National Library of Energy BETA

Sample records for dixie meadows area

  1. Dixie Meadows Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Dixie Meadows Geothermal Area Geothermal Region Central...

  2. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  3. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 U.S. Department...

  4. Soil Sampling At Dixie Valley Geothermal Area (Nash & D., 1997...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Dixie Valley Geothermal Area...

  5. Micro-Earthquake At Dixie Valley Geothermal Area (Katz & J.,...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Katz & J., 1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Dixie Valley Geothermal Area...

  6. Chemical Logging At Dixie Valley Geothermal Area (Los Alamos...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area (Los Alamos National Laboratory, NM, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Chemical Logging At Dixie...

  7. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wisian & Blackwell, 2004) Exploration...

  8. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration...

  9. Geothermal Prospecting using Hyperspectral Imaging and Field Observations, Dixie Meadows, NV

    SciTech Connect (OSTI)

    Kennedy-Bowdoin, T; Silver, E; Martini, B; Pickles, W

    2004-04-26

    In an ongoing project to relate surface hydrothermal alteration to structurally controlled geothermal aquifers, we mapped a 16 km swath of the eastern front of the Stillwater Range using Hyperspectral fault and mineral mapping techniques. The Dixie Valley Fault system produces a large fractured aquifer heating Pleistocene aged groundwater to a temperature of 285 C at 5-6 km. Periodically over the last several thousand years, seismic events have pushed these heated fluids to the surface, leaving a rich history of hydrothermal alteration in the Stillwater Mountains. At Dixie Hot Springs, the potentiometric surface of the aquifer intersects the surface, and 75 C waters flow into the valley. We find a high concentration of alunite, kaolinite, and dickite on the exposed fault surface directly adjacent to a series of active fumaroles on the range front fault. This assemblage of minerals implies interaction with water in excess of 200 C. Field spectra support the location of the high temperature mineralization. Fault mapping using a Digital Elevation Model in combination with mineral lineation and field studies shows that complex fault interactions in this region are improving permeability in the region leading to unconfined fluid flow to the surface. Seismic studies conducted 10 km to the south of Dixie Meadows show that the range front fault dips 25-30 to the southeast (Abbott et al., 2001). At Dixie Meadows, the fault dips 35 to the southeast, demonstrating that this region is part of the low angle normal fault system that produced the Dixie Valley Earthquake in 1954 (M=6.8). We conclude that this unusually low angle faulting may have been accommodated by the presence of heated fluids, increasing pore pressure within the fault zone. We also find that younger synthetic faulting is occurring at more typical high angles. In an effort to present these findings visually, we created a cross-section, illustrating our interpretation of the subsurface structure and the

  10. Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson...

    Open Energy Info (EERE)

    Okaya & Thompson, 1985) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Conceptual Model At Dixie Valley Geothermal Area (Okaya & Thompson, 1985)...

  11. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Dixie Valley Geothermal Area (Wannamaker, Et Al., 2006) Exploration...

  12. Hyperspectral Imaging At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Exploration Technique Hyperspectral Imaging Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis This Study was...

  13. Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Dixie Hot Springs Area (Combs 2006) Exploration Activity...

  14. Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....

    Open Energy Info (EERE)

    Smith, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001)...

  15. Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Wood, 2002) Exploration Activity Details...

  16. Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity...

  17. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Dixie Valley Geothermal Area (Nash & D., 1997)...

  18. Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash ...

    Open Energy Info (EERE)

    Nash & D., 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Dixie Valley Geothermal Area (Nash & D., 1997)...

  19. Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

  20. Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

  1. Conceptual Model At Dixie Valley Geothermal Area (Reed, 2007...

    Open Energy Info (EERE)

    mean residence times, large surface areas, and adjacent damage zones that provide permeability. The tracers were injected in the center of the Dixie Valley Geothermal Field and...

  2. Numerical Modeling At Dixie Valley Geothermal Area (McKenna ...

    Open Energy Info (EERE)

    Numerical Modeling At Dixie Valley Geothermal Area (McKenna & Blackwell, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Numerical Modeling...

  3. Dixie Meadows Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    of Geofluid: Sanyal Classification (Wellhead): Reservoir Temp (Geothermometry): Reservoir Temp (Measured): Sanyal Classification (Reservoir): Depth to Top of Reservoir:...

  4. Dixie Meadows Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Date Lead Agency Development Phase(s) Techniques DOI-BLM-NV-C010-2010-0008-CX CX Terra-Gen Power LLC 30 June 2009 25 January 2010 Bureau of Land Management GeothermalExploration...

  5. Magnetotellurics At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Phil...

  6. 2-M Probe Survey At Dixie Valley Geothermal Area (Skord, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe Survey At Dixie Valley Geothermal Area (Skord, Et Al., 2001) Exploration Activity...

  7. Multispectral Imaging At Dixie Valley Geothermal Area (Pal &...

    Open Energy Info (EERE)

    effort of remote sensing specialists and industry sponsored by the U.S. Department of Energy. They are using Hyperspectral data for mineralogy mapping of outcrops. Dixie valley...

  8. Radar At Dixie Valley Geothermal Area (Foxall & Vasco, 2008)...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis This study was conducted to image ground subsidence over the Dixie Valley Geothermal Field Notes An interferometric synthetic aperture...

  9. Magnetotellurics At Dixie Valley Geothermal Area (Laney, 2005...

    Open Energy Info (EERE)

    Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Philip E. Wannamaker (2003) Initial Results of Magnetotelluric Array Surveying at the Dixie...

  10. Aerial Photography At Dixie Valley Geothermal Area (Helton, Et...

    Open Energy Info (EERE)

    analyze faults in southern Dixie Valley. The study was done for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. Notes High...

  11. Teleseismic-Seismic Monitoring At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Ileana M....

  12. Conceptual Model At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  13. Numerical Modeling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Christoph...

  14. Gas Flux Sampling At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  15. Geothermal Literature Review At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  16. Ground Magnetics At Dixie Valley Geothermal Area (Iovenitti,...

    Open Energy Info (EERE)

    H. Ibser, Jennifer Lewicki, B. Mack. Kennedy, Michael Swyer (2013) Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Additional...

  17. Geographic Information System At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    Unknown Exploration Basis This project is being conducted to develop exploration methodology for EGS development. Dixie Valley is being used as a calibration site for the EGS...

  18. Compound and Elemental Analysis At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    to be related to characteristics of the fluid at Dixie Valley such as a relatively high pH and low concentrations of sulfate and chloride. References Scott A. Wood (2002) Behavior...

  19. Hyperspectral Imaging At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    Field Area Exploration Technique Hyperspectral Imaging Activity Date Spectral Imaging Sensor AVIRIS Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of...

  20. Ground Gravity Survey At Dixie Valley Geothermal Area (Iovenitti...

    Open Energy Info (EERE)

    project area. These data were used in conjunction with past gravity data reported in by Smith et al (2001) and Blackwell et al (2005). The analysis of these data had not been...

  1. Conceptual Model At Dixie Valley Geothermal Area (Waibel, 1987...

    Open Energy Info (EERE)

    and becoming more complex over the years. Notes This model focused on reservoir permeability and its relation to stress. The concept was that an area of high permeability was...

  2. LiDAR At Dixie Valley Geothermal Area (Helton, Et Al., 2011)...

    Open Energy Info (EERE)

    analyze faults in southern Dixie Valley. The study was done for the Department of the Navy Geothermal Program Office's NAS Fallon Geothermal Exploration Project. Notes High...

  3. Well Log Data At Dixie Valley Geothermal Area (Barton, Et Al...

    Open Energy Info (EERE)

    Exploration Basis Well log data was used to investigate the relationship between permeability and the contemporary in situ stress field in the Dixie Valley Geothermal Reservoir....

  4. Dixie Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  5. Soil Sampling At Lester Meadow Area (Vice, 2008) | Open Energy...

    Open Energy Info (EERE)

    Date Usefulness could be useful with more improvements DOE-funding Unknown References Daniel H. Vice (2008) Lester Meadow, Washington- A Geothermal Anomaly Additional References...

  6. Recency Of Faulting And Neotechtonic Framework In The Dixie Valley...

    Open Energy Info (EERE)

    Photography At Beowawe Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Brady Hot Springs Area (Wesnousky, Et Al., 2003) Aerial Photography At Dixie Valley...

  7. Dixie Electric Coop | Open Energy Information

    Open Energy Info (EERE)

    Dixie Electric Coop Place: Alabama Phone Number: Montgomery: 334.288.1163 or Union Springs: 334.738.2500 Website: dixie.coop Twitter: @DixieCoop Facebook: https:...

  8. Seismicity related to geothermal development in Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Ryall, A.S.; Vetter, U.R.

    1982-07-08

    A ten-station seismic network was operated in and around the Dixie Valley area from January 1980 to November 1981; three of these stations are still in operation. Data from the Dixie Valley network were analyzed through 30 Jun 1981, and results of analysis were compared with analysis of somewhat larger events for the period 1970-1979. The seismic cycle in the Western Great Basic, the geologic structural setting, and the instrumentation are also described.

  9. Dixie Valley Bottoming Binary Cycle

    Broader source: Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  10. Dixie Electric Power Assn | Open Energy Information

    Open Energy Info (EERE)

    Power Assn Place: Mississippi Phone Number: 601-425-2535 Website: www.dixieepa.com Twitter: @DixieEPA Facebook: https:www.facebook.comDixieElectricMS Outage Hotline:...

  11. Urbanization and recharge in the vicinity of East Meadow Brook, Nassau County, New York, part 4. Water quality in the headwaters area, 1988-93. Water resources investigations

    SciTech Connect (OSTI)

    Brown, C.J.; Scorca, M.P.; Stockar, G.G.; Stumm, F.; Ku, H.F.H.

    1997-12-31

    This report (1) discusses the concentration of constituents in precipitation and stormwater in the headwaters area of East Meadow Brook, and (2) describes the extent, and depth to which ground water beneath the stream is affected by stormwater. It also relates the concentrations and loads of selected constituents, including sodium and chloride, to storm discharge and season. This is the final report from the four-part study that examined stormwater and ground water at East Meadow Brook during 1988-93.

  12. Dixie Valley, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    article is a stub. You can help OpenEI by expanding it. Dixie Valley is a city in Churchill County, Nevada. Energy Generation Facilities in Dixie Valley, Nevada Dixie Valley...

  13. Structure, Stratigraphy, and Tectonics of the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    and Tectonics of the Dixie Valley Geothermal Site, Dixie Valley, Nevada Author Gabriel L. Plank Published Journal Geothermal Resources Council Transactions, 1995 DOI Not...

  14. Dixie Valley - Geothermal Development in the Basin and Range...

    Open Energy Info (EERE)

    Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Dixie Valley - Geothermal Development in the Basin and Range Citation Dixie...

  15. Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie...

    Open Energy Info (EERE)

    Mineralogic Interpretation Of Hymap Hyperspectral Data, Dixie Valley, Nevada, USA-Initial Results Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  16. Dixie Escalante R E A, Inc (Arizona) | Open Energy Information

    Open Energy Info (EERE)

    Phone Number: (928) 347-5870 Website: www.dixiepower.com Twitter: @DixieEscalante Facebook: https:www.facebook.comDixieEscalanteElectric Outage Hotline: (928) 347-5870...

  17. Dixie Escalante R E A, Inc | Open Energy Information

    Open Energy Info (EERE)

    Dixie Escalante R E A, Inc Place: Utah Phone Number: Beryl Office (435) 439-5311 Dixie Office (435) 673-3297 Website: www.dixiepower.com Outage Hotline: Beryl Office (435)...

  18. Dixie Electric Cooperative- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    Dixie Electric Cooperative, a Touchstone Electric Cooperative, offers the Energy Resources Conservation (ERC) loan to residential customers pursue energy efficiency measures. The program allows a...

  19. Exploration and Development at Dixie Valley, Nevada- Summary...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada- Summary of Doe Studies Authors David D. Blackwell, Richard P. Smith and Maria C. Richards Conference Thirty-Second Workshop on Geothermal Reservoir...

  20. Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...

    Open Energy Info (EERE)

    Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  1. Egs Exploration Methodology Project Using the Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Egs Exploration Methodology Project Using the Dixie Valley Geothermal System, Nevada, Status Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  2. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    could possibly represent a deep hydrothermal source in the lower crust. References Philip E. Wannamaker, William M. Doerner, Derrick P. Hasterok (2006) Cryptic Faulting and...

  3. Magnetotellurics At Dixie Valley Geothermal Area (Wannamaker...

    Open Energy Info (EERE)

    Inversion cross sections were successful in resolving some uncertainties. References Philip E. Wannamaker, William M. Doerner, Derrick P. Hasterok (2007) Integrated Dense Array...

  4. New Meadows Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name New Meadows Biomass Facility Facility New Meadows Sector Biomass Owner Tamarack Energy Location New Meadows, Idaho Coordinates 44.9712808,...

  5. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    SciTech Connect (OSTI)

    Iovenitti, Joe

    2013-05-15

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  6. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

  7. Subsurface Electrical Measurements at Dixie Valley, Nevada, Using...

    Open Energy Info (EERE)

    Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. Dixie Valley Six Well Flow Test | Open Energy Information

    Open Energy Info (EERE)

    Six Well Flow Test Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Dixie Valley Six Well Flow Test Abstract A six well flow test was conducted...

  9. Hydrologic Properties of the Dixie Valley, Nevada, Geothermal...

    Open Energy Info (EERE)

    Hydrologic Properties of the Dixie Valley, Nevada, Geothermal Reservoir from Well-Test Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  10. Tracer Testing at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate...

    Open Energy Info (EERE)

    at Dixie Valley, Nevada, Using Pyrene Tetrasulfonate Amino G, and Fluorescein Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Tracer Testing at...

  11. DOI-BLM-NV-CO1000-2010-0021-CX | Open Energy Information

    Open Energy Info (EERE)

    21-CX CX at Coyote Canyon Geothermal Area for GeothermalExploration, CX for Electromagnetic Survey at Dixie Meadows Geothermal Lease for GeothermalExploration General NEPA...

  12. Restore McComas Meadows; Meadow Creek Watershed, 2005-2006 Annual Report.

    SciTech Connect (OSTI)

    McRoberts, Heidi

    2006-07-01

    The Nez Perce Tribe Department of Fisheries Resource Management, Watershed Division approaches watershed restoration with a ridge-top to ridge-top approach. Watershed restoration projects within the Meadow Creek watershed are coordinated and cost shared with the Nez Perce National Forest. The Nez Perce Tribe began watershed restoration projects within the Meadow Creek watershed of the South Fork Clearwater River in 1996. Progress has been made in restoring the watershed by excluding cattle from critical riparian areas through fencing, planting trees in riparian areas within the meadow and its tributaries, prioritizing culverts for replacement to accommodate fish passage, and decommissioning roads to reduce sediment input. During this contract period work was completed on two culvert replacement projects; Doe Creek and a tributary to Meadow Creek. Additionally construction was also completed for the ditch restoration project within McComas Meadows. Monitoring for project effectiveness and trends in watershed conditions was also completed. Road decommissioning monitoring, as well as stream temperature, sediment, and discharge were completed.

  13. Meadow Creek | Open Energy Information

    Open Energy Info (EERE)

    Meadow Creek Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Ridgeline Energy Developer Ridgeline Energy Energy Purchaser PacifiCorp...

  14. Meadow Lake II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Meadow Lake II Facility Meadow Lake II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Horizon Wind...

  15. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  16. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4

  17. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal

  18. Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Iovenitti, Joe

    2014-01-02

    FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal

  19. Exploratory Well At Dixie Valley Geothermal Area (Allis, Et Al...

    Open Energy Info (EERE)

    An approximate discharge of hot geothermal fluid of about 5 ls is estimated from the models, this equates to a loss of about 56 MW. References R. G. Allis, Stuart D. Johnson,...

  20. Ground Gravity Survey At Dixie Valley Geothermal Area (Allis...

    Open Energy Info (EERE)

    R. G. Allis, P. Gettings, D. S. Chapman (2000) Precise Gravimetry and Geothermal Reservoir Management Additional References Retrieved from "http:en.openei.orgw...

  1. Field Mapping At Dixie Valley Geothermal Area (Wesnousky, Et...

    Open Energy Info (EERE)

    were calculated using the Coulomb Failure Function. The models indicate that induced stress changes near the endpoints of recent fault ruptures seem to create ideal conditions...

  2. Conceptual Model At Dixie Valley Geothermal Area (Parchman, Et...

    Open Energy Info (EERE)

    1981 - 1981 Usefulness not useful DOE-funding Unknown Exploration Basis Conceptual models are the basis of any exploration or development activities. Many Conceptual models of...

  3. Conceptual Model At Dixie Valley Geothermal Area (Benoit, 1999...

    Open Energy Info (EERE)

    1976 - 1976 Usefulness not useful DOE-funding Unknown Exploration Basis Conceptual models are the basis of any exploration or development activities. Many Conceptual models of...

  4. Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    purpose of this research activity was to determine the fluid and heat source, Identify flow paths, and evaluate the possibility of a more extensive deep geothermal reservoir...

  5. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Features: Relict Geothermal Features: Volcanic Age: Host Rock Age: Host Rock Lithology: Cap Rock Age: Cap Rock Lithology: Click "Edit With Form" above to add content Geofluid...

  6. Tracer Testing At Dixie Valley Geothermal Area (Reed, 2007) ...

    Open Energy Info (EERE)

    tetrasulfonate compounds. Tracer analysis was conducted by a combination of liquid chromatography and ultraviolet-fluorescence spectroscopy. Mean residence time, fracture volume in...

  7. Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    local studies conducted in the past. Gravity data measured in the 1970's by Hunt Oil, Sun Oil, and Southland royalty (all unpublished reports) ware used. These data were combined...

  8. Aerial Photography At Dixie Valley Geothermal Area (Wesnousky...

    Open Energy Info (EERE)

    Field And Other Geothermal Fields Of The Basin And Range David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  9. Aeromagnetic Survey At Dixie Valley Geothermal Area (Grauch,...

    Open Energy Info (EERE)

    Nevada David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  10. Conceptual Model At Dixie Valley Geothermal Area (Thompson, Et...

    Open Energy Info (EERE)

    1984. References George A. Thompson, Laurent J. Meister, Alan T. Herring, Thomas E. Smith, Dennis B. Burke, Robert L. Kovach, Robert O. Burford, Iraj A. Salehi, M. Darroll Wood...

  11. Reflection Survey At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  12. Aerial Photography At Dixie Valley Geothermal Area (Blackwell...

    Open Energy Info (EERE)

    David D. Blackwell, Kenneth W. Wisian, Maria C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis and Structure of Basin and Range...

  13. Modeling-Computer Simulations At Dixie Valley Geothermal Area...

    Open Energy Info (EERE)

    vein structure associated with ore deposits. References David D. Blackwell, Richard P. Smith, Al Waibel, Maria C. Richards, Patrick Stepp (2009) Why Basin and Range Systems are...

  14. Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...

    Open Energy Info (EERE)

    m of alluvial and lacustrine deposits. The model also indicated that the central depression of the valley is offset to the west closer to the Stillwater Range. References...

  15. Dixie Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III -...

  16. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    suggest that helium isotopes are the best and possibly the only indication of deep permeability where high temperature fluids are masked beneath a cold reservoir. Notes 3He4He...

  17. Numerical Modeling At Dixie Valley Geothermal Area (Benoit, 1999...

    Open Energy Info (EERE)

    large geothermal flow test was performed where there was 6 geothermal wells flowing at once and 8 idle wells being monitored. The conceptual model developed from this flow test...

  18. Conceptual Model At Dixie Valley Geothermal Area (Bell, Et Al...

    Open Energy Info (EERE)

    to interpret the subsurface down to 20 km. References Elaine J. Bell, Lawrence T. Larson, Russell W. Juncal (1980) Geothermal Reservoir Assessment Case Study, Northern Basin...

  19. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    The overall goal of this effort was to provide experience and insight toward future geothermal development and geophysical borehole technologies. Notes Borehole logging and...

  20. Ground Gravity Survey At Dixie Valley Geothermal Field Area ...

    Open Energy Info (EERE)

    most useful in identifying the surface projection of subsurface contacts of greatest density contrast, (Blackwell et al., 2002). Thus where the contact is sharp and large the...

  1. Gravity survey of Dixie Valley, west-central Nevada | Open Energy...

    Open Energy Info (EERE)

    to library Report: Gravity survey of Dixie Valley, west-central Nevada Author Donald H. Schaefer Published US Geological Survey, 1983 Report Number 82-111 DOI Not Provided...

  2. Terra-Gen Power closes US$286m lease financing for Dixie Valley...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power closes US286m lease financing for Dixie Valley Abstract NA Author Think...

  3. A Case History of Injection Through 1991 at Dixie Valley, Nevada...

    Open Energy Info (EERE)

    History of Injection Through 1991 at Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Case History of Injection Through...

  4. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone ...

  5. Lester Meadow Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    GEA Development Phase: Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean...

  6. Lester Meadow Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Volume: Mean Capacity: USGS Mean Reservoir Temp: USGS Estimated Reservoir Volume: USGS Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure...

  7. Geobotanical Remote Sensing Applied To Targeting New Geothermal...

    Open Energy Info (EERE)

    Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of...

  8. DOI-BLM-NV-C010-2010-0008-CX | Open Energy Information

    Open Energy Info (EERE)

    CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2010-0008-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for Seismic Survey at...

  9. DOI-BLM-NV-C010-2012-0057-CX | Open Energy Information

    Open Energy Info (EERE)

    7-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0057-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for Thermal Gradient...

  10. DOI-BLM-NV-CO1000-2010-0009-CX | Open Energy Information

    Open Energy Info (EERE)

    CO1000-2010-0009-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-CO1000-2010-0009-CX CX at Dixie Meadows Geothermal Area for GeothermalExploration CX for...

  11. Meadow Lake II (3Q10) | Open Energy Information

    Open Energy Info (EERE)

    II (3Q10) Jump to: navigation, search Name Meadow Lake II (3Q10) Facility Meadow Lake II (3Q10) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  12. JLab Meadows Offer Environmental Benefits and Beauty | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meadows Offer Environmental Benefits and Beauty JLab Meadows Offer Environmental Benefits and Beauty Just two years after Facilities Management and Logistics staff proposed seeding about 6.5 acres of the Jefferson Lab campus with wildflowers, the lab is beginning to realize the benefits. One upside is a $6,500 reduction in annual maintenance costs, since the meadows blanketed with flowers no longer need mowing. The seed mix also has produced a crop that is attractive to both people (lots of

  13. Direct-Current Resistivity Survey At Dixie Valley Geothermal...

    Open Energy Info (EERE)

    Valley Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 2003 - 2003 Usefulness useful DOE-funding Unknown Exploration Basis The Goals of this...

  14. Integrated Dense Array and Transect MT Surveying at Dixie Valley...

    Open Energy Info (EERE)

    Geothermal Area, Nevada- Structural Controls, Hydrothermal Alteration and Deep Fluid Sources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  15. Geothermal reservoir assessment case study: Northern Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Denton, J.M.; Bell, E.J.; Jodry, R.L.

    1980-11-01

    Two 1500 foot temperature gradient holes and two deep exploratory wells were drilled and tested. Hydrologic-hydrochemical, shallow temperature survey, structural-tectonic, petrologic alteration, and solid-sample geochemistry studies were completed. Eighteen miles of high resolution reflection seismic data were gathered over the area. The study indicates that a geothermal regime with temperatures greater than 400/sup 0/F may exist at a depth of approximately 7500' to 10,000' over an area more than ten miles in length.

  16. Homestead Meadows North, Texas: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    help OpenEI by expanding it. Homestead Meadows North is a census-designated place in El Paso County, Texas.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  17. Homestead Meadows South, Texas: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    help OpenEI by expanding it. Homestead Meadows South is a census-designated place in El Paso County, Texas.1 References US Census Bureau 2005 Place to 2006 CBSA Retrieved...

  18. White Meadow Lake, New Jersey: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. White Meadow Lake is a census-designated place in Morris County, New Jersey.1 References...

  19. New Meadows, Idaho: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    This article is a stub. You can help OpenEI by expanding it. New Meadows is a city in Adams County, Idaho. It falls under Idaho's 1st congressional district.12 Energy...

  20. Truckee Meadows Community College and Colorado School of Mines Win

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Student Competitions | Department of Energy Truckee Meadows Community College and Colorado School of Mines Win Geothermal Student Competitions Truckee Meadows Community College and Colorado School of Mines Win Geothermal Student Competitions October 9, 2014 - 9:09am Addthis The Energy Department announced the 2014 winners of the National Geothermal Student Competition and the Geothermal Case Study Challenge last week at an industry gathering in Portland, Oregon. These competitions

  1. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yellowstone National Park | Department of Energy Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Case study describes the performance of a mobile photovoltaic system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyoming. This small, remote outpost is not served by the electric utility grid and previously

  2. Reservoir-scale fracture permeability in the Dixie Valley, Nevada, geothermal field

    SciTech Connect (OSTI)

    Barton, C.A.; Zoback, M.D.; Hickman, S.; Morin, R.; Benoit, D.

    1998-08-01

    Wellbore image data recorded in six wells penetrating a geothermal reservoir associated with an active normal fault at Dixie Valley, Nevada, were used in conjunction with hydrologic tests and in situ stress measurements to investigate the relationship between reservoir productivity and the contemporary in situ stress field. The analysis of data from wells drilled into productive and non-productive segments of the Stillwater fault zone indicates that fractures must be both optimally oriented and critically stressed to have high measured permeabilities. Fracture permeability in all wells is dominated by a relatively small number of fractures oriented parallel to the local trend of the Stillwater Fault. Fracture geometry may also play a significant role in reservoir productivity. The well-developed populations of low angle fractures present in wells drilled into the producing segment of the fault are not present in the zone where production is not commercially viable.

  3. Well Log Data At Dixie Valley Geothermal Area (Mallan, Et Al...

    Open Energy Info (EERE)

    conducted to help characterize the geothermal reservoir by employing electromagnetic induction logging. The goal was to discern subsurface features that are useful in geothermal...

  4. InSAR At Dixie Valley Geothermal Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    resource. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Additional References Retrieved from "http:en.openei.orgw...

  5. Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir

    SciTech Connect (OSTI)

    M. D. Zoback

    1999-03-08

    We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

  6. Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow

    SciTech Connect (OSTI)

    Chu, Houjuan; Wang, Shiping; Yue, Haowei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; Zhou, Jizhong; Yang, Yunfeng

    2014-07-07

    The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrant carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. We also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow.

  7. Contrasting soil microbial community functional structures in two major landscapes of the Tibetan alpine meadow

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chu, Houjuan; Wang, Shiping; Yue, Haowei; Lin, Qiaoyan; Hu, Yigang; Li, Xiangzhen; Zhou, Jizhong; Yang, Yunfeng

    2014-07-07

    The grassland and shrubland are two major landscapes of the Tibetan alpine meadow, a region very sensitive to the impact of global warming and anthropogenic perturbation. Herein, we report a study showing that a majority of differences in soil microbial community functional structures, measured by a functional gene array named GeoChip 4.0, in two adjacent shrubland and grassland areas, were explainable by environmental properties, suggesting that the harsh environments in the alpine grassland rendered niche adaptation important. Furthermore, genes involved in labile carbon degradation were more abundant in the shrubland than those of the grassland but genes involved in recalcitrantmore聽禄 carbon degradation were less abundant, which was conducive to long-term carbon storage and sequestration in the shrubland despite low soil organic carbon content. In addition, genes of anerobic nitrogen cycling processes such as denitrification and dissimilatory nitrogen reduction were more abundant, shifting soil nitrogen cycling toward ammonium biosynthesis and consequently leading to higher soil ammonium contents. We also noted higher abundances of stress genes responsive to nitrogen limitation and oxygen limitation, which might be attributed to low total nitrogen and higher water contents in the shrubland. Together, these results provide mechanistic knowledge about microbial linkages to soil carbon and nitrogen storage and potential consequences of vegetation shifts in the Tibetan alpine meadow.芦聽less

  8. Tectonic controls on fracture permeability in a geothermal reservoir at Dixie Valley, Nevada

    SciTech Connect (OSTI)

    Hickman, S.; Zoback, M.

    1998-08-01

    To help determine the nature and origins of permeability variations within a fault-hosted geothermal reservoir at Dixie Valley, Nevada, the authors conducted borehole televiewer logging and hydraulic fracturing stress measurements in six wells drilled into the Stillwater fault zone at depths of 2--3 km. Televiewer logs from wells penetrating the highly permeable portion of the fault zone revealed extensive drilling-induced tensile fractures. As the Stillwater fault at this location dips S45{degree}E at {approximately} 53{degree} it is nearly at the optimal orientation for normal faulting in the current stress field. Hydraulic fracturing tests from these permeable wells show that the magnitude of S{sub hmin} is very low relative to the vertical stress S{sub v}. Similar measurements conducted in two wells penetrating a relatively impermeable segment of the Stillwater fault zone 8 and 20 km southwest of the producing geothermal reservoir indicate that the orientation of S{sub hmin} is S20{degree}E and S41{degree}E, respectively, with S{sub hmin}/S{sub v} ranging from 0.55--0.64 at depths of 1.9--2.2 km. This stress orientation is near optimal for normal faulting on the Stillwater fault in the northernmost non-producing well, but {approximately} 40{degree} rotated from the optimal orientation for normal faulting in the southernmost well. The observation that borehole breakouts were present in these nonproducing wells, but absent in wells drilled into the permeable main reservoir, indicates a significant increase in the magnitude of maximum horizontal principal stress, S{sub Hmax}, in going from the producing to non-producing segments of the fault. The increase in S{sub Hmaz}, coupled with elevated S{sub hmin}/S{sub v} values and a misorientation of the Stillwater fault zone with respect to the principal stress directions, leads to a decrease in the proximity of the fault zone to Coulomb failure. This suggests that a necessary condition for high reservoir permeability

  9. Air Quality Scoping Study for Ash Meadows National Wildlife Refuge, Nevada (EMSI April 2007)

    SciTech Connect (OSTI)

    Engelbrecht, Johann; Kavouras, Ilias; Campbell, Dave; Campbell, Scott; Kohl, Steven; Shafer, David

    2007-04-01

    The Desert Research Institute (DRI) is performing a scoping study as part of the U.S.Department of Energy抯 Yucca Mountain Environmental Monitoring Systems Initiative (EMSI). The main objective is to obtain baseline air quality information for Yucca Mountain and an area surrounding the Nevada Test Site (NTS). Air quality and meteorological monitoring and sampling equipment housed in a mobile trailer (shelter) is collecting data at seven sites outside the NTS, including Ash Meadows National Wildlife Refuge, Sarcobatus Flat, Beatty, Rachel, Caliente, Pahranagat National Wildlife Refuge, and Crater Flat, and at four sites on the NTS. The trailer is stationed at any one site for approximately eight weeks at a time. Letter reports provide summaries of air quality and meteorological data, on completion of each site抯 sampling program.

  10. Inversion of synthetic aperture radar interferograms for sourcesof production-related subsidence at the Dixie Valley geothermalfield

    SciTech Connect (OSTI)

    Foxall, B.; Vasco, D.W.

    2006-07-01

    We used synthetic aperture radar interferograms to imageground subsidence that occurred over the Dixie Valley geothermal fieldduring different time intervals between 1992 and 1997. Linear elasticinversion of the subsidence that occurred between April, 1996 and March,1997 revealed that the dominant sources of deformation during this timeperiod were large changes in fluid volumes at shallow depths within thevalley fill above the reservoir. The distributions of subsidence andsubsurface volume change support a model in which reduction in pressureand volume of hot water discharging into the valley fill from localizedupflow along the Stillwater range frontal fault is caused by drawdownwithin the upflow zone resulting from geothermal production. Our resultsalso suggest that an additional source of fluid volume reduction in theshallow valley fill might be similar drawdown within piedmont faultzones. Shallow groundwater flow in the vicinity of the field appears tobe controlled on the NW by a mapped fault and to the SW by a lineament ofas yet unknown origin.

  11. Ground Gravity Survey | Open Energy Information

    Open Energy Info (EERE)

    Et Al., 2000) Dixie Valley Geothermal Area 1999 2000 Precise Gravimetry and Geothermal Reservoir Management Ground Gravity Survey At Dixie Valley Geothermal Area (Blackwell, Et...

  12. Property:ExpActivityDateEnd | Open Energy Information

    Open Energy Info (EERE)

    C Conceptual Model At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) G Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012)...

  13. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    and characterize young faults, high resolution LiDAR and 1:12,000-scale low-sun-angle (LSA) aerial photography was acquired for the NAS Fallon study area. The LSA photos were...

  14. Magnetotellurics At Stillwater Area (Laney, 2005) | Open Energy...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation MtGalvanic Array Profiling,...

  15. Direct-Current Resistivity Survey At Stillwater Area (Laney,...

    Open Energy Info (EERE)

    Date Usefulness useful DOE-funding Unknown Notes Structural Controls, Alteration, Permeability and Thermal Regime of Dixie Valley from New-Generation MtGalvanic Array Profiling,...

  16. Distribution and mobility of uranium and thorium in the Peralkaline Soldier Meadow Tuff, Northerwestern Nevada

    SciTech Connect (OSTI)

    Stuart, E.J.; Bornhorst, T.J.; Noble, D.C.; Rose, W.J.

    1983-03-01

    The peralkaline Soldier Meadow Tuff represents a differentiated magma body which had two-fold variations in the amounts of Zr, Fe, Rb, Th, and U. The initial Th/U ratio for the unit was about 2.5. Primarily crystallized specimens of the Soldier Meadow Tuff show as much as 85 percent U loss; average loss is about 50 percent. In general, less U was lost from oxidized rocks in which U is concentrated in and around altered ferromagnesian minerals. Some Th loss (greater than or equal to40%) probably occurred from the lava member; this may be the result of unusually long periods of high temperature during granophyric crystallization. Variable amounts of F, La, Y, and Pb also were preferentially lost from crystallized samples of the formation. Variably hydrated glassy samples have lost little or no U and Th, confirming the results of earlier studies. Based on our data and volume estimates of Korringa (1973), we estimate that 5 million tons or more of U were lost from the Soldier Meadow Tuff, making this a possible important source rock for uranium deposits. The data does not permit an estimate of the timing of U loss. If the loss occurred gradually after crystallization (Zielinski, 1978), then the probability of forming a U deposit seems less than if the loss occurred over a short time span during and/or immediately after crystallization. The conclusions drawn in this paper are applicable to rocks of peralkalic affinity and may not apply to the volumetrically more important volcanics of subalkalic composition that occur in the western United States.

  17. Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource

    Office of Scientific and Technical Information (OSTI)

    Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV (Journal Article) | SciTech Connect Journal Article: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV Citation Details In-Document Search Title: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV This paper presents an overview of the

  18. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01

    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  19. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park

    SciTech Connect (OSTI)

    Andy Walker

    2014-03-05

    The mobile PV/generator hybrid system deployed at Bechler Meadows provides a number of advantages. It reduces on-site air emissions from the generator. Batteries allow the generator to operate only at its rated power, reducing run-time and fuel consumption. Energy provided by the solar array reduces fuel consumption and run-time of the generator. The generator is off for most hours providing peace and quiet at the site. Maintenance trips from Mammoth Hot Springs to the remote site are reduced. The frequency of intrusive fuel deliveries to the pristine site is reduced. And the system gives rangers a chance to interpret Green Park values to the visiting public. As an added bonus, the system provides all these benefits at a lower cost than the basecase of using only a propane-fueled generator, reducing life cycle cost by about 26%.

  20. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, 2001 Annual Report.

    SciTech Connect (OSTI)

    McLellan, Holly; Scholz, Allan

    2002-03-01

    Lake Roosevelt has been stocked with Lake Whatcom stock kokanee since 1989 with the primary objective of creating a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a stock of kokanee, native to the upper Columbia River, might perform better than the coastal Lake Whatcom strain. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Lake Whatcom and Meadow Creek kokanee were made from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated using three performance measures; (1) the number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to other tributaries and (3) the number of returns to the creel. Kokanee were collected during five passes through the reservoir via electrofishing, which included 87 tributary mouths during the fall of 2000 and 2001. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers when compared to the Whatcom stock in 2000 ({chi}{sup 2} = 736.6; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 156.2; d.f. = 1; P < 0.01). Reservoir wide recoveries of age two kokanee had similar results in 2000 ({chi}{sup 2} = 735.3; d.f. = 1; P < 0.01) and 2001 ({chi}{sup 2} = 150.1; d.f. = 1; P < 0.01). Six Lake Whatcom and seven Meadow Creek three year olds were collected in 2001. The sample size of three year olds was too small for statistical analysis. No kokanee were collected during creel surveys in 2000, and two (age three kokanee) were collected in 2001. Neither of the hatchery kokanee collected were coded wire tagged, therefore stock could not be distinguished. After two years of monitoring, neither Meadow Creek or Lake Whatcom kokanee appear to be capable of providing a run of three-year-old spawners to sustain stocking efforts. The small number of

  1. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park (Brochure), Federal Energy Management Program (FEMP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mobile Photovoltaic System at Bechler Meadows Ranger Station, Yellowstone National Park Introduction This report describes the performance of a mobile photovoltaic (PV) system installed in 2011 to provide power to Bechler Ranger Station in Yellowstone National Park, Wyo. This small, remote outpost is not served by the electric utility grid and previously relied on a propane generator as the only source of power. Mobile Photovoltaic Systems Mobile solar systems consist of photovoltaic (PV)

  2. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    SciTech Connect (OSTI)

    Martini, B; Silver, E; Pickles, W; Cocks, P

    2004-03-25

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

  3. Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA

    SciTech Connect (OSTI)

    Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

    2004-03-03

    Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

  4. Current Projects Beowawe Dixie Valley

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CPU coolers and offers potential for even greater impacts on energy efficiency through up-scaling from use in electronics to vehicles, HVAC systems, and potentially power plants. ...

  5. Dixie Valley Bottoming Binary Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ScientificTechnical Approach Brine Injection Pipeline 6 | US DOE Geothermal Program ... level - Makeup water requirements - Permit Impacts - Space requirements * Phase 1 ...

  6. Dixie Valley Bottoming Binary Unit

    SciTech Connect (OSTI)

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit鈥檚 individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  7. Lake Roosevelt Fisheries Evaluation Program; Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt, Annual Report 2002.

    SciTech Connect (OSTI)

    McLellan, Holly

    2003-03-01

    Lake Whatcom, Washington kokanee have been stocked in Lake Roosevelt since 1987 with the primary objective of creating a self-sustaining fishery. Success has been limited by low recruitment to the fishery, low adult returns to hatcheries, and a skewed sex ratio. It was hypothesized that a stock native to the upper Columbia River might perform better than the coastal Lake Whatcom stock. Kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Post smolts from each stock were released from Sherman Creek Hatchery in late June 2000 and repeated in 2001. Stock performance was evaluated using three measures; (1) number of returns to Sherman Creek, the primary egg collection facility, (2) the number of returns to 86 tributaries sampled and, (3) the number of returns to the creel. In two repeated experiments, neither Meadow Creek or Lake Whatcom kokanee appeared to be capable of providing a run of three-year old spawners to sustain stocking efforts. Less than 10 three-years olds from either stock were collected during the study period. Chi-square analysis indicated age two Meadow Creek kokanee returned to Sherman Creek and to other tributaries in significantly higher numbers when compared to the Lake Whatcom stock in both 2000 and 2001. However, preliminary data from the Spokane Tribe of Indians indicated that a large number of both stocks were precocial before they were stocked. The small number of hatchery three-year olds collected indicated that the current hatchery rearing and stocking methods will continue to produce a limited jacking run largely composed of precocious males and a small number of three-year olds. No kokanee from the study were collected during standard lake wide creel surveys. Supplemental creel data, including fishing derbies, test fisheries, and angler diaries, indicated anglers harvested two-year-old hatchery kokanee a month after release. The majority of the two-year old kokanee harvested

  8. Lake Roosevelt Fisheries Evaluation Program : Meadow Creek vs. Lake Whatcom Stock Kokanee Salmon Investigations in Lake Roosevelt Annual Report 2000-2001.

    SciTech Connect (OSTI)

    McLellan, Holly J.; Scholz, Allan T.

    2001-07-01

    Lake Roosevelt has been stocked with Whatcom stock kokanee since 1989 to mitigate for anadromous salmon losses caused by the construction of Grand Coulee Dam. The primary objective of the hatchery plantings was to create a self-sustaining recreational fishery. Due to low return numbers, it was hypothesized a native stock of kokanee might perform better than the coastal Whatcom strain. Therefore, kokanee from Meadow Creek, a tributary of Kootenay Lake, British Columbia were selected as an alternative stock. Matched pair releases of Whatcom stock and Meadow Creek kokanee were made from Sherman Creek in late June 2000. Stock performance between Lake Whatcom and Meadow Creek kokanee was evaluated through three performance measures (1) returns to Sherman Creek, the primary egg collection facility, (2) returns to other tributaries, indicating availability for angler harvest, and (3) returns to the creel. A secondary objective was to evaluate the numbers collected at downstream fish passage facilities. Age 2 kokanee were collected during five passes through the reservoir, which included 89 tributaries between August 17th and November 7th, 2000. Sherman Creek was sampled once a week because it was the primary egg collection location. A total of 2,789 age 2 kokanee were collected, in which 2,658 (95%) were collected at Sherman Creek. Chi-square analysis indicated the Meadow Creek kokanee returned to Sherman Creek in significantly higher numbers compared to the Whatcom stock ({chi}{sup 2} = 734.4; P < 0.01). Reservoir wide recoveries indicated similar results ({chi}{sup 2} = 733.1; P < 0.01). No age 2 kokanee were collected during creel surveys. Age 3 kokanee are expected to recruit to the creel in 2001. No age 2 kokanee were collected at the fish passage facilities due to a 170 mm size restriction at the fish passage centers. Age 3 kokanee are expected to be collected at the fish passage centers during 2001. Stock performance cannot be properly evaluated until 2001, when

  9. Closure Report for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-06-27

    This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 104, Area 7 Yucca Flat Atmospheric Test Sites, and provides documentation supporting the completed corrective actions and confirmation that closure objectives for CAU 104 were met. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management. CAU 104 consists of the following 15 Corrective Action Sites (CASs), located in Area 7 of the Nevada National Security Site: 路 CAS 07-23-03, Atmospheric Test Site T-7C 路 CAS 07-23-04, Atmospheric Test Site T7-1 路 CAS 07-23-05, Atmospheric Test Site 路 CAS 07-23-06, Atmospheric Test Site T7-5a 路 CAS 07-23-07, Atmospheric Test Site - Dog (T-S) 路 CAS 07-23-08, Atmospheric Test Site - Baker (T-S) 路 CAS 07-23-09, Atmospheric Test Site - Charlie (T-S) 路 CAS 07-23-10, Atmospheric Test Site - Dixie 路 CAS 07-23-11, Atmospheric Test Site - Dixie 路 CAS 07-23-12, Atmospheric Test Site - Charlie (Bus) 路 CAS 07-23-13, Atmospheric Test Site - Baker (Buster) 路 CAS 07-23-14, Atmospheric Test Site - Ruth 路 CAS 07-23-15, Atmospheric Test Site T7-4 路 CAS 07-23-16, Atmospheric Test Site B7-b 路 CAS 07-23-17, Atmospheric Test Site - Climax Closure activities began in October 2012 and were completed in April 2013. Activities were conducted according to the Corrective Action Decision Document/Corrective Action Plan for CAU 104. The corrective actions included No Further Action and Clean Closure. Closure activities generated sanitary waste, mixed waste, and recyclable material. Some wastes exceeded land disposal limits and required treatment prior to disposal. Other wastes met land disposal restrictions and were disposed in appropriate onsite landfills. The U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office

  10. Electromagnetic Sounding Techniques | Open Energy Information

    Open Energy Info (EERE)

    Measurements at Dixie Valley, Nevada, Using Single-Well and Surface-to-Well Induction Logging Electromagnetic Soundings At Kilauea East Rift Geothermal Area (KELLER, Et...

  11. NVN-89306 | Open Energy Information

    Open Energy Info (EERE)

    Info Energy Sector Geothermal energy Environmental Analysis Type CU Applicant Terra Gen Dixie Valley Development Co Geothermal Area Project Location Project Phase Geothermal...

  12. Dixie Electric Membership Corp | Open Energy Information

    Open Energy Info (EERE)

    1-800-262-0221 Website: www.demco.org Facebook: https:www.facebook.comDEMCOLouisiana?refhl Outage Hotline: (225) 261-1160 or 1-800-262-1160 Outage Map: demco.maps.sienatech.co...

  13. Dixie Valley Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Central Nevada Seismic Zone Plant Information Facility Type Double Flash Owner Terra-Gen Operating Co. Energy Purchaser Southern California Edison Number of Units 1.0...

  14. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault segments have the highest tendency

  15. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Areas Our Vision National User Facilities Research Areas In Focus Global Solutions 鈬 Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Biosciences The Biosciences Area forges multidisciplinary teams to solve national challenges in energy, environment and health issues; and to advance the engineering of biological systems for sustainable manufacturing. Biosciences Area research is coordinated through three divisions and is enabled by Berkeley

  16. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike

  17. Research Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in diverse research areas such as cell biology, lithography, infrared microscopy, radiology, and x-ray tomography. Time-Resolved These techniques exploit the pulsed nature of...

  18. Bay Area

    National Nuclear Security Administration (NNSA)

    8%2A en NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas http:nnsa.energy.govmediaroompressreleasesamsca

  19. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest

  20. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  1. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60 dipping fault

  2. Meadow Ridge | Open Energy Information

    Open Energy Info (EERE)

    (community owned) Energy Purchaser Central Iowa Power Cooperative Location Greenfield IA Coordinates 41.39004255, -94.44637299 Show Map Loading map... "minzoom":false,"mapp...

  3. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply

  4. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Stress field variation within each focus area was approximated based on regional published data and the world stress database (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply

  5. Preprint UCRL-JC-153443 Geobotanical Remote Sensing Applied to Targeting New

    Office of Scientific and Technical Information (OSTI)

    Approved for public release; further dissemination unlimited Preprint UCRL-JC-153443 Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV William L. Pickles, Gregory D. Nash, Wendy M. Calvin, Brigette A. Martini, Peter A. Cocks, Ty Kenedy-Bowdoin, Robert B. Mac Knight IV, Eli A. Silver, Donald C. Potts, William Foxall, Paul Kasameyer, Albert F. Waibel This article was submitted to Geothermal Resources

  6. Geothermal Development and Changes in Surficial Features: Examples...

    Open Energy Info (EERE)

    and Amadee Hot Springs in California, and Steamboat Springs, Beowawe, Dixie Valley, and Brady Hot Springs in Nevada. The best-documented cases are for the Casa Diablo area in Long...

  7. DOI-BLM-NV-W010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    4-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-W010-2011-0004-CX CX at Dixie Valley Geothermal Area for GeothermalExploration, CX for Seismic Survey at...

  8. DOI-BLM-NV-C010-2011-0527-CX | Open Energy Information

    Open Energy Info (EERE)

    27-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0527-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Passive Seismic...

  9. DOI-BLM-NV-C010-2012-0070-CX | Open Energy Information

    Open Energy Info (EERE)

    0-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2012-0070-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Magnetotelluric...

  10. DOI-BLM-NV-C010-2011-0004-CX | Open Energy Information

    Open Energy Info (EERE)

    04-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2011-0004-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Seismic Survey at...

  11. DOI-BLM-NV-C010-????-????-CX | Open Energy Information

    Open Energy Info (EERE)

    ????-????-CX Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-????-????-CX CX at Dixie Valley Geothermal Area for GeothermalExploration CX for Thermal...

  12. DOI-BLM-NV-C010-2013-0026-DNA | Open Energy Information

    Open Energy Info (EERE)

    6-DNA Jump to: navigation, search NEPA Document Collection for: DOI-BLM-NV-C010-2013-0026-DNA DNA at Dixie Valley Geothermal Area for GeothermalWell Field, DNA for Production...

  13. Testing Hyperspectral Data for Geobatanical Anomaly Mapping,...

    Open Energy Info (EERE)

    Anomaly Mapping, Dixie Valley, Nevada, Geothermal Area Abstract NA Authors Nash and G. D. Published U.S. Department of Energy, 1997 Report Number NA DOI Not Provided Check...

  14. Development of an injection augmentation program at the Dixie...

    Open Energy Info (EERE)

    of warm,chemically desirable fluid for augmentation was conducted.After determining water treatment was uneconomical, an augmentation program utilizing cold shallow...

  15. Conceptual Models of the Dixie Valley, Nevada Geothermal Field...

    Open Energy Info (EERE)

    the Stillwater fault being the preferred geometry. In the late 1990's regional in-situ stress studies led to the development of a permeability model wherein the highly permeable...

  16. Recency of Faulting and Neotectonic Framework in the Dixie Valley...

    Open Energy Info (EERE)

    by active geothermal springs. More specifically, our investigation shows that induced stress concentrations at the endpoints of normal fault ruptures appear to promote favorable...

  17. Possible Magmatic Input to the Dixie Valley Geothermal Field...

    Open Energy Info (EERE)

    to bring externalconstraints when interpreting resistivity inthe Great Basin. Authors Philip E. Wannamaker, William M. Doerner and Derrick P. Hasterok Published Journal 31st...

  18. Initial Results of Magnetotelluric Array Surveying at the Dixie...

    Open Energy Info (EERE)

    (1-12 km) southeastward from the topographic scarp of the Stillwater Range. Author Philip E. Wannamaker Published Journal Geothermal Resources Council, TRANSACTIONS, 2003 DOI...

  19. Geophysical Study of Basin-Range Structure Dixie Valley Region...

    Open Energy Info (EERE)

    net tilting. Authors George A. Thompson, Laurent J. Meister, Alan T. Herring, Thomas E. Smith, Dennis B. Burke, Robert L. Kovach, Robert O. Burford, Iraj A. Salehi and M. Darroll...

  20. A Helium Isotope Perspective On The Dixie Valley, Nevada, Hydrothermal...

    Open Energy Info (EERE)

    to drive and sustain extensional geothermal systems. (c) 2005 CNR. Published by Elsevier Ltd. All rights reserved. Authors B. M. Kennedy and M. C. van Soest Published Journal...

  1. Geometry of Cenozoic extensional faulting: Dixie Valley, Nevada...

    Open Energy Info (EERE)

    was also 15 km instead of the previously reported 40 km. Local microearthquakes cluster around 10-15 km. The geometrical block models indicate that crustal horst-graben...

  2. An investigation of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    geothermal field, Nevada, using temporal moment analysis of tracer tests Author Marshall J. Reed Conference Proceedings, 32nd Workshop on Geothermal Reservoir Engineering;...

  3. Elevated carbon dioxide flux at the Dixie Valley geothermal field...

    Open Energy Info (EERE)

    site near the Stillwater Fault to 0.1 t dayy1 from a 0.01-km2 location of steaming ground on the valley floor. Anomalous CO2 flux is positively correlated with shallow...

  4. Assessing Thermo-Hydrodynamic-Chemical Processes at the Dixie...

    Open Energy Info (EERE)

    oftenare out of chemical equilibrium. Simulation resultsreveal that a minimum permeability of 10-12 m2 forthe spring-feeding fracture is needed to preserve thegeochemical...

  5. Exploration for Geothermal Resources in Dixie Valley, Nevada...

    Open Energy Info (EERE)

    two magnetotelluric surveys, a hydrology study, and a surface geology survey. The synthesis of the data resulting from these projects into the regional geologic framework led...

  6. Structure of The Dixie Valley Geothermal System, a "Typical"...

    Open Energy Info (EERE)

    geothermal system have been debated for some time. The primary structural model ahs been a single fault with 54 dip. New data including a detailed gravity survey,...

  7. Regional hydrology of the Dixie Valley geothermal field, Nevada...

    Open Energy Info (EERE)

    interpretations of chemical and isotopic data Authors Gregory Nimz, Cathy Janik, Fraser Goff, Charles Dunlap, Mark Huebner, Dale Counce and Stuart D. Johnson Published Journal...

  8. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison

  9. 300 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  10. 200 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  11. 700 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area 324 Building 325 Building 400 AreaFast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim ...

  12. Sweet Surface Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sweet Surface Area Sweet Surface Area Create a delicious root beer float and learn sophisticated science concepts at the same time. Sweet Surface Area Science is all around us, so ...

  13. Strategic Focus Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Focus Areas Lockheed Martin on behalf of Sandia National Laboratories will consider grant requests that best support the Corporation's strategic focus areas and reflect ...

  14. AREA 5 RWMS CLOSURE

    National Nuclear Security Administration (NNSA)

    153 CLOSURE STRATEGY NEVADA TEST SITE AREA 5 RADIOACTIVE WASTE MANAGEMENT SITE Revision 0 ... Closure Strategy Nevada Test Site Area 5 Radioactive Waste Management ...

  15. 100 Area - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    00 Area About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Contact Us 100 Area 118-K-1 Burial Ground 200 Area 222-S Laboratory 242-A Evaporator 300 Area 324 Building 325 Building 400 Area/Fast Flux Test Facility 618-10 and 618-11 Burial Grounds 700 Area B Plant B Reactor C Reactor Canister Storage Building and Interim Storage Area Canyon Facilities Cold Test Facility D and DR Reactors Effluent Treatment Facility Environmental Restoration Disposal Facility F Reactor H

  16. Slip and Dilation Tendency Analysis of the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Tuscarora geothermal field was calculated based on the faults mapped Tuscarora area (Dering, 2013). The Tuscarora area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the Tuscarora area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60掳 dipping fault segments have the highest tendency to slip. Tuscarora is defined by a left-step in a major north- to-north northeast striking, west-dipping range-bounding normal fault system. Faults within the broad step define an anticlinal accommodation zone...

  17. Technical Area 21

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technical Area 21 Technical Area 21 Technical Area 21 was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. August 1, 2013 Technical Area 21 in 2011 Technical Area 21 in 2011 Technical Area 21 (TA-21), also known as DP Site was the site of chemical research for refining plutonium and plutonium metal production from 1945 to 1978. Between 2008 and 2011, MDAs B, U, and V were excavated and removed. 24 buildings were demolished in 2010 and 2011

  18. Slip and Dilation Tendency Analysis of the Patua Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency analysis for the Patua geothermal system was calculated based on faults mapped in the Hazen Quadrangle (Faulds et al., 2011). Patua lies near the margin between the Basin and Range province, which is characterized by west-northwest directed extension and the Walker Lane province, characterized by west-northwest directed dextral shear. As such, the Patua area likely has been affected by tectonic stress associated with either or both of stress regimes over geologic time. In order to characterize this stress variation we calculated slip tendency at Patua for both normal faulting and strike slip faulting stress regimes. Based on examination of regional and local stress data (as explained above) we applied at shmin direction of 105 to Patua. Whether the vertical stress (sv) magnitude is larger than ...

  19. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  20. Inner Area Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Principles The Inner Area principles proposed by the Tri-Parties are a good beginning toward consideration of what kind of approach will be needed to remedy the problems of the Central Plateau. However, the Board feels that some principles have been overlooked in the preparation of these. [1] While it has been generally agreed that designated waste disposal facilities of the Inner Area (like ERDF and IDF) would not be candidates for remediation. What happened to the remedial approach

  1. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  2. Western Area Power Administration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Area Power Administration Follow-up to Nov. 25, 2008 Transition ... Southwestern Power Administration CONSTRUCTION BUDGET ITEM DESCRIPTION FY 2009* MICROWAVE ...

  3. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  4. Decontamination & decommissioning focus area

    SciTech Connect (OSTI)

    1996-08-01

    In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

  5. Hanford 300 Area ROD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    300 Area ROD Briefing to the Hanford Advisory Board March 6, 2014 Larry Gadbois -- EPA Recap of the 300 Area ROD Primary new concept -- Uranium Sequestration: * Purpose: Accelerate restoration of groundwater uranium contamination. * Protect groundwater from downward leaching from the vadose zone (overlying soil). * Add phosphate to chemically bond with uranium into geologically stable autunite. Does not dissolve. * Dissolve phosphate in water, apply at ground surface, inject into the ground,

  6. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical component of maintaining our capabilities in national security research To further understand the physical world, generate new or improved technology in experimental physics, and establish a physics foundation for current and future Los Alamos programs, Physics Division leverages its expertise and experimental capabilities

  7. Meadow Lake Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111, -86.864167 Show Map Loading...

  8. Meadow Lake III | Open Energy Information

    Open Energy Info (EERE)

    Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111, -86.864167 Show Map Loading...

  9. Meadow Lake IV | Open Energy Information

    Open Energy Info (EERE)

    Commercial Scale Wind Facility Status In Service Owner Horizon Wind Energy Developer EDP Renewables Location Brookston IN Coordinates 40.601111, -86.864167 Show Map Loading...

  10. OLED area illumination source

    DOE Patents [OSTI]

    Foust, Donald Franklin; Duggal, Anil Raj; Shiang, Joseph John; Nealon, William Francis; Bortscheller, Jacob Charles

    2008-03-25

    The present invention relates to an area illumination light source comprising a plurality of individual OLED panels. The individual OLED panels are configured in a physically modular fashion. Each OLED panel comprising a plurality of OLED devices. Each OLED panel comprises a first electrode and a second electrode such that the power being supplied to each individual OLED panel may be varied independently. A power supply unit capable of delivering varying levels of voltage simultaneously to the first and second electrodes of each of the individual OLED panels is also provided. The area illumination light source also comprises a mount within which the OLED panels are arrayed.

  11. Operational Area Monitoring Plan

    Office of Legacy Management (LM)

    ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan

  12. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The spatial location and boundaries for each Site shown on the Site Monitoring Area maps ... P-SMA-2 DP-SMA-0.4 LA-SMA-2.3 LA-SMA-5.51 LA-SMA-6.38 P-SMA-2.15 DP-SMA-0.6 ...

  13. Plutonium focus area

    SciTech Connect (OSTI)

    1996-08-01

    To ensure research and development programs focus on the most pressing environmental restoration and waste management problems at the U.S. Department of Energy (DOE), the Assistant Secretary for the Office of Environmental Management (EM) established a working group in August 1993 to implement a new approach to research and technology development. As part of this new approach, EM developed a management structure and principles that led to the creation of specific Focus Areas. These organizations were designed to focus the scientific and technical talent throughout DOE and the national scientific community on the major environmental restoration and waste management problems facing DOE. The Focus Area approach provides the framework for intersite cooperation and leveraging of resources on common problems. After the original establishment of five major Focus Areas within the Office of Technology Development (EM-50, now called the Office of Science and Technology), the Nuclear Materials Stabilization Task Group (EM-66) followed the structure already in place in EM-50 and chartered the Plutonium Focus Area (PFA). The following information outlines the scope and mission of the EM, EM-60, and EM-66 organizations as related to the PFA organizational structure.

  14. Subsurface contaminants focus area

    SciTech Connect (OSTI)

    1996-08-01

    The US Department of Enregy (DOE) Subsurface Contaminants Focus Area is developing technologies to address environmental problems associated with hazardous and radioactive contaminants in soil and groundwater that exist throughout the DOE complex, including radionuclides, heavy metals; and dense non-aqueous phase liquids (DNAPLs). More than 5,700 known DOE groundwater plumes have contaminated over 600 billion gallons of water and 200 million cubic meters of soil. Migration of these plumes threatens local and regional water sources, and in some cases has already adversely impacted off-site rsources. In addition, the Subsurface Contaminants Focus Area is responsible for supplying technologies for the remediation of numerous landfills at DOE facilities. These landfills are estimated to contain over 3 million cubic meters of radioactive and hazardous buried Technology developed within this specialty area will provide efective methods to contain contaminant plumes and new or alternative technologies for development of in situ technologies to minimize waste disposal costs and potential worker exposure by treating plumes in place. While addressing contaminant plumes emanating from DOE landfills, the Subsurface Contaminants Focus Area is also working to develop new or alternative technologies for the in situ stabilization, and nonintrusive characterization of these disposal sites.

  15. Property:AreaGeology | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak...

  16. Figure 1. Project Area, Focused Study Area, Potential Access...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance

  17. Figure 1. Project Area, Focused Study Area, Potential Access...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page 4 of 8 Figure 1. Project Area, Focused Study Area, Potential Access Agreement Land, and Land Not Suitable for Conveyance...

  18. Bay Area | Open Energy Information

    Open Energy Info (EERE)

    Page Edit History Bay Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Bay Area 1.1 Products and Services in the Bay Area 1.2 Research and Development...

  19. Rockies Area | Open Energy Information

    Open Energy Info (EERE)

    Rockies Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Rockies Area 1.1 Products and Services in the Rockies Area 1.2 Research and Development...

  20. Texas Area | Open Energy Information

    Open Energy Info (EERE)

    Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Texas Area 1.1 Products and Services in the Texas Area 1.2 Research and Development Institutions in the...

  1. Large area bulk superconductors

    DOE Patents [OSTI]

    Miller, Dean J.; Field, Michael B.

    2002-01-01

    A bulk superconductor having a thickness of not less than about 100 microns is carried by a polycrystalline textured substrate having misorientation angles at the surface thereof not greater than about 15.degree.; the bulk superconductor may have a thickness of not less than about 100 microns and a surface area of not less than about 50 cm.sup.2. The textured substrate may have a thickness not less than about 10 microns and misorientation angles at the surface thereof not greater than about 15.degree.. Also disclosed is a process of manufacturing the bulk superconductor and the polycrystalline biaxially textured substrate material.

  2. Slip and Dilation Tendency Anlysis of McGinness Hills Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the McGinness Hills geothermal field was calculated based on the faults mapped McGinness Hills area (Siler 2012, unpublished). The McGinness Hills area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the McGinness area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60掳 dipping fault segments have the highest tendency to slip. The McGinness Hills geothermal system is characterized by a left-step in a north-northeast striking west-dipping fault system wit...

  3. Slip and Dilation Tendency Analysis of the San Emidio Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the San Emidio geothermal field was calculated based on the faults mapped Tuscarora area (Rhodes, 2011). The San Emidio area lies in the Basin and Range Province, as such we applied a normal faulting stress regime to the San Emidio area faults, with a minimum horizontal stress direction oriented 115, based on inspection of local and regional stress determinations, as explained above. This is consistent with the shmin determined through inversion of fault data by Rhodes (2011). Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60掳 dipping fault segments have the highest tendency to slip. Interesting, the San Emidio geothermal field lies in an area of primarily north striking faults, which...

  4. T-1 Training Area

    SciTech Connect (OSTI)

    2014-11-07

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  5. T-1 Training Area

    ScienceCinema (OSTI)

    None

    2015-01-09

    Another valuable homeland security asset at the NNSS is the T-1 training area, which covers more than 10 acres and includes more than 20 separate training venues. Local, County, and State first responders who train here encounter a variety of realistic disaster scenarios. A crashed 737 airliner lying in pieces across the desert, a helicopter and other small aircraft, trucks, buses, and derailed train cars are all part of the mock incident scene. After formal classroom education, first responders are trained to take immediate decisive action to prevent or mitigate the use of radiological or nuclear devices by terrorists. The Counterterrorism Operations Support Center for Radiological Nuclear Training conducts the courses and exercises providing first responders from across the nation with the tools they need to protect their communities. All of these elements provide a training experience that cannot be duplicated anywhere else in the country.

  6. AREA RADIATION MONITOR

    DOE Patents [OSTI]

    Manning, F.W.; Groothuis, S.E.; Lykins, J.H.; Papke, D.M.

    1962-06-12

    S>An improved area radiation dose monitor is designed which is adapted to compensate continuously for background radiation below a threshold dose rate and to give warning when the dose integral of the dose rate of an above-threshold radiation excursion exceeds a selected value. This is accomplished by providing means for continuously charging an ionization chamber. The chamber provides a first current proportional to the incident radiation dose rate. Means are provided for generating a second current including means for nulling out the first current with the second current at all values of the first current corresponding to dose rates below a selected threshold dose rate value. The second current has a maximum value corresponding to that of the first current at the threshold dose rate. The excess of the first current over the second current, which occurs above the threshold, is integrated and an alarm is given at a selected integrated value of the excess corresponding to a selected radiation dose. (AEC)

  7. Slip and Dilation Tendency Analysis of the Salt Wells Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    , 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Slip and dilation tendency for the Salt Wells geothermal field was calculated based on the faults mapped in the Bunejug Mountains quadrangle (Hinz et al., 2011). The Salt Wells area lies in the Basin and Range Province (N. Hinz personal comm.) As such we applied a normal faulting stress regime to the Salt Wells area faults, with a minimum horizontal stress direction oriented 105, based on inspection of local and regional stress determinations. Under these stress conditions north-northeast striking, steeply dipping fault segments have the highest dilation tendency, while north-northeast striking 60掳 dipping fault segments have the highest tendency to slip. Several such faults intersect in high density in the core of the accommodation zone in the Bunejug Mountains and local to the Salt Wells geothermal .

  8. SSL Demonstration: Area Lighting Yuma Sector Border Patrol Area...

    Energy Savers [EERE]

    DEMONSTRATION: Area Lighting Yuma Sector Border Patrol Area, AZ A unique GATEWAY evaluation on a stretch of border between the U.S. and Mexico looks at how high-flux LED lighting ...

  9. F Reactor Area Cleanup Complete

    Broader source: Energy.gov [DOE]

    RICHLAND, Wash. 鈥 U.S. Department of Energy (DOE) contractors have cleaned up the F Reactor Area, the first reactor area at the Hanford Site in southeastern Washington state to be fully remediated.

  10. Slip and Dilation Tendency Anlysis of Neal Hot Springs Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Robertson-Tait et al., 2004; Hickman and Davatzes, 2010; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012; Moeck et al., 2010; Moos and Ronne, 2010 and Reinecker et al., 2005) as well as local stress information if applicable. For faults within these focus systems we applied either a normal faulting stress regime where the vertical stress (sv) is larger than the maximum horizontal stress (shmax) which is larger than the minimum horizontal stress (sv>shmax>shmin) or strike-slip faulting stress regime where the maximum horizontal stress (shmax) is larger than the vertical stress (sv) which is larger than the minimum horizontal stress (shmax >sv>shmin) depending on the general tectonic province of the system. Based on visual inspection of the limited stress magnitude data in the Great Basin we used magnitudes such that shmin/shmax = .527 and shmin/sv= .46, which are consistent with complete and partial stress field determinations from Desert Peak, Coso, the Fallon area and Dixie valley (Hickman et al., 2000; Hickman et al., 1998 Robertson-Tait et al., 2004; Hickman and Davatzes, 2011; Davatzes and Hickman, 2006; Blake and Davatzes 2011; Blake and Davatzes, 2012). Based on inversion of fault kinematic data, Edwards (2013) interpreted that two discrete stress orientations are preserved at Neal Hot Springs. An older episode of east-west directed extension and a younger episode of southwest-northeast directed sinistral, oblique -normal extension. This interpretation is consistent with the evolution of Cenozoic tectonics in the region (Edwards, 2013). As such we applied a southwest-northeast (060) directed normal faulting stress regime, consistent with the younger extensional episode, to the Neal Hot Springs faults. Under these stress conditions northeast striking steeply dipping fault segments have the highest tendency to dilate and northeast striking 60掳 dipping fault segments have the highest tendency to slip. Under these stress condition...

  11. Focus Areas | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Focus Areas FA 1: Diversifying Supply FA 2: Developing Substitutes FA 3: Improving Reuse and Recycling FA 4: Crosscutting Research

  12. Geothermal resource area 9: Nye County. Area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource area 9 encompasses all of Nye County, Nevada. Within this area there are many different known geothermal sites ranging in temperature from 70/sup 0/ to over 265/sup 0/ F. Fifteen of the more major sites have been selected for evaluation in this Area Development Plan. Various potential uses of the energy found at each of the resource sites discussed in this Area Development Plan were determined after evaluating the area's physical characteristics, land ownership and land use patterns, existing population and projected growth rates, and transportation facilities, and comparing those with the site specific resource characteristics. The uses considered were divided into five main categories: electrical generation, space heating, recreation, industrial process heat, and agriculture. Within two of these categories certain subdivisions were considered separately. The findings about each of the 15 geothermal sites considered in this Area Development Plan are summarized.

  13. SSL Demonstration: Area Lighting, Yuma Sector Border Patrol Area, AZ

    SciTech Connect (OSTI)

    2015-05-28

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments. This document is a summary brief of the Phase 1.0 and 1.1 reports previously published on this demonstration.

  14. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  15. PPPL Area Map | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL Area Map View Larger Map

  16. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  17. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  18. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  19. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  20. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  1. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  2. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  3. Tech Area II: A history

    SciTech Connect (OSTI)

    Ullrich, R.

    1998-07-01

    This report documents the history of the major buildings in Sandia National Laboratories` Technical Area II. It was prepared in support of the Department of Energy`s compliance with Section 106 of the National Historic Preservation Act. Technical Area II was designed and constructed in 1948 specifically for the final assembly of the non-nuclear components of nuclear weapons, and was the primary site conducting such assembly until 1952. Both the architecture and location of the oldest buildings in the area reflect their original purpose. Assembly activities continued in Area II from 1952 to 1957, but the major responsibility for this work shifted to other sites in the Atomic Energy Commission`s integrated contractor complex. Gradually, additional buildings were constructed and the original buildings were modified. After 1960, the Area`s primary purpose was the research and testing of high-explosive components for nuclear weapons. In 1994, Sandia constructed new facilities for work on high-explosive components outside of the original Area II diamond-shaped parcel. Most of the buildings in the area are vacant and Sandia has no plans to use them. They are proposed for decontamination and demolition as funding becomes available.

  4. Why SRS Matters - L Area

    SciTech Connect (OSTI)

    Hunt, Paul

    2015-01-28

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features L Area's mission and operations.

  5. Why SRS Matters - E Area

    SciTech Connect (OSTI)

    Howell, Steve; Mooneyhan, Verne; Tempel, Kevin; Bullington, Michele

    2015-03-09

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features E Area's mission and operations.

  6. Why SRS Matters - F Area

    SciTech Connect (OSTI)

    Howell, Steve; Tadlock, Bill; Beeler, Dewitt; Gardner, Curt

    2015-02-17

    A video series presenting an overview of the Savannah River Site's (SRS) mission and operations. Each episode features a specific area/operation and how it contributes to help make the world safer. This episode features F Area's mission and operations.

  7. AREA

    Broader source: Energy.gov (indexed) [DOE]

    or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO...

  8. AREA

    Office of Environmental Management (EM)

    DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the ...

  9. Vital area analysis using sets

    SciTech Connect (OSTI)

    Stack, D.W.; Francis, K.A.

    1980-05-01

    This report describes the use of the Set Equation Transformation System (SETS) for vital area analysis. Several concepts are introduced which enable the analyst to construct more efficient SETS user programs to perform vital area analysis. The advantages of performing the transformation of variables without first determining the minimal cut sets of the fault tree are discussed. A ''bottom-up'' approach to solving a fault tree is presented. The techniques described for vital area analysis are also suitable and efficient for many kinds of common cause analysis.

  10. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If you have a fast internet connection, you may wish to click here for ...

  11. Fire in a contaminated area

    SciTech Connect (OSTI)

    Ryan, G.W., Westinghouse Hanford

    1996-08-28

    This document supports the development and presentation of the following accident scenario in the TWRS Final Safety Analysis Report: Fire in Contaminated Area. The calculations needed to quantify the risk associated with this accident scenario are included within.

  12. Progress Update: M Area Closure

    ScienceCinema (OSTI)

    Cody, Tom

    2012-06-14

    A progress update of the Recovery Act at work at the Savannah River Site. The celebration of the first area cleanup completion with the help of the Recovery Act.

  13. CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA

    Office of Legacy Management (LM)

    CENTRAL NEVPJJA SUPPLEMENTAL TEST AREA ,FACILITY RECORDS 1970 UNITED STATES ATOMIC ENERGY ... Prepared By Holmes & Narver. Inc. On-Continent Test Division P.O. Box 14340 Las Vegas, ...

  14. Security Area Vouching and Piggybacking

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2000-06-05

    Establishes requirements for the Department of Energy (DOE) Security Area practice of "vouching" or "piggybacking" access by personnel. DOE N 251.40, dated 5-3-01, extends this directive until 12-31-01.

  15. Manhattan Project: Tech Area Gallery

    Office of Scientific and Technical Information (OSTI)

    All of the photographs below are of the "Tech Area" at Los Alamos during or shortly after the wartime years. If this page is taking a long time to load, click here for a photo ...

  16. Focus Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focus Areas Focus Areas Safety With this focus on cleanup completion and risk reducing results, safety still remains the utmost priority. EM will continue to maintain and demand the highest safety performance. All workers deserve to go home as healthy as they were when they came to the job in the morning. There is no schedule or milestone worth any injury to the work force. Project Management EM is increasing its concentration on project management to improve its overall performance toward

  17. Variable area fuel cell cooling

    DOE Patents [OSTI]

    Kothmann, Richard E.

    1982-01-01

    A fuel cell arrangement having cooling fluid flow passages which vary in surface area from the inlet to the outlet of the passages. A smaller surface area is provided at the passage inlet, which increases toward the passage outlet, so as to provide more uniform cooling of the entire fuel cell. The cooling passages can also be spaced from one another in an uneven fashion.

  18. Carlsbad Area Office Executive Summary

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The

  19. Research Subject Areas for IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for IGPPS Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and...

  20. Java - Dieng Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Dieng Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Dieng Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  1. Java - Kamojang Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Kamojang Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Kamojang Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Java - Darajat Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Darajat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Darajat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  3. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  4. Sacramento Area Technology Alliance | Open Energy Information

    Open Energy Info (EERE)

    Sacramento Area Technology Alliance Jump to: navigation, search Logo: Sacramento Area Technology Alliance Name: Sacramento Area Technology Alliance Address: 5022 Bailey Loop Place:...

  5. Wild Rose Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Wild Rose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wild Rose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  6. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  7. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  8. Mcgee Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Mcgee Mountain Geothermal Area (Redirected from Mcgee Mountain Area) Redirect page Jump to: navigation, search REDIRECT McGee Mountain Geothermal Area Retrieved from "http:...

  9. Alum Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Alum Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alum Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  10. Aurora Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Aurora Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  11. Berl韓 Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Berln Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Berln Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  12. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  13. Krafla Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Krafla Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Krafla Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  14. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  15. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Rye Patch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rye Patch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  16. Amedee Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  17. Miravalles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Miravalles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Miravalles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  18. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oita Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oita Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  19. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  20. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  1. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Larderello Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Larderello Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Geothermal resource area 11, Clark County area development plan

    SciTech Connect (OSTI)

    Pugsley, M.

    1981-01-01

    Geothermal Resource Area 11 includes all of the land in Clark County, Nevada. Within this area are nine geothermal anomalies: Moapa Area, Las Vegas Valley, Black Canyon, Virgin River Narrows, Roger's Springs, Indian Springs, White Rock Springs, Brown's Spring, and Ash Creek Spring. All of the geothermal resources in Clark County have relatively low temperatures. The highest recorded temperature is 145{sup 0}F at Black Canyon. The temperatures of the other resources range from 70 to 90{sup 0}F. Because of the low temperature of the resources and, for the most part, the distance of the resources from any population base, the potential for the development of the resources are considered to be somewhat limited.

  3. Flash Steam Power Plant | Open Energy Information

    Open Energy Info (EERE)

    60 MW60,000 kW 60,000,000 W 60,000,000,000 mW 0.06 GW 6.0e-5 TW Single Flash 1998 Java - Dieng Geothermal Area Sunda Volcanic Arc Dixie Valley Geothermal Facility Terra-Gen...

  4. Dixie Valley Bottoming Binary Plant: Terra-Gen was funded by...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In addition, there are numerous applications for low-temperature geothermal energy beyond power generation, including space heating and cooling, water purification, and radiant ...

  5. A model for the shallow thermal regime at Dixie Valley geothermal...

    Open Energy Info (EERE)

    outflow zone was 5 kgs (factor of two uncertainty). Authors R. G. Allis, Stuart D. Johnson, Gregory D. Nash and Dick Benoit Conference GRC Annual Meeting; Reno, Nevada; 1999...

  6. Dixie Valley Bottoming Binary Plant: Terra-Gen was funded by...

    Broader source: Energy.gov (indexed) [DOE]

    ... generation, including space heating and cooling, water purification, and radiant heating. ... to develop an innovative Geothermal Thermoelectric Generation (G-TEG) system specially ...

  7. Los Humeros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    (0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase:...

  8. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  9. AreaMapWeb copy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ORNL ETTP CITY OF OAK RIDGE MAP AREA (below) 170 170 62 162 162 62 62 61 61 62 61 95 95 61 61 58 95 62 129 321 411 411 321 321 129 11W 11E 11 70 11 11 70 11 11 70 70 40 40 140 140 40 75 40 40 40 640 640 75 75 75 75 61 62 ALCOA MARYVILLE LENOIR CITY FARRAGUT LOUDON OLIVER SPRINGS OAK RIDGE KNOXVILLE AIRPORT McGhee Tyson Municipal Airport (Knoxville Airport) Route between Knoxville Airport, Downtown Knoxville, and Oak Ridge area Take left lane for I-40 West to Nashville, Chattanooga No. 376A Oak

  10. 200 area TEDF sample schedule

    SciTech Connect (OSTI)

    Brown, M.J.

    1995-03-22

    This document summarizes the sampling criteria associated with the 200 Area Treatment Effluent Facility (TEDF) that are needed to comply with the requirements of the Washington State Discharge Permit No. WA ST 4502 and good engineering practices at the generator streams that feed into TEDF. In addition, this document Identifies the responsible parties for both sampling and data transference.

  11. Areas Participating in the Reformulated Gasoline Program

    Gasoline and Diesel Fuel Update (EIA)

    Reformulated Gasoline Program Contents * Introduction * Mandated RFG Program Areas o Table 1. Mandated RFG Program Areas * RFG Program Opt-In Areas o Table 2. RFG Program Opt-In Areas * RFG Program Opt-Out Procedures and Areas o Table 3. History of EPA Rulemaking on Opt-Out Procedures o Table 4. RFG Program Opt-Out Areas * State Programs o Table 5. State Reformulated Gasoline Programs * Endnotes Spreadsheets Referenced in this Article * Reformulated Gasoline Control Area Populations Related EIA

  12. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, T.C.

    1986-12-23

    Device is described for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles. 9 figs.

  13. Variable area light reflecting assembly

    DOE Patents [OSTI]

    Howard, Thomas C.

    1986-01-01

    Device for tracking daylight and projecting it into a building. The device tracks the sun and automatically adjusts both the orientation and area of the reflecting surface. The device may be mounted in either a wall or roof of a building. Additionally, multiple devices may be employed in a light shaft in a building, providing daylight to several different floors. The preferred embodiment employs a thin reflective film as the reflecting device. One edge of the reflective film is fixed, and the opposite end is attached to a spring-loaded take-up roller. As the sun moves across the sky, the take-up roller automatically adjusts the angle and surface area of the film. Additionally, louvers may be mounted at the light entrance to the device to reflect incoming daylight in an angle perpendicular to the device to provide maximum reflective capability when daylight enters the device at non-perpendicular angles.

  14. Final DOE Areas Feasibility Study

    Office of Legacy Management (LM)

    Management, Washington, DC Weiss Associates Environmental Science, Engineering and Management FINAL DOE AREAS FEASIBILITY STUDY for the: LABORATORY FOR ENERGY-RELATED HEALTH RESEARCH UNIVERSITY OF CALIFORNIA, DAVIS Prepared for: SM Stoller Corporation 2597 B 戮 Road Grand Junction, Colorado 81503 Prepared by: Weiss Associates 5801 Christie Avenue, Suite 600 Emeryville, California 94608-1827 March 07, 2008 Rev. 0 J:\DOE_STOLLER\4110\143\FEASIBILITY_STUDY\20080307_FS_TEXT_REV0.DOC WEISS ASSOCIATES

  15. Innovation investment area: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The mission of Environmental Management`s (EM) Office of Technology Development (OTD) Innovation Investment Area is to identify and provide development support for two types of technologies that are developed to characterize, treat and dispose of DOE waste, and to remediate contaminated sites. They are: technologies that show promise to address specific EM needs, but require proof-of-principle experimentation; and (2) already proven technologies in other fields that require critical path experimentation to demonstrate feasibility for adaptation to specific EM needs. The underlying strategy is to ensure that private industry, other Federal Agencies, universities, and DOE National Laboratories are major participants in developing and deploying new and emerging technologies. To this end, about 125 different new and emerging technologies are being developed through Innovation Investment Area`s (IIA) two program elements: RDDT&E New Initiatives (RD01) and Interagency Agreements (RD02). Both of these activities are intended to foster research and development partnerships so as to introduce innovative technologies into other OTD program elements for expedited evaluation.

  16. EA-1177: Salvage/Demolition of 200 West Area, 200 East Area, and 300 Area Steam Plants, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to salvage and demolish the 200 West Area, 200 East Area, and 300 Area steam plants and their associated steam distribution piping...

  17. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  18. Southern CA Area | Open Energy Information

    Open Energy Info (EERE)

    CA Area Jump to: navigation, search Contents 1 Clean Energy Clusters in the Southern CA Area 1.1 Products and Services in the Southern CA Area 1.2 Research and Development...

  19. Fenton Hill Hdr Area | Open Energy Information

    Open Energy Info (EERE)

    Hill Hdr Area Redirect page Jump to: navigation, search REDIRECT Fenton Hill Hdr Geothermal Area Retrieved from "http:en.openei.orgwindex.php?titleFentonHillHdrArea&oldid...

  20. Carlsbad Area Office strategic plan

    SciTech Connect (OSTI)

    NONE

    1995-10-01

    This edition of the Carlsbad Area Office Strategic Plan captures the U.S. Department of Energy`s new focus, and supercedes the edition issued previously in 1995. This revision reflects a revised strategy designed to demonstrate compliance with environmental regulations earlier than the previous course of action; and a focus on the selected combination of scientific investigations, engineered alternatives, and waste acceptance criteria for supporting the compliance applications. An overview of operations and historical aspects of the Waste Isolation Pilot Plant near Carlsbad, New Mexico is presented.

  1. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for outdoor areas. Outdoor Area Lighting (June 2008) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial...

  2. Western Area Power Administration | Open Energy Information

    Open Energy Info (EERE)

    Western Area Power Administration Jump to: navigation, search Name: Western Area Power Administration Place: Colorado Phone Number: 720-962-7000 Website: ww2.wapa.govsites...

  3. Canby Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Transition Zone GEA Development Phase: Coordinates: 41.438, -120.8676 Resource Estimate...

  4. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    Magnetized High Energy Density Plasma Physics Specific areas of interest include, but are ... Nonlinear Optics of Plasmas and Laser-Plasma Interactions Specific areas of interest ...

  5. AREA USA LLC | Open Energy Information

    Open Energy Info (EERE)

    AREA USA LLC Jump to: navigation, search Name: AREA USA LLC Place: Washington, DC Zip: 20004 Sector: Services Product: Washington, D.C.-based division of Fabiani & Company...

  6. Socorro Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  7. La Primavera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  8. Florida Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  9. Jemez Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  10. Cerro Prieto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  11. Jemez Pueblo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  12. Jemez Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  13. Los Azufres Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid...

  14. Area Science Park | Open Energy Information

    Open Energy Info (EERE)

    Area Science Park Jump to: navigation, search Name: Area Science Park Place: Italy Sector: Services Product: General Financial & Legal Services ( Government Public sector )...

  15. Kizildere Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Denizli, Turkey Exploration Region: Aegean-West Anatolian Extensional Province - Western Anatolian...

  16. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Coordinates: 32.99, -115.35 Resource...

  17. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  18. Ahuachapan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase:...

  19. Western Area Power Administration Borrowing Authority, Recovery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Area Power Administration Borrowing Authority, Recovery Act Western Area Power Administration Borrowing Authority, Recovery Act PDF icon Microsoft Word - PSRP May 15 2009 ...

  20. Wide area continuous offender monitoring

    SciTech Connect (OSTI)

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  1. 300 Area signal cable study

    SciTech Connect (OSTI)

    Whattam, J.W.

    1994-09-15

    This report was prepared to discuss the alternatives available for removing the 300 Area overhead signal cable system. This system, installed in 1969, has been used for various monitoring and communication signaling needs throughout the 300 Area. Over the years this cabling system has deteriorated, has been continually reconfigured, and has been poorly documented to the point of nonreliability. The first step was to look at the systems utilizing the overhead signal cable that are still required for operation. Of the ten systems that once operated via the signal cable, only five are still required; the civil defense evacuation alarms, the public address (PA) system, the criticality alarms, the Pacific Northwest Laboratory Facilities Management Control System (FMCS), and the 384 annunciator panel. Of these five, the criticality alarms and the FMCS have been dealt with under other proposals. Therefore, this study focused on the alternatives available for the remaining three systems (evacuation alarms, PA system, and 384 panel) plus the accountability aid phones. Once the systems to be discussed were determined, then three alternatives for providing the signaling pathway were examined for each system: (1) re-wire using underground communication ducts, (2) use the Integrated Voice/Data Telecommunications System (IVDTS) already installed and operated by US West, and (3) use radio control. Each alternative was developed with an estimated cost, advantages, and disadvantages. Finally, a recommendation was provided for the best alternative for each system.

  2. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P.; Govi, Aldo R.

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  3. Geothermal resource evaluation of the Yuma area

    SciTech Connect (OSTI)

    Poluianov, E.W.; Mancini, F.P.

    1985-11-29

    This report presents an evaluation of the geothermal potential of the Yuma, Arizona area. A description of the study area and the Salton Trough area is followed by a geothermal analysis of the area, a discussion of the economics of geothermal exploration and exploitation, and recommendations for further testing. It was concluded economic considerations do not favor geothermal development at this time. (ACR)

  4. Biomass Program 2007 Accomplishments - Infrastructure Technology Area

    SciTech Connect (OSTI)

    Glickman, Joan

    2007-09-01

    This document details the accomplishments of the Biomass Program Infrastructure Technoloy Area in 2007.

  5. Outdoor Area Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Outdoor Area Lighting Outdoor Area Lighting This document reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy plant-wide while providing high quality lighting for outdoor areas. Outdoor Area Lighting (June 2008) (3.16 MB) More Documents & Publications Philadelphia International Airport Apron Lighting: LED System Performance in a Trial Installation Model Specification for LED Roadway Luminaires, V2.0

  6. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): 鈥 07-23-03, Atmospheric Test Site T-7C 鈥 07-23-04, Atmospheric Test Site T7-1 鈥 07-23-05, Atmospheric Test Site 鈥 07-23-06, Atmospheric Test Site T7-5a 鈥 07-23-07, Atmospheric Test Site - Dog (T-S) 鈥 07-23-08, Atmospheric Test Site - Baker (T-S) 鈥 07-23-09, Atmospheric Test Site - Charlie (T-S) 鈥 07-23-10, Atmospheric Test Site - Dixie 鈥 07-23-11, Atmospheric Test Site - Dixie 鈥 07-23-12, Atmospheric Test Site - Charlie (Bus) 鈥 07-23-13, Atmospheric Test Site - Baker (Buster) 鈥 07-23-14, Atmospheric Test Site - Ruth 鈥 07-23-15, Atmospheric Test Site T7-4 鈥 07-23-16, Atmospheric Test Site B7-b 鈥 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  7. Case Study: Mobile Photovoltaic System at Bechler Meadows Ranger...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    remote outpost is not served by the electric utility grid and previously relied on a propane generator as the only source of power. PDF icon 60516.pdf More Documents &...

  8. HERO Ski Trip to Mt. Hood Meadows February

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    If there is enough interest, we may be able to charter a bus to drive us up and back. Stay at the Best Western Plus Hood River Inn which is just 30 miles from Mt. Hood's largest...

  9. Lester Meadow, Washington- A Geothermal Anomaly | Open Energy...

    Open Energy Info (EERE)

    springs represents a geothermal anomaly. This conclusion is supported by an anomaly in a thermal infrared survey, high levels of fluorine and boron from a soil survey, and the...

  10. Reds Meadow Hot Springs Pool & Spa Low Temperature Geothermal...

    Open Energy Info (EERE)

    "searchmarkers":"","locations": Hide Map Temperature 46.0 C 115.0 F Flow 15 gpm 57 Lmin Capacity 1.00x106 Btuhr 0.300 MWt Annual Generation 7.00x109 Btuyr 2.10 GWhyr...

  11. Truckee Meadows Community College and Colorado School of Mines...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy is an important part of the Obama Administration's all-of-the-above energy strategy, supplying American homes and businesses with clean, renewable power around the clock. ...

  12. Categorical Exclusion Determinations: Western Area Power Administration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Administration Categorical Exclusion Determinations: Western Area Power Administration Categorical Exclusion Determinations issued by Western Area Power Administration. DOCUMENTS AVAILABLE FOR DOWNLOAD No downloads found for this office.

  13. West Flank Cosa, CA FORGE Test Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Doug Blankenship

    2015-11-15

    A map with the Coso West Flank FORGE test area outlined, along with regional seismicity, the aeromagnetic data set and the area currently being utilized for the creation of the 3D model.

  14. Magnetotellurics At Truckhaven Area (Layman Energy Associates...

    Open Energy Info (EERE)

    9. The 95 magnetotelluric (MT) soundings cover a central area of about 80 square kilometers. The 126 gravity stations extend over a broader area of about 150 square kilometers,...

  15. WASTE AREA GROUP 7 PROPOSED PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AREA GROUP 7 PROPOSED PLAN The Idaho National Laboratory (INL) Citizens Advisory Board (CAB) has provided its input to the Department of Energy on the Waste Area Group 7 (WAG 7)...

  16. LED Outdoor Area Lighting Fact Sheet

    SciTech Connect (OSTI)

    2008-06-01

    This fact sheet reviews the major design and specification concerns for outdoor area lighting, and discusses the potential for LED luminaires to save energy while providing high quality lighting for outdoor areas.

  17. Transfer Area Mechanical Handling Calculation

    SciTech Connect (OSTI)

    B. Dianda

    2004-06-23

    This calculation is intended to support the License Application (LA) submittal of December 2004, in accordance with the directive given by DOE correspondence received on the 27th of January 2004 entitled: ''Authorization for Bechtel SAX Company L.L. C. to Include a Bare Fuel Handling Facility and Increased Aging Capacity in the License Application, Contract Number DE-AC28-01R W12101'' (Arthur, W.J., I11 2004). This correspondence was appended by further Correspondence received on the 19th of February 2004 entitled: ''Technical Direction to Bechtel SAIC Company L.L. C. for Surface Facility Improvements, Contract Number DE-AC28-OIRW12101; TDL No. 04-024'' (BSC 2004a). These documents give the authorization for a Fuel Handling Facility to be included in the baseline. The purpose of this calculation is to establish preliminary bounding equipment envelopes and weights for the Fuel Handling Facility (FHF) transfer areas equipment. This calculation provides preliminary information only to support development of facility layouts and preliminary load calculations. The limitations of this preliminary calculation lie within the assumptions of section 5 , as this calculation is part of an evolutionary design process. It is intended that this calculation is superseded as the design advances to reflect information necessary to support License Application. The design choices outlined within this calculation represent a demonstration of feasibility and may or may not be included in the completed design. This calculation provides preliminary weight, dimensional envelope, and equipment position in building for the purposes of defining interface variables. This calculation identifies and sizes major equipment and assemblies that dictate overall equipment dimensions and facility interfaces. Sizing of components is based on the selection of commercially available products, where applicable. This is not a specific recommendation for the future use of these components or their related

  18. Sandia National Laboratories: About Sandia: Mission Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mission Areas Mission Statements The Laboratory Leadership Team decided on a set of integrated Mission Areas that best reflect Sandia's mission based on three key characteristics: synergy with nuclear weapons capabilities, national security impact, and strategic value needed to ensure Sandia's enduring contribution to the nation. The Mission Areas bring focus to the work we conduct in national security. The middle tier Mission Areas are strongly interdependent with and essential to the nuclear

  19. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas High Energy Density Laboratory Plasmas (HEDLP) Research Areas During open solicitations proposals are sought in the following subfields and cross-cutting areas of HEDLP: High Energy Density Hydrodynamics Specific areas of interest include, but are not limited to, turbulent mixing, probing properties of high energy density (HED) matter through hydrodynamics, solid-state hydrodynamics at high pressures, new hydrodynamic instabilities, and hydrodynamic scaling. Radiation-Dominated

  20. Bay Area | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Bay Area San Francisco Bay Area Aerial Radiation Assessment Survey (SAN JOSE and SAN FRANCISCO, California) - A helicopter may be seen flying at low altitudes over portions of the San Francisco Bay Area from January 29 through February 6, 2016. The purpose of the flyovers is to measure naturally occurring background radiation. Officials from the National Nuclear... NNSA to Conduct Aerial Radiological Surveys Over San Francisco, Pacifica, Berkeley, And Oakland, CA Areas A U.S. Department of

  1. Focus Areas 1 and 4 Deliverables

    Office of Environmental Management (EM)

    1 - Requirements Flow Down and Focus Area #4 - Graded Approach to Quality Assurance Graded Approach Model and Expectation Page 1 of 18 Office of Environmental Management And Energy Facility Contractors Group Quality Assurance Improvement Project Plan Project Focus Area Task # and Description Deliverable Project Area 1: Requirements Flow Down Task #1.9 - Complete White Paper covering procurement QA process flow diagram Draft White Paper and Amended Flow Diagram Project Area 4: Graded Approach

  2. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  3. Functional Area Qualification Standard Reference Guides

    Broader source: Energy.gov [DOE]

    The reference guides have been developed to address the competency statements in DOE Functional Area Qualification Standard.

  4. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  5. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  6. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  7. Geographic Information System At International Geothermal Area...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration Activity...

  8. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A.; Paik, I.R.

    1998-04-01

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  9. Fire Protection Engineering Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    FIRE PROTECTION ENGINEERING FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical ... by applied engineering fundamentals, research, fire hazard ...

  10. Considering LEDs for Street and Area Lighting

    Broader source: Energy.gov [DOE]

    View Jim Brodrick's keynote video from the September 2009 IES Street and Area Lighting Conference in Philadelphia.

  11. Navy 1 Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Navy 1 Geothermal Area Navy 1 Geothermal Area The Navy 1 Geothermal Project is located on the test and evaluation ranges of the Naval Air Weapons Station, China Lake. At its peak, the project produced more than 273 megawatts of electricity that was sold into the local utility grid under a long-term power sales agreement. Photo of the Coso Geothermal Area

  12. The Geysers Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Geysers Geothermal Area The Geysers Geothermal Area The Geysers Geothermal area, north of San Francisco, California, is the world's largest dry-steam geothermal steam field. Power production at the Geysers reached peak production in 1987, at that time serving 1.8 million people. Photo of The Geysers power plant

  13. Beryllium Facilities & Areas - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities & Areas About Us Hanford Cultural Resources Beryllium Program Beryllium Program Points of Contact Beryllium Facilities & Areas Beryllium Program Information Hanford CBDPP Committee Beryllium FAQs Beryllium Related Links Hanford Beryllium Awareness Group (BAG) Program Performance Assessments Beryllium Program Feedback Beryllium Health Advocates Primary Contractors/Employers Medical Testing and Surveillance Facilities General Resources Beryllium Facilities & Areas Email

  14. Casa Diablo Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Casa Diablo Geothermal Area Casa Diablo Geothermal Area The Mammoth-Pacific geothermal power plants at Casa Diablo on the eastern front of the Sierra Nevada Range generate enough power for approximately 40,000 homes. The power is sold to Southern California Edison under long-term contracts. Photo of the Casa Diablo Geothermal area.

  15. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response...

    Broader source: Energy.gov (indexed) [DOE]

    Pilot Plant on February 14, 2014, report in Attachment F. Bibliography and References, are available on various public websites. Technical Area (TA)-54 Area G Nitrate-Salt ...

  16. 2016 DOE Project Management Workshop - Area Restaurants | Department...

    Office of Environmental Management (EM)

    Area Restaurants 2016 DOE Project Management Workshop - Area Restaurants Information on surrounding area restaurants PDF icon Area restaurants Key Resources PMCDP EVMS PARS IIe FPD ...

  17. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  18. 2010sr29[M Area].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, October 20, 2010 Paivi Nettamo, SRNS, (803) 952-6938 Savannah River Site Marks Recovery Act Cleanup Milestone M Area cleanup work was finished nearly two years ahead of schedule AIKEN, S.C. (October 20) - Department of Energy, contractor and regulatory representatives gathered today to celebrate the completion of cleanup work at Savannah River Site's M Area, nearly two years ahead of schedule. This area cleanup was the first at SRS to be completed with the help of American Recovery

  19. Pengalengan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: Bandung Regency, Indonesia Exploration Region: West Java GEA Development Phase: Operational"Operational" is not in the list of possible values...

  20. Tank Farm Area Cleanup Decision-Making

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area Cleanup Decision-Making Groundwater Vadose Zone Single Shell Tank System Closure (tanks, structures and pipelines) * Washington State Hazardous Waste Management Act (Resource...

  1. NSTB Summarizes Vulnerable Areas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NSTB Summarizes Vulnerable Areas Experts at the National SCADA Test Bed (NSTB) discovered ... Lessons Learned from Cyber Security Assessments of SCADA and Energy Management Systems ...

  2. Alaska Special Area Regulations | Open Energy Information

    Open Energy Info (EERE)

    to library Web Site: Alaska Special Area Regulations Author Alaska Department of Fish & Game Published Publisher Not Provided, 2014 DOI Not Provided Check for DOI...

  3. Berkshire East Ski Area | Open Energy Information

    Open Energy Info (EERE)

    Energy Development Energy Purchaser Berkshire East Ski Area Location Charlemont MA Coordinates 42.61621237, -72.86660671 Show Map Loading map... "minzoom":false,"mapp...

  4. Redfield Campus Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  5. Hawthorne Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Coordinates: 38.53, -118.65...

  6. Wendel Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Operational"Operational" is not in the...

  7. Rhodes Marsh Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: Resource Estimate Mean Reservoir Temp:...

  8. Research Areas | National Nuclear Security Administration | ...

    National Nuclear Security Administration (NNSA)

    ... of traditional ideal-plasma theory and standard condensed matter theory do not apply. ... This includes investigations in related areas of plasma physics, inertial fusion, atomic ...

  9. Takigami Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  10. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  11. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. South Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  15. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  16. Trial Demonstration of Area Lighting Retrofit

    Energy Savers [EERE]

    Trial Demonstration of Area Lighting Retrofit Host Site: Yuma Border Patrol, Yuma, Arizona December 2014 Prepared for: Solid-State Lighting Program Building Technologies Office ...

  17. Geothermometry At Blackfoot Reservoir Area (Hutsinpiller & Parry...

    Open Energy Info (EERE)

    Activity Details Location Blackfoot Reservoir Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown References Amy Hutsinpiller, W. T....

  18. Maibarara Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Inc.. updated 20140209;cited 20150422. Available from: http:maibarara.com.ph List of existing Geothermal Resource Areas. Print PDF Retrieved from "http:...

  19. Honey Lake Geothermal Area | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are ...

  20. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  1. Area Information | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oak Ridge: Convention and Visitors Bureau Oak Ridge: Oak Ridger Oak Ridge: Secret City History Area Attractions: To Do and See Knoxville: Clarence Brown Theater Knoxville: Frank...

  2. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  3. Adak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  4. Hellisheidi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  5. Maui Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  6. Romania Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  7. Ndunga Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  8. Bjarnaflag Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. Yangbajain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. RMOTC Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. Langjiu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  13. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  18. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  4. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  7. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    establishes common functional area competency requirements for DOE personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical QA...

  10. Quality Assurance Functional Area Qualification Standard - DOE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical...

  11. Molokai Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Image needs updating Reference needed Missing content Broken link Other Additional Comments Cancel Submit Categories: Geothermal Available for Case Study Geothermal Resource Areas...

  12. Safety Software Quality Assurance Functional Area Qualification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    72-2011, Safety Software Quality Assurance Functional Area Qualification Standard by Diane Johnson This SSQA FAQS identifies the minimum technical competency requirements for DOE...

  13. Cathedral Rock Picnic Area Rehabilitation Environmental Assessment

    National Nuclear Security Administration (NNSA)

    ... Visitor Experience Additional parking spaces allow for more vehicles in the area, which increases associated noise and air pollution. This diminishes the experience of visitors who ...

  14. Bruchsal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  15. Garching Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  16. Facility Representative Functional Area Qualification Standard

    Broader source: Energy.gov (indexed) [DOE]

    ... knowledge of chemistry fundamentals in the areas of ... water prior to use in nuclear and non-nuclear systems. e. ... working level knowledge of engineering prints and drawings. ...

  17. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  18. Property:Focus Area | Open Energy Information

    Open Energy Info (EERE)

    and Greenhouse Gas Baselining Transportation Energy Supply Load Reduction Policy and Human Behavior Renewable Energy Food Supply Pages using the property "Focus Area" Showing 1...

  19. Public participation in a DOE national program: The mixed waste focus area`s approach

    SciTech Connect (OSTI)

    1997-05-01

    The authors describe the Mixed Waste Focus Area`s approach to involving interested Tribal and public members in the mixed waste technology development process. Evidence is provided to support the thesis that the Focus Area`s systems engineering process, which provides visible and documented requirements and decision criteria, facilitates effective Tribal and public participation. Also described is a status of Tribal and public involvement at three levels of Focus Area activities.

  20. Utah Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utah Geothermal Area Utah Geothermal Area Utah has two geothermal electric plants: the 23-megawatt Roosevelt Hot Springs facility near Milford run by Utah Power and CalEnergy Corp., and the Utah Municipal Power Association's Cove Fort Station, which is located north of Beaver, Utah. Photo of the Bud L. Bonnett Geothermal Plant in Cove Fort Sulphurdale, UT

  1. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-12-02

    The Quality Assurance (QA) Functional Area Qualification Standard (FAQS) establishes common functional area competency requirements for all DOE QA personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical activities that could impact the safe operation of DOE鈥檚 defense nuclear facilities.

  2. Quality Assurance Functional Area Qualification Standard

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-22

    Replaced by DOE-1150-2013 This QA Functional Area Qualification Standard establishes common functional area competency requirements for DOE personnel who provide assistance, direction, guidance, oversight, or evaluation of contractor technical QA activities impacting the safe operation of defense nuclear facilities.

  3. Tanks Focus Area annual report FY2000

    SciTech Connect (OSTI)

    2000-12-01

    The U.S. Department of Energy (DOE) continues to face a major radioactive waste tank remediation effort with tanks containing hazardous and radioactive waste resulting from the production of nuclear materials. With some 90 million gallons of waste in the form of solid, sludge, liquid, and gas stored in 287 tanks across the DOE complex, containing approximately 650 million curies, radioactive waste storage tank remediation is the nation's highest cleanup priority. Differing waste types and unique technical issues require specialized science and technology to achieve tank cleanup in an environmentally acceptable manner. Some of the waste has been stored for over 50 years in tanks that have exceeded their design lives. The challenge is to characterize and maintain these contents in a safe condition and continue to remediate and close each tank to minimize the risks of waste migration and exposure to workers, the public, and the environment. In 1994, the DOE's Office of Environmental Management (EM) created a group of integrated, multiorganizational teams focusing on specific areas of the EM cleanup mission. These teams have evolved into five focus areas managed within EM's Office of Science and Technology (OST): Tanks Focus Area (TFA); Deactivation and Decommissioning Focus Area; Nuclear Materials Focus Area; Subsurface Contaminants Focus Area; and Transuranic and Mixed Waste Focus Area.

  4. Hawaii Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hawaii Geothermal Area Hawaii Geothermal Area The Hawaii geothermal area includes the Puna Geothermal Venture, which is located about 21 miles south of Hilo on the Big Island of Hawaii. The facility is situated along the Lower East Rift Zone of the Kilauea Volcano. At the Puna Geothermal Venture, geothermal fluid is brought to the surface through production wells, which tap into the resource at a depth of almost a mile. The steam, along with its non-condensable gases, is routed to the power

  5. 200 North Aggregate Area source AAMS report

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

  6. : H. Jack Elackwell, Area Manager, LAAO DATE:

    Office of Legacy Management (LM)

    O.&E b.&AORANDti~ l > : H. Jack Elackwell, Area Manager, LAAO DATE: June 5, 1973 70~ : ~$?$Z~H-Division Leader ,WE~,T : ENVIRONMENTAL RADIOACTIVITY SURVEY OF LOS ALAMOS COMIMUNITY LAND AREAS ' MBOL : H8M-73-102 At your request an environmental radioactivity survey of four' .tracts of AEC-owned land in Los Alamos County was conducted. The monitoring and analysis of samples paralleled that described in Los Alamos Scientific Laboratory Report LA5097-MS, "Los Alamos Land Areas

  7. Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Instructions | Department of Energy Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions Technical Area (TA)-54 Area G Nitrate-Salt Waste Container Response Instructions This document was used to determine facts and conditions during the Department of Energy Accident Investigation Board's investigation into the radiological release event at the Waste Isolation Pilot Plant. Additional documents referenced and listed in the Phase 2 Radiological Release Event at the

  8. Nagqu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Use the "Edit with Form" button at the top of the page to add a Well Field Description Geology of the Area Geologic Setting Tectonic Setting: Extensional Tectonics Controlling...

  9. Improving the environment in urban areas

    SciTech Connect (OSTI)

    Adamkus, V.V.

    1994-12-31

    The author discusses the need for improvements to the environment in urban areas, and efforts being made under the direction of the Environmental Protection Agency (EPA) to address these problems. The impact the new Clean Air Act can have on emissions from gasoline powered autos, diesel burning trucks, fixed emission sources ranging from utilities to chemical plants, and consumer products like hair sprays and charcoal starters, will all work together to improve air quality in urban areas. The author also discusses Brownfields Economic Redevelopment Plan efforts being supported by the EPA in a coordinated plan to get municipalities involved in cleaning up areas with pollution, to remove the blight on the urban areas, provide new land for development, and promote additional jobs.

  10. Coulee Area Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    entity proposing to develop, own and operate a large-scale corn-to-ethanol plant in Sparta, Wisconsin. References: Coulee Area Renewable Energy1 This article is a stub. You...

  11. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  12. Central Facilities Area Sewage Lagoon Evaluation

    SciTech Connect (OSTI)

    Giesbrecht, Alan

    2015-03-01

    The Central Facilities Area (CFA) located in Butte County, Idaho at Idaho National Laboratory (INL) has an existing wastewater system to collect and treat sanitary wastewater and non contact cooling water from the facility. The existing treatment facility consists of three cells: Cell 1 has a surface area of 1.7 acres, Cell 2 has a surface area of 10.3 acres, and Cell 3 has a surface area of 0.5 acres. If flows exceed the evaporative capacity of the cells, wastewater is discharged to a 73.5 acre land application site that utilizes a center pivot irrigation sprinkler system. The purpose of this current study is to update the analysis and conclusions of the December 2013 study. In this current study, the new seepage rate and influent flow rate data have been used to update the calculations, model, and analysis.

  13. Astor Pass Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    been conducted in the area - and logged on OpenEI. To add an additional NEPA-related analysis, see the NEPA Database. CSV No NEPA-related documents listed. Exploration Activities...

  14. SCHEDULE: Bay Area Maker Faire 2016

    Broader source: Energy.gov [DOE]

    Find out where and when to meet some of our top innovators and explore the technologies on display from the Department of Energy at the 11th annual Bay Area Maker Faire.

  15. 300 area TEDF permit compliance monitoring plan

    SciTech Connect (OSTI)

    BERNESKI, L.D.

    1998-11-20

    This document presents the permit compliance monitoring plan for the 300 Area Treated Effluent Disposal Facility (TEDF). It addresses the compliance with the National Pollutant Discharge Elimination System (NPDES) permit and Department of Natural Resources Aquatic Lands Sewer Outfall Lease.

  16. Estimating Temperature Distributions In Geothermal Areas Using...

    Open Energy Info (EERE)

    "education level" (which depends on the amount and structure of information used for teaching) and (b) the distance of the point at which the estimate is made from the area for...

  17. Raft River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    and later the US Department of Energy (DOE) which was formed by joining the Federal Energy Administration and ERDA in 1977.3 The Raft River site was identified as an area...

  18. Technical Area 21 Integrated Closure Strategy

    Broader source: Energy.gov [DOE]

    At the July 30, 2014 Board meeting David Rhodes DOE, Supplied Information on the Strategy that is Being Implemented to Close Technical Area 21. Information Provided Included Demolition of Buildings Reaming Environmental Clean-up Work and Future Site Use.

  19. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  20. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas National Laser Users' Facility Grant Program Research Areas The research tools and resources of the Omega Laser Facility, and the Laboratory for Laser Energetics, are available to National Laser Users' Facilities (NLUF) scientists for state-of-the-art basic research experiments in laser-matter interaction and related diagnostics. This includes, but is not limited to, inertial fusion, high energy density physics, plasma physics, spectroscopy of highly ionized atoms, laboratory

  1. Research Areas | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Research Areas Properties of Materials under Extreme Conditions and Hydrodynamics During open solicitations research proposals are solicited for grants and Centers of Excellence in the area of fundamental properties and response of materials under extreme conditions (condensed matter physics and materials science, hydrodynamics and fluid dynamics). Extreme conditions include material response when subjected to one or more of the following: high-pressure (> 100 kbar), high-temperature (near

  2. Radiation Protection Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MEASUREMENT SENSITIVE DOE-STD-1174-2013 November 2013 DOE STANDARD RADIATION PROTECTION FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1174-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/techstds/ ii ii

  3. Nuclear Safety Specialist Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    83-2007 November 2007 DOE STANDARD NUCLEAR SAFETY SPECIALIST FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1183-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1183-2007 iv INTENTIONALLY BLANK

  4. Occupational Safety Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    11 July 2011 DOE STANDARD OCCUPATIONAL SAFETY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. NOT MEASUREMENT SENSITIVE DOE-STD-1160-2011 ii This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ DOE-STD-1160-2011 iv

  5. Quality Assurance Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE-STD-1150-2013 December 2013 DOE STANDARD QUALITY ASSURANCE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1150-2013 This document is available on the Department of Energy Technical Standards Program Website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  6. LANSCE | Lujan Center | Science Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Thrust Areas User research at the Lujan Center is focused in four science thrust areas. Each has a contact person who is available to discuss proposed experiments and to provide advice on the appropriate instrument and instrument scientist, available sample environments, and other details for planned experiments. Lujan Center instrument scientists welcome questions and discussions about new experiments and are happy to provide guidance for proposal development. New users are encouraged

  7. Central Plateau Inner Area Cleanup Principles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inner Area Cleanup Principles * Cleanup Principles are the initial conditions and approaches to developing cleanup decisions in the Inner Area * These Principles will guide the development of the Remedial Investigations and Feasibility Studies (RI/FS) * These Principles will help DOE produce RI/FS documents to better meet regulator expectations * Formal agreement on cleanup, as influenced by these Principles, does not happen until the Record of Decision What are Cleanup Principles? 2 * The Inner

  8. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5

  9. Area teachers benefit from professional development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area teachers benefit from professional development Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues 禄 submit Area teachers benefit from professional development Math and Science Academy encourages collaborative work environments. August 2, 2016 Santa Fe Community College's Early Childhood Center of Excellence Director Dr. Jennifer Duran-Sallee (left) gives a tour of the Kids Campus to Cabinet

  10. Cincinnati Big Area Additive Manufacturing (BAAM)

    SciTech Connect (OSTI)

    Duty, Chad E.; Love, Lonnie J.

    2015-03-04

    Oak Ridge National Laboratory (ORNL) worked with Cincinnati Incorporated (CI) to demonstrate Big Area Additive Manufacturing which increases the speed of the additive manufacturing (AM) process by over 1000X, increases the size of parts by over 10X and shows a cost reduction of over 100X. ORNL worked with CI to transition the Big Area Additive Manufacturing (BAAM) technology from a proof-of-principle (TRL 2-3) demonstration to a prototype product stage (TRL 7-8).

  11. Industrial Hygiene Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    38-2007 November 2007 DOE STANDARD INDUSTRIAL HYGIENE FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1138-2007 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1138-2007 iv INTENTIONALLY BLANK

  12. Instrumentation and Control Functional Area Qualification Standard

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NOT MEASUREMENT SENSITIVE DOE-STD-1162-2013 June 2013 DOE STANDARD INSTRUMENTATION AND CONTROL FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. DOE-STD-1162-2013 This document is available on the Department of Energy Technical Standards Program website at http://www.hss.energy.gov/nuclearsafety/ns/techstds/ ii

  13. Brady Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Brady Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Brady Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  14. African Renewable Energy Alliance (AREA) | Open Energy Information

    Open Energy Info (EERE)

    (AREA) Place: Online Website: area-network.ning.com?xgsour References: World Futures Council - New Alliance Established in Addis Ababa1 African Renewable Energy Alliance (AREA)...

  15. Near Fish Bay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Near Fish Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Near Fish Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  16. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area (Redirected from Fish Lake Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1...

  17. Fish Lake Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fish Lake Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fish Lake Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  18. Great Boiling Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Boiling Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Boiling Springs Geothermal Area Contents 1 Area Overview 2 History and...

  19. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  20. Big Bend Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Bend Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Bend Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  1. Big Creek Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Big Creek Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Big Creek Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  2. Sleeping Child Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sleeping Child Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sleeping Child Hot Springs Geothermal Area Contents 1 Area Overview 2...

  3. Crane Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Crane Hot Springs Geothermal Area (Redirected from Crane Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Crane Hot Springs Geothermal Area Contents 1...

  4. Kelly Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Kelly Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Kelly Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  5. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area (Redirected from Hot Springs Ranch Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1...

  6. Pilgrim Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Pilgrim Hot Springs Geothermal Area (Redirected from Pilgrim Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pilgrim Hot Springs Geothermal Area...

  7. Hot Springs Ranch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Ranch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Hot Springs Ranch Geothermal Area Contents 1 Area Overview 2 History and...

  8. Red River Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Red River Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Red River Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  9. Smith Creek Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Smith Creek Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Smith Creek Valley Geothermal Area Contents 1 Area Overview 2 History and...

  10. Broadwater Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Broadwater Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Broadwater Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  11. Reed River Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Reed River Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Reed River Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  12. Sitka Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Sitka Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sitka Hot Spring Geothermal Area Contents 1 Area Overview 2 History and Infrastructure...

  13. Ishtalitna Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Ishtalitna Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ishtalitna Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  14. Bradfield Canal Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bradfield Canal Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bradfield Canal Hot Spring Geothermal Area Contents 1 Area Overview 2...

  15. Cold Bay Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cold Bay Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cold Bay Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  16. Dann Ranch Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dann Ranch Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dann Ranch Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  17. Upper Division Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Upper Division Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Upper Division Hot Spring Geothermal Area Contents 1 Area Overview 2 History...

  18. Fisher Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Fisher Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Fisher Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  19. Macfarlane's Hot Spring Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Macfarlane's Hot Spring Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Macfarlane's Hot Spring Geothermal Area Contents 1 Area Overview 2 History and...

  20. Geysers Hi-T Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Hi-T Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Hi-T Reservoir Geothermal Area Contents 1 Area Overview 2 History and...

  1. Property:CaseStudyArea | Open Energy Information

    Open Energy Info (EERE)

    Area + CSCWWU 2014 a + Goddard Hot Springs Geothermal Area + CSCWWU 2014b + Magic Reservoir Geothermal Area + Retrieved from "http:en.openei.orgw...

  2. White Arrow Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Arrow Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Arrow Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  3. White Licks Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    White Licks Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home White Licks Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  4. Marysville Test Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Marysville Test Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Marysville Test Well Geothermal Area Contents 1 Area Overview 2 History and...

  5. Nevada Test And Training Range Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Nevada Test And Training Range Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Nevada Test And Training Range Geothermal Area Contents 1 Area Overview...

  6. Bac-Man Laguna Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Bac-Man Laguna Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Bac-Man Laguna Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  7. Long Valley Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Long Valley Caldera Geothermal Area Contents 1 Area Overview 2 History and...

  8. Valles Caldera - Redondo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Valles Caldera - Redondo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Redondo Geothermal Area Contents 1 Area Overview 2 History...

  9. Valles Caldera - Sulphur Springs Geothermal Area | Open Energy...

    Open Energy Info (EERE)

    Valles Caldera - Sulphur Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Valles Caldera - Sulphur Springs Geothermal Area Contents 1 Area...

  10. Port Moller Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Port Moller Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Port Moller Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  11. North End Of Tenakee Inlet Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    North End Of Tenakee Inlet Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home North End Of Tenakee Inlet Geothermal Area Contents 1 Area Overview 2...

  12. Silver Star Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Silver Star Hot Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Silver Star Hot Springs Geothermal Area Contents 1 Area Overview 2 History and...

  13. Interfacial area transport in bubbly flow

    SciTech Connect (OSTI)

    Ishii, M.; Wu, Q.; Revankar, S.T.

    1997-12-31

    In order to close the two-fluid model for two-phase flow analyses, the interfacial area concentration needs to be modeled as a constitutive relation. In this study, the focus was on the investigation of the interfacial area concentration transport phenomena, both theoretically and experimentally. The interfacial area concentration transport equation for air-water bubbly up-flow in a vertical pipe was developed, and the models for the source and sink terms were provided. The necessary parameters for the experimental studies were identified, including the local time-averaged void fraction, interfacial area concentration, bubble interfacial velocity, liquid velocity and turbulent intensity. Experiments were performed with air-water mixture at atmospheric pressure. Double-sensor conductivity probe and hot-film probe were employed to measure the identified parameters. With these experimental data, the preliminary model evaluation was carried out for the simplest form of the developed interfacial area transport equation, i.e., the one-dimensional transport equation.

  14. Use Areas & Availability | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Use Areas & Availability Use Areas & Availability Public Use Area of New Hope Center New Hope Center Lobby New Hope Center Courtyard Public use areas of Y-12's New Hope Center...

  15. Wetland survey of selected areas in the K-24 Site Area of responsibility

    SciTech Connect (OSTI)

    Rosensteel, B.A.; Awl, D.J.

    1995-07-01

    In accordance with DOE Regulations for Compliance with Floodplain/Wetlands Environmental Review Requirements, wetland surveys were conducted in selected areas within the K-25 Area of Responsibility during the summer of 1994. These areas are Mitchell Branch, Poplar Creek, the K-770 OU, Duct Island Peninsula, the Powerhouse area, and the K-25 South Corner. Previously surveyed areas included in this report are the main plant area of the K-25 Site, the K-901 OU, the AVLIS site, and the K-25 South Site. Wetland determinations were based on the USACE methodology. Forty-four separate wetland areas, ranging in size from 0.13 to 4.23 ha, were identified. Wetlands were identified in all of the areas surveyed with the exception of the interior of the Duct Island Peninsula and the main plant area of the K-25 Site. Wetlands perform functions such as floodflow alteration, sediment stabilization, sediment and toxicant retention, nutrient transformation, production export, and support of aquatic species and wildlife diversity and abundance. The forested, scrub-shrub, and emergent wetlands identified in the K-25 area perform some or all of these functions to varying degrees.

  16. Gunun-Salak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Activities (0) 10 References Area Overview Geothermal Area Profile Location: Java, Indonesia Exploration Region: Sunda Volcanic Arc GEA Development Phase:...

  17. Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open...

    Open Energy Info (EERE)

    Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  18. Cuttings Analysis At Coso Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  19. Aeromagnetic Survey At Coso Geothermal Area (1977) | Open Energy...

    Open Energy Info (EERE)

    Home Exploration Activity: Aeromagnetic Survey At Coso Geothermal Area (1977) Exploration Activity Details Location Coso Geothermal Area Exploration Technique...

  20. Aeromagnetic Survey At Blue Mountain Geothermal Area (Fairbank...

    Open Energy Info (EERE)

    Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Aeromagnetic Survey Activity...