Powered by Deep Web Technologies
Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 69 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight and passenger rail, freight shipping, and miscellaneous

2

Transportation Demand This  

U.S. Energy Information Administration (EIA) Indexed Site

Transportation Demand Transportation Demand This page inTenTionally lefT blank 75 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2013 Transportation Demand Module The NEMS Transportation Demand Module estimates transportation energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), buses, freight and passenger aircraft, freight

3

Modelling transport fuel demand  

Science Journals Connector (OSTI)

Transport fuels account for an increasing share of oil ... interest to study the economics of the transport fuel market and thereby to evaluate the efficiency of the price mechanism as an instrument of policy in ...

Thomas Sterner; Carol A. Dahl

1992-01-01T23:59:59.000Z

4

Environmental Transport Division: 1979 report  

SciTech Connect (OSTI)

During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

1980-03-01T23:59:59.000Z

5

Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumption to the Annual Energy Outlook Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, sport utility vehicles and vans), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

6

EIA - Assumptions to the Annual Energy Outlook 2008 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2008 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

7

EIA - Assumptions to the Annual Energy Outlook 2009 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2009 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight, rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

8

Transportation Demand Management (TDM) Encyclopedia | Open Energy  

Open Energy Info (EERE)

Transportation Demand Management (TDM) Encyclopedia Transportation Demand Management (TDM) Encyclopedia Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Transportation Demand Management (TDM) Encyclopedia Agency/Company /Organization: Victoria Transport Policy Institute Sector: Energy Focus Area: Transportation Topics: Implementation Resource Type: Guide/manual Website: www.vtpi.org/tdm/tdm12.htm Cost: Free Language: English References: Victoria Transport Policy Institute[1] "The Online TDM Encyclopedia is the world's most comprehensive information resource concerning innovative transportation management strategies. It describes dozens of Transportation Demand Management (TDM) strategies and contains information on TDM planning, evaluation and implementation. It has thousands of hyperlinks that provide instant access

9

Assumptions to the Annual Energy Outlook 2001 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

10

Assumptions to the Annual Energy Outlook 2000 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption. Key Assumptions Macroeconomic Sector Inputs

11

Assumptions to the Annual Energy Outlook 1999 - Transportation Demand  

Gasoline and Diesel Fuel Update (EIA)

transportation.gif (5318 bytes) transportation.gif (5318 bytes) The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption is the sum of energy use in eight transport modes: light-duty vehicles (cars, light trucks, industry sport utility vehicles and vans), commercial light trucks (8501-10,000 lbs), freight trucks (>10,000 lbs), freight and passenger airplanes, freight rail, freight shipping, mass transit, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

12

Transportation energy demand: Model development and use  

Science Journals Connector (OSTI)

This paper describes work undertaken and sponsored by the Energy Commission to improve transportation energy demand forecasting and policy analysis for California. Two ... , the paper discusses some of the import...

Chris Kavalec

1998-06-01T23:59:59.000Z

13

China-Transportation Demand Management in Beijing: Mitigation...  

Open Energy Info (EERE)

Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport...

14

Energy and Transportation Science Division (ETSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact Us Contact Us Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Working with Us Employment Opportunities Organization Chart ETSD Staff Only Research Groups Building Technologies Research & Integration Fuels, Engines, & Emissions Research Center for Transportation Analysis Center for Sustainable Industry and Manufacturing Energy and Transportation Science Division News and Events Studies quantify the effect of increasing highway speed on fuel economy WUFI ("Warme und Feuchte Instationar," or transient heat and moisture). A family of PC-based software tools jointly developed by Germany's Fraunhofer Institute for Building Physics and ORNL,...

15

Tempe Transportation Division: LNG Turbine Hybrid Electric Buses  

SciTech Connect (OSTI)

Fact sheet describes the performance of liquefied natural gas (LNG) turbine hybrid electric buses used in Tempe's Transportation Division.

Not Available

2002-02-01T23:59:59.000Z

16

EIA-Assumptions to the Annual Energy Outlook - Transportation Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Transportation Demand Module Transportation Demand Module Assumptions to the Annual Energy Outlook 2007 Transportation Demand Module The NEMS Transportation Demand Module estimates energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes applicable by transportation mode. Total transportation energy consumption isthe sum of energy use in eight transport modes: light-duty vehicles (cars and light trucks), commercial light trucks (8,501-10,000 lbs gross vehicle weight), freight trucks (>10,000 lbs gross vehicle weight), freight and passenger aircraft, freight rail, freight shipping, and miscellaneous transport such as mass transit. Light-duty vehicle fuel consumption is further subdivided into personal usage and commercial fleet consumption.

17

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under  

E-Print Network [OSTI]

Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand and wastage through better demand-side management and control is considered a key solution ingredient of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management

Boutaba, Raouf

18

New city model to reduce demand for transportation  

Science Journals Connector (OSTI)

Managing demand for transportation can be a cost-effective alternative to increasing capacity. A demand management approach to transport services also has the potential to deliver better environmental outcomes, improved public health and stronger communities, and more prosperous and liveable cities The increased distance between places will have a direct impact on the demand of transportation. Public transport system (MRTS) is an answer to the growing traffic congestion. However, the question is; Is MRTS are the last resort? This paper will be an attempt to regularize the development scenario of the city and thus reducing the demand for transportation.

Sumant Sharma; Anoop Sharma; Ashwani Kumar

2011-01-01T23:59:59.000Z

19

China-Transportation Demand Management in Beijing: Mitigation of Emissions  

Open Energy Info (EERE)

China-Transportation Demand Management in Beijing: Mitigation of Emissions China-Transportation Demand Management in Beijing: Mitigation of Emissions in Urban Transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in

20

Energy demand and economic consequences of transport policy  

Science Journals Connector (OSTI)

Transport sector is a major consumer of energy. Concern of energy scarcity and price fluctuations enhanced significance of ... sector in national planning. This paper analyses energy demand for transport services...

J. B. Alam; Z. Wadud; J. B. Alam…

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Demand and Emission from Transport Sector in China  

Science Journals Connector (OSTI)

This paper aims to present a comprehensive overview of the current status and future trends of energy demand and emissions from transportation sector in China. ... a brief review of the national profile of energy

Yin Huang; Mengjun Wang

2013-01-01T23:59:59.000Z

22

Transportation Demand Management in Beijing - Mitigation of emissions in  

Open Energy Info (EERE)

Beijing - Mitigation of emissions in Beijing - Mitigation of emissions in urban transport Jump to: navigation, search Name Transportation Demand Management in Beijing - Mitigation of emissions in urban transport Agency/Company /Organization Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ) GmbH Sector Climate Focus Area Transportation Topics Low emission development planning, -LEDS, -NAMA Website http://www.tdm-beijing.org/ Program Start 2011 Program End 2014 Country China Eastern Asia References Transport Management in Beijing[1] Program Overview The project aims to improve transport demand management (TDM) in Beijing in order to manage the steadily increasing traffic density. The project provides capacity building for decision-makers and transport planners in Beijing to enable them to calculate baselines and assess reduction

23

"Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, Industry" Components of Total Electricity Demand by Census Region, Census Division, Industry" " Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," "," "," "," " " "," "," "," "," ","Sales and/or"," ","RSE" "SIC"," "," ","Transfers","Total Onsite","Transfers","Net Demand for","Row" "Code(a)","Industry Group and Industry","Purchases","In(b)","Generation(c)","Offsite","Electricity(d)","Factors"

24

Hawaii Department of Transportation Highways Division | Open Energy  

Open Energy Info (EERE)

Highways Division Highways Division Jump to: navigation, search Name Hawaii Department of Transportation Highways Division Address 869 Punchbowl Street, Room 513 Place Honolulu, Hawaii Zip 96809 Website http://hawaii.gov/dot/highways Coordinates 21.303779°, -157.860047° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":21.303779,"lon":-157.860047,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Sustainable Campus Transportation through Transit Partnership and Transportation Demand Management: A Case Study from the University of Florida  

E-Print Network [OSTI]

A. 2005. The impacts of transportation demand management andUnlimited access. Transportation 28 (3): 233–267. Cervero,transit. Journal of Public Transportation 3 (4):10–19. ???.

Bond, Alex; Steiner, Ruth

2006-01-01T23:59:59.000Z

26

Climate change mitigation and co-benefits of feasible transport demand policies in Beijing  

E-Print Network [OSTI]

i n f o Keywords: Climate change mitigation Transport demand management External costs Urban and potential impacts of travel demand management help to define policy instruments that mitigate the damaging. The paper investi- gates the role of demand elasticities and demonstrates that joint demand and supply-side

Kammen, Daniel M.

27

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

SciTech Connect (OSTI)

Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.

Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.

2013-03-01T23:59:59.000Z

28

Transport, energy and greenhouse gases: perspectives on demand limitation. Guest editorial  

Science Journals Connector (OSTI)

The current economic recession results in reduced industrial output and energy consumption, and thus reduces freight transport activity ... , but everything indicates that growth in transport demand should re-sta...

Charles Raux; Martin E. H. Lee-Gosselin

2010-05-01T23:59:59.000Z

29

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS  

E-Print Network [OSTI]

A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

Dessouky, Maged

30

Harmony Search Algorithm for Transport Energy Demand Modeling  

Science Journals Connector (OSTI)

The transport sector is one of the major consumers of energy production throughout the world. Thus, the estimation of medium and long-term energy consumption based on socio-economic and transport related indic...

Halim Ceylan; Huseyin Ceylan

2009-01-01T23:59:59.000Z

31

Solving a Dial-a-Ride Problem with a Hybrid Evolutionary Multi-objective Application to Demand Responsive Transport  

E-Print Network [OSTI]

to Demand Responsive Transport RÂŽemy Chevrier,a , Arnaud Liefoogheb,c , Laetitia Jourdanb,c , Clarisse, 59650 Villeneuve d'Ascq, France Abstract Demand responsive transport allows customers to be carried to improve the quality of service, demand responsive transport needs more flexibility. This paper tries

Boyer, Edmond

32

Inspector General audit report on Transportation Safeguards Division courier work schedules and escort vehicle replacements  

SciTech Connect (OSTI)

The Office of Inspector General`s (OIG) April 1995 report found that couriers received too much overtime and incurred too much unproductive time. This finding occurred because the Transportation Safeguards Division (TSD) employed a traditional work schedule that did not meet the demands of the job. The report recommended implementing an alternative work schedule that corresponded more closely to the couriers` actual work requirements. Management agreed to conduct a comparative analysis of work schedules to evaluate potential savings. The objectives of this audit were to (1) follow up on actions taken as a result of the OIG`s previous report, (2) determine if courier work schedules are cost effective, and (3) determine the cost effectiveness of escort vehicle replacements. The authors recommend: (1) implementing an alternative work schedule for courier which would achieve savings in overtime and unproductive time, while efficiently and cost effectively fulfilling TSD`s mission; (2) reexamining and adjusting the staffing level of each courier section in relation to the workload requirements in the area; and (3) discontinuing payment for travel time between courier lodging and temporary duty stations. The Albuquerque Operations Office agreed with the auditor`s findings and recommendations.

NONE

1998-12-01T23:59:59.000Z

33

Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

DEMAND DEMAND Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future TRANSPORTATION ENERGY FUTURES SERIES: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future A Study Sponsored by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy March 2013 Prepared by CAMBRIDGE SYSTEMATICS Cambridge, MA 02140 under subcontract DGJ-1-11857-01 Technical monitoring performed by NATIONAL RENEWABLE ENERGY LABORATORY Golden, Colorado 80401-3305 managed by Alliance for Sustainable Energy, LLC for the U.S. DEPARTMENT OF ENERGY Under contract DC-A36-08GO28308 This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their

34

Activity based travel demand models as a tool for evaluating sustainable transportation policies  

Science Journals Connector (OSTI)

India is in the course of an economic transition. The economic growth nurtured the life in the cities and cities have become a major livelihood destination for everyone. This migration of people contributed to the increased urbanization of Indian cities. The booming economy fostered the well-being and shaped the lifestyle of people in such a way that the dependency on private vehicle has become an unavoidable affair. Along with population growth, the increased vehicle ownership gave rise to overall spurt in travel demand. But the supply side lagged behind the demand adding to many of the transport related externalities such as accidents, congestion, pollution, inequity etc. The importance of sustainability is understood in the current urban transport scenario leading to the development and promotion of sustainable transport polices. The core agenda of these polices is to target the travel behavior of people and change the way they travel by creating a different travel environment. However, the impacts of many such policies are either unknown or complex. Hence, before adopting and implementing such policies, it is important for the decision makers to be aware of the impacts of them. The role of travel demand models comes here as they predict the future travel demand under different policy scenarios. This paper reviews the ability of travel demand models applied in India in analyzing the sustainable transport policies. The study found that the conventional model system in India, which is trip based four step aggregate methodology, is inadequate in analyzing the sustainable transport policies. A review of alternative approach, known as activity based travel demand modeling found that they are capable of handling such policies better than conventional models and are assistive to the decision makers in arriving at right mix of polices specific to the situations. Since there is no operational activity based travel demand model system developed in India, the study at the end envisaged a conceptual framework of an integrated activity based travel demand model based on the requirements identified from the review. This can potentially replace the existing travel demand models and can be used for planning applications once the modification & validation have been done according to the existing activity-travel behavior of individuals.

Manoj Malayath; Ashish Verma

2013-01-01T23:59:59.000Z

35

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Mobility and Carbon: The Blind Side of Transport Fuel Demand in the Developed and Developing World Speaker(s): Lee Schipper Date: February 15, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner James McMahon A new "Great Wall" has emerged in China, this one a string of miles of cars stuck in traffic. Emissions from road transport in developing countries are expected to rise sharply in the coming decades if current trends continue. Projections of passenger and freight activity, vehicle use, and CO2 emissions push up overall CO2 emissions by a factor of three in Latin American and five in Asia by 2030, even with fuel economy improvements. The increase in car use is in part a result of growing incomes and economic activity, but it also reflects the poor quality of transit and

36

Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Sector Overview of Options to Integrate Stationary Overview of Options to Integrate Stationary Power Generation from Fuel Cells with Power Generation from Fuel Cells with Hydrogen Demand for the Transportation Hydrogen Demand for the Transportation Sector Sector Fred Joseck U.S. DOE Hydrogen Program Transportation and Stationary Power Integration Workshop (TSPI) Transportation and Stationary Power Transportation and Stationary Power Integration Workshop (TSPI) Integration Workshop (TSPI) Phoenix, Arizona October 27, 2008 2 Why Integration? * Move away from conventional thinking...fuel and power generation/supply separate * Make dramatic change, use economies of scale,

37

Modeling regional transportation demand in China and the impacts of a national carbon constraint  

E-Print Network [OSTI]

Climate and energy policy in China will have important and uneven impacts on the country’s regionally heterogeneous transport system. In order to simulate these impacts, transport sector detail is added to a multi-sector, ...

Kishimoto, Paul

2015-01-30T23:59:59.000Z

38

Optimal Intercity Transportation Services with Heterogeneous Demand and Variable Fuel Price.  

E-Print Network [OSTI]

??In this thesis we examine how fuel price variation affects the optimal mix of services in intercity transportation. Towards this end, we make two main… (more)

Ryerson, Megan Smirti

2010-01-01T23:59:59.000Z

39

Biosciences Division | ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Publications Newsletters Organizational Charts Research Highlights Media Mentions Energy and Transportation Science Division Electrical and Electronics Systems Research Division Building Technologies Program Sustainable Transportation Program Clean Energy Home | Science & Discovery | Clean Energy | Supporting Organizations | Biosciences Division SHARE Biosciences Division The objective of the Biosciences Division (BSD) at Oak Ridge National Laboratory is to advance science and technology to better understand complex biological systems and their relationship with the environment. The division has expertise and special facilities in genomics, computational biology, microbiology, microbial ecology, biophysics and structural biology, and plant sciences. This collective expertise includes

40

E-Print Network 3.0 - air transport division Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

29--2010 TRANSPORTATION ENERGY DATA BOOK: EDITION 29--2010 Summary: in areas with ozone-air pollution problems. 12;C-8 TRANSPORTATION ENERGY DATA BOOK: EDITION 29--2010 12;......

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Assessing the impact of recent fare policy changes on public transport demand in London  

E-Print Network [OSTI]

Public transit agencies across the world have been moving towards electronic ticketing technology and to take advantage of the greater flexibility, have made changes in fare structure. Over the last decade, Transport for ...

Jain, Nihit

2011-01-01T23:59:59.000Z

42

Stochastic Dynamic Demand Inventory Models with Explicit Transportation Costs and Decisions  

E-Print Network [OSTI]

is the policy where several small loads will be dispatched as a single, combined load. From an inventory-modeling perspec- tive, the integrated inventory-transportation problems add dispatch quantities as decision variables to the stochastic dynamic inventory...): The vendor makes the inventory replen- ishment decisions on how much to order from the outside supplier. 2. Pure Outbound Transportation Models (PO): The collection depot makes the delivery schedules of order dispatches to the buyer(s). 3. Integrated...

Zhang, Liqing

2011-07-01T23:59:59.000Z

43

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite  

E-Print Network [OSTI]

Composites for Aerospace and Transportation As the fuel costs and environment concerns continue to increase, so does the demand for composite materials for aerospace and transportation applications. Polymer composites are inherited lighter than their metallic counterparts resulting in significant weight reduction

Li, Mo

44

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis  

Science Journals Connector (OSTI)

Toward Novel Hybrid Biomass, Coal, and Natural Gas Processes for Satisfying Current Transportation Fuel Demands, 1: Process Alternatives, Gasification Modeling, Process Simulation, and Economic Analysis ... This paper, which is the first part of a series of papers, introduces a hybrid coal, biomass, and natural gas to liquids (CBGTL) process that can produce transportation fuels in ratios consistent with current U.S. transportation fuel demands. ... Steady-state process simulation results based on Aspen Plus are presented for the seven process alternatives with a detailed economic analysis performed using the Aspen Process Economic Analyzer and unit cost functions obtained from literature. ...

Richard C. Baliban; Josephine A. Elia; Christodoulos A. Floudas

2010-07-19T23:59:59.000Z

45

Smart Buildings Using Demand Response March 6, 2011  

E-Print Network [OSTI]

Smart Buildings Using Demand Response March 6, 2011 Sila Kiliccote Deputy, Demand Response Division Lawrence Berkeley National Laboratory Demand Response Research Center 1 #12;Presentation Outline Demand Response Research Center ­ DRRC Vision and Research Portfolio Introduction to Demand

Kammen, Daniel M.

46

Road Transport Elasticity: How Fuel Price Changes can Affect Traffic Demand on a Toll Motorway  

Science Journals Connector (OSTI)

Abstract The crisis beginning in late 2008 in Greece, and still in progress, led the Greek Government to undertake a particularly harsh program under the joint auspices of the International Monetary Fund (IMF), the European Union and the European Central Bank, aimed at restoring the primary budget surplus. The implementation of such a financial program has dramatically increased fuel taxes - about 82% for unleaded and 31% for diesel – also producing a serious impact on road traffic demand. Starting from the above framework, this paper describes the main outcomes of a study aimed at identifying, assessing and forecasting the effects of fuel prices and tax changes on traffic flows along a 365 km toll motorway corridor project connecting Athens to Tsakona, in the South-West of the Peloponnese.

Antonio Musso; Cristiana Piccioni; Michele Tozzi; Gilles Godard; Alexandre Lapeyre; Kostas Papandreou

2013-01-01T23:59:59.000Z

47

The state-of-the-art in air transportation demand and systems analysis : a report on the proceedings of a workshop sponsored by the Civil Aeronautics Board, Department of Transportation, and National Aeronautics and Space Administration (June 1975)  

E-Print Network [OSTI]

Introduction and summary: Forecasting air transportation demand has indeed become a complex and risky business in recent years, especially in view of unpredictable fuel prices, high inflation rates, a declining rate of ...

Taneja, Nawal K.

1975-01-01T23:59:59.000Z

48

1 Copyright 2013 by ASME Proceedings of the ASME 2013 Rail Transportation Division Fall Technical Conference  

E-Print Network [OSTI]

ON THE OPTIMIZATION OF RAIL DEFECT INSPECTION FREQUENCY Xiang Liu Rail Transportation and Engineering Center such as ultrasonic inspection. Determining the optimal rail defect inspection frequency is a critical decision and correspondingly 68% of cars derailed [1]. Broken rails are the most frequent cause of severe derailments [1

Barkan, Christopher P.L.

49

Fuel-Mix, Fuel Efficiency, and Transport Demand Affect Prospects for Biofuels in Northern Europe  

Science Journals Connector (OSTI)

Consumption structure parameters describe how the four road transport processes are being consumed, such as, for example, the amount of car-sharing and private vehicle ownership per capita—and are based on country-specific trend extrapolation using data provided by national statistical agencies and other research institutions (13-17, 35). ... As Ohrogge et al. point out, although there are uncertainties in the pace of electric car development and market penetration, future strategies aimed at promoting bioelectricity instead of ethanol for substituting conventional fuels like gasoline in cars and promoting more diesel engines in heavier vehicles may be the best route to the goal of reducing petroleum consumption and CO2 emissions (69). ... In the case of Sweden, where forest operations are highly and efficiently mechanized, this stage consumes more fossil fuels than other elements of the wood supply chain (such as silviculture and logging operations). ...

Ryan M. Bright; Anders Hammer Strűmman

2010-02-17T23:59:59.000Z

50

China's Coal: Demand, Constraints, and Externalities  

E-Print Network [OSTI]

raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

Aden, Nathaniel

2010-01-01T23:59:59.000Z

51

Transportation Demand This  

Gasoline and Diesel Fuel Update (EIA)

(VMT) per vehicle by fleet type stays constant over the forecast period based on the Oak Ridge National Laboratory fleet data. Fleet fuel economy for both conventional and...

52

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

4 4 The commercial module forecasts consumption by fuel 15 at the Census division level using prices from the NEMS energy supply modules, and macroeconomic variables from the NEMS Macroeconomic Activity Module (MAM), as well as external data sources (technology characterizations, for example). Energy demands are forecast for ten end-use services 16 for eleven building categories 17 in each of the nine Census divisions (see Figure 5). The model begins by developing forecasts of floorspace for the 99 building category and Census division combinations. Next, the ten end-use service demands required for the projected floorspace are developed. The electricity generation and water and space heating supplied by distributed generation and combined heat and power technologies are projected. Technologies are then

53

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

54

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

55

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 12 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS 27 data.

56

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA

57

Energy demand  

Science Journals Connector (OSTI)

The basic forces pushing up energy demand are population increase and economic growth. From ... of these it is possible to estimate future energy requirements.

Geoffrey Greenhalgh

1980-01-01T23:59:59.000Z

58

Global Energy: Supply, Demand, Consequences, Opportunities  

SciTech Connect (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2008-08-14T23:59:59.000Z

59

Global Energy: Supply, Demand, Consequences, Opportunities  

ScienceCinema (OSTI)

July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

Arun Majumdar

2010-01-08T23:59:59.000Z

60

Q:\asufinal_0107_demand.vp  

Gasoline and Diesel Fuel Update (EIA)

00 00 (AEO2000) Assumptions to the January 2000 With Projections to 2020 DOE/EIA-0554(2000) Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

62

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] 9, No. 2 [http://eetd.lbl.gov/newsletter/nl33/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 9, NO. 2 Driving Demand Bennett-Nordman IEEE Standard Nicotine and Ozone SVOW Renewables Portfolio Standard Report Kerosene Lamp Particulate Study Research Highlights Sources and Credits New ways of convincing homeowners of the benefits of energy efficiency improvements to their homes-and new language to use in discussing these benefits-is discussed in a report titled "Driving Demand" from Environmental Energy Technologies Division researchers. This issue also

63

Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 39 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial.

64

Environmental Transport Division. 1980 report  

SciTech Connect (OSTI)

Aquatic, atmospheric, and terrestrial studies and instrumentation developments are described in a series of articles. More details about specific studies are given in publications listed at the end of the report.

Adams, S.E.; Fliermans, C.B.; Garrett, A.J.; Halverson, J.E.

1981-03-01T23:59:59.000Z

65

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables > Census Division List Supplemental Tables > Census Division List Supplemental Tables to the Annual Energy Outlook 2010 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California

66

Lamp Divisions  

Office of Legacy Management (LM)

--- --- /A;; i :' r%i;in~house ilEc;' i:Z3:~cra:ion Lamp Divisions , _.. (I +i. 0 :,,,rg. . I . . -= i?e p/q! qe)-' &se pw E.rcale?l iev, Je!sey 07m March 20, 1 gs? ::r . J. A. Jones I ti. 5. Muclear Regulatory Commission .> = ..- haterials Licensing Branch -s - ,.I, - - Division of Fuel Cycle and hateri al Safety LY. , $2 - _ . ' -' . 3 _- - Yeshington, C. C. 2@555 - :_ :--, =-- -- .-?J -.: y...., : :- 7 Dear Mr. Jones : y-- --, ? . *I 2=15 2 r; X -P The following is our final report of the decontamination efZor?s takz in our Bui Iding 7 basement and wi 11 also serve to update our report i& November 12, 1980. As stated in NRC' s report of December 22, 1983, two closeout inspect ions were conducted by your King of Prussia off i ce on November 21 and December 2,

67

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Transportation Transportation of Depleted Uranium Materials in Support of the Depleted Uranium Hexafluoride Conversion Program Issues associated with transport of depleted UF6 cylinders and conversion products. Conversion Plan Transportation Requirements The DOE has prepared two Environmental Impact Statements (EISs) for the proposal to build and operate depleted uranium hexafluoride (UF6) conversion facilities at its Portsmouth and Paducah gaseous diffusion plant sites, pursuant to the National Environmental Policy Act (NEPA). The proposed action calls for transporting the cylinder at ETTP to Portsmouth for conversion. The transportation of depleted UF6 cylinders and of the depleted uranium conversion products following conversion was addressed in the EISs.

68

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

Supplement Tables to the Annual Energy Outlook 2003 Supplement Tables to the Annual Energy Outlook 2003 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii

69

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

5 5 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

70

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health Risks » Transportation Health Risks » Transportation DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Transportation A discussion of health risks associated with transport of depleted UF6. Transport Regulations and Requirements In the future, it is likely that depleted uranium hexafluoride cylinders will be transported to a conversion facility. For example, it is currently anticipated that the cylinders at the ETTP Site in Oak Ridge, TN, will be transported to the Portsmouth Site, OH, for conversion. Uranium hexafluoride has been shipped safely in the United States for over 40 years by both truck and rail. Shipments of depleted UF6 would be made in accordance with all applicable transportation regulations. Shipment of depleted UF6 is regulated by the

71

Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Assessment for Eastern Interconnection Youngsun Baek, Stanton W. Hadley, Rocio Martinez, Gbadebo Oladosu, Alexander M. Smith, Fran Li, Paul Leiby and Russell Lee Prepared for FY12 DOE-CERTS Transmission Reliability R&D Internal Program Review September 20, 2012 2 Managed by UT-Battelle for the U.S. Department of Energy DOE National Laboratory Studies Funded to Support FOA 63 * DOE set aside $20 million from transmission funding for national laboratory studies. * DOE identified four areas of interest: 1. Transmission Reliability 2. Demand Side Issues 3. Water and Energy 4. Other Topics * Argonne, NREL, and ORNL support for EIPC/SSC/EISPC and the EISPC Energy Zone is funded through Area 4. * Area 2 covers LBNL and NREL work in WECC and

72

Demand Response and Open Automated Demand Response  

E-Print Network [OSTI]

LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

73

EIA - Census Division List  

Gasoline and Diesel Fuel Update (EIA)

9 9 Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska Kentucky Louisiana Colorado California Mississippi Oklahoma Idaho Hawaii Tennessee Texas Montana Oregon

74

Transportation Efficiency Resources  

Broader source: Energy.gov [DOE]

Transportation efficiency reduces travel demand as measured by vehicle miles traveled (VMT). While transportation efficiency policies are often implemented under local governments, national and...

75

Commercial & Industrial Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

76

High Temperatures & Electricity Demand  

E-Print Network [OSTI]

High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

77

Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frank Collart Frank Collart BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Frank Collart Publications by Author, Select Publication Author Quick Link Randy Alkire Frank Collart Carol Giometti Deborah Hanson Julie Jastrow Andrzej Joachimiak Kenneth Kemner Philip Laible Roser Matamala Michael Miller Edward O'Loughlin Raj Pokkuluri Marianne Schiffer Jack Gilbert PUBLICATIONS Published/Accepted for Publication Kemin Tan, Changsoo Chang, Marianne Cuff, Jurek Osipiuk, Jamey C. Mack, Sarah Zerbs, Andrzej Joachimiak, and Frank R. Collart. Structural and functional characterization of transport proteins for aromatic compounds derived from lignin: Phenylacetic acid, p-coumaric acid and related

78

RESEARCH UPDATE Ecology Division  

E-Print Network [OSTI]

1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

79

Transportation  

Science Journals Connector (OSTI)

The romantic rides in Sandburg’s “eagle-car” changed society. On the one hand, motor vehicle transportation is an integral thread of society’s fabric. On the other hand, excess mobility fractures old neighborh...

David Hafemeister

2014-01-01T23:59:59.000Z

80

D:\assumptions_2001\assumptions2002\currentassump\demand.vp  

Gasoline and Diesel Fuel Update (EIA)

2 2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Macroeconomic Activity Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 International Energy Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Household Expenditures Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Residential Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Commercial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Industrial Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 Transportation Demand Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Electricity Market Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 Oil and Gas Supply Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Natural Gas Transmission and Distribution Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Petroleum Market Module. . . . . . . . . . . . .

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Census Division List  

Gasoline and Diesel Fuel Update (EIA)

please contact the National Energy Information Center at (202) 586-8800. please contact the National Energy Information Center at (202) 586-8800. Supplement Tables to the Annual Energy Outlook 2002 Census Division List Division 1 Division 2 Division 3 Division 4 Division 5 New England Middle Atlantic East North Central West North Central South Atlantic Connecticut New Jersey Illinois Iowa Delaware Maine New York Indiana Kansas District of Columbia Massachusetts Pennsylvania Michigan Minnesota Florida New Hampshire Ohio Missouri Georgia Rhode Island Wisconsin Nebraska Maryland Vermont North Dakota North Carolina South Dakota South Carolina Virginia West Virginia Division 6 Division 7 Division 8 Division 9 East South Central West South Central Mountain Pacific Alabama Arkansas Arizona Alaska

82

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight  

E-Print Network [OSTI]

http://tti.tamu.edu Multi-modal Transportation > Highway Transportation > Trucking > Railroad transportation > Public transit > Rural transportation > Rural transit > Freight pipeline transportation >>> Transportation operat > Freight traffic > Commodities > Travel time > Travel demand > http

83

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] 1, No. 4 [http://eetd.lbl.gov/newsletter/nl43/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2013: VOL. 11, NO. 4 Deep Energy Retrofits Health-Based Ventilation Standard-Interview with Max Sherman Energy-Efficient School Districts Guide Nanometer Laser-Based Chemical Sensing Demand-to-Grid Lab Research Highlights Sources and Credits Research that examines how homes can save 70 percent or more of their energy use is this issue's cover story. EETD researchers studied several northern California homes whose owners implemented their own plans to make extreme reductions in energy consumption and found that

84

Advanced Demand Responsive Lighting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center Technical Advisory Group Meeting August 31, 2007 10:30 AM - Noon Meeting Agenda * Introductions (10 minutes) * Main Presentation (~ 1 hour) * Questions, comments from panel (15 minutes) Project History * Lighting Scoping Study (completed January 2007) - Identified potential for energy and demand savings using demand responsive lighting systems - Importance of dimming - New wireless controls technologies * Advanced Demand Responsive Lighting (commenced March 2007) Objectives * Provide up-to-date information on the reliability, predictability of dimmable lighting as a demand resource under realistic operating load conditions * Identify potential negative impacts of DR lighting on lighting quality Potential of Demand Responsive Lighting Control

85

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: 0: Vol. 9, No. 2 Driving Demand Bennett-Nordman IEEE Standard Nicotine and Ozone SVOW Renewables Portfolio Standard Report Kerosene Lamp Particulate Study Research Highlights Sources and Credits PDF of EETD News Homeowner Motivations for Energy Efficiency Improvements Driving Demand report cover Hundreds of millions of dollars in public money are supporting home energy efficiency improvements. Researchers at the Lawrence Berkeley National Laboratory's (Berkeley Lab) Environmental Energy Technologies Division (EETD) are helping to ensure that these funds have their maximum impact with a new report that examines what motivates homeowners to seek out home energy improvements. "Convincing millions of Americans to divert their time and resources into upgrading their homes to eliminate energy waste, avoid high utility bills,

86

Division of Administration  

E-Print Network [OSTI]

Contracts & Procurement Don Green Controller Steven Yim Budget Planning & Administration Sarah Song Admin Operations Lieutenant Scot Willey Administration Lieutenant John Brockie Division Communication Editorial Communication Editorial Board looks forward to improving communication within and from the Division and welcomes

de Lijser, Peter

87

Addressing Energy Demand through Demand Response: International Experiences and Practices  

E-Print Network [OSTI]

Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

Shen, Bo

2013-01-01T23:59:59.000Z

88

Division of Agriculture,  

E-Print Network [OSTI]

DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

Ray, David

89

Table A26. Components of Total Electricity Demand by Census Region, Census Di  

U.S. Energy Information Administration (EIA) Indexed Site

Components of Total Electricity Demand by Census Region, Census Division, and" Components of Total Electricity Demand by Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," ","Sales/"," ","RSE" " "," ","Transfers","Onsite","Transfers"," ","Row" "Economic Characteristics(a)","Purchases","In(b)","Generation(c)","Offsite","Net Demand(d)","Factors" ,"Total United States" "RSE Column Factors:",0.5,2.1,1.2,2,0.4 "Value of Shipments and Receipts"

90

Chemical Engineering Division fuel cycle programs. Quarterly progress report, April-June 1979. [Pyrochemical/dry processing; waste encapsulation in metal; transport in geologic media  

SciTech Connect (OSTI)

For pyrochemical and dry processing materials development included exposure to molten metal and salt of Mo-0.5% Ti-0.07% Ti-0.01% C, Mo-30% W, SiC, Si/sub 2/ON/sub 2/, ZrB/sub 2/-SiC, MgAl/sub 2/O/sub 4/, Al/sub 2/O/sub 3/, AlN, HfB/sub 2/, Y/sub 2/O/sub 3/, BeO, Si/sub 3/N/sub 4/, nickel nitrate-infiltrated W, W-coated Mo, and W-metallized alumina-yttria. Work on Th-U salt transport processing included solubility of Th in liquid Cd, defining the Cd-Th and Cd-Mg-Th phase diagrams, ThO/sub 2/ reduction experiments, and electrolysis of CaO in molten salt. Work on pyrochemical processes and associated hardware for coprocessing U and Pu in spent FBR fuels included a second-generation computer model of the transport process, turntable transport process design, work on the U-Cu-Mg system, and U and Pu distribution coefficients between molten salt and metal. Refractory metal vessels are being service-life tested. The chloride volatility processing of Th-based fuel was evaluated for its proliferation resistance, and a preliminary ternary phase diagram for the Zn-U-Pu system was computed. Material characterization and process analysis were conducted on the Exportable Pyrochemical process (Pyro-Civex process). Literature data on oxidation of fissile metals to oxides were reviewed. Work was done on chemical bases for the reprocessing of actinide oxides in molten salts. Flowsheets are being developed for the processing of fuel in molten tin. Work on encapsulation of solidified radioactive waste in metal matrix included studies of leach rate of crystalline waste materials and of the impact resistance of metal-matrix waste forms. In work on the transport properties of nuclear waste in geologic media, adsorption of Sr on oolitic limestone was studied, as well as the migration of Cs in basalt. Fitting of data on the adsorption of iodate by hematite to a mathematical model was attempted.

Steindler, M.J.; Ader, M.; Barletta, R.E.

1980-09-01T23:59:59.000Z

91

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

Heffner, Grayson

2010-01-01T23:59:59.000Z

92

Transportation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Due to limited parking, all visitors are strongly encouraged to: Due to limited parking, all visitors are strongly encouraged to: 1) car-pool, 2) take the Lab's special conference shuttle service, or 3) take the regular off-site shuttle. If you choose to use the regular off-site shuttle bus, you will need an authorized bus pass, which can be obtained by contacting Eric Essman in advance. Transportation & Visitor Information Location and Directions to the Lab: Lawrence Berkeley National Laboratory is located in Berkeley, on the hillside directly above the campus of University of California at Berkeley. The address is One Cyclotron Road, Berkeley, California 94720. For comprehensive directions to the lab, please refer to: http://www.lbl.gov/Workplace/Transportation.html Maps and Parking Information: On Thursday and Friday, a limited number (15) of barricaded reserved parking spaces will be available for NON-LBNL Staff SNAP Collaboration Meeting participants in parking lot K1, in front of building 54 (cafeteria). On Saturday, plenty of parking spaces will be available everywhere, as it is a non-work day.

93

Mass Market Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Mass Market Demand Response Mass Market Demand Response Speaker(s): Karen Herter Date: July 24, 2002 - 12:00pm Location: Bldg. 90 Demand response programs are often quickly and poorly crafted in reaction to an energy crisis and disappear once the crisis subsides, ensuring that the electricity system will be unprepared when the next crisis hits. In this paper, we propose to eliminate the event-driven nature of demand response programs by considering demand responsiveness a component of the utility obligation to serve. As such, demand response can be required as a condition of service, and the offering of demand response rates becomes a requirement of utilities as an element of customer service. Using this foundation, we explore the costs and benefits of a smart thermostat-based demand response system capable of two types of programs: (1) a mandatory,

94

Assumptions to the Annual Energy Outlook 2002 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 19). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated

95

Federal Government Congressional Budget Office, Budget Analysis Division Washington, DC  

E-Print Network [OSTI]

Administration, Center for Drug Evaluation and Research Washington, DC Federal Energy Regulatory CommissionFederal Government Congressional Budget Office, Budget Analysis Division Washington, DC Department Environmental Protection Agency, Office of Transportation & Air Quality Ann Arbor, MI Federal Drug

Shyy, Wei

96

Demand Response Assessment INTRODUCTION  

E-Print Network [OSTI]

Demand Response Assessment INTRODUCTION This appendix provides more detail on some of the topics raised in Chapter 4, "Demand Response" of the body of the Plan. These topics include 1. The features, advantages and disadvantages of the main options for stimulating demand response (price mechanisms

97

APPLICATION DIVISION III & PSYCHOLOGY  

E-Print Network [OSTI]

APPLICATION DIVISION III & PSYCHOLOGY Shared Overhead Funds Name: Date: Project Title: Amount and Psychology are intended to provide new and continuing faculty with special help to bring research

Aalberts, Daniel P.

98

Engineering Division Superconducting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

10152014 Joseph V. Minervini 74 35 MW superconducting motor Superconducting Fault Current Limiter (SCFL) Technology & Engineering Division HTS (MgB 2 ) * DC superconducting...

99

Aviation fuel demand development in China  

Science Journals Connector (OSTI)

Abstract This paper analyzes the core factors and the impact path of aviation fuel demand in China and conducts a structural decomposition analysis of the aviation fuel cost changes and increase of the main aviation enterprises’ business profits. Through the establishment of an integrated forecast model for China’s aviation fuel demand, this paper confirms that the significant rise in China’s aviation fuel demand because of increasing air services demand is more than offset by higher aviation fuel efficiency. There are few studies which use a predictive method to decompose, estimate and analyze future aviation fuel demand. Based on a structural decomposition with indirect prediction, aviation fuel demand is decomposed into efficiency and total amount (aviation fuel efficiency and air transport total turnover). The core influencing factors for these two indexes are selected using path analysis. Then, univariate and multivariate models (ETS/ARIMA model and Bayesian multivariate regression) are used to analyze and predict both aviation fuel efficiency and air transport total turnover. At last, by integrating results, future aviation fuel demand is forecast. The results show that the aviation fuel efficiency goes up by 0.8% as the passenger load factor increases 1%; the air transport total turnover goes up by 3.8% and 0.4% as the urbanization rate and the per capita GDP increase 1%, respectively. By the end of 2015, China’s aviation fuel demand will have increased to 28 million tonnes, and is expected to be 50 million tonnes by 2020. With this in mind, increases in the main aviation enterprises’ business profits must be achieved through the further promotion of air transport.

Jian Chai; Zhong-Yu Zhang; Shou-Yang Wang; Kin Keung Lai; John Liu

2014-01-01T23:59:59.000Z

100

Energy Demand | Open Energy Information  

Open Energy Info (EERE)

Energy Demand Energy Demand Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data Figure 55 From AEO2011 report . Market Trends Growth in energy use is linked to population growth through increases in housing, commercial floorspace, transportation, and goods and services. These changes affect not only the level of energy use, but also the mix of fuels used. Energy consumption per capita declined from 337 million Btu in 2007 to 308 million Btu in 2009, the lowest level since 1967. In the AEO2011 Reference case, energy use per capita increases slightly through 2013, as the economy recovers from the 2008-2009 economic downturn. After 2013, energy use per capita declines by 0.3 percent per year on average, to 293 million Btu in 2035, as higher efficiency standards for vehicles and

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Technology Division research summary - 1999.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

NONE

1999-03-31T23:59:59.000Z

102

International Transportation Energy Demand Determinants (ITEDD...  

U.S. Energy Information Administration (EIA) Indexed Site

type Commercial Vehicle Sales Comm Sales by Technology Type Personal Vehicle Sales Private Sales by Technology Type Stock Accounting by Vehicle and Techn Type Policy...

103

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Center Energy Use: Truth versus Myth Data Center Energy Use: Truth versus Myth At the height of the electricity crisis of 2001, Californians were greeted over their morning coffee with headlines like: Digital Economy's Demand for Steady Power Strains Utilities Data Servers Crave Power: High-Tech Electricity Needs Amplify Crisis and Net Blamed as Crisis Roils California. One of the biggest misconceptions about the crisis was that the energy use of computers and other internet-related hardware played a significant role. But early in 2001, research by Jon Koomey of Berkeley Lab's Environmental Energy Technologies Division (EETD) showed that widely discussed estimates of the energy use of computer- and networking-related hardware were exaggerated. Koomey is leader of EETD's End-Use Energy Forecasting Group.

104

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: 2: Vol. 3, No. 4 California Consumers Kept the Lights On Quick and Easy Web-Based Assessment Tool for Day/Electric Lighting Berkeley Lab Model Tracks Indoor Anthrax Dispersal Rating "Green" Laboratories-Labs21 Environmental Performance Criteria Research Highlights Sources and Credits PDF of EETD News California Consumers Kept the Lights On California consumers-not mild weather or the cooling economy-should get credit for avoiding blackouts and keeping the lights on in summer 2001 by embracing energy efficiency and conservation and reducing their peak demand by 3,000 to 5,500 megawatts (MW), according to research by scientists at the Environmental Energy Technologies Division. This is the conclusion reached in a new analysis of the consumer response

105

HEALTH SCIENCES Division of  

E-Print Network [OSTI]

HEALTH SCIENCES Division of University of nevada, Las vegas IMPACT How we serve our students, our community, and our state #12;academic impact UNLV's Division of Health Sciences is a vital force in the Las Vegas metropolitan area, educating desperately needed health care professionals and taking on some

Cho, Hokwon

106

Demand response enabling technology development  

E-Print Network [OSTI]

Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

2006-01-01T23:59:59.000Z

107

Demand Response Spinning Reserve Demonstration  

E-Print Network [OSTI]

F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

2007-01-01T23:59:59.000Z

108

Cross-sector Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Resources News & Events Expand News & Events Skip navigation links Smart Grid Demand Response Agricultural Residential Demand Response Commercial & Industrial Demand Response...

109

Demand Response Programs for Oregon  

E-Print Network [OSTI]

Demand Response Programs for Oregon Utilities Public Utility Commission May 2003 Public Utility ....................................................................................................................... 1 Types of Demand Response Programs............................................................................ 3 Demand Response Programs in Oregon

110

Demand response enabling technology development  

E-Print Network [OSTI]

behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

Arens, Edward; Auslander, David; Huizenga, Charlie

2008-01-01T23:59:59.000Z

111

Automated Demand Response and Commissioning  

E-Print Network [OSTI]

Fully-Automated Demand Response Test in Large Facilities14in DR systems. Demand Response using HVAC in Commercialof Fully Automated Demand Response in Large Facilities”

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-01-01T23:59:59.000Z

112

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: -Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005  

E-Print Network [OSTI]

DIVISION & TECHNICAL COMMITTEE MEMBERSHIP: - Division Chair of the ASME NDE (Nondestructive Evaluation) Division, 2003-2005 - Member of the Executive Committee of the ASME NDE Engineering Division, 1997-present - Secretary and Vice-Chairman of the ASME NDE Division from 2001 to 2003 - Program

Wong, Pak Kin

113

Demand Response In California  

Broader source: Energy.gov [DOE]

Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

114

Energy Demand Forecasting  

Science Journals Connector (OSTI)

This chapter presents alternative approaches used in forecasting energy demand and discusses their pros and cons. It... Chaps. 3 and 4 ...

S. C. Bhattacharyya

2011-01-01T23:59:59.000Z

115

Nuclear Separations for Radiopharmacy:? The Need for Improved Separations To Meet Future Research and Clinical Demands  

Science Journals Connector (OSTI)

Nuclear Separations for Radiopharmacy:? The Need for Improved Separations To Meet Future Research and Clinical Demands ... Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and Department of Chemistry, The University of Alabama, Tuscaloosa, Alabama 35487 ...

Andrew H. Bond; Robin D. Rogers; Mark L. Dietz

2000-07-08T23:59:59.000Z

116

High Performance Computing (HPC) Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

HPC Division High Performance Computing (HPC) Division Providing world-class high performance computing capability that enables unsurpassed solutions to complex problems of...

117

Demand Activated Manufacturing Architecture  

SciTech Connect (OSTI)

Honeywell Federal Manufacturing & Technologies (FM&T) engineers John Zimmerman and Tom Bender directed separate projects within this CRADA. This Project Accomplishments Summary contains their reports independently. Zimmerman: In 1998 Honeywell FM&T partnered with the Demand Activated Manufacturing Architecture (DAMA) Cooperative Business Management Program to pilot the Supply Chain Integration Planning Prototype (SCIP). At the time, FM&T was developing an enterprise-wide supply chain management prototype called the Integrated Programmatic Scheduling System (IPSS) to improve the DOE's Nuclear Weapons Complex (NWC) supply chain. In the CRADA partnership, FM&T provided the IPSS technical and business infrastructure as a test bed for SCIP technology, and this would provide FM&T the opportunity to evaluate SCIP as the central schedule engine and decision support tool for IPSS. FM&T agreed to do the bulk of the work for piloting SCIP. In support of that aim, DAMA needed specific DOE Defense Programs opportunities to prove the value of its supply chain architecture and tools. In this partnership, FM&T teamed with Sandia National Labs (SNL), Division 6534, the other DAMA partner and developer of SCIP. FM&T tested SCIP in 1998 and 1999. Testing ended in 1999 when DAMA CRADA funding for FM&T ceased. Before entering the partnership, FM&T discovered that the DAMA SCIP technology had an array of applications in strategic, tactical, and operational planning and scheduling. At the time, FM&T planned to improve its supply chain performance by modernizing the NWC-wide planning and scheduling business processes and tools. The modernization took the form of a distributed client-server planning and scheduling system (IPSS) for planners and schedulers to use throughout the NWC on desktops through an off-the-shelf WEB browser. The planning and scheduling process within the NWC then, and today, is a labor-intensive paper-based method that plans and schedules more than 8,000 shipped parts per month based on more than 50 manually-created document types. The fact that DAMA and FM&T desired to move from paper-based manual architectures to digitally based computer architectures gave further incentive for the partnership to grow. FM&T's greatest strength was its knowledge of NWC-wide scheduling and planning with its role as the NWC leader in manufacturing logistics. DAMA's asset was its new knowledge gained in the research and development of advanced architectures and tools for supply chain management in the textiles industry. These complimentary strengths allowed the two parties to provide both the context and the tools for the pilot. Bender: Honeywell FM&T participated in a four-site supply chain project, also referred to as an Inter-Enterprise Pipeline Evaluation. The MSAD project was selected because it involves four NWC sites: FM&T, Pantex, Los Alamos National Laboratory (LANL), and Lawrence Livermore National Laboratory (LLNL). FM&T had previously participated with Los Alamos National Laboratory in FY98 to model a two-site supply chain project, between FM&T and LANL. Evaluation of a Supply Chain Methodology is a subset of the DAMA project for the AMTEX consortium. LANL organization TSA-7, Enterprise Modeling and Simulation, has been involved in AMTEX and DAMA through development of process models and simulations for LANL, the NWC, and others. The FY 1998 and this FY 1999 projects directly involved collaboration between Honeywell and the Enterprise Modeling and Simulation (TSA-7) and Detonation Science and Technology (DX1) organizations at LANL.

Bender, T.R.; Zimmerman, J.J.

2001-02-07T23:59:59.000Z

118

Principal Investigators | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Frank Collart Frank Collart BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Frank Collart Biosciences Division Bldg: 202 Room: A-357 Email: fcollart@anl.gov Phone: (630) 252-4859 Fax: (630) 252-5517 Education Professional Experience Publication List Research Highlights > Education: 1984, Ph.D, Medical College of Ohio, Medical Sciences 1982, M.S., Bowling Green State University, Chemistry 1977, B.A., Bowling Green State University, Chemistry > Professional Experience: 1994-present: Molecular Biologist; Biosciences Division, Argonne National Laboratory. 1989-1994: Assistant Molecular Biologist; Division of Biological and Medical Research, Argonne National Laboratory. 1984-1989: Postdoctoral Appointee, Supervisor: Dr Eliezer Huberman; Division of Biological and Medical Research, Argonne National Laboratory.

119

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

rogress in understanding contaminant concentrations observed in remote locations requires the development of a computer simulation model that can link these con- centrations with long-range transport potential at a continental scale. Researchers at Trent University's Canadian Environmen- tal Modeling Center and Berkeley Lab's Environmental Energy Technologies Division are now developing such a model, the Berkeley-Trent North American contaminant fate model (BETR North America). BETR is a regionally segmented multi-compartment, continen- tal-scale, mass balance chemical fate model. The model's frame- work links contaminant fate models of individual regions that encompass a larger, spatially heterogeneous area. It models North America's environment as a group of 24 ecological regions with

120

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and non-energy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Demand Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Demand Module calculates energy consumption for the four Census Regions (see Figure 5) and disaggregates the energy consumption

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

122

RTP Customer Demand Response  

Science Journals Connector (OSTI)

This paper provides new evidence on customer demand response to hourly pricing from the largest and...real-time pricing...(RTP) program in the United States. RTP creates value by inducing load reductions at times...

Steven Braithwait; Michael O’Sheasy

2002-01-01T23:59:59.000Z

123

World Energy Demand  

Science Journals Connector (OSTI)

A reliable forecast of energy resources, energy consumption, and population in the future is a ... So, instead of absolute figures about future energy demand and sources worldwide, which would become...3.1 correl...

Giovanni Petrecca

2014-01-01T23:59:59.000Z

124

EIA - Assumptions to the Annual Energy Outlook 2008 - Industrial Demand  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2008 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module projects energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region projection using the SEDS1 data.

125

EIA - Assumptions to the Annual Energy Outlook 2010 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2010 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock,

126

Energy Technology Division research summary 1997.  

SciTech Connect (OSTI)

The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

NONE

1997-10-21T23:59:59.000Z

127

Reactor and Nuclear Systems Division (RNSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RNSD Home RNSD Home Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Staff Details (CV/Bios) Publications Org Chart Contact Us ORNL Staff Only Research Groups Advanced Reactor Systems & Safety Nuclear Data & Criticality Safety Nuclear Security Modeling Radiation Safety Information Computational Center Radiation Transport Reactor Physics Thermal Hydraulics & Irradiation Engineering Used Fuel Systems Reactor and Nuclear Systems Division News Highlights U.S. Rep. Fleischmann touts ORNL as national energy treasure Martin Peng wins Fusion Power Associates Leadership Award

128

China's Coal: Demand, Constraints, and Externalities  

SciTech Connect (OSTI)

This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

Aden, Nathaniel; Fridley, David; Zheng, Nina

2009-07-01T23:59:59.000Z

129

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

shift in the short-run price elasticity of gasoline demand.A meta-analysis of the price elasticity of gasoline demand.2007. Consumer demand un- der price uncertainty: Empirical

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

130

Demand and Price Volatility: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2011-01-01T23:59:59.000Z

131

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.World crude oil and natural gas: a demand and supply model.

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

132

People | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Lynda Dieckman Lynda Dieckman BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Lynda Dieckman Bldg: 202 Room: B265 E-mail Lynda Dieckman Phone: (630) 252-3953 Full Information Research Highlights > Education: 1989, Ph.D, University of Cincinnati, Physiology and Biophysics 1985, M.S., Case Western Reserve, Biology 1981, B.S., John Carroll University, Biology > Professional Experience: 2008-present Functional Genomics Specialist, Biosciences Division, Argonne National Laboratory, Argonne, IL 2002-2008 Molecular Biologist/Environmental Safety and Health and Quality Assurance Coordinator, Biosciences Division, Argonne National Laboratory, Argonne, IL 1997-2002 Special Term Appointee, Biosciences Division, Argonne National Laboratory, Argonne, IL

133

Genomics Division Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

PIs PIs Mark Biggin Jim Bristow Jan-Fang Cheng Inna Dubchak Suzanna Lewis Chris Mungall Len Pennacchio Eddy Rubin Axel Visel Divisional Information Support Staff Seminars Diversity Directory Contact Us The characterization and analysis of genome sequences from such diverse organisms as humans to the most primitive soil microbe represent a watershed opportunity for biology. The Genomics Division is taking advantage of this wealth of new information. While it is well known that DNA encodes the basic blue print of life, it is not known how best to interpret most of this information. To address this question, laboratories within the division are developing computational, biochemical, genetic, and imaging methods to decipher the complex sequence motifs that control RNA transcription, DNA replication, and chromosome structure. The Division is

134

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages

[Argonne Logo] [DOE Logo] [Argonne Logo] [DOE Logo] Physics Division Home News Division Information Contact Organization Chart Directory ES&H Scientific Staff Publications Awards & Honors Pictures & Videos New Faces PHY Webmail Meeting Rooms Research Low Energy Medium Energy Theory Accelerator R&D Research Highlights Seminars & Events Colloquium Division Seminar MEP Seminar Theory Seminar Heavy Ion Discussion Student Lunch Talk ATLAS arrowdn Facility Schedules User Info Proposals Targetlab CARIBU FMA Gammasphere GRETINA HELIOS AGFA Search Argonne ... Search ATLAS Facility User Info Proposals Beam Schedule Safety Gammasphere GRETINA FMA CARIBU HELIOS AGFA Targetlab Workshop 2009 25 Years of ATLAS Gretina Workshop ATLAS Gus Savard Guy Savard, Scientific Director of ATLAS Welcome to ATLAS, the Argonne Tandem Linac Accelerator System. ATLAS is the

135

Changing Energy Demand Behavior: Potential of Demand-Side Management  

Science Journals Connector (OSTI)

There is a great theoretical potential to save resources by managing our demand for energy. However, demand-side management (DSM) programs targeting behavioral patterns of...

Dr. Sylvia Breukers; Dr. Ruth Mourik…

2013-01-01T23:59:59.000Z

136

Chapter 50 Division for Air Quality: General Administrative Procedures  

Broader source: Energy.gov (indexed) [DOE]

You are here You are here Home » Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) Chapter 50 Division for Air Quality: General Administrative Procedures (Kentucky) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Transportation Utility Program Info State Kentucky Program Type Environmental Regulations Provider Kentucky Department for Environmental Protection Chapter 50 of the Division of Air Quality section within Energy and Environment Cabinet Department For Environmental Protection outlines the general administrative procedures for maintaining air quality standards. These procedures are created in adherence to 42 USC 7410 which requires the

137

Demand Response Valuation Frameworks Paper  

E-Print Network [OSTI]

No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

Heffner, Grayson

2010-01-01T23:59:59.000Z

138

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

2 2 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" (UEC) by appliance (in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type

139

C-AD Accelerator Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

140

Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumption to the Annual Energy Outlook Residential Demand Module The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

EIA - Assumptions to the Annual Energy Outlook 2009 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2009 Residential Demand Module The NEMS Residential Demand Module projects future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions (see Figure 5). The Residential Demand Module also requires projections of available equipment and their installed costs over the projection horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the projection horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

142

Demand Response In California  

Broader source: Energy.gov (indexed) [DOE]

Energy Efficiency & Energy Efficiency & Demand Response Programs Dian M. Grueneich, Commissioner Dian M. Grueneich, Commissioner California Public Utilities Commission California Public Utilities Commission FUPWG 2006 Fall Meeting November 2, 2006 Commissioner Dian M. Grueneich November 2, 2006 1 Highest Priority Resource Energy Efficiency is California's highest priority resource to: Meet energy needs in a low cost manner Aggressively reduce GHG emissions November 2, 2006 2 Commissioner Dian M. Grueneich November 2, 2006 3 http://www.cpuc.ca.gov/PUBLISHED/REPORT/51604.htm Commissioner Dian M. Grueneich November 2, 2006 4 Energy Action Plan II Loading order continued "Pursue all cost-effective energy efficiency, first." Strong demand response and advanced metering

143

On Demand Guarantees in Iran.  

E-Print Network [OSTI]

??On Demand Guarantees in Iran This thesis examines on demand guarantees in Iran concentrating on bid bonds and performance guarantees. The main guarantee types and… (more)

Ahvenainen, Laura

2009-01-01T23:59:59.000Z

144

integration division Human Systems  

E-Print Network [OSTI]

Vibration Test Facility incorporates state-of-the-art vibration generation and measurement hardwareintegration division Human Systems ISIS Vibration Test Facility Objective Approach Impact 1. Assess impact of flight-like whole-body vibration on human operational capabilities and ability to maintain

145

Energy Demand Staff Scientist  

E-Print Network [OSTI]

Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused on End-Use Energy Efficiency ~ 40 Current Projects in China Collaborations with ~50 Institutions in China Researcher #12;Talk OutlineTalk Outline · Overview · China's energy use and CO2 emission trends · Energy

Eisen, Michael

146

Energy Demand Modeling  

Science Journals Connector (OSTI)

From the end of World War II until the early 1970s there was a strong and steady increase in the demand for energy. The abundant supplies of fossil and other ... an actual fall in the real price of energy of abou...

S. L. Schwartz

1980-01-01T23:59:59.000Z

147

Chemistry Division Department of Biological  

E-Print Network [OSTI]

1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

Heller, Barbara

148

The National Energy Modeling System: An Overview 1998 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

COMMERCIAL DEMAND MODULE COMMERCIAL DEMAND MODULE blueball.gif (205 bytes) Floorspace Submodule blueball.gif (205 bytes) Energy Service Demand Submodule blueball.gif (205 bytes) Equipment Choice Submodule blueball.gif (205 bytes) Energy Consumption Submodule The commercial demand module (CDM) forecasts energy consumption by Census division for eight marketed energy sources plus solar thermal energy. For the three major commercial sector fuels, electricity, natural gas and distillate oil, the CDM is a "structural" model and its forecasts are built up from projections of the commercial floorspace stock and of the energy-consuming equipment contained therein. For the remaining five marketed "minor fuels," simple econometric projections are made. The commercial sector encompasses business establishments that are not

149

Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 - 6/13/06 3 - 6/13/06 Superconducting Magnet Division S&T Committee Program Review June 22-23, 2006 Conference Room A, Bldg. 725, BNL DRAFT AGENDA Thursday, June 22 0830 Executive Session to address the charge S. Aronson (25 min) 0855 Welcome S. Aronson (5 min) 0900 Superconducting Magnet Division Status & M. Harrison (45 + 15 min) Issues - mission statement, core competencies, themes, program, problems, etc. 1000 Themes - Nb3Sn, HTS, Direct wind, Accelerator integration, P. Wanderer (20 + 10 min) rapid cycling Core Competencies 1030 Superconducting Materials A. Ghosh (20 + 5 min) 1055 Break 1110 Magnetic Design R. Gupta (20 + 5 min) 1135 Magnet Construction M. Anerella (20 + 5 min) 1200 Magnet Testing G. Ganetis (20 + 5 min)

150

Division Name Will  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

C O N TA C T > Claude B. Reed | f C O N TA C T > Claude B. Reed | f a x: 63 0- 25 2- 32 96 | C BR e e d@ anl . go v | Nuclear Engineering Division | www.ne.anl.gov Argonne National Laborator y, 9700 South Cass Avenue, Lemont, IL 60439 August 2013 Nuclear Engineering Division Proton beam on lithium film experiment for the FRIB stripper Argonne National Laboratory has developed a liquid lithium charge stripper for use in the Facility for Rare Isotope Beams (FRIB) located at Michigan State University. FRIB will provide intense beams of rare isotopes that cannot be handled by ordinary means, creating a challenge to find a workable concept for the charge stripper and to test it in a beamline environment. The advantages of liquid lithium are: a) the heat deposited on the medium is carried away by the fast moving

151

Life Sciences Division Home  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The vision of the Life Sciences Division is to advance basic knowledge, and The vision of the Life Sciences Division is to advance basic knowledge, and the health of humans and the biosphere, by elucidating the 4-Dimensional dynamics of complex biological systems -- ranging from molecules to microbes to humans. Research Highlights New Imaging Technique Identified to Monitor Progression of Heart Failure In a recent publication of Journal of Nuclear Medicine, a team of scientists from Berkeley Lab, the University of Utah, and UC San Francisco describe a new imaging technique used to monitor the progression of heart failure. More » Unlocking the Secrets of Proteins Cryoelectron microscopy is helping to unlock the secrets of proteins as never before, thanks to technology developed for one of the world's most powerful electron microscopes, TEAM, at Berkeley Lab's National Center for

152

Argonne Physics Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RBW RBW Robert B. Wiringa (the guy on the right) phone: 630/252-6134 FAX: 630/252-6008 e-mail: wiringa@anl.gov Biographical sketch 1972 B.S., Rensselaer Polytechnic Institute 1974 M.S., University of Illinois at Urbana-Champaign 1978 Ph.D., University of Illinois at Urbana-Champaign 1978-80 Research Associate, Los Alamos Scientific Laboratory 1981-83 Research Associate, Argonne National Laboratory 1983-87 Assistant Physicist, Argonne National Laboratory 1987-99 Physicist, Argonne National Laboratory 2000- Senior Physicist, Argonne National Laboratory Visiting appointments 1993 Visiting Associate & Lecturer, California Institute of Technology Honors, Organizations, Committees, etc. 1994-2001 Chief, Theory Group, Physics Division, Argonne National Laboratory 1997-2000 Webmaster, Division of Nuclear Physics, American Physical

153

Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

This page intentionally left blank This page intentionally left blank 51 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 15 manufacturing and 6 non-manufacturing industries. The manufacturing industries are further subdivided into the energy- intensive manufacturing industries and nonenergy-intensive manufacturing industries (Table 6.1). The manufacturing industries are modeled through the use of a detailed process-flow or end-use accounting procedure, whereas the non- manufacturing industries are modeled with substantially less detail. The petroleum refining industry is not included in the Industrial Module, as it is simulated separately in the Petroleum Market Module of NEMS. The Industrial Module calculates

154

Warm Winters Held Heating Oil Demand Down While Diesel Grew  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: To understand the inventory situation, we must look the balance between demand and supply that drives inventories up or down. First consider demand. Most of the remaining charts deal with total distillate demand. Total distillate demand includes both diesel and heating oil. These are similar products physically, and prior to the low sulfur requirements for on-road diesel fuel, were used interchangeably. But even today, low sulfur diesel can be used in the heating oil market, but low sulfur requirements keep heating oil from being used in the on-road transportation sector. The seasonal increases and decreases in stocks stem from the seasonal demand in heating oil shown as the bottom red line. Heating oil demand increases by more than 50 percent from its low point to its high

155

Retail Demand Response in Southwest Power Pool  

Broader source: Energy.gov (indexed) [DOE]

LBNL-1470E LBNL-1470E Retail Demand Response in Southwest Power Pool Ranjit Bharvirkar, Grayson Heffner and Charles Goldman Lawrence Berkeley National Laboratory Environmental Energy Technologies Division January 2009 The work described in this report was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of

156

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

044E 044E ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Coordination of Energy Efficiency and Demand Response Charles Goldman, Michael Reid, Roger Levy and Alison Silverstein Environmental Energy Technologies Division January 2010 The work described in this report was funded by the Department of Energy Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes

157

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT WATER HEATING DESIGN GUIDE DECEMBER · Renewable Energy Technologies · Transportation Water Heating Design Guide is an interim report, prepared · Energy Innovations Small Grants · Energy-Related Environmental Research · Energy Systems Integration

158

Energy Research and Development Division FINAL PROJECT REPORT  

E-Print Network [OSTI]

Energy Research and Development Division FINAL PROJECT REPORT NATURAL GAS OPTIMIZED ADVANCED HEAVY · Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End-Use Energy Efficiency · Renewable Energy Technologies · Transportation Natural Gas-optimized Advanced Heavy-duty Engine is the final

159

Environmental Protection Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Site Details Site Details EPD Home Staff List (pdf) Org Chart (pdf) Compliance / Permits Programs Other Information Land Use & Institutional Controls Mapping Site Environmental Reports Environmental Monitoring Plan (EMP) Spill Response BNL Site Index Can't View PDFs? Developing Environmental Products and Services for Brookhaven Stakeholders The Environmental Protection Division (EPD) develops and delivers environmental products and services for all Brookhaven stakeholders. We manage environmental programs such as pollution prevention, groundwater protection, and natural resource management; provide technical assistance on environmental requirements; maintain the Laboratory's IS0 14001-registered Environmental Management System; prepare environmental permit applications; conduct environmental monitoring; manage data

160

Demand Response | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Demand Response Demand Response Demand Response Demand response provides an opportunity for consumers to play a significant role in the operation of the electric grid by reducing or shifting their electricity usage during peak periods in response to time-based rates or other forms of financial incentives. Demand response programs are being used by electric system planners and operators as resource options for balancing supply and demand. Such programs can lower the cost of electricity in wholesale markets, and in turn, lead to lower retail rates. Methods of engaging customers in demand response efforts include offering time-based rates such as time-of-use pricing, critical peak pricing, variable peak pricing, real time pricing, and critical peak rebates. It also includes direct load control programs which provide the

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Understanding and Analysing Energy Demand  

Science Journals Connector (OSTI)

This chapter introduces the concept of energy demand using basic micro-economics and presents the three-stage decision making process of energy demand. It then provides a set of simple ... (such as price and inco...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

162

Impact of Competition on Quality of Service in Demand Responsive Transit  

E-Print Network [OSTI]

Impact of Competition on Quality of Service in Demand Responsive Transit Ferdi Grootenboers1@inrets.fr Abstract. Demand responsive transportation has the potential to pro- vide efficient public door-company, quality of service, auction 1 Introduction Demand-Responsive Transit (DRT) services are a form

de Weerdt, Mathijs

163

Demand Response: Load Management Programs  

E-Print Network [OSTI]

CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

Simon, J.

2012-01-01T23:59:59.000Z

164

Marketing Demand-Side Management  

E-Print Network [OSTI]

they the only game in town, enjoying a captive market. Demand-side management (DSM) again surfaced as a method for increasing customer value and meeting these competitive challenges. In designing and implementing demand-side management (DSM) programs we... have learned a great deal about what it takes to market and sell DSM. This paper focuses on how to successfully market demand-side management. KEY STEPS TO MARKETING DEMAND-SIDE MANAGEMENT Management Commitment The first key element in marketing...

O'Neill, M. L.

1988-01-01T23:59:59.000Z

165

Demand Charges | Open Energy Information  

Open Energy Info (EERE)

Charges Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleDemandCharges&oldid488967"...

166

A Summary Report Keeping pace with changing global markets, meeting world demand for a host  

E-Print Network [OSTI]

and Manitoba): cor- ridors, demand, energy, information, and people. Corridors and the big picture StewartA Summary Report Keeping pace with changing global markets, meeting world demand for a host, transportation infrastructure, ports, railroads, biofuels and agricultural byproducts, and transportation

Minnesota, University of

167

Assessment of Demand Response Resource  

E-Print Network [OSTI]

Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

168

ERCOT Demand Response Paul Wattles  

E-Print Network [OSTI]

ERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre;Definitions of Demand Response · `The short-term adjustment of energy use by consumers in response to price to market or reliability conditions.' (NAESB) #12;Definitions of Demand Response · The common threads

Mohsenian-Rad, Hamed

169

Pricing data center demand response  

Science Journals Connector (OSTI)

Demand response is crucial for the incorporation of renewable energy into the grid. In this paper, we focus on a particularly promising industry for demand response: data centers. We use simulations to show that, not only are data centers large loads, ... Keywords: data center, demand response, power network, prediction based pricing

Zhenhua Liu; Iris Liu; Steven Low; Adam Wierman

2014-06-01T23:59:59.000Z

170

Operations Division at Berkeley Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Box DivisionsDepartments Suggestions Search: Go | Advanced Emergency Action Guide Quick Reference LBNL Emergency Preparedness Website LBNL Emergency Preparedness Employee Pocket...

171

Los Alamos Lab: Bioscience Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Serves the Nation by Reducing Threats to Humans and the Environment Welcome to Bioscience Division Our research integrates biology, chemistry, physics, and computational sciences...

172

Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

and clothes drying. In addition to the major equipment-driven and clothes drying. In addition to the major equipment-driven end-uses, the average energy consumption per household is projected for other electric and nonelectric Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 19 Pacific East South Central South Atlantic Middle Atlantic New England West South Central West North Central East North Central Mountain AK WA MT WY ID NV UT CO AZ NM TX OK IA KS MO IL IN KY TN MS AL FL GA SC NC WV PA NJ MD DE NY CT VT ME RI MA NH VA WI MI OH NE SD MN ND AR LA OR CA HI Middle Atlantic New England East North Central West North Central Pacific West South Central East South Central South Atlantic Mountain Figure 5. United States Census Divisions Source:Energy Information Administration,Office of Integrated Analysis and Forecasting. Report #:DOE/EIA-0554(2006) Release date: March 2006

173

Overview of Demand Response  

Broader source: Energy.gov (indexed) [DOE]

08 PJM 08 PJM www.pjm.com ©2003 PJM Overview of Demand Response PJM ©2008 PJM www.pjm.com ©2003 PJM Growth, Statistics, and Current Footprint AEP, Dayton, ComEd, & DUQ Dominion Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Generating Units 1,200 + Generation Capacity 165,000 MW Peak Load 144,644 MW Transmission Miles 56,070 Area (Square Miles) 164,250 Members 500 + Population Served 51 Million Area Served 13 States and DC Current PJM RTO Statistics Current PJM RTO Statistics PJM Mid-Atlantic Integrations completed as of May 1 st , 2005 ©2008 PJM

174

Environmental Biology | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Elevated CO2 and O3 effects on Carbon demand Elevated CO2 and O3 effects on Carbon demand BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Elevated CO2 and O3 effects on Carbon demand of the Extramatrical Mycorrhizal Fungal Network Contact: R. Michael Miller (rmmiller@anl.gov) We are evaluating the interactive effects of elevated CO2 and O3 on the sequential growth and allocation of both ectomycorrhizal fungi (EMF) and arbuscular mycorrhizal fungi (AMF) associated with quaking aspen (Populus tremuloides), paper birch (Betula papyrifera), and sugar maple (Acer saccharum) at the Aspen FACE site. The Aspen FACE approach consists of 30 m diameter rings of gas-dispensing pipes that allow us to fumigate intact forest canopies with atmospheric pollutants and study the interaction of plants, soils and atmosphere (http://aspenface.mtu.edu/index.html). We have used several different approaches to quantifying treatment effects on the mycorrhizal fungal network, especially how host responses influence root associated colonization and extramatrical hyphal (EMH) production and symbiotic benefit. Over the last six years we have been developing and improving upon methods to better quantify root associated mycorrhizal fungal biomass and EMH production and standing crop. Because both AMF and EMF play a significant role in the system of study we also have had to develop a means of separating the production of these different mycorrhizae, especially quantification of the EMH.

175

Dualmode transportation - impact on the electric grid  

E-Print Network [OSTI]

Continual increase in transport demand and uneven road capacity results in chaotic traffic congestion, brings with it high levels of air pollution, an elevated number of accidents, and an insatiable demand for oil to satisfy the motorized vehicles...

Azcarate Lara, Francisco Javier

2009-05-15T23:59:59.000Z

176

Dualmode transportation - impact on the electric grid  

E-Print Network [OSTI]

Continual increase in transport demand and uneven road capacity results in chaotic traffic congestion, brings with it high levels of air pollution, an elevated number of accidents, and an insatiable demand for oil to satisfy the motorized vehicles...

Azcarate Lara, Francisco Javier

2008-10-10T23:59:59.000Z

177

Oxygenate Supply/Demand Balances  

Gasoline and Diesel Fuel Update (EIA)

Oxygenate Supply/Demand Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model By Tancred C.M. Lidderdale This article first appeared in the Short-Term Energy Outlook Annual Supplement 1995, Energy Information Administration, DOE/EIA-0202(95) (Washington, DC, July 1995), pp. 33-42, 83-85. The regression results and historical data for production, inventories, and imports have been updated in this presentation. Contents * Introduction o Table 1. Oxygenate production capacity and demand * Oxygenate demand o Table 2. Estimated RFG demand share - mandated RFG areas, January 1998 * Fuel ethanol supply and demand balance o Table 3. Fuel ethanol annual statistics * MTBE supply and demand balance o Table 4. EIA MTBE annual statistics * Refinery balances

178

The National Energy Modeling System: An Overview 1998 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

RESIDENTIAL DEMAND MODULE RESIDENTIAL DEMAND MODULE blueball.gif (205 bytes) Housing Stock Submodule blueball.gif (205 bytes) Appliance Stock Submodule blueball.gif (205 bytes) Technology Choice Submodule blueball.gif (205 bytes) Shell Integrity Submodule blueball.gif (205 bytes) Fuel Consumption Submodule The residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar thermal and geothermal energy. The RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of the RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts,

179

U.S. electric utility demand-side management 1995  

SciTech Connect (OSTI)

The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

NONE

1997-01-01T23:59:59.000Z

180

Principal Investigators | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

R. Michael Miller R. Michael Miller BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne R. Michael Miller Bldg: 203 Room: E161 9700 South Cass Avenue Argonne, Illinois 60439 Email: rmmiller@anl.gov Phone: (630) 252-3395 Fax: (630) 252-8895 Research Highlights Publications > Education: 1975 Ph.D., Illinois State University, Botany and Mycology 1971 M.S., Illinois State University, Biological Sciences 1969 B.S., Colorado State University, Botany > Professional Experience: 2005-current Senior Terrestrial Ecologist, Biosciences Division, Argonne National Laboratory 2007-current Senior Fellow, Institute for Genomic & Systems Biology, University of Chicago and Argonne National Laboratory 2006-2008

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Former Sites Restoration. Division  

Office of Legacy Management (LM)

@j&s* **$r* :. .+:., @j&s* **$r* :. .+:., II' .,.. I .&i. , :"': T.1 . i *&+t&&., @i i -:.+; L I. * . . .p.isit-!'..r'ir~i _, +.&.., . I. :?I,?.* .L,! j?' aa&* pi 4 L', ..b,- ., .e /w.1( ,v_.c ~A&$?>*:, ,..:.' .1 > . . . . . *. ,.. .I., .( j .~.~:,;;,.".,Certificafion ,Dockef for The ;,il' t:i~>$:+-.. ~~y:Remeciial Action. Performed "' . ::;:cxcgt the @+zb Gate Site in . ;' ! ,Oak Ridge, Tennessee, 7.99 7- 7 992 -.. Department .of Energy Former Sites Restoration. Division . ,Oak Ridge Operations .Office _. February 7 994 @ Printed on recycledhcy&ble paper. CERTIFICATION DOCKET FOR THE REMEDIAL ACTION PERFORMED AT THE ELZA GAP SITE IN OAK RIDGE, TENNESSEE, 1991-1992 FEBRUARY 1994 I Prepared for UNITED STATES DEPARTMENT OF ENERGY

182

Argonne Physics Division - ATLAS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Safety Safety General Radiation Electrical Experiment Safety at ATLAS The Management and Staff at ATLAS and Argonne National Laboratory are fully dedicated to integrating safety into all aspects of work at our facilities. We believe that it is completely possible, and absolutely essenital, to carry out effective research programs without compromising safety. Indeed, the process of incorporating safety into accelerator operations and experimental research begins at the earliest stages. All experiments, equipment, and procedures are reviewed extensively for safety issues prior to their approval. For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at

183

News Releases | Biosciences Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

News Releases News Releases BIO Home Page About BIO News Releases Research Publications People Contact Us Organization Chart Site Index Inside BIO BIO Safety About Argonne Biosciences Division News Releases Protein crystal samples are placed on a small metal tip so X-rays from the adjacent beam pipe can pass through them and diffract off the atoms inside the crystal. Lessening X-ray damage is healthy for protein discovery data too December 16, 2013 - New recommendations for using X-rays promise to speed investigations aimed at understanding the structure and function of biologically important proteins - information critical to the development of new drugs. Read more. Kayakers and boats traverse the branch of the Chicago River in the downtown area Argonne partners with Metropolitan Water Reclamation District to study Chicago River microbe population

184

Eastern Audits Division  

Broader source: Energy.gov (indexed) [DOE]

Work Plan for FY 2014 Work Plan for FY 2014 Eastern Audits Division  Follow-up of the Reindustrialization Program at East Tennessee Technology Park  Audit of the Department's Management of High-Risk Property  Audit of the Department's Efforts to Reduce Mercury Contamination at the Y-12 National Security Complex  Non-conforming Equipment and Parts at the Savannah River Site  Audit of the Department's Facility Contractors' Use of No Bid Subcontracts  Decontamination and Decommissioning Activities at the Oak Ridge National Laboratory  The Department's Audit Resolution and Follow-up Process  Legacy Management Activities at Selected Sites  Department's Contract Awards Made to Alaska Native Corporation  Readiness of the Saltstone Disposal Facility at the Savannah River Site

185

Guidance Systems Division ,  

Office of Legacy Management (LM)

Oockec No. 10-0772 Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES NUCLEAll I-IEOULATOIJY COMMISSION REGION i 631 PARK A"LH"I KIN0 OF PR"ISIA. PCNNIVLVANIA ID40' Gentlemen: Subject: Inspectfon 81-15 _ "-- .,; .z .;; Thts refers to the closeout safety \nspectlon conducted by Ms. M. Campbell of this office on August 27, 1961, of activities formerly authorized by NRC License No. STB-424 and to the c!lscussions of our findings held by f4s. Campbell with yourseif aL Lhe conclusion of the inspection. This closeout inspection. was conducted as part of an NRC effort to ensure that facilities where,llcensed activities were forxrrly conducted meet current NRC criteria for release for

186

Systems Division NO. REV. NO.  

E-Print Network [OSTI]

Aerospace Systems Division NO. REV. NO. EATM-17 PCU - SOLAR PANEL SIMULATOR TEST REPORT:' Courtois ~ll~K. Hsi #12;MO. REV. MO. EATM-17 ~ Systems Division PCU - Solar Panel Simulator Test Report Conditioning Unit (PCU) is compatible with a solar panel array. The Solar Panel Simulator and the PCU Test Set

Rathbun, Julie A.

187

Hydrogen Demand and Resource Assessment Tool | Open Energy Information  

Open Energy Info (EERE)

Hydrogen Demand and Resource Assessment Tool Hydrogen Demand and Resource Assessment Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Hydrogen Demand and Resource Assessment Tool Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Hydrogen, Transportation Topics: Technology characterizations Resource Type: Dataset, Software/modeling tools User Interface: Website Website: maps.nrel.gov/ Web Application Link: maps.nrel.gov/hydra Cost: Free Language: English References: http://maps.nrel.gov/hydra Logo: Hydrogen Demand and Resource Assessment Tool Use HyDRA to view, download, and analyze hydrogen data spatially and dynamically. HyDRA provides access to hydrogen demand, resource, infrastructure, cost, production, and distribution data. A user account is

188

EIA - Assumptions to the Annual Energy Outlook 2008 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2008 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

189

EIA - Assumptions to the Annual Energy Outlook 2009 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.1

190

EIA - Assumptions to the Annual Energy Outlook 2010 - Commercial Demand  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2009 Commercial Demand Module The NEMS Commercial Sector Demand Module generates projections of commercial sector energy demand through 2035. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services [1].

191

Demand Response Programs, 6. edition  

SciTech Connect (OSTI)

The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

NONE

2007-10-15T23:59:59.000Z

192

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] 9, No. 1 [http://eetd.lbl.gov/newsletter/nl32/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER NEWSLETTER: VOL. 9, NO. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits A new Division Director for the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, a story about one of his research team's projects to remove naturally-

193

Nuclear Science and Engineering - Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Home Home NSED Divisions The Nuclear Science and Engineering Directorate (NSED) organization is composed of ORNL's only DOE Energy Innovation Hub, a program office, and the following five divisions. Fuel Cycle and Isotopes Division (FCID) FCID focuses on advancing the applications of medical, industrial, and research isotopes (developing separation processes for the processing of radioisotopes and spent nuclear fuels) and designing robotic systems and unique facilities for the safe handling of nuclear materials. Fusion Energy Division (FE) FE is developing the understanding required for an attractive fusion energy source through integrated research, and is pursuing near term applications of plasma science and technology in support of national goals. Global Nuclear Security Technology Division (GNSTD)

194

Argonne Physics Division - Theory Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Division Seminar: R-150 @ 3:30pm Division Seminar: R-150 @ 3:30pm 14 April 2011 Stefano Gandolfi Los Alamos National Laboratory stefano@lanl.gov Quantum Monte Carlo Study of Strongly Correlated Fermions: Neutron Matter, Neutron Stars and Cold Atoms Division Seminar: R-150 @ 3:30pm 31 March 2011 Lucas Platter Chalmers University of Technology, Göteborg platter@chalmers.se Effective Field Theories for Nuclear Systems Division Seminar: R-150 @ 3:30pm 17 February 2011 Alexandros Gezerlis University of Washington gezerlis@uw.edu Bridging the Gap: Fermions in Nuclear Structure and Nuclear Astrophysics Special Day: Tuesday 15 February 2011 Louis H. Kauffman UIC kauffman@uic.edu Topological Quantum Information and the Jones Polynomial Division Seminar: R-150 @ 3:30pm 10 February 2011 JoaquÃ-n Drut

195

National Transportation Stakeholders Forum  

Broader source: Energy.gov (indexed) [DOE]

Transportation Stakeholders Forum Transportation Stakeholders Forum May 14-16, 2013 Tuesday, May 14 7:00 am - 5:00 pm Registration Niagara Foyer 7:00 am - 7:45 am Breakfast and Networking Grand A 8:00 am - 10:00 am National Updates for Transportation Stakeholder Groups and Guests - Panel Grand BC Moderator: John Giarrusso Jr., MA Emergency Management Agency / Northeast High-Level Radioactive Waste Transportation Task Force Co-Chair US Department of Energy, Office of Environmental Management - Steve O'Connor, Director, Office of Packaging & Transportation US Nuclear Regulatory Commission - Earl P. Easton, Senior Level Advisor (retired) and David W. Pstrak, Transportation and Storage Specialist, Division of Spent Fuel Storage and Transportation

196

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

of control. Water heater demand response options are notcurrent water heater and air conditioning demand responsecustomer response Demand response water heater participation

Levy, Roger

2014-01-01T23:59:59.000Z

197

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

Goldman, Charles

2010-01-01T23:59:59.000Z

198

Hawaiian Electric Company Demand Response Roadmap Project  

E-Print Network [OSTI]

Like HECO actual utility demand response implementations canindustry-wide utility demand response applications tend toobjective. Figure 4. Demand Response Objectives 17  

Levy, Roger

2014-01-01T23:59:59.000Z

199

Installation and Commissioning Automated Demand Response Systems  

E-Print Network [OSTI]

their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

2008-01-01T23:59:59.000Z

200

Barrier Immune Radio Communications for Demand Response  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

Rubinstein, Francis

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

202

Home Network Technologies and Automating Demand Response  

E-Print Network [OSTI]

and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

McParland, Charles

2010-01-01T23:59:59.000Z

203

Wireless Demand Response Controls for HVAC Systems  

E-Print Network [OSTI]

Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

Federspiel, Clifford

2010-01-01T23:59:59.000Z

204

Strategies for Demand Response in Commercial Buildings  

E-Print Network [OSTI]

Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-01-01T23:59:59.000Z

205

Option Value of Electricity Demand Response  

E-Print Network [OSTI]

Table 1. “Economic” demand response and real time pricing (Implications of Demand Response Programs in CompetitiveAdvanced Metering, and Demand Response in Electricity

Sezgen, Osman; Goldman, Charles; Krishnarao, P.

2005-01-01T23:59:59.000Z

206

Demand Responsive Lighting: A Scoping Study  

E-Print Network [OSTI]

3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

Rubinstein, Francis; Kiliccote, Sila

2007-01-01T23:59:59.000Z

207

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

Goldman, Charles

2010-01-01T23:59:59.000Z

208

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

209

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

210

electricity demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity consumption and demand datasets, specifically: annual observed electricity consumption by sector (1974 to 2009); observed percentage of consumers by sector (2002 - 2009); and regional electricity demand, as a percentage of total demand (2009). Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords Electricity Consumption electricity demand energy use by sector New Zealand Data application/vnd.ms-excel icon Electricity Consumption by Sector (1974 - 2009) (xls, 46.1 KiB) application/vnd.ms-excel icon Percentage of Consumers by Sector (2002 - 2009) (xls, 43.5 KiB)

211

Annual World Oil Demand Growth  

Gasoline and Diesel Fuel Update (EIA)

6 6 Notes: Following relatively small increases of 1.3 million barrels per day in 1999 and 0.9 million barrels per day in 2000, EIA is estimating world demand may grow by 1.6 million barrels per day in 2001. Of this increase, about 3/5 comes from non-OECD countries, while U.S. oil demand growth represents more than half of the growth projected in OECD countries. Demand in Asia grew steadily during most of the 1990s, with 1991-1997 average growth per year at just above 0.8 million barrels per day. However, in 1998, demand dropped by 0.3 million barrels per day as a result of the Asian economic crisis that year. Since 1998, annual growth in oil demand has rebounded, but has not yet reached the average growth seen during 1991-1997. In the Former Soviet Union, oil demand plummeted during most of the

212

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Division of Distributed Solar Technology Contractors' Pro-Division of Distributed Solar Technology Insolation Assess-view argues that solar technologies should not be developed.

Cairns, E.J.

2010-01-01T23:59:59.000Z

213

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andof the Division of Geothermal Energy, and is compatible with

Authors, Various

2012-01-01T23:59:59.000Z

214

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979  

E-Print Network [OSTI]

Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

Cairns, E.J.

2010-01-01T23:59:59.000Z

215

Physics division annual report 2006.  

SciTech Connect (OSTI)

This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

Glover, J.; Physics

2008-02-28T23:59:59.000Z

216

Department of Natural Resources and Water Divisions (Nebraska) | Department  

Broader source: Energy.gov (indexed) [DOE]

Department of Natural Resources and Water Divisions (Nebraska) Department of Natural Resources and Water Divisions (Nebraska) Department of Natural Resources and Water Divisions (Nebraska) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Nebraska Program Type Siting and Permitting Provider Natural Resources This chapter describes the duties of the Department of Natural Resources

217

Assumptions to the Annual Energy Outlook 1999 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

residential.gif (5487 bytes) residential.gif (5487 bytes) The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

218

Assumptions to the Annual Energy Outlook 2000 - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimates of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the “unit energy consumption” by appliance (or UEC—in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new units, retires existing housing units, and retires and replaces appliances. The primary exogenous drivers for the module are housing starts by type (single-family, multifamily and mobile homes) and Census Division and prices for each energy source for each of the nine Census Divisions. The Residential Demand Module also requires projections of available equipment over the forecast horizon. Over time, equipment efficiency tends to increase because of general technological advances and also because of Federal and/or state efficiency standards. As energy prices and available equipment changes over the forecast horizon, the module includes projected changes to the type and efficiency of equipment purchased as well as projected changes in the usage intensity of the equipment stock.

219

Harnessing the power of demand  

SciTech Connect (OSTI)

Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

2008-03-15T23:59:59.000Z

220

China, India demand cushions prices  

SciTech Connect (OSTI)

Despite the hopes of coal consumers, coal prices did not plummet in 2006 as demand stayed firm. China and India's growing economies, coupled with solid supply-demand fundamentals in North America and Europe, and highly volatile prices for alternatives are likely to keep physical coal prices from wide swings in the coming year.

Boyle, M.

2006-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Honeywell Demonstrates Automated Demand Response Benefits for...  

Broader source: Energy.gov (indexed) [DOE]

Honeywell Demonstrates Automated Demand Response Benefits for Utility, Commercial, and Industrial Customers Honeywell Demonstrates Automated Demand Response Benefits for Utility,...

222

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

223

Automated Demand Response and Commissioning  

SciTech Connect (OSTI)

This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

2005-04-01T23:59:59.000Z

224

Patents: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Division > Patents About the Division > Patents Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Patents Bookmark and Share Printable Patents List ( PDF PDF file, 225 KB) Over 50 patents have been issued to Nuclear Engineering Division staff members by the US Patent Office from 2000 to present. The table below features a complete list of patents (2000-present) issued

225

Chemical Sciences Division: Research: Programs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Programs Programs The Chemical Sciences Division (CSD) is one of Berkeley Laboratory's basic research divisions. The CSD is composed of individual research groups that conduct research in the areas of chemical physics and the dynamics of chemical reactions, the structure and reactivity of transient species, electron spectroscopy, surface chemistry and catalysis, electrochemistry, chemistry of the actinide elements and their relationship to environmental issues, and atomic physics. The division's 28 principal investigators, many of whom are on the faculty of the University of California at Berkeley, direct the individual research projects and the work of 6 staff scientists, 41 postdoctoral researchers, and 75 graduate students. Our research staff continues to achieve fundamental advances in understanding the structure and reactivity of critical reaction intermediates and transients using both state-of-the-art experimental and theoretical methods. In addition, the division supports a strong effort in heterogeneous and homogeneous catalysis.

226

CIVIC KNOWLEDGE Division of the  

E-Print Network [OSTI]

THE CIVIC KNOWLEDGE PROJECT ___________ ___________ Division of the Humanities University of Chicago CONTACT INFORMATION ___________ CIVIC KNOWLEDGE PROJECT OFFICE Edelstone Rm 133 6030 IDEAS ___________ The aim of the Civic Knowledge Project (CKP) is to develop and strengthen community

He, Chuan

227

DIVISION 16 -ELECTRICAL 16000 GENERAL  

E-Print Network [OSTI]

Electrical Code American National Standards Institute National Electrical Manufacturers Association Institute of Electrical & Electronics Engineers Insulated Cable Engineers Association 3. Three copies of the followingDIVISION 16 - ELECTRICAL _____________________________________________________________ 16000

228

E-Division activities report  

SciTech Connect (OSTI)

E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.

Barschall, H.H. (comp.)

1984-07-01T23:59:59.000Z

229

THE CONGESTION PIE: DELAY FROM COLLISIONS, POTENTIAL RAMP METERING GAIN, AND EXCESS DEMAND  

E-Print Network [OSTI]

THE CONGESTION PIE: DELAY FROM COLLISIONS, POTENTIAL RAMP METERING GAIN, AND EXCESS DEMAND the great potential to mitigate congestion by ramp metering. In addition to the three congestion pie slices in the division of the congestion `pie' into its constituent slices as in Figure 1. Knowledge of the congestion

Varaiya, Pravin

230

Demand and Price Uncertainty: Rational Habits in International Gasoline Demand  

E-Print Network [OSTI]

global gasoline and diesel price and income elasticities.shift in the short-run price elasticity of gasoline demand.Habits and Uncertain Relative Prices: Simulating Petrol Con-

Scott, K. Rebecca

2013-01-01T23:59:59.000Z

231

Nuclear Engineering Division Think, explore, discover, innovate  

E-Print Network [OSTI]

Nuclear Engineering Division Think, explore, discover, innovate Never miss important updates managed by UChicago Argonne, LLC 1 Nuclear Engineering Division: Awards Listing (1980 ­ present) Web: http Division of Educational Programs J.C. Braun L.W. Deitrich #12;Nuclear Engineering Division Think, explore

Kemner, Ken

232

World oil demand’s shift toward faster growing and less price-responsive products and regions  

Science Journals Connector (OSTI)

Using data for 1971–2008, we estimate the effects of changes in price and income on world oil demand, disaggregated by product – transport oil, fuel oil (residual and heating oil), and other oil – for six groups of countries. Most of the demand reductions since 1973–74 were due to fuel-switching away from fuel oil, especially in the OECD; in addition, the collapse of the Former Soviet Union (FSU) reduced their oil consumption substantially. Demand for transport and other oil was much less price-responsive, and has grown almost as rapidly as income, especially outside the OECD and FSU. World oil demand has shifted toward products and regions that are faster growing and less price-responsive. In contrast to projections to 2030 of declining per-capita demand for the world as a whole – by the U.S. Department of Energy (DOE), International Energy Agency (IEA) and OPEC – we project modest growth. Our projections for total world demand in 2030 are at least 20% higher than projections by those three institutions, using similar assumptions about income growth and oil prices, because we project rest-of-world growth that is consistent with historical patterns, in contrast to the dramatic slowdowns which they project.

Joyce M. Dargay; Dermot Gately

2010-01-01T23:59:59.000Z

233

The National Energy Modeling System: An Overview 2000 - Residential Demand  

Gasoline and Diesel Fuel Update (EIA)

residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. residential demand module (RDM) forecasts energy consumption by Census division for seven marketed energy sources plus solar and geothermal energy. RDM is a structural model and its forecasts are built up from projections of the residential housing stock and of the energy-consuming equipment contained therein. The components of RDM and its interactions with the NEMS system are shown in Figure 5. NEMS provides forecasts of residential energy prices, population, and housing starts, which are used by RDM to develop forecasts of energy consumption by fuel and Census division. Figure 5. Residential Demand Module Structure RDM incorporates the effects of four broadly-defined determinants of energy consumption: economic and demographic effects, structural effects, technology turnover and advancement effects, and energy market effects. Economic and demographic effects include the number, dwelling type (single-family, multi-family or mobile homes), occupants per household, and location of housing units. Structural effects include increasing average dwelling size and changes in the mix of desired end-use services provided by energy (new end uses and/or increasing penetration of current end uses, such as the increasing popularity of electronic equipment and computers). Technology effects include changes in the stock of installed equipment caused by normal turnover of old, worn out equipment with newer versions which tend to be more energy efficient, the integrated effects of equipment and building shell (insulation level) in new construction, and in the projected availability of even more energy-efficient equipment in the future. Energy market effects include the short-run effects of energy prices on energy demands, the longer-run effects of energy prices on the efficiency of purchased equipment and the efficiency of building shells, and limitations on minimum levels of efficiency imposed by legislated efficiency standards.

234

Assumptions to the Annual Energy Outlook 2001 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

235

Assumptions to the Annual Energy Outlook 2002 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for

236

Assumptions to the Annual Energy Outlook 2000 - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 9 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The distinction between the two sets of manufacturing industries pertains to the level of modeling. The energy-intensive industries are modeled through the use of a detailed process flow accounting procedure, whereas the nonenergy-intensive and the nonmanufacturing industries are modeled with substantially less detail (Table 14). The Industrial Demand Module forecasts energy consumption at the four Census region levels; energy consumption at the Census Division level is allocated by using the SEDS24 data.

237

building demand | OpenEI  

Open Energy Info (EERE)

demand demand Dataset Summary Description This dataset contains hourly load profile data for 16 commercial building types (based off the DOE commercial reference building models) and residential buildings (based off the Building America House Simulation Protocols). This dataset also includes the Residential Energy Consumption Survey (RECS) for statistical references of building types by location. Source Commercial and Residential Reference Building Models Date Released April 18th, 2013 (9 months ago) Date Updated July 02nd, 2013 (7 months ago) Keywords building building demand building load Commercial data demand Energy Consumption energy data hourly kWh load profiles Residential Data Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Annually

238

Demand Response Research in Spain  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Demand Response Research in Spain Demand Response Research in Spain Speaker(s): Iñigo Cobelo Date: August 22, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Mary Ann Piette The Spanish power system is becoming increasingly difficult to operate. The peak load grows every year, and the permission to build new transmission and distribution infrastructures is difficult to obtain. In this scenario Demand Response can play an important role, and become a resource that could help network operators. The present deployment of demand response measures is small, but this situation however may change in the short term. The two main Spanish utilities and the transmission network operator are designing research projects in this field. All customer segments are targeted, and the research will lead to pilot installations and tests.

239

EIA - AEO2010 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2010 with Projections to 2035 Electricity Demand Figure 69. U.S. electricity demand growth 1950-2035 Click to enlarge » Figure source and data excel logo Figure 60. Average annual U.S. retail electricity prices in three cases, 1970-2035 Click to enlarge » Figure source and data excel logo Figure 61. Electricity generation by fuel in three cases, 2008 and 2035 Click to enlarge » Figure source and data excel logo Figure 62. Electricity generation capacity additions by fuel type, 2008-2035 Click to enlarge » Figure source and data excel logo Figure 63. Levelized electricity costs for new power plants, 2020 and 2035 Click to enlarge » Figure source and data excel logo Figure 64. Electricity generating capacity at U.S. nuclear power plants in three cases, 2008, 2020, and 2035

240

Full Rank Rational Demand Systems  

E-Print Network [OSTI]

as a nominal income full rank QES. R EFERENCES (A.84)S. G. Donald. “Inferring the Rank of a Matrix. ” Journal of97-102. . “A Demand System Rank Theorem. ” Econometrica 57 (

LaFrance, Jeffrey T; Pope, Rulon D.

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demand Forecasting of New Products  

E-Print Network [OSTI]

Keeping Unit or SKU) employing attribute analysis techniques. The objective of this thesis is to improve Abstract This thesis is a study into the demand forecasting of new products (also referred to as Stock

Sun, Yu

242

Current Photovoltaics Applications—Transport  

Science Journals Connector (OSTI)

Most transport systems demand high reliability as personal safety is often at stake. System design and overall integrity is thus the primary requirement. These factors are to be considered in detail. Users will d...

P. R. Wolfe

1981-01-01T23:59:59.000Z

243

Demand Response and Energy Efficiency  

E-Print Network [OSTI]

Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5..., 2009 4 An Innovative Solution to Get the Ball Rolling ? Demand Response (DR) ? Monitoring Based Commissioning (MBCx) EnerNOC has a solution involving two complementary offerings. ESL-IC-09-11-05 Proceedings of the Ninth International Conference...

244

Demand Response Spinning Reserve Demonstration  

SciTech Connect (OSTI)

The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

2007-05-01T23:59:59.000Z

245

EIA-Assumptions to the Annual Energy Outlook - Residential Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Residential Demand Module Residential Demand Module Assumptions to the Annual Energy Outlook 2007 Residential Demand Module Figure 5. United States Census Divisions. Need help, contact the National Energy Information Center at 202-586-8800. The NEMS Residential Demand Module forecasts future residential sector energy requirements based on projections of the number of households and the stock, efficiency, and intensity of use of energy-consuming equipment. The Residential Demand Module projections begin with a base year estimate of the housing stock, the types and numbers of energy-consuming appliances servicing the stock, and the "unit energy consumption" by appliance (or UEC-in million Btu per household per year). The projection process adds new housing units to the stock, determines the equipment installed in new

246

EIA-Assumptions to the Annual Energy Outlook - Industrial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Industrial Demand Module Industrial Demand Module Assumptions to the Annual Energy Outlook 2007 Industrial Demand Module The NEMS Industrial Demand Module estimates energy consumption by energy source (fuels and feedstocks) for 21 manufacturing and 6 nonmanufacturing industries. The manufacturing industries are further subdivided into the energy-intensive manufacturing industries and nonenergy-intensive manufacturing industries. The manufacturing industries are modeled through the use of a detailed process flow or end use accounting procedure, whereas the nonmanufacturing industries are modeled with substantially less detail (Table 17). The Industrial Demand Module forecasts energy consumption at the four Census region level (see Figure 5); energy consumption at the Census Division level is estimated by allocating the Census region forecast using the SEDS25 data.

247

Scalability and Evolutionary Dynamics of Air Transportation Networks in the United States  

E-Print Network [OSTI]

With the growing demand for air transportation and the limited ability to increase capacity at key points in the air transportation system, there are concerns that, in the future, the system will not scale to meet demand. ...

Bonnefoy, Philippe

2007-09-21T23:59:59.000Z

248

Residential and Transport Energy Use in India: Past Trend and Future Outlook  

E-Print Network [OSTI]

GDP per capita Transport Future outlook Drivers of Transport Energyenergy demand per passenger-km. Figure 20. Car Ownership and GDP

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

249

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Action Plan on Demand National Action Plan on Demand Action Plan on Demand National Action Plan on Demand Response Response Federal Utilities Partnership Working Group Federal Utilities Partnership Working Group November 18, 2008 November 18, 2008 Daniel Gore Daniel Gore Office of Energy Market Regulation Office of Energy Market Regulation Federal Energy Regulatory Commission Federal Energy Regulatory Commission The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission Presentation Contents Presentation Contents Statutory Requirements Statutory Requirements National Assessment [Study] of Demand Response National Assessment [Study] of Demand Response National Action Plan on Demand Response National Action Plan on Demand Response General Discussion on Demand Response and Energy Outlook

250

Energy Systems Division Ed Daniels, Division Director University of Chicago Review Energy Engineering and Systems Analysis November 18, 2010  

Broader source: Energy.gov (indexed) [DOE]

Technology Technology Research and Development Don Hillebrand, Energy Systems Division Director Secretary of Energy Advisory Board Meeting Energy Engineering and Systems Analysis April 2012 Argonne's Transportation Research Is Focused on DOE's Energy Resources Goal  Improving energy productivity across all sectors, including transportation, is a goal in the Energy Security Theme of the DOE Strategic Plan.  A strategy to meet that goal is to develop technologies that enable cars and trucks to be fuel efficient, while remaining cost and performance competitive. 2 Market Snapshot - Auto Sales have Recovered Efficiency reduces oil use and CO2 emissions

251

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] 2: Vol. 10, No. 3 [http://eetd.lbl.gov/newsletter/nl38/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2012 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2012: VOL. 10, NO. 3 Middle-Income Energy Savings LIGTT Greenhouse Gas Standards Port of Oakland Study Ashok Gadgil Wins Zayed Award Max Tech Research Highlights Sources and Credits Congratulations to EETD Division Director Ashok Gadgil, winner of the Zayed Future Energy Prize lifetime achievement award, about which you can read in this issue. We also present research on how energy efficiency program managers can better reach middle-income families, and perhaps

252

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0: 0: Vol. 9, No. 1 Ashok Gadgil Named Director of Environmental Energy Technologies Division Arsenic Removal Technologies ARPA-E Funding Low-Energy Buildings User Facility ECMA International Standard U.S. Wind Power Market Clean Energy Ministerial Research Highlights Sources and Credits PDF of EETD News Ashok Gadgil Named New EETD Director Ashok Gadgil Ashok Gadgil has been named Director of Lawrence Berkeley National Laboratory's (Berkeley Lab's) Environmental Energy Technologies Division (EETD). Serving as the Acting Division Director since October, he replaces Arun Majumdar who is now Director of the DOE's Advanced Research Projects Agency-Energy (ARPA-E). Gadgil is a Professor in Civil and Environmental Engineering at UC Berkeley and joined EETD in 1988. He is recognized for

253

Fermilab's Accelerator and Research Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

July 19, 1996 July 19, 1996 Number 14 Fixed-target experimenters not only expect Fermilab's Accelerator and Research Divisions to turn water into wine-they need 10 different vintages. Providing beam to fixed-target experiments presents the challenge of converting high-inten- sity protons into 10 separate beams of varying intensities and particles, from kaons to neu- trinos. The Accelerator Division generates and splits the beam, and then hands the protons off to the Research Division, which converts them into beams of different particles. The process begins with a breath of hydrogen gas. Eventually the hydrogen atoms lose their outer electrons and become a stream of protons-the formation of the beam. Physicists measure two characteristics of the beam: its energy (eV) and its intensity. Intensity

254

Highlights: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Division > Highlights About the Division > Highlights Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Highlights Bookmark and Share Click on the "Date" header to sort the NE highlights in chronological order (ascending or descending). You may also search through the NE highlights for a specific keyword/year;

255

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] 8, No. 4 [http://eetd.lbl.gov/newsletter/nl31/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING NEWSLETTER: VOL. 8, NO. 4 OpenADR's Steps Toward a National Smart Grid Standard Dangers of Third-Hand Smoke Energy Efficiency Workforce Training John Newman Wins the Acheson Award Net Metered PV Systems Recovery Act Grant Program Evaluation Sources and Credits As the nation continues moving toward a more energy-efficient economy, research at the Environmental Energy Technologies Division plays its part in developing the technologies it needs for the Smart Grid, and in evaluating policies aimed at increasing energy efficiency

256

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

Demand Response Projects: Technical and Market Demonstrations Philip D. Lusk Deputy Director Energy Analyst #12;PLACE CAPTION HERE. #12;#12;#12;#12;City of Port Angeles Demand Response History energy charges · Demand charges during peak period only ­ Reduced demand charges for demand response

257

Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services  

E-Print Network [OSTI]

A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

Kiliccote, Sila

2010-01-01T23:59:59.000Z

258

Demand Response and Open Automated Demand Response Opportunities for Data Centers  

E-Print Network [OSTI]

Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

Mares, K.C.

2010-01-01T23:59:59.000Z

259

Facilitating Renewable Integration by Demand Response  

Science Journals Connector (OSTI)

Demand response is seen as one of the resources ... expected to incentivize small consumers to participate in demand response. This chapter models the involvement of small consumers in demand response programs wi...

Juan M. Morales; Antonio J. Conejo…

2014-01-01T23:59:59.000Z

260

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

Joseph, Eto

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Demand response-enabled residential thermostat controls.  

E-Print Network [OSTI]

human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

2008-01-01T23:59:59.000Z

262

Value of Demand Response -Introduction Klaus Skytte  

E-Print Network [OSTI]

Value of Demand Response - Introduction Klaus Skytte Systems Analysis Department February 7, 2006 Energinet.dk, Ballerup #12;What is Demand Response? Demand response (DR) is the short-term response

263

World Energy Use — Trends in Demand  

Science Journals Connector (OSTI)

In order to provide adequate energy supplies in the future, trends in energy demand must be evaluated and projections of future demand developed. World energy use is far from static, and an understanding of the demand

Randy Hudson

1996-01-01T23:59:59.000Z

264

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

265

Balancing of Energy Supply and Residential Demand  

Science Journals Connector (OSTI)

Power demand of private households shows daily fluctuations and ... (BEV) and heat pumps. This additional demand, especially when it remains unmanaged, will ... to an increase in fluctuations. To balance demand,

Martin Bock; Grit Walther

2014-01-01T23:59:59.000Z

266

Definition: Demand | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Definition Edit with form History Facebook icon Twitter icon » Definition: Demand Jump to: navigation, search Dictionary.png Demand The rate at which electric energy is delivered to or by a system or part of a system, generally expressed in kilowatts or megawatts, at a given instant or averaged over any designated interval of time., The rate at which energy is being used by the customer.[1] Related Terms energy, electricity generation References ↑ Glossary of Terms Used in Reliability Standards An i Like Like You like this.Sign Up to see what your friends like. nline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Demand&oldid=480555"

267

Winter Demand Impacted by Weather  

Gasoline and Diesel Fuel Update (EIA)

8 8 Notes: Heating oil demand is strongly influenced by weather. The "normal" numbers are the expected values for winter 2000-2001 used in EIA's Short-Term Energy Outlook. The chart indicates the extent to which the last winter exhibited below-normal heating degree-days (and thus below-normal heating demand). Temperatures were consistently warmer than normal throughout the 1999-2000 heating season. This was particularly true in November 1999, February 2001 and March 2001. For the heating season as a whole (October through March), the 1999-2000 winter yielded total HDDs 10.7% below normal. Normal temperatures this coming winter would, then, be expected to bring about 11% higher heating demand than we saw last year. Relative to normal, the 1999-2000 heating season was the warmest in

268

Turkey's energy demand and supply  

SciTech Connect (OSTI)

The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

Balat, M. [Sila Science, Trabzon (Turkey)

2009-07-01T23:59:59.000Z

269

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1991-09-01T23:59:59.000Z

270

International Oil Supplies and Demands  

SciTech Connect (OSTI)

The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

Not Available

1992-04-01T23:59:59.000Z

271

Publishing Division The Edinburgh Building  

E-Print Network [OSTI]

Publishing Division The Edinburgh Building Shaftesbury Road Cambridge CB2 2RU, UK TELEPHONE 01223 The Pitt Building, Trumpington Street, Cambridge, United Kingdom CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road

Rosenberger, Alfred H.

272

PUBLIC HEALTH DIVISION Coronavirus infections  

E-Print Network [OSTI]

PUBLIC HEALTH DIVISION Coronavirus infections MERS-CoV (Middle Eastern respiratory syndrome people who cared for those who were sick with MERS also became ill. MERS might come from other sources with diabetes, lung disease or other serious health problems appear to be at higher risk for severe illness

Khan, Javed I.

273

Oregon Land Management Division - Easements | Open Energy Information  

Open Energy Info (EERE)

Division - Easements Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Oregon Land Management Division - Easements Author Oregon Land Management Division...

274

Demand Response as a System Reliability Resource  

E-Print Network [OSTI]

for Demand Response Technology Development The objective ofin planning demand response technology RD&D by conductingNew and Emerging Technologies into the California Smart Grid

Joseph, Eto

2014-01-01T23:59:59.000Z

275

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

Goldman, Charles

2010-01-01T23:59:59.000Z

276

Demand Response - Policy | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Demand Response - Policy Demand Response - Policy Since its inception, the Office of Electricity Delivery and Energy Reliability (OE) has been committed to modernizing the nation's...

277

Sandia National Laboratories: demand response inverter  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

278

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

and Demand Response A pilot program from NSTAR in Massachusetts,Massachusetts, aiming to test whether an intensive program of energy efficiency and demand response

Goldman, Charles

2010-01-01T23:59:59.000Z

279

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

280

Marketing & Driving Demand: Social Media Tools & Strategies ...  

Broader source: Energy.gov (indexed) [DOE]

Demand: Social Media Tools & Strategies - January 16, 2011 Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 January 16, 2011 Conference Call...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Marketing & Driving Demand Collaborative - Social Media Tools...  

Broader source: Energy.gov (indexed) [DOE]

Demand Collaborative - Social Media Tools & Strategies Marketing & Driving Demand Collaborative - Social Media Tools & Strategies Presentation slides from the BetterBuildings...

282

California Energy Demand Scenario Projections to 2050  

E-Print Network [OSTI]

Vehicle Conventional and Alternative Fuel Response Simulatormodified to include alternative fuel demand scenarios (whichvehicle adoption and alternative fuel demand) later in the

McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

2008-01-01T23:59:59.000Z

283

Spent Fuel Transportation Risk Assessment  

Broader source: Energy.gov (indexed) [DOE]

Fuel Transportation Risk Assessment Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and Transportation 1 SFTRA Overview Contents * Project and review teams * Purpose and goals * Basic methodology * Improvements relative to previous studies * Draft NUREG structure and format * Routine shipment analysis and results * Accident condition analysis and results * Findings and conclusions * Schedule 2 SFTRA Research and Review Teams * Sandia National Laboratory Research Team [$1.8M; 9/06-9/12] - Doug Ammerman - principal investigator - Carlos Lopez - thermal - Ruth Weiner - RADTRAN * NRC's SFTRA Technical Review Team - Gordon Bjorkman - structural

284

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

summer 2004, Lawrence Berkeley National Laboratory (Berkeley Lab) summer 2004, Lawrence Berkeley National Laboratory (Berkeley Lab) researchers used two different kinds of technology, a price signal sent over the internet to facility computers, and a hard-wired internet relay box, to test auto- mated demand response. They found up to four megawatts (MW) of savings in 36 buildings located at 18 sites, according to a new report. The research, published as "Findings from the 2004 Fully Automated Demand Response

285

Procurement Division | Princeton Plasma Physics Lab  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Procurement Division Introduction Technology Transfer Furth Plasma Physics Library Contact Us Lab Leadership Directory Careers Human Resources Environment, Safety & Health...

286

Computing and Computational Sciences Directorate - Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CCSD Divisions Computational Sciences and Engineering Computer Sciences and Mathematics Information Technolgoy Services Joint Institute for Computational Sciences National Center...

287

Smart Buildings and Demand Response  

Science Journals Connector (OSTI)

Advances in communications and control technology the strengthening of the Internet and the growing appreciation of the urgency to reduce demand side energy use are motivating the development of improvements in both energy efficiency and demand response (DR) systems in buildings. This paper provides a framework linking continuous energy management and continuous communications for automated demand response (Auto?DR) in various times scales. We provide a set of concepts for monitoring and controls linked to standards and procedures such as Open Automation Demand Response Communication Standards (OpenADR). Basic building energy science and control issues in this approach begin with key building components systems end?uses and whole building energy performance metrics. The paper presents a framework about when energy is used levels of services by energy using systems granularity of control and speed of telemetry. DR when defined as a discrete event requires a different set of building service levels than daily operations. We provide examples of lessons from DR case studies and links to energy efficiency.

2011-01-01T23:59:59.000Z

288

Water demand management in Kuwait  

E-Print Network [OSTI]

Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

2006-01-01T23:59:59.000Z

289

EARTH SCIENCES Lower-Division Requirements  

E-Print Network [OSTI]

2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

Constable, Steve

290

Chemical Marketing and Economics Division reprints  

Science Journals Connector (OSTI)

Chemical Marketing and Economics Division reprints ... The ACS Chemical Marketing and Economics Division has available reprints of the symposiums listed below. ... Make checks payable to Chemical Marketing and Economics Division, ACS, and send to the assistant treasurer, H. C. McClure, Richardson Co., 2700 West Lake St., Melrose Park, Ill. ...

1968-09-16T23:59:59.000Z

291

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will YOU discover? #12;620students more than 470faculty 36departments 12programs and one YOU. DBBS Division of Biology and Biomedical Sciences Washington. The Division of Biology and Biomedical Sciences (DBBS) is ideally positioned to foster the interdisciplinary

Kornfeld, S. Kerry

292

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION  

E-Print Network [OSTI]

OFFICE OF THE DIVISION ENGINEER CORPS OF ENGINEERS, MISSISSIPPI VALLEY DIVISION P.O. BOX 80, 1400 39181-0080, who is also the Division Engineer, Department of the Army, Mississippi Valley Division River at Cairo, Illinois and Baton Rouge, Louisiana, is approximately 726 miles long. Navigation

US Army Corps of Engineers

293

The alchemy of demand response: turning demand into supply  

SciTech Connect (OSTI)

Paying customers to refrain from purchasing products they want seems to run counter to the normal operation of markets. Demand response should be interpreted not as a supply-side resource but as a secondary market that attempts to correct the misallocation of electricity among electric users caused by regulated average rate tariffs. In a world with costless metering, the DR solution results in inefficiency as measured by deadweight losses. (author)

Rochlin, Cliff

2009-11-15T23:59:59.000Z

294

Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation  

E-Print Network [OSTI]

the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been... the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been...

Gates, G. G.

295

Assessment of Demand Response and Advanced Metering  

E-Print Network [OSTI]

#12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

Tesfatsion, Leigh

296

INTEGRATION OF PV IN DEMAND RESPONSE  

E-Print Network [OSTI]

INTEGRATION OF PV IN DEMAND RESPONSE PROGRAMS Prepared by Richard Perez et al. NREL subcontract response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing by solid evidence from three utility case studies. BACKGROUND Demand Response: demand response (DR

Perez, Richard R.

297

Demand Side Management in Rangan Banerjee  

E-Print Network [OSTI]

Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

Banerjee, Rangan

298

Colloquium 2010 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0 0 Materials Science 2010 Colloquium Archive 21-January-2010 Prof. Cheol Seong Hwang, Seol National University Identification and formation mechanism of conducting nano-filaments in TiO2 resistive switching thin film 28-January-2010 Dr. Haifeng Ding, Nanjing University 11-February-2010 Dr. John Schlueter, Materials Science Division Molecular Architectures for Control of Electron Spin and Its Transport, 16-April-2010 Prof. Albrecht Jander, Oregon State University Nanostructured Magentic Materails for Inductors 29-April-2010 Prof. Aldo Romero, CINVESTAV-Unidad Queretaro, Mexico 06-May-2010 Dr. Alex Zayak, UC Berkeley/Molecular Foundry, LBNL 20-May-2010 Dr. Matthew J. Highland, Materials Science Division 27-May-2010 Dr. Mark Stiles, National Institute of Standards and Technology

299

Process Engineering Division Texaco Gasifier IGCC Base Cases  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Engineering Division Engineering Division Texaco Gasifier IGCC Base Cases PED-IGCC-98-001 July 1998 Latest Revision June 2000 PREFACE This report presents the results of an analysis of three Texaco Gasifier IGCC Base Cases. The analyses were performed by W. Shelton and J. Lyons of EG&G. EXECUTIVE SUMMARY 1. Process Descriptions 1.1 Texaco Gasifier 1.2 Air Separation Plant (ASU) 1.3 Gas Cooling/Heat Recovery/Hydrolysis/Gas Saturation (Case 1 and Case 2) 1.4 Cold Gas Cleanup Unit (CGCU) (Case 1 and Case 2) 1.5 Fine Particulate Removal/ Chloride Guard Bed - Case 3 1.6 Transport Desulfurization HGCU - Case 3 1.7 Sulfuric Acid Plant - Case 3 1.8 Gas Turbine 1.9 Steam Cycle 1.10 Power Production 2. Simulation Development 3. Cost of Electricity Analysis

300

Building Technologies Office: Integrated Predictive Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Integrated Predictive Integrated Predictive Demand Response Controller Research Project to someone by E-mail Share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Facebook Tweet about Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Twitter Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Google Bookmark Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Delicious Rank Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on Digg Find More places to share Building Technologies Office: Integrated Predictive Demand Response Controller Research Project on AddThis.com...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1999: 1999: Vol. 1, No. 1 Characterizing Diesel Particle Exhaust Miscellaneous Electricity Use COMIS: An Interzonal Air-Flow Model GenOpt: A Generic Optimization Program News from the D.C. Office Around the Division The A-Team Report Sources and Credits PDF of EETD News Characterizing Diesel Particle Exhaust Recent concern about the risks to human health from airborne particulates such as those in diesel exhaust has motivated a group at the Environmental Energy Technologies Division to investigate the use of scattered polarized light. The goals are to characterize these particles and develop an instrument to measure these characteristics in real time. Having such an instrument can help regulatory authorities develop standards and monitor air quality. Airborne particulates, especially those less than 2.5

302

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] 9, No. 3 [http://eetd.lbl.gov/newsletter/nl34/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 9, NO. 3 Commercial Buildings Clean Energy Research Center OpenADR Alliance Energy Efficient Data Center Retrofit Home Energy Score Pilot Program Tracking the Sun III Research Highlights Sources and Credits The Department of Energy's Commercial Building Partnerships initiative is establishing collaborations to increase energy efficiency in new and existing commercial buildings. It teams National Laboratory researchers and private technical experts with commercial building owners and

303

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] 0, No. 2 [http://eetd.lbl.gov/newsletter/nl37/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL 2011: VOL. 10, NO. 2 Carbon Cycle 2.0 Analysis Team Carbon Sequestration Study Materials Genome Project Increased Building Ventilation VOC Cleaning Technology Fort Irwin Lighting Testbed Tracking the Sun IV Cool Coatings for Cars Research Highlights Sources and Credits Understanding how effectively new technologies can save energy, water, and materials-as well as reduce energy costs and greenhouse gas emissions-is the goal of the Carbon Cycle 2.0 Energy and

304

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] 2011: Vol. 10, No. 1 [http://eetd.lbl.gov/newsletter/nl36/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2011: VOL. 10, NO. 1 Energy Information Systems ISO 50001 BEST Dairy Benchmarking Program Wind Power Report Cool Roofs Workshop Research Highlights Sources and Credits In this issue, you can learn about EETD's work to analyze energy information systems (EIS) and improve their utilization in commercial buildings. We also look at ISO 50001, a new standard that helps industrial and commercial enterprises operate energy-efficiently,

305

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] 8, No. 3 [http://eetd.lbl.gov/newsletter/nl30/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2010 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER NEWSLETTER: VOL. 8, NO. 3 Hidden Costs of Energy Production NRC Report The Rosenfeld Named After California's Godfather of Energy Solar Photovoltaic Report II Release Methane in Central California Wind Power Property Values Community Wind FABS21 Release Franchise Tax Board Data Center Project Sources and Credits This issue addresses everything from a National Academy of Sciences report on the hidden costs of energy production to tools for making semiconductor fabrication facilities and data centers more

306

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Containing the Effects of Containing the Effects of Chemical and Biological Agents in Buildings Lawrence Berkeley National Laboratory Air Quality Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 3 News 1 Containing the Effects of Chemical and Biological Agents in Buildings 3 Laser Ultrasonic Sensor Streamlines Papermaking Process 5 Building a Smarter Light: The IBECS Network/Ballast Interface 6 IPMVP-from a DOE-Funded Iniative to a Not-for-Profit Organization 8 Skylight Well Reduces Solar Heat Gain 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division

307

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Consumers Kept Consumers Kept the Lights On Lawrence Berkeley National Laboratory Atmospheric Sciences Advanced Technologies Building Technologies Energy Analysis Indoor Environment Vol. 3 No. 4 News 1 California Consumers Kept the Lights On 3 A Quick and Easy Web-Based Assess- ment Tool for Day/Electric Lighting 5 Berkeley Lab Model Tracks Indoor Anthrax Dispersal 7 Rating "Green" Laboratories-Labs21 Environmental Performance Criteria 9 Research Highlights The mission of the Environmental Energy Technologies Division is to perform research and development leading to better energy technologies and the reduction of adverse energy- related environmental impacts. Environmental Energy Technologies Division continued on page 2 In this Issue C alifornia consumers-not mild weather or the cooling economy-should get credit

308

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] 9, No. 4 [http://eetd.lbl.gov/newsletter/nl35/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2011 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SPRING 2011: VOL. 9, NO. 4 Fuel Cell Research Programmable Thermostats A Bright Spot for Solar Saving Electricity in a Hurry Nanostructured Antifogging Coatings Fluorescent Lighting Research Highlights Sources and Credits This month, EETD News highlights some of its research activities in fuel cells; an energy efficiency expert describes how Japan can save energy in a hurry to help offset supply losses from Fukushima; and a lighting expert discusses why fluorescent

309

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] 8, No. 2 [http://eetd.lbl.gov/newsletter/nl29/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] © 2009 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] FALL NEWSLETTER: VOL. 8, NO. 2 Closing in on Zero-Energy Buildings Heinz Award Honors Berkeley Lab's Ashok Gadgil Green Chemistry: Lasers Detect Explosives and Hazardous Waste Photocatalytic Oxidation (PCO) Air Cleaners: Reducing Energy Use While Clearing the Air Energy Reduction for Energy Research New Study Sheds Light on the Growing U.S. Wind Power Market Recovery Act Funding Enables Berkeley Lab to Help Federal Agencies Improve Energy Efficiency Research

310

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] 2, No. 1 [http://eetd.lbl.gov/newsletter/nl44/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] SUMMER 2013: VOL. 12, NO. 1 Buildings Performance Database EnergyIQ Wind Technologies Report Lighting Testbeds Q&A with Ed Vine SEAD Report - India Efficient A/C Li/S Cathode Technology Conductive Binder for Li-ion Batteries Research Highlights Sources and Credits We cover a lot of ground in the issue of EETD News you're now reading. Investing in energy performance upgrades for your commercial building? Read about the Building Performance Database. Wondering about the state of wind power in the U.S.? We've got you covered with the

311

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] 11, No. 3 [http://eetd.lbl.gov/newsletter/nl42/] Environmental Energy Technologies Division News [http://eetd.lbl.gov/newsletter/] ©2013 Environmental Energy Technologies Division [http://eetd.lbl.gov/] E.O. Lawrence Berkeley National Laboratory [http://www.lbl.gov/] Disclaimer [http://www.lbl.gov/Disclaimers.html] WINTER 2013: VOL. 11, NO. 3 The New York Times Building Building Control Virtual Test Bed Simergy Climate Change and the Insurance Industry Energy Storage Research Hub ARPA-E Funds Berkeley Lab Projects Utility Energy-Efficiency Programs California's Energy Future FLEXLAB Testbeds Construction FLEXLAB Partners Research Highlights Sources and Credits Better tools to simulate building energy use, new funding for advanced research in batteries and energy-efficient

312

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

fi lter could also help fi lter could also help California comply with tighter U.S. EPA arsenic drinking-water standard. A shok G ad g i l, a s c ient i st i n t he Environmental Energy Technologies Division at Lawrence Berkeley National Laboratory (Berkeley Lab), is developing a cheap and effective way to provide safe drinking water to 60 million Bangladeshis who live with the threat of arsenic poisoning.

313

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

Kiliccote, Sila

2010-01-01T23:59:59.000Z

314

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

Aggregator Programs. Demand Response Measurement andIncorporating Demand Response into Western Interconnection13 Demand Response Dispatch

Satchwell, Andrew

2014-01-01T23:59:59.000Z

315

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

McKane, Aimee T.

2009-01-01T23:59:59.000Z

316

Automated Demand Response Opportunities in Wastewater Treatment Facilities  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

Thompson, Lisa

2008-01-01T23:59:59.000Z

317

Global energy demand to 2060  

SciTech Connect (OSTI)

The projection of global energy demand to the year 2060 is of particular interest because of its relevance to the current greenhouse concerns. The long-term growth of global energy demand in the time scale of climatic change has received relatively little attention in the public discussion of national policy alternatives. The sociological, political, and economic issues have rarely been mentioned in this context. This study emphasizes that the two major driving forces are global population growth and economic growth (gross national product per capita), as would be expected. The modest annual increases assumed in this study result in a year 2060 annual energy use of >4 times the total global current use (year 1986) if present trends continue, and >2 times with extreme efficiency improvements in energy use. Even assuming a zero per capita growth for energy and economics, the population increase by the year 2060 results in a 1.5 times increase in total annual energy use.

Starr, C. (Electric Power Research Institute, Palo Alto, CA (USA))

1989-01-01T23:59:59.000Z

318

Transportation Energy Technology DivisionEnergy Technology Division --TribologyTribology  

E-Print Network [OSTI]

UTC Fuel Cells: Motor Blower/compressor Technology Honeywell: Turbo-compressor/Expander #12;Energy Technology Issue: Fuel cell stacks requires a compact lightweight highly efficient compressor/expander contractor have and are working on developing compressor/expander systems. Efficiency, reliability

319

Knowledge base for an autonomic transport layer  

Science Journals Connector (OSTI)

The accelerated development of Internet and mobile devices has lead to new QoS-demanding distributed applications and new QoS-providing communication services, particularly at the transport level. The diversity of transport services and underlying networks ... Keywords: autonomic computing, model-driven architecture, ontology-driven architecture, transport protocols

Ernesto Exposito; Christophe Chassot; Michel Diaz

2011-06-01T23:59:59.000Z

320

Transportation | Open Energy Information  

Open Energy Info (EERE)

Transportation Transportation Jump to: navigation, search Click to return to AEO2011 page AEO2011 Data From AEO2011 report . Market Trends From 2009 to 2035, transportation sector energy consumption grows at an average annual rate of 0.6 percent (from 27.2 quadrillion Btu to 31.8 quadrillion Btu), slower than the 1.2 percent average rate from 1975 to 2009. The slower growth is a result of changing demographics, increased LDV fuel economy, and saturation of personal travel demand.[1] References [1] ↑ 1.0 1.1 AEO2011 Transportation Sector Retrieved from "http://en.openei.org/w/index.php?title=Transportation&oldid=378906" What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Qing'an Li - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EM > Qing'an Li EM > Qing'an Li Qing'an Li Scientific Associate Sr Bldg. 223, A-113 Phone: 630-252-3996 This e-mail address is being protected from spambots. You need JavaScript enabled to view it. Biography Qing'an Li was an Assistant Research Scientist at Institute of Physics, Chinese Academy of Sciences after receiving his doctorate in July 1993 working on superconducting electronics. He was a postdoctoral fellow at University of Tokyo, Japan working on superconducting electronics in 1996. In 1997, he became a Visiting Scientist (postdoc) at the Materials Science Division of the Argonne National Laboratory, and started to study the transport properties of colossal magnetoresistance (CMR) materials in the Emerging Materials group. At the Institute of Physics, Chinese Academy of Sciences, Li was an Associated Research Scientist in 2000, a Research scientist, and Professor in 2001, working on magnetic and transport properties of transition metal oxides. In 2006, he visited the Materials Science Division of the Argonne National Laboratory as a Visiting Scientist, working on the transport properties of intermetallic compounds of rare-earth and transition metals, transition metal oxides, etc. and became a Scientific Associate Sr. in Emerging Materials group in 2009.

322

Transportation Outlook 2035: Creating a Blueprint for the Sherman-Denison Region's Future  

E-Print Network [OSTI]

constraints and air quality constraints, and make a recommendation for Transportation Policy Board action. 1.5 BACKGROUND: The Transportation Division of the Texoma Council of Governments provides the staff for the MPO which was designated on May 10... constraints and air quality constraints, and make a recommendation for Transportation Policy Board action. 1.5 BACKGROUND: The Transportation Division of the Texoma Council of Governments provides the staff for the MPO which was designated on May 10...

Sherman-Denison Metropolitan Planning Organization

2009-11-18T23:59:59.000Z

323

The Future of Secondary Airports: Nodes of a parallel air transport network?  

E-Print Network [OSTI]

Professor, Engineering Systems Division et Department of Civil and Environmental Engineering Massachusetts, they will demand and obtain substantial independence. This hypothesis leads to two propositions. The first, the main thought is that the responsible leaders should coherently support the development

324

Demand Response in U.S. Electricity Markets: Empirical Evidence  

Broader source: Energy.gov (indexed) [DOE]

LBNL-2124E LBNL-2124E Demand Response in U.S. Electricity Markets: Empirical Evidence Principal Authors Peter Cappers a , Charles Goldman a , and David Kathan b a Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 b Federal Energy Regulatory Commission, 888 First Street, NE, Washington, DC 20426, Energy Analysis Department Ernest Orlando Lawrence Berkeley National Laboratory 1 Cyclotron Road, MS 90R4000 Berkeley CA 94720-8136 Environmental Energy Technologies Division June 2009 http://eetd.lbl.gov/ea/EMS/EMS_pubs.html Pre-print version of the article to be published in Energy, forthcoming 2009. The work described in this paper was funded by the Office of Electricity Delivery and Energy Reliability, Permitting, Siting and Analysis of the U.S.

325

Amur Energy Division | Open Energy Information  

Open Energy Info (EERE)

Amur Energy Division Amur Energy Division Jump to: navigation, search Name Amur Energy Division Place 46001 Valencia, Spain Sector Solar Product Engineering and construction group specialising in large solar power plants. References AMUR[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! TODO: Determine if this company is valid. This article is a stub. You can help OpenEI by expanding it. Amur Energy Division is a company located in Spain. Related Links http://findarticles.com/p/articles/mi_m5CNK/is_2007_Jan_4/ai_n24998390/ http://www.businesswirenet.org/pr/index.php/id/jesus-linares-gil-chairman-and-ceo-of-ae http://solarstocks.blogspot.com/2007_01_01_archive.html References ↑ "Amur Energy Division" Retrieved from "http://en.openei.org/w/index.php?title=Amur_Energy_Division&oldid=391205"

326

Demand Side Bidding. Final Report  

SciTech Connect (OSTI)

This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

Spahn, Andrew

2003-12-31T23:59:59.000Z

327

Definition: Peak Demand | Open Energy Information  

Open Energy Info (EERE)

Peak Demand Peak Demand Jump to: navigation, search Dictionary.png Peak Demand The highest hourly integrated Net Energy For Load within a Balancing Authority Area occurring within a given period (e.g., day, month, season, or year)., The highest instantaneous demand within the Balancing Authority Area.[1] View on Wikipedia Wikipedia Definition Peak demand is used to refer to a historically high point in the sales record of a particular product. In terms of energy use, peak demand describes a period of strong consumer demand. Related Terms Balancing Authority Area, energy, demand, balancing authority, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inli LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ne Glossary Definition Retrieved from

328

Demand Response Programs Oregon Public Utility Commission  

E-Print Network [OSTI]

Demand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director;Demand Response Results, 2004 Load Control ­ Cool Keeper ­ ID Irrigation Load Control Price Responsive

329

Industrial Equipment Demand and Duty Factors  

E-Print Network [OSTI]

Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

Dooley, E. S.; Heffington, W. M.

330

ConservationandDemand ManagementPlan  

E-Print Network [OSTI]

; Introduction Ontario Regulation 397/11 under the Green Energy Act 2009 requires public agencies and implement energy Conservation and Demand Management (CDM) plans starting in 2014. Requirementsofthe ConservationandDemand ManagementPlan 2014-2019 #12

Abolmaesumi, Purang

331

Energy Demand Analysis at a Disaggregated Level  

Science Journals Connector (OSTI)

The purpose of this chapter is to consider energy demand at the fuel level or at the ... . This chapter first presents the disaggregation of energy demand, discusses the information issues and introduces framewor...

Subhes C. Bhattacharyya

2011-01-01T23:59:59.000Z

332

Seasonal temperature variations and energy demand  

Science Journals Connector (OSTI)

This paper presents an empirical study of the relationship between residential energy demand and temperature. Unlike previous studies in this ... different regions and to the contrasting effects on energy demand ...

Enrica De Cian; Elisa Lanzi; Roberto Roson

2013-02-01T23:59:59.000Z

333

Decentralized demand management for water distribution  

E-Print Network [OSTI]

. Actual Daily Demand for Model 2 . . 26 4 Predicted vs. Actual Peak Hourly Demand for Model 1 27 5 Predicted vs. Actual Peak Hourly Demand for Model 2 28 6 Cumulative Hourly Demand Distribution 7 Bryan Distribution Network 8 Typical Summer Diurnal... locating and controlling water that has not been accounted for. The Ford Meter Box Company (1987) advises the testing and recalibration of existing water meters. Because operating costs in a distribution network can be quite substantial, a significant...

Zabolio, Dow Joseph

2012-06-07T23:59:59.000Z

334

Chemical Sciences Division | Advanced Materials |ORNL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemical Sciences Chemical Sciences Division SHARE Chemical Sciences Division The Chemical Sciences Division performs discovery and uses inspired research to understand, predict, and control the physical processes and chemical transformations at multiple length and time scales, especially at interfaces. The foundation of the division is a strong Basic Energy Sciences (BES) portfolio that pushes the frontiers of catalysis, geosciences, separations and analysis, chemical imaging, neutron science, polymer science, and interfacial science. Theory is closely integrated with materials synthesis and characterization to gain new insights into chemical transformations and processes with the ultimate goal of predictive insights. Applied research programs naturally grow out of our fundamental

335

Administration and Organization Division of Graduate Affairs  

E-Print Network [OSTI]

. . . . . . . . . . . . Geoffrey W. Chase Imperial Valley Campus . . . . . . . . . . . . . . . . . . . . . . David E. Pearson the Imperial Valley Campus; Dean of the Graduate Division or designee, who will chair the committee; Provost

Gallo, Linda C.

336

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andsuch diverse areas as geothermal energy, oil recovery, in-

Authors, Various

2012-01-01T23:59:59.000Z

337

EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.  

E-Print Network [OSTI]

8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

Witherspoon, P.A.

2011-01-01T23:59:59.000Z

338

Supervisory General Engineer (Facility Engineering Division Director)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will lead the Facility Engineering Division by providing internal and independent safety system oversight of Waste Isolation Pilot Plant (WIPP) operations in...

339

Geothermal: Sponsored by OSTI -- Nuclear Technology Division...  

Office of Scientific and Technical Information (OSTI)

Nuclear Technology Division annual progress report for period ending June 30, 1973 Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

340

Colorado Air Pollution Control Division - Construction Permits...  

Open Energy Info (EERE)

Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Procurement Division Introduction | Princeton Plasma Physics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Technology Transfer Furth Plasma Physics Library Procurement Division Introduction The Princeton Plasma Physics Laboratory (PPPL) is operated by Princeton University under...

342

X-Ray Science Division (XSD)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

343

Enforcement Letter, Westinghouse Waste Isolation Division - October...  

Broader source: Energy.gov (indexed) [DOE]

Division related to four noncompliances with the requirements of the Quality Assurance Rule andor the Occupational Radiation Protection Rule at DOE's Waste Isolation...

344

Demand Response Resources in Pacific Northwest  

E-Print Network [OSTI]

Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

345

Leveraging gamification in demand dispatch systems  

Science Journals Connector (OSTI)

Modern demand-side management techniques are an integral part of the envisioned smart grid paradigm. They require an active involvement of the consumer for an optimization of the grid's efficiency and a better utilization of renewable energy sources. ... Keywords: demand response, demand side management, direct load control, gamification, smart grid, sustainability

Benjamin Gnauk; Lars Dannecker; Martin Hahmann

2012-03-01T23:59:59.000Z

346

Demand Response and Ancillary Services September 2008  

E-Print Network [OSTI]

Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

347

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

348

THE STATE OF DEMAND RESPONSE IN CALIFORNIA  

E-Print Network [OSTI]

THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

349

Modeling Energy Demand Aggregators for Residential Consumers  

E-Print Network [OSTI]

The current world-wide increase of energy demand cannot be matched by energy production and power grid updateModeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators

Paris-Sud XI, Université de

350

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 #12;#12;111 Impacts of changes log demand in 1995. The composites board mills operating in Korea took advantage of flexibility environment changes on the production mix, some economic indications, statistics of demand and supply of wood

351

Response to changes in demand/supply  

E-Print Network [OSTI]

Response to changes in demand/supply through improved marketing 21.2 http with the mill consuming 450 000 m3 , amounting to 30% of total plywood log demand in 1995. The composites board, statistics of demand and supply of wood, costs and competitiveness were analysed. The reactions

352

Energy demand forecasting: industry practices and challenges  

Science Journals Connector (OSTI)

Accurate forecasting of energy demand plays a key role for utility companies, network operators, producers and suppliers of energy. Demand forecasts are utilized for unit commitment, market bidding, network operation and maintenance, integration of renewable ... Keywords: analytics, energy demand forecasting, machine learning, renewable energy sources, smart grids, smart meters

Mathieu Sinn

2014-06-01T23:59:59.000Z

353

Software: DIF3D - Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

D D Software: ETOE-2 MC2-2 SDX DIF3D DIF3DK VIM REBUS-3 RCT ORIGEN-RA VARI3D SE2-ANL (SUPERENERGY2) SAS4A/SASSYS-1 SAS-DIF3DK MSET PRODIAG Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Software DIF3D (Diffusion and Transport Theory Codes) Bookmark and Share Standard Code Description NAME AND TITLE DIF3D 10.0: Code System Using Variational Nodal Methods and Finite Difference Methods to Solve Neutron Diffusion and Transport Theory Problems. CONTRIBUTOR K. L. Derstine Nuclear Engineering Division Argonne National Laboratory, Argonne, Illinois 60439. CODING LANGUAGE AND COMPUTER Fortran 90 and C source code for Linux PCs, MacOSX and SUN, (C00784MNYCP00).

354

Flexible system development strategies for the Chuo Shinkansen Maglev Project : dealing with uncertain demand and R&D outcomes  

E-Print Network [OSTI]

As a large-scale, long-term transportation project, the Chuo Shinkansen Maglev Project in Japan includes various uncertainties. Among them, two major uncertainties are identified in this thesis: the uncertainty of demand ...

Ishii, Masaki, S.M. Massachusetts Institute of Technology

2007-01-01T23:59:59.000Z

355

Energy demand and population changes  

SciTech Connect (OSTI)

Since World War II, US energy demand has grown more rapidly than population, so that per capita consumption of energy was about 60% higher in 1978 than in 1947. Population growth and the expansion of per capita real incomes have led to a greater use of energy. The aging of the US population is expected to increase per capita energy consumption, despite the increase in the proportion of persons over 65, who consume less energy than employed persons. The sharp decline in the population under 18 has led to an expansion in the relative proportion of population in the prime-labor-force age groups. Employed persons are heavy users of energy. The growth of the work force and GNP is largely attributable to the growing participation of females. Another important consequence of female employment is the growth in ownership of personal automobiles. A third factor pushing up labor-force growth is the steady influx of illegal aliens.

Allen, E.L.; Edmonds, J.A.

1980-12-01T23:59:59.000Z

356

Robust transportation network design under user equilibrium  

E-Print Network [OSTI]

We address the problem of designing a transportation network in the presence of demand uncertainty, multiple origin-destination pairs and a budget constraint for the overall construction cost, under the behavioral assumption ...

Lu, Yun

2007-01-01T23:59:59.000Z

357

Argonne Transportation - 2005 Features Archive  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5 Features Archive 5 Features Archive South African Science Park Street Naming Michael Thackeray of Argonne National Laboratory's Chemical Engineering Division was recently honored as one of 11 notable South African scientists and innovators to have streets named after them in Pretoria's new Innovation Hub science park. (More...) Electrochemical Society Battery Division Research Award Michael Thackeray of Argonne National Laboratory received the 2005 Research Award of the Battery Division of the Electrochemical Society. The award was established in 1958 to recognize outstanding contributions to the science and technology of primary and secondary cells and batteries and fuel cells. (More...) SAE Barry D. McNutt Award for Excellence in Automotive Policy Analysis Steve Plotkin of Argonne's Center for Transportation Research was the winner of the Society for Automotive Engineers (SAE) 2005 Barry D. McNutt Award, which recognizes the importance of sound policy analysis and inspires members of the mobility community in government, industry and elsewhere to strive for excellence. (More...)

358

LEDSGP/Transportation Toolkit/Strategies/Avoid | Open Energy Information  

Open Energy Info (EERE)

LEDSGP/Transportation Toolkit/Strategies/Avoid LEDSGP/Transportation Toolkit/Strategies/Avoid < LEDSGP‎ | Transportation Toolkit‎ | Strategies(Redirected from Transportation Toolkit/Strategies/Avoid) Jump to: navigation, search LEDSGP Logo.png Transportation Toolkit Home Tools Training Contacts Avoid, Shift, Improve Framework The avoid, shift, improve (ASI) framework enables development stakeholders to holistically design low-emission transport strategies by assessing opportunities to avoid the need for travel, shift to less carbon-intensive modes, and improve on conventional technologies, infrastructure, and policies. Avoid Trips and Reduce Travel Demand Transportation Assessment Toolkit Bikes Spain licensed cropped.jpg Avoid trips taken and reduce travel demand by integrating land use planning, transport infrastructure planning, and transport demand

359

Electricity demand analysis - unconstrained vs constrained scenarios  

Science Journals Connector (OSTI)

In India, the electricity systems are chronically constrained by shortage of both capital and energy resources. These result in rationing and interruptions of supply with a severely disrupted electricity usage pattern. From this background, we try to analyse the demand patterns with and without resource constraints. Accordingly, it is necessary to model appropriately the dynamic nature of electricity demand, which cannot be captured by methods like annual load duration curves. Therefore, we use the concept - Representative Load Curves (RLCs) - to model the temporal and structural variations in demand. As a case study, the electricity system of the state of Karnataka in India is used. Four years demand data, two unconstrained and two constrained, are used and RLCs are developed using multiple discriminant analysis. It is found that these RLCs adequately model the variations in demand and bring out distinctions between unconstrained and constrained demand patterns. The demand analysis attempted here helped to study the differences in demand patterns with and without constraints, and the success of rationing measures in reducing demand levels as well as greatly disrupting the electricity usage patterns. Multifactor ANOVA analyses are performed to find out the statistical significance of the ability of logically obtained factors in explaining overall variations in demand. The results showed that the factors that are taken into consideration accounted for maximum variations in demand at very high significance levels.

P. Balachandra; V. Chandru; M.H. Bala Subrahmanya

2003-01-01T23:59:59.000Z

360

Energy and Environmental Systems Division 1981 research review  

SciTech Connect (OSTI)

To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems.

Not Available

1982-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Measurement and Verification for Demand Response  

Broader source: Energy.gov (indexed) [DOE]

Measurement and Verification for Measurement and Verification for Demand Response Prepared for the National Forum on the National Action Plan on Demand Response: Measurement and Verification Working Group AUTHORS: Miriam L. Goldberg & G. Kennedy Agnew-DNV KEMA Energy and Sustainability National Forum of the National Action Plan on Demand Response Measurement and Verification for Demand Response was developed to fulfill part of the Implementation Proposal for The National Action Plan on Demand Response, a report to Congress jointly issued by the U.S. Department of Energy (DOE) and the Federal Energy Regulatory Commission (FERC) in June 2011. Part of that implementation proposal called for a "National Forum" on demand response to be conducted by DOE and FERC. Given that demand response has matured, DOE and FERC decided that a "virtual" project

362

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: 4: Vol. 5, No. 4 Cool Colors Project: Improved Materials for Cooler Roofs BVAMP: Simplifying Assessment of Building Vulnerability NARAC Expands its Reach: Minimize Chemical-Biological Weapons Casualties How to Buy Green Power New Federal Efficiency Standards for Residential Furnaces and Boilers: EETD Researchers Estimate Potential Impacts Research Highlights Sources and Credits PDF of EETD News Cool Colors Project: Improved Materials for Cooler Roofs Drawing of a house with a cool roof Roofs and the rainbow of colors used in roofing materials are getting cooler and cooler, thanks to research by scientists in the Lawrence Berkeley National Laboratory (Berkeley Lab) Environmental Energy Technologies Division (EETD). The cooler roofs get, the more energy and money they save. A new research program in cool materials is developing the

363

Awards: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Awards Awards Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Awards Bookmark and Share Printable Awards List (252 KB) NE employees received several honors and awards for their contributions to scientific research. Below is a list of awards from 1980 until today. The list is also available in PDF format.

364

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Highlights Research Highlights Research Highlights Berkeley Lab Researchers Share in 2013 Supercomputing Award International Supercomputing Conference In June, at the International Scientific Computing Conference in Leipzig, Germany, the German Gauss Center for Supercomputing bestowed its 2013 Gauss Award to a paper titled "TUE, A New Energy-Efficiency Metric Applied at ORNL's Jaguar." Authors of the paper included Environmental Energy Technologies Division researchers William Tschudi and Henry Coles, along with other Members of the Energy Efficient High Performance Computing Working Group (EE HPC WG): Michael K. Patterson (Intel), Stephen W. Poole, Chung-Hsing Hsu, and Don Maxwell (Oak Ridge National Laboratory), David J. Martinez (Sandia National Laboratories), and Natalie Bates (EE HPC WG). The

365

Ramesh Gupta | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ramesh Gupta Ramesh Gupta Ramesh Gupta has always been a leader in the world of superconducting magnets, which are essential to great modern accelerators such as the Relativistic Heavy Ion Collider at BNL, and the Large Hadron Collider at CERN, Switzerland. For the past decade, Lab researchers have been exploring the use of new materials that become superconducting at higher temperatures. Gupta, head of the High Temperature Superconductor (HTS) Research and Development Group in the Superconducting Magnet Division, is among those exploring avenues for HTS magnets that are energy efficient and have magnetic fields that are a million times stronger than the Earth's. These new magnets could revolutionize use in future accelerators, play a key role in energy efficiency and storage, and make possible new

366

Argonne Physics Division - Theory Group  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Special Day & Time: Special Day & Time: 10:30am Tues. 19 March 2013 Alessandro Lovato Argonne Leadership Computing Facility and Physics Division lovato@anl.gov Weak Response of Cold Symmetric Nuclear Matter at Three-Body Cluster Level 24 January 2013 Elmar Biernat Universidade TĂ©cnica de Lisboa, Portugal elmar.biernat@ist.utl.pt Meson properties from two different covariant approaches Special Day: Tues. 22 January 2013 Guillaume Hupin Lawrence Livermore National Lab hupin1@llnl.gov Continuum effects in nuclear structure and reactions Special Day & Time: 10:30am, Tues. 15 January 2013 Kyle Wendt Ohio State University wendt.31@osu.edu Non-Locality in the Similarity Renormalization Group Special Time: 10:30am 10 January 2013 Vojtech Krejcirik University of Maryland vkrejcir@umd.edu

367

RHIC Project | Superconducting Magnet Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RHIC Project RHIC Project The Superconducting Magnet Division supplied 1740 magnetic elements, in 888 cryostats, for the RHIC facility at BNL. Of these, 780 magnetic elements were manufactured by Northrop-Grumman (Bethpage, NY) and 360 were made by Everson Electric (Bethlehem, PA). The magnets made in industry used designs developed at BNL. The first cooldown of the magnets for the RHIC engineering run was in 1999. Since then, the magnets have operated very reliably. arc dipole coil and yoke Arc dipole coil and yoke, with magnetic flux lines The magnets provide modest field (3.45 Teslas in the arc dipoles) in a cost-effective design. Key features in the principal bending and focusing magnets include the use of NbTi Rutherford cable, a single-layer coil, and cold iron as both yoke and collar. The magnets operate in forced-flow

368

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

new three-year public-private research initiative, which new three-year public-private research initiative, which will target substantial reductions in the $100 billion spent annually in energy costs for commercial buildings, has been launched under the leadership of Environmental Energy Technologies Division scientists. More than $13 million in research funding has been pledged by the California Energy Com- mission (CEC), the DOE, private sector partners, and Pacific Gas & Electric. EETD has assembled a team of 14 public and private sector partners to carry out the varied tasks within the High-Per- formance Commercial Buildings Systems Program. The program will develop new information technologies to design, commission, and operate buildings, and integrated design techniques to generate substantial and sustained energy savings

369

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

2001: 2001: Vol. 2, No. 4 The California Energy Crisis: A Brief Summary of Events The California Energy Crisis: Long-and Short-Term Solutions High-Performance Commercial Building Systems Supporting the Cool Roofs Standard Meteorology, Energy, and Air Quality High-Performance Fume Hood Reduces Energy Use 50% The New Berkeley Lamp Lights the Way to Energy Savings Two Web Sites Help Californians Save Energy Research Highlights Sources and Credits PDF of EETD News The California Energy Crisis: A Brief Summary of Events Editor's Note: This special issue of EETD News examines the California energy crisis of 2001, and research and development underway at the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory focused on helping to solve the crisis, both in the short and

370

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ecent concern about the risks to human ecent concern about the risks to human health from airborne particulates such as those in diesel exhaust has motivated a group at the Environmental Energy Technologies Division to investigate the use of scattered polar- ized light. The goals are to characterize these particles and develop an instrument to measure these characteristics in real time. Having such an instrument can help regulatory authorities devel- op standards and monitor air quality. Airborne particulates, especially those less than 2.5 micrometers (”m) in diameter, are known to be a major human health risk. Diesel exhaust particles are principally in this size range; they are also a major source of reduced visibility in populated areas. California recently declared particulates in diesel exhaust a haz-

371

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Q&A with Cindy Regnier, Manager of the Facility for Low-Energy A Q&A with Cindy Regnier, Manager of the Facility for Low-Energy eXperiments in Buildings (FLEXLAB) The Facility for Low-Energy eXperiments in Buildings (FLEXLAB) is designed to be a national focal point for developing, simulating, and testing energy-efficient technologies and strategies for buildings. FLEXLAB users will conduct research and develop technologies at FLEXLAB on single components as well as whole-building integrated design and operation. This research is aimed at substantially lowering the energy use, and improving the comfort and performance, of both new and existing buildings. FLEXLAB is a facility of Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division (EETD). Artist's conception of a portion of the FLEXLAB facility

372

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5: 5: Vol. 6, No. 2 Electricity Prices and the Tariff Analysis Project (TAP) Reducing Developing World's Polluting Fuel-Based Lighting United Nations World Environment Day June 1-5, 2005 First Energy-Efficient, LED-Based Task Lamp Brought to Market BEST Winery Tool Helps Reduce Energy and Water Costs Energy-saving Paper Sensor Passes Major Milestone Technology Transfer Research Highlights Sources and Credits PDF of EETD News TAP logo Electricity Prices and the Tariff Analysis Project (TAP) Much of the work done in the Environmental Energy Technologies Division (EETD) at Lawrence Berkeley National Laboratory (Berkeley Lab) involves analyzing the costs and benefits of energy-saving technologies and energy-efficiency measures. For the consumer, who pays to implement these

373

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Data Center Energy Efficiency Project Wins Best of California Award Data Center Energy Efficiency Project Wins Best of California Award A project to improve the energy efficiency of the State of California Franchise Tax Board's data center has won a "Best of California" Award from the Center for Digital Government. Geoffrey Bell, Energy Engineer at Lawrence Berkeley National Laboratory's Environmental Energy Technologies Division, led the project team. Two men standing in a data center. The research was funded by the California Energy Commission's Public Interest Energy Research (PIER) program, and other participants included Federspiel Controls, Inc., Emerson Network Power, and California's Department of General Services. The Franchise Tax Board (FTB) is the California agency responsible for collecting state taxes. Its 10,000-square-foot data center in Sacramento

374

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study Finds No Evidence of Residential Property Value Impacts Study Finds No Evidence of Residential Property Value Impacts Near U.S. Wind Turbines Lawrence Berkeley National Laboratory (Berkeley Lab) analyzed more than 50,000 home sales near 67 wind facilities in 27 counties across nine U.S. states, yet was unable to uncover any impacts to nearby home property values. "This is the second of two major studies we have conducted on this topic [the first was published in 2009-see below], and in both studies [using two different datasets] we find no statistical evidence that operating wind turbines have had any measureable impact on home sales prices," says Ben Hoen, the lead author of the new report. Hoen is a researcher in the Environmental Energy Technologies Division of Berkeley Lab. The new study used a number of sophisticated techniques to control for

375

Laboratory I | Nuclear Physics Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CERN 73-11 CERN 73-11 Laboratory I | Nuclear Physics Division a 24 September 1973 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIGH-ACCURACY MEASUREMENTS OF THE CENTRE OF GRAVITY OF AVALANCHES IN PROPORTIONAL CHAMBERS G. Charpak, A. Jeavons, F. Sauli and R. Stubbs G E N E V A 1973 © Copyright CERN, Geneve, 1973 Propriety litteraire et scientiflque reservee pour tous les pays du monde Ce document ne peut etre reproduit ou traduit en tout ou en partie sans Tautonsation 6cnte du Directeur g6n6ral du CERN, titulaire du droit d'auteur. Dans les cas appropnes, et s'll s'agit d'utiliser le document a des fins non commerciales, cette autonsation sera volontiers accorded. Le CERN ne revendique pas la propnete des

376

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1 Energy-Efficient Direct- Current Powering Technology 3 Laser Ultrasonic Sensor Wins R&D 100 5 Silver Anomalies in Jerusalem Pottery 7 GSA's Cool Coup at the Philadelphia Custom House 9 Tech Transfer Column 11 Research Highlights 12 Darfur Stoves Effort in PrRgress In this Issue In this Issue Researchers in the Lawrence Berkeley National Laboratory (Berkeley Lab) Environmental Energy Technologies Division (EETD) have teamed with Silicon Valley giants, including Sun Microsystems, Intel, and Cisco, to demonstrate technologies that could save billions of dollars a year in data center energy costs as well as improve data center reliability and lengthen equipment life. The demonstration took place this summer at a test facility at Sun Microsystems

377

Assumptions to the Annual Energy Outlook 1999 - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

commercial.gif (5196 bytes) commercial.gif (5196 bytes) The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2020. The definition of the commercial sector is consistent with EIA’s State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings, however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

378

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes  

E-Print Network [OSTI]

Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

Sastry, S. Shankar

379

US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier  

E-Print Network [OSTI]

that energy intensity is not necessarily a good indicator of energy efficiency, whereas by controllingUS Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

380

School of Social Sciences Division of Psychology  

E-Print Network [OSTI]

School of Social Sciences Division of Psychology Spring / Summer 2010 Welcome to the Psychological the Psychological Well-being and Mental Health (PWMH) Research Group; a collection of researchers working in the Division of Psychology at Nottingham Trent University. The newsletter will come out twice a year, in spring

Evans, Paul

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Materials Sciences Division 1990 annual report  

SciTech Connect (OSTI)

This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

Not Available

1990-12-31T23:59:59.000Z

382

Hui-Hai Liu Earth Sciences Division  

E-Print Network [OSTI]

1 Hui-Hai Liu Earth Sciences Division Ernest Orlando Lawrence Berkeley National Laboratory (LBNL, Department of Hydrogeology, Earth Sciences Division, Ernest Orlando Lawrence Berkeley National Laboratory Scientist (2004-present), Ernest Orlando Lawrence Berkeley National Laboratory. #12;2 1995-1997, Research

Ajo-Franklin, Jonathan

383

Fixed Income Division Nomura International plc  

E-Print Network [OSTI]

Fixed Income Division © Nomura International plc Symmetry methods for quadratic Gaussian models International plc Outline Motivation The quadratic Gaussian distribution The quadratic Gaussian process The quadratic Gaussian model #12;Fixed Income Division 3© Nomura International plc Part 1 Motivation #12;Fixed

Macrina, Andrea

384

Computer Security Division 2009 Annual Report  

E-Print Network [OSTI]

Security 12 Smart Grid Cyber Security 13 Supply Chain Risk Management 13 Cryptographic Validation Programs Computing Project 36 Policy Machine 36 Security for Grid and Pervasive Systems 38 Security OntologiesComputer Security Division 2009 Annual Report #12;Table of Contents Welcome 1 Division

385

Table of Contents Division Organization 2  

E-Print Network [OSTI]

National Initiative for Cybersecurity Education (NICE) 12 Smart Grid Cyber Security 13 Supply Chain Risk Security and Forensics 33 NIST Cloud Computing Project 34 Policy Machine 35 Security for Grid#12;2002 Table of Contents Welcome 1 Division Organization 2 The Computer Security Division

386

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 of this administrative procedure has been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event

Mohaghegh, Shahab

387

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Access been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

388

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Employment been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

389

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

Mohaghegh, Shahab

390

West Virginia University Division of Human Resources  

E-Print Network [OSTI]

on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 3 Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted

Mohaghegh, Shahab

391

Nuclear Engineering Division Irradiated Materials Laboratory  

E-Print Network [OSTI]

Nuclear Engineering Division Irradiated Materials Laboratory The Irradiated Materials Laboratory (IML) in Argonne's Nuclear Engineering Division is used to conduct research on the behavior. #12;C O N TA C T > Dr. Michael C. Billone | 630-252-7146 | billone@anl.gov | Nuclear Engineering

Kemner, Ken

392

The Division of Biology & Biomedical Sciences  

E-Print Network [OSTI]

The Division of Biology & Biomedical Sciences what will you discover? #12;what will you discover and Biomedical Sciences Washington University in St. Louis dbbs.wustl.edu On the cover: Moshi Song (left of other disciplines. The Division of Biology and Biomedical Sciences is ideally positioned to foster

Stormo, Gary

393

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

energy efficiency savings that are achieved through monitoring- based commissioning, as well as documenting best practicesEnergy Efficiency Alliance Sue Gander Director, Environment, Energy, and Natural Resources Division National Governors Association—Center for Best Practices

Goldman, Charles

2010-01-01T23:59:59.000Z

394

EIA-Assumptions to the Annual Energy Outlook - Commercial Demand Module  

Gasoline and Diesel Fuel Update (EIA)

Commercial Demand Module Commercial Demand Module Assumptions to the Annual Energy Outlook 2007 Commercial Demand Module The NEMS Commercial Sector Demand Module generates forecasts of commercial sector energy demand through 2030. The definition of the commercial sector is consistent with EIA's State Energy Data System (SEDS). That is, the commercial sector includes business establishments that are not engaged in transportation or in manufacturing or other types of industrial activity (e.g., agriculture, mining or construction). The bulk of commercial sector energy is consumed within buildings; however, street lights, pumps, bridges, and public services are also included if the establishment operating them is considered commercial. Since most of commercial energy consumption occurs in buildings, the commercial module relies on the data from the EIA Commercial Buildings Energy Consumption Survey (CBECS) for characterizing the commercial sector activity mix as well as the equipment stock and fuels consumed to provide end use services.12

395

U.S. Regional Demand Forecasts Using NEMS and GIS  

SciTech Connect (OSTI)

The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

2005-07-01T23:59:59.000Z

396

Chemical and Laser Sciences Division annual report 1989  

SciTech Connect (OSTI)

The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

Haines, N. (ed.)

1990-06-01T23:59:59.000Z

397

Addressing the Need for Alternative Transportation Fuels: The Joint BioEnergy Institute  

SciTech Connect (OSTI)

Today, carbon-rich fossil fuels, primarily oil, coal, and natural gas, provide 85% of the energy consumed in the U.S. As world demand increases, oil reserves may become rapidly depleted. Fossil fuel use increases CO{sub 2} emissions and raises the risk of global warming. The high energy content of liquid hydrocarbon fuels makes them the preferred energy source for all modes of transportation. In the U.S. alone, transportation consumes >13.8 million barrels of oil per day and generates 0.5 gigatons of carbon per year. This release of greenhouse gases has spurred research into alternative, nonfossil energy sources. Among the options (nuclear, concentrated solar thermal, geothermal, hydroelectric, wind, solar, and biomass), only biomass has the potential to provide a high-energy-content transportation fuel. Biomass is a renewable resource that can be converted into carbon-neutral transporation fuels. Currently, biofuels such as ethanol are produced largely from grains, but there is a large, untapped resource (estimated at more than a billion tons per year) of plant biomass that could be utilized as a renewable, domestic source of liquid fuels. Well-established processes convert the starch content of the grain into sugars that can be fermented to ethanol. The energy efficiency of starch-based biofuels is however not optimal, while plant cell walls (lignocellulose) represent a huge untapped source of energy. Plant-derived biomass contains cellulose, which is more difficult to convert to sugars; hemicellulose, which contains a diversity of carbohydrates that have to be efficiently degraded by microorganisms to fuels; and lignin, which is recalcitrant to degradation and prevents cost-effective fermentation. The development of cost-effective and energy-efficient processes to transform lignocellulosic biomass into fuels is hampered by significant roadblocks, including the lack of specifically developed energy crops, the difficulty in separating biomass components, low activity of enzymes used to deconstruct biomass, and the inhibitory effect of fuels and processing byproducts on organisms responsible for producing fuels from biomass monomers. The Joint BioEnergy Institute (JBEI) is a U.S. Department of Energy (DOE) Bioenergy Research Center that will address these roadblocks in biofuels production. JBEI draws on the expertise and capabilities of three national laboratories (Lawrence Berkeley National Laboratory (LBNL), Sandia National Laboratories (SNL), and Lawrence Livermore National Laboratory (LLNL)), two leading U.S. universities (University of California campuses at Berkeley (UCB) and Davis (UCD)), and a foundation (Carnegie Institute for Science, Stanford) to develop the scientific and technological base needed to convert the energy stored in lignocellulose into transportation fuels and commodity chemicals. Established scientists from the participating organizations are leading teams of researchers to solve the key scientific problems and develop the tools and infrastructure that will enable other researchers and companies to rapidly develop new biofuels and scale production to meet U.S. transportation needs and to develop and rapidly transition new technologies to the commercial sector. JBEI's biomass-to-biofuels research approach is based in three interrelated scientific divisions and a technologies division. The Feedstocks Division will develop improved plant energy crops to serve as the raw materials for biofuels. The Deconstruction Division will investigate the conversion of this lignocellulosic plant material to sugar and aromatics. The Fuels Synthesis Division will create microbes that can efficiently convert sugar and aromatics into ethanol and other biofuels. JBEI's cross-cutting Technologies Division will develop and optimize a set of enabling technologies including high-throughput, chipbased, and omics platforms; tools for synthetic biology; multi-scale imaging facilities; and integrated data analysis to support and integrate JBEI's scientific program.

Blanch, Harvey; Adams, Paul; Andrews-Cramer, Katherine; Frommer, Wolf; Simmons, Blake; Keasling, Jay

2008-01-18T23:59:59.000Z

398

OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS  

E-Print Network [OSTI]

i OUTDOOR RECREATION DEMAND AND EXPENDITURES: LOWER SNAKE RIVER RESERVOIRS John R. Mc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v SECTION ONE - OUTDOOR RECREATION DEMAND . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Recreation Demand Methods

O'Laughlin, Jay

399

LEED Demand Response Credit: A Plan for Research towards Implementation  

E-Print Network [OSTI]

C. McParland, Open Automated Demand Response Communicationsand Open Automated Demand Response", Grid Interop Forum,Testing of Automated Demand Response for Integration of

Kiliccote, Sila

2014-01-01T23:59:59.000Z

400

Demand Response Opportunities in Industrial Refrigerated Warehouses in California  

E-Print Network [OSTI]

and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

Goli, Sasank

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

Piette, Mary Ann

2009-01-01T23:59:59.000Z

402

Northwest Open Automated Demand Response Technology Demonstration Project  

E-Print Network [OSTI]

reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

Kiliccote, Sila

2010-01-01T23:59:59.000Z

403

Open Automated Demand Response Communications Specification (Version 1.0)  

E-Print Network [OSTI]

and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

Piette, Mary Ann

2009-01-01T23:59:59.000Z

404

Open Automated Demand Response for Small Commerical Buildings  

E-Print Network [OSTI]

of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

Dudley, June Han

2009-01-01T23:59:59.000Z

405

Scenarios for Consuming Standardized Automated Demand Response Signals  

E-Print Network [OSTI]

of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

Koch, Ed

2009-01-01T23:59:59.000Z

406

Demand Response in U.S. Electricity Markets: Empirical Evidence  

E-Print Network [OSTI]

Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

Cappers, Peter

2009-01-01T23:59:59.000Z

407

Direct versus Facility Centric Load Control for Automated Demand Response  

E-Print Network [OSTI]

Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

Piette, Mary Ann

2010-01-01T23:59:59.000Z

408

Open Automated Demand Response Dynamic Pricing Technologies and Demonstration  

E-Print Network [OSTI]

Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

Ghatikar, Girish

2010-01-01T23:59:59.000Z

409

Modeling, Analysis, and Control of Demand Response Resources  

E-Print Network [OSTI]

advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

Mathieu, Johanna L.

2012-01-01T23:59:59.000Z

410

Coordination of Retail Demand Response with Midwest ISO Markets  

E-Print Network [OSTI]

Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

Bharvirkar, Ranjit

2008-01-01T23:59:59.000Z

411

Opportunities, Barriers and Actions for Industrial Demand Response in California  

E-Print Network [OSTI]

13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

McKane, Aimee T.

2009-01-01T23:59:59.000Z

412

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

THE ROLE OF DEMAND RESPONSE IN DEFAULT SERVICE PRICING Galenfor providing much-needed demand response in electricitycompetitive retail markets, demand response often appears to

Barbose, Galen; Goldman, Chuck; Neenan, Bernie

2006-01-01T23:59:59.000Z

413

The Role of Demand Response in Default Service Pricing  

E-Print Network [OSTI]

and coordinated by the Demand Response Research Center onThe Role of Demand Response in Default Service Pricing Galenfor providing much-needed demand response in electricity

Barbose, Galen; Goldman, Charles; Neenan, Bernie

2008-01-01T23:59:59.000Z

414

Linking Continuous Energy Management and Open Automated Demand Response  

E-Print Network [OSTI]

description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

Piette, Mary Ann

2009-01-01T23:59:59.000Z

415

India Energy Outlook: End Use Demand in India to 2020  

E-Print Network [OSTI]

Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

de la Rue du Can, Stephane

2009-01-01T23:59:59.000Z

416

Definition: Demand Side Management | Open Energy Information  

Open Energy Info (EERE)

Side Management Side Management Jump to: navigation, search Dictionary.png Demand Side Management The term for all activities or programs undertaken by Load-Serving Entity or its customers to influence the amount or timing of electricity they use.[1] View on Wikipedia Wikipedia Definition Energy demand management, also known as demand side management (DSM), is the modification of consumer demand for energy through various methods such as financial incentives and education. Usually, the goal of demand side management is to encourage the consumer to use less energy during peak hours, or to move the time of energy use to off-peak times such as nighttime and weekends. Peak demand management does not necessarily decrease total energy consumption, but could be expected to reduce the need

417

Electricity Demand and Energy Consumption Management System  

E-Print Network [OSTI]

This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

Sarmiento, Juan Ojeda

2008-01-01T23:59:59.000Z

418

Distributed Intelligent Automated Demand Response (DIADR) Building  

Broader source: Energy.gov (indexed) [DOE]

Distributed Intelligent Automated Demand Distributed Intelligent Automated Demand Response (DIADR) Building Management System Distributed Intelligent Automated Demand Response (DIADR) Building Management System The U.S. Department of Energy (DOE) is currently conducting research into distributed intelligent-automated demand response (DIADR) building management systems. Project Description This project aims to develop a DIADR building management system with intelligent optimization and control algorithms for demand management, taking into account a multitude of factors affecting cost including: Comfort Heating, ventilating, and air conditioning (HVAC) Lighting Other building systems Climate Usage and occupancy patterns. The key challenge is to provide the demand response the ability to address more and more complex building systems that include a variety of loads,

419

Earth Sciences Division Research Summaries 2006-2007  

E-Print Network [OSTI]

the commencement of the Earth Sciences Division 30 yearstelling. Happy Anniversary! Earth Sciences Division ears YTritium in Engineered and Earth Materials Stefan Finsterle,

DePaolo, Donald

2008-01-01T23:59:59.000Z

420

Alaska Division of Water Permit Fees | Open Energy Information  

Open Energy Info (EERE)

Web Site: Alaska Division of Water Permit Fees Author Alaska Division of Water Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability:...

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

The Retail Planning Problem under Demand Uncertainty.  

E-Print Network [OSTI]

and Rajaram K. , (2000), “Accurate Retail Testing of FashionThe Retail Planning Problem Under Demand Uncertainty GeorgeAbstract We consider the Retail Planning Problem in which

Georgiadis, G.; Rajaram, K.

2012-01-01T23:59:59.000Z

422

Retail Demand Response in Southwest Power Pool  

E-Print Network [OSTI]

17 6. Barriers to Retail23 ii Retail Demand Response in SPP List of Figures and6 Table 3. SPP Retail DR Survey

Bharvirkar, Ranjit

2009-01-01T23:59:59.000Z

423

Coordination of Energy Efficiency and Demand Response  

E-Print Network [OSTI]

water heaters with embedded demand responsive controls can be designed to automatically provide day-ahead and real-time response

Goldman, Charles

2010-01-01T23:59:59.000Z

424

Distributed Automated Demand Response - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Find More Like This Return to Search Distributed Automated Demand Response Lawrence Livermore National Laboratory Contact LLNL About This Technology...

425

Demand Response (transactional control) - Energy Innovation Portal  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transmission Electricity Transmission Find More Like This Return to Search Demand Response (transactional control) Pacific Northwest National Laboratory Contact PNNL About...

426

Regulation Services with Demand Response - Energy Innovation...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Regulation Services with Demand Response Pacific Northwest National Laboratory Contact PNNL About This Technology Using grid frequency information, researchers have created...

427

Topics in Residential Electric Demand Response.  

E-Print Network [OSTI]

??Demand response and dynamic pricing are touted as ways to empower consumers, save consumers money, and capitalize on the “smart grid” and expensive advanced meter… (more)

Horowitz, Shira R.

2012-01-01T23:59:59.000Z

428

Maximum-Demand Rectangular Location Problem  

E-Print Network [OSTI]

Oct 1, 2014 ... Demand and service can be defined in the most general sense. ... Industrial and Systems Engineering, Texas A&M University, September 2014.

Manish Bansal

2014-10-01T23:59:59.000Z

429

Coupling Renewable Energy Supply with Deferrable Demand  

E-Print Network [OSTI]

in the presence of renewable resources and on the amount ofprimarily from renewable resources, and to a limited extentintegration of renewable resources and deferrable demand. We

Papavasiliou, Anthony

2011-01-01T23:59:59.000Z

430

Basic Theory of Demand-Side Management  

Science Journals Connector (OSTI)

Demand-Side Management (DSM) is pivotal in Integrated Resource ... to realize sustainable development, and advanced energy management activity. A project can be implemented only...

Zhaoguang Hu; Xinyang Han; Quan Wen

2013-01-01T23:59:59.000Z

431

Demand response at the Naval Postgraduate School .  

E-Print Network [OSTI]

??The purpose of this MBA project is to assist the Naval Postgraduate School's Public Works department to assimilate into a Demand Response program that will… (more)

Stouffer, Dean

2008-01-01T23:59:59.000Z

432

Demand response exchange in a deregulated environment .  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed… (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

433

Demand response exchange in a deregulated environment.  

E-Print Network [OSTI]

??This thesis presents the development of a new and separate market for trading Demand Response (DR) in a deregulated power system. This market is termed… (more)

Nguyen, DT

2012-01-01T23:59:59.000Z

434

Geographically Based Hydrogen Demand and Infrastructure Rollout...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

435

The National Energy Modeling System: An Overview 1998 - Transportation  

Gasoline and Diesel Fuel Update (EIA)

TRANSPORTATION DEMAND MODULE TRANSPORTATION DEMAND MODULE blueball.gif (205 bytes) Fuel Economy Submodule blueball.gif (205 bytes) Regional Sales Submodule blueball.gif (205 bytes) Alternative-Fuel Vehicle Submodule blueball.gif (205 bytes) Light-Duty Vehicle Stock Submodule blueball.gif (205 bytes) Vehicle-Miles Traveled (VMT) Submodule blueball.gif (205 bytes) Light-Duty Vehicle Commercial Fleet Submodule blueball.gif (205 bytes) Commercial Light Truck Submodule blueball.gif (205 bytes) Air Travel Demand Submodule blueball.gif (205 bytes) Aircraft Fleet Efficiency Submodule blueball.gif (205 bytes) Freight Transport Submodule blueball.gif (205 bytes) Miscellaneous Energy Use Submodule The transportation demand module (TRAN) forecasts the consumption of transportation sector fuels by transportation mode, including the use of

436

Land Division: Uniform Environmental Covenants Program (Alabama) |  

Broader source: Energy.gov (indexed) [DOE]

Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) Land Division: Uniform Environmental Covenants Program (Alabama) < Back Eligibility Agricultural Commercial Construction Fed. Government Industrial Local Government Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Alabama Program Type Environmental Regulations These regulations apply to environmental covenants arising from environmental response projects conducted under any of the following Alabama Department of Environmental Management programs: Scrap tire remediation sites, Soil and groundwater remediation sites, Leaking storage tank remediation sites, Solid waste disposal sites, Hazardous waste

437

Chemical Sciences Division annual report 1994  

SciTech Connect (OSTI)

The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

NONE

1995-06-01T23:59:59.000Z

438

Biology and Medicine Division: Annual report 1986  

SciTech Connect (OSTI)

The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

Not Available

1987-04-01T23:59:59.000Z

439

AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division  

Open Energy Info (EERE)

Delivered Prices by End-Use Sector and Census Division Delivered Prices by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 137, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural Gas Data application/vnd.ms-excel icon AEO2011: Natural Gas Delivered Prices by End-Use Sector and Census Division- Reference Case (xls, 140.7 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually

440

AEO2011: Natural Gas Consumption by End-Use Sector and Census Division |  

Open Energy Info (EERE)

Consumption by End-Use Sector and Census Division Consumption by End-Use Sector and Census Division Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 136, and contains only the reference case. This dataset is in trillion cubic feet. The data is broken down into residential, commercial, industrial, electric power and transportation. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Natural gas consumption Data application/vnd.ms-excel icon AEO2011: Natural Gas Consumption by End-Use Sector and Census Division- Reference Case (xls, 138.4 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ore and more, computer-based tools affect the design, ore and more, computer-based tools affect the design, construction, operation, and financing of commercial buildings. If properly deployed, an integrated set of such computer tools can help design, enhance, and maintain the operation of energy-efficient buildings. In addition to providing increased comfort and health and safety to the building's occu- pants, these tools should be interoperable throughout the build- ing life cycle, contributing substantially to overall reduced ener- gy demand and building performance. The Present Situation With national annual costs of more than $90 billion, commercial buildings account for 33% of electricity consumption. New build- ings consume roughly 25% less electricity than those construct- ed 20 years ago, but this reduction in energy use is far below

442

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3: 3: Vol. 11, No. 4 Deep Energy Retrofits Health-Based Ventilation Standard-Interview with Max Sherman Energy-Efficient School Districts Guide Nanometer Laser-Based Chemical Sensing Demand-to-Grid Lab Research Highlights Sources and Credits PDF of EETD News Saving 70 Percent or More of Energy Use in Your Home-Berkeley Lab Scientists Study the Deep Energy Retrofit Looking down on the roof of a beach house with solar panels. Houses in the deep energy retrofit study were a wide variety of types from an upgraded beach house... Cutting your home's energy use by more than two-thirds of what it presently uses is increasingly a topic of discussion, and a goal, in the home energy performance industry. While everyone from contractors to building researchers have been attempting and studying the so-called "deep energy

443

Environmental Energy Technologies Division News  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

4: 4: Vol. 5, No. 3 Dampness and Mold Growth in Buildings: A National Academy Study EETD to Operate Demand Response Research Center for California Energy Commission Transition-Metal Switchable Mirrors Win a 2004 R&D 100 Award TRAMS: A New Tracer Gas Airflow Measurement System Better Measurements of Carbon Aerosol Help Study Climate Effects Sources and Credits PDF of EETD News Dampness and Mold Growth in Buildings: A National Academy Study Figure 1. Mold in lab cultures (Photo courtesy of Mike McNickle) Figure 1. Mold in lab cultures (Photo courtesy of Mike McNickle) Mold growth in buildings and its possible effects on human health have been in the news for several years while claims against insurance companies for mold and moisture-related problems in buildings have been on the rise, as

444

FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007  

E-Print Network [OSTI]

......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

445

Nevada Division of Minerals | Open Energy Information  

Open Energy Info (EERE)

Nevada Division of Minerals Nevada Division of Minerals Jump to: navigation, search Logo: Nevada Division of Minerals Name Nevada Division of Minerals Address 400 W. King St. #106 Place Carson City, Nevada Zip 89703 Website http://minerals.state.nv.us/ Coordinates 39.16409°, -119.7699779° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.16409,"lon":-119.7699779,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Electronic Technology Support of Programmatic Divisions  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electronic Technology Support of Programmatic Divisions Electronic Technology Support of Programmatic Divisions Speaker(s): Brad Bingham Date: March 13, 2003 - 12:00pm Location: 90-3148 The Electronics Technology Group within the Engineering Division possesses a number capabilities and skilled staff that can provide support to projects within the programmatic Divisions. Different areas of expertise include electronic fabrication, prototyping, repair and maintenance of existing equipment and instrument calibration. Electronic fabrication capabilities are from the printed circuit board level to electronic packaging and equipment chassis builds to the large multi-rack control system level. The Electronics Technology Group also has a personnel matrix program to support projects with full time, part time or limited time

447

LANL | Earth and Environmental Sciences Division (EES)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Groups in EES Division Groups in EES Division The EES Division of Los Alamos National Laboratory is organized into four groups and the Institute of Geophysics and Planetary Physics (IGPP). The Groups are organized by their capabilities and expertise. Scientific advice is provided by the Science and Engineering Leadership Team (SELT), helping the EES technical staff become more effective at obtaining research and development funds. In late 2008, the EES Division was reorganized. Links to our former groups are available still. EES Organizational Chart Lab Organizational Chart (Internal Only) Repository Science (EES-12) Yucca Mountain Project and the Waste Isolation Pilot Plant Earth Systems Observations (EES-14) GGRL, Radiogeoprocesses, and Terrestrial Processes Computational Earth Sciences (EES-16)

448

UGI Utilities Electric Division | Open Energy Information  

Open Energy Info (EERE)

Utilities Electric Division Utilities Electric Division Jump to: navigation, search Logo: UGI Utilities Electric Division Name UGI Utilities Electric Division Address 2525 North 12th Street, Suite 360 Place Reading, Pennsylvania Zip 19605 Sector Services Product Green Power Marketer Website http://www.ugi.com/electric/in Coordinates 40.3746587°, -75.9149578° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.3746587,"lon":-75.9149578,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

Materials Sciences Division Integrated Safety Management Plan  

E-Print Network [OSTI]

..........................................................................................................................................2! 1.1 SAFETY CULTURE .......................................................4! 3. SAFETY RESPONSIBILITY, AUTHORITY, ACCOUNTABILITY AND A JUST CULTURE.........5! 3Materials Sciences Division Integrated Safety Management Plan Revised: February 9, 2012 Prepared by

450

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING  

E-Print Network [OSTI]

INDIVIDUAL DISCIPLINES: HUMAN RESOURCES DIVISION MARKETING AND RECRUITMENT CAMPAIGN STAFF .:|:. Client: Y. Mankin, Computing Sciences #12;DESIGN MAIN MENU 1 2 344 4 5WEBSITES Joint BioEnergy Institute

451

Physics Division: Los Alamos National Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Jeanette Gray Division Office TA-53, Building 0001, Room A228 (505) 667-4117 Physics Links Jobs in Physics Human Resources Working at Los Alamos Los Alamos resources...

452

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of electrolytes: IX, rare earth chlorides, nitrates, andU E OF AQUIFER RESPONSE TO EARTH TIDES AS A MEANS O F SLawrence Berkeley Laboratory, Earth Sciences Division, 1977.

Authors, Various

2012-01-01T23:59:59.000Z

453

ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT, 1977  

E-Print Network [OSTI]

for utilizing solar energy. One project, started this isprojects are funded by the DOE Division of Solar Energysolar energy retrofits of low-to-moderate cost homes, sixteen commercial solar demonstration projects,

Budnitz, R.J.

2011-01-01T23:59:59.000Z

454

Supervisory Physical Scientist (Safety Programs Division Director)  

Broader source: Energy.gov [DOE]

A successful candidate in this position will serve as the Director of the Safety Programs Division in the Office of Operations Oversight responsible for providing internal and independent oversight...

455

Energy Research and Development Division STAFF REPORT  

E-Print Network [OSTI]

Energy Research and Development Division STAFF REPORT NATURAL GAS RESEARCH AND DEVELOPMENT 2013 Annual Report CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor OCTOBER 2013 CEC5002013111 #12; CALIFORNIA ENERGY COMMISSION Linda Schrupp Primary Authors Prepared for: California

456

Robert C. Holub Undergraduate Division Dean  

E-Print Network [OSTI]

less than coherent, consisting of a handful of interdisciplinary undergraduate programs (the UGIS part is the location of these various programs. The UGIS majors are located within the division (except in one case

Mofrad, Mohammad R. K.

457

Director, Division of Economic and Technical Analysis  

Broader source: Energy.gov [DOE]

The Commission is seeking a highly qualified individual to provide leadership as the Director, Division of Economic and Technical Analysis within the Office of Energy Policy and Innovation. In this...

458

IBM research division cloud computing initiative  

Science Journals Connector (OSTI)

Cloud computing represents the latest phase in the evolution of Internet-based computing. In this paper, we describe the fundamental building blocks of cloud computing and the initiative undertaken by the IBM Research Division in this area, which includes ...

M. Naghshineh; R. Ratnaparkhi; D. Dillenberger; J. R. Doran; C. Dorai; L. Anderson; G. Pacifici; J. L. Snowdon; A. Azagury; M. VanderWiele; Y. Wolfsthal

2009-07-01T23:59:59.000Z

459

EARTH SCIENCES DIVISION ANNUAL REPORT 1978  

E-Print Network [OSTI]

of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andi a , Mexico, i n Geothermal energy: a n o v e l t y becomes

Authors, Various

2012-01-01T23:59:59.000Z

460

Chemical Sciences Division: Annual report 1992  

SciTech Connect (OSTI)

The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

Not Available

1993-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Professional Societies: Nuclear Engineering Division (Argonne)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

About the Division > Professional About the Division > Professional Societies Director's Welcome Organization Achievements Awards Patents Professional Societies Highlights Fact Sheets, Brochures & Other Documents Multimedia Library About Nuclear Energy Nuclear Reactors Designed by Argonne Argonne's Nuclear Science and Technology Legacy Opportunities within NE Division Visit Argonne Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Celebrating the 70th Anniversary of Chicago Pile 1 (CP-1) Argonne OutLoud on Nuclear Energy Argonne Energy Showcase 2012 Professional Societies Bookmark and Share Employees of the Nuclear Engineering Division are actively involved in many Professional Societies. Some of these are listed below. In addition, some NE employees have received the distinction of being named

462

Demand Response and Electric Grid Reliability  

E-Print Network [OSTI]

Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

Wattles, P.

2012-01-01T23:59:59.000Z

463

DEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT  

E-Print Network [OSTI]

of the response of travelers to real-time pre- trip information. The demand simulator is an extension of dynamicDEMAND SIMULATION FOR DYNAMIC TRAFFIC ASSIGNMENT Constantinos Antoniou, Moshe Ben-Akiva, Michel Bierlaire, and Rabi Mishalani Massachusetts Institute of Technology, Cambridge, MA 02139 Abstract

Bierlaire, Michel

464

A Vision of Demand Response - 2016  

SciTech Connect (OSTI)

Envision a journey about 10 years into a future where demand response is actually integrated into the policies, standards, and operating practices of electric utilities. Here's a bottom-up view of how demand response actually works, as seen through the eyes of typical customers, system operators, utilities, and regulators. (author)

Levy, Roger

2006-10-15T23:59:59.000Z

465

Incorporating Demand Response into Western Interconnection Transmission Planning  

E-Print Network [OSTI]

response DSM – Demand Side Management EE – energy efficiencywith the development of demand-side management (DSM)-related

Satchwell, Andrew

2014-01-01T23:59:59.000Z

466

Nuclear Science Division: 1993 Annual report  

SciTech Connect (OSTI)

This report describes the activities of the Nuclear Science Division for the 1993 calendar year. This was another significant year in the history of the Division with many interesting and important accomplishments. Activities for the following programs are covered here: (1) nuclear structure and reactions program; (2) the Institute for Nuclear and Particle Astrophysics; (3) relativistic nuclear collisions program; (4) nuclear theory program; (5) nuclear data evaluation program, isotope project; and (6) 88-inch cyclotron operations.

Myers, W.D. [ed.

1994-06-01T23:59:59.000Z

467

NO. REV. NO. Systems Division DATE  

E-Print Network [OSTI]

-~ NO. REV. NO. EATM-15 PAGE OF ~ Systems Division DATE EASEP /PSEP Solar Panel Development Design+"'--.:L'_;;;J....;::::::..··-=·~::!!:!!!e::...._ K. Hsi #12;NO. REV. NO. EATM-15 EASEP/PSEP Solar Panel Development ~ Systems Division Design of the EASE-PSEP Solar Panel Array~PA::G:,:E:..::=l=~o:F~=2=7= DATE 20 Nov. 1968 1. 0 SUMMARY Electrical power

Rathbun, Julie A.

468

Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

63E 63E Mass Market Demand Response and Variable Generation Integration Issues: A Scoping Study Peter Cappers, Andrew Mills, Charles Goldman, Ryan Wiser, Joseph H. Eto Environmental Energy Technologies Division October 2011 The work described in this report was funded by the Permitting, Siting and Analysis Division of the U.S. Department of Energy's Office of Electricity Delivery and Energy Reliability under Lawrence Berkeley National Laboratory Contract No. DE-AC02- 05CH11231. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Disclaimer This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the

469

Uranium 2009 resources, production and demand  

E-Print Network [OSTI]

With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

Organisation for Economic Cooperation and Development. Paris

2010-01-01T23:59:59.000Z

470

Transportation Services  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Transportation Services Transporting nuclear materials within the United States and throughout the world is a complicated and sometimes highly controversial effort requiring...

471

Local Transportation  

E-Print Network [OSTI]

Local Transportation. Transportation from the Airport to Hotel. There are two types of taxi companies that operate at the airport: special and regular taxis (

472

Coordination of Energy Efficiency and Demand Response  

SciTech Connect (OSTI)

This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

2010-01-29T23:59:59.000Z

473

Strategies for Demand Response in Commercial Buildings  

SciTech Connect (OSTI)

This paper describes strategies that can be used in commercial buildings to temporarily reduce electric load in response to electric grid emergencies in which supplies are limited or in response to high prices that would be incurred if these strategies were not employed. The demand response strategies discussed herein are based on the results of three years of automated demand response field tests in which 28 commercial facilities with an occupied area totaling over 11 million ft{sup 2} were tested. Although the demand response events in the field tests were initiated remotely and performed automatically, the strategies used could also be initiated by on-site building operators and performed manually, if desired. While energy efficiency measures can be used during normal building operations, demand response measures are transient; they are employed to produce a temporary reduction in demand. Demand response strategies achieve reductions in electric demand by temporarily reducing the level of service in facilities. Heating ventilating and air conditioning (HVAC) and lighting are the systems most commonly adjusted for demand response in commercial buildings. The goal of demand response strategies is to meet the electric shed savings targets while minimizing any negative impacts on the occupants of the buildings or the processes that they perform. Occupant complaints were minimal in the field tests. In some cases, ''reductions'' in service level actually improved occupant comfort or productivity. In other cases, permanent improvements in efficiency were discovered through the planning and implementation of ''temporary'' demand response strategies. The DR strategies that are available to a given facility are based on factors such as the type of HVAC, lighting and energy management and control systems (EMCS) installed at the site.

Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

2006-06-20T23:59:59.000Z

474

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand  

E-Print Network [OSTI]

Encryption-on-Demand, [EOD-g8516] Page #-1 Encryption-On-Demand: Practical and Theoretical be served by an 'encryption-on-demand' (EoD) service which will enable them to communicate securely with no prior preparations, and no after effects. We delineate a possible EoD service, and describe some of its

475

Employer Based Travel Demand Management -Devising Options to Meet Employee Travel Needs  

E-Print Network [OSTI]

Employer Based Travel Demand Management - Devising Options to Meet Employee Travel Needs Bruce for presentation at the 2002 Annual Conference of the Canadian Institute of Transportation Engineers to be held May to Meet Employee Travel Needs Bruce Hellinga1 , Charles Lee2 , James Mallett3 , JoAnn Woodhall4 ABSTRACT

Hellinga, Bruce

476

History of the Division of Agrochemicals 1976?2001  

Science Journals Connector (OSTI)

History of the Division of Agrochemicals 1976?2001 ... The Division of Agrochemicals began in 1951 as the Pesticides Subdivision in the Division of Agricultural and Food Chemistry. ... In 1985 the name was officially changed to the Division of Agrochemicals to encompass new approaches to pest control including biotechnology in addition to behavior- and growth-modifying chemicals. ...

Nancy N. Ragsdale

2001-12-26T23:59:59.000Z

477

Coordination of Energy Efficiency and Demand Response  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Coordination of Energy Efficiency and Demand Response Coordination of Energy Efficiency and Demand Response Title Coordination of Energy Efficiency and Demand Response Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Goldman, Charles A., Michael Reid, Roger Levy, and Alison Silverstein Pagination 74 Date Published 01/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department Abstract This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025.1 Improving energy efficiency in our homes, businesses, schools, governments, and industries-which consume more than 70 percent of the nation's natural gas and electricity-is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that "the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW" by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

478

Chamber transport  

SciTech Connect (OSTI)

Heavy ion beam transport through the containment chamber plays a crucial role in all heavy ion fusion (HIF) scenarios. Here, several parameters are used to characterize the operating space for HIF beams; transport modes are assessed in relation to evolving target/accelerator requirements; results of recent relevant experiments and simulations of HIF transport are summarized; and relevant instabilities are reviewed. All transport options still exist, including (1) vacuum ballistic transport, (2) neutralized ballistic transport, and (3) channel-like transport. Presently, the European HIF program favors vacuum ballistic transport, while the US HIF program favors neutralized ballistic transport with channel-like transport as an alternate approach. Further transport research is needed to clearly guide selection of the most attractive, integrated HIF system.

OLSON,CRAIG L.

2000-05-17T23:59:59.000Z

479

Demand Response This is the first of the Council's power plans to treat demand response as a resource.1  

E-Print Network [OSTI]

Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

480

Matveev-032212 - Argonne National Laboratories, Materials Sicence Division  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Matveev-032212 Matveev-032212 MATERIALS SCIENCE COLLOQUIUM SPEAKER: Dr. Konstantin Matveev Materials Science Division Argonne National Laboratory TITLE: "Equilibration of Electrons in Quantum Wires" DATE: Thursday, March 22, 2012 TIME: 11:00 a.m. PLACE: Building 212 / A-157 HOST: TBA Refreshments will be served at 10:45 a.m. ABSTRACT: I will discuss transport of electrons through one-dimensional conductors. Experiments show that at low temperatures conductance of such quantum wires takes the universal value of 2e2/h. Conductance quantization is well understood theoretically and is expected to persist as long as the temperature remains small compared to the Fermi energy. On the other hand, numerous experiments show that conductance of quantum wires acquires

Note: This page contains sample records for the topic "divisions transportation demand" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

LBNL-6280E A Fresh Look at Weather Impact on Peak Electricity Demand and  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

280E 280E A Fresh Look at Weather Impact on Peak Electricity Demand and Energy Use of Buildings Using 30- Year Actual Weather Data Tianzhen Hong 1 , Wen-kuei Chang 2 , Hung-Wen Lin 2 1 Environmental Energy Technologies Division 2 Green Energy and Environment Laboratories, Industrial Technology Research Institute, Taiwan, ROC May 2013 This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, the U.S.-China Clean Energy Research Center for Building Energy Efficiency, of the U.S. Department of Energy under Contract No. DE-AC02-

482

Health Care Demand, Empirical Determinants of  

Science Journals Connector (OSTI)

Abstract Economic theory provides a powerful but incomplete guide to the empirical determinants of health care demand. This article seeks to provide guidance on the selection and interpretation of demand determinants in empirical models. The author begins by introducing some general rules of thumb derived from economic and statistical principles. A brief review of the recent empirical literature next describes the range of current practices. Finally, a representative example of health care demand is developed to illustrate the selection, use, and interpretation of empirical determinants.

S.H. Zuvekas

2014-01-01T23:59:59.000Z

483

COMPUTER SIMULATION OF THE UMER ELECTRON GUN* I. Haber, Plasma Physics Division, Naval Research Laboratory, Washington, DC 20375  

E-Print Network [OSTI]

COMPUTER SIMULATION OF THE UMER ELECTRON GUN* I. Haber, Plasma Physics Division, Naval Research conducted with the aim of understanding the space-charge-dominated physics in the gun and injector transport is on simulating the beam propagation in the gun region between the cathode grid and the anode grid for comparison

Valfells, ÁgĂșst

484

Become an agent of change. The Division of Continuing Studies can help you develop a post-baccalaureate, non-traditional degree or  

E-Print Network [OSTI]

Become an agent of change. The Division of Continuing Studies can help you develop a post demand. We offer support in the following areas: Academic Planning We can help you through the entire related to your program. Marketing Strategy Our marketing strategists help you create unique marketing

Sheridan, Jennifer

485

PART III DIVISION 15 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL MAY 2007 DIVISION 15 MECHANICAL  

E-Print Network [OSTI]

) can be considered. 10. HVAC - Temperature Design Standards: a. The following inside design conditionsPART III DIVISION 15 PAGE 1 RUTGERS DESIGN STANDARDS MANUAL MAY 2007 DIVISION 15 ­ MECHANICAL be supplied to occupied spaces in accordance with the latest issue of ASHRAE Standard 62, Ventilation

486

Strategic Plan Progress Report Prepared by Energy Division,  

E-Print Network [OSTI]

Integrated Demand-Side Management (IDSM)............................................25 9 Workforce, Education

487

An Analysis of the Price Elasticity of Demand for Household Appliances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Analysis of the Price Elasticity of Demand for Analysis of the Price Elasticity of Demand for Household Appliances Larry Dale and K. Sydny Fujita February 2008 Energy Analysis Department Environmental Energy Technologies Division Lawrence Berkeley National Laboratory University of California Berkeley, CA 94720 DISCLAIMER This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not

488

NCEP_Demand_Response_Draft_111208.indd  

Broader source: Energy.gov (indexed) [DOE]

National Council on Electricity Policy: Electric Transmission Series for State Offi National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials Prepared by the U.S. Demand Response Coordinating Committee for The National Council on Electricity Policy Fall 2008 i National Council on Electricity Policy: Electric Transmission Series for State Offi cials Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A Summary for State Offi cials The National Council on Electricity Policy is funded by the U.S. Department of Energy and the U.S. Environmental Protection Agency. The views and opinions expressed herein are strictly those of the

489

Solar in Demand | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Solar in Demand Solar in Demand Solar in Demand June 15, 2012 - 10:23am Addthis Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. Kyle Travis, left and Jon Jackson, with Lighthouse Solar, install microcrystalline PV modules on top of Kevin Donovan's town home. | Credit: Dennis Schroeder. April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What does this mean for me? A new study says U.S. developers are likely to install about 3,300 megawatts of solar panels in 2012 -- almost twice the amount installed last year. In case you missed it... This week, the Wall Street Journal published an article, "U.S. Solar-Panel Demand Expected to Double," highlighting the successes of

490

National Action Plan on Demand Response  

Broader source: Energy.gov (indexed) [DOE]

David Kathan, Ph.D David Kathan, Ph.D Federal Energy Regulatory Commission U.S. DOE Electricity Advisory Committee October 29, 2010 Demand Response as Power System Resources The author's views do not necessarily represent the views of the Federal Energy Regulatory Commission 2 Demand Response * FERC (Order 719) defines demand response as: - A reduction in the consumption of electric energy by customers from their expected consumption in response to an increase in the price of electric energy or to in incentive payments designed to induce lower consumption of electric energy. * The National Action Plan on Demand Response released by FERC staff broadens this definition to include - Consumer actions that can change any part of the load profile of a utility or region, not just the period of peak usage

491

EIA - Annual Energy Outlook 2008 - Electricity Demand  

Gasoline and Diesel Fuel Update (EIA)

Electricity Demand Electricity Demand Annual Energy Outlook 2008 with Projections to 2030 Electricity Demand Figure 60. Annual electricity sales by sector, 1980-2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Figure 61. Electricity generation by fuel, 2006 and 2030 (billion kilowatthours). Need help, contact the National Energy Information Center at 202-586-8800. figure data Residential and Commercial Sectors Dominate Electricity Demand Growth Total electricity sales increase by 29 percent in the AEO2008 reference case, from 3,659 billion kilowatthours in 2006 to 4,705 billion in 2030, at an average rate of 1.1 percent per year. The relatively slow growth follows the historical trend, with the growth rate slowing in each succeeding

492

Demand Controlled Ventilation and Classroom Ventilation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

3 3 Authors Fisk, William J., Mark J. Mendell, Molly Davies, Ekaterina Eliseeva, David Faulkner, Tienzen Hong, and Douglas P. Sullivan Publisher Lawrence Berkeley National Laboratory City Berkeley Keywords absence, building s, carbon dioxide, demand - controlled ventilation, energy, indoor air quality, schools, ventilation Abstract This document summarizes a research effort on demand controlled ventilation and classroom ventilation. The research on demand controlled ventilation included field studies and building energy modeling. Major findings included:  The single-location carbon dioxide sensors widely used for demand controlled ventilation frequently have large errors and will fail to effectively control ventilation rates (VRs).  Multi-location carbon dioxide measurement systems with more expensive sensors connected to multi-location sampling systems may measure carbon dioxide more accurately.

493

China End-Use Energy Demand Modeling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

China End-Use Energy Demand Modeling China End-Use Energy Demand Modeling Speaker(s): Nan Zhou Date: October 8, 2009 (All day) Location: 90-3122 As a consequence of soaring energy demand due to the staggering pace of its economic growth, China overtook the United States in 2007 to become the world's biggest contributor to CO2 emissions (IEA, 2007). Since China is still in an early stage of industrialization and urbanization, economic development promises to keep China's energy demand growing strongly. Furthermore, China's reliance on fossil fuel is unlikely to change in the long term, and increased needs will only heighten concerns about energy security and climate change. In response, the Chinese government has developed a series of policies and targets aimed at improving energy efficiency, including both short-term targets and long-term strategic

494

Integrated Predictive Demand Response Controller Research Project |  

Broader source: Energy.gov (indexed) [DOE]

Predictive Demand Response Predictive Demand Response Controller Research Project Integrated Predictive Demand Response Controller Research Project The U.S. Department of Energy (DOE) is currently conducting research into integrated predictive demand response (IPDR) controllers. The project team will attempt to design an IPDR controller so that it can be used in new or existing buildings or in collections of buildings. In the case of collections of buildings, they may be colocated on a single campus or remotely located as long as they are served by a single utility or independent service operator. Project Description This project seeks to perform the necessary applied research, development, and testing to provide a communications interface using industry standard open protocols and emerging National Institute of Standards and Technology

495

Software demonstration: Demand Response Quick Assessment Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Software demonstration: Demand Response Quick Assessment Tool Software demonstration: Demand Response Quick Assessment Tool Speaker(s): Peng Xu Date: February 4, 2008 - 12:00pm Location: 90-3122 The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies. The Demand Response Quick Assessment Tools developed at LBNL will be demonstrated. The tool is built on EnergyPlus simulation and is able to evaluate and compare different DR strategies, such as global temperature reset, chiller cycling, supply air temperature reset, etc. A separate EnergyPlus plotting tool will also be demonstrated during this seminar. Users can use the tool to test EnergyPlus models, conduct parametric analysis, or compare multiple EnergyPlus simulation

496

Power Consumption Analysis of Architecture on Demand  

Science Journals Connector (OSTI)

Abstract (40-Word Limit): Recently proposed Architecture on Demand (AoD) node shows considerable flexibility benefits against traditional ROADMs. We study the power consumption of AoD...

Garrich, Miquel; Amaya, Norberto; Zervas, Georgios; Giaccone, Paolo; Simeonidou, Dimitra

497

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of...

498

Capitalize on Existing Assets with Demand Response  

E-Print Network [OSTI]

Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

Collins, J.

2008-01-01T23:59:59.000Z

499

SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY  

Broader source: Energy.gov [DOE]

As a city that experiences seasonal spikes in energy demand and accompanying energy bills, San Antonio, Texas, wanted to help homeowners and businesses reduce their energy use and save on energy...

500

Volatile coal prices reflect supply, demand uncertainties  

SciTech Connect (OSTI)

Coal mine owners and investors say that supply and demand are now finally in balance. But coal consumers find that both spot tonnage and new contract coal come at a much higher price.

Ryan, M.

2004-12-15T23:59:59.000Z