFETY ANALYSIS

    SciTech Connect (OSTI)

    DODD, E.N.; KERR, N.R.

    2003-08-01T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the 221-B Canyon Building and ancillary support structures (B Plant). The document replaces BHI-010582, Documented Safety Analysis for the B-Plant Facility. The B Plant is non-operational, deactivated and undergoing long term S&M prior to decontamination and decommissioning (D&D). This DSA is compliant with 10 CFR 830, Nuclear Safety Management, Subpart B, ''Safety Basis Requirements.'' The DSA was developed in accordance with U.S. Department of Energy (DOE) standard DOE-STD-1120-98, Integration of Environment, Safety, and Health into Facility Disposition Activities (DOE 1998) per Table 2 of 10 CFR 830 Appendix A, DOE Richland Operation Office (RL) direction (02-ABD-0053, Fluor Hanford Nuclear Safety Basis Strategy and Criteria) for facilities in long term S&M, and RL Direction (02-ABD-0091, ''FHI Nuclear Safety Expectations for Nuclear Facilities in Surveillance and Maintenance''). A crosswalk was prepared to identify potential inconsistencies between the previous B Plant safety analysis and DOE-STD-1120-98 guidance. In general, the safety analysis met the criteria of DOE-STD-1120-98. Some format and content changes have been made, including incorporating recent facility modifications and updating the evaluation guidelines and control selection criteria in accordance with RL direction (02-ABD-0053). The facility fire hazard analysis (FHA) and Technical Safety Requirements (TSR) are appended to this DSA as an aid to the users, to minimize editorial redundancy, and to provide an efficient basis for update.

  3. Plutonium Uranium Extraction Facility Documented Safety Analysis

    SciTech Connect (OSTI)

    DODD, E.N.

    2003-10-08T23:59:59.000Z

    This document provides the documented safety analysis (DSA) and Central Plateau Remediation Project (CP) requirements that apply to surveillance and maintenance (S&M) activities at the Plutonium-Uranium Extraction (PUREX) facility. This DSA was developed in accordance with DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities''. Upon approval and implementation of this document, the current safety basis documents will be retired.

  4. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Douglas S. Swanson; Michael A. Thieme

    2003-06-01T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  5. Using Addenda in Documented Safety Analysis Reports

    SciTech Connect (OSTI)

    Swanson, D.S.; Thieme, M.A.

    2003-06-16T23:59:59.000Z

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update.

  6. CRAD, Preliminary Documented Safety Analysis - July 25, 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preliminary Documented Safety Analysis - July 25, 2014 (IEA CRAD 31-2, REV. 0) CRAD, Preliminary Documented Safety Analysis - July 25, 2014 (IEA CRAD 31-2, REV. 0) July 25, 2014...

  7. Tank Farms Documented Safety Analysis [Sec 1 thru 4

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-10-24T23:59:59.000Z

    The Tank Farm Documented Safety Analysis documents the basis for the conclusion that authorized Tank Farms facility operations comply with the requirements of DOE 5480.23 and DOE 5480.22. This documented safety analysis establishes the safety basis for the tank farms by documenting the results of the hazard and accident analyses for the tank farm facilities and operations and describing the significant features and programs that prevent or mitigate the identified hazards. The documented safety analysis also establishes the envelope within which the tank farm facilities can continue to operate safely.

  8. SNF fuel retrieval sub project safety analysis document

    SciTech Connect (OSTI)

    BERGMANN, D.W.

    1999-02-24T23:59:59.000Z

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  9. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-11-12T23:59:59.000Z

    This Department of Energy (DOE) Standard (STD), DOE-STD-3009-2014, describes a method for preparing a Documented Safety Analysis (DSA) that is acceptable to DOE for nonreactor nuclear facilities.

  10. Documented safety analysis for 209-E Facility critical mass laboratory

    SciTech Connect (OSTI)

    DODD, E.

    2003-04-23T23:59:59.000Z

    This documented safety analysis (DSA) addresses the 209-E facility and associated requirements that apply to 200 Area Facility Deactivation (AFD) activities. The DSA was developed in accordance with DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities''.

  11. Simplifying documentation while approaching site closure: integrated health & safety plans as documented safety analysis

    SciTech Connect (OSTI)

    Brown, Tulanda

    2003-06-01T23:59:59.000Z

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D&D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D&D I-HASP as an example.

  12. Safety Evaluation Report of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-09-01T23:59:59.000Z

    This Safety Evaluation Report (SER) documents the Department of Energy’s (DOE's) review of Revision 9 of the Waste Isolation Pilot Plant Contact Handled (CH) Waste Documented Safety Analysis, DOE/WIPP-95-2065 (WIPP CH DSA), and provides the DOE Approval Authority with the basis for approving the document. It concludes that the safety basis documented in the WIPP CH DSA is comprehensive, correct, and commensurate with hazards associated with CH waste disposal operations. The WIPP CH DSA and associated technical safety requirements (TSRs) were developed in accordance with 10 CFR 830, Nuclear Safety Management, and DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports.

  13. TA-55 Final Safety Analysis Report Comparison Document and DOE Safety Evaluation Report Requirements

    SciTech Connect (OSTI)

    Alan Bond

    2001-04-01T23:59:59.000Z

    This document provides an overview of changes to the currently approved TA-55 Final Safety Analysis Report (FSAR) that are included in the upgraded FSAR. The DOE Safety Evaluation Report (SER) requirements that are incorporated into the upgraded FSAR are briefly discussed to provide the starting point in the FSAR with respect to the SER requirements.

  14. K West integrated water treatment system subproject safety analysis document

    SciTech Connect (OSTI)

    SEMMENS, L.S.

    1999-02-24T23:59:59.000Z

    This Accident Analysis evaluates unmitigated accident scenarios, and identifies Safety Significant and Safety Class structures, systems, and components for the K West Integrated Water Treatment System.

  15. CRAD, New Nuclear Facility Documented Safety Analysis and Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Safety Requirements - December 2, 2014 (EA CRAD 31-07, Rev. 0) More Documents & Publications CRAD, Nuclear Reactor Facility Operations - December 4, 2014 (EA CRAD 31-08...

  16. Planning Document for an NBSR Conversion Safety Analysis Report

    SciTech Connect (OSTI)

    Diamond D. J.; Baek J.; Hanson, A.L.; Cheng, L-Y.; Brown, N.; Cuadra, A.

    2013-09-25T23:59:59.000Z

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the National Bureau of Standards Reactor (NBSR). The NBSR is a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a planning document for the conversion Safety Analysis Report (SAR) that would be submitted to, and approved by, the Nuclear Regulatory Commission (NRC) before the reactor could be converted.This report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis herein is on the SAR chapters that require significant changes as a result of conversion, primarily Chapter 4, Reactor Description, and Chapter 13, Safety Analysis. The document provides information on the proposed design for the LEU fuel elements and identifies what information is still missing. This document is intended to assist ongoing fuel development efforts, and to provide a platform for the development of the final conversion SAR. This report contributes directly to the reactor conversion pillar of the GTRI program, but also acts as a boundary condition for the fuel development and fuel fabrication pillars.

  17. Documented Safety Analysis for the B695 Segment

    SciTech Connect (OSTI)

    Laycak, D

    2008-09-11T23:59:59.000Z

    This Documented Safety Analysis (DSA) was prepared for the Lawrence Livermore National Laboratory (LLNL) Building 695 (B695) Segment of the Decontamination and Waste Treatment Facility (DWTF). The report provides comprehensive information on design and operations, including safety programs and safety structures, systems and components to address the potential process-related hazards, natural phenomena, and external hazards that can affect the public, facility workers, and the environment. Consideration is given to all modes of operation, including the potential for both equipment failure and human error. The facilities known collectively as the DWTF are used by LLNL's Radioactive and Hazardous Waste Management (RHWM) Division to store and treat regulated wastes generated at LLNL. RHWM generally processes low-level radioactive waste with no, or extremely low, concentrations of transuranics (e.g., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, or {sup 3}H. The mission of the B695 Segment centers on container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. The B695 Segment is used for storage of radioactive waste (including transuranic and low-level), hazardous, nonhazardous, mixed, and other waste. Storage of hazardous and mixed waste in B695 Segment facilities is in compliance with the Resource Conservation and Recovery Act (RCRA). LLNL is operated by the Lawrence Livermore National Security, LLC, for the Department of Energy (DOE). The B695 Segment is operated by the RHWM Division of LLNL. Many operations in the B695 Segment are performed under a Resource Conservation and Recovery Act (RCRA) operation plan, similar to commercial treatment operations with best demonstrated available technologies. The buildings of the B695 Segment were designed and built considering such operations, using proven building systems, and keeping them as simple as possible while complying with industry standards and institutional requirements. No operations to be performed in the B695 Segment or building system are considered to be complex. No anticipated future change in the facility mission is expected to impact the extent of safety analysis documented in this DSA.

  18. Documented Safety Analysis for the Waste Storage Facilities

    SciTech Connect (OSTI)

    Laycak, D

    2008-06-16T23:59:59.000Z

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  19. Documented Safety Analysis for the Waste Storage Facilities March 2010

    SciTech Connect (OSTI)

    Laycak, D T

    2010-03-05T23:59:59.000Z

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  20. Acceptable NSLS Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

  1. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Sharp, G.L.; McCracken, R.T.

    2003-05-13T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  2. Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade

    SciTech Connect (OSTI)

    Gregg L. Sharp; R. T. McCracken

    2003-06-01T23:59:59.000Z

    The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

  3. 324 Building safety basis criteria document

    SciTech Connect (OSTI)

    STEFFEN, J.M.

    1999-06-02T23:59:59.000Z

    The Safety Basis Criteria document describes the proposed format, content, and schedule for the preparation of an updated Safety Analysis Report (SAR) and Operational Safety Requirements document (OSR) for the 324 Building. These updated safety authorization basis documents are intended to cover stabilization and deactivation activities that will prepare the facility for turnover to the Environmental Restoration Contractor for final decommissioning. The purpose of this document is to establish the specific set of criteria needed for technical upgrades to the 324 Facility Safety Authorization Basis, as required by Project Hanford Procedure HNF-PRO-705, Safety Basis Planning, Documentation, Review, and Approval.

  4. LESSONS LEARNED IN DEVELOPMENT OF THE HANFORD SWOC MASTER DOCUMENTED SAFETY ANALYSIS (MDSA) & IMPLEMENTATION VALIDATION REVIEW (IVR)

    SciTech Connect (OSTI)

    MORENO, M.R.

    2004-04-02T23:59:59.000Z

    DOE set clear expectations on a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (20 CFR 830, Nuclear Safety Rule), which ensured long-term benefit to Hanford, via issuance of a nuclear safety strategy in February 2003. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development with the goal of a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was approved to standardize methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was approved for the evaluation of radiological consequences for accident scenarios often postulated at Hanford. Standard safety management program chapters were approved for use as a means of compliance with the programmatic chapters of DOE-STD-3009, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports''. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. The new Documented Safety Analysis (DSA) developed to address the operations of four facilities within the Solid Waste Operations Complex (SWOC) necessitated development of an Implementation Validation Review (IVR) process. The IVR process encompasses the following objectives: safety basis controls and requirements are adequately incorporated into appropriate facility documents and work instructions, facility personnel are knowledgeable of controls and requirements, and the DSA/TSR controls have been implemented. Based on DOE direction and safety analysis tools, four waste management nuclear facilities were integrated into one safety basis document. With successful completion of implementation of this safety document, lessons-learned from the in-process review, safety analysis tools and IVR process were documented for future action and consideration at other DOE sites.

  5. Canister storage building (CSB) safety analysis report phase 3: Safety analysis documentation supporting CSB construction

    SciTech Connect (OSTI)

    Garvin, L.J.

    1997-04-28T23:59:59.000Z

    The Canister Storage Building (CSB) will be constructed in the 200 East Area of the U.S. Department of Energy (DOE) Hanford Site. The CSB will be used to stage and store spent nuclear fuel (SNF) removed from the Hanford Site K Basins. The objective of this chapter is to describe the characteristics of the site on which the CSB will be located. This description will support the hazard analysis and accident analyses in Chapter 3.0. The purpose of this report is to provide an evaluation of the CSB design criteria, the design's compliance with the applicable criteria, and the basis for authorization to proceed with construction of the CSB.

  6. Final safety analysis report for the Galileo Mission: Volume 1, Reference design document

    SciTech Connect (OSTI)

    Not Available

    1988-05-01T23:59:59.000Z

    The Galileo mission uses nuclear power sources called Radioisotope Thermoelectric Generators (RTGs) to provide the spacecraft's primary electrical power. Because these generators contain nuclear material, a Safety Analysis Report (SAR) is required. A preliminary SAR and an updated SAR were previously issued that provided an evolving status report on the safety analysis. As a result of the Challenger accident, the launch dates for both Galileo and Ulysses missions were later rescheduled for November 1989 and October 1990, respectively. The decision was made by agreement between the DOE and the NASA to have a revised safety evaluation and report (FSAR) prepared on the basis of these revised vehicle accidents and environments. The results of this latest revised safety evaluation are presented in this document (Galileo FSAR). Volume I, this document, provides the background design information required to understand the analyses presented in Volumes II and III. It contains descriptions of the RTGs, the Galileo spacecraft, the Space Shuttle, the Inertial Upper Stage (IUS), the trajectory and flight characteristics including flight contingency modes, and the launch site. There are two appendices in Volume I which provide detailed material properties for the RTG.

  7. Final safety analysis report for the Galileo Mission: Volume 2, Book 2: Accident model document: Appendices

    SciTech Connect (OSTI)

    Not Available

    1988-12-15T23:59:59.000Z

    This section of the Accident Model Document (AMD) presents the appendices which describe the various analyses that have been conducted for use in the Galileo Final Safety Analysis Report II, Volume II. Included in these appendices are the approaches, techniques, conditions and assumptions used in the development of the analytical models plus the detailed results of the analyses. Also included in these appendices are summaries of the accidents and their associated probabilities and environment models taken from the Shuttle Data Book (NSTS-08116), plus summaries of the several segments of the recent GPHS safety test program. The information presented in these appendices is used in Section 3.0 of the AMD to develop the Failure/Abort Sequence Trees (FASTs) and to determine the fuel releases (source terms) resulting from the potential Space Shuttle/IUS accidents throughout the missions.

  8. Style, content and format guide for writing safety analysis documents. Volume 1, Safety analysis reports for DOE nuclear facilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01T23:59:59.000Z

    The purpose of Volume 1 of this 4-volume style guide is to furnish guidelines on writing and publishing Safety Analysis Reports (SARs) for DOE nuclear facilities at Sandia National Laboratories. The scope of Volume 1 encompasses not only the general guidelines for writing and publishing, but also the prescribed topics/appendices contents along with examples from typical SARs for DOE nuclear facilities.

  9. Implementing 10 CFR 830 at the FEMP Silos: Nuclear Health and Safety Plans as Documented Safety Analysis

    SciTech Connect (OSTI)

    Fisk, Patricia; Rutherford, Lavon

    2003-06-01T23:59:59.000Z

    The objective of the Silos Project at the Fernald Closure Project (FCP) is to safely remediate high-grade uranium ore residues (Silos 1 and 2) and metal oxide residues (Silo 3). The evolution of Documented Safety Analyses (DSAs) for these facilities has reflected the changes in remediation processes. The final stage in silos DSAs is an interpretation of 10 CFR 830 Safe Harbor Requirements that combines a Health and Safety Plan with nuclear safety requirements. This paper will address the development of a Nuclear Health and Safety Plan, or N-HASP.

  10. Documented Safety Analysis Addendum for the Neutron Radiography Reactor Facility Core Conversion

    SciTech Connect (OSTI)

    Boyd D. Christensen

    2009-05-01T23:59:59.000Z

    The Neutron Radiography Reactor Facility (NRAD) is a Training, Research, Isotope Production, General Atomics (TRIGA) reactor which was installed in the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) at the Materials and Fuels Complex (MFC) in the mid 1970s. The facility provides researchers the capability to examine both irradiated and non-irradiated materials in support of reactor fuel and components programs through non-destructive neutron radiography examination. The facility has been used in the past as one facet of a suite of reactor fuels and component examination facilities available to researchers at the INL and throughout the DOE complex. The facility has also served various commercial research activities in addition to the DOE research and development support. The reactor was initially constructed using Fuel Lifetime Improvement Program (FLIP)- type highly enriched uranium (HEU) fuel obtained from the dismantled Puerto Rico Nuclear Center (PRNC) reactor. In accordance with international non-proliferation agreements, the NRAD core will be converted to a low enriched uranium (LEU) fuel and will continue to utilize the PRNC control rods, control rod drives, startup source, and instrument console as was previously used with the HEU core. The existing NRAD Safety Analysis Report (SAR) was created and maintained in the preferred format of the day, combining sections of both DOE-STD-3009 and Nuclear Regulatory Commission Regulatory Guide 1.70. An addendum was developed to cover the refueling and reactor operation with the LEU core. This addendum follows the existing SAR format combining required formats from both the DOE and NRC. This paper discusses the project to successfully write a compliant and approved addendum to the existing safety basis documents.

  11. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Sheet If you did not submit a General User Proposal, you must submit an ESS one month prior to arrival at the ALS. 2. Biological, Radioactive, and Hazardous...

  12. Reactor operation safety information document

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    The report contains a reactor facility description which includes K, P, and L reactor sites, structures, operating systems, engineered safety systems, support systems, and process and effluent monitoring systems; an accident analysis section which includes cooling system anomalies, radioactive materials releases, and anticipated transients without scram; a summary of onsite doses from design basis accidents; severe accident analysis (reactor core disruption); a description of operating contractor organization and emergency planning; and a summary of reactor safety evolution. (MB)

  13. Expectations on Documented Safety Analysis for Deactivated Inactive Nuclear Facilities in a State of Long Term Surveillance & Maintenance or Decommissioning

    SciTech Connect (OSTI)

    JACKSON, M.W.

    2002-05-01T23:59:59.000Z

    DOE promulgated 10 CFR 830 ''Nuclear Safety Management'' on October 10, 2000. Section 204 of the Rule requires that contractors at DOE hazard category 1, 2, and 3 nuclear facilities develop a ''Documented Safety Analysis'' (DSA) that summarizes the work to be performed, the associated hazards, and hazard controls necessary to protect workers, the public, and the environment. Table 2 of Appendix A to the rule has been provided to ensure that DSAs are prepared in accordance with one of the available predetermined ''safe harbor'' approaches. The table presents various acceptable safe harbor DSAs for different nuclear facility operations ranging from nuclear reactors to decommissioning activities. The safe harbor permitted for decommissioning of a nuclear facility encompasses methods described in DOE-STD-1 120-98, ''Integration of Environment, Safety and Health into Facility Disposition Activities,'' and provisions in 29 CFR 1910.120 or 29 CFR 1926.65 (HAZWOPER). Additionally, an evaluation of public safety impacts and development of necessary controls is required when the facility being decommissioned contains radiological inventory or contamination exceeding the Rule's definition for low-level residual fixed radioactivity. This document discusses a cost-effective DSA approach that is based on the concepts of DOE-STD-I 120 and meets the 10 CFR 830 safe harbor requirements for both transition surveillance and maintenance as well as decommissioning. This DSA approach provides continuity for inactive Hanford nuclear facilities that will eventually transition into decommissioning. It also uses a graded approach that meets the expectations of DOE-STD-3011 and addresses HAZWOPER requirements to provide a sound basis for worker protection, particularly where intrusive work is being conducted.

  14. Events Beyond Design Safety Basis Analysis

    Broader source: Energy.gov [DOE]

    This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis. [Safety Bulletin 2011-01

  15. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  16. Spent nuclear fuel project criteria document -- Cold Vacuum Drying Facility phase 2 safety analysis report

    SciTech Connect (OSTI)

    Garvin, L.J.

    1998-07-03T23:59:59.000Z

    The criteria document provides the criteria and guidance for developing the SNF CVDF Phase 2 SAR. This SAR will support the US Department of Energy, Richland Operations Office decision to authorize the procurement, installation, and installation acceptance testing of the CVDF systems.

  17. Documentation of Hanford Site independent review of the Hanford Waste Vitrification Plant Preliminary Safety Analysis Report. Revision 3

    SciTech Connect (OSTI)

    Herborn, D.I.

    1993-11-01T23:59:59.000Z

    Westinghouse Hanford Company (WHC) is the Integrating Contractor for the Hanford Waste Vitrification Plant (HWVP) Project, and as such is responsible for preparation of the HWVP Preliminary Safety Analysis Report (PSAR). The HWVP PSAR was prepared pursuant to the requirements for safety analyses contained in US Department of Energy (DOE) Orders 4700.1, Project Management System (DOE 1987); 5480.5, Safety of Nuclear Facilities (DOE 1986a); 5481.lB, Safety Analysis and Review System (DOE 1986b) which was superseded by DOE order 5480-23, Nuclear Safety Analysis Reports, for nuclear facilities effective April 30, 1992 (DOE 1992); and 6430.lA, General Design Criteria (DOE 1989). The WHC procedures that, in large part, implement these DOE requirements are contained in WHC-CM-4-46, Nonreactor Facility Safety Analysis Manual. This manual describes the overall WHC safety analysis process in terms of requirements for safety analyses, responsibilities of the various contributing organizations, and required reviews and approvals.

  18. Documenting Targeted Behaviors Associated with Pedestrian Safety

    E-Print Network [OSTI]

    Cooper, Jill F.; Schneider, Robert J.; Ryan, Sherry; Co, Sean

    2013-01-01T23:59:59.000Z

    Intersections. Accident Analysis and Prevention, Vol. 39,Pedestrian Safety. Accident Analysis and Prevention, Vol.Conflicts Technique. Accident Analysis and Prevention, Vol.

  19. DISCIPLINE OF RADIATION THERAPY SAFETY DOCUMENT

    E-Print Network [OSTI]

    O'Mahony, Donal E.

    DISCIPLINE OF RADIATION THERAPY SAFETY DOCUMENT Contents Page 1. Health & Safety arrangements 1 Inspection 1.4 Hazard Reporting 1.5 Security in College 1.6 Out of Hours Working 1.7 Management of Work.7 Management of Work-related Stress Those experiencing symptoms of work-related stress should raise this matter

  20. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    CROWE, R.D.

    1999-09-09T23:59:59.000Z

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  1. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    CROWE, R.D.; PIEPHO, M.G.

    2000-03-23T23:59:59.000Z

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  2. PUREX Deactivation Health and Safety documentation

    SciTech Connect (OSTI)

    Dodd, E.N. III

    1995-01-01T23:59:59.000Z

    The purpose of the PUREX Deactivation Project is to establish a passively safe and environmentally secure configuration of PUREX at the Hanford Site, and to preserve that configuration for a 10-year horizon. The 10-year horizon is used to predict future maintenance requirements and represents they typical time duration expended to define, authorize, and initiate the follow-on Decontamination and Decommissioning (D&D) activities. This document was prepared to increase attention to worker safety issues during the deactivation project and, as such, identifies the documentation and programs associated with PUREX Deactivation Health and Safety.

  3. PORTAL Aggregation Analysis and Documentation

    E-Print Network [OSTI]

    Bertini, Robert L.

    PORTAL Aggregation Analysis and Documentation Kristin A. Tufte Portland State University Introduction This document describes the aggregation procedures for PORTAL . Analysis of different aggregation system. Details on the status values and their descriptions can be found in the SWARM documentation

  4. Evolution of Safety Basis Documentation for the Fernald Site

    SciTech Connect (OSTI)

    Brown, T.; Kohler, S.; Fisk, P.; Krach, F.; Klein, B.

    2004-03-01T23:59:59.000Z

    The objective of the Department of Energy's (DOE) Fernald Closure Project (FCP), in suburban Cincinnati, Ohio, is to safely complete the environmental restoration of the Fernald site by 2006. Over 200 out of 220 total structures, at this DOE plant site which processed uranium ore concentrates into high-purity uranium metal products, have been safely demolished, including eight of the nine major production plants. Documented Safety Analyses (DSAs) for these facilities have gone through a process of simplification, from individual operating Safety Analysis Reports (SARs) to a single site-wide Authorization Basis containing nuclear facility Bases for Interim Operations (BIOs) to individual project Auditable Safety Records (ASRs). The final stage in DSA simplification consists of project-specific Integrated Health and Safety Plans (I-HASPs) and Nuclear Health and Safety Plans (N-HASPs) that address all aspects of safety, from the worker in the field to the safety basis requirements preserving the facility/activity hazard categorization. This paper addresses the evolution of Safety Basis Documentation (SBD), as DSAs, from production through site closure.

  5. Safety Analysis of Requirements for a Product Family Robyn R. Lutz

    E-Print Network [OSTI]

    Lutz, Robyn R.

    of this work is to de- scribe a way in which existing and well-documented safety analysis techniques (safety

  6. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    SciTech Connect (OSTI)

    PIEPHO, M.G.

    1999-10-20T23:59:59.000Z

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  7. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety Basis Analysis, March 2011

    Broader source: Energy.gov [DOE]

    PURPOSE This Safety Alert provides information on a safety concern related to the identification and mitigation of events that may fall outside those analyzed in the documented safety analysis.

  8. Hanford safety analysis and risk assessment handbook (SARAH)

    SciTech Connect (OSTI)

    GARVIN, L.J.

    2003-01-20T23:59:59.000Z

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 1,2, and 3 U.S. Department of Energy (DOE) nuclear facilities. SARAH describes currently acceptable methodology for development of a Documented Safety Analysis (DSA) and derivation of technical safety requirements (TSR) based on 10 CFR 830, ''Nuclear Safety Management,'' Subpart B, ''Safety Basis Requirements,'' and provides data to ensure consistency in approach.

  9. Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Documents

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-12-19T23:59:59.000Z

    This Standard describes a framework and the criteria to be used for approval of (1) safety basis documents, as required by 10 Code of Federal Regulation (C.F.R.) 830, Nuclear Safety Management, and (2) safety design basis documents, as required by Department of Energy (DOE) Standard (STD)-1189-2008, Integration of Safety into the Design Process.

  10. Safety study application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1993-07-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc., (Energy Systems) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Included are analyses of existing facilities done under the aegis of the Safety Analysis Report Upgrade Program, and analyses of new and modified facilities. A graded approach is used wherein the level of analysis and documentation for each facility is commensurate with the magnitude of the hazard(s), the complexity of the facility and the stage of the facility life cycle. Safety analysis reports (SARs) for hazard Category 1 and 2 facilities are usually detailed and extensive because these categories are associated with public health and safety risk. SARs for Category 3 are normally much less extensive because the risk to public health and safety is slight. At Energy Systems, safety studies are the name given to SARs for Category 3 (formerly {open_quotes}low{close_quotes}) facilities. Safety studies are the appropriate instrument when on-site risks are limited to irreversible consequences to a few people, and off-site consequences are limited to reversible consequences to a few people. This application guide provides detailed instructions for performing safety studies that meet the requirements of DOE Orders 5480.22, {open_quotes}Technical Safety Requirements,{close_quotes} and 5480.23, {open_quotes}Nuclear Safety Analysis Reports.{close_quotes} A seven-chapter format has been adopted for safety studies. This format allows for discussion of all the items required by DOE Order 5480.23 and for the discussions to be readily traceable to the listing in the order. The chapter titles are: (1) Introduction and Summary, (2) Site, (3) Facility Description, (4) Safety Basis, (5) Hazardous Material Management, (6) Management, Organization, and Institutional Safety Provisions, and (7) Accident Analysis.

  11. HANFORD SAFETY ANALYSIS & RISK ASSESSMENT HANDBOOK (SARAH)

    SciTech Connect (OSTI)

    EVANS, C B

    2004-12-21T23:59:59.000Z

    The purpose of the Hanford Safety Analysis and Risk Assessment Handbook (SARAH) is to support the development of safety basis documentation for Hazard Category 2 and 3 (HC-2 and 3) U.S. Department of Energy (DOE) nuclear facilities to meet the requirements of 10 CFR 830, ''Nuclear Safety Management''. Subpart B, ''Safety Basis Requirements.'' Consistent with DOE-STD-3009-94, Change Notice 2, ''Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'' (STD-3009), and DOE-STD-3011-2002, ''Guidance for Preparation of Basis for Interim Operation (BIO) Documents'' (STD-3011), the Hanford SARAH describes methodology for performing a safety analysis leading to development of a Documented Safety Analysis (DSA) and derivation of Technical Safety Requirements (TSR), and provides the information necessary to ensure a consistently rigorous approach that meets DOE expectations. The DSA and TSR documents, together with the DOE-issued Safety Evaluation Report (SER), are the basic components of facility safety basis documentation. For HC-2 or 3 nuclear facilities in long-term surveillance and maintenance (S&M), for decommissioning activities, where source term has been eliminated to the point that only low-level, residual fixed contamination is present, or for environmental remediation activities outside of a facility structure, DOE-STD-1120-98, ''Integration of Environment, Safety, and Health into Facility Disposition Activities'' (STD-1120), may serve as the basis for the DSA. HC-2 and 3 environmental remediation sites also are subject to the hazard analysis methodologies of this standard.

  12. Page 1 of 11 Summary of a Revised Safety Impact Analysis for the Lead Shielded Container Assembly

    E-Print Network [OSTI]

    -individual from previous analyses performed to support the WIPP Documented Safety Analysis (DSA). The revised

  13. SAFETY ANALYSIS QUANTITATIVE ANALYSIS ON

    E-Print Network [OSTI]

    Wang, Yinhai

    1 TOPIC C2 SAFETY ANALYSIS AND POLICY QUANTITATIVE ANALYSIS ON ANGLE-ACCIDENT RISK AT SIGNALIZED-2700 Tel: (206) 543-9639 Fax: (206) 543-5965 Email: nihan@u.washington.edu #12;2 Quantitative Analysis on Angle-Accident Risk at Signalized Intersections Abstract: This paper demonstrates how a new modeling

  14. National Spherical Torus Experiment-Upgrade SAFETY ASSESSMENT DOCUMENT

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    -00 Revision 6 DECEMBER 2014 Prepared by: _______________________ Jerry Levine Head, PPPL ESH&S Reviewed by Chair, PPPL ES&H Executive Board #12;#12;NSTX-U SAFETY ASSESSMENT DOCUMENT (SAD) Table of Contents 1

  15. GARS Directorate Environment, Safety, & Health Records/Documents Management

    E-Print Network [OSTI]

    Ohta, Shigemi

    GARS Directorate Environment, Safety, & Health Records/Documents Management Rev. 6 4/24/13 Topic / Series Title Record Description BNL Site Specific File Plan DOE Retention Responsible Party Location 1. Occupational Health & Safety (OHSAS 18001) Management System Description (Manual) The written OSH program

  16. Lawrence Berkeley National Laboratory Safety Assessment Document (SAD)

    E-Print Network [OSTI]

    Knowles, David William

    Lawrence Berkeley National Laboratory Safety Assessment Document (SAD) for the Advanced Light Assessment Document, Rev. 7 (May 29, 2009) ii Signature Page for Rev. 7 of the ALS SAD Prepared by: ALS EHS Program Manager Date: Reviewed by: ALS Deputy Division Director Date: ALS Deputy for Operations

  17. Madonne: Document Image Analysis Techniques for Cultural Heritage Documents

    E-Print Network [OSTI]

    Boyer, Edmond

    Madonne: Document Image Analysis Techniques for Cultural Heritage Documents Jean-Marc Ogier and Karl Tombre Abstract. This paper presents the Madonne project, a French initiative to use document image anal- ysis techniques for the purpose of preserving and exploiting heritage documents. 1

  18. SEISMIC ANALYSIS FOR PRECLOSURE SAFETY

    SciTech Connect (OSTI)

    E.N. Lindner

    2004-12-03T23:59:59.000Z

    The purpose of this seismic preclosure safety analysis is to identify the potential seismically-initiated event sequences associated with preclosure operations of the repository at Yucca Mountain and assign appropriate design bases to provide assurance of achieving the performance objectives specified in the Code of Federal Regulations (CFR) 10 CFR Part 63 for radiological consequences. This seismic preclosure safety analysis is performed in support of the License Application for the Yucca Mountain Project. In more detail, this analysis identifies the systems, structures, and components (SSCs) that are subject to seismic design bases. This analysis assigns one of two design basis ground motion (DBGM) levels, DBGM-1 or DBGM-2, to SSCs important to safety (ITS) that are credited in the prevention or mitigation of seismically-initiated event sequences. An application of seismic margins approach is also demonstrated for SSCs assigned to DBGM-2 by showing a high confidence of a low probability of failure at a higher ground acceleration value, termed a beyond-design basis ground motion (BDBGM) level. The objective of this analysis is to meet the performance requirements of 10 CFR 63.111(a) and 10 CFR 63.111(b) for offsite and worker doses. The results of this calculation are used as inputs to the following: (1) A classification analysis of SSCs ITS by identifying potential seismically-initiated failures (loss of safety function) that could lead to undesired consequences; (2) An assignment of either DBGM-1 or DBGM-2 to each SSC ITS credited in the prevention or mitigation of a seismically-initiated event sequence; and (3) A nuclear safety design basis report that will state the seismic design requirements that are credited in this analysis. The present analysis reflects the design information available as of October 2004 and is considered preliminary. The evolving design of the repository will be re-evaluated periodically to ensure that seismic hazards are properly evaluated and identified. This document supersedes the seismic classifications, assignments, and computations in ''Seismic Analysis for Preclosure Safety'' (BSC 2004a).

  19. Nuclear Criticality Safety Application Guide: Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    Martin Marietta Energy Systems, Inc. (MMES) is committed to performing and documenting safety analyses for facilities it manages for the Department of Energy (DOE). Safety analyses are performed to identify hazards and potential accidents; to analyze the adequacy of measures taken to eliminate, control, or mitigate hazards; and to evaluate potential accidents and determine associated risks. Safety Analysis Reports (SARs) are prepared to document the safety analysis to ensure facilities can be operated safely and in accordance with regulations. Many of the facilities requiring a SAR process fissionable material creating the potential for a nuclear criticality accident. MMES has long had a nuclear criticality safety program that provides the technical support to fissionable material operations to ensure the safe processing and storage of fissionable materials. The guiding philosophy of the program has always been the application of the double-contingency principle, which states: {open_quotes}process designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible.{close_quotes} At Energy Systems analyses have generally been maintained to document that no single normal or abnormal operating conditions that could reasonably be expected to occur can cause a nuclear criticality accident. This application guide provides a summary description of the MMES Nuclear Criticality Safety Program and the MMES Criticality Accident Alarm System requirements for inclusion in facility SARs. The guide also suggests a way to incorporate the analyses conducted pursuant to the double-contingency principle into the SAR. The prime objective is to minimize duplicative effort between the NCSA process and the SAR process and yet adequately describe the methodology utilized to prevent a nuclear criticality accident.

  20. Microsoft Word - Directives Requiring Additional Documentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analysis and Technical Safety Requirements 10 DOE-STD-1186-2004 Specific...

  1. Margin of Safety Definition and Examples Used in Safety Basis Documents and the USQ Process

    SciTech Connect (OSTI)

    Beaulieu, R. A.

    2013-10-03T23:59:59.000Z

    The Nuclear Safety Management final rule, 10 CFR 830, provides an undefined term, margin of safety (MOS). Safe harbors listed in 10 CFR 830, Table 2, such as DOE?STD?3009 use but do not define the term. This lack of definition has created the need for the definition. This paper provides a definition of MOS and documents examples of MOS as applied in a U.S. Department of Energy (DOE) approved safety basis for an existing nuclear facility. If we understand what MOS looks like regarding Technical Safety Requirements (TSR) parameters, then it helps us compare against other parameters that do not involve a MOS. This paper also documents parameters that are not MOS. These criteria could be used to determine if an MOS exists in safety basis documents. This paper helps DOE, including the National Nuclear Security Administration (NNSA) and its contractors responsible for the safety basis improve safety basis documents and the unreviewed safety question (USQ) process with respect to MOS.

  2. AN APPROACH TO SAFETY DESIGN BASIS DOCUMENTATION CHANGE CONTROL

    SciTech Connect (OSTI)

    RYAN GW

    2008-05-15T23:59:59.000Z

    This paper describes a safety design basis documentation change control process. The process identifies elements that can be used to manage the project/facility configuration during design evolution through the Initiation, Definition, and Execution project phases. The project phases addressed by the process are defined in US Department of Energy (DOE) Order (O) 413.3A, Program and Project Management for the Acquisition of Capital Assets, in support of DOE project Critical Decisions (CD). This approach has been developed for application to two Hanford Site projects in their early CD phases and is considered to be a key element of safety and design integration. As described in the work that has been performed, the purpose of change control is to maintain consistency among design requirements, the physical configuration, related facility documentation, and the nuclear safety basis during the evolution of the design. The process developed (1) ensures an appropriate level of rigor is applied at each project phase and (2) is considered to implement the requirements and guidance provided in DOE-STD-1189-2008, Integration of Safety into the Design Process. Presentation of this work is expected to benefit others in the DOE Complex that may be implementing DOE-STD-1189-2008 or managing nuclear safety documentation in support of projects in-process.

  3. SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES

    SciTech Connect (OSTI)

    Coutts, D

    2007-04-17T23:59:59.000Z

    Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

  4. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation.

  5. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    SciTech Connect (OSTI)

    MCCALL, D L

    2002-06-01T23:59:59.000Z

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  6. Document Image Analysis State of the Art

    E-Print Network [OSTI]

    Saund, Eric

    Document Image Analysis State of the Art and Technology Roadmap Eric Saund Area Manager, Perceptual Document Analysis Intelligent Systems Laboratory Palo Alto Research Center March, 2008 #12;Manfred Winslow rented a car... Every Document Tells a Story... Ervin Leasing billed a customer... Hugo Yepez hosted some

  7. SAFEGUARDS AND SECURITY INTEGRATION WITH SAFETY ANALYSIS

    SciTech Connect (OSTI)

    Hearn, J; James Lightner, J

    2007-04-13T23:59:59.000Z

    The objective of this paper is to share the Savannah River Site lessons learned on Safeguards and Security (S&S) program integration with K-Area Complex (KAC) safety basis. The KAC Documented Safety Analysis (DSA), is managed by the Washington Savannah River Company (WSRC), and the S&S program, managed by Wackenhut Services, Incorporated--Savannah River Site (WSI-SRS). WSRC and WSI-SRS developed a contractual arrangement to recognize WSI-SRS requirements in the KAC safety analysis. Design Basis Threat 2003 (DBT03) security upgrades required physical modifications and operational changes which included the availability of weapons which could potentially impact the facility safety analysis. The KAC DSA did not previously require explicit linkage to the S&S program to satisfy the safety analysis. WSI-SRS have contractual requirements with the Department of Energy (DOE) which are separate from WSRC contract requirements. The lessons learned will include a discussion on planning, analysis, approval of the controls and implementation issues.

  8. Corporate Analysis of DOE Safety Performance

    Broader source: Energy.gov [DOE]

    The Office of Environment, Health, Safety and Security (EHSS), Office of Analysis develops analysis tools and performance dashboards, and conducts analysis of DOE safety performance corporately and on a variety of specific environment, safety and health topics.

  9. Safety analysis report for the Waste Storage Facility. Revision 2

    SciTech Connect (OSTI)

    Bengston, S.J.

    1994-05-01T23:59:59.000Z

    This safety analysis report outlines the safety concerns associated with the Waste Storage Facility located in the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. The three main objectives of the report are: define and document a safety basis for the Waste Storage Facility activities; demonstrate how the activities will be carried out to adequately protect the workers, public, and environment; and provide a basis for review and acceptance of the identified risk that the managers, operators, and owners will assume.

  10. Mixed Waste Management Facility Preliminary Safety Analysis Report. Chapters 1 to 20

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    This document provides information on waste management practices, occupational safety, and a site characterization of the Lawrence Livermore National Laboratory. A facility description, safety engineering analysis, mixed waste processing techniques, and auxiliary support systems are included.

  11. Safety Analysis of Requirements for a Product Family Robyn R. Lutz \\Lambda

    E-Print Network [OSTI]

    Lutz, Robyn R.

    safety analysis techniques (safety checklist, forward and backward search) can be combined to evaluate specification. The major contribution of this work is to de­ scribe a way in which existing and well­documented

  12. Waste Isolation Pilot Plant Safety Analysis Report

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The following provides a summary of the specific issues addressed in this FY-95 Annual Update as they relate to the CH TRU safety bases: Executive Summary; Site Characteristics; Principal Design and Safety Criteria; Facility Design and Operation; Hazards and Accident Analysis; Derivation of Technical Safety Requirements; Radiological and Hazardous Material Protection; Institutional Programs; Quality Assurance; and Decontamination and Decommissioning. The System Design Descriptions`` (SDDS) for the WIPP were reviewed and incorporated into Chapter 3, Principal Design and Safety Criteria and Chapter 4, Facility Design and Operation. This provides the most currently available final engineering design information on waste emplacement operations throughout the disposal phase up to the point of permanent closure. Also, the criteria which define the TRU waste to be accepted for disposal at the WIPP facility were summarized in Chapter 3 based on the WAC for the Waste Isolation Pilot Plant.`` This Safety Analysis Report (SAR) documents the safety analyses that develop and evaluate the adequacy of the Waste Isolation Pilot Plant Contact-Handled Transuranic Wastes (WIPP CH TRU) safety bases necessary to ensure the safety of workers, the public and the environment from the hazards posed by WIPP waste handling and emplacement operations during the disposal phase and hazards associated with the decommissioning and decontamination phase. The analyses of the hazards associated with the long-term (10,000 year) disposal of TRU and TRU mixed waste, and demonstration of compliance with the requirements of 40 CFR 191, Subpart B and 40 CFR 268.6 will be addressed in detail in the WIPP Final Certification Application scheduled for submittal in October 1996 (40 CFR 191) and the No-Migration Variance Petition (40 CFR 268.6) scheduled for submittal in June 1996. Section 5.4, Long-Term Waste Isolation Assessment summarizes the current status of the assessment.

  13. Integration of Safety Culture Attributes into the EFCOG WP&C Program Guideline Document

    Broader source: Energy.gov [DOE]

    Slide Presentation by Steele Coddington, NSTec, Las Vegas and John McDonald, WRPS, Hanford. Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document.

  14. Idaho National Engineering Laboratory (INEL) Environmental Restoration Program (ERP), Baseline Safety Analysis File (BSAF). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-20T23:59:59.000Z

    This document was prepared to take the place of a Safety Evaluation Report since the Baseline Safety Analysis File (BSAF)and associated Baseline Technical Safety Requirements (TSR) File do not meet the requirements of a complete safety analysis documentation. Its purpose is to present in summary form the background of how the BSAF and Baseline TSR originated and a description of the process by which it was produced and approved for use in the Environmental Restoration Program.The BSAF is a facility safety reference document for INEL environmental restoration activities including environmental remediation of inactive waste sites and decontamination and decommissioning (D&D) of surplus facilities. The BSAF contains safety bases common to environmental restoration activities and guidelines for performing and documenting safety analysis. The common safety bases can be incorporated by reference into the safety analysis documentation prepared for individual environmental restoration activities with justification and any necessary revisions. The safety analysis guidelines in BSAF provide an accepted method for hazard analysis; analysis of normal, abnormal, and accident conditions; human factors analysis; and derivation of TSRS. The BSAF safety bases and guidelines are graded for environmental restoration activities.

  15. Job Safety Analysis College/Department/Unit

    E-Print Network [OSTI]

    Saskatchewan, University of

    Job Safety Analysis (JSA) College/Department/Unit: Title of Job Activity: Oven Location of Activity and understanding the Job Safety Analysis: Date Name (Print) Signature #12;JSA # Page 3 Basic Job Steps Possible

  16. Improving safety through root cause analysis

    SciTech Connect (OSTI)

    Gatlin, J.L.; Taylor, K.

    1991-01-01T23:59:59.000Z

    Operations at the US Department of Energy -- Savannah River Site (SRS) include such diverse facilities as reactors, fuel fabrication, chemical processing, coal burning power houses, analytical laboratories and research facilities. To enhance the safety of operations at SRS, a Root Cause Analysis process has been developed and is discussed in this document. Root Cause Analysis is a three-step process designed to evaluate and correct problems by identifying WHY an occurrence happened. Although this involves correction after a problem occurs, it is also used to prevent future problems by identifying the Root Causes. Root Causes are the most basic causes that can reasonably be identified, that management has control to fix and for which effective recommendations for preventing recurrence can be generated. Making corrective actions based upon Root Causes lowers the risk of future operation.

  17. Improving safety through root cause analysis

    SciTech Connect (OSTI)

    Gatlin, J.L.; Taylor, K.

    1991-12-31T23:59:59.000Z

    Operations at the US Department of Energy -- Savannah River Site (SRS) include such diverse facilities as reactors, fuel fabrication, chemical processing, coal burning power houses, analytical laboratories and research facilities. To enhance the safety of operations at SRS, a Root Cause Analysis process has been developed and is discussed in this document. Root Cause Analysis is a three-step process designed to evaluate and correct problems by identifying WHY an occurrence happened. Although this involves correction after a problem occurs, it is also used to prevent future problems by identifying the Root Causes. Root Causes are the most basic causes that can reasonably be identified, that management has control to fix and for which effective recommendations for preventing recurrence can be generated. Making corrective actions based upon Root Causes lowers the risk of future operation.

  18. PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

  19. Implementation Guide for Use in Developing Documented Safety Analyses to Meet Subpart B of 10 CFR 830

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-10-24T23:59:59.000Z

    This Guide elaborates on the documented safety analysis (DSA) development process and the safe harbor provisions of the Appendix to10 CFR 830 Subpart B. Title 10 Code of Federal Regulations (CFR) Part 830, Subpart B, 'Safety Basis Requirements,' requires the contractor responsible for a Department of Energy (DOE) nuclear facility to analyze the facility, the work to be performed, and the associated hazards and to identify the conditions, safe boundaries, and hazard controls necessary to protect workers, the public, and the environment from adverse consequences. Canceled by DOE G 421.1-2A

  20. CRAD, Facility Safety - Documented Safety Analysis | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGMofRev.A section of

  1. CRAD, New Nuclear Facility Documented Safety Analysis and Technical Safety

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTSpurpose of

  2. CRAD, Nuclear Safety Delegations for Documented Safety Analysis Approval

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTSpurpose of|- January 8,

  3. Development of an auditable safety analysis in support of a radiological facility classification

    SciTech Connect (OSTI)

    Kinney, M.D. [Roy F. Weston, Inc., Rockville, MD (United States); Young, B. [Dept. of Energy, Albuquerque, NM (United States)

    1995-03-01T23:59:59.000Z

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23.

  4. Documentation Integrity for Safety-Critical Applications: The COHERE Project

    E-Print Network [OSTI]

    Novick, David G.

    in translation) by individual airlines to meet their own guidelines or standards for publications and operations], an aimrat% maintenance and (non-updated) flight manuals contained different versions of the procedure and revising consistent documentation. The project's principal goal is to account for cockpit procedures during

  5. Hot Cell Facility (HCF) Safety Analysis Report

    SciTech Connect (OSTI)

    MITCHELL,GERRY W.; LONGLEY,SUSAN W.; PHILBIN,JEFFREY S.; MAHN,JEFFREY A.; BERRY,DONALD T.; SCHWERS,NORMAN F.; VANDERBEEK,THOMAS E.; NAEGELI,ROBERT E.

    2000-11-01T23:59:59.000Z

    This Safety Analysis Report (SAR) is prepared in compliance with the requirements of DOE Order 5480.23, Nuclear Safety Analysis Reports, and has been written to the format and content guide of DOE-STD-3009-94 Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Safety Analysis Reports. The Hot Cell Facility is a Hazard Category 2 nonreactor nuclear facility, and is operated by Sandia National Laboratories for the Department of Energy. This SAR provides a description of the HCF and its operations, an assessment of the hazards and potential accidents which may occur in the facility. The potential consequences and likelihood of these accidents are analyzed and described. Using the process and criteria described in DOE-STD-3009-94, safety-related structures, systems and components are identified, and the important safety functions of each SSC are described. Additionally, information which describes the safety management programs at SNL are described in ancillary chapters of the SAR.

  6. Westinghouse Hanford Company safety analysis reports and technical safety requirements upgrade program

    SciTech Connect (OSTI)

    Busche, D.M.

    1995-09-01T23:59:59.000Z

    During Fiscal Year 1992, the US Department of Energy, Richland Operations Office (RL) separately transmitted the following US Department of Energy (DOE) Orders to Westinghouse Hanford Company (WHC) for compliance: DOE 5480.21, ``Unreviewed Safety Questions,`` DOE 5480.22, ``Technical Safety Requirements,`` and DOE 5480.23, ``Nuclear Safety Analysis Reports.`` WHC has proceeded with its impact assessment and implementation process for the Orders. The Orders are closely-related and contain some requirements that are either identical, similar, or logically-related. Consequently, WHC has developed a strategy calling for an integrated implementation of the three Orders. The strategy is comprised of three primary objectives, namely: Obtain DOE approval of a single list of DOE-owned and WHC-managed Nuclear Facilities, Establish and/or upgrade the ``Safety Basis`` for each Nuclear Facility, and Establish a functional Unreviewed Safety Question (USQ) process to govern the management and preservation of the Safety Basis for each Nuclear Facility. WHC has developed policy-revision and facility-specific implementation plans to accomplish near-term tasks associated with the above strategic objectives. This plan, which as originally submitted in August 1993 and approved, provided an interpretation of the new DOE Nuclear Facility definition and an initial list of WHC-managed Nuclear Facilities. For each current existing Nuclear Facility, existing Safety Basis documents are identified and the plan/status is provided for the ISB. Plans for upgrading SARs and developing TSRs will be provided after issuance of the corresponding Rules.

  7. Fuel Storage Facility Final Safety Analysis Report. Revision 1

    SciTech Connect (OSTI)

    Linderoth, C.E.

    1984-03-01T23:59:59.000Z

    The Fuel Storage Facility (FSF) is an integral part of the Fast Flux Test Facility. Its purpose is to provide long-term storage (20-year design life) for spent fuel core elements used to provide the fast flux environment in FFTF, and for test fuel pins, components and subassemblies that have been irradiated in the fast flux environment. This Final Safety Analysis Report (FSAR) and its supporting documentation provides a complete description and safety evaluation of the site, the plant design, operations, and potential accidents.

  8. Safety analysis report for packaging (onsite) multicanister overpack cask

    SciTech Connect (OSTI)

    Edwards, W.S.

    1997-07-14T23:59:59.000Z

    This safety analysis report for packaging (SARP) documents the safety of shipments of irradiated fuel elements in the MUlticanister Overpack (MCO) and MCO Cask for a highway route controlled quantity, Type B fissile package. This SARP evaluates the package during transfers of (1) water-filled MCOs from the K Basins to the Cold Vacuum Drying Facility (CVDF) and (2) sealed and cold vacuum dried MCOs from the CVDF in the 100 K Area to the Canister Storage Building in the 200 East Area.

  9. Safety analysis report for packaging (onsite) sample pig transport system

    SciTech Connect (OSTI)

    MCCOY, J.C.

    1999-03-16T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) provides a technical evaluation of the Sample Pig Transport System as compared to the requirements of the U.S. Department of Energy, Richland Operations Office (RL) Order 5480.1, Change 1, Chapter III. The evaluation concludes that the package is acceptable for the onsite transport of Type B, fissile excepted radioactive materials when used in accordance with this document.

  10. Safety assessment document for the Dynamic Test Complex B854

    SciTech Connect (OSTI)

    Odell, B.N.; Pfeifer, H.E.

    1981-12-11T23:59:59.000Z

    A safety assessment was performed to determine if potential accidents at the 854 Complex at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The credible accidents that might have an effect on these facilities or have off-site consequences were considered. These were earthquake, extreme wind (including missiles), lightning, flood, criticality, high explosive (HE) detonation that disperses uranium and beryllium, spontaneous oxidation of plutonium, explosions due to finely divided particles, and a fire. Seismic and extreme wind (including missiles) analyses indicate that the buildings are basically sound. The lightning protection system is in the process of being upgraded to meet AMCR 385-100. These buildings are located high above the dry creek bed so that a flood is improbable. The probability of high explosive detonation involving plutonium is very remote since the radioactive materials are encased and plutonium and HE are not permitted concurrently in the same area at Site 300. (The exception to this policy is that explosive actuating devices are sometimes located in assemblies containing fissile materials. However, an accidental actuation will not affect the safe containment of the plutonium within the assembly.) There is a remote possibility of an HE explosion involving uranium and beryllium since these are permitted in the same area.The possibility of a criticality accident is very remote since the fissile materials are doubly encased in stout metal containers. All operations involving these materials are independently reviewed and inspected by the Criticality Safety Office. It was determined that a fire was unlikely due to the low fire loading and the absence of ignition sources. It was also determined that the consequences of any accidents were reduced by the remote location of these facilities, their design, and by administrative controls.

  11. FAQS Gap Analysis Qualification Card - Senior Technical Safety...

    Office of Environmental Management (EM)

    Gap Analysis Qualification Card - Senior Technical Safety Manager FAQS Gap Analysis Qualification Card - Senior Technical Safety Manager Functional Area Qualification Standard Gap...

  12. Comparison of Integrated Safety Analysis (ISA) and Probabilistic...

    Broader source: Energy.gov (indexed) [DOE]

    Comparison of Integrated Safety Analysis (ISA) and Probabilistic Risk Assessment (PRA) for Fuel Cycle Facilities, 21711 Comparison of Integrated Safety Analysis (ISA) and...

  13. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  14. Satellite System Safety Analysis Using STPA

    E-Print Network [OSTI]

    Dunn, Nicholas Connor

    2013-01-01T23:59:59.000Z

    Traditional hazard analysis techniques based on failure models of accident causality, such as the probabilistic risk assessment (PRA) method currently used at NASA, are inadequate for analyzing safety at the system level. ...

  15. ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    WILLIAMS, J.C.

    2003-11-15T23:59:59.000Z

    This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

  16. Autoclave nuclear criticality safety analysis

    SciTech Connect (OSTI)

    D`Aquila, D.M. [Martin Marietta Energy Systems, Inc., Piketon, OH (United States); Tayloe, R.W. Jr. [Battelle, Columbus, OH (United States)

    1991-12-31T23:59:59.000Z

    Steam-heated autoclaves are used in gaseous diffusion uranium enrichment plants to heat large cylinders of UF{sub 6}. Nuclear criticality safety for these autoclaves is evaluated. To enhance criticality safety, systems are incorporated into the design of autoclaves to limit the amount of water present. These safety systems also increase the likelihood that any UF{sub 6} inadvertently released from a cylinder into an autoclave is not released to the environment. Up to 140 pounds of water can be held up in large autoclaves. This mass of water is sufficient to support a nuclear criticality when optimally combined with 125 pounds of UF{sub 6} enriched to 5 percent U{sup 235}. However, water in autoclaves is widely dispersed as condensed droplets and vapor, and is extremely unlikely to form a critical configuration with released UF{sub 6}.

  17. ASD Facility Hazard Analysis Document - Building 400

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Safety Tool References DC Power Supplies DC voltages < 72 Volts DC currents < 450 Amps Lifting < 75 lbs Supplies mounted in NEMA enclosures Rack doors locked Power...

  18. Analysis of Integrated Safety Management at the Activity Level...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and...

  19. Rapid Exploitation and Analysis of Documents

    SciTech Connect (OSTI)

    Buttler, D J; Andrzejewski, D; Stevens, K D; Anastasiu, D; Gao, B

    2011-11-28T23:59:59.000Z

    Analysts are overwhelmed with information. They have large archives of historical data, both structured and unstructured, and continuous streams of relevant messages and documents that they need to match to current tasks, digest, and incorporate into their analysis. The purpose of the READ project is to develop technologies to make it easier to catalog, classify, and locate relevant information. We approached this task from multiple angles. First, we tackle the issue of processing large quantities of information in reasonable time. Second, we provide mechanisms that allow users to customize their queries based on latent topics exposed from corpus statistics. Third, we assist users in organizing query results, adding localized expert structure over results. Forth, we use word sense disambiguation techniques to increase the precision of matching user generated keyword lists with terms and concepts in the corpus. Fifth, we enhance co-occurrence statistics with latent topic attribution, to aid entity relationship discovery. Finally we quantitatively analyze the quality of three popular latent modeling techniques to examine under which circumstances each is useful.

  20. VISITOR SAFETY TRAINING CHECKLIST: Free Electron Laser (FEL) Laboratory Under California law and campus policy, the University must provide documented safety training for workers.

    E-Print Network [OSTI]

    Ahlers, Guenter

    VISITOR SAFETY TRAINING CHECKLIST: Free Electron Laser (FEL) Laboratory Under California law and campus policy, the University must provide documented safety training for workers. For FEL visitors, this generally means covering the basic guidelines/tasks below. The FEL management loosely defines a "visitor

  1. Facility worker technical basis document

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the Tank Farm Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility work consequence and presents the results of the allocation.

  2. Safety Bulletin

    Broader source: Energy.gov (indexed) [DOE]

    in the documented safety analysis. BACKGROUND On March 11 , 2011 , the Fukushima Daiichi nuclear power station in Japan was damaged by a magnitude 9.0 earthquake and the...

  3. Preliminary Safety Analysis Report for the Transuranic Storage Area Retrieval Enclosure at the Idaho National Engineering Laboratory. Revision 8

    SciTech Connect (OSTI)

    Not Available

    1993-03-01T23:59:59.000Z

    This Transuranic Storage Area Retrieval Enclosure Preliminary Safety Analysis Report was completed as required by DOE Order 5480.23. The purpose of this document is to construct a safety basis that supports the design and permits construction of the facility. The facility has been designed to the requirements of a Radioactive Solid Waste Facility presented in DOE Order 6430.1A.

  4. Light-water reactor safety analysis codes

    SciTech Connect (OSTI)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01T23:59:59.000Z

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented.

  5. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25T23:59:59.000Z

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  6. FACILITY WORKER TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SHULTZ, M.V.

    2005-03-31T23:59:59.000Z

    This technical basis document was developed to support RPP-13033, ''Tank Farms Documented Safety Analysis (DSA). It describes the criteria and methodology for allocating controls to hazardous conditions with significant facility worker (FW) consequence and presents the results of the allocation. The criteria and methodology for identifying controls that address FW safety are in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''.

  7. Overview of the preliminary safety analysis of the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.; McLouth, L.; Odell, B. [Lawrence Livermore National Lab., CA (United States)] [and others] [Lawrence Livermore National Lab., CA (United States); and others

    1997-06-01T23:59:59.000Z

    The National Ignition Facility (NIF) is a proposed U.S. Department of Energy inertial confinement laser fusion facility. The candidate sites for locating the NIF are: Los Alamos National Laboratory, Sandia National Laboratory, New Mexico, the Nevada Test Site, and Lawrence Livermore National Laboratory (LLNL), the preferred site. The NIF will operate by focusing 192 individual laser beams onto a tiny deuterium-tritium target located at the center of a spherical target chamber. The NIF has been classified as a low hazard, radiological facility on the basis of a preliminary hazards analysis and according to the DOE methodology for facility classification. This requires that a safety analysis report be prepared under DOE Order 5481.1B, Safety Analysis and Review System. A Preliminary Safety Analysis Report (PSAR) has been approved, which documents and evaluates the safety issues associated with the construction, operation, and decommissioning of the NIF. 10 refs., 6 figs., 4 tabs.

  8. Hazard Analysis Database report

    SciTech Connect (OSTI)

    Niemi, B.J.

    1997-08-12T23:59:59.000Z

    This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

  9. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30T23:59:59.000Z

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  10. Review of the Los Alamos Site Office Safety System Oversight...

    Office of Environmental Management (EM)

    for 3 oversight of credited safety management programs in the documented safety analysis, LASO has not maintained the list of assigned personnel. The SSO...

  11. Oak Ridge National Laboratory site data for safety-analysis report

    SciTech Connect (OSTI)

    Fitzpatrick, F.C.

    1982-12-01T23:59:59.000Z

    The Oak Ridge National Laboratory site data contained herein were compiled in support of the United States Department of Energy (USDOE) Oak Ridge Operations Office Order OR 5481.1. That order sets forth assignment of responsibilities for safety analysis and review responsibilities and provides guidance relative to the content and format of safety analysis reports. The information presented in this document is intended for use by reference in individual safety analysis reports where applicable to support accident analyses or the establishment of design bases of significance to safety, and it is applicable only to Oak Ridge National Laboratory facilities in Bethel and Melton Valleys. This information includes broad descriptions of the site characteristics, radioactive waste handling and monitoring practices, and the organization and operating policies at Oak Ridge National Laboratory. The historical background of the Laboratory is discussed briefly and the overall physical situation of the facilities is described in the following paragraphs.

  12. accident analysis documentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    accident analysis documentation First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Analysis of accidents...

  13. Mechanistic facility safety and source term analysis

    SciTech Connect (OSTI)

    PLYS, M.G.

    1999-06-09T23:59:59.000Z

    A PC-based computer program was created for facility safety and source term analysis at Hanford The program has been successfully applied to mechanistic prediction of source terms from chemical reactions in underground storage tanks, hydrogen combustion in double contained receiver tanks, and proccss evaluation including the potential for runaway reactions in spent nuclear fuel processing. Model features include user-defined facility room, flow path geometry, and heat conductors, user-defined non-ideal vapor and aerosol species, pressure- and density-driven gas flows, aerosol transport and deposition, and structure to accommodate facility-specific source terms. Example applications are presented here.

  14. Development of a pilot safety information document (PSID) for the replacement of radioactive liquid waste treatment facility at Los Alamos National Laboratory

    E-Print Network [OSTI]

    Selvage, Ronald Derek

    1995-01-01T23:59:59.000Z

    Based on recent decisions made by Los Alamos National Laboratory concerning the development of site-wide National Environmental Policy Act documents, an effort was undertaken to develop a Pilot Safety Information Document (PSID) for the replacement...

  15. Preliminary Safety Information Document for the Standard MHTGR. Volume 1, (includes latest Amendments)

    SciTech Connect (OSTI)

    NONE

    1986-12-01T23:59:59.000Z

    With NRC concurrence, the Licensing Plan for the Standard HTGR describes an application program consistent with 10CFR50, Appendix O to support a US Nuclear Regulatory Commission (NRC) review and design certification of an advanced Standard modular High Temperature Gas-Cooled Reactor (MHTGR) design. Consistent with the NRC's Advanced Reactor Policy, the Plan also outlines a series of preapplication activities which have as an objective the early issuance of an NRC Licensability Statement on the Standard MHTGR conceptual design. This Preliminary Safety Information Document (PSID) has been prepared as one of the submittals to the NRC by the US Department of Energy in support of preapplication activities on the Standard MHTGR. Other submittals to be provided include a Probabilistic Risk Assessment, a Regulatory Technology Development Plan, and an Emergency Planning Bases Report.

  16. Facility worker technical basis document

    SciTech Connect (OSTI)

    EVANS, C.B.

    2003-03-21T23:59:59.000Z

    This report documents the technical basis for facility worker safety to support the Tank Farms Documented Safety Analysis and described the criteria and methodology for allocating controls to hazardous conditions with significant facility worker consequences and presents the results of the allocation.

  17. Document

    Energy Savers [EERE]

    5320 Federal Register Vol. 75, No. 204 Friday, October 22, 2010 Notices intervene or protest must serve a copy of that document on the Applicant. Notice is hereby given that...

  18. 242-A evaporator safety analysis report

    SciTech Connect (OSTI)

    CAMPBELL, T.A.

    1999-05-17T23:59:59.000Z

    This report provides a revised safety analysis for the upgraded 242-A Evaporator (the Evaporator). This safety analysis report (SAR) supports the operation of the Evaporator following life extension upgrades and other facility and operations upgrades (e.g., Project B-534) that were undertaken to enhance the capabilities of the Evaporator. The Evaporator has been classified as a moderate-hazard facility (Johnson 1990). The information contained in this SAR is based on information provided by 242-A Evaporator Operations, Westinghouse Hanford Company, site maintenance and operations contractor from June 1987 to October 1996, and the existing operating contractor, Waste Management Hanford (WMH) policies. Where appropriate, a discussion address the US Department of Energy (DOE) Orders applicable to a topic is provided. Operation of the facility will be compared to the operating contractor procedures using appropriate audits and appraisals. The following subsections provide introductory and background information, including a general description of the Evaporator facility and process, a description of the scope of this SAR revision,a nd a description of the basic changes made to the original SAR.

  19. Safety analysis of in-use vehicle wrapping cylinder

    Broader source: Energy.gov [DOE]

    The focus of this presentation is on the security analysis for wrapped cylinders used in vehicles and analyzing safety conditions and environmental effects through testing.

  20. Monthly Analysis of Electrical Safety Occurrences – July 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  1. auditable safety analysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of environmental and safety analysis of fusion reactors MIT - DSpace Summary: This report summarizes the progress made between October 1976 and September 1977 in studies of...

  2. Monthly Analysis of Electrical Safety Occurrences – June 2011

    Broader source: Energy.gov [DOE]

    An analysis of the Occurrence Reporting and Processing System (ORPS) reports that was requested by the Electrical Safety Community for information exchange and continual learning.

  3. Comparison of Intergrated Safety Analysis (ISA) and Probabilistic...

    Broader source: Energy.gov (indexed) [DOE]

    DC 20555-0001 SUBJECT: COMPARISON OF INTEGRATED SAFETY ANALYSIS (ISA) AND PROBABILISTIC RISK ASSESSMENT (PRA) FOR FUEL CYCLE FACILITIES Dear Chairman Jaczko: During the 580 th...

  4. Optical Process and Analysis of Historical Documents Nikolaos Stamatopoulos*

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    historical collections that are part of our culture heritage. Several factors such as low paper qualityOptical Process and Analysis of Historical Documents Nikolaos Stamatopoulos* * Dissertation@iit.demokritos.gr Abstract. The collections of historical books are an important source of information, both for the history

  5. CRAD, Documented Safety Analysis Development - April 23, 2013 | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTS ONPRGMof Energy

  6. CRAD, Preliminary Documented Safety Analysis - July 25, 2014 (IEA CRAD

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China U.S. Department ofJune 2,The BigSidingState6Report,COMMENTSpurpose of|-31-2, REV. 0)

  7. Preparation Of Nonreactor Nuclear Facility Documented Safety Analysis -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah ProjectPRE-AWARD ACCOUNTINGQuantitative hiRX Measurements

  8. Preparation of Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment DOE-STD-3009-94 July 1994A coolingThe

  9. Preliminary Safety Analysis of the Gorleben Site: Overview - 13298

    SciTech Connect (OSTI)

    Bracke, G.; Fischer-Appelt, K. [GRS mbH, Schwertnergasse 1, 50677 Cologne (Germany)] [GRS mbH, Schwertnergasse 1, 50677 Cologne (Germany); Baltes, B. [B. Baltes, Paul Kaussen Str. 17a, 52477 Alsdorf (Germany)] [B. Baltes, Paul Kaussen Str. 17a, 52477 Alsdorf (Germany)

    2013-07-01T23:59:59.000Z

    The project preliminary safety analysis of the Gorleben site started in 2010 and is based on the safety requirements for heat generating radioactive waste released from the German Federal Ministry for Environment, natural conservation and nuclear safety. The project consists of several tasks: the database defining the geology of Gorleben and the composition of the waste to be disposed of, the safety and demonstration concept, the repository concepts, the scenario analysis, the system analysis with long-term safety assessment and the synthesis. The overall synthesis indicates presently the compatibility of a repository in Gorleben with the safety requirements. The application of the method for a site selection process is still under evaluation. (authors)

  10. Review of Management of Safety Systems at the Hanford Tank Farms...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Document CSE Cognizant System Engineer DOE U.S. Department of Energy DSA Documented Safety Analysis DST Double Shell Tank EIR Event Investigation Report FR Facility...

  11. document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ .-detonation detectionDocument

  12. Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol.PREDICTINGvN3Documents

  13. PAT-1 safety analysis report addendum.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01T23:59:59.000Z

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The purpose of this SAR Addendum is to incorporate plutonium (Pu) metal as a new payload for the PAT-1 package. The Pu metal is packed in an inner container (designated the T-Ampoule) that replaces the PC-1 inner container. The documentation and results from analysis contained in this addendum demonstrate that the replacement of the PC-1 and associated packaging material with the T-Ampoule and associated packaging with the addition of the plutonium metal content are not significant with respect to the design, operating characteristics, or safe performance of the containment system and prevention of criticality when the package is subjected to the tests specified in 10 CFR 71.71, 71.73 and 71.74.

  14. Safety and Security Enforcement Coordinator Handbook

    Broader source: Energy.gov (indexed) [DOE]

    DART Days Away, Restricted, or Transferred DOE U.S. Department of Energy DSA Documented Safety Analysis EFCOG Energy Facility Contractors Group EGS Enforcement Guidance Supplement...

  15. Test Protocol Document, Hydrogen Safety Sensor Testing; Phase I: Non-Flammable Mixtures

    SciTech Connect (OSTI)

    Burgess, R.; Blake, C.; Tracy, C. E.

    2008-09-01T23:59:59.000Z

    This test protocol document includes an overview of hydrogen sensor technologies, test hardware requrements, and an outline of potential testing.

  16. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    SciTech Connect (OSTI)

    Richardson, J. A. (Jeanne A.); McKernan, S. A. (Stuart A.); Vigil, M. J. (Michael J.)

    2003-01-01T23:59:59.000Z

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker safety are incorporated so the worker can readily identify the safety parameters of the their work. System safety tools such as Preliminary Hazard Analysis, What-If Analysis, Hazard and Operability Analysis as well as other techniques as necessary provide the groundwork for both determining bounding conditions for facility safety, operational safety, and day-to-clay worker safety.

  17. Risk D&D Rapid Prototype: Scenario Documentation and Analysis Tool

    SciTech Connect (OSTI)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-05-28T23:59:59.000Z

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health & safety risk analysis for decontamination and decommissioning projects.

  18. MODEL 9977 B(M)F-96 SAFETY ANALYSIS REPORT FOR PACKAGING

    SciTech Connect (OSTI)

    Abramczyk, G; Paul Blanton, P; Kurt Eberl, K

    2006-05-18T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) documents the analysis and testing performed on and for the 9977 Shipping Package, referred to as the General Purpose Fissile Package (GPFP). The performance evaluation presented in this SARP documents the compliance of the 9977 package with the regulatory safety requirements for Type B packages. Per 10 CFR 71.59, for the 9977 packages evaluated in this SARP, the value of ''N'' is 50, and the Transport Index based on nuclear criticality control is 1.0. The 9977 package is designed with a high degree of single containment. The 9977 complies with 10 CFR 71 (2002), Department of Energy (DOE) Order 460.1B, DOE Order 460.2, and 10 CFR 20 (2003) for As Low As Reasonably Achievable (ALARA) principles. The 9977 also satisfies the requirements of the Regulations for the Safe Transport of Radioactive Material--1996 Edition (Revised)--Requirements. IAEA Safety Standards, Safety Series No. TS-R-1 (ST-1, Rev.), International Atomic Energy Agency, Vienna, Austria (2000). The 9977 package is designed, analyzed and fabricated in accordance with Section III of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code, 1992 edition.

  19. Safety-driven early concept analysis and development

    E-Print Network [OSTI]

    Fleming, Cody Harrison

    2015-01-01T23:59:59.000Z

    As aerospace systems become increasingly complex and the roles of human operators and autonomous software continue to evolve, traditional safety-related analytical methods are becoming inadequate. Traditional hazard analysis ...

  20. Receiving Basin for Offsite Fuels and the Resin Regeneration Facility Safety Analysis Report, Executive Summary

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29T23:59:59.000Z

    The Safety Analysis Report documents the safety authorization basis for the Receiving Basin for Offsite Fuels (RBOF) and the Resin Regeneration Facility (RRF) at the Savannah River Site (SRS). The present mission of the RBOF and RRF is to continue in providing a facility for the safe receipt, storage, handling, and shipping of spent nuclear fuel assemblies from power and research reactors in the United States, fuel from SRS and other Department of Energy (DOE) reactors, and foreign research reactors fuel, in support of the nonproliferation policy. The RBOF and RRF provide the capability to handle, separate, and transfer wastes generated from nuclear fuel element storage. The DOE and Westinghouse Savannah River Company, the prime operating contractor, are committed to managing these activities in such a manner that the health and safety of the offsite general public, the site worker, the facility worker, and the environment are protected.

  1. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09

  2. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 February 6, 2004

  3. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 February 6,

  4. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 February 6,3686

  5. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 February

  6. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 February

  7. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 Februarysection of

  8. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 Februarysection

  9. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 Februarysection

  10. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09 Februarysection781

  11. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.09

  12. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.0956260 Federal

  13. Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby/%2AO 474.2 Chg U.S.0956260 Federal22

  14. National Synchrotron Light Source safety-analysis report

    SciTech Connect (OSTI)

    Batchelor, K. (ed.)

    1982-07-01T23:59:59.000Z

    This document covers all of the safety issues relating to the design and operation of the storage rings and injection system of the National Synchrotron Light Source. The building systems for fire protection, access and egress are described together with air and other gaseous control or venting systems. Details of shielding against prompt bremstrahlung radiation and synchrotron radiation are described and the administrative requirements to be satisfied for operation of a beam line at the facility are given.

  15. Waste transfer leaks technical basis document

    SciTech Connect (OSTI)

    ZIMMERMAN, B.D.

    2003-03-22T23:59:59.000Z

    This document provides technical support for the onsite radiological and toxicological, and offsite toxicological, portions of the waste transfer leak accident presented in the Documented Safety Analysis. It provides the technical basis for frequency and consequence bin selection, and selection of safety SSCs and TSRs.

  16. DOE's Safety Bulletin No. 2011-01, Events Beyond Design Safety...

    Broader source: Energy.gov (indexed) [DOE]

    and mitigation of events that may fall outside those analyzed in the documented safety analysis. BACKGROUND On March 11, 2011, the Fukushima Daiichi nuclear power station...

  17. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-06-21T23:59:59.000Z

    DOE-STD-1104 contains the Department's method and criteria for reviewing and approving nuclear facility's documented safety analysis (DSA). This review and approval formally document the basis for DOE, concluding that a facility can be operated safely in a manner that adequately protects workers, the public, and the environment. Therefore, it is appropriate to formally require implementation of the review methodology and criteria contained in DOE-STD-1104.

  18. An Investigation of the Latent Semantic Analysis Technique for Document Retrieval

    E-Print Network [OSTI]

    An Investigation of the Latent Semantic Analysis Technique for Document Retrieval STUDENT PROJECT;_________________________________________________________________________ An Investigation of the Latent Semantic Analysis Technique for Document Retrieval. Report by: David Mugo Page 2. These term-matching techniques have always relied on matching query terms with document terms to retrieve

  19. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2003-10-09T23:59:59.000Z

    This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSC and/or TSR-level controls.

  20. Organic solvent technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for the organic solvent fire representative and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  1. Certification process of safety analysis and risk management computer codes at the Savannah River Site

    SciTech Connect (OSTI)

    Ades, M.J. [Westinghouse Savannah River Co., Aiken, SC (United States); Toffer, H.; Lewis, C.J.; Crowe, R.D. [Westinghouse Hanford Co., Richland, WA (United States)

    1992-05-01T23:59:59.000Z

    The commitment by Westinghouse Savannah River Company (WSRC) to bring safety analysis and risk management codes into compliance with national and sitewide quality assurance requirements necessitated a systematic, structured approach. As a part of this effort, WSRC, in cooperation with the Westinghouse Hanford Company, has developed and implemented a certification process for the development and control of computer software. Safety analysis and risk management computer codes pertinent to reactor analyses were selected for inclusion in the certification process. As a first step, documented plans were developed for implementing verification and validation of the codes, and establishing configuration control. User qualification guidelines were determined. The plans were followed with an extensive assessment of the codes with respect to certification status. Detailed schedules and work plans were thus determined for completing certification of the codes considered. Although the software certification process discussed is specific to the application described, it is sufficiently general to provide useful insights and guidance for certification of other software.

  2. Certification process of safety analysis and risk management computer codes at the Savannah River Site

    SciTech Connect (OSTI)

    Ades, M.J. (Westinghouse Savannah River Co., Aiken, SC (United States)); Toffer, H.; Lewis, C.J.; Crowe, R.D. (Westinghouse Hanford Co., Richland, WA (United States))

    1992-01-01T23:59:59.000Z

    The commitment by Westinghouse Savannah River Company (WSRC) to bring safety analysis and risk management codes into compliance with national and sitewide quality assurance requirements necessitated a systematic, structured approach. As a part of this effort, WSRC, in cooperation with the Westinghouse Hanford Company, has developed and implemented a certification process for the development and control of computer software. Safety analysis and risk management computer codes pertinent to reactor analyses were selected for inclusion in the certification process. As a first step, documented plans were developed for implementing verification and validation of the codes, and establishing configuration control. User qualification guidelines were determined. The plans were followed with an extensive assessment of the codes with respect to certification status. Detailed schedules and work plans were thus determined for completing certification of the codes considered. Although the software certification process discussed is specific to the application described, it is sufficiently general to provide useful insights and guidance for certification of other software.

  3. Safety analysis report for packaging (onsite) steel drum

    SciTech Connect (OSTI)

    McCormick, W.A.

    1998-09-29T23:59:59.000Z

    This Safety Analysis Report for Packaging (SARP) provides the analyses and evaluations necessary to demonstrate that the steel drum packaging system meets the transportation safety requirements of HNF-PRO-154, Responsibilities and Procedures for all Hazardous Material Shipments, for an onsite packaging containing Type B quantities of solid and liquid radioactive materials. The basic component of the steel drum packaging system is the 208 L (55-gal) steel drum.

  4. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

  5. Surveillance Analysis Computer System (SACS) software design document (SDD)

    SciTech Connect (OSTI)

    Glasscock, J.A.

    1995-09-01T23:59:59.000Z

    This document contains the Software Design Description for Phase II of the SACS project, and Impact Level 3Q system

  6. YUCCA MOUNTAIN SITE CHARACTERIZATION PROJECT EAST-WEST DRIFT SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    NA

    1999-06-08T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the design of the Yucca Mountain Project Exploratory Studies Facility (ESF) East-West Cross Drift. This analysis builds upon prior ESF System Safety Analyses and incorporates TS Main Drift scenarios, where applicable, into the East-West Drift scenarios. This System Safety Analysis (SSA) focuses on the personnel safety and health hazards associated with the engineered design of the East-West Drift. The analysis also evaluates other aspects of the East-West Drift, including purchased equipment (e.g., scientific mapping platform) or Systems/Structures/Components (SSCs) and out-of-tolerance conditions. In addition to recommending design mitigation features, the analysis identifies the potential need for procedures, training, or Job Safety Analyses (JSAs). The inclusion of this information in the SSA is intended to assist the organization(s) (e.g., constructor, Safety and Health, design) responsible for these aspects of the East-West Drift in evaluating personnel hazards and augment the information developed by these organizations. The SSA is an integral part of the systems engineering process, whereby safety is considered during planning, design, testing, and construction. A largely qualitative approach is used which incorporates operating experiences and recommendations from vendors, the constructor and the operating contractor. The risk assessment in this analysis characterizes the scenarios associated with East-West Drift SSCs in terms of relative risk and includes recommendations for mitigating all identified hazards. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into SSC designs. (2) Add safety features and capabilities to existing designs. (3) Develop procedures and conduct training to increase worker awareness of potential hazards, reduce exposure to hazards, and inform personnel of the actions required to avoid accidents or correct hazardous conditions. This analysis does not consider temporary construction items and, therefore, does not consider hazards associated with temporary construction items. This analysis will be reviewed and updated to reflect new East-West Drift design changes, construction modifications, and ''as built'' documentation of the East-West Drift when completed. A major difference between this analysis and previous ESF SSAs is the inclusion of hazards that arise as a result of non-accident events, (e.g., ''off-normal'' operations, adverse environmental conditions, or ''out-of-tolerance'' conditions). Non-accident events, that were not included in previous ESF SSAs, include environmental and/or toxic hazards such as leaking gases/fluids, off-gassing reactions, and excessive dust, particulates, exhaust fumes, noise, temperature, etc. which could have an adverse health effect on personnel.

  7. RISMC ADVANCED SAFETY ANALYSIS WORKING PLAN – FY 2015 – FY 2019

    SciTech Connect (OSTI)

    Szilard, Ronaldo H; Smith, Curtis L

    2014-09-01T23:59:59.000Z

    SUMMARY In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: 1. A value proposition (“why is this important?”) that will make the case for stakeholder’s use of the ASAP research and development (R&D) products. 2. An identification of likely end users and pathway to adoption of enhanced tools by the end-users. 3. A proposed set of practical and achievable “use case” demonstrations. 4. A proposed plan to address ASAP verification and validation (V&V) needs. 5. A proposed schedule for the multi-year ASAP.

  8. Technical basis document for external events

    SciTech Connect (OSTI)

    OBERG, B.D.

    2003-03-22T23:59:59.000Z

    This document supports the Tank Farms Documented Safety Analysis and presents the technical basis for the frequencies of externally initiated accidents. The consequences of externally initiated events are discussed in other documents that correspond to the accident that was caused by the external event. The external events include aircraft crash, vehicle accident, range fire, and rail accident.

  9. GCtool for fuel cell systems design and analysis : user documentation.

    SciTech Connect (OSTI)

    Ahluwalia, R.K.; Geyer, H.K.

    1999-01-15T23:59:59.000Z

    GCtool is a comprehensive system design and analysis tool for fuel cell and other power systems. A user can analyze any configuration of component modules and flows under steady-state or dynamic conditions. Component models can be arbitrarily complex in modeling sophistication and new models can be added easily by the user. GCtool also treats arbitrary system constraints over part or all of the system, including the specification of nonlinear objective functions to be minimized subject to nonlinear, equality or inequality constraints. This document describes the essential features of the interpreted language and the window-based GCtool environment. The system components incorporated into GCtool include a gas flow mixer, splitier, heater, compressor, gas turbine, heat exchanger, pump, pipe, diffuser, nozzle, steam drum, feed water heater, combustor, chemical reactor, condenser, fuel cells (proton exchange membrane, solid oxide, phosphoric acid, and molten carbonate), shaft, generator, motor, and methanol steam reformer. Several examples of system analysis at various levels of complexity are presented. Also given are instructions for generating two- and three-dimensional plots of data and the details of interfacing new models to GCtool.

  10. 222-S Laboratory interim safety basis

    SciTech Connect (OSTI)

    WEAVER, L.L.

    2001-09-10T23:59:59.000Z

    The purpose of this document is to establish the Interim Safety Basis (ISB) for the 222-S Laboratory. An ISB is a documented safety basis that provides the justification for the continued operation of the facility until an upgraded documented safety analysis (DSA) is prepared in compliance with 10CFR 830, Subpart B. The 222-S Laboratory ISB is based on revised facility and process descriptions and revised accident analyses that reflect current conditions.

  11. HISTORICAL DOCUMENT ANALYSIS: A REVIEW OF FRENCH PROJECTS AND OPEN ISSUES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    HISTORICAL DOCUMENT ANALYSIS: A REVIEW OF FRENCH PROJECTS AND OPEN ISSUES Mickael Coustaty, Romain points out the necessities and importance of ded- icated services oriented to historical documents which deal with the en- richment and the exploitation of heritage documents. This synthesis lead

  12. Safety System Oversight Staffing Analysis (Instructions, Blank...

    Office of Environmental Management (EM)

    modifications since changes to the worksheet format may inadvertently change included formula referenced cells. SSO Alternate Staffing Analysis - Instructions SSO Alternate...

  13. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. Safety Analysis Of Automated Highway Systems

    E-Print Network [OSTI]

    Leveson, Nancy G.

    1997-01-01T23:59:59.000Z

    Lee. Towards an automated fmea assis- tant. In Applicationsmodes and effects analysis (FMEA) is employed to determineof multiple failures. ) FMEA was developed Potential Part

  15. Safety analysis -- 200 Area Savannah River Plant, F-Canyon Operations. Supplement 4

    SciTech Connect (OSTI)

    Beary, M.M.; Collier, C.D.; Fairobent, L.A.; Graham, R.F.; Mason, C.L.; McDuffee, W.T.; Owen, T.L.; Walker, D.H.

    1986-02-01T23:59:59.000Z

    The F-Canyon facility is located in the 200 Separations Area and uses the Purex process to recover plutonium from reactor-irradiated uranium. The irradiated uranium is normally in the form of solid or hollow cylinders called slugs. These slugs are encased in aluminum cladding and are sent to the F-Canyon from the Savannah River Plant (SRP) reactor areas or from the Receiving Basin for Offsite Fuels (RBOF). This Safety Analysis Report (SAR) documents an analysis of the F-Canyon operations and is an update to a section of a previous SAR. The previous SAR documented an analysis of the entire 200 Separations Area operations. This SAR documents an analysis of the F-Canyon and is one of a series of documents for the Separations Area as specified in the Savannah River Implementation Plans. A substantial amount of the information supporting the conclusions of this SAR is found in the Systems Analysis. Some F-Canyon equipment has been updated during the time between the Systems Analysis and this SAR and a complete description of this equipment is included in this report. The primary purpose of the analysis was to demonstrate that the F-Canyon can be operated without undue risk to onsite or offsite populations and to the environment. In this report, risk is defined as the expected frequency of an accident, multiplied by the resulting radiological consequence in person-rem. The units of risk for radiological dose are person-rem/year. Maximum individual exposure values have also been calculated and reported.

  16. DOE Standard Integration Of Environment,Safety, and Health Into...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities...

  17. analysis documents volume: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    document-level discourse parser. Our parser builds a discourse tree by applying an optimal parsing of discourse parsing effectively. A set of empirical evaluations over two...

  18. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-03-03T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  19. Liquid-metal fast-breeder reactors: Preliminary safety and environmental information document. Volume VI

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    Information is presented concerning LMFBR design characteristics; uranium-plutonium/uranium recycle homogeneous core; uranium-plutonium/uranium spiked recycle heterogeneous core; uranium-plutonium/uranium spiked recycle homogeneous core; uranium-plutonium/thorium spiked recycle heterogeneous core; uranium-plutonium/thorium spiked recycle homogeneous core; thorium-plutonium/thorium spiked recycle homogeneous core; denatured uranium-233/thorium cycle homogeneous core; safety consideration for the LMFBR; and environmental considerations.

  20. Processing Exemptions to Nuclear Safety Rules and Approval of Alternative Methods for Documented Safety Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartmentEnergyLoanEffectsBestofII

  1. Safety Analysis for Packaging Steel Banded Wooden Shipping Containers

    SciTech Connect (OSTI)

    FERRELL, P.C.

    2000-12-05T23:59:59.000Z

    This safety analysis report for packaging describes the steel banded wooden shipping containers, which are certified as Type AF packagings. The authorized payload for these containers is unirradiated, slightly enriched, uranium ingots, billets, extrusions, and scrap materials. The amount of uranium in the containers will not exceed the LSA-II material requirements as defined in 49 CFR 173.403.

  2. Seismic Analysis of Existing Facilties and Evaluation of Risk...

    Office of Environmental Management (EM)

    of Nuclear and High Hazard (DSA) Facilities at LANL operating under a Documented Safety AnalysisSafety Evaluation Report - and Non-nuclear (BOP) Facilities operating under...

  3. Safety System Oversight Staffing Analysis- Example

    Broader source: Energy.gov [DOE]

    This Staffing Analysis calculation is completed using an Excel worksheet. Information locations are identified by titles in column or row headings and worksheet locations based on the unmodified blank. Use caution when making worksheet modifications since changes to the worksheet format may inadvertently change included formula referenced cells.

  4. Waste sampling and characterization facility complex safety analysis

    SciTech Connect (OSTI)

    Meloy, R.T., Westinghouse Hanford

    1996-06-04T23:59:59.000Z

    The Waste Sampling and Characterization Facility is a `Non-Nuclear, Radiological Facility. This document demonstrates, by analysis, that WSCF can meet the chemical and radiological inventory limits for a radiological facility. It establishes control that ensures those inventories are maintained below threshold values to preserve the `Non- Nuclear, Radiological` classification.

  5. Nuclear criticality safety tools in the Chernobyl-4 accident analysis

    SciTech Connect (OSTI)

    Landeyro, P.A.

    1988-01-01T23:59:59.000Z

    The collaboration with the Italian Safety Authority (DISP), started in July 1986, has the aim of studying, from a neutronic point of view, the possible initiator event and the accident dynamics in unit four of the Chernobly nuclear power plant. This report was produced within the framework of that collaboration. A main condition of the present work was making use of standard calculational methods employed in nuclear criticality safety analysis. This means that the neutron multiplication factor calculation should be made with the modules and the cross-section libraries of the SCALE system or in any case with some KENO IV version and the burnup calculation with the ORIGEN code.

  6. Technical support document: Survey data used in revising the energy conservation requirements in the manufactured home construction and safety standards

    SciTech Connect (OSTI)

    Lee, A.D.; Conner, C.C.

    1992-02-01T23:59:59.000Z

    This report documents data used in the development of revised energy conservation standards for manufactured housing. The approach used in developing the proposed standard revision is a cost-benefit analysis in which the costs of energy conservation measures (ECM) are balanced against the benefits of energy savings. The analysis used to develop the recommendations for revision of the US Department of Housing and Urban Development (HUD) energy conservation standards for manufactured housing requires information on specific ECMs. This technical support document contains the data from two of the three surveys that were used primarily to characterize the available ECMs and their associated costs. The analyses of these data are provided in separate reports. 5 refs.

  7. Tank Farms Technical Safety Requirements

    SciTech Connect (OSTI)

    DANNA, M.A.

    2003-10-24T23:59:59.000Z

    The TSRs define the acceptable conditions, safe boundaries, bases thereof, and controls to ensure safe operation during authorized activities, for facilities within the scope of the Tank Farms Documented Safety Analysis (DSA), in parallel with the DSA.

  8. Conventional Facilities Chapter 11: Environment, Safety and Health 11-1 NSLS-II Preliminary Design Report

    E-Print Network [OSTI]

    Ohta, Shigemi

    Analysis 4. Fire Protection 5. Pressure Safety 6. Industrial Hygiene 7. Other ES&H Issues This document Program a) Fire protection b) Pressure safety c) Industrial hygiene d) Biological safety e) Electrical

  9. SCALE 6: Comprehensive Nuclear Safety Analysis Code System

    SciTech Connect (OSTI)

    Bowman, Stephen M [ORNL

    2011-01-01T23:59:59.000Z

    Version 6 of the Standardized Computer Analyses for Licensing Evaluation (SCALE) computer software system developed at Oak Ridge National Laboratory, released in February 2009, contains significant new capabilities and data for nuclear safety analysis and marks an important update for this software package, which is used worldwide. This paper highlights the capabilities of the SCALE system, including continuous-energy flux calculations for processing multigroup problem-dependent cross sections, ENDF/B-VII continuous-energy and multigroup nuclear cross-section data, continuous-energy Monte Carlo criticality safety calculations, Monte Carlo radiation shielding analyses with automated three-dimensional variance reduction techniques, one- and three-dimensional sensitivity and uncertainty analyses for criticality safety evaluations, two- and three-dimensional lattice physics depletion analyses, fast and accurate source terms and decay heat calculations, automated burnup credit analyses with loading curve search, and integrated three-dimensional criticality accident alarm system analyses using coupled Monte Carlo criticality and shielding calculations.

  10. Computational Methods for Sensitivity and Uncertainty Analysis in Criticality Safety

    SciTech Connect (OSTI)

    Broadhead, B.L.; Childs, R.L.; Rearden, B.T.

    1999-09-20T23:59:59.000Z

    Interest in the sensitivity methods that were developed and widely used in the 1970s (the FORSS methodology at ORNL among others) has increased recently as a result of potential use in the area of criticality safety data validation procedures to define computational bias, uncertainties and area(s) of applicability. Functional forms of the resulting sensitivity coefficients can be used as formal parameters in the determination of applicability of benchmark experiments to their corresponding industrial application areas. In order for these techniques to be generally useful to the criticality safety practitioner, the procedures governing their use had to be updated and simplified. This paper will describe the resulting sensitivity analysis tools that have been generated for potential use by the criticality safety community.

  11. A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems

    E-Print Network [OSTI]

    A Domain-Specific Safety Analysis for Digital Nuclear Plant Protection Systems Sanghyun Yoon through safety analy- sis is strongly mandated for safety-critical systems. Nuclear plant protection. INTRODUCTION Safety-critical systems (e.g. nuclear power plants and air- planes) require rigorous quality

  12. PGDP (Paducah Gaseous Diffusion Plant)-UF/sub 6/ handling, sampling, analysis and associated QC/QA and safety related procedures

    SciTech Connect (OSTI)

    Harris, R.L. (comp.)

    1987-05-22T23:59:59.000Z

    This document is a compilation of Paducah Gaseous Diffusion Plant procedures on UF/sub 6/ handling, sampling, and analysis, along with associated QC/QA and safety related procedures. It was assembled for transmission by the US Department of Energy to the Korean Advanced Energy Institute as a part of the US-Korea technical exchange program.

  13. Safety analysis report vitrified high level waste type B shipping cask

    SciTech Connect (OSTI)

    NONE

    1995-03-01T23:59:59.000Z

    This Safety Analysis Report describes the design, analyses, and principle features of the Vitrified High Level Waste (VHLW) Cask. In preparing this report a detailed evaluation of the design has been performed to ensure that all safety, licensing, and operational goals for the cask and its associated Department of Energy program can be met. The functions of this report are: (1) to fully document that all functional and regulatory requirements of 10CFR71 can be met by the package; and (2) to document the design and analyses of the cask for review by the Nuclear Regulatory Commission. The VHLW Cask is the reusable shipping package designed by GNSI under Department of Energy contract DE-AC04-89AL53-689 for transportation of Vitrified High Level Waste, and to meet the requirements for certification under 10CFR71 for a Type B(U) package. The VHLW cask has been designed as packaging for transport of canisters of Vitrified High Level Waste solidified at Department of Energy facilities.

  14. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2005-02-18T23:59:59.000Z

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  15. Safety assessment document for the environmental test complex (Building 834) at Site 300

    SciTech Connect (OSTI)

    Odell, B.N.; Pfeifer, H.E.

    1981-03-03T23:59:59.000Z

    A safety assessment was performed to determine if accidents occurring at the 834 Complex at Site 300 could present undue hazards to the general public, personnel at Site 300, or have an adverse effect on the environment. The credible accidents that might have an effect on these facilities or have off-site consequences were considered. These were earthquake, extreme wind (including missiles), lightning, flood, criticality, high explosive (HE) detonation that disperses uranium and beryllium, spontaneous oxidation of plutonium, explosions due to finely divided particles, and a fire. Seismic and extreme wind (including missiles) analyses indicate that the buildings are basically sound. (However, there are a few recommendations to further enhance the structural integrity of these facilities). Additional lightning protection for these facilities is being installed. These buildings are located high above the dry creek bed so that a flood is improbable. A criticality or a high explosive detonation involving plutonium is very remote since the radioactive materials are encased and plutonium and HE are not permitted concurrently in the same area at Site 300. (The exceptions to this policy are that explosive actuating devices are sometimes located in assemblies containing fissile materials. However, a planned or accidental actuation will not effect the safe containment of the fissile material within the assembly). Even though the possibility of an HE explosion involving uranium and beryllium is remote, the off-site lung doses were calculated and found to be below the accepted standards. It was determined that a fire was unlikely due to the low fire loading and the absence of ignition sources. It was also determined that the consequences of any accidents were reduced by the remote location of these facilities, their design, and by administrative controls.

  16. Technical safety requirements (TSR) for waste receiving and processing (WRAP) facility

    SciTech Connect (OSTI)

    Weidert, J.R.

    1997-11-18T23:59:59.000Z

    The scope of this TSR document is based on the WRAP Final Safety Analysis Report (HNF-SD-W026-SAR-002) and supporting documents. The administrative controls set forth in this TSR document are derived from the WRAP Final Safety Analysis Report.

  17. Underground Test Area Subproject Phase I Data Analysis Task. Volume VII - Tritium Transport Model Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume VII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the tritium transport model documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  18. Underground Test Area Subproject Phase I Data Analysis Task. Volume VIII - Risk Assessment Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume VIII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the risk assessment documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  19. Management implementation plan for a safety analysis and review system

    SciTech Connect (OSTI)

    Hulburt, D.A.; Berkey, B.D.

    1981-04-01T23:59:59.000Z

    The US Department of Energy has issued an Order, DOE 5481.1, which establishes uniform requirements for the preparation and review of Safety Analysis for DOE Operations. The Management Implementation Plan specified herein establishes the administrative procedures and technical requirements for implementing DOE 5481.1 to Operations under the cognizance of the Pittsburgh Energy Technology Center. This Implementation Plan is applicable to all present and future Operations under the cognizance of PETC. The Plan identifies those Operations for which DOE 5481.1 is applicable and those Operations for which no further analysis is required because the initial determination and review has concluded that DOE 5481.1 does not apply.

  20. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-03-20T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  1. Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugustDecade5-F,INITIALoperatorBassiBattery

  2. Fast Flux Test Facility final safety analysis report. Amendment 73

    SciTech Connect (OSTI)

    Gantt, D.A.

    1993-08-01T23:59:59.000Z

    This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

  3. DOE's Approach to Nuclear Facility Safety Analysis and Management

    Broader source: Energy.gov [DOE]

    Presenter: Dr. James O'Brien, Director, Office of Nuclear Safety, Office of Health, Safety and Security, US Department of Energy

  4. Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

  5. Exploratory Analysis of Concept and Document Spaces with Connectionist Networks

    E-Print Network [OSTI]

    1999-01-01T23:59:59.000Z

    . Exploratory analysis is an area of increasing interest in the computational linguistics arena. Pragmatically speaking, exploratory analysis may be paraphrased as natural language processing by means of analyzing large corpora of text. Concerning the analysis, appropriate means are statistics, on the one hand, and artificial neural networks, on the other hand. As a challenging application area for exploratory analysis of text corpora we may certainly identify text databases, be it information retrieval or information filtering systems. With this paper we present recent findings of exploratory analysis based on both statistical and neural models applied to legal text corpora. Concerning the artificial neural networks, we rely on a model adhering to the unsupervised learning paradigm. This choice appears naturally when taking into account the specific properties of large text corpora where one is faced with the fact that input-output-mappings as required by supervised learning models ca...

  6. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010About UsComplementary m

  7. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010About UsComplementary mComplete

  8. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010 2010About UsComplementary

  9. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingthMeasurements |Competitive Overview

  10. Complete Experiment Safety Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the followingthMeasurements |Competitive OverviewComplete

  11. WIPP Documents - Nuclear Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardousLabel

  12. Combination of Safety and Security Analysis -Finding Security Problems That Threaten The

    E-Print Network [OSTI]

    Boyer, Edmond

    -physical Systems) of the 32nd International Conference on Computer Safety, Reliability and Security, France (2013Combination of Safety and Security Analysis - Finding Security Problems That Threaten The Safety of a System Max Steiner and Peter Liggesmeyer AG Software Engineering: Dependability, TU Kaiserslautern

  13. A Conceptual Framework for Semantic Case-based Safety Analysis Olawande Daramola, Tor Stlhane

    E-Print Network [OSTI]

    .biffl}@tuwien.ac.at Abstract Hazard and Operability (HAZOP) Analysis and Fail- ure Mode and Effect Analysis (FMEA) are among-based framework for safety analy- sis, which facilitates the reuse of previous HAZOP and FMEA experiences in order application. Key words: Safety analysis, HAZOP, FMEA, ontology, requirements, case-based reasoning, natural

  14. Safety analysis report for packaging (Onsite) for the Hanford Ecorok packaging

    SciTech Connect (OSTI)

    Mercado, M.S.

    1996-02-23T23:59:59.000Z

    This safety analysis report for packaging approves the Hanford Ecorok packaging for shipping contaminated water purification filters from K Basins to the Central Waste Complex.

  15. Processes and Procedures for Application of CFD to Nuclear Reactor Safety Analysis

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz; Patrick J. Roache; Ismail B. Celik; William D. Pointer; Yassin A. Hassan

    2006-09-01T23:59:59.000Z

    Traditionally, nuclear reactor safety analysis has been performed using systems analysis codes such as RELAP5, which was developed at the INL. However, goals established by the Generation IV program, especially the desire to increase efficiency, has lead to an increase in operating temperatures for the reactors. This increase pushes reactor materials to operate towards their upper temperature limits relative to structural integrity. Because there will be some finite variation of the power density in the reactor core, there will be a potential for local hot spots to occur in the reactor vessel. Hence, it has become apparent that detailed analysis will be required to ensure that local ‘hot spots’ do not exceed safety limits. It is generally accepted that computational fluid dynamics (CFD) codes are intrinsically capable of simulating fluid dynamics and heat transport locally because they are based on ‘first principles.’ Indeed, CFD analysis has reached a fairly mature level of development, including the commercial level. However, CFD experts are aware that even though commercial codes are capable of simulating local fluid and thermal physics, great care must be taken in their application to avoid errors caused by such things as inappropriate grid meshing, low-order discretization schemes, lack of iterative convergence and inaccurate time-stepping. Just as important is the choice of a turbulence model for turbulent flow simulation. Turbulence models model the effects of turbulent transport of mass, momentum and energy, but are not necessarily applicable for wide ranges of flow types. Therefore, there is a well-recognized need to establish practices and procedures for the proper application of CFD to simulate flow physics accurately and establish the level of uncertainty of such computations. The present document represents contributions of CFD experts on what the basic practices, procedures and guidelines should be to aid CFD analysts to obtain accurate estimates of the flow and energy transport as applied to nuclear reactor safety. However, it is expected that these practices and procedures will require updating from time to time as research and development affect them or replace them with better procedures. The practices and procedures are categorized into five groups. These are: 1.Code Verification 2.Code and Calculation Documentation 3.Reduction of Numerical Error 4.Quantification of Numerical Uncertainty (Calculation Verification) 5.Calculation Validation. These five categories have been identified from procedures currently required of CFD simulations such as those required for publication of a paper in the ASME Journal of Fluids Engineering and from the literature such as Roache [1998]. Code verification refers to the demonstration that the equations of fluid and energy transport have been correctly coded in the CFD code. Code and calculation documentation simply means that the equations and their discretizations, etc., and boundary and initial conditions used to pose the fluid flow problem are fully described in available documentation. Reduction of numerical error refers to practices and procedures to lower numerical errors to negligible or very low levels as is reasonably possible (such as avoiding use of first-order discretizations). The quantification of numerical uncertainty is also known as calculation verification. This means that estimates are made of numerical error to allow the characterization of the numerical

  16. Safety analysis report for packaging (onsite) doorstop samplecarrier system

    SciTech Connect (OSTI)

    Obrien, J.H.

    1997-02-24T23:59:59.000Z

    The Doorstop Sample Carrier System consists of a Type B certified N-55 overpack, U.S. Department of Transportation (DOT) specification or performance-oriented 208-L (55-gal) drum (DOT 208-L drum), and Doorstop containers. The purpose of the Doorstop Sample Carrier System is to transport samples onsite for characterization. This safety analysis report for packaging (SARP) provides the analyses and evaluation necessary to demonstrate that the Doorstop Sample Carrier System meets the requirements and acceptance criteria for both Hanford Site normal transport conditions and accident condition events for a Type B package. This SARP also establishes operational, acceptance, maintenance, and quality assurance (QA) guidelines to ensure that the method of transport for the Doorstop Sample Carrier System is performed safely in accordance with WHC-CM-2-14, Hazardous Material Packaging and Shipping.

  17. ARM - Publications: Science Team Meeting Documents: Analysis of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa-Anomalous Radiative AbsorptionARM InArctic Facility for AtmosphericAnalysis

  18. Peer review of the National Transportation Safety Board structural analysis of the I-35W bridge collapse.

    SciTech Connect (OSTI)

    Gwinn, Kenneth West; Redmond, James Michael; Wellman, Gerald William

    2008-10-01T23:59:59.000Z

    The Engineering Sciences Center at Sandia National Laboratories provided an independent peer review of the structural analysis supporting the National Transportation Safety Board investigation of the August 1, 2007 collapse of the I-35W Bridge in Minneapolis. The purpose of the review was to provide an impartial critique of the analysis approach, assumptions, solution techniques, and conclusions. Subsequent to reviewing numerous supporting documents, a SNL team of staff and management visited NTSB to participate in analysis briefings, discussions with investigators, and examination of critical elements of the bridge wreckage. This report summarizes the opinion of the review team that the NTSB analysis effort was appropriate and provides compelling supporting evidence for the NTSB probable cause conclusion.

  19. NEW - DOE O 420.1 Chg 1, Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. This Page Change is limited in scope to changes necessary to invoke DOE-STD-1104, Review and Approval of Nuclear Facility Safety Basis and Safety Design Basis Document, and revised DOE-STD-3009-2014, Preparation of Nonreactor Nuclear Facility Documented Safety Analysis as required methods. DOE O 420.1C Chg 1, dated 2-27-15, cancels DOE O 420.1C, dated 12-4-12.

  20. TESEC 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    TESEC 2001, Genova, Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE for safety analysis of complex computer based systems. Such approaches are applied to the gas turbine control and electrical power supply of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has

  1. Optimization of Lyapunov invariants in analysis and implementation of safety-critical software systems

    E-Print Network [OSTI]

    Roozbehani, Mardavij

    2008-01-01T23:59:59.000Z

    This dissertation contributes to two major research areas in safety-critical software systems, namely, software analysis, and software implementation. In reference to the software analysis problem, the main contribution ...

  2. Quantitative Phenomena Identification and Ranking Table (QPIRT) for Reactor Safety Analysis

    E-Print Network [OSTI]

    Yurko, Joseph P.

    Next generation reactor safety analysis codes are intended to make use of advanced numerical methods and higher fidelity models with built-in sensitivity analysis (SA) and uncertainty quantification (UQ) [1]. However, due ...

  3. Setting clear expectations for safety basis development

    SciTech Connect (OSTI)

    MORENO, M.R.

    2003-05-03T23:59:59.000Z

    DOE-RL has set clear expectations for a cost-effective approach for achieving compliance with the Nuclear Safety Management requirements (10 CFR 830, Nuclear Safety Rule) which will ensure long-term benefit to Hanford. To facilitate implementation of these expectations, tools were developed to streamline and standardize safety analysis and safety document development resulting in a shorter and more predictable DOE approval cycle. A Hanford Safety Analysis and Risk Assessment Handbook (SARAH) was issued to standardized methodologies for development of safety analyses. A Microsoft Excel spreadsheet (RADIDOSE) was issued for the evaluation of radiological consequences for accident scenarios often postulated for Hanford. A standard Site Documented Safety Analysis (DSA) detailing the safety management programs was issued for use as a means of compliance with a majority of 3009 Standard chapters. An in-process review was developed between DOE and the Contractor to facilitate DOE approval and provide early course correction. As a result of setting expectations and providing safety analysis tools, the four Hanford Site waste management nuclear facilities were able to integrate into one Master Waste Management Documented Safety Analysis (WM-DSA).

  4. Interface design of VSOP'94 computer code for safety analysis

    SciTech Connect (OSTI)

    Natsir, Khairina, E-mail: yenny@batan.go.id; Andiwijayakusuma, D.; Wahanani, Nursinta Adi [Center for Development of Nuclear Informatics - National Nuclear Energy Agency, PUSPIPTEK, Serpong, Tangerang, Banten (Indonesia); Yazid, Putranto Ilham [Center for Nuclear Technology, Material and Radiometry- National Nuclear Energy Agency, Jl. Tamansari No.71, Bandung 40132 (Indonesia)

    2014-09-30T23:59:59.000Z

    Today, most software applications, also in the nuclear field, come with a graphical user interface. VSOP'94 (Very Superior Old Program), was designed to simplify the process of performing reactor simulation. VSOP is a integrated code system to simulate the life history of a nuclear reactor that is devoted in education and research. One advantage of VSOP program is its ability to calculate the neutron spectrum estimation, fuel cycle, 2-D diffusion, resonance integral, estimation of reactors fuel costs, and integrated thermal hydraulics. VSOP also can be used to comparative studies and simulation of reactor safety. However, existing VSOP is a conventional program, which was developed using Fortran 65 and have several problems in using it, for example, it is only operated on Dec Alpha mainframe platforms and provide text-based output, difficult to use, especially in data preparation and interpretation of results. We develop a GUI-VSOP, which is an interface program to facilitate the preparation of data, run the VSOP code and read the results in a more user friendly way and useable on the Personal 'Computer (PC). Modifications include the development of interfaces on preprocessing, processing and postprocessing. GUI-based interface for preprocessing aims to provide a convenience way in preparing data. Processing interface is intended to provide convenience in configuring input files and libraries and do compiling VSOP code. Postprocessing interface designed to visualized the VSOP output in table and graphic forms. GUI-VSOP expected to be useful to simplify and speed up the process and analysis of safety aspects.

  5. Criticality safety analysis on fissile materials in Fukushima reactor cores

    SciTech Connect (OSTI)

    Liu, Xudong; Lemaitre-Xavier, E.; Ahn, Joonhong [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Hirano, Fumio [Japan Atomic Energy Agency, Geological Isolation Research and Development Directorate, Tokai-mura, Ibaraki 319-1194 (Japan)

    2013-07-01T23:59:59.000Z

    The present study focuses on the criticality analysis for geological disposal of damaged fuels from Fukushima reactor cores. Starting from the basic understanding of behaviors of plutonium and uranium, a scenario sequence for criticality event is considered. Due to the different mobility of plutonium and uranium in geological formations, the criticality safety is considered in two parts: (1) near-field plutonium system and (2) far-field low enriched uranium (LEU) system. For the near-field plutonium system, a mathematical analysis for pure-solute transport was given, assuming a particular buffer material and waste form configuration. With the transport and decay of plutonium accounted, the critical mass of plutonium was compared with the initial load of a single canister. Our calculation leads us to the conclusion that our system with the initial loading being the average mass of plutonium in an assembly just before the accident is very unlikely to become critical over time. For the far-field LEU system, due to the uncertainties in the geological and geochemical conditions, calculations were made in a parametric space that covers the variation of material compositions and different geometries. Results show that the LEU system could not remain sub-critical within the entire parameter space assumed, although in the iron-rich rock, the neutron multiplicity is significantly reduced.

  6. Providing Nuclear Criticality Safety Analysis Education through Benchmark Experiment Evaluation

    SciTech Connect (OSTI)

    John D. Bess; J. Blair Briggs; David W. Nigg

    2009-11-01T23:59:59.000Z

    One of the challenges that today's new workforce of nuclear criticality safety engineers face is the opportunity to provide assessment of nuclear systems and establish safety guidelines without having received significant experience or hands-on training prior to graduation. Participation in the International Criticality Safety Benchmark Evaluation Project (ICSBEP) and/or the International Reactor Physics Experiment Evaluation Project (IRPhEP) provides students and young professionals the opportunity to gain experience and enhance critical engineering skills.

  7. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls This report documents the technical basis for assigning risk bins for Natural Event Hazards Representative Accident and associated represented hazardous conditions.

  8. Packaging Review Guide for Reviewing Safety Analysis Reports for Packagings

    SciTech Connect (OSTI)

    DiSabatino, A; Biswas, D; DeMicco, M; Fisher, L E; Hafner, R; Haslam, J; Mok, G; Patel, C; Russell, E

    2007-04-12T23:59:59.000Z

    This Packaging Review Guide (PRG) provides guidance for Department of Energy (DOE) review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE Order 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his or her review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. This PRG is generally organized at the section level in a format similar to that recommended in Regulatory Guide 7.9 (RG 7.9). One notable exception is the addition of Section 9 (Quality Assurance), which is not included as a separate chapter in RG 7.9. Within each section, this PRG addresses the technical and regulatory bases for the review, the manner in which the review is accomplished, and findings that are generally applicable for a package that meets the approval standards. This Packaging Review Guide (PRG) provides guidance for DOE review and approval of packagings to transport fissile and Type B quantities of radioactive material. It fulfills, in part, the requirements of DOE O 460.1B for the Headquarters Certifying Official to establish standards and to provide guidance for the preparation of Safety Analysis Reports for Packagings (SARPs). This PRG is intended for use by the Headquarters Certifying Official and his review staff, DOE Secretarial offices, operations/field offices, and applicants for DOE packaging approval. The primary objectives of this PRG are to: (1) Summarize the regulatory requirements for package approval; (2) Describe the technical review procedures by which DOE determines that these requirements have been satisfied; (3) Establish and maintain the quality and uniformity of reviews; (4) Define the base from which to evaluate proposed changes in scope and requirements of reviews; and (5) Provide the above information to DOE organizations, contractors, other government agencies, and interested members of the general public. This PRG was originally published in September 1987. Revision 1, issued in October 1988, added new review sections on quality assurance and penetrations through the containment boundary, along with a few other items. Revision 2 was published October 1999. Revision 3 of this PRG is a complete update, and supersedes Revision 2 in its entirety.

  9. RDS - A systematic approach towards system thermal hydraulics input code development for a comprehensive deterministic safety analysis

    SciTech Connect (OSTI)

    Salim, Mohd Faiz, E-mail: mohdfaizs@tnb.com.my [Nuclear Energy Department, Tenaga Nasional Berhad, Level 32, Dua Sentral, 50470 Kuala Lumpur (Malaysia); Roslan, Ridha [Nuclear Installation Division, Atomic Energy Licensing Board, Batu 24, Jalan Dengkil, 43800 Dengkil, Selangor (Malaysia); Ibrahim, Mohd Rizal Mamat [Technical Support Division, Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia)

    2014-02-12T23:59:59.000Z

    Deterministic Safety Analysis (DSA) is one of the mandatory requirements conducted for Nuclear Power Plant licensing process, with the aim of ensuring safety compliance with relevant regulatory acceptance criteria. DSA is a technique whereby a set of conservative deterministic rules and requirements are applied for the design and operation of facilities or activities. Computer codes are normally used to assist in performing all required analysis under DSA. To ensure a comprehensive analysis, the conduct of DSA should follow a systematic approach. One of the methodologies proposed is the Standardized and Consolidated Reference Experimental (and Calculated) Database (SCRED) developed by University of Pisa. Based on this methodology, the use of Reference Data Set (RDS) as a pre-requisite reference document for developing input nodalization was proposed. This paper shall describe the application of RDS with the purpose of assessing its effectiveness. Two RDS documents were developed for an Integral Test Facility of LOBI-MOD2 and associated Test A1-83. Data and information from various reports and drawings were referred in preparing the RDS. The results showed that by developing RDS, it has made possible to consolidate all relevant information in one single document. This is beneficial as it enables preservation of information, promotes quality assurance, allows traceability, facilitates continuous improvement, promotes solving of contradictions and finally assisting in developing thermal hydraulic input regardless of whichever code selected. However, some disadvantages were also recognized such as the need for experience in making engineering judgments, language barrier in accessing foreign information and limitation of resources. Some possible improvements are suggested to overcome these challenges.

  10. Technical basis document for the evaporator dump accident

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-03-22T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the evaporator dump representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  11. Mixing of incompatible materials in waste tanks technical basis document

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSCs) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  12. A risk-informed approach to safety margins analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli

    2013-07-01T23:59:59.000Z

    The Risk Informed Safety Margins Characterization (RISMC) Pathway is a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. The model has been tested on the Advanced Test Reactor (ATR) at Idaho National Lab.

  13. Safety analysis--200 Area Savannah River Site: Separations Area operations Building 211-H Outside Facilities. Supplement 11, Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-01-01T23:59:59.000Z

    The H-Area Outside Facilities are located in the 200-H Separations Area and are comprised of a number of processes, utilities, and services that support the separations function. Included are enriched uranium loadout, bulk chemical storage, water handling, acid recovery, general purpose evaporation, and segregated solvent facilities. In addition, services for water, electricity, and steam are provided. This Safety Analysis Report (SAR) documents an analysis of the H-Area Outside Facilities and is one of a series of documents for the Separations Area as specified in the SR Implementation Plan for DOE order 5481.1A. The primary purpose of the analysis was to demonstrate that the facility can be operated without undue risk to onsite or offsite populations, to the environment, and to operating personnel. In this report, risks are defined as the expected frequencies of accidents, multiplied by the resulting radiological consequences in person-rem. Following the summary description of facility and operations is the site evaluation including the unique features of the H-Area Outside Facilities. The facility and process design are described in Chapter 3.0 and a description of operations and their impact is given in Chapter 4.0. The accident analysis in Chapter 5.0 is followed by a list of safety related structures and systems (Chapter 6.0) and a description of the Quality Assurance program (Chapter 7.0). The accident analysis in this report focuses on estimating the risk from accidents as a result of operation of the facilities. The operations were evaluated on the basis of three considerations: potential radiological hazards, potential chemical toxicity hazards, and potential conditions uniquely different from normal industrial practice.

  14. Software safety analysis of function block diagrams using fault trees , Junbeom Yoob,*, Sungdeok Chab

    E-Print Network [OSTI]

    the proposed approach against the one manually prepared by nuclear safety engineers. q 2004 Elsevier Ltd. AllSoftware safety analysis of function block diagrams using fault trees Younju Oha , Junbeom Yoob Institute of Science and Technology (KAIST) and AITrc/SPIC/IIRTRC, 373­1, Gusong­dong, Yuseong-gu, Daeje

  15. Application of System-Theoretic Process Analysis to Engineered Safety Features-Component Control System

    E-Print Network [OSTI]

    techniques identify. 1. Introduction Recent developments in safety-critical systems, such as nuclear powerC5.7 Application of System-Theoretic Process Analysis to Engineered Safety Features of Korea b,c Korea Atomic Energy Research Institute, 150 Deokjin, Yuseong Daejeon, 305-335, Republic

  16. Safety Analysis Using Coloured Petri Nets Seung Mo Cho, Hyoung Seok Hong, and Sung Deok Cha

    E-Print Network [OSTI]

    as an example. 1. Introduction Software control in safety-critical systems such as aerospace, military, nuclearSafety Analysis Using Coloured Petri Nets Seung Mo Cho, Hyoung Seok Hong, and Sung Deok Cha Department of Computer Science Korea Advanced Institute of Science and Technology (KAIST) 373-1, Kusong

  17. Accident Analysis and Prevention 36 (2004) 933946 Freeway safety as a function of traffic flow

    E-Print Network [OSTI]

    Detwiler, Russell

    2004-01-01T23:59:59.000Z

    Accident Analysis and Prevention 36 (2004) 933­946 Freeway safety as a function of traffic flow of strong relationships between traffic flow conditions and the likelihood of traffic accidents (crashes reserved. Keywords: Traffic safety; Accident rates; Traffic flow; Loop detectors; Speed; Traffic density

  18. Human-robot interactions: model-based risk analysis and safety case construction

    E-Print Network [OSTI]

    Guiochet, Jérémie

    Human-robot interactions: model-based risk analysis and safety case construction Quynh Anh DO HOANG potential threats related to physical human-robot interactions and to assess the associated risks that might affect safety and dependability. Because of the complexity of human-robot interactions, rigorous

  19. Technical Review Report for the Model 9975-96 Package Safety Analysis Report for Packaging (S-SARP-G-00003, Revision 0, January 2008)

    SciTech Connect (OSTI)

    West, M

    2009-05-22T23:59:59.000Z

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the U.S. Department of Energy (DOE), on the Safety Analysis Report for Packaging, Model 9975, Revision 0, dated January 2008 (S-SARP-G-00003, the SARP). The review includes an evaluation of the SARP, with respect to the requirements specified in 10 CFR 71, and in International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9975-96 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The safety analysis of the Model 9975-85 Packaging is documented in the Safety Analysis Report for Packaging, Model 9975, B(M)F-85, Revision 0, dated December 2003. The Model 9975-85 Package is certified by DOE Certificate of Compliance (CoC) package identification number, USA/9975/B(M)F-85, for the transportation of Type B quantities of uranium metal/oxide, {sup 238}Pu heat sources, plutonium/uranium metals, plutonium/uranium oxides, plutonium composites, plutonium/tantalum composites, {sup 238}Pu oxide/beryllium metal.

  20. A semiotic analysis of biotechnology and food safety photographs 

    E-Print Network [OSTI]

    Norwood, Jennifer Lynn

    2006-04-12T23:59:59.000Z

    This study evaluated photographs used in Time, Newsweek, and U.S. News and World Report in stories about biotechnology and food safety issues from the years 2000 and 2001. This study implemented a semiotic methodology to ...

  1. Aspects of environmental and safety analysis of fusion reactors

    E-Print Network [OSTI]

    Kazimi, Mujid S.

    1977-01-01T23:59:59.000Z

    This report summarizes the progress made between October 1976 and September 1977 in studies of some environmental and safety considerations in fusion reactor plants. A methodology to assess the admissible occurrence rate ...

  2. Markov Modeling with Soft Aggregation for Safety and Decision Analysis

    SciTech Connect (OSTI)

    COOPER,J. ARLIN

    1999-09-01T23:59:59.000Z

    The methodology in this report improves on some of the limitations of many conventional safety assessment and decision analysis methods. A top-down mathematical approach is developed for decomposing systems and for expressing imprecise individual metrics as possibilistic or fuzzy numbers. A ''Markov-like'' model is developed that facilitates combining (aggregating) inputs into overall metrics and decision aids, also portraying the inherent uncertainty. A major goal of Markov modeling is to help convey the top-down system perspective. One of the constituent methodologies allows metrics to be weighted according to significance of the attribute and aggregated nonlinearly as to contribution. This aggregation is performed using exponential combination of the metrics, since the accumulating effect of such factors responds less and less to additional factors. This is termed ''soft'' mathematical aggregation. Dependence among the contributing factors is accounted for by incorporating subjective metrics on ''overlap'' of the factors as well as by correspondingly reducing the overall contribution of these combinations to the overall aggregation. Decisions corresponding to the meaningfulness of the results are facilitated in several ways. First, the results are compared to a soft threshold provided by a sigmoid function. Second, information is provided on input ''Importance'' and ''Sensitivity,'' in order to know where to place emphasis on considering new controls that may be necessary. Third, trends in inputs and outputs are tracked in order to obtain significant information% including cyclic information for the decision process. A practical example from the air transportation industry is used to demonstrate application of the methodology. Illustrations are given for developing a structure (along with recommended inputs and weights) for air transportation oversight at three different levels, for developing and using cycle information, for developing Importance and Sensitivity measures for soil aggregation, for developing dependence methodology, for constructing early alert logic, for tracking trends, for relating the Markov model to other (e.g., Reason) models, for developing and demonstrating rudimentary laptop software, and for developing an input/output display methodology.

  3. New Methods and Tools to Perform Safety Analysis within RISMC

    SciTech Connect (OSTI)

    Diego Mandelli; Curtis Smith; Cristian Rabiti; Andrea Alfonsi; Robert Kinoshita; Joshua Cogliati

    2013-11-01T23:59:59.000Z

    The Risk Informed Safety Margins Characterization (RISMC) Pathway uses a systematic approach developed to characterize and quantify safety margins of nuclear power plant structures, systems and components. What differentiates the RISMC approach from traditional probabilistic risk assessment (PRA) is the concept of safety margin. In PRA, a safety metric such as core damage frequency (CDF) is generally estimated using static fault-tree and event-tree models. However, it is not possible to estimate how close we are to physical safety limits (say peak clad temperature) for most accident sequences described in the PRA. In the RISMC approach, what we want to understand is not just the frequency of an event like core damage, but how close we are (or not) to this event and how we might increase our safety margin through margin management strategies in a Dynamic PRA (DPRA) fashion. This paper gives an overview of methods that are currently under development at the Idaho National Laboratory (INL) with the scope of advance the current state of the art of dynamic PRA.

  4. Advanced Test Reactor Critical Facility safety analysis report five year currency review

    SciTech Connect (OSTI)

    Napper, P.R.; Carpenter, W.R.; Garner, R.W.

    1991-05-01T23:59:59.000Z

    By DOE-ID Order 5481.1A, a five year currency review is required of the Safety Analysis Reports of all ID or ID contractor operations having hazards of a type and magnitude not routinely encountered and/or accepted by the public. In keeping with this order, a currency review has been performed of the Advanced Test Reactor Critical Facility (ADTRC) Safety Analysis Report (SAR), Issue 003, 1990. The objectives of this currency review were to: evaluate the content, completeness, clarity of presentation and compliance with NRC Regulatory Guides and DOE Orders, etc., and evaluate the technical content of the SAR, particularly the Technical Specifications, and to evaluate the safety of continued operation of the ATRC. The reviewers concluded that although improvements may be needed in the overall content, clarity, and demonstration of compliance with current orders and regulations, the safety of the ATRC is in no way compromised and no unreviewed safety questions were identified. 6 figs., 3 tabs.

  5. SAFETY ANALYSIS AND INTEGRATION FOR ROBOTIC SYSTEMS -APPLICATION TO A

    E-Print Network [OSTI]

    Guiochet, Jérémie

    Analysis (FMEA) and Fault Tree Analysis (FTA) which identify potential unit errors resulting in hazards

  6. Development of a safety analysis system for the offshore personnel and equipment transfer process

    E-Print Network [OSTI]

    McKenna, Michael George

    1988-01-01T23:59:59.000Z

    and Effect Analysis (FMEA) was performed. With the FMEA the question "What if?" is asked for each component. For example, "What if the lifting cable fails' ?". Each component was evaluated for failure mode, failure effects on other components... swell or waves stood out as primary factors in the safety of the transfer process. Failure Mode and Effect Anal sis With component failure a recognized factor in the safety of the transfer process, more in-depth analysis was merited. The FMEA...

  7. Implementation Guide for Use in Developing Documented Safety Analyses to Meet Subpart B of 10 CFR 830

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-12-19T23:59:59.000Z

    Title 10 Code of Federal Regulations (CFR) Part 830, Subpart B, Safety Basis Requirements, requires the contractor responsible for a Department of Energy (DOE) nuclear facility to analyze the facility, the work to be performed, and the associated hazards and to identify the conditions, safe boundaries, and hazard controls necessary to protect workers, the public, and the environment from adverse consequences. Cancels DOE G 421.1-2.

  8. Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-12-12T23:59:59.000Z

    he purpose of this DOE Standard is to establish guidance for the preparation and review of hazard categorization and accident analyses techniques as required in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  9. Formal Safety analysis of a radiobased railroad crossing using Deductive CauseConsequence

    E-Print Network [OSTI]

    Reif, Wolfgang

    #ects analysis (FMEA) and fault tree analysis (FTA). We apply the method to a real world case study: a radio (DCCA). This technique is a formal generalization of well­known safety analysis methods like FMEA [10 by analyzed) than traditional FMEA. We show, that the results of DCCA have the same semantics as those

  10. Hanford Generic Interim Safety Basis

    SciTech Connect (OSTI)

    Lavender, J.C.

    1994-09-09T23:59:59.000Z

    The purpose of this document is to identify WHC programs and requirements that are an integral part of the authorization basis for nuclear facilities that are generic to all WHC-managed facilities. The purpose of these programs is to implement the DOE Orders, as WHC becomes contractually obligated to implement them. The Hanford Generic ISB focuses on the institutional controls and safety requirements identified in DOE Order 5480.23, Nuclear Safety Analysis Reports.

  11. Sodium fast reactor gaps analysis of computer codes and models for accident analysis and reactor safety.

    SciTech Connect (OSTI)

    Carbajo, Juan (Oak Ridge National Laboratory, Oak Ridge, TN); Jeong, Hae-Yong (Korea Atomic Energy Research Institute, Daejeon, Korea); Wigeland, Roald (Idaho National Laboratory, Idaho Falls, ID); Corradini, Michael (University of Wisconsin, Madison, WI); Schmidt, Rodney Cannon; Thomas, Justin (Argonne National Laboratory, Argonne, IL); Wei, Tom (Argonne National Laboratory, Argonne, IL); Sofu, Tanju (Argonne National Laboratory, Argonne, IL); Ludewig, Hans (Brookhaven National Laboratory, Upton, NY); Tobita, Yoshiharu (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Ohshima, Hiroyuki (Japan Atomic Energy Agency, Ibaraki-ken, Japan); Serre, Frederic (Centre d'%C3%94etudes nucl%C3%94eaires de Cadarache %3CU%2B2013%3E CEA, France)

    2011-06-01T23:59:59.000Z

    This report summarizes the results of an expert-opinion elicitation activity designed to qualitatively assess the status and capabilities of currently available computer codes and models for accident analysis and reactor safety calculations of advanced sodium fast reactors, and identify important gaps. The twelve-member panel consisted of representatives from five U.S. National Laboratories (SNL, ANL, INL, ORNL, and BNL), the University of Wisconsin, the KAERI, the JAEA, and the CEA. The major portion of this elicitation activity occurred during a two-day meeting held on Aug. 10-11, 2010 at Argonne National Laboratory. There were two primary objectives of this work: (1) Identify computer codes currently available for SFR accident analysis and reactor safety calculations; and (2) Assess the status and capability of current US computer codes to adequately model the required accident scenarios and associated phenomena, and identify important gaps. During the review, panel members identified over 60 computer codes that are currently available in the international community to perform different aspects of SFR safety analysis for various event scenarios and accident categories. A brief description of each of these codes together with references (when available) is provided. An adaptation of the Predictive Capability Maturity Model (PCMM) for computational modeling and simulation is described for use in this work. The panel's assessment of the available US codes is presented in the form of nine tables, organized into groups of three for each of three risk categories considered: anticipated operational occurrences (AOOs), design basis accidents (DBA), and beyond design basis accidents (BDBA). A set of summary conclusions are drawn from the results obtained. At the highest level, the panel judged that current US code capabilities are adequate for licensing given reasonable margins, but expressed concern that US code development activities had stagnated and that the experienced user-base and the experimental validation base was decaying away quickly.

  12. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-03T23:59:59.000Z

    This Guide provides elaboration for the content of TSRs. Section 10 CFR 830.205 of the Nuclear Safety Management rule, requires Department of Energy (DOE) contractors responsible for category 1, 2, and 3 DOE nuclear facilities to develop Technical Safety Requirements (TSRs). These TSRs identify the limitations to each DOE owned, contractor operated nuclear facility based on the documented safety analysis (DSA) and any additional safety requirements established for the facility. Cancels DOE G 423.1-1.

  13. Implementation Guide for Use in Developing Technical Safety Requirements

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2010-11-03T23:59:59.000Z

    This Guide provides elaboration for the content of TSRs. Section 10 CFR 830.205 of the Nuclear Safety Management rule, requires Department of Energy (DOE) contractors responsible for category 1, 2, and 3 DOE nuclear facilities to develop Technical Safety Requirements (TSRs). These TSRs identify the limitations to each DOE owned, contractor operated nuclear facility based on the documented safety analysis (DSA) and any additional safety requirements established for the facility. Does not cancel other directives.

  14. Comparison of a Traditional Probabilistic Risk Assessment Approach with Advanced Safety Analysis

    SciTech Connect (OSTI)

    Smith, Curtis L; Mandelli, Diego; Zhegang Ma

    2014-11-01T23:59:59.000Z

    As part of the Light Water Sustainability Program (LWRS) [1], the purpose of the Risk Informed Safety Margin Characterization (RISMC) [2] Pathway research and development (R&D) is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” (SBO) wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario. We also describe our approach we are using to represent advanced flooding analysis.

  15. A semiotic analysis of biotechnology and food safety photographs

    E-Print Network [OSTI]

    Norwood, Jennifer Lynn

    2006-04-12T23:59:59.000Z

    This study evaluated photographs used in Time, Newsweek, and U.S. News and World Report in stories about biotechnology and food safety issues from the years 2000 and 2001. This study implemented a semiotic methodology to determine if the messages...

  16. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  17. Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Documented Safety Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment DOE-STD-3009-94 July 1994 CHANGE

  18. Preparation Guide for U. S. Department of Energy Nonreator Nuclear Facility Document Safety Analysis

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHA AdministrativeofDepartment DOE-STD-3009-94 July 1994 CHANGE

  19. Factors Analysis on Safety of Indoor Air Quality

    E-Print Network [OSTI]

    Luo, Q.; Liu, Z.; Xiong, J.

    2006-01-01T23:59:59.000Z

    . Handbook on Review and Detection of Indoor Environment [M]. Beijing: Mechanical Industry Press, 2003: 1-5.(In Chinese) [2] Pan Xiaochuan. Review on Indoor Air Pollution and Its Harmfulness to Health [J]. Chin. Prev. Med., 2002,3(3):167-169 (in... of Urban Construction, Nanhua University, Hengyang, P.R.China hunanluoqinghai@163.com Abstract: Influence factors on safety of indoor air quality (IAQ) were analyzed in this paper. Some regeneration compositions resulting from potential indoor...

  20. System Design and the Safety Basis

    SciTech Connect (OSTI)

    Ellingson, Darrel

    2008-05-06T23:59:59.000Z

    The objective of this paper is to present the Bechtel Jacobs Company, LLC (BJC) Lessons Learned for system design as it relates to safety basis documentation. BJC has had to reconcile incomplete or outdated system description information with current facility safety basis for a number of situations in recent months. This paper has relevance in multiple topical areas including documented safety analysis, decontamination & decommissioning (D&D), safety basis (SB) implementation, safety and design integration, potential inadequacy of the safety analysis (PISA), technical safety requirements (TSR), and unreviewed safety questions. BJC learned that nuclear safety compliance relies on adequate and well documented system design information. A number of PIS As and TSR violations occurred due to inadequate or erroneous system design information. As a corrective action, BJC assessed the occurrences caused by systems design-safety basis interface problems. Safety systems reviewed included the Molten Salt Reactor Experiment (MSRE) Fluorination System, K-1065 fire alarm system, and the K-25 Radiation Criticality Accident Alarm System. The conclusion was that an inadequate knowledge of system design could result in continuous non-compliance issues relating to nuclear safety. This was especially true with older facilities that lacked current as-built drawings coupled with the loss of 'historical knowledge' as personnel retired or moved on in their careers. Walkdown of systems and the updating of drawings are imperative for nuclear safety compliance. System design integration with safety basis has relevance in the Department of Energy (DOE) complex. This paper presents the BJC Lessons Learned in this area. It will be of benefit to DOE contractors that manage and operate an aging population of nuclear facilities.

  1. Safety Analysis of an Airbag System using Probabilistic FMEA and Probabilistic Counterexamples

    E-Print Network [OSTI]

    Leue, Stefan

    Safety Analysis of an Airbag System using Probabilistic FMEA and Probabilistic Counterexamples H analysis (FMEA) is a technique to reason about possible system hazards that result from system or system component failures. Tradition- ally, FMEA does not take the probabilities with which these failures may

  2. Safety Analysis of an Airbag System using Probabilistic FMEA and Probabilistic Counter Examples

    E-Print Network [OSTI]

    Leue, Stefan

    Safety Analysis of an Airbag System using Probabilistic FMEA and Probabilistic Counter Examples Failure mode and effects analysis (FMEA) is a technique to reason about possible system hazards that result from system or system component failures. Traditionally, FMEA does not take the probabilities

  3. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  4. Invited Contribution to Q 76: The Use of Risk Analysis to Support Dam Safety Decisions and Management

    E-Print Network [OSTI]

    Bowles, David S.

    Decisions and Management DRAFT FOR REVIEW ONLY Portfolio Risk Assessment: A Tool for Managing Dam SafetyICOLD 20th Congress Invited Contribution to Q 76: The Use of Risk Analysis to Support Dam Safety in the Context of the Owner's Business David S. Bowles Professor and Director, Institute for Dam Safety Risk

  5. Data development technical support document for the aircraft crash risk analysis methodology (ACRAM) standard

    SciTech Connect (OSTI)

    Kimura, C.Y.; Glaser, R.E.; Mensing, R.W.; Lin, T.; Haley, T.A.; Barto, A.B.; Stutzke, M.A.

    1996-08-01T23:59:59.000Z

    The Aircraft Crash Risk Analysis Methodology (ACRAM) Panel has been formed by the US Department of Energy Office of Defense Programs (DOE/DP) for the purpose of developing a standard methodology for determining the risk from aircraft crashes onto DOE ground facilities. In order to accomplish this goal, the ACRAM panel has been divided into four teams, the data development team, the model evaluation team, the structural analysis team, and the consequence team. Each team, consisting of at least one member of the ACRAM plus additional DOE and DOE contractor personnel, specializes in the development of the methodology assigned to that team. This report documents the work performed by the data development team and provides the technical basis for the data used by the ACRAM Standard for determining the aircraft crash frequency. This report should be used to provide the generic data needed to calculate the aircraft crash frequency into the facility under consideration as part of the process for determining the aircraft crash risk to ground facilities as given by the DOE Standard Aircraft Crash Risk Assessment Methodology (ACRAM). Some broad guidance is presented on how to obtain the needed site-specific and facility specific data but this data is not provided by this document.

  6. Safety System Oversight Staffing Analysis (Instructions, Blank Sheet and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy atLLC - FE DKT. 10-160-LNG - ORDERSTATE0-1of Energy Safety

  7. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2004-12-09T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the SST modified sluicing system with DST supernatant for retrieval of the 100-series SSTs in the tank farms is adequately addressed and bounded by the current tank farms safety basis documented safety analysis and to determine if additional controls may be required.

  8. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2003-09-01T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the single-shell tank modified sluicing system for retrieval of the 100-series Single-Shell Tanks (SSTs) in the tank farms is adequately addressed and bounded by the current tank farms safety basis documented safety analysis and to determine if additional controls may be required.

  9. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2005-02-18T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the single-shell tank modified sluicing system for retrieval of the 100-series SSTs in the tank farms is adequately addressed and bounded by the current tank farms safety basis documented safety analysis and to determine if additional controls may be required.

  10. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2003-10-09T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the single-shell tank modified sluicing system for retrieval of the 100-series SSTs in the tank farms is adequately addressed and hounded by the current tank farms safety basis documented safety analysis and to determine if additional controls may be required.

  11. Review and Analysis of Development of "Safety by Design" Requirements

    SciTech Connect (OSTI)

    Vance, Scott A.; Hockert, John

    2009-10-20T23:59:59.000Z

    This report, the deliverable for Task 4 of the NA-243 Safeguards by Design Work Plan for Fiscal Year 2009, develops the lessons to be learned for the institutionalization of Safeguards By Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189, Integration of Safety into the Design Process. This experience was selected for study because of the similarity of the challenges of integrating safety and safeguards into the design process. Development of DOE-STD-1189 began in January 2006 and the standard was issued for implementation in March 2008. The process was much more time consuming than originally anticipated and might not have come to fruition had senior DOE management been less committed to its success. Potentially valuable lessons can be learned from both the content and presentation of the integration approach in DOE-STD-1189 and from the DOE experience in developing and implementing DOE-STD-1189. These lessons are important because the instutionalization of SBD does not yet appear to have the level of senior management commitment afforded development and implementation of DOE-STD-1189.

  12. Station Blackout: A case study in the interaction of mechanistic and probabilistic safety analysis

    SciTech Connect (OSTI)

    Curtis Smith; Diego Mandelli; Cristian Rabiti

    2013-11-01T23:59:59.000Z

    The ability to better characterize and quantify safety margins is important to improved decision making about nuclear power plant design, operation, and plant life extension. As research and development (R&D) in the light-water reactor (LWR) Sustainability (LWRS) Program and other collaborative efforts yield new data, sensors, and improved scientific understanding of physical processes that govern the aging and degradation of plant SSCs needs and opportunities to better optimize plant safety and performance will become known. The purpose of the Risk Informed Safety Margin Characterization (RISMC) Pathway R&D is to support plant decisions for risk-informed margin management with the aim to improve economics, reliability, and sustain safety of current NPPs. In this paper, we describe the RISMC analysis process illustrating how mechanistic and probabilistic approaches are combined in order to estimate a safety margin. We use the scenario of a “station blackout” wherein offsite power and onsite power is lost, thereby causing a challenge to plant safety systems. We describe the RISMC approach, illustrate the station blackout modeling, and contrast this with traditional risk analysis modeling for this type of accident scenario.

  13. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 1, Rev. 14

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    The condensed version of the TRUPACT-II Contact Handled Transuranic Waste Safety Analysis Report for Packaging (SARP) contains essential material required by TRUPACT-II users, plus additional contents (payload) information previously submitted to the U.S. Nuclear Regulatory Commission. All or part of the following sections, which are not required by users of the TRUPACT-II, are deleted from the condensed version: (i) structural analysis, (ii) thermal analysis, (iii) containment analysis, (iv) criticality analysis, (v) shielding analysis, and (vi) hypothetical accident test results.

  14. Tank farms criticality safety manual

    SciTech Connect (OSTI)

    FORT, L.A.

    2003-03-27T23:59:59.000Z

    This document defines the Tank Farms Contractor (TFC) criticality safety program, as required by Title 10 Code of Federal Regulations (CFR), Subpart 830.204(b)(6), ''Documented Safety Analysis'' (10 CFR 830.204 (b)(6)), and US Department of Energy (DOE) 0 420.1A, Facility Safety, Section 4.3, ''Criticality Safety.'' In addition, this document contains certain best management practices, adopted by TFC management based on successful Hanford Site facility practices. Requirements in this manual are based on the contractor requirements document (CRD) found in Attachment 2 of DOE 0 420.1A, Section 4.3, ''Nuclear Criticality Safety,'' and the cited revisions of applicable standards published jointly by the American National Standards Institute (ANSI) and the American Nuclear Society (ANS) as listed in Appendix A. As an informational device, requirements directly imposed by the CRD or ANSI/ANS Standards are shown in boldface. Requirements developed as best management practices through experience and maintained consistent with Hanford Site practice are shown in italics. Recommendations and explanatory material are provided in plain type.

  15. Risk-Informed Safety Margin Characterization (RISMC): Integrated Treatment of Aleatory and Epistemic Uncertainty in Safety Analysis

    SciTech Connect (OSTI)

    R. W. Youngblood

    2010-10-01T23:59:59.000Z

    The concept of “margin” has a long history in nuclear licensing and in the codification of good engineering practices. However, some traditional applications of “margin” have been carried out for surrogate scenarios (such as design basis scenarios), without regard to the actual frequencies of those scenarios, and have been carried out with in a systematically conservative fashion. This means that the effectiveness of the application of the margin concept is determined in part by the original choice of surrogates, and is limited in any case by the degree of conservatism imposed on the evaluation. In the RISMC project, which is part of the Department of Energy’s “Light Water Reactor Sustainability Program” (LWRSP), we are developing a risk-informed characterization of safety margin. Beginning with the traditional discussion of “margin” in terms of a “load” (a physical challenge to system or component function) and a “capacity” (the capability of that system or component to accommodate the challenge), we are developing the capability to characterize probabilistic load and capacity spectra, reflecting both aleatory and epistemic uncertainty in system response. For example, the probabilistic load spectrum will reflect the frequency of challenges of a particular severity. Such a characterization is required if decision-making is to be informed optimally. However, in order to enable the quantification of probabilistic load spectra, existing analysis capability needs to be extended. Accordingly, the INL is working on a next-generation safety analysis capability whose design will allow for much more efficient parameter uncertainty analysis, and will enable a much better integration of reliability-related and phenomenology-related aspects of margin.

  16. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  17. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect (OSTI)

    None

    1996-12-01T23:59:59.000Z

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  18. YUCCA MOUNTAIN SITE CHARACTERIZATIONS PROJECT TUNNEL BORING MACHINE (TBM) SYSTEM SAFETY ANALYSIS

    SciTech Connect (OSTI)

    N /A

    1997-02-19T23:59:59.000Z

    The purpose of this analysis is to systematically identify and evaluate hazards related to the tunnel boring machine (TBM) used in the Exploratory Studies Facility (ESF) at the Yucca Mountain Site Characterization Project. This process is an integral part of the systems engineering process; whereby safety is considered during planning, design, testing, and construction. Since the TBM is an ''as built'' system, the M&O is conducting the System Safety Analysis during the construction or assembly phase of the TBM. A largely qualitative approach was used since a radiological System Safety Analysis is not required. The risk assessment in this analysis characterizes the accident scenarios associated with the TBM in terms of relative risk and includes recommendations for mitigating all identified risks. The priority for recommending and implementing mitigation control features is: (1) Incorporate measures to reduce risks and hazards into the system/subsystem/component design, (2) add safety features and capabilities to existing designs, and (3) develop procedures and conduct training to increase worker awareness of potential hazards, on methods to reduce exposure to hazards, and on the actions required to avoid accidents or correct hazardous conditions. The scope of this analysis is limited to the TBM during normal operations, excluding hazards occurring during assembly and test of the TBM or maintenance of the TBM equipment.

  19. MIXING OF INCOMPATIBLE MATERIALS IN WASTE TANKS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    SANDGREN, K.R.

    2003-10-15T23:59:59.000Z

    This document presents onsite radiological, onsite toxicological, and offsite toxicological consequences, risk binning, and control decision results for the mixing of incompatible materials in waste tanks representative accident. This technical basis document was developed to support the tank farms documented safety analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  20. Office of Environmental Protection, Sustainability Support, and Corporate Safety Analysis

    Broader source: Energy.gov [DOE]

    The Office of Environmental Protection, Sustainability Support and Analysis establishes environmental protection requirements and expectations for the Department to ensure protection of workers and the public and protection of the environment from the hazards associated with all Department operations.

  1. ARIES-ACT1 SAFETY DESIGN AND ANALYSIS

    SciTech Connect (OSTI)

    Paul W. Humrickhouse; Brad J. Merrill

    2015-01-01T23:59:59.000Z

    ARIES-ACT1 is a 1000 MWe tokamak design featuring advanced physics and engineering. Some relevant features include an advanced SiC blanket with PbLi as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. We consider here some safety aspects of the ARIES-ACT1 design, and model a series of design-basis and beyond design-basis accidents with MELCOR. The presence of multiple coolants (PbLi, helium, and water) makes possible a variety of such accidents. We consider here a loss of flow accident (i.e. long term station blackout), an ex-vessel helium break into the cryostat, and a beyond design-basis accident in which both loss of power and a loss of the water coolant occur. In all cases we find that secondary confinement boundaries are not challenged, and the structural integrity of in-vessel components is not threatened by high temperatures; decay heat can be safely removed in all cases by passive systems.

  2. Fusion Engineering and Design 38 (1997) 189218 ARIES-RS safety design and analysis

    E-Print Network [OSTI]

    Fusion Engineering and Design 38 (1997) 189­218 ARIES-RS safety design and analysis D. Steiner *, L Polytechnic Institute, Department of En6ironmental and Energy Engineering, JEC 5049, Troy NY 12180-3590, USA assessment indicates that the dose at the site boundary will be less than 1 rem per year. Thus, no sheltering

  3. A quantitative analysis of health, safety and environment policy in France

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A quantitative analysis of health, safety and environment policy in France Thomas Audiffrena , Jean-Marc Rallob , Franck Guarnieria , Christophe Martina a Mines ParisTech, Center for Research on Risks was introduced in France to regulate the role of occupational risk prevention specialists (OHS professionals

  4. COLLECTION OF MICRO-LEVEL SAFETY AND EFFICIENCY INDICATORS WITH AUTOMATED VIDEO ANALYSIS

    E-Print Network [OSTI]

    Lunds Universitet

    behaviour and injury accidents. A lot of research is therefore put into the work of developing methods program, Faculty of Engineering, LTH, Lund University, Sweden ABSTRACT This paper revises the theoretical and level-of-service analysis. Keywords: road safety, level-of-service, indicator, severity hierarchy

  5. Combining Functional and Structural Reasoning for Safety Analysis of Electrical Designs

    E-Print Network [OSTI]

    Snooke, Neal

    in detail. FLAME has been developed over several years, and is capable of composing an FMEA report for many Failure mode effects analysis (FMEA) of a design involves the investigation and assessment of the effects, electronic and mechanical systems are being combined in safety-critical applications. Automation of FMEA

  6. Technical basis document for the steam intrusion from interfacing systems accident

    SciTech Connect (OSTI)

    GOETZ, T.G.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Documented Safety Analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the steam intrusion from interfacing systems representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  7. Reactor Safety Planning for Prometheus Project, for Naval Reactors Information

    SciTech Connect (OSTI)

    P. Delmolino

    2005-05-06T23:59:59.000Z

    The purpose of this letter is to submit to Naval Reactors the initial plan for the Prometheus project Reactor Safety work. The Prometheus project is currently developing plans for cold physics experiments and reactor prototype tests. These tests and facilities may require safety analysis and siting support. In addition to the ground facilities, the flight reactor units will require unique analyses to evaluate the risk to the public from normal operations and credible accident conditions. This letter outlines major safety documents that will be submitted with estimated deliverable dates. Included in this planning is the reactor servicing documentation and shipping analysis that will be submitted to Naval Reactors.

  8. Coiled Tubing Safety Manual

    SciTech Connect (OSTI)

    Crow, W.

    1999-04-06T23:59:59.000Z

    This document addresses safety concerns regarding the use of coiled tubing as it pertains to the preservation of personnel, environment and the wellbore.

  9. Supporting Document Strategic Plan

    E-Print Network [OSTI]

    Auckland, University of

    1 Supporting Document Strategic Plan 2013­2020 #12;2 Supporting Document Strategic Plan 2013 more critical to the University's future than was the case in 2005. The purpose of this document are summarised via a SWOT analysis in Appendix 1. This document should therefore be read in conjunction

  10. Packaging review guide for reviewing safety analysis reports for packagings: Revision 1

    SciTech Connect (OSTI)

    Fisher, L.E.; Chou, C.K.; Lloyd, W.R.; Mount, M.E.; Nelson, T.A.; Schwartz, M.W.; Witte, M.C.

    1988-10-01T23:59:59.000Z

    The Department of Energy (DOE) has established procedures for obtaining certification of packagings used by DOE and its contractors for the transport of radioactive materials. The principal purpose of this document is to assure the quality and uniformity of PCS reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The Packaging Review Guide (PRG) also sets forth solutions and approaches determined to be acceptable in the past in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a SARP does not have to follow the solutions or approaches presented. It is also a purpose of the PRG to make information about DOE certification policy and procedures widely available to DOE field offices, DOE contractors, federal agencies, and interested members of the public. 77 refs., 16 figs., 15 tabs.

  11. Safety analysis of B and W Standard PWR using thorium-based fuels

    SciTech Connect (OSTI)

    Uotinen, V.O.; Carroll, W.P.; Jones, H.M.; Toops, E.C.

    1980-06-01T23:59:59.000Z

    A study was performed to assess the safety and licenseability of the Babcock and Wilcox standard 205-fuel assembly PWR when it is fueled with three types of thoria-based fuels denatured (/sup 233/U//sup 238/U-Th)O/sub 2/, denatured (/sup 235//U/sup 238/U-Th)O/sub 2/, and (Th-Pu)O/sub 2/. Selected transients were analyzed using typical PWR safety analysis calculational methods. The results support the conclusion that it is feasible from a safety standpoint to utilize either of the denatured urania-thoria fuels in the standard B and W plant. In addition, it appears that the use of thoria-plutonia fuels would probably also be feasible. These tentative conclusions depend on a data that is more limited than that available for UO/sub 2/ fuels.

  12. Technical basis document for the release from contaminated facility representative accident and associated represented hazardous conditions

    SciTech Connect (OSTI)

    OBERG, B.D.

    2003-03-22T23:59:59.000Z

    This document supports the Tank Farms Documented Safety Analysis and describes the risk binning process and the technical basis for assigning risk bins for the release from contaminated facility representative accident and associated represented hazardous conditions. The representative accidents qualitatively considered are fires, deflagrations, and load drops in contaminated areas. The risks from a separate evaluation of compressed gas hazards are also summarized.

  13. Organizational analysis and safety for utilities with nuclear power plants: perspectives for organizational assessment. Volume 2. [PWR; BWR

    SciTech Connect (OSTI)

    Osborn, R.N.; Olson, J.; Sommers, P.E.; McLaughlin, S.D.; Jackson, M.S.; Nadel, M.V.; Scott, W.G.; Connor, P.E.; Kerwin, N.; Kennedy, J.K. Jr.

    1983-08-01T23:59:59.000Z

    This two-volume report presents the results of initial research on the feasibility of applying organizational factors in nuclear power plant (NPP) safety assessment. Volume 1 of this report contains an overview of the literature, a discussion of available safety indicators, and a series of recommendations for more systematically incorporating organizational analysis into investigations of nuclear power plant safety. The six chapters of this volume discuss the major elements in our general approach to safety in the nuclear industry. The chapters include information on organizational design and safety; organizational governance; utility environment and safety related outcomes; assessments by selected federal agencies; review of data sources in the nuclear power industry; and existing safety indicators.

  14. Technical Standards, Safety Analysis Toolbox Codes - November 2003 |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO Overview OCHCOSystems Analysis Success Stories SystemsTara TrujilloDepartment of Energy

  15. Monthly Analysis of Electrical Safety Occurrences - October 2012 |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaeferApril 1,(EAC)TABLE OFDepartment of Energy October 2011 An analysis

  16. Superconducting x-ray lithography source Phase 1 (XLS) safety analysis report

    SciTech Connect (OSTI)

    Blumberg, L. (ed.)

    1990-07-01T23:59:59.000Z

    This paper discusses safety aspects associated with the superconducting x-ray lithography source. The policy, building systems safety and storage ring systems safety are specifically addressed. (LSP)

  17. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    passive safety cooling systems. To develop an understandingthe passive safety cooling system and recommend an approachof Passive Safety Cooling Systems for Advanced Nuclear

  18. Power Systems Analysis Final Project Report UNI: tdp2114 1 Abstract--This document outlines the importance of, process

    E-Print Network [OSTI]

    Lavaei, Javad

    Power Systems Analysis Final Project Report UNI: tdp2114 1 Abstract--This document outlines of large scale power systems. The maintenance of such power systems is no small affair. Every moment systems maintenance in the most optimized and efficient manner. Keywords--Power Systems, Power Generation

  19. FLUOR HANFORD SAFETY MANAGEMENT PROGRAMS

    SciTech Connect (OSTI)

    GARVIN, L J; JENSEN, M A

    2004-04-13T23:59:59.000Z

    This document summarizes safety management programs used within the scope of the ''Project Hanford Management Contract''. The document has been developed to meet the format and content requirements of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses''. This document provides summary descriptions of Fluor Hanford safety management programs, which Fluor Hanford nuclear facilities may reference and incorporate into their safety basis when producing facility- or activity-specific documented safety analyses (DSA). Facility- or activity-specific DSAs will identify any variances to the safety management programs described in this document and any specific attributes of these safety management programs that are important for controlling potentially hazardous conditions. In addition, facility- or activity-specific DSAs may identify unique additions to the safety management programs that are needed to control potentially hazardous conditions.

  20. Sandia National Laboratories: Transportation Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experimental Testing Phenomenological Modeling Risk and Safety Assessment Cyber-Based Vulnerability Assessments Uncertainty Analysis Transportation Safety Fire Science Human...

  1. Technical Letter Report: Evaluation and Analysis of a Few International Periodic Safety Review Summary Reports

    SciTech Connect (OSTI)

    Chopra, Omesh K. [Argonne National Lab., IL (United States). Environmental Science Division; Diercks, Dwight R. [Argonne National Lab., IL (United States). Nuclear Engineering Division; Ma, David Chia-Chiun [Argonne National Lab., IL (United States). Environmental Science Division; Garud, Yogendra S. [Argonne National Lab., IL (United States). Environmental Science Division

    2013-12-17T23:59:59.000Z

    At the request of the United States (U.S.) government, the International Atomic Energy Agency (IAEA) assembled a team of 20 senior safety experts to review the regulatory framework for the safety of operating nuclear power plants in the United States. This review focused on the effectiveness of the regulatory functions implemented by the NRC and on its commitment to nuclear safety and continuous improvement. One suggestion resulting from that review was that the U.S. Nuclear Regulatory Commission (NRC) incorporate lessons learned from periodic safety reviews (PSRs) performed in other countries as an input to the NRC’s assessment processes. In the U.S., commercial nuclear power plants (NPPs) are granted an initial 40-year operating license, which may be renewed for additional 20-year periods, subject to complying with regulatory requirements. The NRC has established a framework through its inspection, and operational experience processes to ensure the safe operation of licensed nuclear facilities on an ongoing basis. In contrast, most other countries do not impose a specific time limit on the operating licenses for NPPs, they instead require that the utility operating the plant perform PSRs, typically at approximately 10-year intervals, to assure continued safe operation until the next assessment. The staff contracted with Argonne National Laboratory (Argonne) to perform a pilot review of selected translated PSR assessment reports and related documentation from foreign nuclear regulatory authorities to identify any potential new regulatory insights regarding license renewal-related topics and NPP operating experience (OpE). A total of 14 PSR assessment documents from 9 countries were reviewed. For all of the countries except France, individual reports were provided for each of the plants reviewed. In the case of France, three reports were provided that reviewed the performance assessment of thirty-four 900-MWe reactors of similar design commissioned between 1978 and 1988. All of the reports reviewed were the regulator’s assessment of the PSR findings rather than the original PSR report, and all but one were English translations from the original language. In these reviews, it was found that most of the countries base their regulatory guidance to some extent (and often to a large extent) on U.S. design codes and standards, NRC regulatory guidance, and U.S. industry guidance. In addition, many of the observed operational technical issues and OpE events reported for U.S. reactors are also cited in the PSR reports. The PSR reports also identified a number of potential technical material/component performance issues and OpE events that are not commonly reported for U.S. plants.

  2. A probabilistic safety analysis of UF{sub 6} handling at the Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Boyd, G.J.; Lewis, S.R.; Summitt, R.L. [Safety and Reliability Optimization Services (SAROS), Inc., Knoxville, TN (United States)

    1991-12-31T23:59:59.000Z

    A probabilistic safety study of UF{sub 6} handling activities at the Portsmouth Gaseous Diffusion Plant has recently been completed. The analysis provides a unique perspective on the safety of UF{sub 6} handling activities. The estimated release frequencies provide an understanding of current risks, and the examination of individual contributors yields a ranking of important plant features and operations. Aside from the probabilistic results, however, there is an even more important benefit derived from a systematic modeling of all operations. The integrated approach employed in the analysis allows the interrelationships among the equipment and the required operations to be explored in depth. This paper summarizes the methods used in the study and provides an overview of some of the technical insights that were obtained. Specific areas of possible improvement in operations are described.

  3. Means-ends and whole-part traceability analysis of safety requirements Jang-Soo Lee a,*, Vikash Katta b

    E-Print Network [OSTI]

    Jee, Eunkyoung

    . Most of the safety-critical systems in nuclear power plants and airplanes for example, have this typeMeans-ends and whole-part traceability analysis of safety requirements Jang-Soo Lee a,*, Vikash Katta b , Eun-Kyoung Jee c , Christian Raspotnig b a Korea Atomic Energy Research Institute, Daejeon

  4. An effective technique for the software requirements analysis of NPP safety-critical systems, based on software inspection, requirements

    E-Print Network [OSTI]

    &V) is therefore emphasized for nuclear safety. Inspection is widely believed to be an effective techniqueAn effective technique for the software requirements analysis of NPP safety-critical systems, based Seonga , Junbeom Yoob , Sung Deok Chab , Yeong Jae Yooc,1 a Department of Nuclear and Quantum Engineering

  5. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, New Mexico 87110 (United States)); Voss, S.S. (Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)); Haskin, E. (Department of Chemical and Nuclear Engineering Department, Institute for Nuclear Power Studies, University of New Mexico, Albuquerque, New Mexico 87110 (United States))

    1993-01-10T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the U.S. with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  6. Safety analysis report for packaging, onsite, long-length contaminated equipment transport system

    SciTech Connect (OSTI)

    McCormick, W.A.

    1997-05-09T23:59:59.000Z

    This safety analysis report for packaging describes the components of the long-length contaminated equipment (LLCE) transport system (TS) and provides the analyses, evaluations, and associated operational controls necessary for the safe use of the LLCE TS on the Hanford Site. The LLCE TS will provide a standardized, comprehensive approach for the disposal of approximately 98% of LLCE scheduled to be removed from the 200 Area waste tanks.

  7. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  8. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  9. Text Retrieval from Document Images based on Word Shape Analysis Chew Lim Tan, Weihua Huang, Sam Yuan Sung, Zhaohui Yu and Yi Xu

    E-Print Network [OSTI]

    Tan, Chew Lim

    Text Retrieval from Document Images based on Word Shape Analysis Chew Lim Tan, Weihua Huang, Sam, Singapore 117543 Abstract In this paper, we propose a method of text retrieval from document images using a similarity measure based on word shape analysis. We directly extract image features instead of using optical

  10. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  11. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    SciTech Connect (OSTI)

    KOZLOWSKI, S.D.

    2007-05-30T23:59:59.000Z

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below.

  12. CRITICALITY SAFETY CONTROLS AND THE SAFETY BASIS AT PFP

    SciTech Connect (OSTI)

    Kessler, S

    2009-04-21T23:59:59.000Z

    With the implementation of DOE Order 420.1B, Facility Safety, and DOE-STD-3007-2007, 'Guidelines for Preparing Criticality Safety Evaluations at Department of Energy Non-Reactor Nuclear Facilities', a new requirement was imposed that all criticality safety controls be evaluated for inclusion in the facility Documented Safety Analysis (DSA) and that the evaluation process be documented in the site Criticality Safety Program Description Document (CSPDD). At the Hanford site in Washington State the CSPDD, HNF-31695, 'General Description of the FH Criticality Safety Program', requires each facility develop a linking document called a Criticality Control Review (CCR) to document performance of these evaluations. Chapter 5, Appendix 5B of HNF-7098, Criticality Safety Program, provided an example of a format for a CCR that could be used in lieu of each facility developing its own CCR. Since the Plutonium Finishing Plant (PFP) is presently undergoing Deactivation and Decommissioning (D&D), new procedures are being developed for cleanout of equipment and systems that have not been operated in years. Existing Criticality Safety Evaluations (CSE) are revised, or new ones written, to develop the controls required to support D&D activities. Other Hanford facilities, including PFP, had difficulty using the basic CCR out of HNF-7098 when first implemented. Interpretation of the new guidelines indicated that many of the controls needed to be elevated to TSR level controls. Criterion 2 of the standard, requiring that the consequence of a criticality be examined for establishing the classification of a control, was not addressed. Upon in-depth review by PFP Criticality Safety staff, it was not clear that the programmatic interpretation of criterion 8C could be applied at PFP. Therefore, the PFP Criticality Safety staff decided to write their own CCR. The PFP CCR provides additional guidance for the evaluation team to use by clarifying the evaluation criteria in DOE-STD-3007-2007. In reviewing documents used in classifying controls for Nuclear Safety, it was noted that DOE-HDBK-1188, 'Glossary of Environment, Health, and Safety Terms', defines an Administrative Control (AC) in terms that are different than typically used in Criticality Safety. As part of this CCR, a new term, Criticality Administrative Control (CAC) was defined to clarify the difference between an AC used for criticality safety and an AC used for nuclear safety. In Nuclear Safety terms, an AC is a provision relating to organization and management, procedures, recordkeeping, assessment, and reporting necessary to ensure safe operation of a facility. A CAC was defined as an administrative control derived in a criticality safety analysis that is implemented to ensure double contingency. According to criterion 2 of Section IV, 'Linkage to the Documented Safety Analysis', of DOESTD-3007-2007, the consequence of a criticality should be examined for the purposes of classifying the significance of a control or component. HNF-PRO-700, 'Safety Basis Development', provides control selection criteria based on consequence and risk that may be used in the development of a Criticality Safety Evaluation (CSE) to establish the classification of a component as a design feature, as safety class or safety significant, i.e., an Engineered Safety Feature (ESF), or as equipment important to safety; or merely provides defense-in-depth. Similar logic is applied to the CACs. Criterion 8C of DOE-STD-3007-2007, as written, added to the confusion of using the basic CCR from HNF-7098. The PFP CCR attempts to clarify this criterion by revising it to say 'Programmatic commitments or general references to control philosophy (e.g., mass control or spacing control or concentration control as an overall control strategy for the process without specific quantification of individual limits) is included in the PFP DSA'. Table 1 shows the PFP methodology for evaluating CACs. This evaluation process has been in use since February of 2008 and has proven to be simple and effective. Each control identified i

  13. Flammable Gas Refined Safety Analysis Tool Software Verification and Validation Report for Resolve Version 2.5

    SciTech Connect (OSTI)

    BRATZEL, D.R.

    2000-09-28T23:59:59.000Z

    The purpose of this report is to document all software verification and validation activities, results, and findings related to the development of Resolve Version 2.5 for the analysis of flammable gas accidents in Hanford Site waste tanks.

  14. SOS8520 Organizational perspectives on safety conference of The Society for Risk Analysis Europe (SRAE) will be held June 17th

    E-Print Network [OSTI]

    Malinnikova, Eugenia

    SOS8520 Organizational perspectives on safety The 22nd conference of The Society for Risk Analysis (June 20th ­ 21st ) focusing on Organizational perspectives on safety The primary target group

  15. UNCLASSIFIHED DEFENSE DOCUMENTATION CENTER

    E-Print Network [OSTI]

    Block, Marco

    UNCLASSIFIHED AD 463473 DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION .... John Barton Head OR Analysis Group R. H. Krolick Manager Applied Science Laboratory Prepared for the .J

  16. Supervisors` orientation to occupational safety in DOE

    SciTech Connect (OSTI)

    NONE

    1993-10-01T23:59:59.000Z

    This document presents OSHA regulations, safety and health guidelines pertinent to DOE and the first-line supervisor.

  17. Topaz II preliminary safety assessment

    SciTech Connect (OSTI)

    Marshall, A.C. (Sandia National Labs., Albuquerque, NM (United States)); Standley, V. (Air Force Phillips Laboratory, Albuquerque, NM (United States)); Voss, S.S. (Los Alamos National Lab., NM (United States)); Haskin, E. (New Mexico Univ., Albuquerque, NM (United States). Dept. of Chemical and Nuclear Engineering)

    1992-01-01T23:59:59.000Z

    The Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz 11 space nuclear power system. A preliminary safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safely assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary safety assessment included a top level event tree, neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, and analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment, it appears that it will be possible to safely launch the Topaz II system in the US with some possible system modifications. The principal system modifications will probably include design changes to preclude water flooded criticality and to assure intact reentry.

  18. Technical Review Report for the Safety Analysis Report for Packaging Model 9977 S-SARP-G-00001 Revision 2

    SciTech Connect (OSTI)

    DiSabatino, A; Hafner, R; West, M

    2007-10-04T23:59:59.000Z

    This Technical Review Report (TRR) summarizes the review findings for the Safety Analysis Report for Packaging (SARP) for the Model 9977 B(M)F-96 shipping container. The content analyzed for this submittal is Content Envelope C.1, Heat Sources, in assemblies of Radioisotope Thermoelectric Generators or food-pack cans. The SARP under review, i.e., S-SARP-G-00001, Revision 2 (August 2007), was originally referred to as the General Purpose Fissile Material Package. The review presented in this TRR was performed using the methods outlined in Revision 3 of the Department of Energy's (DOE's) Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's, Regulatory Guide 7.9, i.e., Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9977 Package is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. The Model 9977 Package design includes a single, 6-inch diameter, stainless steel pressure vessel containment system (i.e., the 6CV) that was designed and fabricated in accordance with Section III, Subsection NB, of the American Society of Mechanical Engineers Boiler & Pressure Vessel Code. The earlier package designs, i.e., the Model 9965, 9966, 9967 and 9968 Packages, were originally designed and certified in the 1980s. In the 1990s, updated package designs that incorporated design features consistent with new safety requirements, based on International Atomic Energy Agency guidelines, were proposed. The updated package designs were the Model 9972, 9973, 9974 and 9975 Packages, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. Differences between the Model 9975 Package and the Model 9977 Package include: (1) The lead shield present in the Model 9975 Package is absent in the Model 9977 Package; (2) The Model 9975 Package has eight allowable contents, while the Model 9977 Package has a single allowable content. (3) The 6CV of the Model 9977 Package is similar in design to the outer Containment Vessel of the Model 9975 Package that also incorporates a 5-inch Containment Vessel as the inner Containment Vessel. (4) The Model 9975 Package uses a Celotex{reg_sign}-based impact limiter while the Model 9977 Package uses Last-A-Foam{reg_sign}, a polyurethane foam, for the impact limiter. (5) The Model 9975 Package has two Containment Vessels, while the Model 9977 Package has a single Containment Vessel.

  19. Fusion integral experiments and analysis and the determination of design safety factors - I: Methodology

    SciTech Connect (OSTI)

    Youssef, M.Z.; Kumar, A.; Abdou, M.A. [Univ. of California, Los Angeles, CA (United States); Oyama, Y.; Maekawa, H. [Japan Atomic Energy Research Inst., Ibaraki (Japan)

    1995-09-01T23:59:59.000Z

    The role of the neutronics experimentation and analysis in fusion neutronics research and development programs is discussed. A new methodology was developed to arrive at estimates to design safety factors based on the experimental and analytical results from design-oriented integral experiments. In this methodology, and for a particular nuclear response, R, a normalized density function (NDF) is constructed from the prediction uncertainties, and their associated standard deviations, as found in the various integral experiments where that response, R, is measured. Important statistical parameters are derived from the NDF, such as the global mean prediction uncertainty, and the possible spread around it. The method of deriving safety factors from many possible NDFs based on various calculational and measuring methods (among other variants) is also described. Associated with each safety factor is a confidence level, designers may choose to have, that the calculated response, R, will not exceed (or will not fall below) the actual measured value. An illustrative example is given on how to construct the NDFs. The methodology is applied in two areas, namely the line-integrated tritium production rate and bulk shielding integral experiments. Conditions under which these factors could be derived and the validity of the method are discussed. 72 refs., 17 figs., 4 tabs.

  20. Gas-Cooled Fast Breeder Reactor Preliminary Safety Information Document, Amendment 10. GCFR residual heat removal system criteria, design, and performance

    SciTech Connect (OSTI)

    Not Available

    1980-09-01T23:59:59.000Z

    This report presents a comprehensive set of safety design bases to support the conceptual design of the gas-cooled fast breeder reactor (GCFR) residual heat removal (RHR) systems. The report is structured to enable the Nuclear Regulatory Commission (NRC) to review and comment in the licensability of these design bases. This report also presents information concerning a specific plant design and its performance as an auxiliary part to assist the NRC in evaluating the safety design bases.

  1. Breach and safety analysis of spills over water from large liquefied natural gas carriers.

    SciTech Connect (OSTI)

    Hightower, Marion Michael; Luketa-Hanlin, Anay Josephine; Attaway, Stephen W.

    2008-05-01T23:59:59.000Z

    In 2004, at the request of the Department of Energy, Sandia National Laboratories (Sandia) prepared a report, ''Guidance on the Risk and Safety Analysis of Large Liquefied Natural Gas (LNG) Spills Over Water''. That report provided framework for assessing hazards and identifying approaches to minimize the consequences to people and property from an LNG spill over water. The report also presented the general scale of possible hazards from a spill from 125,000 m3 o 150,000 m3 class LNG carriers, at the time the most common LNG carrier capacity.

  2. Safety Analysis Report for Packaging: The unirradiated fuel shipping container USA/9853/AF

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    The HFBR Unirradiated Fuel Shipping Container was designed and fabricated at the Oak Ridge National Laboratory in 1978 for the transport of fuel for the High Flux Beam Reactor (HFBR) for Brookhaven National Laboratory. The package has been evaluated analytically, as well as the comparison to tests on similar packages, to demonstrate compliance with the applicable regulations governing packages in which radioactive and fissile materials are transported. The contents of this Safety Analysis Report for Packaging (SARP) are based on Regulatory Guide 7.9 (proposed Revision 2 - May 1986), 10 CFR Part 71, DOE Order 1540.2, DOE Order 5480.3, and 49 CFR Part 173.

  3. Preliminary Safety Analysis Report (PSAR), The NSLS 200 MeV Linear Electron Accelerator

    SciTech Connect (OSTI)

    Blumberg, L.N.; Ackerman, A.I.; Dickinson, T.; Heese, R.N.; Larson, R.A.; Neuls, C.W.; Pjerov, S.; Sheehan, J.F.

    1993-06-15T23:59:59.000Z

    The radiological, fire and electrical hazards posed by a 200 MeV electron Linear Accelerator, which the NSLS Department will install and commission within a newly assembled structure, are addressed in this Preliminary Safety Analysis Report. Although it is clear that this accelerator is intended to be the injector for a future experimental facility, we address only the Linac in the present PSAR since neither the final design nor the operating characteristics of the experimental facility are known at the present time. The fire detection and control system to be installed in the building is judged to be completely adequate in terms of the marginal hazard presented - no combustible materials other than the usual cabling associated with such a facility have been identified. Likewise, electrical hazards associated with power supplies for the beam transport magnets and accelerator components such as the accelerator klystrons and electron gun are classified as marginal in terms of potential personnel injury, cost of equipment lost, program downtime and public impact perceptions as defined in the BNL Environmental Safety and Health Manual and the probability of occurrence is deemed to be remote. No unusual features have been identified for the power supplies or electrical distribution system, and normal and customary electrical safety standards as practiced throughout the NSLS complex and the Laboratory are specified in this report. The radiation safety hazards are similarly judged to be marginal in terms of probability of occurrence and potential injury consequences since, for the low intensity operation proposed - a factor of 25 less than the maximum Linac capability specified by the vendor - the average beam power is only 0.4 watts. The shielding specifications given in this report will give adequate protection to both the general public and nonradiation workers in areas adjacent to the building as well as radiation workers within the controlled access building.

  4. Cold Vacuum Drying (CVD) Facility Hazards Analysis Report

    SciTech Connect (OSTI)

    CROWE, R.D.

    2000-08-07T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

  5. Electronic document management system analysis report and system plan for the Environmental Restoration Program

    SciTech Connect (OSTI)

    Frappaolo, C. [Delphi Consulting Group, Boston, MA (United States)

    1995-09-01T23:59:59.000Z

    Lockheed Martin Energy Systems, Inc. (LMES) has established and maintains Document Management Centers (DMCs) to support Environmental Restoration Program (ER) activities undertaken at three Oak Ridge facilities: Oak Ridge National Laboratory, Oak Ridge K-25 Site, Oak Ridge Y-12 Plant; and two sister sites: Portsmouth Gaseous Diffusion Plant in Portsmouth, Ohio, and Paducah Gaseous Diffusion Plant in Paducah, Kentucky. The role of the DMCs is to receive, store, retrieve, and properly dispose of records. In an effort to make the DMCs run more efficiently and to more proactively manage the records` life cycles from cradle to grave, ER has decided to investigate ways in which Electronic Document Management System (EDMS) technologies can be used to redefine the DMCs and their related processes. Specific goals of this study are tightening control over the ER documents, establishing and enforcing record creation and retention procedures, speeding up access to information, and increasing the accessibility of information. A working pilot of the solution is desired within the next six months. Based on a series of interviews conducted with personnel from each of the DMCs, key management, and individuals representing related projects, it is recommended that ER utilize document management, full-text retrieval, and workflow technologies to improve and automate records management for the ER program. A phased approach to solution implementation is suggested starting with the deployment of an automated storage and retrieval system at Portsmouth. This should be followed with a roll out of the system to the other DMCs, the deployment of a workflow-enabled authoring system at Portsmouth, and a subsequent roll out of this authoring system to the other sites.

  6. Texas Emissions and Energy Calculator (eCALC): Documentation of Analysis Methods, Report to the TCEQ 

    E-Print Network [OSTI]

    Haberl, J. S.; Gilman, D.; Culp, C.

    2004-01-01T23:59:59.000Z

    )....................................................................................... 90 Figure 51: Solar Photovoltaic Analysis Flowchart....................................................................................... 92 Figure 52: Solar Photovoltaic Analysis Flowchart (Figure 2: Renewable Energy Production...). .................. 95 Figure 53: Solar Photovoltaic Analysis Flowchart (Figure 3: Output from IMT)........................................ 95 Figure 54: Solar Photovoltaic Analysis Flowchart (Figure 4: Annual and Peak Day Energy Savings). ...... 95 Figure 55: Solar...

  7. Los Alamos National Laboratory corregated metal pipe saw facility preliminary safety analysis report. Volume I

    SciTech Connect (OSTI)

    NONE

    1990-09-19T23:59:59.000Z

    This Preliminary Safety Analysis Report addresses site assessment, facility design and construction, and design operation of the processing systems in the Corrugated Metal Pipe Saw Facility with respect to normal and abnormal conditions. Potential hazards are identified, credible accidents relative to the operation of the facility and the process systems are analyzed, and the consequences of postulated accidents are presented. The risk associated with normal operations, abnormal operations, and natural phenomena are analyzed. The accident analysis presented shows that the impact of the facility will be acceptable for all foreseeable normal and abnormal conditions of operation. Specifically, under normal conditions the facility will have impacts within the limits posted by applicable DOE guidelines, and in accident conditions the facility will similarly meet or exceed the requirements of all applicable standards. 16 figs., 6 tabs.

  8. Probabilistic risk analysis toward cost-effective 3S (safety, safeguards, security) implementation

    SciTech Connect (OSTI)

    Suzuki, Mitsutoshi; Mochiji, Toshiro [Department of Science and Technology for Nuclear Material Management, Japan Atomic Energy Agency, 2-4 Shirane, Shirakata, Tokai-mura, Naka-gun, Ibaraki 319-1193 (Japan)

    2014-09-30T23:59:59.000Z

    Probabilistic Risk Analysis (PRA) has been introduced for several decades in safety and nuclear advanced countries have already used this methodology in their own regulatory systems. However, PRA has not been developed in safeguards and security so far because of inherent difficulties in intentional and malicious acts. In this paper, probabilistic proliferation and risk analysis based on random process is applied to hypothetical reprocessing process and physical protection system in nuclear reactor with the Markov model that was originally developed by the Proliferation Resistance and Physical Protection Working Group (PRPPWG) in Generation IV International Framework (GIF). Through the challenge to quantify the security risk with a frequency in this model, integrated risk notion among 3S to pursue the cost-effective installation of those countermeasures is discussed in a heroic manner.

  9. Safety analysis report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory. Volume 2, Appendices

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P.; Moskowitz, P.D.; Fthenakis, V.M.

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMS). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance. This document contains the appendices to the NREL safety analysis report.

  10. Plutonium Finishing Plant safety evaluation report

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) previously known as the Plutonium Process and Storage Facility, or Z-Plant, was built and put into operation in 1949. Since 1949 PFP has been used for various processing missions, including plutonium purification, oxide production, metal production, parts fabrication, plutonium recovery, and the recovery of americium (Am-241). The PFP has also been used for receipt and large scale storage of plutonium scrap and product materials. The PFP Final Safety Analysis Report (FSAR) was prepared by WHC to document the hazards associated with the facility, present safety analyses of potential accident scenarios, and demonstrate the adequacy of safety class structures, systems, and components (SSCs) and operational safety requirements (OSRs) necessary to eliminate, control, or mitigate the identified hazards. Documented in this Safety Evaluation Report (SER) is DOE`s independent review and evaluation of the PFP FSAR and the basis for approval of the PFP FSAR. The evaluation is presented in a format that parallels the format of the PFP FSAR. As an aid to the reactor, a list of acronyms has been included at the beginning of this report. The DOE review concluded that the risks associated with conducting plutonium handling, processing, and storage operations within PFP facilities, as described in the PFP FSAR, are acceptable, since the accident safety analyses associated with these activities meet the WHC risk acceptance guidelines and DOE safety goals in SEN-35-91.

  11. Technical Review Report for the Model 9978-96 Package Safety Analysis Report for Packaging (S-SARP-G-00002, Revision 1, March 2009)

    SciTech Connect (OSTI)

    West, M

    2009-03-06T23:59:59.000Z

    This Technical Review Report (TRR) documents the review, performed by Lawrence Livermore National Laboratory (LLNL) Staff, at the request of the Department of Energy (DOE), on the 'Safety Analysis Report for Packaging (SARP), Model 9978 B(M)F-96', Revision 1, March 2009 (S-SARP-G-00002). The Model 9978 Package complies with 10 CFR 71, and with 'Regulations for the Safe Transport of Radioactive Material-1996 Edition (As Amended, 2000)-Safety Requirements', International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1. The Model 9978 Packaging is designed, analyzed, fabricated, and tested in accordance with Section III of the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME B&PVC). The review presented in this TRR was performed using the methods outlined in Revision 3 of the DOE's 'Packaging Review Guide (PRG) for Reviewing Safety Analysis Reports for Packages'. The format of the SARP follows that specified in Revision 2 of the Nuclear Regulatory Commission's Regulatory Guide 7.9, i.e., 'Standard Format and Content of Part 71 Applications for Approval of Packages for Radioactive Material'. Although the two documents are similar in their content, they are not identical. Formatting differences have been noted in this TRR, where appropriate. The Model 9978 Packaging is a single containment package, using a 5-inch containment vessel (5CV). It uses a nominal 35-gallon drum package design. In comparison, the Model 9977 Packaging uses a 6-inch containment vessel (6CV). The Model 9977 and Model 9978 Packagings were developed concurrently, and they were referred to as the General Purpose Fissile Material Package, Version 1 (GPFP). Both packagings use General Plastics FR-3716 polyurethane foam as insulation and as impact limiters. The 5CV is used as the Primary Containment Vessel (PCV) in the Model 9975-96 Packaging. The Model 9975-96 Packaging also has the 6CV as its Secondary Containment Vessel (SCV). In comparison, the Model 9975 Packagings use Celotex{trademark} for insulation and as impact limiters. To provide a historical perspective, it is noted that the Model 9975-96 Packaging is a 35-gallon drum package design that has evolved from a family of packages designed by DOE contractors at the Savannah River Site. Earlier package designs, i.e., the Model 9965, the Model 9966, the Model 9967, and the Model 9968 Packagings, were originally designed and certified in the early 1980s. In the 1990s, updated package designs that incorporated design features consistent with the then-newer safety requirements were proposed. The updated package designs at the time were the Model 9972, the Model 9973, the Model 9974, and the Model 9975 Packagings, respectively. The Model 9975 Package was certified by the Packaging Certification Program, under the Office of Safety Management and Operations. The Model 9978 Package has six Content Envelopes: C.1 ({sup 238}Pu Heat Sources), C.2 ( Pu/U Metals), C.3 (Pu/U Oxides, Reserved), C.4 (U Metal or Alloy), C.5 (U Compounds), and C.6 (Samples and Sources). Per 10 CFR 71.59 (Code of Federal Regulations), the value of N is 50 for the Model 9978 Package leading to a Criticality Safety Index (CSI) of 1.0. The Transport Index (TI), based on dose rate, is calculated to be a maximum of 4.1.

  12. Exploration of high-dimensional scalar function for nuclear reactor safety analysis and visualization

    SciTech Connect (OSTI)

    Maljovec, D.; Wang, B.; Pascucci, V. [Scientific Computing and Imaging Institute, University of Utah (United States); Bremer, P. T. [Lawrence Livermore National Laboratory (United States); Pernice, M.; Mandelli, D.; Nourgaliev, R. [Idaho National Laboratory (United States)

    2013-07-01T23:59:59.000Z

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user's guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving data from a nuclear reactor safety simulation. (authors)

  13. Exploration of High-Dimensional Scalar Function for Nuclear Reactor Safety Analysis and Visualization

    SciTech Connect (OSTI)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Michael Pernice; Robert Nourgaliev

    2013-05-01T23:59:59.000Z

    The next generation of methodologies for nuclear reactor Probabilistic Risk Assessment (PRA) explicitly accounts for the time element in modeling the probabilistic system evolution and uses numerical simulation tools to account for possible dependencies between failure events. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. A challenge of dynamic PRA algorithms is the large amount of data they produce which may be difficult to visualize and analyze in order to extract useful information. We present a software tool that is designed to address these goals. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations. We provide a user’s guide to our software tool by highlighting its analysis and visualization capabilities, along with a use case involving dataset from a nuclear reactor safety simulation.

  14. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  15. Introduction to the nuclear criticality safety evaluation of facility X-705, Portsmouth Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Sheaffer, M.K.; Keeton, S.C.

    1993-08-16T23:59:59.000Z

    This report is the first in a series of documents that will evaluate nuclear criticality safety in the Decontamination and Recovery Facility, X-705, Portsmouth Gaseous Diffusion Plant. It provides an overview of the facility, categorizes its functions for future analysis, reviews existing NCS documentation, and explains the follow-on effort planned for X-705. A detailed breakdown of systems, subsystems, and operational areas is presented and cross-referenced to existing NCS documentation.

  16. Radiological Safety Analysis Computer (RSAC) Program Version 7.2 Users’ Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2010-10-01T23:59:59.000Z

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.2 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  17. Radiological Safety Analysis Computer (RSAC) Program Version 7.0 Users’ Manual

    SciTech Connect (OSTI)

    Dr. Bradley J Schrader

    2009-03-01T23:59:59.000Z

    The Radiological Safety Analysis Computer (RSAC) Program Version 7.0 (RSAC-7) is the newest version of the RSAC legacy code. It calculates the consequences of a release of radionuclides to the atmosphere. A user can generate a fission product inventory from either reactor operating history or a nuclear criticality event. RSAC-7 models the effects of high-efficiency particulate air filters or other cleanup systems and calculates the decay and ingrowth during transport through processes, facilities, and the environment. Doses are calculated for inhalation, air immersion, ground surface, ingestion, and cloud gamma pathways. RSAC-7 can be used as a tool to evaluate accident conditions in emergency response scenarios, radiological sabotage events and to evaluate safety basis accident consequences. This users’ manual contains the mathematical models and operating instructions for RSAC-7. Instructions, screens, and examples are provided to guide the user through the functions provided by RSAC-7. This program was designed for users who are familiar with radiological dose assessment methods.

  18. Simulation of accidental UF/sub 6/ releases in support of the safety analysis effort

    SciTech Connect (OSTI)

    Just, R.A.

    1986-01-01T23:59:59.000Z

    The safety analysis of the US uranium enrichment facilities requires that postulated accidental releases of UF/sub 6/ be simulated. In order to predict the human health consequences of a postulated UF/sub 6/ release, two types of information are needed: (1) predicted toxicant concentrations and exposure durations at pertinent locations (calculated by a dispersion model), and (2) toxicity data which support the assessment of the human health consequences of a known exposure to a mixture of UF/sub 6/ and UF/sub 6/ hydrolysis products. This report describes the development of a Gaussian dispersion model for simulating UF/sub 6/ dispersion and the plans for developing a puff dispersion model.

  19. The Front Lines of Patient Safety

    E-Print Network [OSTI]

    Soloveichik, David

    patient safety · Incident Reporting · Root Cause Analysis · FMEA · Culture of Patient Safety Survey

  20. Guidance on risk analysis and safety implications of a large liquefied natural gas (LNG) spill over water.

    SciTech Connect (OSTI)

    Wellman, Gerald William; Melof, Brian Matthew; Luketa-Hanlin, Anay Josephine; Hightower, Marion Michael; Covan, John Morgan; Gritzo, Louis Alan; Irwin, Michael James; Kaneshige, Michael Jiro; Morrow, Charles W.

    2004-12-01T23:59:59.000Z

    While recognized standards exist for the systematic safety analysis of potential spills or releases from LNG (Liquefied Natural Gas) storage terminals and facilities on land, no equivalent set of standards or guidance exists for the evaluation of the safety or consequences from LNG spills over water. Heightened security awareness and energy surety issues have increased industry's and the public's attention to these activities. The report reviews several existing studies of LNG spills with respect to their assumptions, inputs, models, and experimental data. Based on this review and further analysis, the report provides guidance on the appropriateness of models, assumptions, and risk management to address public safety and property relative to a potential LNG spill over water.

  1. Safety Basis Report

    SciTech Connect (OSTI)

    R.J. Garrett

    2002-01-14T23:59:59.000Z

    As part of the internal Integrated Safety Management Assessment verification process, it was determined that there was a lack of documentation that summarizes the safety basis of the current Yucca Mountain Project (YMP) site characterization activities. It was noted that a safety basis would make it possible to establish a technically justifiable graded approach to the implementation of the requirements identified in the Standards/Requirements Identification Document. The Standards/Requirements Identification Documents commit a facility to compliance with specific requirements and, together with the hazard baseline documentation, provide a technical basis for ensuring that the public and workers are protected. This Safety Basis Report has been developed to establish and document the safety basis of the current site characterization activities, establish and document the hazard baseline, and provide the technical basis for identifying structures, systems, and components (SSCs) that perform functions necessary to protect the public, the worker, and the environment from hazards unique to the YMP site characterization activities. This technical basis for identifying SSCs serves as a grading process for the implementation of programs such as Conduct of Operations (DOE Order 5480.19) and the Suspect/Counterfeit Items Program. In addition, this report provides a consolidated summary of the hazards analyses processes developed to support the design, construction, and operation of the YMP site characterization facilities and, therefore, provides a tool for evaluating the safety impacts of changes to the design and operation of the YMP site characterization activities.

  2. Exploratory Nuclear Reactor Safety Analysis and Visualization via Integrated Topological and Geometric Techniques

    SciTech Connect (OSTI)

    Dan Maljovec; Bei Wang; Valerio Pascucci; Peer-Timo Bremer; Diego Mandelli; Michael Pernice; Robert Nourgaliev

    2013-10-01T23:59:59.000Z

    A recent trend in the nuclear power engineering field is the implementation of heavily computational and time consuming algorithms and codes for both design and safety analysis. In particular, the new generation of system analysis codes aim to embrace several phenomena such as thermo-hydraulic, structural behavior, and system dynamics, as well as uncertainty quantification and sensitivity analyses. The use of dynamic probabilistic risk assessment (PRA) methodologies allows a systematic approach to uncertainty quantification. Dynamic methodologies in PRA account for possible coupling between triggered or stochastic events through explicit consideration of the time element in system evolution, often through the use of dynamic system models (simulators). They are usually needed when the system has more than one failure mode, control loops, and/or hardware/process/software/human interaction. Dynamic methodologies are also capable of modeling the consequences of epistemic and aleatory uncertainties. The Monte-Carlo (MC) and the Dynamic Event Tree (DET) approaches belong to this new class of dynamic PRA methodologies. The major challenges in using MC and DET methodologies (as well as other dynamic methodologies) are the heavier computational and memory requirements compared to the classical ET analysis. This is due to the fact that each branch generated can contain time evolutions of a large number of variables (about 50,000 data channels are typically present in RELAP) and a large number of scenarios can be generated from a single initiating event (possibly on the order of hundreds or even thousands). Such large amounts of information are usually very difficult to organize in order to identify the main trends in scenario evolutions and the main risk contributors for each initiating event. This report aims to improve Dynamic PRA methodologies by tackling the two challenges mentioned above using: 1) adaptive sampling techniques to reduce computational cost of the analysis and 2) topology-based methodologies to interactively visualize multidimensional data and extract risk-informed insights. Regarding item 1) we employ learning algorithms that aim to infer/predict simulation outcome and decide the coordinate in the input space of the next sample that maximize the amount of information that can be gained from it. Such methodologies can be used to both explore and exploit the input space. The later one is especially used for safety analysis scopes to focus samples along the limit surface, i.e. the boundaries in the input space between system failure and system success. Regarding item 2) we present a software tool that is designed to analyze multi-dimensional data. We model a large-scale nuclear simulation dataset as a high-dimensional scalar function defined over a discrete sample of the domain. First, we provide structural analysis of such a function at multiple scales and provide insight into the relationship between the input parameters and the output. Second, we enable exploratory analysis for users, where we help the users to differentiate features from noise through multi-scale analysis on an interactive platform, based on domain knowledge and data characterization. Our analysis is performed by exploiting the topological and geometric properties of the domain, building statistical models based on its topological segmentations and providing interactive visual interfaces to facilitate such explorations.

  3. Methodology assessment and recommendations for the Mars science laboratory launch safety analysis.

    SciTech Connect (OSTI)

    Sturgis, Beverly Rainwater; Metzinger, Kurt Evan; Powers, Dana Auburn; Atcitty, Christopher B.; Robinson, David B; Hewson, John C.; Bixler, Nathan E.; Dodson, Brian W.; Potter, Donald L.; Kelly, John E.; MacLean, Heather J.; Bergeron, Kenneth Donald (Sala & Associates); Bessette, Gregory Carl; Lipinski, Ronald J.

    2006-09-01T23:59:59.000Z

    The Department of Energy has assigned to Sandia National Laboratories the responsibility of producing a Safety Analysis Report (SAR) for the plutonium-dioxide fueled Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) proposed to be used in the Mars Science Laboratory (MSL) mission. The National Aeronautic and Space Administration (NASA) is anticipating a launch in fall of 2009, and the SAR will play a critical role in the launch approval process. As in past safety evaluations of MMRTG missions, a wide range of potential accident conditions differing widely in probability and seventy must be considered, and the resulting risk to the public will be presented in the form of probability distribution functions of health effects in terms of latent cancer fatalities. The basic descriptions of accident cases will be provided by NASA in the MSL SAR Databook for the mission, and on the basis of these descriptions, Sandia will apply a variety of sophisticated computational simulation tools to evaluate the potential release of plutonium dioxide, its transport to human populations, and the consequent health effects. The first step in carrying out this project is to evaluate the existing computational analysis tools (computer codes) for suitability to the analysis and, when appropriate, to identify areas where modifications or improvements are warranted. The overall calculation of health risks can be divided into three levels of analysis. Level A involves detailed simulations of the interactions of the MMRTG or its components with the broad range of insults (e.g., shrapnel, blast waves, fires) posed by the various accident environments. There are a number of candidate codes for this level; they are typically high resolution computational simulation tools that capture details of each type of interaction and that can predict damage and plutonium dioxide release for a range of choices of controlling parameters. Level B utilizes these detailed results to study many thousands of possible event sequences and to build up a statistical representation of the releases for each accident case. A code to carry out this process will have to be developed or adapted from previous MMRTG missions. Finally, Level C translates the release (or ''source term'') information from Level B into public risk by applying models for atmospheric transport and the health consequences of exposure to the released plutonium dioxide. A number of candidate codes for this level of analysis are available. This report surveys the range of available codes and tools for each of these levels and makes recommendations for which choices are best for the MSL mission. It also identities areas where improvements to the codes are needed. In some cases a second tier of codes may be identified to provide supporting or clarifying insight about particular issues. The main focus of the methodology assessment is to identify a suite of computational tools that can produce a high quality SAR that can be successfully reviewed by external bodies (such as the Interagency Nuclear Safety Review Panel) on the schedule established by NASA and DOE.

  4. Integration of Safety Culture Attributes into EFCOG Work Planning...

    Energy Savers [EERE]

    Integration of Safety Culture Attributes into EFCOG Work Planning and Control Guidance Document Integration of Safety Culture Attributes into EFCOG Work Planning and Control...

  5. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    SciTech Connect (OSTI)

    NONE

    1999-03-01T23:59:59.000Z

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  6. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17T23:59:59.000Z

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  7. Plutonium Finishing Plant (PFP) Final Safety Analysis Report (FSAR) [SEC 1 THRU 11

    SciTech Connect (OSTI)

    ULLAH, M K

    2001-02-26T23:59:59.000Z

    The Plutonium Finishing Plant (PFP) is located on the US Department of Energy (DOE) Hanford Site in south central Washington State. The DOE Richland Operations (DOE-RL) Project Hanford Management Contract (PHMC) is with Fluor Hanford Inc. (FH). Westinghouse Safety Management Systems (WSMS) provides management support to the PFP facility. Since 1991, the mission of the PFP has changed from plutonium material processing to preparation for decontamination and decommissioning (D and D). The PFP is in transition between its previous mission and the proposed D and D mission. The objective of the transition is to place the facility into a stable state for long-term storage of plutonium materials before final disposition of the facility. Accordingly, this update of the Final Safety Analysis Report (FSAR) reflects the current status of the buildings, equipment, and operations during this transition. The primary product of the PFP was plutonium metal in the form of 2.2-kg, cylindrical ingots called buttoms. Plutonium nitrate was one of several chemical compounds containing plutonium that were produced as an intermediate processing product. Plutonium recovery was performed at the Plutonium Reclamation Facility (PRF) and plutonium conversion (from a nitrate form to a metal form) was performed at the Remote Mechanical C (RMC) Line as the primary processes. Plutonium oxide was also produced at the Remote Mechanical A (RMA) Line. Plutonium processed at the PFP contained both weapons-grade and fuels-grade plutonium materials. The capability existed to process both weapons-grade and fuels-grade material through the PRF and only weapons-grade material through the RMC Line although fuels-grade material was processed through the line before 1984. Amounts of these materials exist in storage throughout the facility in various residual forms left from previous years of operations.

  8. Pantex Plant final safety analysis report, Zone 4 magazines. Staging or interim storage for nuclear weapons and components: Issue D

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    This Safety Analysis Report (SAR) contains a detailed description and evaluation of the significant environmental, safety, and health (ES&H) issues associated with the operations of the Pantex Plant modified-Richmond and steel arch construction (SAC) magazines in Zone 4. It provides (1) an overall description of the magazines, the Pantex Plant, and its surroundings; (2) a systematic evaluations of the hazards that could occur as a result of the operations performed in these magazines; (3) descriptions and analyses of the adequacy of the measures taken to eliminate, control, or mitigate the identified hazards; and (4) analyses of potential accidents and their associated risks.

  9. ISV safety, processing, and starter path issues

    SciTech Connect (OSTI)

    Hilliard, D K; Kindle, C H [comps.

    1991-04-01T23:59:59.000Z

    Numerous experiments and studies related to safety concerns in the in situ vitrification (ISV) process have been conducted at Pacific Northwest Laboratory. Topics of interest include (1) combustible inclusions, (2) sealed containers, (3) radiant heat surge, (4) electrical shock, (5) general risk analysis, and (6) Pu criticality. The data and analyses are those used for the initial ISV development and subsequent improvement; the majority was performed in 1987 or earlier. The purpose of this report is to document these analyses for reference purposes; knowledge gained more recently is, or will be, incorporated in other documents. 33 refs., 1 fig., 9 tabs.

  10. Technical documentation in support of the project-specific analysis for construction and operation of the National Ignition Facility

    SciTech Connect (OSTI)

    Lazaro, M.A.; Vinikour, W. [Argonne National Lab., IL (United States). Environmental Assessment Div.; Allison, T. [Argonne National Lab., IL (United States). Decision and Information Sciences Div.] [and others

    1996-09-01T23:59:59.000Z

    This document provides information that supports or supplements the data and impact analyses presented in the National Ignition Facility (NIF) Project-Specific Analysis (PSA). The purposes of NIF are to achieve fusion ignition in the laboratory for the first time with inertial confinement fusion (ICF) technology and to conduct high- energy-density experiments ins support of national security and civilian application. NIF is an important element in the DOE`s science-based SSM Program, a key mission of which is to ensure the reliability of the nation`s enduring stockpile of nuclear weapons. NIF would also advance the knowledge of basic and applied high-energy- density science and bring the nation a large step closer to developing fusion energy for civilian use. The NIF PSA includes evaluations of the potential environmental impacts of constructing and operating the facility at one of five candidate site and for two design options.

  11. TWRS safety program plan

    SciTech Connect (OSTI)

    Calderon, L.M., Westinghouse Hanford

    1996-08-01T23:59:59.000Z

    Management of Nuclear Safety, Industrial Safety, Industrial Hygiene, and Fire Protection programs, functions, and field support resources for Tank Waste Remediation Systems (TWRS) has, until recently, been centralized in TWRS Safety, under the Emergency, Safety, and Quality organization. Industrial hygiene technician services were also provided to support operational needs related to safety basis compliance. Due to WHC decentralization of safety and reengineering efforts in West Tank Farms, staffing and safety responsibilities have been transferred to the facilities. Under the new structure, safety personnel for TWRS are assigned directly to East Tank Farms, West Tank Farms, and a core Safety Group in TWRS Engineering. The Characterization Project Operations (CPO) safety organization will remain in tact as it currently exists. Personnel assigned to East Tank Farms, West Tank Farms, and CPO will perform facility-specific or project-specific duties and provide field implementation of programs. Those assigned to the core group will focus on activities having a TWRS-wide or programmatic focus. Hanford-wide activities will be the responsibility of the Safety Center of Expertise. In order to ensure an effective and consistent safety program for TWRS under the new organization program functions, goals, organizational structure, roles, responsibilities, and path forward must be clearly established. The purpose of the TWRS Safety Program Plan is to define the overall safety program, responsibilities, relationships, and communication linkages for safety personnel under the new structure. In addition, issues associated with reorganization transition are addressed, including training, project ownership, records management, and dissemination of equipment. For the purpose of this document ``TWRS Safety`` refers to all safety professionals and technicians (Industrial Safety, Industrial Hygiene, Fire Protection, and Nuclear Safety) within the TWRS organization, regardless of their location in the organization.

  12. Cost-Effectiveness Analysis of the 2009 and 2012 IECC Residential Provisions – Technical Support Document

    SciTech Connect (OSTI)

    Mendon, Vrushali V.; Lucas, Robert G.; Goel, Supriya

    2012-12-04T23:59:59.000Z

    This analysis was conducted by Pacific Northwest National Laboratory (PNNL) in support of the U.S. Department of Energy’s (DOE) Building Energy Codes Program (BECP). DOE supports the development and adoption of efficient residential and commercial building energy codes. These codes set the minimum requirements for energy efficient building design and construction and ensure energy savings on a national level. This analysis focuses on one and two family dwellings, townhomes, and low-rise multifamily residential buildings. For these buildings, the basis of the energy codes is the International Energy Conservation Code (IECC). This report does not address commercial and high-rise residential buildings, which reference ANSI/ASHRAE/IES Standard 90.1.

  13. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/0-4266-2 2. Government Accession No. 3 significant changes in traffic operation and safety. A review of the design standard documents shows Statement No restrictions. This document is available to the public through the National Technical

  14. Technical Report Documentation Page 1. Report No.

    E-Print Network [OSTI]

    Texas at Austin, University of

    Technical Report Documentation Page 1. Report No. FHWA/TX-04/5-1873-01-1 2. Government Accession No to improve safety and facilitate traffic flow. Finally, they documented these design considerations. This document is available to the public through the National Technical Information Service, Springfield

  15. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1996-10-24T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  16. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-11-16T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation.

  17. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    POWERS, T.B.

    1999-05-11T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

  18. A Comparison of the Safety Analysis Process and the Generation IV Proliferation Resistance/Physical Protection Assessment Methodology

    SciTech Connect (OSTI)

    T. A. Bjornard; M. D. Zentner

    2006-05-01T23:59:59.000Z

    The Generation IV International Forum (GIF) is a vehicle for the cooperative international development of future nuclear energy systems. The Generation IV program has established primary objectives in the areas of sustainability, economics, safety and reliability, and Proliferation Resistance and Physical Protection (PR&PP). In order to help meet the latter objective a program was launched in December 2002 to develop a rigorous means to assess nuclear energy systems with respect to PR&PP. The study of Physical Protection of a facility is a relatively well established methodology, but an approach to evaluate the Proliferation Resistance of a nuclear fuel cycle is not. This paper will examine the Proliferation Resistance (PR) evaluation methodology being developed by the PR group, which is largely a new approach and compare it to generally accepted nuclear facility safety evaluation methodologies. Safety evaluation methods have been the subjects of decades of development and use. Further, safety design and analysis is fairly broadly understood, as well as being the subject of federally mandated procedures and requirements. It is therefore extremely instructive to compare and contrast the proposed new PR evaluation methodology process with that used in safety analysis. By so doing, instructive and useful conclusions can be derived from the comparison that will help to strengthen the PR methodological approach as it is developed further. From the comparison made in this paper it is evident that there are very strong parallels between the two processes. Most importantly, it is clear that the proliferation resistance aspects of nuclear energy systems are best considered beginning at the very outset of the design process. Only in this way can the designer identify and cost effectively incorporate intrinsic features that might be difficult to implement at some later stage. Also, just like safety, the process to implement proliferation resistance should be a dynamic, iterative process that continually evolves with the design.

  19. Literature review of environmental qualification of safety-related electric cables: Literature analysis and appendices. Volume 2

    SciTech Connect (OSTI)

    Lofaro, R.; Bowerman, B.; Carbonaro, J. [Brookhaven National Lab., Upton, NY (United States)] [and others

    1996-04-01T23:59:59.000Z

    In support of the US NRC Environmental Qualification (EQ) Research Program, a literature review was performed to identify past relevant work that could be used to help fully or partially resolve issues of interest related to the qualification of low-voltage electric cable. A summary of the literature reviewed is documented in Volume 1 of this report. In this, Volume 2 of the report, dossiers are presented which document the issues selected for investigation in this program, along with recommendations for future work to resolve the issues, when necessary. The dossiers are based on an analysis of the literature reviewed, as well as expert opinions. This analysis includes a critical review of the information available from past and ongoing work in thirteen specific areas related to EQ. The analysis for each area focuses on one or more questions which must be answered to consider a particular issue resolved. Results of the analysis are presented, along with recommendations for future work. The analysis is documented in the form of a dossier for each of the areas analyzed.

  20. Assessment Documents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Assessments Operational Awareness Record, Waste Treatment and Immobilization Plant - March 2015

    The Office of Nuclear Safety and Environmental...

  1. Tracking and Analysis Framework (TAF) model documentation and user`s guide

    SciTech Connect (OSTI)

    Bloyd, C.; Camp, J.; Conzelmann, G. [and others

    1996-12-01T23:59:59.000Z

    With passage of the 1990 Clean Air Act Amendments, the United States embarked on a policy for controlling acid deposition that has been estimated to cost at least $2 billion. Title IV of the Act created a major innovation in environmental regulation by introducing market-based incentives - specifically, by allowing electric utility companies to trade allowances to emit sulfur dioxide (SO{sub 2}). The National Acid Precipitation Assessment Program (NAPAP) has been tasked by Congress to assess what Senator Moynihan has termed this {open_quotes}grand experiment.{close_quotes} Such a comprehensive assessment of the economic and environmental effects of this legislation has been a major challenge. To help NAPAP face this challenge, the U.S. Department of Energy (DOE) has sponsored development of an integrated assessment model, known as the Tracking and Analysis Framework (TAF). This section summarizes TAF`s objectives and its overall design.

  2. Submersion Criticality Safety Analysis of Tungsten-Based Fuel for Nuclear Power and Propulsion Applications

    SciTech Connect (OSTI)

    A.E. Craft; R. C. O'Brien; S. D. Howe; J. C. King

    2014-07-01T23:59:59.000Z

    The Center for Space Nuclear Research (CSNR) is developing tungsten-encapsulated fuels for space nuclear applications. Aims to develop NTP fuels that are; Affordable Low impact on production and testing environment Producible on a large scale over suitable time period Higher-performance compared to previous graphite NTP fuel elements Space nuclear reactors remain subcritical before and during launch, and do not go critical until required by its mission. A properly designed reactor will remain subcritical in any launch abort scenario, where the reactor falls back to Earth and becomes submerged in terrestrial material. Submersion increases neutron reflection and thermalizes the neutrons, which typically increases the reactivity of the core. This effect is usually very significant for fast-spectrum reactors. This research provided a submersion criticality safety analysis for a representative tungsten/uranium oxide fueled reactor. Determine the submersion behavior of a reactor fueled by tungsten-based fuel. Considered fuel compositions with varying: Rhenium content (wt% rhenium in tungsten) Fuel loading fractions (UO2 vol%)

  3. Safety analysis report for the TRUPACT-II shipping package (condensed version). Volume 2, Rev. 14

    SciTech Connect (OSTI)

    NONE

    1994-10-01T23:59:59.000Z

    This appendix determines the effective G values for payload shipping categories of contact handled transuranic (CH-TRU) waste materials, based on the radiolytic G values for waste materials that are discussed in detail in Appendix 3.6.8 of the Safety Analysis Report for the TRUPACT-II Shipping Package. The effective G values take into account self-absorption of alpha decay energy inside particulate contamination and the fraction of energy absorbed by nongas-generating materials. As described in Appendix 3.6.8, an effective G value, G{sub eff}, is defined by: G{sub eff} - {Sigma}{sub M} (F{sub M} x G{sub M}) F{sub M}-fraction of energy absorbed by material maximum G value for a material where the sum is over all materials present inside a waste container. The G value itself is determined primarily by the chemical properties of the material and its temperature. The value of F is determined primarily by the size of the particles containing the radionuclides, the distribution of radioactivity on the various materials present inside the waste container, and the stopping distance of alpha particles in air, in the waste materials, or in the waste packaging materials.

  4. The safety climate of a Department of Energy nuclear facility: A sociotechnical analysis

    SciTech Connect (OSTI)

    Johnson, A.E.; Harbour, J.L.

    1993-06-01T23:59:59.000Z

    Government- and public-sponsored groups are increasingly demanding greater accountability by the Department of Energy`s weapons complex. Many of these demands have focused on the development of a positive safety climate, one that not only protects workers onsite, but also the surrounding populace and environment as well. These demands are, in part, a response to findings which demonstrate a close linkage between actual organizational safety performance and the organization`s safety climate, i.e., the collective attitudes employees hold concerning the level of safety in their organization. This paper describes the approach taken in the systematic assessment of the safety climate at EG&G Rocky Flats Plant (RFP).

  5. Safety Analysis of the US Dual Coolant Liquid Lead-Lithium ITER Test Blanket Module

    SciTech Connect (OSTI)

    Merrill, Brad; Reyes, Susana; Sawan, Mohamed; Wong, Clement

    2006-07-01T23:59:59.000Z

    The US is proposing a prototype of a dual coolant liquid lead-lithium (DCLL) DEMO blanket concept for testing in the International Thermonuclear Experimental Reactor (ITER) as an ITER Test Blanket Module (TBM). Because safety considerations are an integral part of the design process to ensure that this TBM does not adversely impact the safety of ITER, a safety assessment has been conducted for this TBM and its ancillary systems as requested by the ITER project. Four events were selected by the ITER International Team (IT) to address specific reactor safety concerns, such as VV pressurization, confinement building pressure build-up, TBM decay heat removal capability, tritium and activation products release from the TBM system, and hydrogen and heat production from chemical reactions. This paper summarizes the results of this safety assessment conducted with the MELCOR computer code.

  6. Overview of New Tools to Perform Safety Analysis: BWR Station Black Out Test Case

    SciTech Connect (OSTI)

    D. Mandelli; C. Smith; T. Riley; J. Nielsen; J. Schroeder; C. Rabiti; A. Alfonsi; Cogliati; R. Kinoshita; V. Pasucci; B. Wang; D. Maljovec

    2014-06-01T23:59:59.000Z

    Dynamic Probabilistic Risk Assessment (DPRA) methodologies couple system simulator codes (e.g., RELAP, MELCOR) with simulation controller codes (e.g., RAVEN, ADAPT). While system simulator codes accurately model system dynamics deterministically, simulation controller codes introduce both deterministic (e.g., system control logic, operating procedures) and stochastic (e.g., component failures, parameter uncertainties) elements into the simulation. Typically, a DPRA is performed by: 1) sampling values of a set of parameters from the uncertainty space of interest (using the simulation controller codes), and 2) simulating the system behavior for that specific set of parameter values (using the system simulator codes). For complex systems, one of the major challenges in using DPRA methodologies is to analyze the large amount of information (i.e., large number of scenarios ) generated, where clustering techniques are typically employed to allow users to better organize and interpret the data. In this paper, we focus on the analysis of a nuclear simulation dataset that is part of the Risk Informed Safety Margin Characterization (RISMC) Boiling Water Reactor (BWR) station blackout (SBO) case study. We apply a software tool that provides the domain experts with an interactive analysis and visualization environment for understanding the structures of such high-dimensional nuclear simulation datasets. Our tool encodes traditional and topology-based clustering techniques, where the latter partitions the data points into clusters based on their uniform gradient flow behavior. We demonstrate through our case study that both types of clustering techniques complement each other in bringing enhanced structural understanding of the data.

  7. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01T23:59:59.000Z

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-FS-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-FS-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-FS-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-FS-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-FSBPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard. The processes and interaction between each of the models and studies are depicted in Graph 1.

  8. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01T23:59:59.000Z

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-E-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-E-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-E-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-E-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-E-BPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard. The processes and interaction between each of the models and studies are depicted in Graph 1.

  9. Preliminary safety analysis report for project 89-GEB-610 Plutonium Finishing Plant instrumentation upgrade. Revision 1

    SciTech Connect (OSTI)

    Huber, T.E.

    1995-10-24T23:59:59.000Z

    This document consists of an analysis of the MICON system upgrade. This project shall install a Micon Co. distributed process monitor and control system with Sparc Sun workstation operator interfaces. The Sparc workstations are housed in consoles custom designed to human factors specifications. The distributed control system (DCS) shall have the installed capacity to monitor and control all related instruments and equipment presently connected to the panels in the PFP Power Control Room 321A as listed in the input/output list. This also includes all devices monitored and controlled by the 2736-ZB Allen Bradley programmable logic controller. The system has since assumed the control and monitoring responsibilities for Projects B- 680H ``Low Level Waste Treatment Facility`` and C-031H ``PFP Liquid Effluent Facilities``. Part of the new en`s change area in Building 234-5ZA, Room 712, has been remodeled to house two consoles and one supervisor console. Local control units containing the microprocontrollers and the input/output interface circuit boards shall be wired to the instrumentation and controlled equipment. These units communicate with the Sparc workstations via a redundant data communications highway and shall be strategic, throughout the PFP facility. The DCS has already been purchased from Micon Co., located in Houston Texas, presently on site.

  10. Monitored Retrievable Storage System Requirements Document. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This Monitored Retrievable Storage System Requirements Document (MRS-SRD) describes the functions to be performed and technical requirements for a Monitored Retrievable Storage (MRS) facility subelement and the On-Site Transfer and Storage (OSTS) subelement. The MRS facility subelement provides for temporary storage, at a Civilian Radioactive Waste Management System (CRWMS) operated site, of spent nuclear fuel (SNF) contained in an NRC-approved Multi-Purpose Canister (MPC) storage mode, or other NRC-approved storage modes. The OSTS subelement provides for transfer and storage, at Purchaser sites, of spent nuclear fuel (SNF) contained in MPCs. Both the MRS facility subelement and the OSTS subelement are in support of the CRWMS. The purpose of the MRS-SRD is to define the top-level requirements for the development of the MRS facility and the OSTS. These requirements include design, operation, and decommissioning requirements to the extent they impact on the physical development of the MRS facility and the OSTS. The document also presents an overall description of the MRS facility and the OSTS, their functions (derived by extending the functional analysis documented by the Physical System Requirements (PSR) Store Waste Document), their segments, and the requirements allocated to the segments. In addition, the top-level interface requirements of the MRS facility and the OSTS are included. As such, the MRS-SRD provides the technical baseline for the MRS Safety Analysis Report (SAR) design and the OSTS Safety Analysis Report design.

  11. Integration of Environment, Safety, and Health into Facility Disposition Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1998-05-01T23:59:59.000Z

    Volume One of this Standard has been revised to provide a Department of Energy (DOE) approved methodology for preparing a Documented Safety Analysis (DSA) for decommissioning of nuclear facilities, as well as environmental restoration activities that involve work not done within a permanent structure. Methodologies provided in this Standard are intended to be compliant with Title 10 of the Code of Federal Regulations (CFR) Part 830, Nuclear Safety Management, Subpart B, Safety Basis Requirements. Volume Two contains the appendices that provide additional environment, safety and health (ES&H) information to complement Volume 1 of this Standard. Volume 2 of the Standard is much broader in scope than Volume 1 and satisfies several purposes. Integrated safety management expectations are provided in accordance with facility disposition requirements contained in DOE O 430.1B, Real Property Asset Management.

  12. Technical safety requirements for the Auxiliary Hot Cell Facility (AHCF).

    SciTech Connect (OSTI)

    Seylar, Roland F.

    2004-02-01T23:59:59.000Z

    These Technical Safety Requirements (TSRs) identify the operational conditions, boundaries, and administrative controls for the safe operation of the Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, in compliance with 10 CFR 830, 'Nuclear Safety Management.' The bases for the TSRs are established in the AHCF Documented Safety Analysis (DSA), which was issued in compliance with 10 CFR 830, Subpart B, 'Safety Basis Requirements.' The AHCF Limiting Conditions of Operation (LCOs) apply only to the ventilation system, the high efficiency particulate air (HEPA) filters, and the inventory. Surveillance Requirements (SRs) apply to the ventilation system, HEPA filters, and associated monitoring equipment; to certain passive design features; and to the inventory. No Safety Limits are necessary, because the AHCF is a Hazard Category 3 nuclear facility.

  13. Review and Approval of Nuclear Facility Safety Basis Documents (Documented Safety Analyses and Technical Safety Requirements)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin ofEnergy at Waste-to-Energy usingofRetrofitting Doors onNovember 14, DOE-STD-1104-96

  14. Technical Review Report for the Mound 1KW Package Safety Analysis Report for Packaging Waiver for the Use of Modified Primary Containment Vessel (PCV)

    SciTech Connect (OSTI)

    West, M; Hafner, R

    2008-05-05T23:59:59.000Z

    This Technical Review Report (TRR) documents the review, performed by the Lawrence Livermore National Laboratory (LLNL) staff, at the request of the U.S. Department of Energy (DOE), on the Waiver for the Use of Modified Primary Containment Vessels (PCV). The waiver is to be used to support a limited number of shipments of fuel for the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) Project in support of the National Aeronautics and Space Administration's (NASA's) Mars Science Laboratory (MSL) mission. Under the waiver, an inventory of existing national security PCVs will be converted to standard PCVs. Both types of PCVs are currently approved for use by the Office of Nuclear Energy. LLNL has previously reviewed the national security PCVs under Mound 1KW Package Safety Analysis Report for Packaging, Addendum No. 1, Revision c, dated June 2007 (Addendum 1). The safety analysis of the package is documented in the Safety Analysis Report for Packaging (SARP) for the Mound 1KW Package (i.e., the Mound 1KW SARP, or the SARP) where the standard PCVs have been reviewed by LLNL. The Mound 1KW Package is certified by DOE Certificate of Compliance (CoC) number USA/9516/B(U)F-85 for the transportation of Type B quantities of plutonium heat source material. The waiver requests an exemption, claiming safety equivalent to the requirements specified in 10 CFR 71.12, Specific Exemptions, and will lead to a letter amendment to the CoC. Under the waiver, the Office of Radioisotope Power Systems, NE-34, is seeking an exemption from 10 CFR 71.19(d)(1), Previously Approved Package,[5] which states: '(d) NRC will approve modifications to the design and authorized contents of a Type B package, or a fissile material package, previously approved by NRC, provided--(1) The modifications of a Type B package are not significant with respect to the design, operating characteristics, or safe performance of the containment system, when the package is subjected to the tests specified in {section}71.71 and 71.73.' The LLNL staff had previously reviewed a request from Idaho National Laboratory (INL) to reconfigure national security PCVs to standard PCVs. With a nominal 50% reduction in both the height and the volume, the LLNL staff initially deemed the modifications to be significant, which would not be allowed under the provisions of 10 CFR 71.19(d)(1)--see above. As a follow-up, the DOE requested additional clarification from the Nuclear Regulatory Commission (NRC). The NRC concluded that the reconfiguration would be a new fabrication, and that an exemption to the regulations would be required to allow its use, as per the requirements specified in 10 CFR 71.19(c)(1), Previously Approved Package: '(c) A Type B(U) package, a Type B(M) package, or a fissile material package previously approved by the NRC with the designation '-85' in the identification number of the NRC CoC, may be used under the general license of {section}71.17 with the following additional conditions: (1) Fabrication of the package must be satisfactorily completed by December 31, 2006, as demonstrated by application of its model number in accordance with 71.85(c).' Although the preferred approach toward the resolution of this issue would be for the applicant to submit an updated SARP, the applicant has stated that the process of updating the Model Mound 1KW Package SARP is a work that is in progress, but that the updated SARP is not yet ready for submittal. The applicant has to provide a submittal, proving that the package meets the '-96' requirements of International Atomic Energy Agency (IAEA) Safety Standards Series No. TS-R-1, in order to fabricate approved packagings after December 31, 2006. The applicant has further stated that all other packaging features, as described in the currently approved Model Mound 1KW Package SARP, remain unchanged. This report documents the LLNL review of the waiver request. The specific review for each SARP Chapter is documented.

  15. Nuclear criticality safety bounding analysis for the in-tank-precipitation (ITP) process, impacted by fissile isotopic weight fractions

    SciTech Connect (OSTI)

    Bess, C.E.

    1994-04-22T23:59:59.000Z

    The In-Tank Precipitation process (ITP) receives High Level Waste (HLW) supernatant liquid containing radionuclides in waste processing tank 48H. Sodium tetraphenylborate, NaTPB, and monosodium titanate (MST), NaTi{sub 2}O{sub 5}H, are added for removal of radioactive Cs and Sr, respectively. In addition to removal of radio-strontium, MST will also remove plutonium and uranium. The majority of the feed solutions to ITP will come from the dissolution of supernate that had been concentrated by evaporation to a crystallized salt form, commonly referred to as saltcake. The concern for criticality safety arises from the adsorption of U and Pt onto MST. If sufficient mass and optimum conditions are achieved then criticality is credible. The concentration of u and Pt from solution into the smaller volume of precipitate represents a concern for criticality. This report supplements WSRC-TR-93-171, Nuclear Criticality Safety Bounding Analysis For The In-Tank-Precipitation (ITP) Process. Criticality safety in ITP can be analyzed by two bounding conditions: (1) the minimum safe ratio of MST to fissionable material and (2) the maximum fissionable material adsorption capacity of the MST. Calculations have provided the first bounding condition and experimental analysis has established the second. This report combines these conditions with canyon facility data to evaluate the potential for criticality in the ITP process due to the adsorption of the fissionable material from solution. In addition, this report analyzes the potential impact of increased U loading onto MST. Results of this analysis demonstrate a greater safety margin for ITP operations than the previous analysis. This report further demonstrates that the potential for criticality in the ITP process due to adsorption of fissionable material by MST is not credible.

  16. SAFETY EVALUATION OF THE SINGLE SHELL TANKS (SST) MODIFIED SLUICING WASTE RETRIEVAL SYSTEM

    SciTech Connect (OSTI)

    SMITH, R.D.

    2005-03-21T23:59:59.000Z

    The purpose of this safety evaluation is to determine if the potential risk associated with using the single-shell tank (SST) modified sluicing system for retrieval of the 100-series SSTs in the tank farms is adequately addressed and bounded by the current tank farms safety basis (documented safety analysis [DSA]) and to determine if additional controls may be required. This safety evaluation also supports the requirement to perform a generic safety basis amendment for the retrieval of any additional SSTs (other than 241-S-112, and 241-U-107) by modified sluicing from the U.S. Department of Energy, Office of River Protection (ORP) Safety Evaluation Report (SER) 03-TED-066, ''Safety Evaluation Report (SER) for Approval of Justification for Continued Operation (JCO) for Tank Farms Single-Shell Tank (SST) Retrieval/Closure Modified Sluicing''.

  17. Prism++ Documentation University of Erlangen

    E-Print Network [OSTI]

    Breu, Ruth

    ! "monk-it" Prism++ Documentation University of Erlangen Computer Networks and Communication.2.1. Correlation engine management . . . . . . . . . . . . . . . . . . . . 8 2.2.2. Analysis of collected events

  18. High-level waste tank farm set point document

    SciTech Connect (OSTI)

    Anthony, J.A. III

    1995-01-15T23:59:59.000Z

    Setpoints for nuclear safety-related instrumentation are required for actions determined by the design authorization basis. Minimum requirements need to be established for assuring that setpoints are established and held within specified limits. This document establishes the controlling methodology for changing setpoints of all classifications. The instrumentation under consideration involve the transfer, storage, and volume reduction of radioactive liquid waste in the F- and H-Area High-Level Radioactive Waste Tank Farms. The setpoint document will encompass the PROCESS AREA listed in the Safety Analysis Report (SAR) (DPSTSA-200-10 Sup 18) which includes the diversion box HDB-8 facility. In addition to the PROCESS AREAS listed in the SAR, Building 299-H and the Effluent Transfer Facility (ETF) are also included in the scope.

  19. Analysis of improvements in system efficiency and safety at highway-railroad-pedestrian grade crossings

    E-Print Network [OSTI]

    Tydlacka, Jonathan Michael

    2013-02-22T23:59:59.000Z

    The purpose of this project was to perform micro-simulation analyses on intersections near Highway-Railroad Grade Crossings to determine if controlling mean train speed and train speed variability would improve safety and reduce delays. The first...

  20. Fusion Engineering and Design 80 (2006) 111137 ARIES-AT safety design and analysis

    E-Print Network [OSTI]

    that mobilize in-vessel inventories (e.g., tritium and tokamak dust) and bypass primary confinement (LOCA) and loss of flow accident (LOFA); Inventories; Safety; Environment studies 1. Background

  1. NASA/TM-2007-214856 Safety and Performance Analysis of the

    E-Print Network [OSTI]

    Muñoz, César A.

    Hanover, MD 21076-1320 #12;National Aeronautics and Space Administration Langley Research Center Hampton Hanover, MD 21076-1320 Springfield, VA 22161-2171 (301) 621-0390 (703) 605-6000 #12;Safety and Performance

  2. Annex D-200 Area Interim Storage Area Final Safety Analysis Report [FSAR] [Section 1 & 2

    SciTech Connect (OSTI)

    CARRELL, R D

    2002-07-16T23:59:59.000Z

    The 200 Area Interim Storage Area (200 Area ISA) at the Hanford Site provides for the interim storage of non-defense reactor spent nuclear fuel (SNF) housed in aboveground dry cask storage systems. The 200 Area ISA is a relatively simple facility consisting of a boundary fence with gates, perimeter lighting, and concrete and gravel pads on which to place the dry storage casks. The fence supports safeguards and security and establishes a radiation protection buffer zone. The 200 Area ISA is nominally 200,000 ft{sup 2} and is located west of the Canister Storage Building (CSB). Interim storage at the 200 Area ISA is intended for a period of up to 40 years until the materials are shipped off-site to a disposal facility. This Final Safety Analysis Report (FSAR) does not address removal from storage or shipment from the 200 Area ISA. Three different SNF types contained in three different dry cask storage systems are to be stored at the 200 Area ISA, as follows: (1) Fast Flux Test Facility Fuel--Fifty-three interim storage casks (ISC), each holding a core component container (CCC), will be used to store the Fast Flux Test Facility (FFTF) SNF currently in the 400 Area. (2) Neutron Radiography Facility (NRF) TRIGA'--One Rad-Vault' container will store two DOT-6M3 containers and six NRF TRIGA casks currently stored in the 400 Area. (3) Commercial Light Water Reactor Fuel--Six International Standards Organization (ISO) containers, each holding a NAC-I cask4 with an inner commercial light water reactor (LWR) canister, will be used for commercial LWR SNF from the 300 Area. An aboveground dry cask storage location is necessary for the spent fuel because the current storage facilities are being shut down and deactivated. The spent fuel is being transferred to interim storage because there is no permanent repository storage currently available.

  3. Statistical Analysis of Occupational Safety Data of Voluntary Protection Program (VPP) and Non-VPP Sites

    Broader source: Energy.gov [DOE]

    The Voluntary Protection Program (VPP) was originally developed by Occupational Safety and Health Administration (OSHA) in 1982 to foster greater ownership of safety and health in the workplace. The Department of Energy (DOE) adopted VPP in 1992; currently 23 sites across the DOE complex participate in the program. As its name implies, it is a voluntary program; i.e. not required by laws or regulations.

  4. Subject: Integrated Safety Analysis: Why It Is Appropriate for Fuel Recycling Facilities Project Number: 689Nuclear Energy Institute (NEI) Letter, 9/10/10

    Broader source: Energy.gov [DOE]

    Enclosed for your review is a Nuclear Energy Institute white paper on the use of Integrated Safety Analysis (ISA) at U.S. Nuclear Regulatory Commission-licensed recycling facilities. This paper is...

  5. CRAD, Facility Safety- Nuclear Facility Safety Basis

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Nuclear Facility Safety Basis.

  6. CRAD, Facility Safety- Technical Safety Requirements

    Broader source: Energy.gov [DOE]

    A section of Appendix C to DOE G 226.1-2 "Federal Line Management Oversight of Department of Energy Nuclear Facilities." Consists of Criteria Review and Approach Documents (CRADs) that can be used for assessment of a contractor's Technical Safety Requirments (TSA).

  7. Safety and Nonsafety Communications and Interactions in International Nuclear Power Plants

    SciTech Connect (OSTI)

    Kisner, Roger A [ORNL; Mullens, James Allen [ORNL; Wilson, Thomas L [ORNL; Wood, Richard Thomas [ORNL; Korsah, Kofi [ORNL; Qualls, A L [ORNL; Muhlheim, Michael David [ORNL; Holcomb, David Eugene [ORNL; Loebl, Andy [ORNL

    2007-08-01T23:59:59.000Z

    Current industry and NRC guidance documents such as IEEE 7-4.3.2, Reg. Guide 1.152, and IEEE 603 do not sufficiently define a level of detail for evaluating interdivisional communications independence. The NRC seeks to establish criteria for safety systems communications that can be uniformly applied in evaluation of a variety of safety system designs. This report focuses strictly on communication issues related to data sent between safety systems and between safety and nonsafety systems. Further, the report does not provide design guidance for communication systems nor present detailed failure modes and effects analysis (FMEA) results for existing designs. This letter report describes communications between safety and nonsafety systems in nuclear power plants outside the United States. A limited study of international nuclear power plants was conducted to ascertain important communication implementations that might have bearing on systems proposed for licensing in the United States. This report provides that following information: 1.communications types and structures used in a representative set of international nuclear power reactors, and 2.communications issues derived from standards and other source documents relevant to safety and nonsafety communications. Topics that are discussed include the following: communication among redundant safety divisions, communications between safety divisions and nonsafety systems, control of safety equipment from a nonsafety workstation, and connection of nonsafety programming, maintenance, and test equipment to redundant safety divisions during operation. Information for this report was obtained through publicly available sources such as published papers and presentations. No proprietary information is represented.

  8. MIDAS documentation

    SciTech Connect (OSTI)

    Seeman, S.E.

    1981-09-01T23:59:59.000Z

    MIDAS, the Master Information and Data Acquisition System, is a computerized system being implemented on FFTF to control the work released to the plant. The purpose of this system is to demonstrate the safety enhancement provided for LMFBRs when the operator has instant recall to the status of all work released to the plant, the interrelationships between functional equipment groups in the plant, and the relationships of equipment to safety functions.

  9. Technical basis document for the unplanned excavation/drilling of 200 area soils

    SciTech Connect (OSTI)

    STEPHENS, L.S.

    2003-03-21T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for the unplanned excavation/drilling of 200 Area soils representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described in this report.

  10. Application of a Comprehensive Sensitivity Analysis Method on the Safety Assessment of TRU Waste Disposal in Japan

    SciTech Connect (OSTI)

    Takao Ohi; Manabu Inagaki; Tomoyuki Sone; Morihiro Mihara; Takeshi Ebashi [JAEA, 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1194 (Japan); Hiroyasu Takase [Quintessa K. K, Queen's Tower A 7-707, 2-3-1 Minatomirai Nishi-ku, Yokohama, Kanagawaken, 220-6007 (Japan); Kiyoshi Oyamada [JGC Corporation, 2-3-1 Minatomirai Nishi-ku, Yokohama, Kanagawa-ken, 220-6001 (Japan); Kunihiko Nakajima [NESI Inc., 4-33 Muramatsu, Tokai-mura, Ibaraki-ken, 319-1112 (Japan)

    2007-07-01T23:59:59.000Z

    A comprehensive sensitivity analysis method has been developed with the aim of providing quantitative information in an efficient manner. This methodology is composed of the following two components: (1) a statistical method with random sampling of independent parameters, which identifies important parameters and extracts threshold values of parameters and/or combinations yielding a 'successful condition' where maximum dose does not exceed a target value, (2) A nuclide migration model that as far as possible incorporates a comprehensive set of phenomena occurring within the repository. This approach was applied as part of a safety assessment of the geological disposal of transuranic (TRU) waste in Japan (TRU-2). It was shown that the concept of TRU waste disposal is robust from the point of view of safety. (authors)

  11. Melter Disposal Strategic Planning Document

    SciTech Connect (OSTI)

    BURBANK, D.A.

    2000-09-25T23:59:59.000Z

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  12. INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO

    Office of Legacy Management (LM)

    INCOMING DOCUMENT CONTROL FORM DOCUMENT DESCRIPTION ORGANIZATIO )ATE COMPLETED: ACTION NUMBER: I I I DOCUMENT CONTROL DATE INITIALS DATA BASE: ACTION LOG: FILED: To : Doug...

  13. RESEARCH SAFETY RADIATION SAFETY

    E-Print Network [OSTI]

    and Communications Manager (951) 827-6303 janette.ducut@ucr.edu Beiwei Tu, MS, CIH, CSP Safety and Industrial Hygiene

  14. Model-Based Quantitative Safety Analysis of Matlab Simulink / Stateflow Models

    E-Print Network [OSTI]

    Leue, Stefan

    ISO 26262 [Int11] for the automotive domain or DO-178C [sta12] for the avionics domain recommend is widely used to design systems in the automotive and avionics domains. ISO 26262 and DO-178C require (FMEA) [Int91] or Fault Tree Anal- ysis (FTA) [U.S81]. This gives rise to the question how safety

  15. Component Failure Behaviour: Patterns and Reuse in Automated System Safety Analysis

    E-Print Network [OSTI]

    Boyer, Edmond

    Trees and Failure Modes and Effects Analyses (FMEAs) can be automatically derived from a topological of failure patterns in conjunction with automated fault tree and FMEA synthesis algorithms can help on safety is universal, the issue is perhaps more urgent in the automotive industry which currently

  16. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II Safety Program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutoy, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N. [RRC Kurchatov Institute, Moscow (Russian Federation)] [and others

    1994-11-01T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated.

  17. Ferrocyanide Safety Program rationale for removing six tanks from the safety watch list

    SciTech Connect (OSTI)

    Borsheim, G.L.

    1993-09-01T23:59:59.000Z

    This report documents an in-depth study of single-shell tanks containing ferrocyanide wastes. Topics include: safety assessments, tank histories, supportive documentation about interim stabilization and planned remedial activities.

  18. More Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1 SECTIONES2008-54174More Documents More Documents

  19. Safety of magnetic fusion facilities: Requirements

    SciTech Connect (OSTI)

    NONE

    1996-05-01T23:59:59.000Z

    This Standard identifies safety requirements for magnetic fusion facilities. Safety functions are used to define outcomes that must be achieved to ensure that exposures to radiation, hazardous materials, or other hazards are maintained within acceptable limits. Requirements applicable to magnetic fusion facilities have been derived from Federal law, policy, and other documents. In addition to specific safety requirements, broad direction is given in the form of safety principles that are to be implemented and within which safety can be achieved.

  20. Guidance Document Material Safety Data Sheet

    E-Print Network [OSTI]

    and physical properties, health effects, fire/explosion data, reactivity, handling, storage, and personal

  1. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011April 15, 2011

  2. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011April 15,

  3. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011April 15,November

  4. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011April

  5. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011AprilJanuary 19,

  6. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011AprilJanuary

  7. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB DOE-STD-1194-2011AprilJanuaryJuly

  8. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment of Energy NorthB

  9. Nuclear Safety Enforcement Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse to Time-Based Rates from theLiability Nuclearof

  10. WIPP Documents - Quality Assurance and Safety

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge

  11. Challenges in the Modeling and Quantitative Analysis of Safety-Critical Automotive Systems!

    E-Print Network [OSTI]

    Leue, Stefan

    ! Probabilistic FMEA! Probabilistic Analysis of System Architectures! ! Conclusion! 3! #12;ISO 26262: Road! ,,identify Failures"! - Qualitative FMEA! ! - Qualitative Fault Tree Analysis! ! - Event Tree Analysis! Quantitative Methods! ,,predict frequency of failures"! - Quantitative FMEA! ! - Quantitative Fault Tree

  12. Design and Transient Analysis of Passive Safety Cooling Systems for Advanced Nuclear Reactors

    E-Print Network [OSTI]

    Galvez, Cristhian

    2011-01-01T23:59:59.000Z

    L. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,R. J. Neuhold, Introductury Nuclear Reactor Dynamics. ANSL. J. Hamilton Nuclear Reactor Analysis John Wiley and Sons,

  13. Safety Analysis Report for Packaging (SARP) of the Oak Ridge National Laboratory TRU Californium Shipping Container

    SciTech Connect (OSTI)

    Box, W.D.; Shappert, L.B.; Seagren, R.D.; Klima, B.B.; Jurgensen, M.C.; Hammond, C.R.; Watson, C.D.

    1980-01-01T23:59:59.000Z

    An analytical evaluation of the Oak Ridge National Laboratory TRU Californium Shipping Container was made in order to demonstrate its compliance with the regulations governing off-site shipment of packages that contain radioactive material. The evaluation encompassed five primary categories: structural integrity, thermal resistance, radiation shielding, nuclear criticality safety, and quality assurance. The results of this evaluation demonstrate that the container complies with the applicable regulations.

  14. Safety analysis report for packaging, Oak Ridge Y-12 Plant, model DC-1 package with HEU oxide contents. Change pages for Rev.1

    SciTech Connect (OSTI)

    NONE

    1995-01-18T23:59:59.000Z

    This Safety Analysis Report for Packaging for the Oak Ridge Y-12 Plant for the Model DC-1 package with highly enriched uranium (HEU) oxide contents has been prepared in accordance with governing regulations form the Nuclear Regulatory Commission and the Department of Transportation and orders from the Department of energy. The fundamental safety requirements addressed by these regulations and orders pertain to the containment of radioactive material, radiation shielding, and nuclear subcriticality. This report demonstrates how these requirements are met.

  15. Environmental Health and Safety Assessment

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Environmental Health and Safety Assessment Program Manual 7/15/2013 #12;Environmental Health/26/2013. The most recent version of this document is available electronically at: http://sp.ehs.cornell.edu/env/general-environmental-management/environmental.........................................................................................................................4 #12;Environmental Health and Safety Assessment Program Manual Approved by: (Barb English) Last

  16. FAQS Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    A key element for the Department’s Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA).

  17. Preliminary systems-interaction results from the Digraph Matrix Analysis of the Watts Bar Nuclear Power Plant safety-injection systems

    SciTech Connect (OSTI)

    Sacks, I.J.; Ashmore, B.C.; Champney, J.M.; Alesso, H.P.

    1983-06-01T23:59:59.000Z

    This report provides preliminary results generated by a Digraph Matrix Analysis (DMA) for a Systems Interaction analysis performed on the Safety Injection System of the Tennessee Valley Authority Watts Bar Nuclear Power Plant. An overview of DMA is provided along with a brief description of the computer codes used in DMA.

  18. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-16T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

  19. An overview of modeling methods for thermal mixing and stratification in large enclosures for reactor safety analysis

    SciTech Connect (OSTI)

    Haihua Zhao; Per F. Peterson

    2010-10-01T23:59:59.000Z

    Thermal mixing and stratification phenomena play major roles in the safety of reactor systems with large enclosures, such as containment safety in current fleet of LWRs, long-term passive containment cooling in Gen III+ plants including AP-1000 and ESBWR, the cold and hot pool mixing in pool type sodium cooled fast reactor systems (SFR), and reactor cavity cooling system behavior in high temperature gas cooled reactors (HTGR), etc. Depending on the fidelity requirement and computational resources, 0-D steady state models (heat transfer correlations), 0-D lumped parameter based transient models, 1-D physical-based coarse grain models, and 3-D CFD models are available. Current major system analysis codes either have no models or only 0-D models for thermal stratification and mixing, which can only give highly approximate results for simple cases. While 3-D CFD methods can be used to analyze simple configurations, these methods require very fine grid resolution to resolve thin substructures such as jets and wall boundaries. Due to prohibitive computational expenses for long transients in very large volumes, 3-D CFD simulations remain impractical for system analyses. For mixing in stably stratified large enclosures, UC Berkeley developed 1-D models basing on Zuber’s hierarchical two-tiered scaling analysis (HTTSA) method where the ambient fluid volume is represented by 1-D transient partial differential equations and substructures such as free or wall jets are modeled with 1-D integral models. This allows very large reductions in computational effort compared to 3-D CFD modeling. This paper will present an overview on important thermal mixing and stratification phenomena in large enclosures for different reactors, major modeling methods and their advantages and limits, potential paths to improve simulation capability and reduce analysis uncertainty in this area for advanced reactor system analysis tools.

  20. Documenting Spreadsheets

    E-Print Network [OSTI]

    Payette, Raymond

    2008-01-01T23:59:59.000Z

    This paper discusses spreadsheets documentation and new means to achieve this end by using Excel's built-in "Comment" function. By structuring comments, they can be used as an essential tool to fully explain spreadsheet. This will greatly facilitate spreadsheet change control, risk management and auditing. It will fill a crucial gap in corporate governance by adding essential information that can be managed in order to satisfy internal controls and accountability standards.

  1. Nuclear Safety. Technical Progress Journal, October--December 1991: Volume 32, No. 4

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  2. Combining Formal Methods and Safety Analysis -The ForMoSA Approach

    E-Print Network [OSTI]

    Reif, Wolfgang

    techniques [13, 20] like failure modes and effects analysis (FMEA) or fault tree analysis (FTA). The combina in which a component may fail. The leaves of all fault trees are failure modes. The starting column of FMEA

  3. Formal Support for Quantitative Analysis of Residual Risks in Safety-Critical Systems

    E-Print Network [OSTI]

    and Effects Analysis (FMEA) and Fault-Tree Analy- sis (FTA) [16]. However, many of these techniques become

  4. SAFETY ANALYSIS OF A RADIO-BASED CROSSING CONTROL SYSTEM USING FORMAL

    E-Print Network [OSTI]

    Reif, Wolfgang

    ), failure mode and e#11;ects anal- ysis (FMEA) (Reifer 1979), or hazard and oper- ability analysis (HAZOP

  5. Modeling and Analysis of Safety-Critical Cyber Physical Systems using State/Event Fault Trees

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . Keywords: reliability modeling, risk analysis, attack trees, fault tree, State/Event Fault Tree 1 to their ability to capture qualitative and quantitative analysis aspects they can be seen as state of the art and it is not possible to do a quantitative analysis of them in case of statistical depend basic events. In [6] Kaiser et

  6. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  7. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  8. Preliminary safety analysis report for the Auxiliary Hot Cell Facility, Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect (OSTI)

    OSCAR,DEBBY S.; WALKER,SHARON ANN; HUNTER,REGINA LEE; WALKER,CHERYL A.

    1999-12-01T23:59:59.000Z

    The Auxiliary Hot Cell Facility (AHCF) at Sandia National Laboratories, New Mexico (SNL/NM) will be a Hazard Category 3 nuclear facility used to characterize, treat, and repackage radioactive and mixed material and waste for reuse, recycling, or ultimate disposal. A significant upgrade to a previous facility, the Temporary Hot Cell, will be implemented to perform this mission. The following major features will be added: a permanent shield wall; eight floor silos; new roof portals in the hot-cell roof; an upgraded ventilation system; and upgraded hot-cell jib crane; and video cameras to record operations and facilitate remote-handled operations. No safety-class systems, structures, and components will be present in the AHCF. There will be five safety-significant SSCs: hot cell structure, permanent shield wall, shield plugs, ventilation system, and HEPA filters. The type and quantity of radionuclides that could be located in the AHCF are defined primarily by SNL/NM's legacy materials, which include radioactive, transuranic, and mixed waste. The risk to the public or the environment presented by the AHCF is minor due to the inventory limitations of the Hazard Category 3 classification. Potential doses at the exclusion boundary are well below the evaluation guidelines of 25 rem. Potential for worker exposure is limited by the passive design features incorporated in the AHCF and by SNL's radiation protection program. There is no potential for exposure of the public to chemical hazards above the Emergency Response Protection Guidelines Level 2.

  9. Order Module--NNSA Orders Self-Study Program Safety Basis Documentatio...

    Broader source: Energy.gov (indexed) [DOE]

    NNSA Orders Self-Study Program Safety Basis Documentation Order Module--NNSA Orders Self-Study Program Safety Basis Documentation The familiar level of this module is divided into...

  10. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  11. Regulatory analysis for the resolution of generic issue 57: Effects of Fire Protection System Actuation on Safety-Related Equipment

    SciTech Connect (OSTI)

    Woods, H.W.

    1993-10-01T23:59:59.000Z

    Actuation of Fire Protection Systems (FPS) in Nuclear Power Plants have resulted in adverse interactions with equipment important to safety. Precursor operational experience has shown that 37% of all FPS actuations damaged some equipment, and 20% of all FPS actuations have resulted in a plant transient and reactor trip. On an average 0.17 FPS actuations per reactor year have been experienced in nuclear power plants in this country. This report presents the regulatory analysis for GI-57, ``Effects of Fire Protection System Actuation on Safety-Related Equipment``. The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations contained in this report can significantly reduce risk, and that these improvements can be warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). However, plant specific analyses are required in order to identify such improvements. Generic analyses can not serve to identify improvements that could be warranted for individual, specific plants. Plant specific analyses of the type needed for this purpose are underway as part of the Individual Plant Examination of External Events (IPEEE) program.

  12. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. (National Renewable Energy Lab., Golden, CO (United States)); Moskowitz, P.D.; Fthenakis, V.M. (Brookhaven National Lab., Upton, NY (United States))

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI's employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  13. Parallel computation safety analysis irradiation targets fission product molybdenum in neutronic aspect using the successive over-relaxation algorithm

    SciTech Connect (OSTI)

    Susmikanti, Mike, E-mail: mike@batan.go.id [Center for Development of Nuclear Informatics, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Dewayatna, Winter, E-mail: winter@batan.go.id [Center for Nuclear Fuel Technology, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia); Sulistyo, Yos, E-mail: soj@batan.go.id [Center for Nuclear Equipment and Engineering, National Nuclear Energy Agency, PUSPIPTEK, Tangerang (Indonesia)

    2014-09-30T23:59:59.000Z

    One of the research activities in support of commercial radioisotope production program is a safety research on target FPM (Fission Product Molybdenum) irradiation. FPM targets form a tube made of stainless steel which contains nuclear-grade high-enrichment uranium. The FPM irradiation tube is intended to obtain fission products. Fission materials such as Mo{sup 99} used widely the form of kits in the medical world. The neutronics problem is solved using first-order perturbation theory derived from the diffusion equation for four groups. In contrast, Mo isotopes have longer half-lives, about 3 days (66 hours), so the delivery of radioisotopes to consumer centers and storage is possible though still limited. The production of this isotope potentially gives significant economic value. The criticality and flux in multigroup diffusion model was calculated for various irradiation positions and uranium contents. This model involves complex computation, with large and sparse matrix system. Several parallel algorithms have been developed for the sparse and large matrix solution. In this paper, a successive over-relaxation (SOR) algorithm was implemented for the calculation of reactivity coefficients which can be done in parallel. Previous works performed reactivity calculations serially with Gauss-Seidel iteratives. The parallel method can be used to solve multigroup diffusion equation system and calculate the criticality and reactivity coefficients. In this research a computer code was developed to exploit parallel processing to perform reactivity calculations which were to be used in safety analysis. The parallel processing in the multicore computer system allows the calculation to be performed more quickly. This code was applied for the safety limits calculation of irradiated FPM targets containing highly enriched uranium. The results of calculations neutron show that for uranium contents of 1.7676 g and 6.1866 g (× 10{sup 6} cm{sup ?1}) in a tube, their delta reactivities are the still within safety limits; however, for 7.9542 g and 8.838 g (× 10{sup 6} cm{sup ?1}) the limits were exceeded.

  14. Document13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisitingContract ManagementDiscovering How Muscles ReallyDDT DDTViewDoDocument

  15. Reference Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection RadiationRecord-SettingHead ofReference-Documents Sign In About |

  16. Document Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers69 Federal Register / Vol. 71, No.5 Document

  17. Simulations of argon accident scenarios in the ATLAS experimental cavern a safety analysis

    E-Print Network [OSTI]

    Balda, F

    2002-01-01T23:59:59.000Z

    Some characteristic accidents in the ATLAS experimental cavern (UX15) are simulated by means of STAR-CD, a code using the "Finite-Volume" method. These accidents involve different liquid argon leaks from the barrel cryostat of the detector, thus causing the dispersion of the argon into the Muon Chamber region and the evaporation of the liquid. The subsequent temperature gradients and distribution of argon concentrations, as well as their evolution in time are simulated and discussed, with the purpose of analysing the dangers related to asphyxiation and to contact with cryogenic fluids for the working personnel. A summary of the theory that stands behind the code is also given. In order to validate the models, an experimental test on a liquid argon spill performed earlier is simulated, showing that the program is able to output reliable results. At the end, some safety-related recommendations are listed.

  18. Water/sand flooded and immersed critical experiment and analysis performed in support of the TOPAZ-II safety program

    SciTech Connect (OSTI)

    Glushkov, E.S.; Ponomarev-Stepnoi, N.N.; Bubelev, V.G.; Garin, V.P.; Gomin, E.A.; Kompanietz, G.V.; Krutov, A.M.; Lobynstev, V.A.; Maiorov, L.V.; Polyakov, D.N.; Chunyaev, E.I. [RRC Kurchatov Institute, Moscow 123182 (Russian Federation); Marshall, A.C. [International Nuclear Safety, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Sapir, J.L.; Pelowitz, D.B. [Reactor Design and Analysis Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1995-01-20T23:59:59.000Z

    Presented is a brief description of the Narciss-M2 critical assemblies, which simulate accidental water/wet-sand immersion of the TOPAZ-II reactor as well as water-flooding of core cavities. Experimental results obtained from these critical assemblies, including experiments with several fuel elements removed from the core, are shown. These configurations with several extracted fuel elements simulate a proposed fuel-out anticriticality-device modification to the TOPAZ-II reactor. Preliminary computational analysis of these experiments using the Monte Carlo neutron-transport method is outlined. Nuclear criticality safety of the TOPAZ-II reactor with an incorporated anticriticality unit is demonstrated. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

  19. Implementation of Revision 19 of the TRUPACT-II Safety Analysis Report at Rocky Flats Environmental Technology Site

    SciTech Connect (OSTI)

    D'Amico, E.; O'Leary, J.; Bell, S.; Djordjevic, S.; Givens, C,; Shokes, T.; Thompson, S.; Stahl, S.

    2003-02-25T23:59:59.000Z

    The U.S. Nuclear Regulatory Commission on July 27, 2001 approved Revision 19 of the TRUPACT-II Safety Analysis Report (SAR) and the associated TRUPACT-II Authorized Methods for Payload Control (TRAMPAC). Key initiatives in Revision 19 included matrix depletion, unlimited mixing of shipping categories, a flammability assessment methodology, and an alternative methodology for the determination of flammable gas generation rates. All U.S. Department of Energy (DOE) sites shipping transuranic (TRU) waste to the Waste Isolation Pilot Plant (WIPP) were required to implement Revision 19 methodology into their characterization and waste transportation programs by May 20, 2002. An implementation process was demonstrated by the Rocky Flats Environmental Technology Site (RFETS) in Golden, Colorado. The three-part process used by RFETS included revision of the site-specific TRAMPAC, an evaluation of the contact-handled TRU waste inventory against the regulations in Revision 19, and design and development of software to facilitate future inventory analyses.

  20. PAT-1 safety analysis report addendum author responses to request for additional information.

    SciTech Connect (OSTI)

    Weiner, Ruth F.; Schmale, David T.; Kalan, Robert J.; Akin, Lili A.; Miller, David Russell; Knorovsky, Gerald Albert; Yoshimura, Richard Hiroyuki; Lopez, Carlos; Harding, David Cameron; Jones, Perry L.; Morrow, Charles W.

    2010-09-01T23:59:59.000Z

    The Plutonium Air Transportable Package, Model PAT-1, is certified under Title 10, Code of Federal Regulations Part 71 by the U.S. Nuclear Regulatory Commission (NRC) per Certificate of Compliance (CoC) USA/0361B(U)F-96 (currently Revision 9). The National Nuclear Security Administration (NNSA) submitted SAND Report SAND2009-5822 to NRC that documented the incorporation of plutonium (Pu) metal as a new payload for the PAT-1 package. NRC responded with a Request for Additional Information (RAI), identifying information needed in connection with its review of the application. The purpose of this SAND report is to provide the authors responses to each RAI. SAND Report SAND2010-6106 containing the proposed changes to the Addendum is provided separately.

  1. Formal Safety analysis of a radio-based railroad crossing using Deductive Cause-Consequence

    E-Print Network [OSTI]

    Reif, Wolfgang

    and effects analysis (FMEA) and fault tree analysis (FTA). We apply the method to a real world case study like FMEA [10], FMECA [4] and FTA [3]. The logical framework of DCCA may be used to rigorously verify of what can by analyzed) than traditional FMEA. We show, that the results of DCCA have the same semantics

  2. QUEST2: Release 1, SA/Release 1 supporting documents deliverable set

    SciTech Connect (OSTI)

    Braaten, F.D.

    1995-02-27T23:59:59.000Z

    This document contains deliverables which reflect the last of the System Architecture phase analysis for the Quality, Environmental, Safety Tracking System redesign (QUEST2) project. These deliverables are focused on the final insights required to start functional design of the first QUEST2 release. They include the data definitions, conversion rules, standards for design and user interface, performance criteria, and rules to be followed during the prototyping activity described in the Project Management Plan.

  3. Criticality Safety Controls Implementation Inspection Criteria, Approach, and Lines of Inquiry, October 23, 2009, (HSS CRAD 64-18, Rev 0)

    Broader source: Energy.gov [DOE]

    DOE has set expectations for implementing criticality safety controls that are selected to provide preventive and/or mitigative functions for specific potential accident scenarios. There are additional expectations for criticality safety controls that are also designated as Specific Administrative Controls (SACs) (see HSS CRAD 64-32). Also, in instances when the review addresses functionality and operability of structures, systems, and components (SSCs) of nuclear facilities specifically required for criticality safety per the facility's documented safety analysis (DSA), see HSS CRAD 64-11.

  4. Experiment Design and Analysis Guide - Neutronics & Physics

    SciTech Connect (OSTI)

    Misti A Lillo

    2014-06-01T23:59:59.000Z

    The purpose of this guide is to provide a consistent, standardized approach to performing neutronics/physics analysis for experiments inserted into the Advanced Test Reactor (ATR). This document provides neutronics/physics analysis guidance to support experiment design and analysis needs for experiments irradiated in the ATR. This guide addresses neutronics/physics analysis in support of experiment design, experiment safety, and experiment program objectives and goals. The intent of this guide is to provide a standardized approach for performing typical neutronics/physics analyses. Deviation from this guide is allowed provided that neutronics/physics analysis details are properly documented in an analysis report.

  5. 2013 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  6. 2013 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  7. 2014 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  8. 2012 Annual Workforce Analysis and Staffing Plan Report- Chief of Nuclear Safety

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  9. 2011 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  10. 2010 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  11. 2012 Annual Workforce Analysis and Staffing Plan Report- Office of Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  12. 2014 Annual Workforce Analysis and Staffing Plan Report- Office of Environment, Health, Safety and Security

    Broader source: Energy.gov [DOE]

    Managers perform an annual workforce analysis of their organization and develop staffing plans that identify technical capabilities and positions they need to ensure safe operation of defense nuclear facilities.

  13. Benefit-Cost Analysis of Heavy Haul Railway Track Upgrade for Safety and Efficiency X. Liu, M.R. Saat, C.P.L. Barkan

    E-Print Network [OSTI]

    Barkan, Christopher P.L.

    1 Benefit-Cost Analysis of Heavy Haul Railway Track Upgrade for Safety and Efficiency X. Liu, M of train accident on North American heavy-haul railroads and reducing their occurrence and severity is an ongoing objective of both industry and government. Upgrading track quality is one possible derailment

  14. Proceedings of: X Convegno Tecnologie e Sistemi Energetici Complessi, (TESEC), June 2001, Genova, Italy ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO

    E-Print Network [OSTI]

    Tronci, Enrico

    , Italy 1 ADVANCED TECHNIQUES FOR SAFETY ANALYSIS APPLIED TO THE GAS TURBINE CONTROL SYSTEM OF ICARO CO of complex computer based systems. Such approaches are applied to the gas turbine control system of ICARO co of the centre of ENEA CR Casaccia. The plant is based on a small gas turbine and has been specifically designed

  15. Nuclear Safety Research and Development Annual Report, December...

    Broader source: Energy.gov (indexed) [DOE]

    December 8, 2014 This document is the first annual report of DOE's Nuclear Safety Research and Development (NSR&D) Program, managed by the Office of Nuclear Safety in the Office of...

  16. Nuclear Safety Policy - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARCHIVED SEN-35-91, Nuclear Safety Policy by jnichols Functional areas: Environment, Safety, and Health, Canceled by DOE P 420.1 n3591.pdf -- PDF Document, 20 KB Writer: jnichols...

  17. WHC fire hazards analysis policy

    SciTech Connect (OSTI)

    Evans, C.B.

    1994-04-01T23:59:59.000Z

    The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

  18. Technical support document: Energy conservation standards for consumer products: Dishwashers, clothes washers, and clothes dryers including: Environmental impacts; regulatory impact analysis

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Energy Policy and Conservation Act as amended (P.L. 94-163), establishes energy conservation standards for 12 of the 13 types of consumer products specifically covered by the Act. The legislation requires the Department of Energy (DOE) to consider new or amended standards for these and other types of products at specified times. This Technical Support Document presents the methodology, data and results from the analysis of the energy and economic impacts of standards on dishwashers, clothes washers, and clothes dryers. The economic impact analysis is performed in five major areas: An Engineering Analysis, which establishes technical feasibility and product attributes including costs of design options to improve appliance efficiency. A Consumer Analysis at two levels: national aggregate impacts, and impacts on individuals. The national aggregate impacts include forecasts of appliance sales, efficiencies, energy use, and consumer expenditures. The individual impacts are analyzed by Life-Cycle Cost (LCC), Payback Periods, and Cost of Conserved Energy (CCE), which evaluate the savings in operating expenses relative to increases in purchase price; A Manufacturer Analysis, which provides an estimate of manufacturers' response to the proposed standards. Their response is quantified by changes in several measures of financial performance for a firm. An Industry Impact Analysis shows financial and competitive impacts on the appliance industry. A Utility Analysis that measures the impacts of the altered energy-consumption patterns on electric utilities. A Environmental Effects analysis, which estimates changes in emissions of carbon dioxide, sulfur oxides, and nitrogen oxides, due to reduced energy consumption in the home and at the power plant. A Regulatory Impact Analysis collects the results of all the analyses into the net benefits and costs from a national perspective. 47 figs., 171 tabs. (JF)

  19. ANALYSIS OF SAFETY RELIEF VALVE PROOF TEST DATA TO OPTIMIZE LIFECYCLE MAINTENANCE COSTS

    SciTech Connect (OSTI)

    Gross, Robert; Harris, Stephen

    2007-08-01T23:59:59.000Z

    Proof test results were analyzed and compared with a proposed life cycle curve or hazard function and the limit of useful life. Relief valve proof testing procedures, statistical modeling, data collection processes, and time-in-service trends are presented. The resulting analysis of test data allows for the estimation of the PFD. Extended maintenance intervals to the limit of useful life as well as methodologies and practices for improving relief valve performance and reliability are discussed. A generic cost-benefit analysis and an expected life cycle cost reduction concludes that $90 million maintenance dollars might be avoided for a population of 3000 valves over 20 years.

  20. Plans, Updates, Regulatory Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stewardship Environmental Protection Obeying Environmental Laws Individual Permit Documents Individual Permit: Plans, Updates, Regulatory Documents1335769200000Plans...

  1. Safety Analysis Report for the use of hazardous production materials in photovoltaic applications at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Crandall, R.S.; Nelson, B.P. [National Renewable Energy Lab., Golden, CO (United States); Moskowitz, P.D.; Fthenakis, V.M. [Brookhaven National Lab., Upton, NY (United States)

    1992-07-01T23:59:59.000Z

    To ensure the continued safety of SERI`s employees, the community, and the environment, NREL commissioned an internal audit of its photovoltaic operations that used hazardous production materials (HPMs). As a result of this audit, NREL management voluntarily suspended all operations using toxic and/or pyrophoric gases. This suspension affected seven laboratories and ten individual deposition systems. These activities are located in Building 16, which has a permitted occupancy of Group B, Division 2 (B-2). NREL management decided to do the following. (1) Exclude from this SAR all operations which conformed, or could easily be made to conform, to B-2 Occupancy requirements. (2) Include in this SAR all operations that could be made to conform to B-2 Occupancy requirements with special administrative and engineering controls. (3) Move all operations that could not practically be made to conform to B-2 Occupancy requirements to alternate locations. In addition to the layered set of administrative and engineering controls set forth in this SAR, a semiquantitative risk analysis was performed on 30 various accident scenarios. Twelve presented only routine risks, while 18 presented low risks. Considering the demonstrated safe operating history of NREL in general and these systems specifically, the nature of the risks identified, and the layered set of administrative and engineering controls, it is clear that this facility falls within the DOE Low Hazard Class. Each operation can restart only after it has passed an Operational Readiness Review, comparing it to the requirements of this SAR, while subsequent safety inspections will ensure future compliance.

  2. XML Document XML Document Types and Validation

    E-Print Network [OSTI]

    Weber, Gregory D.

    XML Document Types and Validation IIM-I340 Objectives XML Document Types and Validation IIM-I340 April, 2010 #12;XML Document Types and Validation IIM-I340 Objectives Learning Objectives Understand: The need for validation Two ways to specify validity: Document Type Definitions (DTDs) XML Schemas #12;XML

  3. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-11-20T23:59:59.000Z

    The objective of this Order is to establish facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. The Order has Change 1 dated 11-16-95, Change 2 dated 10-24-96, and the latest Change 3 dated 11-22-00 incorporated. The latest change satisfies a commitment made to the Defense Nuclear Facilities Safety Board (DNFSB) in response to DNFSB recommendation 97-2, Criticality Safety.

  4. Preliminary nuclear safety assessment of the NEPST (Topaz II) space reactor program

    SciTech Connect (OSTI)

    Marshall, A.C.

    1993-01-01T23:59:59.000Z

    The United States (US) Strategic Defense Initiative Organization (SDIO) decided to investigate the possibility of launching a Russian Topaz II space nuclear power system. A preliminary nuclear safety assessment was conducted to determine whether or not a space mission could be conducted safely and within budget constraints. As part of this assessment, a safety policy and safety functional requirements were developed to guide both the safety assessment and future Topaz II activities. A review of the Russian flight safety program was conducted and documented. Our preliminary nuclear safety assessment included a number of deterministic analyses, such as; neutronic analysis of normal and accident configurations, an evaluation of temperature coefficients of reactivity, a reentry and disposal analysis, an analysis of postulated launch abort impact accidents, and an analysis of postulated propellant fire and explosion accidents. Based on the assessment to date, it appears that it will be possible to safely launch the Topaz II system in the US with a modification to preclude water flooded criticality. A full scale safety program is now underway.

  5. Office of Environment, Safety and Health Assessments Protocol...

    Energy Savers [EERE]

    the Development and Maintenance of Criteria Review and Approach Documents, March 2015 (Revision 1) - PROTOCOL - EA-30-01 Office of Environment, Safety and Health Assessments...

  6. Safety Planning Guidance for Hydrogen and Fuel Cell Projects

    Fuel Cell Technologies Publication and Product Library (EERE)

    This guidance document provides information on safety requirements for hydrogen and fuel cell projects funded by the U.S. Department of Energy Fuel Cell Technologies Program.

  7. Independent Oversight Assessment of the Nuclear Safety Culture...

    Energy Savers [EERE]

    Safety Research document "MANAGEMENT OF CHANGE IN THE NUCLEAR INDUSTRY - Evidence from maintenance reorganizations," NKS 119, March 2006. xiv | RECOMMENDATIONS Enforcement and...

  8. Mixed-oxide fuel decay heat analysis for BWR LOCA safety evaluation

    SciTech Connect (OSTI)

    Chiang, R. T. [AREVA Inc., 303 Ravendale Drive, Mountain View, CA 94043 (United States)

    2013-07-01T23:59:59.000Z

    The mixed-oxide (MOX) fuel decay heat behavior is analyzed for Boiling Water Reactor (BWR) Loss of Coolant Accident (LOCA) safety evaluation. The physical reasoning on why the decay heat power fractions of MOX fuel fission product (FP) are significantly lower than the corresponding decay heat power fractions of uranium-oxide (UOX) fuel FP is illustrated. This is primarily due to the following physical phenomena. -The recoverable energies per fission of plutonium (Pu)-239 and Pu-241 are significantly higher than those of uranium (U)-235 and U-238. Consequently, the fission rate required to produce the same amount of power in MOX fuel is significantly lower than that in UOX fuel, which leads to lower subsequent FP generation rate and associated decay heat power in MOX fuel than those in UOX fuel. - The effective FP decay energy per fission of Pu-239 is significantly lower than the corresponding effective FP decay energy per fission of U-235, e.g., Pu-239's 10.63 Mega-electron-Volt (MeV) vs. U-235's 12.81 MeV at the cooling time 0.2 second. This also leads to lower decay heat power in MOX fuel than that in UOX fuel. The FP decay heat is shown to account for more than 90% of the total decay heat immediately after shutdown. The FP decay heat results based on the American National Standard Institute (ANSI)/American Nuclear Society (ANS)-5.1-1979 standard method are shown very close to the corresponding FP decay heat results based on the ANSI/ANS-5.1-2005 standard method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method are shown very close to but mostly slightly lower than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1971 method. The FP decay heat results based on the ANSI/ANS-5.1-1979 simplified method or the ANSI/ANS-5.1-1971 method are shown significantly larger than the corresponding FP decay heat results based on the ANSI/ANS-5.1-1979 standard method or the ANSI/ANS-5.1-2005 standard method. (authors)

  9. Fuzzy Typing for Document Management Alison HUETTNER

    E-Print Network [OSTI]

    Wu, Dekai

    Fuzzy Typing for Document Management Alison HUETTNER Clairvoyance Corporation 5301 Fifth Avenue method of document analysis and management, based on a combination of techniques from NLP and fuzzy logic typing for document management. The fuzzy typing approach is general in scope and can be applied to many

  10. Omega documentation

    SciTech Connect (OSTI)

    Howerton, R.J.; Dye, R.E.; Giles, P.C.; Kimlinger, J.R.; Perkins, S.T.; Plechaty, E.F.

    1983-08-01T23:59:59.000Z

    OMEGA is a CRAY I computer program that controls nine codes used by LLNL Physical Data Group for: 1) updating the libraries of evaluated data maintained by the group (UPDATE); 2) calculating average values of energy deposited in secondary particles and residual nuclei (ENDEP); 3) checking the libraries for internal consistency, especially for energy conservation (GAMCHK); 4) producing listings, indexes and plots of the library data (UTILITY); 5) producing calculational constants such as group averaged cross sections and transfer matrices for diffusion and Sn transport codes (CLYDE); 6) producing and updating standard files of the calculational constants used by LLNL Sn and diffusion transport codes (NDFL); 7) producing calculational constants for Monte Carlo transport codes that use group-averaged cross sections and continuous energy for particles (CTART); 8) producing and updating standard files used by the LLNL Monte Carlo transport codes (TRTL); and 9) producing standard files used by the LANL pointwise Monte Carlo transport code MCNP (MCPOINT). The first four of these functions and codes deal with the libraries of evaluated data and the last five with various aspects of producing calculational constants for use by transport codes. In 1970 a series, called PD memos, of internal and informal memoranda was begun. These were intended to be circulated among the group for comment and then to provide documentation for later reference whenever questions arose about the subject matter of the memos. They have served this purpose and now will be drawn upon as source material for this more comprehensive report that deals with most of the matters covered in those memos.

  11. Accident Analysis Guidance for Completion of 10 CFR 830-Compliant DSAs

    SciTech Connect (OSTI)

    Vincent, A.

    2002-06-24T23:59:59.000Z

    Safety analysis contractors responsible for existing nuclear facilities are required to submit a Documented Safety Analysis to the Department of Energy for approval by April 2003. Recognizing that schedule and resource limitations may be significant, an initiative is underway to make available a set of guidance tools. The guidance is in the form of a peer-reviewed Accident Analysis Guidebook, a series of application guides for ''safe harbor'' computer codes, establishment of a configuration-controlled collection of safety analysis software and a central registry to maintain it, and periodic analytical training on accident analysis methods. Delivery of the majority of these products is scheduled to be in FY 2003.

  12. Analysis of the Relationship Between Vehicle Weight/Size and Safety, and Implications for Federal Fuel Economy Regulation

    E-Print Network [OSTI]

    Wenzel, Thomas P.

    2010-01-01T23:59:59.000Z

    for Federal Fuel Economy Regulation Final Report preparedand have higher fuel economy, and safer than conventionaland have higher fuel economy, without sacrificing safety. 1.

  13. Partial Safety Analysis for a Reduced Uranium Enrichment Core for the High Flux Isotope Reactor

    SciTech Connect (OSTI)

    Primm, Trent [ORNL; Gehin, Jess C [ORNL

    2009-04-01T23:59:59.000Z

    A computational model of the reactor core of the High Flux Isotope Rector (HFIR) was developed in order to analyze non-destructive accidents caused by transients during reactor operation. The reactor model was built for the latest version of the nuclear analysis software package called Program for the Analysis of Reactor Transients (PARET). Analyses performed with the model constructed were compared with previous data obtained with other tools in order to benchmark the code. Finally, the model was used to analyze the behavior of the reactor under transients using a different nuclear fuel with lower enrichment of uranium (LEU) than the fuel currently used, which has a high enrichment of uranium (HEU). The study shows that the presence of fertile isotopes in LEU fuel, which increases the neutron resonance absorption, reduces the impact of transients on the fuel and enhances the negative reactivity feedback, thus, within the limitations of this study, making LEU fuel appear to be a safe alternative fuel for the reactor core.

  14. Safety evaluation of a hydrogen fueled transit bus

    SciTech Connect (OSTI)

    Coutts, D.A.; Thomas, J.K.; Hovis, G.L.; Wu, T.T. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1997-12-31T23:59:59.000Z

    Hydrogen fueled vehicle demonstration projects must satisfy management and regulator safety expectations. This is often accomplished using hazard and safety analyses. Such an analysis has been completed to evaluate the safety of the H2Fuel bus to be operated in Augusta, Georgia. The evaluation methods and criteria used reflect the Department of Energy`s graded approach for qualifying and documenting nuclear and chemical facility safety. The work focused on the storage and distribution of hydrogen as the bus motor fuel with emphases on the technical and operational aspects of using metal hydride beds to store hydrogen. The safety evaluation demonstrated that the operation of the H2Fuel bus represents a moderate risk. This is the same risk level determined for operation of conventionally powered transit buses in the United States. By the same criteria, private passenger automobile travel in the United States is considered a high risk. The evaluation also identified several design and operational modifications that resulted in improved safety, operability, and reliability. The hazard assessment methodology used in this project has widespread applicability to other innovative operations and systems, and the techniques can serve as a template for other similar projects.

  15. Chapter 13 Employee Health and Safety Table of Contents

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Employee Health and Safety 13.01 Safety Policy and Accident Reporting Accident Analysis and PreventionChapter 13 Employee Health and Safety Table of Contents 13.01 Safety Policy and Accident Reporting.05 Abnormally Hazardous Tasks 1 #12;Chapter 13 Employee Health and Safety 13.01 Safety Policy and Accident

  16. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect (OSTI)

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01T23:59:59.000Z

    This report describes a gap analysis performed in the process of developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with rigorous verification, validation, and software quality requirements. The gap analyses documented in this report were are performed during an initial gap analysis to identify candidate codes and tools to support the development and integration of the Waste IPSC, and during follow-on activities that delved into more detailed assessments of the various codes that were acquired, studied, and tested. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. The gap analysis indicates that significant capabilities may already exist in the existing THC codes although there is no single code able to fully account for all physical and chemical processes involved in a waste disposal system. Large gaps exist in modeling chemical processes and their couplings with other processes. The coupling of chemical processes with flow transport and mechanical deformation remains challenging. The data for extreme environments (e.g., for elevated temperature and high ionic strength media) that are needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  17. Computational analysis of whole body CT documents a bone structure alteration in adult advanced chronic lymphocytic leukemia

    E-Print Network [OSTI]

    Piana, Michele

    progression. PET/CT images were analyzed using dedicated software, able to recognize an external 2-pixel bone ring whose Hounsfield coefficient served as cut off to recognize trabecular and compact bone. PET/CT of the disease. Keywords: Image Analysis, Bone Marrow, Skeletal Structure, ACLL, PET/CT #12;3 Introduction

  18. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    SciTech Connect (OSTI)

    TOMASZEWSKI, T.A.

    2000-04-25T23:59:59.000Z

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  19. Technical Data to Justify Full Burnup Credit in Criticality Safety Licensing Analysis

    SciTech Connect (OSTI)

    Enercon Services, Inc.

    2011-03-14T23:59:59.000Z

    Enercon Services, Inc. (ENERCON) was requested under Task Order No.2 to identify scientific and technical data needed to benchmark and justify Full Burnup Credit, which adds 16 fission products and 4 minor actinides1 to Actinide-Only burnup credit. The historical perspective for Full Burnup Credit is discussed, and interviews of organizations participating in burnup credit activities are summarized as a basis for identifying additional data needs and making recommendation. Input from burnup credit participants representing two segments of the commercial nuclear industry is provided. First, the Electric Power Research Institute (EPRI) has been very active in the development of Full Burnup Credit, representing the interests of nuclear utilities in achieving capacity gains for storage and transport casks. EPRI and its utility customers are interested in a swift resolution of the validation issues that are delaying the implementation of Full Burnup Credit [EPRI 2010b]. Second, used nuclear fuel storage and transportation Cask Vendors favor improving burnup credit beyond Actinide-Only burnup credit, although their discussion of specific burnup credit achievements and data needs was limited citing business sensitive and technical proprietary concerns. While Cask Vendor proprietary items are not specifically identified in this report, the needs of all nuclear industry participants are reflected in the conclusions and recommendations of this report. In addition, Oak Ridge National Laboratory (ORNL) and Sandia National Laboratory (SNL) were interviewed for their input into additional data needs to achieve Full Burnup Credit. ORNL was very open to discussions of Full Burnup Credit, with several telecoms and a visit by ENERCON to ORNL. For many years, ORNL has provided extensive support to the NRC regarding burnup credit in all of its forms. Discussions with ORNL focused on potential resolutions to the validation issues for the use of fission products. SNL was helpful in ENERCON's understanding of the difficult issues related to obtaining and analyzing additional cross section test data to support Full Burnup Credit. A PIRT (Phenomena Identification and Ranking Table) analysis was performed by ENERCON to evaluate the costs and benefits of acquiring different types of nuclear data in support of Full Burnup Credit. A PIRT exercise is a formal expert elicitation process with the final output being the ranking tables. The PIRT analysis (Table 7-4: Results of PIRT Evaluation) showed that the acquisition of additional Actinide-Only experimental data, although beneficial, was associated with high cost and is not necessarily needed. The conclusion was that the existing Radiochemical Assay (RCA) data plus the French Haut Taux de Combustion (HTC)2 and handbook Laboratory Critical Experiment (LCE) data provide adequate benchmark validation for Actinide-Only Burnup Credit. The PIRT analysis indicated that the costs and schedule to obtain sufficient additional experimental data to support the addition of 16 fission products to Actinide-Only Burnup Credit to produce Full Burnup Credit are quite substantial. ENERCON estimates the cost to be $50M to $100M with a schedule of five or more years. The PIRT analysis highlights another option for fission product burnup credit, which is the application of computer-based uncertainty analyses (S/U - Sensitivity/Uncertainty methodologies), confirmed by the limited experimental data that is already available. S/U analyses essentially transform cross section uncertainty information contained in the cross section libraries into a reactivity bias and uncertainty. Recent work by ORNL and EPRI has shown that a methodology to support Full Burnup Credit is possible using a combination of traditional RCA and LCE validation plus S/U validation for fission product isotopics and cross sections. Further, the most recent cross section data (ENDF/B-VII) can be incorporated into the burnup credit codes at a reasonable cost compared to the acquisition of equivalent experimental data. ENERCON concludes that even with the cos

  20. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-12-28T23:59:59.000Z

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  1. Untitled Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevision to the Analysis of

  2. Untitled Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevision to the Analysis5,

  3. Untitled Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevision to the Analysis5,

  4. Untitled Document

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrinceton PlasmaAfternoon TalksDigitalRevision to the Analysis5,

  5. Scanned Document

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysis andBHoneywell9/%2ARequest| Nationalgrew

  6. Nuclear criticality safety department training implementation

    SciTech Connect (OSTI)

    Carroll, K.J.; Taylor, R.G.; Worley, C.A.

    1996-09-06T23:59:59.000Z

    The Nuclear Criticality Safety Department (NCSD) is committed to developing and maintaining a staff of qualified personnel to meet the current and anticipated needs in Nuclear Criticality Safety (NCS) at the Oak Ridge Y-12 Plant. The NCSD Qualification Program is described in Y/DD-694, Qualification Program, Nuclear Criticality Safety Department This document provides a listing of the roles and responsibilities of NCSD personnel with respect to training and details of the Training Management System (TMS) programs, Mentoring Checklists and Checksheets, as well as other documentation utilized to implement the program. This document supersedes Y/DD-696, Revision 2, dated 3/27/96, Training Implementation, Nuclear Criticality Safety Department. There are no backfit requirements associated with revisions to this document.

  7. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    The order establishes facility and programmatic safety requirements for nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and the System Engineer Program.Chg 1 incorporates the use of DOE-STD-1189-2008, Integration of Safety into the Design Process, mandatory for Hazard Category 1, 2 and 3 nuclear facilities. Cancels DOE O 420.1A.

  8. Biological Safety

    Broader source: Energy.gov [DOE]

    The DOE's Biological Safety Program provides a forum for the exchange of best practices, lessons learned, and guidance in the area of biological safety. This content is supported by the Biosurety Executive Team. The Biosurety Executive Team is a DOE-chartered group. The DOE Office of Worker Safety and Health Policy provides administrative support for this group. The group identifies biological safety-related issues of concern to the DOE and pursues solutions to issues identified.

  9. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28T23:59:59.000Z

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  10. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-10-13T23:59:59.000Z

    Establishes facility safety requirements related to: nuclear safety design, criticality safety, fire protection and natural phenomena hazards mitigation. Cancels DOE 5480.7A, DOE 5480.24, DOE 5480.28 and Division 13 of DOE 6430.1A. Canceled by DOE O 420.1A.

  11. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-12-22T23:59:59.000Z

    This Order establishes facility and programmatic safety requirements for Department of Energy facilities, which includes nuclear and explosives safety design criteria, fire protection, criticality safety, natural phenomena hazards mitigation, and the System Engineer Program. Cancels DOE O 420.1A. DOE O 420.1B Chg 1 issued 4-19-10.

  12. Facility Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2012-12-04T23:59:59.000Z

    The Order establishes facility and programmatic safety requirements for DOE and NNSA for nuclear safety design criteria, fire protection, criticality safety, natural phenomena hazards (NPH) mitigation, and System Engineer Program. Cancels DOE O 420.1B, DOE G 420.1-2 and DOE G 420.1-3.

  13. INTEGRATED SAFETY MANAGEMENT SYSTEM SAFETY CULTURE IMPROVEMENT INITIATIVE

    SciTech Connect (OSTI)

    MCDONALD JA JR

    2009-01-16T23:59:59.000Z

    In 2007, the Department of Energy (DOE) identified safety culture as one of their top Integrated Safety Management System (ISMS) related priorities. A team was formed to address this issue. The team identified a consensus set of safety culture principles, along with implementation practices that could be used by DOE, NNSA, and their contractors. Documented improvement tools were identified and communicated to contractors participating in a year long pilot project. After a year, lessons learned will be collected and a path forward determined. The goal of this effort was to achieve improved safety and mission performance through ISMS continuous improvement. The focus of ISMS improvement was safety culture improvement building on operating experience from similar industries such as the domestic and international commercial nuclear and chemical industry.

  14. Advanced nuclear reactor safety analysis: the simulation of a small break loss of coolant accident in the simplified boiling water reactor using RELAP5/MOD3.1.1

    E-Print Network [OSTI]

    Faust, Christophor Randall

    1995-01-01T23:59:59.000Z

    Electric (GE) in their Standard Safety Analysis Report (SAR) for the term of investigation (I 5,500 real time seconds). While no safety related parameters were exceeded, certain trends appearing near the end of the calculation suggest the need for further...

  15. Research Data Management - Documentation

    E-Print Network [OSTI]

    Collins, Anna

    2013-01-01T23:59:59.000Z

    This short (16 slide) presentation "Documentation" explains the need to create documentation using several clear examples of the benefits from good documentation (and what can happen if it is not good), making research reproducible...

  16. Occupational Safety Review of High Technology Facilities

    SciTech Connect (OSTI)

    Lee Cadwallader

    2005-01-31T23:59:59.000Z

    This report contains reviews of operating experiences, selected accident events, and industrial safety performance indicators that document the performance of the major US DOE magnetic fusion experiments and particle accelerators. These data are useful to form a basis for the occupational safety level at matured research facilities with known sets of safety rules and regulations. Some of the issues discussed are radiation safety, electromagnetic energy exposure events, and some of the more widespread issues of working at height, equipment fires, confined space work, electrical work, and other industrial hazards. Nuclear power plant industrial safety data are also included for comparison.

  17. Formal Management Review of the Safety Basis Calculations Noncompliance

    SciTech Connect (OSTI)

    Altenbach, T J

    2008-06-24T23:59:59.000Z

    In Reference 1, LLNL identified a failure to adequately implement an institutional commitment concerning administrative requirements governing the documentation of Safety Basis calculations supporting the Documented Safety Analysis (DSA) process for LLNL Hazard Category 2 and Category 3 nuclear facilities. The AB Section has discovered that the administrative requirements of AB procedure AB-006, 'Safety Basis Calculation Procedure for Category 2 and 3 Nuclear Facilities', have not been uniformly or consistently applied in the preparation of Safety Basis calculations for LLNL Hazard Category 2 and 3 Nuclear Facilities. The SEP Associated Director has directed the AB Section to initiate a formal management review of the issue that includes, but is not necessarily limited to the following topics: (1) the basis establishing Ab-006 as a required internal procedure for Safety Basis calculations; (2) how requirements for Safety Basis calculations flow down in the institutional DSA process; (3) the extent to which affected Laboratory organizations have explicitly complied with the requirements of Procedure AB-006; (4) what alternative approaches LLNL organizations has used for Safety Basis calculations and how these alternate approaches compare with Procedure AB-006 requirements; and (5) how to reconcile Safety Basis calculations that were performed before Procedure AB-006 came into existence (i.e., August 2001). The management review2 also includes an extent-of-condition evaluation to determine how widespread the discovered issue is throughout Laboratory organizations responsible for operating nuclear facilities, and to determine if implementation of AB procedures other than AB-006 has been similarly affected. In Reference 2, Corrective Action 1 was established whereby the SEP Directorate will develop a plan for performing a formal management review of the discovered condition, including an extent-of condition evaluation. In Reference 3, a plan was provided to prepare a formal management review, satisfying Corrective Action 1. An AB-006 Working Group was formed,led by the AB Section, with representatives from the Nuclear Materials Technology Program (NMTP), the Radioactive and Hazardous Waste Management (RHWM) Division, and the Packaging and Transportation Safety (PATS) Program. The key action of this management review was for Working Group members to conduct an assessment of all safety basis calculations referenced in their respective DSAs. Those assessments were tasked to provide the following information: (1) list which safety basis calculations correctly follow AB-006 and therefore require no additional documentation; (2) identify and list which safety basis calculations do not strictly follow AB-006, these include NMTP Engineering Notes, Engineering Safety Notes, and calculations by organizations external to the nuclear facilities (such as Plant Engineering), subcontractor calculations, and other internally generated calculations. Each of these will be reviewed and listed on a memorandum with the facility manager's (or designee's) signature accepting that calculation for use in the DSA. If any of these calculations are lacking the signature of a technical reviewer, they must also be reviewed for technical content and that review documented per AB-006.

  18. Sandia Energy - SCADA Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documents Home Stationary Power Grid Modernization Cyber Security for Electric Infrastructure National Supervisory Control and Data Acquisition (SCADA) SCADA Documents SCADA...

  19. ENVIRONMENT, SAFETY, HEALTH, AND QUALITY DIVISION Chapter 42: Subcontractor Safety

    E-Print Network [OSTI]

    Wechsler, Risa H.

    URL: http://www-group.slac.stanford.edu/esh/eshmanual/references/subcontractorProcedNonGreen.pdf 1 Purpose The purpose of this procedure is to ensure that SLAC's environment, safety, and health (ESH) requirements, as documented in the hazard-specific chapters of this ESH Manual, are incorporated

  20. Light-Weight Radioisotope Heater Unit Safety Analysis Report (LWRHU-SAR). Volume I. A. Introduction and executive summary. B. Reference Design Document (RDD)

    SciTech Connect (OSTI)

    Johnson, E.W.

    1985-10-01T23:59:59.000Z

    The orbiter and probe portions of the NASA Galileo spacecraft contain components which require auxiliary heat during the mission. To meet these needs, the Department of Energy's (DOE's) Office of Special Nuclear Projects (OSNP) has sponsored the design, fabrication, and testing of a one-watt encapsulated plutonium dioxide-fueled thermal heater named the Light-Weight Radioisotope Heater Unit (LWRHU). This report addresses the radiological risks which might be encountered by people both at the launch area and worldwide should postulate mission failures or malfunctions occur, which would result in the release of the LWRHUs to the environment. Included are data from the design, mission descriptions, postulated accidents with their consequences, test data, and the derived source terms and personnel exposures for the various events.