Powered by Deep Web Technologies
Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

2

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

3

Transportation Demand This  

Annual Energy Outlook 2012 (EIA)

69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Transportation Demand Module The NEMS Transportation Demand Module estimates...

4

Transportation Demand Management Plan  

E-Print Network (OSTI)

Transportation Demand Management Plan FALL 2009 #12;T r a n s p o r t a t i o n D e m a n d M a n the transportation impacts the expanded enrollment will have. Purpose and Goal The primary goal of the TDM plan is to ensure that adequate measures are undertaken and maintained to minimize the transportation impacts

5

Leslie Mancebo (7234) Transportation Demand &  

E-Print Network (OSTI)

Leslie Mancebo (7234) Transportation Demand & Marketing Coordinator 1 FTE, 1 HC Administrative Vice Chancellor Transportation and Parking Services Clifford A. Contreras (0245) Director 30.10 FTE Alternative Transportation & Marketing Reconciliation Lourdes Lupercio (4723) Michelle McArdle (7512) Parking

Hammock, Bruce D.

6

Environmental Transport Division: 1979 report  

SciTech Connect

During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

1980-03-01T23:59:59.000Z

7

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

8

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

9

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

10

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

11

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

12

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

13

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

14

China-Transportation Demand Management in Beijing: Mitigation...  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing -...

15

Transportation Energy: Supply, Demand and the Future  

E-Print Network (OSTI)

Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05.pdf Edward Beimborn Center for Urban Transportation Studies University of Wisconsin-Milwaukee Presentation to the District IV Conference Institute of Transportation Engineers June, 2005, updated September

Saldin, Dilano

16

Energy and Transportation Science Division (ETSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

17

Demand responsive public transportation using wireless technologies  

Science Conference Proceedings (OSTI)

Air pollution has been the bane of society for which we still have not got a satisfying solution. The air pollution due to automobiles constitutes around 60--90% of the total air pollution in the urban area. To curtail this, the mass transportation, ... Keywords: Djiktra's algorithm, on-demand public transportation, routing algorithms, wireless client-server backbone

S. Prashanth; Sp Geetha; Ga Shanmugha Sundaram

2011-12-01T23:59:59.000Z

18

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

19

Transportation Demand Management in Beijing - Mitigation of emissions...  

Open Energy Info (EERE)

the implementation of transport demand management measures. Appropriate Transport Demand Management (TDM) strategies and measures can affect travel behaviour and therefore reduce...

20

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Berkeley Lab Transportation and Parking Demand Management Committee  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Demand Management Committee masthead Articles Fehrs & Peers Reports FAQ FeedbackComments Contact Us Transportation Links Current Parking Impacts Due To Construction...

22

A Small Aircraft Transportation System (SATS) Demand Model  

Science Conference Proceedings (OSTI)

The Small Aircraft Transportation System (SATS) demand modeling is a tool that will be useful for decision makers to analyze SATS demands in both airport and airspace. We constructed a series of models following the general top- down, modular principles ...

Long Dou; Lee David; Johnson Jesse; Kostiuk Peter

2001-06-01T23:59:59.000Z

23

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

24

Transportation Technologies Studies - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

Facilities > Computer Facilities > Advanced Computation & Visualization > Transportation Technologies Studies Computer Facilities Overview Advanced Computation & Visualization...

25

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

26

Transportation Demand Management in Beijing - Mitigation of emissions in  

Open Energy Info (EERE)

Beijing - Mitigation of emissions in Beijing - Mitigation of emissions in urban transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in Beijing to enable them to calculate baselines and assess reduction

27

Hawaii Department of Transportation Highways Division | Open Energy  

Open Energy Info (EERE)

Highways Division Highways Division Jump to: navigation, search Name Hawaii Department of Transportation Highways Division Address 869 Punchbowl Street, Room 513 Place Honolulu, Hawaii Zip 96809 Website http://hawaii.gov/dot/highways Coordinates 21.303779°, -157.860047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.303779,"lon":-157.860047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

A demand-responsive decision support system for coal transportation  

Science Conference Proceedings (OSTI)

In this paper, a demand-responsive decision support system is proposed by integrating the operations of coal shipment, coal stockpiles and coal railing within a whole system. A generic and flexible scheduling optimisation methodology is developed to ... Keywords: Coal shipment, Coal stockpiles, Coal train scheduling, Decision support system, Mine transportation

Erhan Kozan; Shi Qiang Liu

2012-12-01T23:59:59.000Z

29

Sustainable Campus Transportation through Transit Partnership and Transportation Demand Management: A Case Study from the University of Florida  

E-Print Network (OSTI)

A. 2005. The impacts of transportation demand management andUnlimited access. Transportation 28 (3): 233267. Cervero,transit. Journal of Public Transportation 3 (4):1019. ???.

Bond, Alex; Steiner, Ruth

2006-01-01T23:59:59.000Z

30

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

31

Fundamental performance limits and efficient polices for Transportation-On-Demand systems  

E-Print Network (OSTI)

Transportation-On-Demand (TOD) systems, where users generate requests for transportation from a pick-up point to a delivery point, are already very popular and are expected to increase in usage dramatically as the inconvenience ...

Pavone, Marco

32

Tracking Demands in Optimal Control of Managerial Systemswith Continuously-Divisible, Doubly Constrained Resources  

Science Conference Proceedings (OSTI)

The paper addresses problems of allocating continuously divisible resources among multiple production activities. The resources are allowed to be doubly constrained, so that both usage at every point of time and cumulative consumption over a planning horizon ... Keywords: Optimal control, Resource constrained scheduling, renewable and nonrenewable resources

Konstantin Kogan; Eugene Khmelnitsky

1998-08-01T23:59:59.000Z

33

Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation  

E-Print Network (OSTI)

This paper covers some of the major aspects of the development and execution of the Southwest Division, Naval Facilities Engineering Command (SOUTHWESTNAVFACENGCOM) Energy and Water Program. The program covers Naval and Marine facilities in 14 western states. It started from zero in 1992 and has grown to a program which has identified and is in the process of implementing energy and water savings projects totaling over $115,000,000.

Gates, G. G.

1997-04-01T23:59:59.000Z

34

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network (OSTI)

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing Felix Creutzig a,*, Dongquan He b a Energy and Resources Group, University of California, Berkeley, USA b Energy i n f o Keywords: Climate change mitigation Transport demand management External costs Urban

Kammen, Daniel M.

35

Inspector General audit report on Transportation Safeguards Division courier work schedules and escort vehicle replacements  

Science Conference Proceedings (OSTI)

The Office of Inspector General`s (OIG) April 1995 report found that couriers received too much overtime and incurred too much unproductive time. This finding occurred because the Transportation Safeguards Division (TSD) employed a traditional work schedule that did not meet the demands of the job. The report recommended implementing an alternative work schedule that corresponded more closely to the couriers` actual work requirements. Management agreed to conduct a comparative analysis of work schedules to evaluate potential savings. The objectives of this audit were to (1) follow up on actions taken as a result of the OIG`s previous report, (2) determine if courier work schedules are cost effective, and (3) determine the cost effectiveness of escort vehicle replacements. The authors recommend: (1) implementing an alternative work schedule for courier which would achieve savings in overtime and unproductive time, while efficiently and cost effectively fulfilling TSD`s mission; (2) reexamining and adjusting the staffing level of each courier section in relation to the workload requirements in the area; and (3) discontinuing payment for travel time between courier lodging and temporary duty stations. The Albuquerque Operations Office agreed with the auditor`s findings and recommendations.

NONE

1998-12-01T23:59:59.000Z

36

Mobility and Carbon: The Blind Side of Transport Fuel Demand...  

NLE Websites -- All DOE Office Websites (Extended Search)

Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing...

37

A methodology for determining the relationship between air transportation demand and the level of service  

E-Print Network (OSTI)

Introduction: Within the last ten years significant advances in the state-of-the art in air travel demand analysis stimulated researchers in the domestic air transportation field. Among these advances, researchers in ...

Eriksen, Steven Edward

1976-01-01T23:59:59.000Z

38

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

NLE Websites -- All DOE Office Websites (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

39

Correlations between industrial demands (direct and total) for communications and transportation in the US economy 1947-1997  

E-Print Network (OSTI)

information and communications technology on transportation.information and communication technologies (ICT), and travelcommunications and transportation using Almost Ideal Demand System modeling: 1984-2002. Transportation Planning and Technology

Lee, Taihyeong; Mokhtarian, Patricia L

2008-01-01T23:59:59.000Z

40

Technical analysis support for Transportation Conservation Division of DOE. Ninth progress report, April 1979  

DOE Green Energy (OSTI)

The Aerospace Corporation is providing technical analysis support services to the DOE Transportation Energy Conservation Division. The work to be performed by The Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and (6) program planning analysis and documentation. Progress is reported in the areas of heat engine systems, alternative fuels utilization, nonhighway transport systems, and electric and hybrid vehicles. (WHK)

Not Available

1979-05-10T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Worldwide transportation/energy demand, 1975-2000. Revised Variflex model projections  

SciTech Connect

The salient features of the transportation-energy relationships that characterize the world of 1975 are reviewed, and worldwide (34 countries) long-range transportation demand by mode to the year 2000 is reviewed. A worldwide model is used to estimate future energy demand for transportation. Projections made by the forecasting model indicate that in the year 2000, every region will be more dependent on petroleum for the transportation sector than it was in 1975. This report is intended to highlight certain trends and to suggest areas for further investigation. Forecast methodology and model output are described in detail in the appendices. The report is one of a series addressing transportation energy consumption; it supplants and replaces an earlier version published in October 1978 (ORNL/Sub-78/13536/1).

Ayres, R.U.; Ayres, L.W.

1980-03-01T23:59:59.000Z

42

Baseline requirements of the proposed action for the Transportation Management Division routing models  

Science Conference Proceedings (OSTI)

The potential impacts associated with the transportation of hazardous materials are important to shippers, carriers, and the general public. This is particularly true for shipments of radioactive material. The shippers are primarily concerned with safety, security, efficiency, and equipment requirements. The carriers are concerned with the potential impact that radioactive shipments may have on their operations--particularly if such materials are involved in an accident. The general public has also expressed concerns regarding the safety of transporting radioactive and other hazardous materials through their communities. Because transportation routes are a central concern in hazardous material transport, the prediction of likely routes is the first step toward resolution of these issues. In response to these routing needs, several models have been developed over the past fifteen years at Oak Ridge National Laboratory (ORNL). The HIGHWAY routing model is used to predict routes for truck transportation, the INTERLINE routing model is used to predict both rail and barge routes, and the AIRPORT locator model is used to determine airports with specified criteria near a specific location. As part of the ongoing improvement of the US Department of Energy`s (DOE) Environmental Management Transportation Management Division`s (EM-261) computer systems and development efforts, a Baseline Requirements Assessment Session on the HIGHWAY, INTERLINE, and AIRPORT models was held at ORNL on April 27, 1994. The purpose of this meeting was to discuss the existing capabilities of the models and data bases and to review enhancements of the models and data bases to expand their usefulness. The results of the Baseline Requirements Assessment Section will be discussed in this report. The discussions pertaining to the different models are contained in separate sections.

Johnson, P.E.; Joy, D.S.

1995-02-01T23:59:59.000Z

43

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

NLE Websites -- All DOE Office Websites (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

44

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

45

Preliminary assessment of the availability of U.S. natural gas resources to meet U.S. transportation energy demand.  

DOE Green Energy (OSTI)

Recent studies have indicated that substitutes for conventional petroleum resources will be needed to meet U.S. transportation energy demand in the first half of this century. One possible substitute is natural gas which can be used as a transportation fuel directly in compressed natural gas or liquefied natural gas vehicles or as resource fuel for the production of hydrogen for fuel cell vehicles. This paper contains a preliminary assessment of the availability of U.S. natural gas resources to meet future U.S. transportation fuel demand. Several scenarios of natural gas demand, including transportation demand, in the U.S. to 2050 are developed. Natural gas resource estimates for the U. S. are discussed. Potential Canadian and Mexican exports to the U.S. are estimated. Two scenarios of potential imports from outside North America are also developed. Considering all these potential imports, U.S. natural gas production requirements to 2050 to meet the demand scenarios are developed and compared with the estimates of U.S. natural gas resources. The comparison results in a conclusion that (1) given the assumptions made, there are likely to be supply constraints on the availability of U.S. natural gas supply post-2020 and (2) if natural gas use in transportation grows substantially, it will have to compete with other sectors of the economy for that supply-constrained natural gas.

Singh, M. K.; Moore, J. S.

2002-03-04T23:59:59.000Z

46

Analytical Division  

Science Conference Proceedings (OSTI)

Analytical Division Common (non-systematic) Names for Fatty Acids Analytical Division Analytical Chemistry Divisions Analytical Division Common (non-

47

Biosciences Division | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Newsletters Organizational Charts Research Highlights Media Mentions Energy and Transportation Science Division Electrical and Electronics Systems Research Division Building Technologies Program Sustainable Transportation Program Clean Energy Home | Science & Discovery | Clean Energy | Supporting Organizations | Biosciences Division SHARE Biosciences Division The objective of the Biosciences Division (BSD) at Oak Ridge National Laboratory is to advance science and technology to better understand complex biological systems and their relationship with the environment. The division has expertise and special facilities in genomics, computational biology, microbiology, microbial ecology, biophysics and structural biology, and plant sciences. This collective expertise includes

48

Technical analysis support for Transportation Energy Conservation Division of DOE. Seventh progress report for February 1979  

DOE Green Energy (OSTI)

The work to be performed by The Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and program planning analysis and documentation. Brief summaries of status and progress are given for those support activities in progress through February 28, 1979. (WHK)

Not Available

1979-03-10T23:59:59.000Z

49

Technical analysis support for Transportation Energy Conservation Division of DOE. Eighth progress report for March 1979  

DOE Green Energy (OSTI)

The work to be performed by The Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and (6) program planning analysis and documentation. The status of achieved progress through the period ending March 31, 1979, is presented, and the expenditure status is summarized. (WHK)

Not Available

1979-04-10T23:59:59.000Z

50

Technical analysis support for Transportation Energy Conservation Division of DOE. Eleventh progress report for June 1979  

DOE Green Energy (OSTI)

The work to be performed by The Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and (6) program planning analysis and documentation. Brief summaries of status and progress are given for those support activities in progress through June 30, 1979. (WHK)

Not Available

1979-07-10T23:59:59.000Z

51

Technical analysis support for Transportation Energy Conservation Division of DOE. Tenth progress report for May 1979  

DOE Green Energy (OSTI)

The work to be performed by the Aerospace Corporation for the DOE/TEC is confined to the following basic task areas: (1) technical support of ongoing research and development programs in energy efficient transportation systems; (2) analysis for the future commercialization of transportation technologies; (3) new concept evaluation program support; (4) technical evaluation of new concepts, inventions, and ideas; (5) assessment of technological and other factors on the implementation and utilization of transportation in the United States; and (6) program planning analysis and documentation. The status of achieved progress through the period ending May 31, 1979 is presented; and the expenditure status is summarized. (WHK)

Not Available

1979-06-10T23:59:59.000Z

52

U.S. Regional Demand Forecasts Using NEMS and GIS  

E-Print Network (OSTI)

residential and commercial electricity demand forecasts. The23 Electricity Demandand commercial electricity demand per census division from

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-01-01T23:59:59.000Z

53

Division Membership  

Science Conference Proceedings (OSTI)

Join a division, dues and activities. Division Membership Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fats food Interest Area lipid lipids member membershi

54

Technical analysis support for transportation energy conservation division of DOE. Fifth progress report for December 1978  

DOE Green Energy (OSTI)

Brief summaries of status and progress through December 31, 1978 are presented for the following support activities: heat engine systems; alternative fuels utilitization; nonhighway transport systems; new concepts evaluation; electric and hybrid vehicle research and development. Job orders initially selected and assigned to current and prospective support needs are summarized. Historical information concerning task assignments and reporting activities is provided in Appendices A and B. (MCW)

Not Available

1979-01-10T23:59:59.000Z

55

Berkeley Lab Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Sciences Division Engineering Division Environmental Energy Technologies Division Genomics Division Life Sciences Division Materials Sciences Division National Energy Research...

56

Biotechnology Division  

Science Conference Proceedings (OSTI)

The Biotechnology Division of AOCS covers topics include fermentation tissue culture cloning genetics plant and microbial sources enaumes whole cells biotransformation. Biotechnology Division Divisions achievement agricultural analytical applicati

57

TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY AND TRANSPORTATION DIVISION B.B. Blevins Executive Director DISCLAIMER This report was prepared by a California has developed longterm forecasts of transportation energy demand as well as projected ranges

58

Processing Division  

Science Conference Proceedings (OSTI)

Advances the processing knowledge and managerial skills by providing a forum of technical information and networking opportunities. Processing Division Divisions achievement agricultural analytical application award awards biotechnology detergents

59

Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

NA NA 0.000 Diesel Engine II: integrated starteralternator with idle off and limited regenerative breaking 2005 1500.00 0.050 2005 1200.00 0.050 NA NA 0.000 Diesel Engine...

60

Phospholipid Division Newsletter  

Science Conference Proceedings (OSTI)

Read the November newsletter from the Phospholipid Division. Phospholipid Division Newsletter Phospholipid Division division divisions emulsification systems lecithin membership phospholipid Phospholipid Division ...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Phospholipid Division Newsletter  

Science Conference Proceedings (OSTI)

Read the December newsletter from the Phospholipid Division. Phospholipid Division Newsletter Phospholipid Division division divisions emulsification systems lecithin membership phospholipid Phospholipid Division ...

62

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

63

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand Response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

64

Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Peak load diagram Demand Response Demand response (DR) is a set of time-dependent activities that reduce or shift electricity use to improve electric grid reliability, manage...

65

AOCS Division Council  

Science Conference Proceedings (OSTI)

The Division council develops and recommends procedures and policy for all divisions. AOCS Division Council Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fat

66

Divisions | Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

Chart Argonne Research Divisions APS Research Divisions In May 2002, The Advanced Photon Source was reorganized into three divisions: the Accelerator Systems Division...

67

Analytical Division  

Science Conference Proceedings (OSTI)

The Analytical Division is comprised of members with a variety of interests, including: chromatography (liquid, gas-liquid, high-performance liquid column, thin-layer, and supercritical-fluid), electrophoresis, spectroscopy (UV, IR, NMR, light-scattering)

68

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and Practices...

69

Addressing Energy Demand through Demand Response: International...  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Title Addressing Energy Demand through Demand Response: International Experiences and...

70

EIA projections of coal supply and demand  

SciTech Connect

Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

Klein, D.E.

1989-10-23T23:59:59.000Z

71

Division and Section Awards  

Science Conference Proceedings (OSTI)

Division and Section Awards Division and Section Awards Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fats food Interest Area lipid lipids member membership

72

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

73

Building Environment Division Staff Directory  

Science Conference Proceedings (OSTI)

... Energy and Environment Division. Fire Research Division. Systems Integration Division. Intelligent Systems Division. Smart Grid Program Office. ...

2013-04-03T23:59:59.000Z

74

Enhancing Transportation Education through On-line Simulation Using an Agent-based Demand and Assignment Model (07-0533) presented at the 86th Annual Meeting of the Transportation Research Board in  

E-Print Network (OSTI)

This research explores the effectiveness of using simulation as a tool for enhancing classroom learning in the Civil Engineering Department of the University of Minnesota at Twin Cities. The authors developed a modern transportation planning software package, Agent-based Demand and Assignment Model (ADAM), that is consistent with our present understanding of travel behavior, that is platform independent, and that is easy to learn and is thus usable by students. An in-class project incorporated ADAM and the performance of this education strategy was evaluated through pre-class survey, post-class survey, scores in the quiz focusing on travel demand modeling and final scores. Results showed that ADAM effectively enhanced students self-reported understanding of transportation planning and their skills of forming opinions, evaluating projects and making judgments. Students of some learning styles were found to benefit more than others through simulation-based teaching strategy. Findings in this research could have significant implications for future practice of simulation-based teaching strategy.

Shanjiang Zhu; Feng Xie; David Levinson

2007-01-01T23:59:59.000Z

75

NIST Quantum Physics Division - 2001  

Science Conference Proceedings (OSTI)

"Technical Activities 2001" - Table of Contents, Division home page. Quantum Physics Division. Division Overview | Program ...

76

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] 9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 9, NO. 2 Driving Demand Bennett-Nordman IEEE Standard Nicotine and Ozone SVOW Renewables Portfolio Standard Report Kerosene Lamp Particulate Study Research Highlights Sources and Credits New ways of convincing homeowners of the benefits of energy efficiency improvements to their homes-and new language to use in discussing these benefits-is discussed in a report titled "Driving Demand" from Environmental Energy Technologies Division researchers. This issue also

77

U.S. Electric Utility Demand-Side Management 1994  

U.S. Energy Information Administration (EIA)

Preface. The U.S. Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Elec-

78

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

79

Census Division - List  

Annual Energy Outlook 2012 (EIA)

Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8...

80

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and Demand Response Duke Energy is using the name Save-a-Energy Efficiency Division. Duke Energy describes all of itsPresident, and C.E.O. Duke Energy Kateri Callahan President

Goldman, Charles

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Lamp Divisions  

Office of Legacy Management (LM)

--- --- /A;; i :' r%i;in~house ilEc;' i:Z3:~cra:ion Lamp Divisions , _.. (I +i. 0 :,,,rg. . I . . -= i?e p/q! qe)-' &se pw E.rcale?l iev, Je!sey 07m March 20, 1 gs? ::r . J. A. Jones I ti. 5. Muclear Regulatory Commission .> = ..- haterials Licensing Branch -s - ,.I, - - Division of Fuel Cycle and hateri al Safety LY. , $2 - _ . ' -' . 3 _- - Yeshington, C. C. 2@555 - :_ :--, =-- -- .-?J -.: y...., : :- 7 Dear Mr. Jones : y-- --, ? . *I 2=15 2 r; X -P The following is our final report of the decontamination efZor?s takz in our Bui Iding 7 basement and wi 11 also serve to update our report i& November 12, 1980. As stated in NRC' s report of December 22, 1983, two closeout inspect ions were conducted by your King of Prussia off i ce on November 21 and December 2,

82

Fuel Cycle and Isotopes Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Fuel Cycle and Isotopes Division Jeffrey Binder, Division Director Jeffrey Binder, Division Director The Fuel Cycle and Isotopes Division (FCID) of the Nuclear Science...

83

Division/ Interest Area Information  

Science Conference Proceedings (OSTI)

Learn more about Divisions and Interest areas. Division/ Interest Area Information Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membership memori

84

Analytical Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to graduate student(s) in the field of lipid analytical chemistry. Analytical Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edible fa

85

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables > Census Division List Supplemental Tables > Census Division List Supplemental Tables to the Annual Energy Outlook 2010 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California

86

Computer Security Division Homepage  

Science Conference Proceedings (OSTI)

Computer Security Division. ... The 2012 Computer Security Division Annual Report (Special Publication 800-165) is now available. ...

2013-09-12T23:59:59.000Z

87

Chemical Technology Division annual technical report 1997  

DOE Green Energy (OSTI)

The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

NONE

1998-06-01T23:59:59.000Z

88

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the Annual Energy Outlook 2003 Supplement Tables to the Annual Energy Outlook 2003 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii

89

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

5 5 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

90

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

91

Travel Demand Modeling  

SciTech Connect

This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

2011-01-01T23:59:59.000Z

92

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

9 9 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

93

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

94

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Print banner Home Agenda Awards Exhibitors Lodging Posters Registration T-Shirt Contest Transportation Workshops Contact Us User Meeting Archives Users' Executive...

95

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Links Transportation and Air Quality Transportation Energy Policy Analysis Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Appliance Energy...

96

Chemical Sciences Division - Staff Directory  

Science Conference Proceedings (OSTI)

Chemical Sciences Division. Carlos A. Gonzalez (Division Chief) Carol A. Driver (Office Manager) Division Office Staff Directory. ...

2013-08-15T23:59:59.000Z

97

Feature -Amine wins 2010 ECS Battery Division Technology Award  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Home > Transportation Technology R & D Center > Khalil Amine wins 2010 ECS Battery Division Technology Award Khalil Amine Khalil Amine Argonne researcher Khalil Amine...

98

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

99

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Protein and Co-Products Division Newsletter October 2010 Message from the Chairperson I take this opportunity to welcome all our Division members as we look forward to yet another year of celebrating the PCP Division and AOCS succes

100

Agricultural Microscopy Division  

Science Conference Proceedings (OSTI)

The Agricultural Microscopy Division advances visual imaging in discerning the quality and content of ingredients and finished products of the feed, fertilizer, seed, and agri-food sectors. Agricultural Microscopy Division Divisions achievement ag

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

h. technical division chairperson  

Science Conference Proceedings (OSTI)

the structure, bylaws and financial management of the division are in compliance with established ... their respective division council one year in advance of assuming office. ... D. Submission of an annual division financial plan and budget .

102

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Health and Nutrition Division Newsletter December 2010 101st AOCS Annual Meeting Report The Health and Nutrition Division would like to take this opportunity to review and highlight some of our Division's activities.

103

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

104

ORNL Health Services Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Page ORNL Home | ESH&Q Home | Health Services Internal A division in the Environment, Safety, Health, and Quality Directorate The Health Services Division at Oak Ridge...

105

Structural Biology | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Biosciences Division Argonne National Laboratory Biosciences Division > Structural Biology DOE Logo Search BIO ... Search Argonne Home > BIO home > Membrane Protein Engineering >...

106

1998 Chemical Technology Division Annual Technical Report.  

SciTech Connect

The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

1999-08-06T23:59:59.000Z

107

1998 Chemical Technology Division Annual Technical Report.  

SciTech Connect

The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

1999-08-06T23:59:59.000Z

108

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

109

Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Frank Collart Frank Collart BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Frank Collart Publications by Author, Select Publication Author Quick Link Randy Alkire Frank Collart Carol Giometti Deborah Hanson Julie Jastrow Andrzej Joachimiak Kenneth Kemner Philip Laible Roser Matamala Michael Miller Edward O'Loughlin Raj Pokkuluri Marianne Schiffer Jack Gilbert PUBLICATIONS Published/Accepted for Publication Kemin Tan, Changsoo Chang, Marianne Cuff, Jurek Osipiuk, Jamey C. Mack, Sarah Zerbs, Andrzej Joachimiak, and Frank R. Collart. Structural and functional characterization of transport proteins for aromatic compounds derived from lignin: Phenylacetic acid, p-coumaric acid and related

110

Transportation  

Science Conference Proceedings (OSTI)

Transportation systems are an often overlooked critical infrastructure component. These systems comprise a widely diverse elements whose operation impact all aspects of society today. This chapter introduces the key transportation sectors and illustrates ...

Mark Hartong; Rajn Goel; Duminda Wijesekera

2012-01-01T23:59:59.000Z

111

Energy and Environment Division  

Science Conference Proceedings (OSTI)

Energy and Environment Division. ... Selected Publications. Measurement Science Roadmap for Net-Zero Energy Buildings. ...

2013-03-13T23:59:59.000Z

112

TMS Technical Divisions  

Science Conference Proceedings (OSTI)

TMS BOARD OF DIRECTORS TMS TECHNICAL DIVISIONS COMMITTEE HOME PAGES. TOOLS AND RESOURCES. TECHNICAL COMMITTEE TOOLKIT.

113

NIST Ionizing Radiation Division - 2000  

Science Conference Proceedings (OSTI)

"Technical Activities 2000" - Table of Contents, Division home page. Ionizing Radiation Division. ...

114

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

please contact the National Energy Information Center at (202) 586-8800. please contact the National Energy Information Center at (202) 586-8800. Supplement Tables to the Annual Energy Outlook 2002 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska

115

Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

116

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Meier AKMeier@lbl.gov (510) 486-4740 Links Transportation and Air Quality Batteries and Fuel Cells Buildings Energy Efficiency Electricity Grid Energy Analysis Energy...

117

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] 1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2013: VOL. 11, NO. 4 Deep Energy Retrofits Health-Based Ventilation Standard-Interview with Max Sherman Energy-Efficient School Districts Guide Nanometer Laser-Based Chemical Sensing Demand-to-Grid Lab Research Highlights Sources and Credits Research that examines how homes can save 70 percent or more of their energy use is this issue's cover story. EETD researchers studied several northern California homes whose owners implemented their own plans to make extreme reductions in energy consumption and found that

118

High Temperatures & Electricity Demand  

E-Print Network (OSTI)

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

119

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Surfactants and Detergents Division Newsletter December 2010 Preview: S&D Division Technical Sessions at AOCS Annual Meeting The 102nd AOCS Annual Meeting & Expo will be held in Cincinnati, Ohio, USA, May 1-4, 2011.

120

Biotechnology Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to a student presenting an outstanding paper in the field of biotechnology at the AOCS Annual Meeting & Expo. Biotechnology Division Student Award Divisions achievement agricultural analytical application award awards biotechnology deterge

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Phospholipid Division Newsletter July 2010 CHAIRPERSON'S LETTER Fellow Division Members, Greetings! We had a wonderful get together at the 101st AOCS Annual Meeting & Expo held in Phoenix, Arizona. We had outstandin

122

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Phospholipid Division Newsletter December 2010 CHAIRPERSON'S LETTER Fellow Division Members, Greetings! Although the holiday season will soon be behind us, its important for all of us to be active again during the

123

Agricultural Microscopy Division Of Interest  

Science Conference Proceedings (OSTI)

Agricultural Microscopy, Reports, Journals, Websites Agricultural Microscopy Division Of Interest Agricultural Microscopy agri-food sector agricultural Agricultural Microscopy analytical aocs articles biotechnology courses detergents division divisions f

124

Quantum Physics Division Homepage  

Science Conference Proceedings (OSTI)

... Contact. Physical Measurement Laboratory Quantum Physics Division General Information: 303-735-1985 Telephone 303-492-5235 Facsimile. ...

2013-06-28T23:59:59.000Z

125

Materials Processing & Manufacturing Division  

Science Conference Proceedings (OSTI)

In its broadest scope, the Materials Processing & Manufacturing Division (MPMD) covers manufacturing from product design to production, integrating process...

126

Chemical Sciences Division - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Chemical Sciences Division CSD Organization Contact List Search Other Links Research Areas Research Highlights Organization Contacts Publications Awards Employment...

127

Radiation Physics Division  

Science Conference Proceedings (OSTI)

... The Radiation Physics Division, part of the Physical Measurement Laboratory ... the measurement standards for ionizing radiations and radioactivity ...

2013-09-05T23:59:59.000Z

128

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

0: 0: Vol. 9, No. 2 Driving Demand Bennett-Nordman IEEE Standard Nicotine and Ozone SVOW Renewables Portfolio Standard Report Kerosene Lamp Particulate Study Research Highlights Sources and Credits PDF of EETD News Homeowner Motivations for Energy Efficiency Improvements Driving Demand report cover Hundreds of millions of dollars in public money are supporting home energy efficiency improvements. Researchers at the Lawrence Berkeley National Laboratory's (Berkeley Lab) Environmental Energy Technologies Division (EETD) are helping to ensure that these funds have their maximum impact with a new report that examines what motivates homeowners to seek out home energy improvements. "Convincing millions of Americans to divert their time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills,

129

Biotechnology Division Newsletter March 2013  

Science Conference Proceedings (OSTI)

Read the March 2013 Biotechnology Division Newsletter. Biotechnology Division Newsletter March 2013 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member

130

Processing Division Newsletter March 2013  

Science Conference Proceedings (OSTI)

Read the Processing Divisions March 2013 newsletter. Processing Division Newsletter March 2013 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Membe

131

Analytical Division Newsletter April 2013  

Science Conference Proceedings (OSTI)

Read the March newsletter from the Analytical Division. Analytical Division Newsletter April 2013 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a member Me

132

NIST Quantum Physics Division Staff  

Science Conference Proceedings (OSTI)

Quantum Physics Division. Staff. Name, Position, Phone. ... Physics Laboratory. Quantum Physics Division. Thomas O'Brian, Acting Chief. ...

2013-09-10T23:59:59.000Z

133

Radiation and Biomolecular Physics Division  

Science Conference Proceedings (OSTI)

... Welcome. The Radiation and Biomolecular Physics Division is a division ... disseminate the national standards for ionizing radiations and radioactivity ...

2012-02-08T23:59:59.000Z

134

TRANSPORTATION ENERGY DATA BOOK: EDITION 21  

NLE Websites -- All DOE Office Websites (Extended Search)

6 (Edition 21 of ORNL-5198) Center for Transportation Analysis Energy Division TRANSPORTATION ENERGY DATA BOOK: EDITION 21 Stacy C. Davis Oak Ridge National Laboratory October 2001...

135

Fusion Energy Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Fusion Energy Division http:www.ornl.govscinseddivisionfed.shtml Please click link above if you were not already redirected to the page....

136

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

ATLAS Operations personnel, and to various experimental instrument specialists in the Physics Division. The PAC members will review each proposal for scientific merit and...

137

Chemical Sciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

& CENTERS RESEARCH STUDENT & POSTDOCTORAL OPPORTUNITIES NEWS & EVENTS CSD CONTACTS LBNL HOME logo Privacy & Security Notice DOE UC Berkeley Chemical Sciences Division imagemap...

138

Chemical Technology Division annual technical report, 1996  

DOE Green Energy (OSTI)

CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

NONE

1997-06-01T23:59:59.000Z

139

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network (OSTI)

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

140

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Transportation  

NLE Websites -- All DOE Office Websites (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

142

Advanced Demand Responsive Lighting  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

143

Demand Response Spinning Reserve  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Spinning Reserve Title Demand Response Spinning Reserve Publication Type Report Year of Publication 2007 Authors Eto, Joseph H., Janine Nelson-Hoffman, Carlos...

144

Addressing Energy Demand  

NLE Websites -- All DOE Office Websites (Extended Search)

Addressing Energy Demand through Demand Response: International Experiences and Practices Bo Shen, Girish Ghatikar, Chun Chun Ni, and Junqiao Dudley Environmental Energy...

145

Propane Sector Demand Shares  

U.S. Energy Information Administration (EIA)

... agricultural demand does not impact regional propane markets except when unusually high and late demand for propane for crop drying combines with early cold ...

146

Division of Laboratory Sciences  

E-Print Network (OSTI)

#12;#12;Division of Laboratory Sciences U.S. Department of Health and Human Services Centers and Prevention National Center for Environmental Health Division of Laboratory Sciences Atlanta, Georgia 30341're also working in concert with state public health laboratories, providing training, proficiency testing

147

Energy Technology Division research summary - 1999.  

Science Conference Proceedings (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

148

Health and Nutrition Division Poster Competition  

Science Conference Proceedings (OSTI)

Student poster presentations at the AOCS Annual Meeting & Expo. Health and Nutrition Division Poster Competition Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edibl

149

Edible Applications Technology Division Student Award  

Science Conference Proceedings (OSTI)

Student award for paper presentations in Edible Applications Edible Applications Technology Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished division Divisions edi

150

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Data Center Energy Use: Truth versus Myth Data Center Energy Use: Truth versus Myth At the height of the electricity crisis of 2001, Californians were greeted over their morning coffee with headlines like: Digital Economy's Demand for Steady Power Strains Utilities Data Servers Crave Power: High-Tech Electricity Needs Amplify Crisis and Net Blamed as Crisis Roils California. One of the biggest misconceptions about the crisis was that the energy use of computers and other internet-related hardware played a significant role. But early in 2001, research by Jon Koomey of Berkeley Lab's Environmental Energy Technologies Division (EETD) showed that widely discussed estimates of the energy use of computer- and networking-related hardware were exaggerated. Koomey is leader of EETD's End-Use Energy Forecasting Group.

151

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2: 2: Vol. 3, No. 4 California Consumers Kept the Lights On Quick and Easy Web-Based Assessment Tool for Day/Electric Lighting Berkeley Lab Model Tracks Indoor Anthrax Dispersal Rating "Green" Laboratories-Labs21 Environmental Performance Criteria Research Highlights Sources and Credits PDF of EETD News California Consumers Kept the Lights On California consumers-not mild weather or the cooling economy-should get credit for avoiding blackouts and keeping the lights on in summer 2001 by embracing energy efficiency and conservation and reducing their peak demand by 3,000 to 5,500 megawatts (MW), according to research by scientists at the Environmental Energy Technologies Division. This is the conclusion reached in a new analysis of the consumer response

152

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers...

153

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

Shen, Bo

2013-01-01T23:59:59.000Z

154

Demand Trading: Building Liquidity  

Science Conference Proceedings (OSTI)

Demand trading holds substantial promise as a mechanism for efficiently integrating demand-response resources into regional power markets. However, regulatory uncertainty, the lack of proper price signals, limited progress toward standardization, problems in supply-side markets, and other factors have produced illiquidity in demand-trading markets and stalled the expansion of demand-response resources. This report shows how key obstacles to demand trading can be overcome, including how to remove the unce...

2002-11-27T23:59:59.000Z

155

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

156

Demand for Electric Vehicles in Hybrid Households: An Exploratory Analysis  

E-Print Network (OSTI)

stated they wouldlikely add an electric and vehicle to theirhouseholdsand the demand electric vehicles", Transportation1983) "A Critical Reviewof Electric Vehicle MarketStudies",

Kurani, Kenneth S.; Turrentine, Tom; Sperling, Daniel

1994-01-01T23:59:59.000Z

157

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2, No. 2 http:eetd.lbl.govnewsletternl45 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2013 Environmental Energy Technologies Division...

158

Fire Research Division Staff Directory  

Science Conference Proceedings (OSTI)

Fire Research Division Staff. Fire Research Division Office (733). ... Dr. Rick Davis, Leader, Supervisory Materials Research Engineer, 301-975-5901. ...

2013-08-01T23:59:59.000Z

159

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 1 http:eetd.lbl.govnewsletternl40 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2012 Environmental Energy Technologies Division...

160

TMS Technical Division Funding Policy  

Science Conference Proceedings (OSTI)

This Policy provides a funding mechanism to assist the divisions in achieving their strategic plans. It is believed that through the efforts of the divisions, TMS as a...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1, No. 2 http:eetd.lbl.govnewsletternl41 Environmental Energy Technologies Division News http:eetd.lbl.govnewsletter 2012 Environmental Energy Technologies Division...

162

Energy Division progress report, fiscal years 1994--1995  

Science Conference Proceedings (OSTI)

At ORNL, the Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this progress report for FY 1994 and FY 1995. The Division`s expenditures in FY 1995 totaled 44.9 million. Sixty percent of the divisions work was supported by the US DOE. Other significant sponsors include the US DOT, the US DOD, other federal agencies, and some private organizations. The Division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) transportation systems, and (3) energy use and delivery technologies. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, and impact statements, research on emergency preparedness, analysis of energy and environmental needs in developing countries, and transportation analysis. Transportation systems research seeks to improve the quality of both civilian and military transportation efforts. Energy use and delivery technologies focus on building equipment, building envelopes, (walls, roofs, attics, and materials), improvement of energy efficiency in buildings, and electric power systems.

Moser, C.I. [ed.

1996-06-01T23:59:59.000Z

163

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

the policy and procedures related to access to the ATLAS Facility. 2.0 POLICY It is Physics Division policy that access to the ATLAS Facility is restricted to persons who are...

164

SUPERCONDUCTING MAGNET DIVISION  

NLE Websites -- All DOE Office Websites (Extended Search)

MAGNET DIVISION CY 2013 Tier 1 Inspection Schedule Frequency Building Q1 Q2 Q3 Q4 S 902B (Offices) 11713 62013 S 902A (Offices) 11713 62013 Q 902-High Bay Shop 22113 5...

165

Processing Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to a graduate student researching oilseed handling preparation and extraction, refining and processing, oil products and packaging, feed ingredients, by-product utilization, safety and health, and environmental concerns. Processing Division Student

166

Edible Applications Technology Division  

Science Conference Proceedings (OSTI)

The EAT Division encompasses the technical area of product development, process technology and functional food lipids, utilizing the unique composition and physical properties of oils to perform specific functions in edible products, pharmaceutical manufa

167

Health and Nutrition Division  

Science Conference Proceedings (OSTI)

The Health and Nutrition Division promotes and facilitates communication and cooperation among professionals whose interests in lipid biochemistry and physiology relate to all aspects of dietary fats and health; encompasses the technical areas of dietary f

168

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Agricultural Microscopy Division Newsletter December 2010 Greetings from the Chairperson by Gary Ideus The 2011 AOCS Annual Meeting & Expo in Cincinnati, Ohio, May 1-4, is just four months away, and plans are being fina

169

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Agricultural MicroscopyDivision Newsletter September 2010 Greetings from the Chairperson by Gary Ideus Phoenix, Arizona was a beautiful backdrop for this years 101st AOCS Annual Meeting & Expo. This years meeting

170

Technology Transfer Division  

NLE Websites -- All DOE Office Websites (Extended Search)

David Pesiri Division Leader Taylor Martinez Executive Administrator Contact Us techtransfer@lanl.gov (505) 665-9090 TA-00, Bldg. 1325 2237 Trinity Drive Los Alamos, NM 87545...

171

Principal Investigators | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Frank Collart Frank Collart BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Frank Collart Biosciences Division Bldg: 202 Room: A-357 Email: fcollart@anl.gov Phone: (630) 252-4859 Fax: (630) 252-5517 Education Professional Experience Publication List Research Highlights > Education: 1984, Ph.D, Medical College of Ohio, Medical Sciences 1982, M.S., Bowling Green State University, Chemistry 1977, B.A., Bowling Green State University, Chemistry > Professional Experience: 1994-present: Molecular Biologist; Biosciences Division, Argonne National Laboratory. 1989-1994: Assistant Molecular Biologist; Division of Biological and Medical Research, Argonne National Laboratory. 1984-1989: Postdoctoral Appointee, Supervisor: Dr Eliezer Huberman; Division of Biological and Medical Research, Argonne National Laboratory.

172

Andreas A. Malikopoulos Energy & Transportation Science Division,  

E-Print Network (OSTI)

. However, the high costs associated with their components, and in particular, with their energy storage here, we investigated the implications of motor/generator and battery size on fuel economy and GHG to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better

173

H. R. 4604: a bill to promote competition in the natural gas market, to ensure open access to transportation service, to encourage production of natural gas, to provide natural gas consumers with adequate supplies at reasonable prices, to eliminate demand restraints, and for other purposes. Introduced in the House of Representatives, Ninety-Ninth Congress, Second Session, April 16, 1986  

Science Conference Proceedings (OSTI)

The Natural Gas Policy Act Amendments of 1986 promotes competition in the natural gas market. Title I ensures open access to transportation service by requiring that interstate pipelines not discriminate in providing transportation services. Title II encourages production of natural gas by removing wellhead price controls and repealing jurisdiction over first sales. Title III provides natural gas consumers with adequate supplies at reasonable prices and eliminates demand restraints. The bill was referred to the House Committee on Energy and Commerce.

Not Available

1986-01-01T23:59:59.000Z

174

Mass Market Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

175

Demand Impacted by Weather  

U.S. Energy Information Administration (EIA)

When you look at demand, its also interesting to note the weather. The weather has a big impact on the demand of heating fuels, if its cold, consumers will use ...

176

NIST Quantum Physics Division - 1999  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1999 - NISTIR 6438 QUANTUM PHYSICS DIVISION. Fermi surface. Absorption images of the ...

177

NIST Ionizing Radiation Division - 1998  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1998 - NISTIR 6268 IONIZING RADIATION DIVISION. The Neutron Interferometer. The neutron ...

178

Mathematical and Computational Sciences Division  

Science Conference Proceedings (OSTI)

Page 1. Mathematical and Computational Sciences Division Summary of Activities for Fiscal Year 2008 Information Technology ...

2009-02-05T23:59:59.000Z

179

Applied and Computational Mathematics Division  

Science Conference Proceedings (OSTI)

Applied and Computational Mathematics Division. Topic Areas. Mathematics; Scientific Computing; Visualization; Quantum Computing. ...

2013-05-09T23:59:59.000Z

180

Demand Trading Toolkit  

Science Conference Proceedings (OSTI)

Download report 1006017 for FREE. The global movement toward competitive markets is paving the way for a variety of market mechanisms that promise to increase market efficiency and expand customer choice options. Demand trading offers customers, energy service providers, and other participants in power markets the opportunity to buy and sell demand-response resources, just as they now buy and sell blocks of power. EPRI's Demand Trading Toolkit (DTT) describes the principles and practice of demand trading...

2001-12-10T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Materials Measurement Science Division Staff Directory  

Science Conference Proceedings (OSTI)

... Patricia Ridgley Division Office Manager 301-975-3914. ... Material Measurement Laboratory Materials Measurement Science Division. ...

2013-03-19T23:59:59.000Z

182

Meeting U.S. Transportation Fuel Demand  

U.S. Energy Information Administration (EIA)

This PowerPoint presentation outlines some of the issues and challenges ahead for gasoline supply in the United States, with a particular look at ...

183

Meeting U.S. Transportation Fuel Demand  

Reports and Publications (EIA)

This presentation outlines some of the issues and challenges ahead for gasoline supply in the United States, with a particular look at international refining and factors affecting gasoline imports.

Information Center

2004-10-20T23:59:59.000Z

184

Demand for gasoline is more price-inelastic than commonly thought  

E-Print Network (OSTI)

Energy demand in the transportation sector of Mexico. and local levels in Mexico. Energy Policy 38(8): pp. 4445

Havranek, Tomas; Irsova, Zuzana; Janda, Karel

2011-01-01T23:59:59.000Z

185

Energy Technology Division research summary -- 1994  

DOE Green Energy (OSTI)

Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

Not Available

1994-09-01T23:59:59.000Z

186

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

187

TRANSPORTATION TRANSPORTATION  

E-Print Network (OSTI)

TEXASTRANS TEXAS TRANSPORTATION HALL HONOR OF HALL HONOR OF TEXASTRAN HALL HONOR OF TEXASTRAN HALL HONOR OF Inductees #12;2 TEXAS TRANSPORTATION HALL HONOR OF L NOR OF Texas is recognized as having one of the finest multimodal transportation systems in the world. The existence of this system has been key

188

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

rogress in understanding contaminant concentrations observed in remote locations requires the development of a computer simulation model that can link these con- centrations with long-range transport potential at a continental scale. Researchers at Trent University's Canadian Environmen- tal Modeling Center and Berkeley Lab's Environmental Energy Technologies Division are now developing such a model, the Berkeley-Trent North American contaminant fate model (BETR North America). BETR is a regionally segmented multi-compartment, continen- tal-scale, mass balance chemical fate model. The model's frame- work links contaminant fate models of individual regions that encompass a larger, spatially heterogeneous area. It models North America's environment as a group of 24 ecological regions with

189

People | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Lynda Dieckman Lynda Dieckman BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Lynda Dieckman Bldg: 202 Room: B265 E-mail Lynda Dieckman Phone: (630) 252-3953 Full Information Research Highlights > Education: 1989, Ph.D, University of Cincinnati, Physiology and Biophysics 1985, M.S., Case Western Reserve, Biology 1981, B.S., John Carroll University, Biology > Professional Experience: 2008-present Functional Genomics Specialist, Biosciences Division, Argonne National Laboratory, Argonne, IL 2002-2008 Molecular Biologist/Environmental Safety and Health and Quality Assurance Coordinator, Biosciences Division, Argonne National Laboratory, Argonne, IL 1997-2002 Special Term Appointee, Biosciences Division, Argonne National Laboratory, Argonne, IL

190

Genomics Division Home  

NLE Websites -- All DOE Office Websites (Extended Search)

PIs PIs Mark Biggin Jim Bristow Jan-Fang Cheng Inna Dubchak Suzanna Lewis Chris Mungall Len Pennacchio Eddy Rubin Axel Visel Divisional Information Support Staff Seminars Diversity Directory Contact Us The characterization and analysis of genome sequences from such diverse organisms as humans to the most primitive soil microbe represent a watershed opportunity for biology. The Genomics Division is taking advantage of this wealth of new information. While it is well known that DNA encodes the basic blue print of life, it is not known how best to interpret most of this information. To address this question, laboratories within the division are developing computational, biochemical, genetic, and imaging methods to decipher the complex sequence motifs that control RNA transcription, DNA replication, and chromosome structure. The Division is

191

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites

[Argonne Logo] [DOE Logo] [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact Organization Chart Directory ES&H Scientific Staff Publications Awards & Honors Pictures & Videos New Faces PHY Webmail Meeting Rooms Research Low Energy Medium Energy Theory Accelerator R&D Research Highlights Seminars & Events Colloquium Division Seminar MEP Seminar Theory Seminar Heavy Ion Discussion Student Lunch Talk ATLAS arrowdn Facility Schedules User Info Proposals Targetlab CARIBU FMA Gammasphere GRETINA HELIOS AGFA Search Argonne ... Search ATLAS Facility User Info Proposals Beam Schedule Safety Gammasphere GRETINA FMA CARIBU HELIOS AGFA Targetlab Workshop 2009 25 Years of ATLAS Gretina Workshop ATLAS Gus Savard Guy Savard, Scientific Director of ATLAS Welcome to ATLAS, the Argonne Tandem Linac Accelerator System. ATLAS is the

192

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

193

Energy Technology Division research summary 1997.  

SciTech Connect

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

1997-10-21T23:59:59.000Z

194

Energy Technology Division research summary 1997.  

SciTech Connect

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

195

Demand Response and Open Automated Demand Response Opportunities...  

NLE Websites -- All DOE Office Websites (Extended Search)

Response and Open Automated Demand Response Opportunities for Data Centers Title Demand Response and Open Automated Demand Response Opportunities for Data Centers Publication Type...

196

Reactor and Nuclear Systems Division (RNSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

197

DOE Hydrogen Analysis Repository: Hawaii Transportation Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

future energy demand; analyze the possibility of satisfying a portion of the state's future transportation energy demand through alternative fuels; and recommend a program...

198

C-AD Accelerator Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

199

Electrical Demand Management  

E-Print Network (OSTI)

The Demand Management Plan set forth in this paper has proven to be a viable action to reduce a 3 million per year electric bill at the Columbus Works location of Western Electric. Measures are outlined which have reduced the peak demand 5% below the previous year's level and yielded $150,000 annual savings. These measures include rescheduling of selected operations and demand limiting techniques such as fuel switching to alternate power sources during periods of high peak demand. For example, by rescheduling the startup of five heat treat annealing ovens to second shift, 950 kW of load was shifted off peak. Also, retired, non-productive steam turbine chillers and a diesel air compressor have been effectively operated to displaced 1330 kW during peak periods each day. Installed metering devices have enabled the recognition of critical demand periods. The paper concludes with a brief look at future plans and long range objectives of the Demand Management Plan.

Fetters, J. L.; Teets, S. J.

1983-01-01T23:59:59.000Z

200

Processing Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryProcessing Division2013 Members438 Members as of October 1, 2013, Process Plus LLCCincinnati, OH, USAAbdurahman, SadegWashington State UniversityPullman, WA, USAAbigor, RolandNIFOR, Nigerian Institute for Oil PalmEdo Sta

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biotechnology Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryBiotechnology Division2013 Members187 Members as of July 1, 2013Abraham, TimothyCargill IncHopkins, MN, USAAdachi, ShujiKyoto UniversityKyoto, JapanAdnan, MuhammadUniversity of KarachiKarachi, Sindh, PakistanAgustin, Sar

202

Solid State Division  

SciTech Connect

This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

Green, P.H.; Watson, D.M. (eds.)

1989-08-01T23:59:59.000Z

203

Agricultural Microscopy Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAgricultural Microscopy Division2013 Members72 Members as of October 1, 2013Ajbani, RutviInstitute of Chemical TechnologyMumbai, MH, IndiaAlonso, CarmenPuerto Rico Dept ofAgricultureDorado, Puerto RicoArmbrust, KevinLoui

204

Phospholipid Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryPhospholipid Division2013 Members170 Members as of October 1, 2013, Process Plus LLCCincinnati, OH, USAAbrams, JimCargill Corn Milling NAMemphis, TN, USAAhmad, MoghisJina Pharmaceuticals IncLibertyville, IL, USAAhuja, Ra

205

AOCS Division Newsletter  

Science Conference Proceedings (OSTI)

AOCS Lipid Oxidation and Quality Division Newsletter September 2010 Message from the Chairperson: A Look Back at the Annual Meeting in Phoenix I hope you enjoyed this years meeting in Phoenix as much as I did. This year the LOQ Di

206

Analytical Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryAnalytical Division2013 Members391 Members as of October 1, 2013Abdurahman, SadegWashington State UniversityPullman, WA, USAAbuzaytoun, ReemDalhousie UniversityHalifax, NS, CanadaAdcock, JacquiDeakin Universityaurn Ponds

207

Demand Dispatch-Intelligent  

NLE Websites -- All DOE Office Websites (Extended Search)

and energy efficiency throughout the value chain resulting in the most economical price for electricity. Having adequate quantities and capacities of demand resources is a...

208

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

xxxv Option Value of Electricity Demand Response, Osmanelasticity in aggregate electricity demand. With these newii) reduction in electricity demand during peak periods (

Heffner, Grayson

2010-01-01T23:59:59.000Z

209

U.S. Propane Demand  

U.S. Energy Information Administration (EIA)

Demand is higher in 1999 due to higher petrochemical demand and a strong economy. We are also seeing strong demand in the first quarter of 2000; however, ...

210

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

211

Demand Response Spinning Reserve Demonstration  

E-Print Network (OSTI)

F) Enhanced ACP Date RAA ACP Demand Response SpinningReserve Demonstration Demand Response Spinning Reservesupply spinning reserve. Demand Response Spinning Reserve

2007-01-01T23:59:59.000Z

212

Division of Economics and Business Working Paper Series  

E-Print Network (OSTI)

capacity, operating costs, and downward-sloping demand curves. The results of this production year, Heterogeneity, and Cost Effectiveness Harrison Fell Joshua Linn Working Paper 2012-07 http Policies, Heterogeneity, and Cost Effectiveness Author(s): Harrison Fell Division of Economics and Business

213

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network (OSTI)

Energy Research and Development Division FINAL PROJECT REPORT POLICY TO FACILITATE DEMAND RESPONSE JUNE 2008 CEC5002010015 Prepared for: California Energy Commission Prepared'Monte Information Services, Inc. Ukiah, CA 95482 Contract Number: 500-99-013 Prepared for: California Energy

214

Chapter 50 Division for Air Quality: General Administrative Procedures  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department for Environmental Protection Chapter 50 of the Division of Air Quality section within Energy and Environment Cabinet Department For Environmental Protection outlines the general administrative procedures for maintaining air quality standards. These procedures are created in adherence to 42 USC 7410 which requires the

215

Chemical Sciences Division January 2011  

E-Print Network (OSTI)

(15) UT/ORNL Governor Chair (16) Neutron Scattering Science Division Special Division Assignments: M. Sharma (4) A. B. Dystra (4) M. J. Walworth (4) M. S. Elnaggar (2) J.. C. Young (4) Physical Organic

216

Chemical Sciences Division: Introduction: Director's Statement  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Overview Under Construction Ali Belkacem Chemical Sciences Division Director Chemical Sciences Division Research Affiliations Our four core programs-Chemical Physics; The...

217

Division of Chemical & Biological Sciences | Ames Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Division of Chemical & Biological Sciences Division of Chemical & Biological Sciences Image Welcome Research teams in this Division conduct fundamental and applied studies of how...

218

NIST Quantum Physics Division 1999 - Mission  

Science Conference Proceedings (OSTI)

... QUANTUM PHYSICS DIVISION. ... Eight are NIST employees, seven in the Quantum Physics Division and one in the Time and Frequency Division. ...

219

Quantum Condensed Matter Division | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division SHARE Quantum Condensed Matter Division QCMD Director Steve Nagler The Quantum Condensed Matter Division (QCMD) enables and conducts a broad...

220

Agricultural Microscopy Division Newsletter September 2013  

Science Conference Proceedings (OSTI)

Read the latest news from the Agricultural Microscopy division. Agricultural Microscopy Division Newsletter September 2013 Agricultural Microscopy Division Newsletter September 2013 ...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Information Administration (EIA) - Census Division List  

Annual Energy Outlook 2012 (EIA)

Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8...

222

NIST Quantum Physics Division - 1998  

Science Conference Proceedings (OSTI)

... QUANTUM PHYSICS DIVISION. Fluorescence Trajectory of a Single 30 Angstrom Radius CdSe Quantum Dot. The quantum ...

223

NIST Ionizing Radiation Division - 2001  

Science Conference Proceedings (OSTI)

... The Ionizing Radiation Division of the Physics Laboratory supports the ... meaningful, and compatible measurements of ionizing radiations (x rays ...

224

Hazardous Material Transportation Safety (South Dakota)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

225

CONSULTANT REPORT DEMAND FORECAST EXPERT  

E-Print Network (OSTI)

CONSULTANT REPORT DEMAND FORECAST EXPERT PANEL INITIAL forecast, end-use demand modeling, econometric modeling, hybrid demand modeling, energyMahon, Carl Linvill 2012. Demand Forecast Expert Panel Initial Assessment. California Energy

226

Earth Sciences Division annual report 1990  

Science Conference Proceedings (OSTI)

This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

NONE

1991-06-01T23:59:59.000Z

227

Superconducting Magnet Division  

NLE Websites -- All DOE Office Websites (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

228

Division Name Will  

NLE Websites -- All DOE Office Websites (Extended Search)

C O N TA C T > Claude B. Reed | f C O N TA C T > Claude B. Reed | f a x: 63 0- 25 2- 32 96 | C BR e e d@ anl . go v | Nuclear Engineering Division | www.ne.anl.gov Argonne National Laborator y, 9700 South Cass Avenue, Lemont, IL 60439 August 2013 Nuclear Engineering Division Proton beam on lithium film experiment for the FRIB stripper Argonne National Laboratory has developed a liquid lithium charge stripper for use in the Facility for Rare Isotope Beams (FRIB) located at Michigan State University. FRIB will provide intense beams of rare isotopes that cannot be handled by ordinary means, creating a challenge to find a workable concept for the charge stripper and to test it in a beamline environment. The advantages of liquid lithium are: a) the heat deposited on the medium is carried away by the fast moving

229

Life Sciences Division Home  

NLE Websites -- All DOE Office Websites (Extended Search)

The vision of the Life Sciences Division is to advance basic knowledge, and The vision of the Life Sciences Division is to advance basic knowledge, and the health of humans and the biosphere, by elucidating the 4-Dimensional dynamics of complex biological systems -- ranging from molecules to microbes to humans. Research Highlights New Imaging Technique Identified to Monitor Progression of Heart Failure In a recent publication of Journal of Nuclear Medicine, a team of scientists from Berkeley Lab, the University of Utah, and UC San Francisco describe a new imaging technique used to monitor the progression of heart failure. More » Unlocking the Secrets of Proteins Cryoelectron microscopy is helping to unlock the secrets of proteins as never before, thanks to technology developed for one of the world's most powerful electron microscopes, TEAM, at Berkeley Lab's National Center for

230

Argonne Physics Division  

NLE Websites -- All DOE Office Websites (Extended Search)

RBW RBW Robert B. Wiringa (the guy on the right) phone: 630/252-6134 FAX: 630/252-6008 e-mail: wiringa@anl.gov Biographical sketch 1972 B.S., Rensselaer Polytechnic Institute 1974 M.S., University of Illinois at Urbana-Champaign 1978 Ph.D., University of Illinois at Urbana-Champaign 1978-80 Research Associate, Los Alamos Scientific Laboratory 1981-83 Research Associate, Argonne National Laboratory 1983-87 Assistant Physicist, Argonne National Laboratory 1987-99 Physicist, Argonne National Laboratory 2000- Senior Physicist, Argonne National Laboratory Visiting appointments 1993 Visiting Associate & Lecturer, California Institute of Technology Honors, Organizations, Committees, etc. 1994-2001 Chief, Theory Group, Physics Division, Argonne National Laboratory 1997-2000 Webmaster, Division of Nuclear Physics, American Physical

231

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

internal conditions. Maximum Demand Saving Intensity [W/ft2]automated electric demand sheds. The maximum electric shed

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

232

Edible Applications Technology Division Outstanding Achievement Award  

Science Conference Proceedings (OSTI)

Recognizes a scientist, technologist, or leader making contributions to the advancement of edible oils and/or the Division. Edible Applications Technology Division Outstanding Achievement Award Edible Applications Technology division divisions edible Edi

233

Analytical Division Newsletter September 201/span>3  

Science Conference Proceedings (OSTI)

Read the September newsletter from the Analytical Division. Analytical Division Newsletter September 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a

234

Biotechnology Division Newsletter October 201/span>3  

Science Conference Proceedings (OSTI)

Read the October 201/span>3 Biotechnology Division Newsletter. Biotechnology Division Newsletter October 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipids Member member get a mem

235

Energy Demand (released in AEO2010)  

Reports and Publications (EIA)

Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

Information Center

2010-05-11T23:59:59.000Z

236

NIST Sensor Science Division Office Staff Directory  

Science Conference Proceedings (OSTI)

... Associates. Name, Position, Office Phone. Parr, Albert, Physicist, 301-975- 2316. ... Contact. Sensor Science Division Gerald Fraser, Division Chief. ...

2013-04-10T23:59:59.000Z

237

MCS Division Organization Chart | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Documents MCS Division Organization Chart The Mathematics and Computer Science Division at Argonne National Laboratory mcsorgchart.pdf...

238

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

239

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

240

Demand Response Database & Demo  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Database & Demo Speaker(s): Mike Graveley William M. Smith Date: June 7, 2005 - 12:00pm Location: Bldg. 90 Seminar HostPoint of Contact: Mary Ann Piette Infotility...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Tankless Demand Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Demand (tankless or instantaneous) water heaters have heating devices that are activated by the flow of water, so they provide hot water only as needed and without the use of a storage tank. They...

242

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2012-12-19T23:59:59.000Z

243

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-05-14T23:59:59.000Z

244

Industrial Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Module. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code.

Kelly Perl

2013-09-30T23:59:59.000Z

245

Residential Sector Demand Module  

Reports and Publications (EIA)

Model Documentation - Documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Residential Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, and FORTRAN source code.

Owen Comstock

2013-11-05T23:59:59.000Z

246

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report includes assessments and test results of four end-use technologies, representing products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) standard that was introduced to the public in 2008 and currently used in two ...

2008-12-22T23:59:59.000Z

247

Automated Demand Response Tests  

Science Conference Proceedings (OSTI)

This report, which is an update to EPRI Report 1016082, includes assessments and test results of four end-use vendor technologies. These technologies represent products in the residential, commercial, and industrial sectors, each configured to automatically receive real-time pricing information and critical peak pricing (CPP) demand response (DR) event notifications. Four different vendors were asked to follow the interface requirements set forth in the Open Automated Demand Response (OpenADR) Communicat...

2009-03-30T23:59:59.000Z

248

World Supply and Demand  

Science Conference Proceedings (OSTI)

Table 4   Gallium arsenide ingot, wafer, and device manufacturers...X Sweden Semitronics AB X United Kingdom General Electricity Company (U.K.) X X X X X MCP Electronic Materials Ltd. X United States Airtron Division of Litton Industries X Anadigics Inc. X X X Applied Solar Energy Corporation X X AT & T Bell Laboratories X X X X Bertram Laboratories X Crystal Specialties,...

249

Environmental Protection Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Site Details Site Details EPD Home Staff List (pdf) Org Chart (pdf) Compliance / Permits Programs Other Information Land Use & Institutional Controls Mapping Site Environmental Reports Environmental Monitoring Plan (EMP) Spill Response BNL Site Index Can't View PDFs? Developing Environmental Products and Services for Brookhaven Stakeholders The Environmental Protection Division (EPD) develops and delivers environmental products and services for all Brookhaven stakeholders. We manage environmental programs such as pollution prevention, groundwater protection, and natural resource management; provide technical assistance on environmental requirements; maintain the Laboratory's IS0 14001-registered Environmental Management System; prepare environmental permit applications; conduct environmental monitoring; manage data

250

Environmental Energy Technologies Division Energy Analysis Department Managing Natural Gas Price  

E-Print Network (OSTI)

-fired generation contracts 2) Reduces Natural Gas Prices: Increased RE reduces natural gas demand, and consequently Quantity Q0 P0 P1 Q1 Original Demand ShiftedDemandq Theory: Increased use of RE will reduce natural gasEnvironmental Energy Technologies Division · Energy Analysis Department Managing Natural Gas Price

251

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

252

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

253

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

time. 4 Reducing this peak demand through DR programs meansthat a 5% reduction in peak demand would have resulted insame 5% reduction in the peak demand of the US as a whole.

Shen, Bo

2013-01-01T23:59:59.000Z

254

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

255

California Independent System Operator demand response & proxy demand resources  

Science Conference Proceedings (OSTI)

Demand response programs are designed to allow end use customers to contribute to energy load reduction individually or through a demand response provider. One form of demand response can occur when an end use customer reduces their electrical usage ...

John Goodin

2012-01-01T23:59:59.000Z

256

China's Coal: Demand, Constraints, and Externalities  

Science Conference Proceedings (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

257

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

258

Biosciences Division Seeking New Director  

NLE Websites -- All DOE Office Websites (Extended Search)

Director Search DOE Logo Search BIO ... Search Argonne Home > BIO home > Biosciences Division Seeking New Director BIO Home Page About BIO News Releases Research Publications...

259

Safety and Health Services Division  

NLE Websites -- All DOE Office Websites (Extended Search)

The Safety & Health Services Division (SHSD) provides subject matter expertise and services in industrial hygiene, safety engineering, and safety & health programs for the Lab....

260

Fusion Energy Division Home Page  

NLE Websites -- All DOE Office Websites (Extended Search)

of Agreement with UT-Battelle to collaborate with Japan's National Institute for Fusion Science. Division Director Stanley L. Milora Oak Ridge National Laboratory P.O. Box...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Technologies Division, with contributions from EETD's Galen Barbose and Andrew Mills. The report describes the rapid growth in U.S. wind power installations. In 2006,...

262

Argonne Physics Division - Theory Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne Theory Group: Postdoctoral Position The Theory Group in the Physics Division at Argonne National Laboratory is seeking exceptional candidates for a postdoctoral position...

263

Technical Highlights Atomic Physics Division  

Science Conference Proceedings (OSTI)

... Physics Division is to develop and apply atomic physics research methods ... community, and to produce and critically compile physical reference data ...

2013-06-04T23:59:59.000Z

264

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Volume 5 Number 1 R esearchers at the Lawrence Berkeley National Laboratory (Berkeley Lab) Environ- mental Energy Technologies Division (EETD) have completed the first...

265

3. light metals division bylaws  

Science Conference Proceedings (OSTI)

Mar 6, 2012 ... ctives and sc. Organizati disseminat and other n. Publication .... oversee and report on the division budget. At each meeting, he/she shall give a.

266

2. extraction & processing division bylaws  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The Chair-elect is generally the Vice Chair, to preserve continuity in ... The Division Council shall hold a business meeting during the week and...

267

NIST Optical Technology Division - 2000  

Science Conference Proceedings (OSTI)

"Technical Activities 2000" - Table of Contents, Division home page. ... point orbit (the Lagrange-1 is the neutral gravity point between the Earth and the ...

268

Argonne Physics Division - Theory Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Secretary: Debbie Morrison EMail: morrison@anl.gov Phone: 630252-4100 Fax: 630252-3903 Address: Theory Group Physics Division, Building 203 Argonne National...

269

Argonne Physics Division - Theory Group  

NLE Websites -- All DOE Office Websites (Extended Search)

23rd Annual Midwest Theory Get-Together 2010 Theory Group Theoretical research in Argonne's Physics Division addresses a broad range of problems involving the stucture and dynamics...

270

Time and Frequency Division Homepage  

Science Conference Proceedings (OSTI)

... Controlled ClocksTelephone TimeDivision HistoryFrequently Asked Questions (FAQ)Time and Frequency from A to Z: An illustrated glossaryA Walk ...

2013-12-27T23:59:59.000Z

271

Demand Response In California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

272

Automated Demand Response Today  

Science Conference Proceedings (OSTI)

Demand response (DR) has progressed over recent years beyond manual and semi-automated DR to include growing implementation and experience with fully automated demand response (AutoDR). AutoDR has been shown to be of great value over manual and semi-automated DR because it reduces the need for human interactions and decisions, and it increases the speed and reliability of the response. AutoDR, in turn, has evolved into the specification known as OpenADR v1.0 (California Energy Commission, PIER Program, C...

2012-03-29T23:59:59.000Z

273

United States lubricant demand  

Science Conference Proceedings (OSTI)

This paper examines United States Lubricant Demand for Automotive and Industrial Lubricants by year from 1978 to 1992 and 1997. Projected total United States Lubricant Demand for 1988 is 2,725 million (or MM) gallons. Automotive oils are expected to account for 1,469MM gallons or (53.9%), greases 59MM gallons (or 2.2%), and Industrial oils will account for the remaining 1,197MM gallons (or 43.9%) in 1988. This proportional relationship between Automotive and Industrial is projected to remain relatively constant until 1992 and out to 1997. Projections for individual years between 1978 to 1992 and 1997 are summarized.

Solomon, L.K.; Pruitt, P.R.

1988-01-01T23:59:59.000Z

274

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

275

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

276

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

277

Environmental Biology | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Elevated CO2 and O3 effects on Carbon demand Elevated CO2 and O3 effects on Carbon demand BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Elevated CO2 and O3 effects on Carbon demand of the Extramatrical Mycorrhizal Fungal Network Contact: R. Michael Miller (rmmiller@anl.gov) We are evaluating the interactive effects of elevated CO2 and O3 on the sequential growth and allocation of both ectomycorrhizal fungi (EMF) and arbuscular mycorrhizal fungi (AMF) associated with quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), and sugar maple (Acer saccharum) at the Aspen FACE site. The Aspen FACE approach consists of 30 m diameter rings of gas-dispensing pipes that allow us to fumigate intact forest canopies with atmospheric pollutants and study the interaction of plants, soils and atmosphere (http://aspenface.mtu.edu/index.html). We have used several different approaches to quantifying treatment effects on the mycorrhizal fungal network, especially how host responses influence root associated colonization and extramatrical hyphal (EMH) production and symbiotic benefit. Over the last six years we have been developing and improving upon methods to better quantify root associated mycorrhizal fungal biomass and EMH production and standing crop. Because both AMF and EMF play a significant role in the system of study we also have had to develop a means of separating the production of these different mycorrhizae, especially quantification of the EMH.

278

Principal Investigators | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

R. Michael Miller R. Michael Miller BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne R. Michael Miller Bldg: 203 Room: E161 9700 South Cass Avenue Argonne, Illinois 60439 Email: rmmiller@anl.gov Phone: (630) 252-3395 Fax: (630) 252-8895 Research Highlights Publications > Education: 1975 Ph.D., Illinois State University, Botany and Mycology 1971 M.S., Illinois State University, Biological Sciences 1969 B.S., Colorado State University, Botany > Professional Experience: 2005-current Senior Terrestrial Ecologist, Biosciences Division, Argonne National Laboratory 2007-current Senior Fellow, Institute for Genomic & Systems Biology, University of Chicago and Argonne National Laboratory 2006-2008

279

Argonne Physics Division - ATLAS  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety Safety General Radiation Electrical Experiment Safety at ATLAS The Management and Staff at ATLAS and Argonne National Laboratory are fully dedicated to integrating safety into all aspects of work at our facilities. We believe that it is completely possible, and absolutely essenital, to carry out effective research programs without compromising safety. Indeed, the process of incorporating safety into accelerator operations and experimental research begins at the earliest stages. All experiments, equipment, and procedures are reviewed extensively for safety issues prior to their approval. For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at

280

News Releases | Biosciences Division  

NLE Websites -- All DOE Office Websites (Extended Search)

News Releases News Releases BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Biosciences Division News Releases Protein crystal samples are placed on a small metal tip so X-rays from the adjacent beam pipe can pass through them and diffract off the atoms inside the crystal. Lessening X-ray damage is healthy for protein discovery data too December 16, 2013 - New recommendations for using X-rays promise to speed investigations aimed at understanding the structure and function of biologically important proteins - information critical to the development of new drugs. Read more. Kayakers and boats traverse the branch of the Chicago River in the downtown area Argonne partners with Metropolitan Water Reclamation District to study Chicago River microbe population

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Eastern Audits Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Work Plan for FY 2014 Work Plan for FY 2014 Eastern Audits Division  Follow-up of the Reindustrialization Program at East Tennessee Technology Park  Audit of the Department's Management of High-Risk Property  Audit of the Department's Efforts to Reduce Mercury Contamination at the Y-12 National Security Complex  Non-conforming Equipment and Parts at the Savannah River Site  Audit of the Department's Facility Contractors' Use of No Bid Subcontracts  Decontamination and Decommissioning Activities at the Oak Ridge National Laboratory  The Department's Audit Resolution and Follow-up Process  Legacy Management Activities at Selected Sites  Department's Contract Awards Made to Alaska Native Corporation  Readiness of the Saltstone Disposal Facility at the Savannah River Site

282

Guidance Systems Division ,  

Office of Legacy Management (LM)

Oockec No. 10-0772 Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES NUCLEAll I-IEOULATOIJY COMMISSION REGION i 631 PARK A"LH"I KIN0 OF PR"ISIA. PCNNIVLVANIA ID40' Gentlemen: Subject: Inspectfon 81-15 _ "-- .,; .z .;; Thts refers to the closeout safety \nspectlon conducted by Ms. M. Campbell of this office on August 27, 1961, of activities formerly authorized by NRC License No. STB-424 and to the c!lscussions of our findings held by f4s. Campbell with yourseif aL Lhe conclusion of the inspection. This closeout inspection. was conducted as part of an NRC effort to ensure that facilities where,llcensed activities were forxrrly conducted meet current NRC criteria for release for

283

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

284

On Demand Guarantees in Iran.  

E-Print Network (OSTI)

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

285

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2012-11-15T23:59:59.000Z

286

Commercial Sector Demand Module  

Reports and Publications (EIA)

Documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components.

Kevin Jarzomski

2013-10-10T23:59:59.000Z

287

Mathematical model for cell division  

Science Conference Proceedings (OSTI)

The division of a living cell, such as the whitefish blastula, is modeled with the Ovals of Cassini as the basic building block. The model uses two fixed points which could correspond to the approximate center of the chromosomes about which the nuclei ... Keywords: Cell division, Modeling, Ovals of Cassini

D. Mckenney; J. A. Nickel

1997-01-01T23:59:59.000Z

288

Efficient scaling for complex division  

Science Conference Proceedings (OSTI)

We develop a simple method for scaling to avoid overflow and harmful underflow in complex division. The method guarantees that no overflow will occur unless at least one component of the quotient must overflow, otherwise the normwise error in the computed ... Keywords: Complex division, overflow, underflow

Douglas M. Priest

2004-12-01T23:59:59.000Z

289

Point of Contact: Division Director: Alan S. Icenhour, Ph.D.  

E-Print Network (OSTI)

@ornl.gov Global Nuclear Security Technology Division Mission: Research, development, and deployment of science and technology for nuclear nonproliferation, safeguards, threat reduction, transportation security, and related areas. Leadership Areas: Nuclear Radiation Detection Safeguards Systems Development, Testing

290

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] 9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER NEWSLETTER: VOL. 9, NO. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits A new Division Director for the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, a story about one of his research team's projects to remove naturally-

291

Nuclear Science and Engineering - Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

292

Argonne Physics Division - Theory Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Seminar: R-150 @ 3:30pm Division Seminar: R-150 @ 3:30pm 14 April 2011 Stefano Gandolfi Los Alamos National Laboratory stefano@lanl.gov Quantum Monte Carlo Study of Strongly Correlated Fermions: Neutron Matter, Neutron Stars and Cold Atoms Division Seminar: R-150 @ 3:30pm 31 March 2011 Lucas Platter Chalmers University of Technology, Göteborg platter@chalmers.se Effective Field Theories for Nuclear Systems Division Seminar: R-150 @ 3:30pm 17 February 2011 Alexandros Gezerlis University of Washington gezerlis@uw.edu Bridging the Gap: Fermions in Nuclear Structure and Nuclear Astrophysics Special Day: Tuesday 15 February 2011 Louis H. Kauffman UIC kauffman@uic.edu Topological Quantum Information and the Jones Polynomial Division Seminar: R-150 @ 3:30pm 10 February 2011 JoaquÃ-n Drut

293

2003 Chemical Engineering Division annual technical report.  

DOE Green Energy (OSTI)

The Chemical Engineering Division is one of six divisions within the Engineering Research Directorate at Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, to promote national security, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Additionally, the Division operates the Analytical Chemistry Laboratory, which provides a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training in chemistry; physics; materials science; and electrical, mechanical, chemical, and nuclear engineering. They are specialists in electrochemistry, ceramics, metallurgy, catalysis, materials characterization, nuclear magnetic resonance, repository science, and the nuclear fuel cycle. Our staff have experience working in and collaborating with university, industry and government research and development laboratories throughout the world. Our wide-ranging expertise finds ready application in solving energy, national security, and environmental problems. Division personnel are frequently called on by governmental and industrial organizations for advice and contributions to problem solving in areas that intersect present and past Division programs and activities. Currently, we are engaged in the development of several technologies of national importance. Included among them are: Advanced lithium-ion and lithium-polymer batteries for transportation and other applications, Fuel cells, including the use of an oxidative reformer with gasoline as the fuel supply, Production and storage technologies critical to the hydrogen economy, Stable nuclear waste forms suitable for storage in a geological repository, Threat attribution and training relative to radioactive dispersal devices (''dirty bombs''), and Aqueous and pyrochemical processes for the disposition of spent nuclear fuel. Other important programs are focused in superconductivity, catalysis, nanotechnology, and nuclear materials. During fiscal year 2003, CMT had an annual operating budget of approximately $36 million. Of that, more than 90% was from DOE and the remainder from other government agencies and private industry. Displayed below is an overview organization chart of the Division. A complete organization chart appears at the end of this report. In this annual report we present an overview of the technical programs together with representative highlights. The report is not intended to be comprehensive or encyclopedic, but to serve as an indication of the condition and status of the Division.

Lewis, D.; Graziano, D.; Miller, J. F.; Vandegrift, G.

2004-04-26T23:59:59.000Z

294

Physics division annual report 1999  

Science Conference Proceedings (OSTI)

This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

Thayer, K., ed.; Physics

2000-12-06T23:59:59.000Z

295

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

296

On Demand Paging Using  

E-Print Network (OSTI)

The power consumption of the network interface plays a major role in determining the total operating lifetime of wireless handheld devices. On demand paging has been proposed earlier to reduce power consumption in cellular networks. In this scheme, a low power secondary radio is used to wake up the higher power radio, allowing the latter to sleep or remain off for longer periods of time. In this paper we present use of Bluetooth radios to serve as a paging channel for the 802.11 wireless LAN. We have implemented an on-demand paging scheme on a WLAN consisting of iPAQ PDAs equipped with Bluetooth radios and Cisco Aironet wireless networking cards. Our results show power saving ranging from 19% to 46% over the present 802.11b standard operating modes with negligible impact on performance.

Bluetooth Radios On; Yuvraj Agarwal; Rajesh K. Gupta

2003-01-01T23:59:59.000Z

297

ENERGY DEMAND FORECAST METHODS REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400 .......................................................................................................................................1-1 ENERGY DEMAND FORECASTING AT THE CALIFORNIA ENERGY COMMISSION: AN OVERVIEW

298

Demand Forecast INTRODUCTION AND SUMMARY  

E-Print Network (OSTI)

Demand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required of any forecast of electricity demand and developing ways to reduce the risk of planning errors that could arise from this and other uncertainties in the planning process. Electricity demand is forecast

299

Net Demand3 Production  

E-Print Network (OSTI)

Contract Number: DE-FE0004002 (Subcontract: S013-JTH-PPM4002 MOD 00) Summary The US DOE has identified a number of materials that are both used by clean energy technologies and are at risk of supply disruptions in the short term. Several of these materials, especially the rare earth elements (REEs) yttrium, cerium, and lanthanum were identified by DOE as critical (USDOE 2010) and are crucial to the function and performance of solid oxide fuel cells (SOFCs) 1. In addition, US DOE has issued a second Request For Information regarding uses of and markets for these critical materials (RFI;(USDOE 2011)). This report examines how critical materials demand for SOFC applications could impact markets for these materials and vice versa, addressing categories 1,2,5, and 6 in the RFI. Category 1 REE Content of SOFC Yttria (yttrium oxide) is the only critical material (as defined for the timeframe of interest for SOFC) used in SOFC 2. Yttrium is used as a dopant in the SOFCs core ceramic cells.. In addition, continuing developments in SOFC technology will likely further reduce REE demand for SOFC, providing credible scope for at least an additional 50 % reduction in REE use if desirable. Category 2 Supply Chain and Market Demand SOFC developers expect to purchase

J. Thijssen Llc

2011-01-01T23:59:59.000Z

300

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lipid Oxidation and Quality Division Poster Competition  

Science Conference Proceedings (OSTI)

Lipid Oxidation and Quality Division student award for best poster presentation at the AOCS Annual Meeting & Expo. Lipid Oxidation and Quality Division Poster Competition Divisions achievement agricultural analytical application award awards biote

302

Testing Electric Vehicle Demand in "Hybrid Households" Using a Reflexive Survey  

E-Print Network (OSTI)

the demand electric vehicles, TransportationResearchA,1994) ~tive NewsCalifornia Electric Vehicle ConsumerStudy.1995) Forecasting Electric Vehicle Ownership Use in the

Kurani, Kenneth S.; Turrentine, Thomas; Sperling, Daniel

2001-01-01T23:59:59.000Z

303

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Natural Gas Demands..xi Annual natural gas demand for each alternativeused in natural gas demand projections. 34

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

304

Physics division annual report 2006.  

SciTech Connect

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z

305

Physics division annual report 2006.  

SciTech Connect

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z

306

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

for Buildings, Photovoltaic Energy Systems Division U.S.of Solar Energy, Photovoltaic Energy Systems Division, U.S.methods for energy conversion such as photovoltaic solar

Authors, Various

2010-01-01T23:59:59.000Z

307

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

OF CALIFORNIA ENERGY & ENVIRONMENT DIVISION DIVISION HEAD E.Pollutants in Combustion Environments D. Lucas, N. Brown,Inc. , Energy/Environment Data Study, Cambridge, Mass. , May

Authors, Various

2010-01-01T23:59:59.000Z

308

Environment/Health/Safety (EHS): Division Liaisons  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Liaisons EHSS Division Liaisons are responsible for putting you in touch with the right person and for assuring that your EHSS problems are addressed promptly. Please also...

309

Berkeley Lab Earth Sciences Division - Resources - Workplace...  

NLE Websites -- All DOE Office Websites (Extended Search)

Ergo Advocates Division Safety Committee Division Support Contacts ESD Organization Chart Environment, Health & Safety ESD EH&S LBNL EH&S Facilities Management Building...

310

Participants for TMS Technical Divisions & Committees  

Science Conference Proceedings (OSTI)

FOR V. TMS Tech who take a han serve within mittee within erials Division g Division committees, w oles: ramming, pu ssionals who put into thes ncement, TMS.

311

Nuclear Engineering Division of Argonne National Laboratory ...  

NLE Websites -- All DOE Office Websites (Extended Search)

OVERVIEW Nuclear Engineering (NE) is one of the divisions within the Applied Science and Technology directorate of Argonne National Laboratory. The Division and its precursors have...

312

Physics Division: Los Alamos National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Physics Division Physics home Physics Division Site Home About Us Groups Applied Modern Physics, P-21 Neutron Science and Technology, P-23 Plasma Physics, P-24 Subatomic...

313

Quantum Condensed Matter Division | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

Quantum Condensed Matter Division Steve Nagler, QCMD Director QCMD Director Steve Nagler. The Quantum Condensed Matter Division (QCMD) enables and conducts a broad program of...

314

California Energy Demand Scenario Projections to 2050  

E-Print Network (OSTI)

Minimum demand and Maximum demand incorporate assumptionslevels, or very minor Maximum demand household size, growthvehicles in Increasing Maximum demand 23 mpg truck share

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

315

Energy Demand Staff Scientist  

E-Print Network (OSTI)

consumption per ton steel #12;Industrial Energy EfficiencyIndustrial Energy Efficiency Policy Analysis intensity trends and policy background · Focus on Industrial Energy Efficiency · Policy analysis PrimaryEnergy(Mtce) Commercial Buildings Residential Buildings Transportation Industry China 0 500 1,000 1

Knowles, David William

316

Dividends with Demand Response  

SciTech Connect

To assist facility managers in assessing whether and to what extent they should participate in demand response programs offered by ISOs, we introduce a systematic process by which a curtailment supply curve can be developed that integrates costs and other program provisions and features. This curtailment supply curve functions as bid curve, which allows the facility manager to incrementally offer load to the market under terms and conditions acceptable to the customer. We applied this load curtailment assessment process to a stylized example of an office building, using programs offered by NYISO to provide detail and realism.

Kintner-Meyer, Michael CW; Goldman, Charles; Sezgen, O.; Pratt, D.

2003-10-31T23:59:59.000Z

317

MCNP/X Form Factor Upgrade for Improved Photon Transport  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection

John S. Hendricks; Brian J. Quiter

318

Patents: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Patents About the Division > Patents Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Patents Bookmark and Share Printable Patents List ( PDF PDF file, 225 KB) Over 50 patents have been issued to Nuclear Engineering Division staff members by the US Patent Office from 2000 to present. The table below features a complete list of patents (2000-present) issued

319

Chemical Sciences Division: Research: Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

320

5. structural materials division bylaws  

Science Conference Proceedings (OSTI)

Section 5. The Council can, at its discretion, elect up to two at-large Division Council members with voting privileges and a renewable term of one year. Section 6.

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

XXXXXX Department/Division/Office  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental & Waste Management Services Division Bldg. 120 P. O. Box 5000 Upton, NY 11973-5000 Phone 631 344-2165 Fax 631 344-5812 mdavis@bnl.gov Managed by Brookhaven Science...

322

Division Contacts | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Contacts Directorate E-mail Phone Fax Business Services branhams@ornl.gov 865.241.7614 865.241.7595 Communications keimdm@ornl.gov 865.576.9122 865.574.0595 Computing...

323

Retail Demand Response in Southwest Power Pool  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

324

Coordination of Energy Efficiency and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

044E 044E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Coordination of Energy Efficiency and Demand Response Charles Goldman, Michael Reid, Roger Levy and Alison Silverstein Environmental Energy Technologies Division January 2010 The work described in this report was funded by the Department of Energy Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

325

Chinese demand drives global deforestation Chinese demand drives global deforestation  

E-Print Network (OSTI)

Chinese demand drives global deforestation Chinese demand drives global deforestation By Tansa Musa zones and do not respect size limits in their quest for maximum financial returns. "I lack words economy. China's demand for hardwood drives illegal logging says "Both illegal and authorized

326

Estimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand  

E-Print Network (OSTI)

: Properties of the AIDS Generalized Maximum Entropy Estimator 24 #12;Estimating a Demand SystemEstimating a Demand System with Nonnegativity Constraints: Mexican Meat Demand Amos Golan* Jeffrey with nonnegativity constraints is presented. This approach, called generalized maximum entropy (GME), is more

Perloff, Jeffrey M.

327

CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Demand Forecast report is the product of the efforts of many current and former California Energy Commission staff. Staff contributors to the current forecast are: Project Management and Technical Direction

328

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

329

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

330

Department of Natural Resources and Water Divisions (Nebraska) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Natural Resources and Water Divisions (Nebraska) Department of Natural Resources and Water Divisions (Nebraska) Department of Natural Resources and Water Divisions (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This chapter describes the duties of the Department of Natural Resources

331

Demand Response | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

332

ELECTRICITY DEMAND FORECAST COMPARISON REPORT  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005 ..............................................................................3 Residential Forecast Comparison ..............................................................................................5 Nonresidential Forecast Comparisons

333

Energy Division annual progress report for period ending September 30, 1993  

SciTech Connect

One of 17 research divisions at Oak Ridge National Laboratory, Energy Division`s mission is to provide innovative solutions to energy and related issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY1993. Energy Division is committed to (1) understanding the mechanisms by which societies make choices in energy use; (2) improving society`s understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy-efficient technologies; (4) improving transportation policy and planning; (5) enhancing basic knowledge in the social sciences as related to energy and associated issues. Energy Division`s expenditures in FY1993 totaled $42 million. The work was supported by the US DOE, DOD, many other federal agencies, and some private organizations. Disciplines of the 126.5 technical staff members include engineering, social sciences, physical and life sciences, and computer sciences and data systems. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy use and delivery technologies, and (3) transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on emergency preparedness, transportation analysis, and analysis of energy and environmental needs in developing countries. Energy use and delivery technologies focus on electric power systems, building equipment, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Transportation systems research is conducted both to improve the quality of civilian transportation and for sponsors within the US military to improve the efficiency of deployment, scheduling, and transportation coordination.

Wolff, P.P. [ed.

1994-07-01T23:59:59.000Z

334

Overview of Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

335

NIST Electron and Optical Physics Division - 1998  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1998 - NISTIR 6268 ELECTRON AND OPTICAL PHYSICS DIVISION. Vortex structures in a rotating ...

336

NIST Electron and Optical Physics Division - 1998  

Science Conference Proceedings (OSTI)

TECHNICAL ACTIVITIES 1999 - NISTIR 6438 Electron and Optical Physics Division. Soliton produced by phase-printing ...

337

Divisions: Principal Associate Directorate for Global Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

Divisions Decision Applications, D International and Applied Technology, IAT International Space & Response, ISR Nuclear Nonproliferation, N...

338

E-model for Transportation Problem of Linear Stochastic Fractional ...  

E-Print Network (OSTI)

studied stochastic transportation model for petroleum transport as well ... homogenous commodity from m sources to n of destinations, where the demand for the.

339

Surfactants and Detergents Division Newsletter 11/12  

Science Conference Proceedings (OSTI)

Read the November newsletter from the Surfactants and Detergents Division. Surfactants and Detergents Division Newsletter 11/12 Surfactants and Detergents Division detergents division divisions fabric fats home care laundry detergent member membership oi

340

National Transportation Stakeholders Forum  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Stakeholders Forum Transportation Stakeholders Forum May 14-16, 2013 Tuesday, May 14 7:00 am - 5:00 pm Registration Niagara Foyer 7:00 am - 7:45 am Breakfast and Networking Grand A 8:00 am - 10:00 am National Updates for Transportation Stakeholder Groups and Guests - Panel Grand BC Moderator: John Giarrusso Jr., MA Emergency Management Agency / Northeast High-Level Radioactive Waste Transportation Task Force Co-Chair US Department of Energy, Office of Environmental Management - Steve O'Connor, Director, Office of Packaging & Transportation US Nuclear Regulatory Commission - Earl P. Easton, Senior Level Advisor (retired) and David W. Pstrak, Transportation and Storage Specialist, Division of Spent Fuel Storage and Transportation

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

342

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Vol. 11, No. 1 Fast Demand Response Predicting Materials from First Principles Residential Cooking Exhaust Hoods Cooking Survey Wind Power Report Press Release B-PATH Model...

343

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

esponsible for about 40% of global energy demand, the industrial sector is the world's domi- nant energy user followed by buildings, trans- portation, and agriculture. Berkeley...

344

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

buildings save power through automated demand response technology and advanced "Smart Grid" development. From left: Sila Kiliccote, Girish Ghatikar, and Mary Ann Piette. The...

345

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

346

U.S. electric utility demand-side management 1995  

SciTech Connect

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

1997-01-01T23:59:59.000Z

347

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] 2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2012 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2012: VOL. 10, NO. 3 Middle-Income Energy Savings LIGTT Greenhouse Gas Standards Port of Oakland Study Ashok Gadgil Wins Zayed Award Max Tech Research Highlights Sources and Credits Congratulations to EETD Division Director Ashok Gadgil, winner of the Zayed Future Energy Prize lifetime achievement award, about which you can read in this issue. We also present research on how energy efficiency program managers can better reach middle-income families, and perhaps

348

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

0: 0: Vol. 9, No. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits PDF of EETD News Ashok Gadgil Named New EETD Director Ashok Gadgil Ashok Gadgil has been named Director of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Environmental Energy Technologies Division (EETD). Serving as the Acting Division Director since October, he replaces Arun Majumdar who is now Director of the DOE's Advanced Research Projects Agency-Energy (ARPA-E). Gadgil is a Professor in Civil and Environmental Engineering at UC Berkeley and joined EETD in 1988. He is recognized for

349

Fermilab's Accelerator and Research Divisions  

NLE Websites -- All DOE Office Websites (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

350

Highlights: Nuclear Engineering Division (Argonne)  

NLE Websites -- All DOE Office Websites (Extended Search)

About the Division > Highlights About the Division > Highlights Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Click on the "Date" header to sort the NE highlights in chronological order (ascending or descending). You may also search through the NE highlights for a specific keyword/year;

351

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] 8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING NEWSLETTER: VOL. 8, NO. 4 OpenADR's Steps Toward a National Smart Grid Standard Dangers of Third-Hand Smoke Energy Efficiency Workforce Training John Newman Wins the Acheson Award Net Metered PV Systems Recovery Act Grant Program Evaluation Sources and Credits As the nation continues moving toward a more energy-efficient economy, research at the Environmental Energy Technologies Division plays its part in developing the technologies it needs for the Smart Grid, and in evaluating policies aimed at increasing energy efficiency

352

Energy Division annual progress report for period ending September 30, 1991  

Science Conference Proceedings (OSTI)

The Energy Division is one of 17 research divisions at Oak Ridge Laboratory. Its goals and accomplishments are described in this annual progress report for FY 1991. The division`s total expenditures in FY 1991 were $39.1 million. The work is supported by the US Department of Energy, US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 124 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division`s programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include electric power systems, building equipment (thermally activated heat pumps, advanced refrigeration systems, novel cycles), building envelopes (walls, foundations, roofs, attics, and materials), and technical issues for improving energy efficiency in existing buildings. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination.

Stone, J.N. [ed.

1992-04-01T23:59:59.000Z

353

Demand Response Programs, 6. edition  

Science Conference Proceedings (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

354

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network (OSTI)

2007 EMCS EPACT ERCOT FCM FERC FRCC demand side managementEnergy Regulatory Commission (FERC). EPAct began the processin wholesale markets, which FERC Order 888 furthered by

Shen, Bo

2013-01-01T23:59:59.000Z

355

Isotope and Nuclear Chemistry Division annual report, FY 1983  

Science Conference Proceedings (OSTI)

This report describes progress in the major research and development programs carried out in FY 1983 by the Isotope and Nuclear Chemistry Division. It covers radiochemical diagnostics of weapons tests; weapons radiochemical diagnostics research and development; other unclassified weapons research; stable and radioactive isotope production, separation, and applications (including biomedical applications); element and isotope transport and fixation; actinide and transition metal chemistry; structural chemistry, spectroscopy, and applications; nuclear structure and reactions; irradiation facilities; advanced analytical techniques; development and applications; atmospheric chemistry and transport; and earth and planetary processes.

Heiken, J.H.; Lindberg, H.A. (eds.)

1984-05-01T23:59:59.000Z

356

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

357

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

358

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

359

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

360

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

362

Christopher M. Stafford Polymers Division  

E-Print Network (OSTI)

Christopher M. Stafford Polymers Division National Institute of Standards and Technology Surface, Hong, and Suo, J. Mech. Phys. Solids 53, 2101 (2005). Chung and Stafford, unpublished data. #12 = f e sf h EE Stafford et al. Encyclopedia of Materials: Science and Technology Online Updates (2006

363

Industrial Oil Products Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryIndustrial Oil Products Division2013 Members241 Members as of July 1, 2013Abend, SvenKolb Distribution LtdHedingen, SwitzerlandAbraham, TimothyCargill IncHopkins, MN, USAAkinrinade, FrancisNational Open University, Niger

364

Health and Nutrition Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryHealth & Nutrition Division2013 Members348 Members as of October 1, 2013Abeywardena, MahindaCSIRO Health NutritionAdelaide, SA, AustraliaAdam, RoyOilseeds International LtdSan Francisco, CA, USAAdriaenssens, MarkBarry Ca

365

Wheels on division by zero  

Science Conference Proceedings (OSTI)

We show how to extend any commutative ring (or semiring) so that division by any element, including 0, is, in a sense, possible. The resulting structure is called a wheel. Wheels are similar to rings, but $0x=0$ does not hold in general; the subset ...

Jesper Carlstrm

2004-02-01T23:59:59.000Z

366

Lipid Oxidation and Quality Division  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryLipid Oxidation & Quality Division2013 Members327 Members as of October 1, 2013, Process Plus LLCCincinnati, OH, USAAbraham, TimothyCargill IncHopkins, MN, USAAbrams, JimCargill Corn Milling NAMemphis, TN, USAAbril, Rube

367

Edible Applications Technology Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountryEdible Applications Technology Division2013 Members362 Members as of October 1, 2013Acevedo, NuriaUniversity of GuelphAmes, IA, USAAdam, RoyOilseeds International LtdSan Francisco, CA, USAAdriaenssens, MarkBarry Callebau

368

Surfactant and Detergent Division List  

Science Conference Proceedings (OSTI)

Name AffiliationCity, State, CountrySurfactants & Detergents Division2013 Members464 Members as of October 1, 2013, Process Plus LLCCincinnati, OH, USAAbdurahman, SadegWashington State UniversityPullman, WA, USAAbend, SvenKolb Distribution LtdHedingen, Swi

369

Demand Response Valuation Frameworks Paper  

E-Print Network (OSTI)

lvi Southern California Edison filed its SmartConnectinfrastructure (e.g. , Edison Electric Institute, DemandSouthern California Edison Standard Practice Manual

Heffner, Grayson

2010-01-01T23:59:59.000Z

370

Automated Demand Response and Commissioning  

NLE Websites -- All DOE Office Websites (Extended Search)

and Commissioning Title Automated Demand Response and Commissioning Publication Type Conference Paper LBNL Report Number LBNL-57384 Year of Publication 2005 Authors Piette, Mary...

371

Demand Uncertainty and Price Dispersion.  

E-Print Network (OSTI)

??Demand uncertainty has been recognized as one factor that may cause price dispersion in perfectly competitive markets with costly and perishable capacity. With the persistence (more)

Li, Suxi

2007-01-01T23:59:59.000Z

372

1995 Demand-Side Managment  

U.S. Energy Information Administration (EIA)

U.S. Electric Utility Demand-Side Management 1995 January 1997 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels

373

Energy Division annual progress report for period ending September 30, 1990  

Science Conference Proceedings (OSTI)

The Energy Division is one of 17 research divisions at Oak Ridge National Laboratory. The goals and accomplishments of the Energy Division are described in this annual progress report for FY 1990. The Energy Division is a multidisciplinary research organization committed to (1) increasing the knowledge and understanding of how societies make choices in energy use; (2) improving society's understanding of the environmental, social, and economic implications of technological change; (3) developing and transferring energy efficient technologies; and (4) developing improved transportation planning and policy. Disciplines of the 129 staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The Energy Division's programmatic activities focus on three major areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities cover energy and resource analysis, the preparation of environmental assessments and impact statements, research on waste management, analysis of emergency preparedness for natural and technological disasters, analysis of the energy and environmental needs of developing countries, technology transfer, and analysis of civilian transportation. Energy conservation technologies include building equipment (thermally activated heat pumps, chemical heat pumps, refrigeration systems, novel cycles), building enveloped (walls, foundations, roofs, attics, and materials), retrofits for existing buildings, and electric power systems. Military transportation systems concentrate on research for sponsors within the US military on improving the efficiency of military deployment, scheduling, and transportation coordination. 48 refs., 34 figs., 7 tabs.

Selden, R.H. (ed.)

1991-06-01T23:59:59.000Z

374

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

8 Figure 7: Maximum Demands Savings Intensity due toaddressed in this report. Maximum Demand Savings Intensity (Echelon Figure 7: Maximum Demands Savings Intensity due to

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

375

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

energy efficiency and demand response programs and tariffs.energy efficiency and demand response program and tariffenergy efficiency and demand response programs and tariffs.

Goldman, Charles

2010-01-01T23:59:59.000Z

376

Wireless Demand Response Controls for HVAC Systems  

E-Print Network (OSTI)

Strategies Linking Demand Response and Energy Efficiency,Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

377

Demand Response Quick Assessment Tool (DRQAT)  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Quick Assessment Tool (DRQAT) The opportunities for demand reduction and cost saving with building demand responsive control vary tremendously with building type...

378

Demand Responsive Lighting: A Scoping Study  

E-Print Network (OSTI)

2 2.0 Demand ResponseFully Automated Demand Response Tests in Large Facilities,was coordinated by the Demand Response Research Center and

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

379

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network (OSTI)

8.4 Demand Response Integration . . . . . . . . . . .for each day type for the demand response study - moderatefor each day type for the demand response study - moderate

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

380

Installation and Commissioning Automated Demand Response Systems  

E-Print Network (OSTI)

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Coordination of Energy Efficiency and Demand Response  

E-Print Network (OSTI)

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

382

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

Fully Automated Demand Response Tests in Large Facilitiesof Fully Automated Demand Response in Large Facilities,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

383

Retail Demand Response in Southwest Power Pool  

E-Print Network (OSTI)

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

384

Option Value of Electricity Demand Response  

E-Print Network (OSTI)

Table 1. Economic demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

385

ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978  

E-Print Network (OSTI)

Changes in California Natural Gas Demand R. Sextro, L Borg,in California Natural Gas Demand" in this same volume.

Cairns, E.L.

2011-01-01T23:59:59.000Z

386

Energy Systems Division Ed Daniels, Division Director University of Chicago Review Energy Engineering and Systems Analysis November 18, 2010  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Technology Technology Research and Development Don Hillebrand, Energy Systems Division Director Secretary of Energy Advisory Board Meeting Energy Engineering and Systems Analysis April 2012 Argonne's Transportation Research Is Focused on DOE's Energy Resources Goal  Improving energy productivity across all sectors, including transportation, is a goal in the Energy Security Theme of the DOE Strategic Plan.  A strategy to meet that goal is to develop technologies that enable cars and trucks to be fuel efficient, while remaining cost and performance competitive. 2 Market Snapshot - Auto Sales have Recovered Efficiency reduces oil use and CO2 emissions

387

Solid State Division progress report for period ending September 30, 1984  

SciTech Connect

During the reporting period, relatively minor changes have occurred in the research areas of interest to the Division. Nearly all the research of the Division can be classified broadly as mission-oriented basic research. Topics covered include: theoretical solid state physics; surface and near-surface properties of solids; defects in solids; transport properties of solids; neutron scattering; and preparation and characterization of research materials. (GHT)

Green, P.H.; Watson, D.M. (eds.)

1985-03-01T23:59:59.000Z

388

Energy Division annual progress report for period ending September 30, 1992  

Science Conference Proceedings (OSTI)

Energy Division`s mission is to provide innovative solutions to energy and related Issues of national and global importance through interdisciplinary research and development. Its goals and accomplishments are described in this annual progress report for FY 1992. Energy Division`s total expenditures in FY 1992 were $42.8 million. The work is supported by the US Department of Energy, the US Department of Defense, many other federal agencies, and some private organizations. Disciplines of the 116.5 technical staff members include engineering, social sciences, physical and life sciences, and mathematics and statistics. The division`s programmatic activities cover three main areas: (1) analysis and assessment, (2) energy conservation technologies, and (3) military transportation systems. Analysis and assessment activities involve energy and resource analysis, preparation of environmental assessments and impact statements, research on waste management, technology transfer, analysis of energy and environmental needs in developing countries, and civilian transportation analysis. Energy conservation technologies focus on electric power systems, building envelopes (walls, foundations, roofs, attics, and materials), and methods to improve energy efficiency in existing buildings. Military transportation systems conduct research for sponsors within the US military to improve the efficiency of military deployment, scheduling, and transportation coordination. Much of Energy Division`s research is valuable to other organizations as well as to sponsors. This information is disseminated by the staff`s involvement in professional and trade organizations and workshops; joint research with universities and private-sector firms; collaboration with state and local governments; presentation of work at conferences; and publication of research results in journals, reports, and conference proceedings.

Counce, D.M.; Wolff, P.P. [eds.

1993-04-01T23:59:59.000Z

389

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

390

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

391

Materials for Oil and Gas Transport  

Science Conference Proceedings (OSTI)

Jun 18, 2008 ... The demand on materials for transporting oil, natural gas, and other fluids, including hydrogen, ethanol, etc. is severe in terms of material...

392

On the Transportation Problem with Market Choice  

E-Print Network (OSTI)

Apr 3, 2013 ... Abstract: We study a variant of the classical transportation problem in which suppliers with limited capacities have a choice of which demands...

393

The Dynamics of Air Transportation System Transition  

E-Print Network (OSTI)

Both U.S. and European Air Transportation Systems face substantial challenges in transforming to meet future demand. This paper uses a feedback model to identify

Mozdzanowska, Aleksandra

394

4. materials processing & manufacturing division bylaws  

Science Conference Proceedings (OSTI)

The name. Division,. The Divis. The gover. EC. The Exec the Vice C. The follow. Members. Division, committe the discip. 1. Co. 2. Gl. 3. IC. 4. Na. 5. Ph. 6. Po. 7.

395

Health and Nutrition Division Student Award  

Science Conference Proceedings (OSTI)

application and eligibility Health and Nutrition Division Student Award Student Membership achievement aocs application award awards distinguished division fats global group inform job listings member Membership memorial network nomination oils po

396

Surfactants and Detergents Division Student Award  

Science Conference Proceedings (OSTI)

Aids graduate student travel to AOCS Annual Meeting & Expo to present a paper. Surfactants and Detergents Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished divisio

397

Industrial Oil Products Division Student Award  

Science Conference Proceedings (OSTI)

Awarded to a graduate student for travel to AOCS Annual Meeting & Expo to present a paper. Industrial Oil Products Division Student Award Divisions achievement agricultural analytical application award awards biotechnology detergents distinguished

398

China, India demand cushions prices  

SciTech Connect

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

399

Harnessing the power of demand  

Science Conference Proceedings (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

400

MATERIALS AND MOLECULAR RESEARCH DIVISION ANNUAL REPORT 1979  

E-Print Network (OSTI)

the Division of Materials Sciences, Office of Basic EnergyDivision of lllaterials Sciences, Office of Basic :energyDivision of Materials Sciences, Office of the Basic Energy

Authors, Various

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Lipid Oxidation and Quality Division April 2013 Newsletter  

Science Conference Proceedings (OSTI)

Read the Lipid Oxidation and Quality Division April 2013 Newsletter Lipid Oxidation and Quality Division April 2013 Newsletter Lipid Oxidation and Quality Division ...

402

Computer Sciences and Mathematics Division | ornl.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Computer Sciences and Mathematics Division SHARE Computer Sciences and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic...

403

Lipid Oxidation and Quality Division July 201/span>3 Newsletter  

Science Conference Proceedings (OSTI)

Read the Lipid Oxidation and Quality Division July 201/span>3 Newsletter Lipid Oxidation and Quality Division July 201/span>3 Newsletter Lipid Oxidation and Quality Division ...

404

Information Management Division (HC-14) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Management Division (HC-14) Information Management Division (HC-14) Mission Statement This division provides operational support and consultative advice to the Chief...

405

Demand Response for Ancillary Services  

Science Conference Proceedings (OSTI)

Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

2013-01-01T23:59:59.000Z

406

Electronic, Magnetic & Photonic Materials Division Council - TMS  

Science Conference Proceedings (OSTI)

Welcome to the Electronic, Magnetic, and Photonic Materials Division (EMPMD) which is composed of fourteen technical and administrative committees. TMS...

407

Quantum Electronics and Photonics Division Homepage  

Science Conference Proceedings (OSTI)

... The mission of the Quantum Electronics and Photonics Division is to ... quantum information and computing, optical and electrical waveform metrology ...

2013-02-20T23:59:59.000Z

408

Biosciences Division - Energy and Environmental Sciences Directorate...  

NLE Websites -- All DOE Office Websites (Extended Search)

with the environment. The division has expertise and special facilities in genomics, computational biology, microbiology, microbial ecology, biophysics and structural...

409

Los Alamos Lab: Bioscience Division: Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Division Capabilities Biomaterials Cell Biology Computational Biology Environmental Microbiology Genomic Science Measurement Science and Diagnostics Metabolomics Molecular...

410

USTL a Division of National Technical Systems  

Science Conference Proceedings (OSTI)

USTL a Division of National Technical Systems. NVLAP Lab Code: 200818-0. Address and Contact Information: 7447 W ...

2013-09-20T23:59:59.000Z

411

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

... Physicist Sensor Science Division Ultraviolet Radiation Group. ... Ph.D. Optical Sciences and Engineering ... Orlando, FL MS Electrical Engineering, The ...

2013-03-21T23:59:59.000Z

412

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

prices or emergency requests to curtail energy usage. In this test, "We used a fictitious electricity price to trigger the demand response event over the internet, which is an...

413

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

to reduce electricity consumption in large buildings. The 2003 test used a fictitious electricity price-a proxy for a critical peak price-to trigger a demand-response event...

414

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

summer 2004, Lawrence Berkeley National Laboratory (Berkeley Lab) summer 2004, Lawrence Berkeley National Laboratory (Berkeley Lab) researchers used two different kinds of technology, a price signal sent over the internet to facility computers, and a hard-wired internet relay box, to test auto- mated demand response. They found up to four megawatts (MW) of savings in 36 buildings located at 18 sites, according to a new report. The research, published as "Findings from the 2004 Fully Automated Demand Response

415

Efficient real-time divisible load scheduling  

Science Conference Proceedings (OSTI)

Providing QoS and performance guarantees to arbitrarily divisible loads has become a significant problem for many cluster-based research computing facilities. While progress is being made in scheduling arbitrarily divisible loads, current approaches ... Keywords: Arbitrarily divisible loads, Cluster computing, Real-time computing, Scheduling efficiency

Anwar Mamat; Ying Lu; Jitender Deogun; Steve Goddard

2012-12-01T23:59:59.000Z

416

Strategies for Demand Response in Commercial Buildings  

E-Print Network (OSTI)

the average and maximum peak demand savings. The electricity1: Average and Maximum Peak Electric Demand Savings during

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

417

Demand Response Opportunities in Industrial Refrigerated Warehouses...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Opportunities in Industrial Refrigerated Warehouses in California Title Demand Response Opportunities in Industrial Refrigerated Warehouses in California...

418

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

1999: 1999: Vol. 1, No. 1 Characterizing Diesel Particle Exhaust Miscellaneous Electricity Use COMIS: An Interzonal Air-Flow Model GenOpt: A Generic Optimization Program News from the D.C. Office Around the Division The A-Team Report Sources and Credits PDF of EETD News Characterizing Diesel Particle Exhaust Recent concern about the risks to human health from airborne particulates such as those in diesel exhaust has motivated a group at the Environmental Energy Technologies Division to investigate the use of scattered polarized light. The goals are to characterize these particles and develop an instrument to measure these characteristics in real time. Having such an instrument can help regulatory authorities develop standards and monitor air quality. Airborne particulates, especially those less than 2.5

419

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] 9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 9, NO. 3 Commercial Buildings Clean Energy Research Center OpenADR Alliance Energy Efficient Data Center Retrofit Home Energy Score Pilot Program Tracking the Sun III Research Highlights Sources and Credits The Department of Energy's Commercial Building Partnerships initiative is establishing collaborations to increase energy efficiency in new and existing commercial buildings. It teams National Laboratory researchers and private technical experts with commercial building owners and

420

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] 0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL 2011: VOL. 10, NO. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits Understanding how effectively new technologies can save energy, water, and materials-as well as reduce energy costs and greenhouse gas emissions-is the goal of the Carbon Cycle 2.0 Energy and

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Containing the Effects of Containing the Effects of Chemical and Biological Agents in Buildings Lawrence Berkeley National Laboratory Air Quality Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 3 News 1 Containing the Effects of Chemical and Biological Agents in Buildings 3 Laser Ultrasonic Sensor Streamlines Papermaking Process 5 Building a Smarter Light: The IBECS Network/Ballast Interface 6 IPMVP-from a DOE-Funded Iniative to a Not-for-Profit Organization 8 Skylight Well Reduces Solar Heat Gain 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division

422

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

Consumers Kept Consumers Kept the Lights On Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 4 News 1 California Consumers Kept the Lights On 3 A Quick and Easy Web-Based Assess- ment Tool for Day/Electric Lighting 5 Berkeley Lab Model Tracks Indoor Anthrax Dispersal 7 Rating "Green" Laboratories-Labs21 Environmental Performance Criteria 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division continued on page 2 In this Issue C alifornia consumers-not mild weather or the cooling economy-should get credit

423

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] 9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2011: VOL. 9, NO. 4 Fuel Cell Research Programmable Thermostats A Bright Spot for Solar Saving Electricity in a Hurry Nanostructured Antifogging Coatings Fluorescent Lighting Research Highlights Sources and Credits This month, EETD News highlights some of its research activities in fuel cells; an energy efficiency expert describes how Japan can save energy in a hurry to help offset supply losses from Fukushima; and a lighting expert discusses why fluorescent

424

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] 8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2009 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 8, NO. 2 Closing in on Zero-Energy Buildings Heinz Award Honors Berkeley Lab's Ashok Gadgil Green Chemistry: Lasers Detect Explosives and Hazardous Waste Photocatalytic Oxidation (PCO) Air Cleaners: Reducing Energy Use While Clearing the Air Energy Reduction for Energy Research New Study Sheds Light on the Growing U.S. Wind Power Market Recovery Act Funding Enables Berkeley Lab to Help Federal Agencies Improve Energy Efficiency Research

425

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] 2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2013: VOL. 12, NO. 1 Buildings Performance Database EnergyIQ Wind Technologies Report Lighting Testbeds Q&A with Ed Vine SEAD Report - India Efficient A/C Li/S Cathode Technology Conductive Binder for Li-ion Batteries Research Highlights Sources and Credits We cover a lot of ground in the issue of EETD News you're now reading. Investing in energy performance upgrades for your commercial building? Read about the Building Performance Database. Wondering about the state of wind power in the U.S.? We've got you covered with the

426

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] 11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2013: VOL. 11, NO. 3 The New York Times Building Building Control Virtual Test Bed Simergy Climate Change and the Insurance Industry Energy Storage Research Hub ARPA-E Funds Berkeley Lab Projects Utility Energy-Efficiency Programs California's Energy Future FLEXLAB Testbeds Construction FLEXLAB Partners Research Highlights Sources and Credits Better tools to simulate building energy use, new funding for advanced research in batteries and energy-efficient

427

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] 2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2011: VOL. 10, NO. 1 Energy Information Systems ISO 50001 BEST Dairy Benchmarking Program Wind Power Report Cool Roofs Workshop Research Highlights Sources and Credits In this issue, you can learn about EETD's work to analyze energy information systems (EIS) and improve their utilization in commercial buildings. We also look at ISO 50001, a new standard that helps industrial and commercial enterprises operate energy-efficiently,

428

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] 8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 8, NO. 3 Hidden Costs of Energy Production NRC Report The Rosenfeld Named After California's Godfather of Energy Solar Photovoltaic Report II Release Methane in Central California Wind Power Property Values Community Wind FABS21 Release Franchise Tax Board Data Center Project Sources and Credits This issue addresses everything from a National Academy of Sciences report on the hidden costs of energy production to tools for making semiconductor fabrication facilities and data centers more

429

SHR Service Team: Academic Divisions -Contact Matrix Primary Contact by Unit/Division  

E-Print Network (OSTI)

SHR Service Team: Academic Divisions - Contact Matrix Primary Contact by Unit/Division Astronomy by Unit/Division Arts Humanities Library Social Sciences SHR Operations Services Timekeeping Time Contact by Unit/Division SOE Silicon Valley Center UARC UNEX SHR Operations Services Timekeeping Time

California at Santa Cruz, University of

430

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

fi lter could also help fi lter could also help California comply with tighter U.S. EPA arsenic drinking-water standard. A shok G ad g i l, a s c ient i st i n t he Environmental Energy Technologies Division at Lawrence Berkeley National Laboratory (Berkeley Lab), is developing a cheap and effective way to provide safe drinking water to 60 million Bangladeshis who live with the threat of arsenic poisoning.

431

Position sensing by charge division  

SciTech Connect

A summary of a comprehensive analysis of theoretical and practical aspects of position sensing by charge division from resistive electrodes is presented. Properties of transformer decoupling of the resistive electrode from detector bias voltage are analyzed and compared to the usual capacitive decoupling methods. Optimization and limitiation of signal shaping is discussed as a function of diffusion time constant, signal rise times, and notes. (auth)

Alberi, J.L.; Radeka, V.

1975-11-01T23:59:59.000Z

432

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

Model of the Global Crude Oil Market and the U.S. RetailNoureddine. 2002. World crude oil and natural gas: a demandanalysis of the demand for oil in the Middle East. Energy

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

433

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

434

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

A Joint Model of the Global Crude Oil Market and the U.S.Noureddine. 2002. World crude oil and natural gas: a demandelasticity of demand for crude oil, not gasoline. Results

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

435

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network (OSTI)

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

436

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

437

National micro-data based model of residential electricity demand: new evidence on seasonal variation  

SciTech Connect

Building on earlier estimates of electricity demand, the author estimates elasticities by month to determine differences between heating and cooling seasons. He develops a three equation model of residential electricity demand that includes all the main components of economic theory. The model generates seasonal elasticity estimates that generally support economic theory. Based on the model using a national current household data set (monthly division), the evidence indicates there is a seasonal pattern for price elasticity of demand. While less pronounced, there also appears to be seasonal patterns for cross-price elasticity of alternative fuels, for the elasticity of appliance stock index, and for an intensity of use variable.

Garbacz, C.

1984-07-01T23:59:59.000Z

438

Modelling the Energy Demand of Households in a Combined  

E-Print Network (OSTI)

. Emissions from passenger transport, households'electricity and heat consumption are growing rapidly despite demand analysis for electricity (e.g. Larsen and Nesbakken, 2004; Holtedahl and Joutz, 2004; Hondroyiannis, 2004) and passenger cars (Meyer et al., 2007). Some recent studies cover the whole residential

Steininger, Karl W.

439

Surfactants and Detergents Division Newsletter March 201/span>3  

Science Conference Proceedings (OSTI)

Read the March newsletter from the Surfactants and Detergents Division. Surfactants and Detergents Division Newsletter March 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipid lipi

440

Surfactants and Detergents Division Newsletter November 201/span>3  

Science Conference Proceedings (OSTI)

Read the November newsletter from the Surfactants and Detergents Division. Surfactants and Detergents Division Newsletter November 201/span>3 Membership Information achievement application award Awards distinguished division Divisions fats job Join lipi

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Effects of the drought on California electricity supply and demand  

E-Print Network (OSTI)

Acknowledgments SUMMARY Electricity Demand ElectricityAdverse Impacts ELECTRICITY DEMAND . . . .Demand forElectricity Sales Electricity Demand by Major Utility

Benenson, P.

2010-01-01T23:59:59.000Z

442

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

443

Demand Response Research in Spain  

NLE Websites -- All DOE Office Websites (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

444

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

445

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart...

446

Demand for money in China .  

E-Print Network (OSTI)

??This research investigates the long-run equilibrium relationship between money demand and its determinants in China over the period 1952-2004 for three definitions of money (more)

Zhang, Qing

2006-01-01T23:59:59.000Z

447

Thermal Mass and Demand Response  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Mass and Demand Response Speaker(s): Gregor Henze Phil C. Bomrad Date: November 2, 2011 - 12:00pm Location: 90-4133 Seminar HostPoint of Contact: Janie Page The topic of...

448

Automated Demand Response and Commissioning  

E-Print Network (OSTI)

Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

449

Distillate Demand Strong Last Winter  

Gasoline and Diesel Fuel Update (EIA)

4 Notes: Well, distillate fuel demand wasn't the reason that stocks increased in January 2001 and kept prices from going higher. As you will hear shortly, natural gas prices spiked...

450

STEO December 2012 - coal demand  

U.S. Energy Information Administration (EIA) Indexed Site

coal demand seen below 1 billion tons in 2012 for fourth year in a row Coal consumption by U.S. power plants to generate electricity is expected to fall below 1 billion tons in...

451

NIST Quantum Physics Division - 2005-2007: Strategic Focus ...  

Science Conference Proceedings (OSTI)

"Technical Activities 2005-2007" - Table of Contents. Division home page. Quantum Physics Division. The strategy of the ...

452

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

453

Demand Response Spinning Reserve Demonstration  

Science Conference Proceedings (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

454

Colloquium 2010 - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

0 0 Materials Science 2010 Colloquium Archive 21-January-2010 Prof. Cheol Seong Hwang, Seol National University Identification and formation mechanism of conducting nano-filaments in TiO2 resistive switching thin film 28-January-2010 Dr. Haifeng Ding, Nanjing University 11-February-2010 Dr. John Schlueter, Materials Science Division Molecular Architectures for Control of Electron Spin and Its Transport, 16-April-2010 Prof. Albrecht Jander, Oregon State University Nanostructured Magentic Materails for Inductors 29-April-2010 Prof. Aldo Romero, CINVESTAV-Unidad Queretaro, Mexico 06-May-2010 Dr. Alex Zayak, UC Berkeley/Molecular Foundry, LBNL 20-May-2010 Dr. Matthew J. Highland, Materials Science Division 27-May-2010 Dr. Mark Stiles, National Institute of Standards and Technology

455

Process Engineering Division Texaco Gasifier IGCC Base Cases  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Division Engineering Division Texaco Gasifier IGCC Base Cases PED-IGCC-98-001 July 1998 Latest Revision June 2000 PREFACE This report presents the results of an analysis of three Texaco Gasifier IGCC Base Cases. The analyses were performed by W. Shelton and J. Lyons of EG&G. EXECUTIVE SUMMARY 1. Process Descriptions 1.1 Texaco Gasifier 1.2 Air Separation Plant (ASU) 1.3 Gas Cooling/Heat Recovery/Hydrolysis/Gas Saturation (Case 1 and Case 2) 1.4 Cold Gas Cleanup Unit (CGCU) (Case 1 and Case 2) 1.5 Fine Particulate Removal/ Chloride Guard Bed - Case 3 1.6 Transport Desulfurization HGCU - Case 3 1.7 Sulfuric Acid Plant - Case 3 1.8 Gas Turbine 1.9 Steam Cycle 1.10 Power Production 2. Simulation Development 3. Cost of Electricity Analysis

456

Naval Undersea Warfare Center Division Newport utilities metering, Phase 1  

SciTech Connect

Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

Carroll, D.M.

1992-11-01T23:59:59.000Z

457

Naval Undersea Warfare Center Division Newport utilities metering, Phase 1  

SciTech Connect

Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

Carroll, D.M.

1992-11-01T23:59:59.000Z

458

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

459

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

460

Economic implications of natural gas vehicle technology in U.S. private automobile transportation; Implications of natural gas vehicle technologies on household transportation in the U.S.  

E-Print Network (OSTI)

??Transportation represents almost 28 percent of the United States' energy demand. Approximately 95 percent of U.S. transportation utilizes petroleum, the majority of which is imported. (more)

Kragha, Oghenerume Christopher

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Protein and Co-Products Division Newsletter 10/12  

Science Conference Proceedings (OSTI)

Read the November newsletter from the Protein and Co-Products Division. Protein and Co-Products Division Newsletter 10/12 Protein and Co-Products Division biomaterial division divisions membership physiochemistry Protein and Co-Products Division Waste ma

462

OiNC: A Comprehensive CAD Import and Tracking System for Monte Carlo Radiation Transport Calculations  

Science Conference Proceedings (OSTI)

Technical Paper / Special Issue on the 16th Biennial Topical Meeting of the Radiation Protection and Shielding Division / Radiation Transport and Protection

Keith Searson; Fabrice Fleurot; Andrew Cooper; Pat Cowan

463

Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications  

E-Print Network (OSTI)

crops. Technical report, Argonne National Laboratory.Energy Systems Division, Argonne National Laboratory. Wang,Transportation Research, Argonne National Laboratory. Wang,

Plevin, Richard Jay

2010-01-01T23:59:59.000Z

464

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

465

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

466

National Action Plan on Demand Response  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

467

Spent Fuel Transportation Risk Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fuel Transportation Risk Assessment Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and Transportation 1 SFTRA Overview Contents * Project and review teams * Purpose and goals * Basic methodology * Improvements relative to previous studies * Draft NUREG structure and format * Routine shipment analysis and results * Accident condition analysis and results * Findings and conclusions * Schedule 2 SFTRA Research and Review Teams * Sandia National Laboratory Research Team [$1.8M; 9/06-9/12] - Doug Ammerman - principal investigator - Carlos Lopez - thermal - Ruth Weiner - RADTRAN * NRC's SFTRA Technical Review Team - Gordon Bjorkman - structural

468

Qing'an Li - Argonne National Laboratories, Materials Sicence Division  

NLE Websites -- All DOE Office Websites (Extended Search)

EM > Qing'an Li EM > Qing'an Li Qing'an Li Scientific Associate Sr Bldg. 223, A-113 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qing'an Li was an Assistant Research Scientist at Institute of Physics, Chinese Academy of Sciences after receiving his doctorate in July 1993 working on superconducting electronics. He was a postdoctoral fellow at University of Tokyo, Japan working on superconducting electronics in 1996. In 1997, he became a Visiting Scientist (postdoc) at the Materials Science Division of the Argonne National Laboratory, and started to study the transport properties of colossal magnetoresistance (CMR) materials in the Emerging Materials group. At the Institute of Physics, Chinese Academy of Sciences, Li was an Associated Research Scientist in 2000, a Research scientist, and Professor in 2001, working on magnetic and transport properties of transition metal oxides. In 2006, he visited the Materials Science Division of the Argonne National Laboratory as a Visiting Scientist, working on the transport properties of intermetallic compounds of rare-earth and transition metals, transition metal oxides, etc. and became a Scientific Associate Sr. in Emerging Materials group in 2009.

469

Can biofuels justify current transport policies?  

E-Print Network (OSTI)

energy consists of energy produced and/or derived from sources infinitely renovated (hydro, solar, wind Climate Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 2 Outline 1) Energy demand for transport Congress, Copenhagen, 11th March 2009 - Jérémie Mercier 3 1) Energy demand for transport is growing #12

470

NEN Division Funding Gap Analysis  

Science Conference Proceedings (OSTI)

The work in NEN Division revolves around proliferation detection. The sponsor funding model seems to have shifted over the last decades. For the past three lustra, sponsors are mainly interested in funding ideas and detection systems that are already at a technical readiness level 6 (TRL 6 -- one step below an industrial prototype) or higher. Once this level is reached, the sponsoring agency is willing to fund the commercialization, implementation, and training for the systems (TRL 8, 9). These sponsors are looking for a fast turnaround (1-2 years) technology development efforts to implement technology. To support the critical national and international needs for nonprolifertion solutions, we have to maintain a fluent stream of subject matter expertise from the fundamental principals of radiation detection through prototype development all the way to the implementation and training of others. NEN Division has large funding gaps in the Valley of Death region. In the current competitive climate for nuclear nonproliferation projects, it is imminent to increase our lead in this field.

Esch, Ernst I. [Los Alamos National Laboratory; Goettee, Jeffrey D. [Los Alamos National Laboratory; Desimone, David J. [Los Alamos National Laboratory; Lakis, Rollin E. [Los Alamos National Laboratory; Miko, David K. [Los Alamos National Laboratory

2012-09-05T23:59:59.000Z

471

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network (OSTI)

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

472

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network (OSTI)

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

473

Amur Energy Division | Open Energy Information  

Open Energy Info (EERE)

Amur Energy Division Amur Energy Division Jump to: navigation, search Name Amur Energy Division Place 46001 Valencia, Spain Sector Solar Product Engineering and construction group specialising in large solar power plants. References AMUR[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Determine if this company is valid. This article is a stub. You can help OpenEI by expanding it. Amur Energy Division is a company located in Spain. Related Links http://findarticles.com/p/articles/mi_m5CNK/is_2007_Jan_4/ai_n24998390/ http://www.businesswirenet.org/pr/index.php/id/jesus-linares-gil-chairman-and-ceo-of-ae http://solarstocks.blogspot.com/2007_01_01_archive.html References ↑ "Amur Energy Division" Retrieved from "http://en.openei.org/w/index.php?title=Amur_Energy_Division&oldid=391205"

474

Electric Utilities Industrial Transportation  

E-Print Network (OSTI)

240 million vehicles on the road Approximately 9M new cars & light trucks for 2009. Average is 15.7 M/yr 2002-2007 11.5 Million barrels of oil per day consumed by on-road vehicles Light-duty vehicles consume 60 % of transportation fuel, and account for 42% of total US petroleum use. Vehicle Technologies Program eere.energy.gov For Light-duty Passenger Vehicles Where are the opportunities for reducing transportation petroleum demand?

Edwin Owens; Million Barrels Per Day

1994-01-01T23:59:59.000Z

475

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

476

Successful demand-side management  

Science Conference Proceedings (OSTI)

This article is a brief summary of a series of case studies of five publicly-owned utilities that are noted for their success with demand-side management. These utilities are: (1) city of Austin, Texas, (2) Burlington Electric Department in Vermont, (3) Sacramento Municipal Utility District in California, (4) Seattle City Light, and (5) Waverly Light and Power in Iowa. From these case studies, the authors identified a number of traits associated with a successful demand-side management program. These traits are: (1) high rates, (2) economic factors, (3) environmental awareness, (4) state emphasis on integrated resource planning/demand side management, (5) local political support, (6) large-sized utilities, and (7) presence of a champion.

Hadley, S. [Oak Ridge National Laboratory, TN (United States); Flanigan, T. [Results Center, Aspen, CO (United States)

1995-05-01T23:59:59.000Z

477

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

478

Turkey's energy demand and supply  

SciTech Connect

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

479

Demand for Rail: transport options for the Waimakariri District.  

E-Print Network (OSTI)

??The purpose of this research was to investigate the feasibility of a passenger rail service operating on a current rail line in Canterbury, known as (more)

Versteeg, Luke Oscar

2006-01-01T23:59:59.000Z

480

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Operations Division at Berkeley Lab: CUCSA  

NLE Websites -- All DOE Office Websites (Extended Search)

Safety DivisionsDepartments Suggestions Search: Go | Advanced LBNL CUCSA Delegate Role Definition and Selection Process Position of Delegate Eligibility Application Process...

482

Environmental Energy Technologies Division Thermal Field Tests  

NLE Websites -- All DOE Office Websites (Extended Search)

Thermal Field Tests Joseph H. Klems, LBNL DOE PEER Review San Francisco, CA April 20, 1999 Environmental Energy Technologies Division Current Work l Skylight Thermal Performance *...

483

New Environmental Science Division report provides comprehensive...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Environmental Science Division report provides comprehensive information about solar energy impacts and mitigation September 13, 2013 Tweet EmailPrint Argonne's...

484

Materials Science and Technology Division - Physical Sciences...  

NLE Websites -- All DOE Office Websites (Extended Search)

| Features Archive PSD Directorate MST Division Mechanical Properties and Mechanics Group The Mechanical Properties and Mechanics Group (MP&M) conducts applied research...

485

Chemical Sciences Division | Advanced Materials |ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

at the fluid-solid interface that will enable transformative advances in electrical energy storage and catalysis. The division also provides analytical support and leadership...

486

Chemical Sciences Division: Introduction: CSD Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD Contacts Chemical Sciences Division Office Location: Building 70A, Room 3307 Telephone: (510) 486-7422 Fax: (510) 486-6033 Mailing Address: Lawrence Berkeley National...

487

ENERGY & ENVIRONMENT DIVISION. ANNUAL REPORT FY 1980  

E-Print Network (OSTI)

Assistant Secretary for Fossil Energy through the Morgantownauspices of the Office of Fossil Energy in the Division ofAssistant Secretary for Fossil Energy through the Morgantown

Authors, Various

2010-01-01T23:59:59.000Z

488

Enforcement Letter, Westinghouse Waste Isolation Division - October...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant This letter refers...

489

NIST Electron and Optical Physics Division - 2001  

Science Conference Proceedings (OSTI)

... of long standing within the Division is scanning electron microscopy with ... of magnetic structures via analysis of the spins of ejected electrons. ...

490

Prototype Cathode Processor (PCP) - Nuclear Engineering Division...  

NLE Websites -- All DOE Office Websites (Extended Search)

processor has allowed the prototype unit to purify, by distillation, several hundred kilograms of uranium chloride salt produced by the Chemical Sciences and Engineering Division...

491

Biosystems and Biomaterials Division Staff Directory  

Science Conference Proceedings (OSTI)

Biosystems and Biomaterials Division Staff Directory. ... a Staff Member The Search box will accept a name, phone number, organization name, email ...

2013-11-05T23:59:59.000Z

492

NIST, EEEL, Quantum Electrical Metrology Division: SPD ...  

Science Conference Proceedings (OSTI)

... Green and Erik Secula for their patience and skill in installing interlinks and posting these files on the NIST Quantum Electrical Metrology Division ...

493

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

ADVANCED REACTORS DIVISION FUEL LABORATORIES CHESWICK, PENNSYLVANIA Department of Energy Office of Policy, Safety and Environment Office of Operational Safety Environmental...

494

Division Personnel - Argonne National Laboratories, Materials...  

NLE Websites -- All DOE Office Websites (Extended Search)

became a Postdoctoral Appointee with Hoydoo You in the Materials Science Division at Argonne National Laboratory. Andi&39;s current research interest include using x-ray...

495

NIST, Sensor Science Division, Ultraviolet Radiation Group ...  

Science Conference Proceedings (OSTI)

Uwe Arp. Dr. Uwe Arp is a physicist in the Ultraviolet Radiation Group of the Sensor Science Division in the Physical Measurement Laboratory. ...

2013-08-19T23:59:59.000Z

496

Materials Processing & Manufacturing Division Council - TMS  

Science Conference Proceedings (OSTI)

... our committees, symposia organization or the Division Initiatives. Contact me, and I will help you get started! Sincerely, Jim Foley MPMD Chair foley@lanl.gov...

497

Environmental Protection Division R. Lee, Manager ENVIRONMENT...  

NLE Websites -- All DOE Office Websites (Extended Search)

Division R. Lee, Manager ENVIRONMENT, SAFETY AND HEALTH DIRECTORATE Assistant Laboratory Director George A. Goode EMSOHSAS Rep - K. Schwager ES&H Coordinator - K. Conkling...

498

Nuclear Engineering Division: Awards Listing (1980 ? present...  

NLE Websites -- All DOE Office Websites (Extended Search)

awards ARGONNE NATIONAL LABORATORY, Nuclear Engineering Division, 9700 South Cass Ave., Argonne, IL 60439-4814 A U.S. Department of Energy laboratory managed by UChicago Argonne,...

499

Workforce Analysis and Planning Division (HC-12)  

Energy.gov (U.S. Department of Energy (DOE))

This division provides strategic direction guidance and advice through analysis of budget and workforce projections and plans, congressional mandates, administration goals, Departmental priorities...

500

Genomics Division: How to Contact Us  

NLE Websites -- All DOE Office Websites (Extended Search)

How to Contact Us Please contact: Mary Miller, Senior Administrator Genomics Division Lawrence Berkeley National Laboratory 1 Cyclotron Road, Mailstop 84-171 Berkeley, CA 94720...