Sample records for divisions industrial demand

  1. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  2. "Table A25. Components of Total Electricity Demand by Census Region, Census Division, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total6.

  3. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  4. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  5. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  6. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Demand Side Management Framework for Industrial Facilities provides three major areas for changing electric loads in industrial buildings:

  7. Demand-Side Response from Industrial Loads

    SciTech Connect (OSTI)

    Starke, Michael R [ORNL; Alkadi, Nasr E [ORNL; Letto, Daryl [Enbala Power Networks; Johnson, Brandon [University of Tennessee, Knoxville (UTK); Dowling, Kevin [University of Tennessee, Knoxville (UTK); George, Raoule [Enbala Power Networks; Khan, Saqib [University of Texas, Austin

    2013-01-01T23:59:59.000Z

    Through a research study funded by the Department of Energy, Smart Grid solutions company ENBALA Power Networks along with the Oak Ridge National Laboratory (ORNL) have geospatially quantified the potential flexibility within industrial loads to leverage their inherent process storage to help support the management of the electricity grid. The study found that there is an excess of 12 GW of demand-side load flexibility available in a select list of top industrial facilities in the United States. Future studies will expand on this quantity of flexibility as more in-depth analysis of different industries is conducted and demonstrations are completed.

  8. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    demand response programs identifies three clusters of industries as the key participants: • petroleum, plastic,Demand Response Potential from Audit Database Top 25 Industries by Average kW Table 1 3344 Semiconductors & Electronics 3261 Plastic

  9. Demand Controlled Filtration in an Industrial Cleanroom

    SciTech Connect (OSTI)

    Faulkner, David; DiBartolomeo, Dennis; Wang, Duo

    2007-09-01T23:59:59.000Z

    In an industrial cleanroom, significant energy savings were realized by implementing two types of demand controlled filtration (DCF) strategies, one based on particle counts and one on occupancy. With each strategy the speed of the recirculation fan filter units was reduced to save energy. When the control was based on particle counts, the energy use was 60% of the baseline configuration of continuous fan operation. With simple occupancy sensors, the energy usage was 63% of the baseline configuration. During the testing of DCF, no complaints were registered by the operator of the cleanroom concerning processes and products being affected by the DCF implementation.

  10. Industrial demand side management: A status report

    SciTech Connect (OSTI)

    Hopkins, M.F.; Conger, R.L.; Foley, T.J. [and others

    1995-05-01T23:59:59.000Z

    This report provides an overview of and rationale for industrial demand side management (DSM) programs. Benefits and barriers are described, and data from the Manufacturing Energy Consumption Survey are used to estimate potential energy savings in kilowatt hours. The report presents types and examples of programs and explores elements of successful programs. Two in-depth case studies (from Boise Cascade and Eli Lilly and Company) illustrate two types of effective DSM programs. Interviews with staff from state public utility commissions indicate the current thinking about the status and future of industrial DSM programs. A comprehensive bibliography is included, technical assistance programs are listed and described, and a methodology for evaluating potential or actual savings from projects is delineated.

  11. Demand Response Opportunities in Industrial Refrigerated Warehouses in

    E-Print Network [OSTI]

    LBNL-4837E Demand Response Opportunities in Industrial Refrigerated Warehouses in California Sasank thereof or The Regents of the University of California. #12;Demand Response Opportunities in Industrial centralized control systems can be excellent candidates for Automated Demand Response (Auto- DR) due

  12. Opportunities, Barriers and Actions for Industrial Demand Response in

    E-Print Network [OSTI]

    LBNL-1335E Opportunities, Barriers and Actions for Industrial Demand Response in California A.T. Mc of Global Energy Partners. This work described in this report was coordinated by the Demand Response Demand Response in California. PIER Industrial/Agricultural/Water EndUse Energy Efficiency Program. CEC

  13. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  14. Demand Side Dispatching, Part 2: An Industrial Application

    E-Print Network [OSTI]

    Nath, R.; Cerget, D. A.; Henderson, E. T.

    DEMAND SIDE DISPATCHING, Part 2: AN INDUSTRIAL APPUCATION Ravi Nath Donald A. Cerget Edward T. Henderson Sr. Consultant Sr. Account Executive Sr. Engineer Linnhoff March, Inc. Detroit Edison Detroit Edison Houston, TX Detroit, M1 Detroit, M1...

  15. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    1 ENERGY AND DEMAND SAVINGS FROM IMPLEMENTATION COSTS IN INDUSTRIAL FACILITIES 1 Razinha, J.A. and Heffington, W.M. Industrial Assessment Center and Mechanical Engineering Department Texas A&M University, College Station, Texas 77843.... noted that a direct calculation of cost savings from the implementation cost could eliminate as much as 30% of the preparation time (and associated cost) for the LoanSTAR reports. The savings result from not having to calculate energy or demand...

  16. Assessment of Industrial Load for Demand Response across Western Interconnect

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL; Ma, Ookie [United States Department of Energy (DOE), Office of Efficiency and Renewable Energy (EERE)

    2013-11-01T23:59:59.000Z

    Demand response (DR) has the ability to both increase power grid reliability and potentially reduce operating system costs. Understanding the role of demand response in grid modeling has been difficult due to complex nature of the load characteristics compared to the modeled generation and the variation in load types. This is particularly true of industrial loads, where hundreds of different industries exist with varying availability for demand response. We present a framework considering industrial loads for the development of availability profiles that can provide more regional understanding and can be inserted into analysis software for further study. The developed framework utilizes a number of different informational resources, algorithms, and real-world measurements to perform a bottom-up approach in the development of a new database with representation of the potential demand response resource in the industrial sector across the U.S. This tool houses statistical values of energy and demand response (DR) potential by industrial plant and geospatially locates the information for aggregation for different territories without proprietary information. This report will discuss this framework and the analyzed quantities of demand response for Western Interconnect (WI) in support of evaluation of the cost production modeling with power grid modeling efforts of demand response.

  17. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    on the forecast of total energy demand. Based on this, weIndustrialization and Energy Demand Scenarios Nathaniel T.adjustment spurred energy demand for construction of new

  18. A dynamic model of industrial energy demand in Kenya

    SciTech Connect (OSTI)

    Haji, S.H.H. [Gothenburg Univ. (Sweden)

    1994-12-31T23:59:59.000Z

    This paper analyses the effects of input price movements, technology changes, capacity utilization and dynamic mechanisms on energy demand structures in the Kenyan industry. This is done with the help of a variant of the second generation dynamic factor demand (econometric) model. This interrelated disequilibrium dynamic input demand econometric model is based on a long-term cost function representing production function possibilities and takes into account the asymmetry between variable inputs (electricity, other-fuels and Tabour) and quasi-fixed input (capital) by imposing restrictions on the adjustment process. Variations in capacity utilization and slow substitution process invoked by the relative input price movement justifies the nature of input demand disequilibrium. The model is estimated on two ISIS digit Kenyan industry time series data (1961 - 1988) using the Iterative Zellner generalized least square method. 31 refs., 8 tabs.

  19. Emerging Technologies for Industrial Demand-Side Management 

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    1993-01-01T23:59:59.000Z

    as demand-side management strategies for industrial consumers of electricity. An alternative strategy to replacing aging electric motors with high efficiency or ASD motors is a turbine let-down. A turbine letdown is a turbine which uses pressure reduction...

  20. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  1. Opportunities, Barriers and Actions for Industrial Demand Response in California

    SciTech Connect (OSTI)

    McKane, Aimee T.; Piette, Mary Ann; Faulkner, David; Ghatikar, Girish; Radspieler Jr., Anthony; Adesola, Bunmi; Murtishaw, Scott; Kiliccote, Sila

    2008-01-31T23:59:59.000Z

    In 2006 the Demand Response Research Center (DRRC) formed an Industrial Demand Response Team to investigate opportunities and barriers to implementation of Automated Demand Response (Auto-DR) systems in California industries. Auto-DR is an open, interoperable communications and technology platform designed to: Provide customers with automated, electronic price and reliability signals; Provide customers with capability to automate customized DR strategies; Automate DR, providing utilities with dispatchable operational capability similar to conventional generation resources. This research began with a review of previous Auto-DR research on the commercial sector. Implementing Auto-DR in industry presents a number of challenges, both practical and perceived. Some of these include: the variation in loads and processes across and within sectors, resource-dependent loading patterns that are driven by outside factors such as customer orders or time-critical processing (e.g. tomato canning), the perceived lack of control inherent in the term 'Auto-DR', and aversion to risk, especially unscheduled downtime. While industry has demonstrated a willingness to temporarily provide large sheds and shifts to maintain grid reliability and be a good corporate citizen, the drivers for widespread Auto-DR will likely differ. Ultimately, most industrial facilities will balance the real and perceived risks associated with Auto-DR against the potential for economic gain through favorable pricing or incentives. Auto-DR, as with any ongoing industrial activity, will need to function effectively within market structures. The goal of the industrial research is to facilitate deployment of industrial Auto-DR that is economically attractive and technologically feasible. Automation will make DR: More visible by providing greater transparency through two-way end-to-end communication of DR signals from end-use customers; More repeatable, reliable, and persistent because the automated controls strategies that are 'hardened' and pre-programmed into facility's software and hardware; More affordable because automation can help reduce labor costs associated with manual DR strategies initiated by facility staff and can be used for long-term.

  2. Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs

    E-Print Network [OSTI]

    Victoria, University of

    Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management Programs Supervisory Committee Maximizing Energy Savings Reliability in BC Hydro Industrial Demand-side Management of Environmental Studies) Departmental Member For energy utilities faced with expanded jurisdictional energy

  3. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  4. 5/2/2005 Industry Seminar -April 2005 The Housing Market and Demand for

    E-Print Network [OSTI]

    5/2/2005 Industry Seminar - April 2005 The Housing Market and Demand for Building Materials Charlotte, NC April 27, 2005 #12;Changes that will impact demand for residential building materials ·Demographics - demand for shelter ·Housing Construction - industrialization - substitution ·Globalization - new

  5. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14T23:59:59.000Z

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  6. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY, 19942006*

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY. AN EMPIRICAL STUDY OF THE US CEMENT INDUSTRY Demand Uncertainty. An Empirical Study of the US Cement Industry, 19942006* JeanPierre Ponssard of the theory literature on this topic in an empirical study of the US cement industry between 1994

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Site Industry Chem Repackaging Fruit Proc & Cold StorageCold storage Data centers and test labs for high tech industriesCold storage Data centers and test labs for high tech industries

  8. Trucking Industry Demand for Urban Shared Use Freight Terminals

    E-Print Network [OSTI]

    Regan, Amelia C.; Golob, Thomas F.

    2003-01-01T23:59:59.000Z

    for Urban Shared Use Terminals Taniguchi, E. , M. Noritake,of public logistics terminals. Transportation Research –Demand for Urban Shared Use Terminals References Aitchison,

  9. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    energy cost for DR; The packaging of DR offerings is perceived as inadequate; A business’energy costs. o Several demand response programs offer financial and other benefits to businesses

  10. Demand Response Enabling Technologies and Approaches for Industrial Facilities

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01T23:59:59.000Z

    There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however...

  11. Emerging Technologies for Industrial Demand-Side Management

    E-Print Network [OSTI]

    Neely, J. E.; Kasprowicz, L. M.

    Demand-side management (DSM) is a set of actions taken by an electric utility to influence the electricity usage by a customer. Typical DSM activities include rebates for higher efficiency appliances and discounted electric rates for electric...

  12. Demand management : a cross-industry analysis of supply-demand planning

    E-Print Network [OSTI]

    Tan, Peng Kuan

    2006-01-01T23:59:59.000Z

    Globalization increases product variety and shortens product life cycles. These lead to an increase in demand uncertainty and variability. Outsourcing to low-cost countries increases supply lead-time and supply uncertainty ...

  13. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy of Imports in the U.S. Cement Industry. Guy Meunier INRA Ecole Polytechnique Jean-Pierre Ponssard CNRS Ecole decisions. This paper examines the nature of this relationship in the U.S. cement industry. Firms

  14. CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CAPACITY INVESTMENT UNDER DEMAND UNCERTAINTY: THE ROLE OF IMPORTS IN THE U.S. CEMENT INDUSTRY Guy in the U.S. Cement Industry. Guy Meunier INRA & Ecole Polytechnique Jean-Pierre Ponssard CNRS & Ecole. This relationship is tested with data on the U.S. cement industry, where, because cement is costly to transport over

  15. Assessing the Control Systems Capacity for Demand Response in California Industries

    SciTech Connect (OSTI)

    Ghatikar, Girish; McKane, Aimee; Goli, Sasank; Therkelsen, Peter; Olsen, Daniel

    2012-01-18T23:59:59.000Z

    California's electricity markets are moving toward dynamic pricing models, such as real-time pricing, within the next few years, which could have a significant impact on an industrial facility's cost of energy use during the times of peak use. Adequate controls and automated systems that provide industrial facility managers real-time energy use and cost information are necessary for successful implementation of a comprehensive electricity strategy; however, little is known about the current control capacity of California industries. To address this gap, Lawrence Berkeley National Laboratory, in close collaboration with California industrial trade associations, conducted a survey to determine the current state of controls technologies in California industries. This,study identifies sectors that have the technical capability to implement Demand Response (DR) and Automated Demand Response (Auto-DR). In an effort to assist policy makers and industry in meeting the challenges of real-time pricing, facility operational and organizational factors were taken into consideration to generate recommendations on which sectors Demand Response efforts should be focused. Analysis of the survey responses showed that while the vast majority of industrial facilities have semi- or fully automated control systems, participation in Demand Response programs is still low due to perceived barriers. The results also showed that the facilities that use continuous processes are good Demand Response candidates. When comparing facilities participating in Demand Response to those not participating, several similarities and differences emerged. Demand Response-participating facilities and non-participating facilities had similar timings of peak energy use, production processes, and participation in energy audits. Though the survey sample was smaller than anticipated, the results seemed to support our preliminary assumptions. Demonstrations of Auto-Demand Response in industrial facilities with good control capabilities are needed to dispel perceived barriers to participation and to investigate industrial subsectors suggested of having inherent Demand Response potential.

  16. A study of industrial equipment energy use and demand control

    E-Print Network [OSTI]

    Dooley, Edward Scott

    2001-01-01T23:59:59.000Z

    Technologies. A battery storage system, capable of providing up to 5, 000 kW was installed (Hunt 1999). The batterics allow the plant's demand peaks to be lowcrcd by using energy stored in the batteries during off-peak periods to provide a portion...

  17. Applications of demand analysis for the dairy industry using household scanner data 

    E-Print Network [OSTI]

    Stockton, Matthew C.

    2005-02-17T23:59:59.000Z

    This study illustrates the use of ACNielsen Homescan Panel (HSD) in three separate demand analyses of dairy products: (1) the effect of using cross-sectional data in a New Empirical Industrial Organization (NEIO) study ...

  18. Demand allocation strategies in the seasonal retail industry

    E-Print Network [OSTI]

    Chan, Carin H

    2007-01-01T23:59:59.000Z

    Amazon.com is a publicly-held company headquartered in Seattle, Washington. It revolutionized the retail industry by being one of the first major companies to sell goods over the Internet. It is an international company ...

  19. "Greening" Industrial Steam Generation via On-demand Steam Systems 

    E-Print Network [OSTI]

    Smith, J. P.

    2010-01-01T23:59:59.000Z

    Both recent economic and environmental conditions in the U.S. have converged to bring about unprecedented attention to energy efficiency and sustainability in the country's industrial sector. Historically, energy costs in ...

  20. EnerNOC Inc. Commercial & Industrial Demand Response

    E-Print Network [OSTI]

    Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

  1. "Greening" Industrial Steam Generation via On-demand Steam Systems

    E-Print Network [OSTI]

    Smith, J. P.

    2010-01-01T23:59:59.000Z

    impact have not kept pace with other industrialized nations. The U.S. is confronted with looming tipping points with respect to energy supply and GHG emissions that represent very tangible constraints on future economic growth and quality of life. A...

  2. Assumption to the Annual Energy Outlook 2014 - Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand

  3. Demand response medium sized industry consumers (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A Potential Microhydro SiteDayton Power & LightDemand

  4. Model documentation report: Industrial sector demand module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its models. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects. The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2015) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of industrial output. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  5. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  6. A Low Cost Energy Management Program at Engelhard Industries Division 

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  7. A Low Cost Energy Management Program at Engelhard Industries Division

    E-Print Network [OSTI]

    Brown, T. S.; Michalek, R.; Reiter, S.

    1982-01-01T23:59:59.000Z

    in technology related to precious metals and nonmetallic minerals. It manufactures high-performance chemical and precious metals products, including catalysts for the petroleum and automotive industries. Engelhard's energy costs have risen dramatically over...

  8. Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity

    E-Print Network [OSTI]

    Energy Use in the Australian Manufacturing Industry: An Analysis of Energy Demand Elasticity Chris in this paper. Energy consumption data was sourced from the Bureau of Resources and Energy Economics' Australian Energy Statistics publication. Price and income data were sourced from the Australian Bureau

  9. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Lekov, Alex; Thompson, Lisa; McKane, Aimee; Rockoff, Alexandra; Piette, Mary Ann

    2009-05-11T23:59:59.000Z

    This report summarizes the Lawrence Berkeley National Laboratory's research to date in characterizing energy efficiency and open automated demand response opportunities for industrial refrigerated warehouses in California. The report describes refrigerated warehouses characteristics, energy use and demand, and control systems. It also discusses energy efficiency and open automated demand response opportunities and provides analysis results from three demand response studies. In addition, several energy efficiency, load management, and demand response case studies are provided for refrigerated warehouses. This study shows that refrigerated warehouses can be excellent candidates for open automated demand response and that facilities which have implemented energy efficiency measures and have centralized control systems are well-suited to shift or shed electrical loads in response to financial incentives, utility bill savings, and/or opportunities to enhance reliability of service. Control technologies installed for energy efficiency and load management purposes can often be adapted for open automated demand response (OpenADR) at little additional cost. These improved controls may prepare facilities to be more receptive to OpenADR due to both increased confidence in the opportunities for controlling energy cost/use and access to the real-time data.

  10. Industrial Sector Energy Demand: Revisions for Non-Energy-Intensive Manufacturing (released in AEO2007)

    Reports and Publications (EIA)

    2007-01-01T23:59:59.000Z

    For the industrial sector, the Energy Information Administration's (EIA) analysis and projection efforts generally have focused on the energy-intensive industriesfood, bulk chemicals, refining, glass, cement, steel, and aluminumwhere energy cost averages 4.8% of annual operating cost. Detailed process flows and energy intensity indicators have been developed for narrowly defined industry groups in the energy-intensive manufacturing sector. The non-energy-intensive manufacturing industries, where energy cost averages 1.9% of annual operating cost, previously have received somewhat less attention, however. In Annual Energy Outlook 2006 (AEO), energy demand projections were provided for two broadly aggregated industry groups in the non-energy-intensive manufacturing sector: metal-based durables and other non-energy-intensive. In the AEO2006 projections, the two groups accounted for more than 50% of the projected increase in industrial natural gas consumption from 2004 to 2030.

  11. Model documentation report: Industrial sector demand module of the national energy modeling system

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach, and development of the National Energy Modeling System (NEMS) Industrial Demand Model. The report catalogues and describes model assumptions, computational methodology, parameter estimation techniques, and model source code. This document serves three purposes. First, it is a reference document providing a detailed description of the NEMS Industrial Model for model analysts, users, and the public. Second, this report meets the legal requirements of the Energy Information Administration (EIA) to provide adequate documentation in support of its model. Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  12. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    SciTech Connect (OSTI)

    Aden, Nathaniel T.; Zheng, Nina; Fridley, David G.

    2009-07-01T23:59:59.000Z

    Urbanization has re-shaped China's economy, society, and energy system. Between 1990 and 2007 China added 290 million new urban residents, bringing the total urbanization rate to 45%. This population adjustment spurred energy demand for construction of new buildings and infrastructure, as well as additional residential use as rural biomass was replaced with urban commercial energy services. Primary energy demand grew at an average annual rate of 10% between 2000 and 2007. Urbanization's effect on energy demand was compounded by the boom in domestic infrastructure investment, and in the export trade following World Trade Organization (WTO) accession in 2001. Industry energy consumption was most directly affected by this acceleration. Whereas industry comprised 32% of 2007 U.S. energy use, it accounted for 75% of China's 2007 energy consumption. Five sub-sectors accounted for 78% of China's industry energy use in 2007: iron and steel, energy extraction and processing, chemicals, cement, and non-ferrous metals. Ferrous metals alone accounted for 25% of industry and 18% of total primary energy use. The rapid growth of heavy industry has led China to become by far the world's largest producer of steel, cement, aluminum, and other energy-intensive commodities. However, the energy efficiency of heavy industrial production continues to lag world best practice levels. This study uses scenario analysis to quantify the impact of urbanization and trade on industrial and residential energy consumption from 2000 to 2025. The BAU scenario assumed 67% urbanization, frozen export amounts of heavy industrial products, and achievement of world best practices by 2025. The China Lightens Up (CLU) scenario assumed 55% urbanization, zero net exports of heavy industrial products, and more aggressive efficiency improvements by 2025. The five dominant industry sub-sectors were modeled in both scenarios using a LEAP energy end-use accounting model. The results of this study show that a CLU-style development path would avoid 430 million tonnes coal-equivalent energy use by 2025. More than 60% of these energy savings would come from reduced activity and production levels. In carbon terms, this would amount to more than a billion-tonne reduction of energy-related carbon emissions compared with the BAU scenario in 2025, though the absolute level of emissions rises in both scenarios. Aside from the energy and carbon savings related to CLU scenario development, this study showed impending saturation effects in commercial construction, urban appliance ownership, and fertilizer application. The implication of these findings is that urbanization will have a direct impact on future energy use and emissions - policies to guide urban growth can play a central role in China's efforts to mitigate emissions growth.

  13. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    in significant energy and demand savings for refrigeratedbe modified to reduce energy demand during demand responsein refrigerated warehouse energy demand if they are not

  14. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    Automated  Demand  Response  in  Commercial  Buildings.  Demand  Response  Infrastructure  for   Commercial  Buildings.  

  15. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  16. Use of Statistical Approach to Design an Optimal Duct System for On-demand Industrial Exhaust Ventilation 

    E-Print Network [OSTI]

    Litomisky, A.

    2010-01-01T23:59:59.000Z

    This paper elaborates on how to use statistics to calculate optimal parameters (including duct diameters) of energy-efficient industrial ventilation systems. Based on the fan-law, on-demand ventilation can save up to 80% ...

  17. Use of Statistical Approach to Design an Optimal Duct System for On-demand Industrial Exhaust Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2010-01-01T23:59:59.000Z

    This paper elaborates on how to use statistics to calculate optimal parameters (including duct diameters) of energy-efficient industrial ventilation systems. Based on the fan-law, on-demand ventilation can save up to 80% of electricity compared...

  18. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

  19. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  20. AICD -- Advanced Industrial Concepts Division Biological and Chemical Technologies Research Program. 1993 Annual summary report

    SciTech Connect (OSTI)

    Petersen, G.; Bair, K.; Ross, J. [eds.

    1994-03-01T23:59:59.000Z

    The annual summary report presents the fiscal year (FY) 1993 research activities and accomplishments for the United States Department of Energy (DOE) Biological and Chemical Technologies Research (BCTR) Program of the Advanced Industrial Concepts Division (AICD). This AICD program resides within the Office of Industrial Technologies (OIT) of the Office of Energy Efficiency and Renewable Energy (EE). The annual summary report for 1993 (ASR 93) contains the following: A program description (including BCTR program mission statement, historical background, relevance, goals and objectives), program structure and organization, selected technical and programmatic highlights for 1993, detailed descriptions of individual projects, a listing of program output, including a bibliography of published work, patents, and awards arising from work supported by BCTR.

  1. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996B2.CFMSQF2N3:Release(M)Total

  2. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by Climate6,1996B2.CFMSQF2N3:Release(M)TotalTotal

  3. " by Census Region, Census Division, Industry Group, Selected Industries, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances by

  4. " Census Region, Census Division, Industry Group, and Selected Industries, 1994"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for Heat,25

  5. A Cooperative Demand Response Scheme Using Punishment Mechanism and Application to Industrial Refrigerated Warehouses

    E-Print Network [OSTI]

    Ma, Kai; Hu, Guoqiang; Spanos, Costas J

    2014-01-01T23:59:59.000Z

    ? min . [1] U. D. of Energy, “Benefits of demand response inHong, and X. Li, “A demand response energy management schemefor energy efficiency and automated demand response in

  6. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    Japan‘s 2007 primary plastics demand of 107.95 kilograms perChina reaches a lower plastic demand level of 75 kilogramsper capita primary plastics demand was used to estimate per

  7. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    SciTech Connect (OSTI)

    Olsen, Daniel; Goli, Sasank; Faulkner, David; McKane, Aimee

    2010-12-22T23:59:59.000Z

    This study examines the characteristics of cement plants and their ability to shed or shift load to participate in demand response (DR). Relevant factors investigated include the various equipment and processes used to make cement, the operational limitations cement plants are subject to, and the quantities and sources of energy used in the cement-making process. Opportunities for energy efficiency improvements are also reviewed. The results suggest that cement plants are good candidates for DR participation. The cement industry consumes over 400 trillion Btu of energy annually in the United States, and consumes over 150 MW of electricity in California alone. The chemical reactions required to make cement occur only in the cement kiln, and intermediate products are routinely stored between processing stages without negative effects. Cement plants also operate continuously for months at a time between shutdowns, allowing flexibility in operational scheduling. In addition, several examples of cement plants altering their electricity consumption based on utility incentives are discussed. Further study is needed to determine the practical potential for automated demand response (Auto-DR) and to investigate the magnitude and shape of achievable sheds and shifts.

  8. A Cumulative Energy Demand indicator (CED), life cycle based, for industrial waste management decision making

    SciTech Connect (OSTI)

    Puig, Rita, E-mail: rita.puig@eei.upc.edu [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Fullana-i-Palmer, Pere [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain); Baquero, Grau; Riba, Jordi-Roger [Escola d’Enginyeria d’Igualada (EEI), Universitat Politècnica de Catalunya (UPC), Plaça del Rei, 15, 08700 Igualada (Spain); Bala, Alba [UNESCO Chair in Life Cycle and Climate Change, Escola Superior de Comerç Internacional, Universitat Pompeu Fabra (UPF), c/Passeig Pujades, 1, 08003 Barcelona (Spain)

    2013-12-15T23:59:59.000Z

    Highlights: • We developed a methodology useful to environmentally compare industrial waste management options. • The methodology uses a Net Energy Demand indicator which is life cycle based. • The method was simplified to be widely used, thus avoiding cost driven decisions. • This methodology is useful for governments to promote the best environmental options. • This methodology can be widely used by other countries or regions around the world. - Abstract: Life cycle thinking is a good approach to be used for environmental decision-support, although the complexity of the Life Cycle Assessment (LCA) studies sometimes prevents their wide use. The purpose of this paper is to show how LCA methodology can be simplified to be more useful for certain applications. In order to improve waste management in Catalonia (Spain), a Cumulative Energy Demand indicator (LCA-based) has been used to obtain four mathematical models to help the government in the decision of preventing or allowing a specific waste from going out of the borders. The conceptual equations and all the subsequent developments and assumptions made to obtain the simplified models are presented. One of the four models is discussed in detail, presenting the final simplified equation to be subsequently used by the government in decision making. The resulting model has been found to be scientifically robust, simple to implement and, above all, fulfilling its purpose: the limitation of waste transport out of Catalonia unless the waste recovery operations are significantly better and justify this transport.

  9. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry

    E-Print Network [OSTI]

    Olsen, Daniel

    2012-01-01T23:59:59.000Z

    Opportunities for Energy  Efficiency and Demand Response in Agricultural/Water End?Use Energy Efficiency Program.    i 1   4.0   Energy Efficiency and Demand Response 

  10. Opportunities for Energy Efficiency and Automated Demand Response in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Lekov, Alex

    2009-01-01T23:59:59.000Z

    Best Practices. Kiliccote, S. (2008). Automated Demand Responsebest operation practices and behaviors to enhance the impact of DR activities. 1.0 Introduction Background and Overview Demand Response (

  11. Examining Synergies between Energy Management and Demand Response: A Case Study at Two California Industrial Facilities

    E-Print Network [OSTI]

    Olsen, Daniel

    2013-01-01T23:59:59.000Z

    Capabilities due to Energy Management Improvement inSummary Introduction Energy Management Demand Responseand Processes Energy Management and Demand Response History

  12. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response options, or benchmarking, are probably not all that meaningful. The “best practices”

  13. World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-

    E-Print Network [OSTI]

    Mauzerall, Denise

    395 World population growth, industrialization, energy demand, and environmental goalsPollution Intercontinental transport of pollution between Asia, North America, and Europe takes place via the prevailing by the scientific community as a global pol- lutant for which regulation can best be accomplished by a global

  14. World population growth, industrialization, energy demand, and environmental goals are presently driving rapid global change in emissions with complex conse-

    E-Print Network [OSTI]

    Mauzerall, Denise

    377 World population growth, industrialization, energy demand, and environmental goalsPollution Intercontinental transport of pollution between Asia, North America, and Europe takes place via the prevailing by the scientific community as a global pol- lutant for which regulation can best be accomplished by a global

  15. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response, participation can imply: (1) customer enrollment in voluntary programs and tariffs, or (2) the retention

  16. New frontiers in oilseed biotechnology: meeting the growing global demand for vegetable oils for food, feed, biofuel, and industrial uses.

    SciTech Connect (OSTI)

    Lu, C; Napier, JA; Clemente, TE; Cahoon, EB

    2011-01-01T23:59:59.000Z

    Vegetable oils have historically been a valued commodity for food use and to a lesser extent for non-edible applications such as detergents and lubricants. The increasing reliance on biodiesel as a transportation fuel has contributed to rising demand and higher prices for vegetable oils. Biotechnology offers a number of solutions to meet the growing need for affordable vegetable oils and vegetable oils with improved fatty acid compositions for food and industrial uses. New insights into oilseed metabolism and its transcriptional control are enabling biotechnological enhancement of oil content and quality. Alternative crop platforms and emerging technologies for metabolic engineering also hold promise for meeting global demand for vegetable oils and for enhancing nutritional, industrial, and biofuel properties of vegetable oils. Here, we highlight recent advances in our understanding of oilseed metabolism and in the development of new oilseed platforms and metabolic engineering technologies.

  17. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    choices in the face of real options, or surveys can beoptions may differ from their actual behavior when faced with realReal-Time Demand Response (RTDR) program offers customers two advance-notice options:

  18. Improving supply chain performance by implementing weekly demand planning processes in the consumer packaged goods industry

    E-Print Network [OSTI]

    Rah, Myung-Hyun Elisa

    2006-01-01T23:59:59.000Z

    This thesis examines how simple weekly demand planning process can improve inventory levels and customers service levels at the Gillette Company. The processes designed by the project team has been tested and executed in ...

  19. Using Compressed Air Efficiency Projects to Reduce Peak Industrial Electric Demands: Lessons Learned

    E-Print Network [OSTI]

    Skelton, J.

    "To help customers respond to the wildly fluctuating energy markets in California, Pacific Gas & Electric (PG&E) initiated an emergency electric demand reduction program in October 2000 to cut electric use during peak periods. One component...

  20. Developing a framework for dependable demand forecasts in the consumer packaged goods industry

    E-Print Network [OSTI]

    Uriarte, Daniel Antonio

    2010-01-01T23:59:59.000Z

    As a consumer packaged goods company, "Company X" manufactures products "make-to-stock"; therefore, having reliable demand forecasts is fundamental for successful planning and execution. Not isolated to "Company X" or to ...

  1. Industrial-Load-Shaping: The Practice of and Prospects for Utility/Industry Cooperation to Manage Peak Electricity Demand

    E-Print Network [OSTI]

    Bules, D. J.; Rubin, D. E.; Maniates, M. F.

    in programs that influence electric demand in ways that produce desired changes in the pattern and magnitude of a utility's electric load profile. These programs, commonly termed "de mand side management" (DSH) , have a customer orien tation... such a rescheduling. The residential customer class appears least suited to load-shaping efforts. Al though characterized by a relatively low load-profile (high peak-to-average ratio) and consistent electricity consumption pat terns, the timing...

  2. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    industry is the growing prevalence of waste heat recovery.of Tsinghua University, waste heat generated from one tonthat capable of using waste heat technology. Their overall

  3. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    eliminated all vertical shaft kilns in cement production.cement industry is steadily transitioning from using less-efficient vertical-shaft- kilnvertical shaft kilns to rotary kilns and endogenous process improvements, the final intensity of cement

  4. The Impacts of Utility-Sponsored Demand-Side Management Programs on Industrial Electricity Consumers

    E-Print Network [OSTI]

    Rosenblum, J. I.

    in this paper of the arguments and recommendations of DSM-advocates are general, particular attention is paid to the potentially damaging effects of these proposals on large commercial and industrial customers....

  5. The Impact of Control Technology on the Demand Response Potential of California Industrial Refrigerated Facilities Final Report

    E-Print Network [OSTI]

    Scott, Doug

    2014-01-01T23:59:59.000Z

    detailed the energy efficiency and demand response measuresto control both their energy usage and demand in order torequires balancing energy efficiency and demand response.

  6. Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications

    E-Print Network [OSTI]

    Kumana, J. D.; Nath, R.

    ) systems fo commercial HVAC applications. Load co trol generally involves scheduling the use of electrotechnologies (e.g. air compression, pumping) during off-peak periods only, an shutting them off during on-peak periods. In order to provide... incentives to the custom r to modulate his demand, most DSM progranis combine the foregoing technologies with l1ime of-Use rate structures, capital cost subsidies (rebates), and technical support services. 317 ESL-IE-93-03-45 Proceedings from...

  7. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    SciTech Connect (OSTI)

    Ghatikar, Girish; Riess, David; Piette, Mary Ann

    2014-01-02T23:59:59.000Z

    This report reviews the Open Automated Demand Response (OpenADR) deployments within the territories serviced by California?s investor-owned utilities (IOUs) and the transition from the OpenADR 1.0 specification to the formal standard?OpenADR 2.0. As demand response service providers and customers start adopting OpenADR 2.0, it is necessary to ensure that the existing Automated Demand Response (AutoDR) infrastructure investment continues to be useful and takes advantage of the formal standard and its many benefits. This study focused on OpenADR deployments and systems used by the California IOUs and included a summary of the OpenADR deployment from the U.S. Department of Energy-funded demonstration conducted by the Sacramento Municipal Utility District (SMUD). Lawrence Berkeley National Laboratory collected and analyzed data about OpenADR 1.0 deployments, categorized architectures, developed a data model mapping to understand the technical compatibility of each version, and compared the capabilities and features of the two specifications. The findings, for the first time, provided evidence of the total enabled load shed and average first cost for system enablement in the IOU and SMUD service territories. The OpenADR 2.0a profile specification semantically supports AutoDR system architectures and data propagation with a testing and certification program that promotes interoperability, scaled deployments by multiple vendors, and provides additional features that support future services.

  8. How Can China Lighten Up? Urbanization, Industrialization and Energy Demand Scenarios

    E-Print Network [OSTI]

    Aden, Nathaniel T.

    2010-01-01T23:59:59.000Z

    An LANL report on China‘s energy forecast to 2015 predictedE.Iain McCreary, China‘s Energy A forecast to 2015, LANL,forecasts from the Chinese Energy Research Institute (ERI) and the Institute of Technical Information for the Building Materials Industry of China (

  9. "Table A16. Components of Total Electricity Demand by Census Region, Industry"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. AppliancesTotal" "(Data1.30. Total6. Components of

  10. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  11. " and Electricity Generation by Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for61

  12. " by Type of Supplier, Census Region, Census Division, Industry Group,"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy for613. Average

  13. " Electricity Generation by Census Region, Census Division, Industry Group, and"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocksa. Appliances byA49. Total Inputs of Energy18 Number of833A6.

  14. HEALTH AhO SAFETY DIVISION Industrial Hygiene or Medical Dept.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *'TH IiALYTICAL

  15. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  16. Industrial Safety and Applied Health Physics Division, annual report for 1982

    SciTech Connect (OSTI)

    Not Available

    1983-12-01T23:59:59.000Z

    Activities during the past year are summarized for the Health Physics Department, the Environmental Management Department, and the Safety Department. The Health Physics Department conducts radiation and safety surveys, provides personnel monitoring services for both external and internal radiation, and procures, services, and calibrates appropriate portable and stationary health physics instruments. The Environmental Management Department insures that the activities of the various organizations within ORNL are carried out in a responsible and safe manner. This responsibility involves the measurement, field monitoring, and evaluation of the amounts of radionuclides and hazardous materials released to the environment and the control of hazardous materials used within ORNL. The department also collaborates in the design of ORNL Facilities to help reduce the level of materials released to the environment. The Safety Department is responsible for maintaining a high level of staff safety. This includes aspects of both operational and industrial safety and also coordinates the activities of the Director's Safety Review Committee. (ACR)

  17. Industrial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    (NAICS 332) Bulk chemicals Machinery (NAICS 333) Inorganic (NAICS 32512- 32518) Computer and electronic products (NAICS 334) Other agricultural production (NAICS 112, 113,...

  18. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    incineration and the demand for fossil fuels. In Japan, useincineration and the demand for fossil fuels. In Brazil,

  19. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  20. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    Drivers of demand: urbanization, heavy industry, and risingdemand: urbanization, heavy industry, and rising income Theprocesses of urbanization, heavy industry growth, and rising

  1. State Demand-Side Management Programs Funds are Exploding! How Industries Can Best Use These Programs to Maximize Their Benefits

    E-Print Network [OSTI]

    Nicol, J.

    2008-01-01T23:59:59.000Z

    Find out from an Industrial Program Manager that runs a successful state DSM/Energy Efficiency program for the industrial sector how to best find, use and benefit from these types of programs. The amount of money that states are investing in DSM...

  2. EIS-0071: Memphis Light, Gas and Water Division Industrial Fuels Gas Demonstration Plant, Memphis, Shelby County, Tennessee

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to assesses the potential environmental impacts associated with the construction and operation of a 3,155-ton-per-day capacity facility, which will demonstrate the technical operability, economic viability, and environmental acceptability of the Memphis Division of Light, Gas and Water coal gasification plant at Memphis, Tennessee.

  3. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    both emis- sions from incineration and the demand for fossilyr (Okazaki et al. , 2004). Incineration of wastes (e.g. ,by reducing emissions from incineration and the demand for

  4. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    SHIP - Solar heat for industrial processes. Internationalsolar power could be used to provide process heat for

  5. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  6. Suppliers List for the Florida Shellfish Industry Revised: February 2010 by FDACS Division of Aquaculture (Dan Cavins)

    E-Print Network [OSTI]

    Florida, University of

    Products (Chris Josten, Graphic Designer) 209 Reid Avenue Port St. Joe, FL 32456 Phone: 850-227-7468 Fax;2 Industrial Supplies (Regenerative blowers, filters, motors, pumps, etc.) Regenerative Blowers (also called ring compressors, vortex blowers, or side channel blowers) are designed for low pressure/high flow

  7. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    oil, starch and corn refining, since these can be a source of fuel products. The sugar cane industry

  8. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  9. Transportation Demand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes...

  10. North Atlantic DivisionNorth Atlantic Division SuperstormSuperstorm SandySandy

    E-Print Network [OSTI]

    US Army Corps of Engineers

    North Atlantic DivisionNorth Atlantic Division SuperstormSuperstorm SandySandy Dredging Industry BriefDredging Industry BriefDredging Industry BriefDredging Industry Brief 3 April 20133 April 2013 #12;NAD Sandy Dredging BriefNAD Sandy Dredging Brief · Purposep · Goals · Sandy Program Overview

  11. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    of its electricity requirements in the USA (US DOE, 2002)USA, where motor-driven systems account for 63% of industrial electricity

  12. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB

  13. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    iron and steel production. IEA Greenhouse Gas R&D Programme,tempera- ture range. IEA/Caddet, Sittard, The Netherlands.industry. Cheltenham, UK, IEA Greenhouse Gas R&D Programme,

  14. Industry

    E-Print Network [OSTI]

    Bernstein, Lenny

    2008-01-01T23:59:59.000Z

    process residual like bagasse are now available (Cornland etsugar in- dustry uses bagasse and the edible oils industrySection 7.4.7. ). The use of bagasse for energy is likely to

  15. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  16. Industry

    SciTech Connect (OSTI)

    Bernstein, Lenny; Roy, Joyashree; Delhotal, K. Casey; Harnisch, Jochen; Matsuhashi, Ryuji; Price, Lynn; Tanaka, Kanako; Worrell, Ernst; Yamba, Francis; Fengqi, Zhou; de la Rue du Can, Stephane; Gielen, Dolf; Joosen, Suzanne; Konar, Manaswita; Matysek, Anna; Miner, Reid; Okazaki, Teruo; Sanders, Johan; Sheinbaum Parado, Claudia

    2007-12-01T23:59:59.000Z

    This chapter addresses past, ongoing, and short (to 2010) and medium-term (to 2030) future actions that can be taken to mitigate GHG emissions from the manufacturing and process industries. Globally, and in most countries, CO{sub 2} accounts for more than 90% of CO{sub 2}-eq GHG emissions from the industrial sector (Price et al., 2006; US EPA, 2006b). These CO{sub 2} emissions arise from three sources: (1) the use of fossil fuels for energy, either directly by industry for heat and power generation or indirectly in the generation of purchased electricity and steam; (2) non-energy uses of fossil fuels in chemical processing and metal smelting; and (3) non-fossil fuel sources, for example cement and lime manufacture. Industrial processes also emit other GHGs, e.g.: (1) Nitrous oxide (N{sub 2}O) is emitted as a byproduct of adipic acid, nitric acid and caprolactam production; (2) HFC-23 is emitted as a byproduct of HCFC-22 production, a refrigerant, and also used in fluoroplastics manufacture; (3) Perfluorocarbons (PFCs) are emitted as byproducts of aluminium smelting and in semiconductor manufacture; (4) Sulphur hexafluoride (SF{sub 6}) is emitted in the manufacture, use and, decommissioning of gas insulated electrical switchgear, during the production of flat screen panels and semiconductors, from magnesium die casting and other industrial applications; (5) Methane (CH{sub 4}) is emitted as a byproduct of some chemical processes; and (6) CH{sub 4} and N{sub 2}O can be emitted by food industry waste streams. Many GHG emission mitigation options have been developed for the industrial sector. They fall into three categories: operating procedures, sector-wide technologies and process-specific technologies. A sampling of these options is discussed in Sections 7.2-7.4. The short- and medium-term potential for and cost of all classes of options are discussed in Section 7.5, barriers to the application of these options are addressed in Section 7.6 and the implication of industrial mitigation for sustainable development is discussed in Section 7.7. Section 7.8 discusses the sector's vulnerability to climate change and options for adaptation. A number of policies have been designed either to encourage voluntary GHG emission reductions from the industrial sector or to mandate such reductions. Section 7.9 describes these policies and the experience gained to date. Co-benefits of reducing GHG emissions from the industrial sector are discussed in Section 7.10. Development of new technology is key to the cost-effective control of industrial GHG emissions. Section 7.11 discusses research, development, deployment and diffusion in the industrial sector and Section 7.12, the long-term (post-2030) technologies for GHG emissions reduction from the industrial sector. Section 7.13 summarizes gaps in knowledge.

  17. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  18. assessing workforce demand: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand...

  19. ANALYSIS OF THE CALIFORNIA ENERGY INDUSTRY

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01T23:59:59.000Z

    shown as changes in oil demand for elec- trical energyindustry fuel. ity Oil demand is specified by four majorft /year) II. Annual Oil Demand (10 Transportation Industry

  20. What China Can Learn from International Experiences in Developing a Demand Response Program

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    K.C. Mares, D. Shroyer. , 2010. Demand Response andOpen Automated Demand Response Opportunities for DataProcessing Industry Demand Response Participation: A Scoping

  1. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Open Automated Demand Response Demonstration Project” LBNL-2009a). “Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California. ”

  2. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  3. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  4. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  5. Demand-Side Management and Energy Efficiency Revisited

    E-Print Network [OSTI]

    Auffhammer, Maximilian; Blumstein, Carl; Fowlie, Meredith

    2007-01-01T23:59:59.000Z

    EPRI). 1984. ”Demand Side Management. Vol. 1:Overview of Key1993. ”Industrial Demand-Side Management Programs: What’sJ. Kulick. 2004. ”Demand side management and energy e?ciency

  6. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

  7. An Operational Model for Optimal NonDispatchable Demand Response

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    FACTS, $ Demand Response Energy Storage HVDC Industrial Customer PEV Renewable Energy Source: U.S.-Canada Power

  8. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  9. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  10. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    industrial sector, oil demand will decrease due particularlyand commercial sectors, oil demand will decline on a shifttransportation sector, oil demand will shrink on a fall in

  11. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  12. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  13. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  14. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  15. Division of Finance Division of Finance Alignment

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Division of Finance Division of Finance Alignment September 11, 2014 1 #12;Division of Finance of Finance Goal of the DF Alignment Project The internal and external alignment of the Division of Finance of Finance The Process We Followed 17 Meetings17 Meetings 120+ Pages of Data 103 Themes 12 Meta Themes Goals

  16. Assessing the Control Systems Capacity for Demand Response in

    E-Print Network [OSTI]

    LBNL-5319E Assessing the Control Systems Capacity for Demand Response in California Industries in this report was coordinated by the Demand Response Research Center and funded by the California Energy of the Demand Response Research Center Industrial Controls Experts Working Group: · Jim Filanc, Southern

  17. Opportunities for Energy Efficiency and Demand Response in the California

    E-Print Network [OSTI]

    LBNL-4849E Opportunities for Energy Efficiency and Demand Response in the California Cement in this report was coordinated by the Demand Response Research Center and funded by the California Energy. Opportunities for Energy Efficiency and Demand Response in the California Cement Industry. PIER Industrial

  18. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  19. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    ENERGY BALANCE UPDATE AND DECOMPOSITION ANALYSIS FOR THE INDUSTRY AND BUILDING SECTORS APRIL 2013 · Transportation California Energy Balance Update and Decomposition Analysis for the Industry and Building Energy Research and Development Division FINAL PROJECT REPORT CALIFORNIA

  20. Demographics and industry returns

    E-Print Network [OSTI]

    Pollet, Joshua A.; DellaVigna, Stefano

    2007-01-01T23:59:59.000Z

    Industry category Child care Children’s books Children’s clothing Toysindustry Child care Children’s books Children’s clothing ToysIndustries are associated with high demand by children (child care, toys) and

  1. Quantifying the Variable Effects of Systems with Demand Response Resources

    E-Print Network [OSTI]

    Gross, George

    Quantifying the Variable Effects of Systems with Demand Response Resources Anupama Kowli and George in the electricity industry. In particular, there is a new class of consumers, called demand response resources (DRRs

  2. Electric Demand Cost Versus Labor Cost: A Case Study

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    Electric Utility companies charge industrial clients for two things: demand and usage. Depending on type of business and hours operation, demand cost could be very high. Most of the operations scheduling in a plant is achieved considering labor cost...

  3. Superconducting Magnet Division

    E-Print Network [OSTI]

    Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12

  4. Finance Division Employee Status Form Finance Division

    E-Print Network [OSTI]

    Crews, Stephen

    Finance Division Employee Status Form Finance Division CB 1225, 104 Airport Drive Chapel Hill, NC Phone: 919-962-7242 finance.unc.edu Failure to Follow Instructions Below Will Delay Processing Today information in five areas: 1. Division-wide emergency call tree 2. Finance Web site contacts 3. Departmental

  5. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  6. RESEARCH UPDATE Ecology Division

    E-Print Network [OSTI]

    1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

  7. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  8. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  9. Lamp Divisions

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? .-I I2 m.m\ LILTS PlanI9

  10. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  11. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  12. NEMS industrial module documentation report

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The NEMS Industrial Demand Model is a dynamic accounting model, bringing together the disparate industries and uses of energy in those industries, and putting them together in an understandable and cohesive framework. The Industrial Model generates mid-term (up to the year 2010) forecasts of industrial sector energy demand as a component of the NEMS integrated forecasting system. From the NEMS system, the Industrial Model receives fuel prices, employment data, and the value of output of industrial activity. Based on the values of these variables, the Industrial Model passes back to the NEMS system estimates of consumption by fuel types.

  13. Transportation Demand This

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology...

  14. Health, Safety, and Environment Division

    SciTech Connect (OSTI)

    Wade, C [comp.] [comp.

    1992-01-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  15. A New Approach to Industrial Air Conditioning

    E-Print Network [OSTI]

    Gravenstreter, T.

    1982-01-01T23:59:59.000Z

    -dryer Systems Division, has marketed industrial drying machinery. These heat reactivated dryers can handle latent loads in industrial air conditioning systems. Through waste heat conservation, air conditioning costs can be reduced 25 to 50%, with applications...

  16. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  17. Division of Agriculture,

    E-Print Network [OSTI]

    Ray, David

    DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

  18. DIVISION OF GRADUATE STUDIES

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    recipients at the time of their graduation to monitor and project the scientific workforce. Between 1961DIVISION OF GRADUATE STUDIES 2012-2013 ACADEMIC YEAR REpORT Excellence in Action Division of Graduate Studies #12;Division of Graduate Studies Kent State University 2012 - 2013 Academic Year Report

  19. Industry Sector Case Study Building Technologies Division

    E-Print Network [OSTI]

    Fischlin, Andreas

    's remote location far away from any infrastructure, planning focused on making it as self and its control components. If needed, the system is backed up by a combined heat and power (CHP) plant might be used up, necessitating a switch to LP gas, a scarce resource at this remote location. Desigo

  20. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  1. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  2. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  3. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  4. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  5. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  6. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  7. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  8. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Operations personnel, and to various experimental instrument specialists in the Physics Division. The PAC members will review each proposal for scientific merit and...

  10. Uranium 2014 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2014-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. It presents the results of a thorough review of world uranium supplies and demand and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Long-term projections of nuclear generating capacity and reactor-related uranium requirements are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major changes in the industry.

  11. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  12. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  13. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  14. Hypertension Research Division

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Hypertension & Vascular Research Division Department of Internal Medicine Jeffrey L. Garvin, Ph.D. ­ Division Head #12;Prevalence of Hypertension in U.S. Men by Age and Ethnicity 18 ­ 29 30 ­ 39 40 ­ 49 50 Prevalence of High BP Adapted from Burt et al. Hypertension 1995;25:305. 25 50 75 #12;Introduction

  15. Superconducting Magnet Division

    E-Print Network [OSTI]

    McDonald, Kirk

    Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding · Summary #12;Superconducting Magnet

  16. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    demand response is more environmentally friendly than fossil fueldemand response (DR) used in the commercial and industrial sectors is more environmentally friendly than fossil fuelfossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demand

  17. U.S. electric utility demand-side management 1993

    SciTech Connect (OSTI)

    NONE

    1995-07-01T23:59:59.000Z

    This report presents comprehensive information on electric power industry demand-side management activities in the United States at the national, regional, and utility levels. Data is included for energy savings, peakload reductions, and costs.

  18. Demand models for U.S. domestic air passenger markets

    E-Print Network [OSTI]

    Eriksen, Steven Edward

    1978-01-01T23:59:59.000Z

    The airline industry in recent years has suffered from the adverse effects of top level planning decisions based upon inaccurate demand forecasts. The air carriers have recognized the immediate need to develop their ...

  19. Electric Demand Cost Versus Labor Cost: A Case Study 

    E-Print Network [OSTI]

    Agrawal, S.; Jensen, R.

    1998-01-01T23:59:59.000Z

    ELEcrRIC DEMAND COST Versus LABOR COST: A CASE STUDY Sanjay Agrawal Richard Jensen Assistant Director Director Industrial Assessment Center Department of Engineering Hofstra University, Hempstead, NY 11549 ABSTRAcr Electric Utility companies...

  20. PHYSICS DIVISION CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Kemner, Ken

    PHYSICS DIVISION CHEMICAL HYGIENE PLAN 2008 Prepared by _________________________________________________ T. Mullen Physics Division Chemical Hygiene Officer Reviewed by ___________________________________________________ J. Woodring Site Chemical Hygiene Officer Approved

  1. China's Coal: Demand, Constraints, and Externalities

    SciTech Connect (OSTI)

    Aden, Nathaniel; Fridley, David; Zheng, Nina

    2009-07-01T23:59:59.000Z

    This study analyzes China's coal industry by focusing on four related areas. First, data are reviewed to identify the major drivers of historical and future coal demand. Second, resource constraints and transport bottlenecks are analyzed to evaluate demand and growth scenarios. The third area assesses the physical requirements of substituting coal demand growth with other primary energy forms. Finally, the study examines the carbon- and environmental implications of China's past and future coal consumption. There are three sections that address these areas by identifying particular characteristics of China's coal industry, quantifying factors driving demand, and analyzing supply scenarios: (1) reviews the range of Chinese and international estimates of remaining coal reserves and resources as well as key characteristics of China's coal industry including historical production, resource requirements, and prices; (2) quantifies the largest drivers of coal usage to produce a bottom-up reference projection of 2025 coal demand; and (3) analyzes coal supply constraints, substitution options, and environmental externalities. Finally, the last section presents conclusions on the role of coal in China's ongoing energy and economic development. China has been, is, and will continue to be a coal-powered economy. In 2007 Chinese coal production contained more energy than total Middle Eastern oil production. The rapid growth of coal demand after 2001 created supply strains and bottlenecks that raise questions about sustainability. Urbanization, heavy industrial growth, and increasing per-capita income are the primary interrelated drivers of rising coal usage. In 2007, the power sector, iron and steel, and cement production accounted for 66% of coal consumption. Power generation is becoming more efficient, but even extensive roll-out of the highest efficiency units would save only 14% of projected 2025 coal demand for the power sector. A new wedge of future coal consumption is likely to come from the burgeoning coal-liquefaction and chemicals industries. If coal to chemicals capacity reaches 70 million tonnes and coal-to-liquids capacity reaches 60 million tonnes, coal feedstock requirements would add an additional 450 million tonnes by 2025. Even with more efficient growth among these drivers, China's annual coal demand is expected to reach 3.9 to 4.3 billion tonnes by 2025. Central government support for nuclear and renewable energy has not reversed China's growing dependence on coal for primary energy. Substitution is a matter of scale: offsetting one year of recent coal demand growth of 200 million tonnes would require 107 billion cubic meters of natural gas (compared to 2007 growth of 13 BCM), 48 GW of nuclear (compared to 2007 growth of 2 GW), or 86 GW of hydropower capacity (compared to 2007 growth of 16 GW). Ongoing dependence on coal reduces China's ability to mitigate carbon dioxide emissions growth. If coal demand remains on a high growth path, carbon dioxide emissions from coal combustion alone would exceed total US energy-related carbon emissions by 2010. Within China's coal-dominated energy system, domestic transportation has emerged as the largest bottleneck for coal industry growth and is likely to remain a constraint to further expansion. China has a low proportion of high-quality reserves, but is producing its best coal first. Declining quality will further strain production and transport capacity. Furthermore, transporting coal to users has overloaded the train system and dramatically increased truck use, raising transportation oil demand. Growing international imports have helped to offset domestic transport bottlenecks. In the long term, import demand is likely to exceed 200 million tonnes by 2025, significantly impacting regional markets.

  2. Energy Technology Division research summary - 1999.

    SciTech Connect (OSTI)

    NONE

    1999-03-31T23:59:59.000Z

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization, or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book.

  3. The History of Metals and Ceramics Division

    SciTech Connect (OSTI)

    Craig, D.F.

    1999-01-01T23:59:59.000Z

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  4. Climate policy implications for agricultural water demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.; Calvin, Katherine V.

    2013-03-28T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of two alternative land-use emissions mitigation policy options—one which taxes terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which only taxes fossil fuel and industrial emissions but places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to almost triple demand for water for agricultural systems across the century even in the absence of climate policy. In general policies to mitigate climate change increase agricultural demands for water still further, though the largest changes occur in the second half of the century, under both policy regimes. The two policies examined profoundly affected both the sources and magnitudes of the increase in irrigation water demands. The largest increases in agricultural irrigation water demand occurred in scenarios where only fossil fuel emissions were priced (but not land-use change emission) and were primarily driven by rapid expansion in bioenergy production. In these scenarios water demands were large relative to present-day total available water, calling into question whether it would be physically possible to produce the associated biomass energy. We explored the potential of improved water delivery and irrigation system efficiencies. These could potentially reduce demands substantially. However, overall demands remained high under our fossil-fuel-only tax policy. In contrast, when all carbon was priced, increases in agricultural water demands were smaller than under the fossil-fuel-only policy and were driven primarily by increased demands for water by non-biomass crops such as rice. Finally we estimate the geospatial pattern of water demands and find that regions such as China, India and other countries in south and east Asia might be expected to experience greatest increases in water demands.?

  5. Energy Technology Division research summary -- 1994

    SciTech Connect (OSTI)

    Not Available

    1994-09-01T23:59:59.000Z

    Research funded primarily by the NRC is directed toward assessing the roles of cyclic fatigue, intergranular stress corrosion cracking, and irradiation-assisted stress corrosion cracking on failures in light water reactor (LWR) piping systems, pressure vessels, and various core components. In support of the fast reactor program, the Division has responsibility for fuel-performance modeling and irradiation testing. The Division has major responsibilities in several design areas of the proposed International Thermonuclear Experimental Reactor (ITER). The Division supports the DOE in ensuring safe shipment of nuclear materials by providing extensive review of the Safety Analysis Reports for Packaging (SARPs). Finally, in the nuclear area they are investigating the safe disposal of spent fuel and waste. In work funded by DOE`s Energy Efficiency and Renewable Energy, the high-temperature superconductivity program continues to be a major focal point for industrial interactions. Coatings and lubricants developed in the division`s Tribology Section are intended for use in transportation systems of the future. Continuous fiber ceramic composites are being developed for high-performance heat engines. Nondestructive testing techniques are being developed to evaluate fiber distribution and to detect flaws. A wide variety of coatings for corrosion protection of metal alloys are being studied. These can increase lifetimes significant in a wide variety of coal combustion and gasification environments.

  6. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  7. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  8. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  9. Program Name: Energy Smart Industrial (ESI)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    remote industrial facilities with limited staff resources. Energy Efficiency-Demand Response (EE-DR) Demonstration Demonstration project to investigate the effects and...

  10. ENERGY USE AND CONSERVATION IN INDUSTRIALIZED COUNTRIES

    E-Print Network [OSTI]

    Schipper, L.

    2012-01-01T23:59:59.000Z

    demand in the long run. Cogeneration of electricity and heatthe expan- sion of cogeneration, especially just now whencame from industrial cogeneration, 4% in l976 (a recession),

  11. Reliability implications of price responsive demand : a study of New England's power system

    E-Print Network [OSTI]

    Whitaker, Andrew C. (Andrew Craig)

    2011-01-01T23:59:59.000Z

    With restructuring of the traditional, vertically integrated electricity industry come new opportunities for electricity demand to actively participate in electricity markets. Traditional definitions of power system ...

  12. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  13. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call 911 on the internal phones (or 252-1911 on cell phones) Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding...

  14. Director, Division of Investigations

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced, highly skilled executive to serve as Director of the Division of Investigations (DOI) in the Office of Enforcement (OE). The...

  15. Division Student Liaisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    None Fire Protection (FP-DO) Robert J. Farris (Rob) 667-9045 sirraf@lanl.gov K493 Nuclear Criticality Safety None Operations Support Division (OS-DO) None Radiological...

  16. Guidance Systems Division ,

    Office of Legacy Management (LM)

    Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES...

  17. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  18. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  19. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  20. Agricultural Water Demand Along the Colorado River Main Stem

    E-Print Network [OSTI]

    Fay, Noah

    Agricultural Water Demand Along the Colorado River Main Stem: An Econometric Analysis Advisor: Dr · Agriculture is by far the largest water user in the state of Arizona (70%) Municipal Industrial Agriculture 25% 7%68% Municipal Industrial Agriculture #12;Relevance to Arizona · Irrigation along the Colorado

  1. Uranium 2007 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2008-01-01T23:59:59.000Z

    Based on official information received from 40 countries, Uranium 2007 provides a comprehensive review of world uranium supply and demand as of 1st January 2007, as well as data on global uranium exploration, resources, production and reactor-related requirements. It provides substantive new information from major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2030 are also featured, along with an analysis of long-term uranium supply and demand issues. It finds that with rising demand and declining inventories, uranium prices have increased dramatically in recent years. As a result, the uranium industry is undergoing a significant revival, bringing to an end a period of over 20 years of underinvestment.

  2. Uranium 2005 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2006-01-01T23:59:59.000Z

    Published every other year, Uranium Resources, Production, and Demand, or the "Red Book" as it is commonly known, is jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency. It is the recognised world reference on uranium and is based on official information received from 43 countries. This 21st edition presents the results of a thorough review of world uranium supplies and demand as of 1st January 2005 and provides a statistical profile of the world uranium industry in the areas of exploration, resource estimates, production and reactor-related requirements. It provides substantial new information from all major uranium production centres in Africa, Australia, Central Asia, Eastern Europe and North America. Projections of nuclear generating capacity and reactor-related uranium requirements through 2025 are provided as well as a discussion of long-term uranium supply and demand issues. This edition focuses on recent price and production increases that could signal major c...

  3. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  4. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  5. US electric utility demand-side management, 1994

    SciTech Connect (OSTI)

    NONE

    1995-12-26T23:59:59.000Z

    The report presents comprehensive information on electric power industry demand-side management (DSM) activities in US at the national, regional, and utility levels. Objective is provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions, and costs attributable to DSM.

  6. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    SciTech Connect (OSTI)

    Thompson, Lisa; Song, Katherine; Lekov, Alex; McKane, Aimee

    2008-11-19T23:59:59.000Z

    Wastewater treatment is an energy intensive process which, together with water treatment, comprises about three percent of U.S. annual energy use. Yet, since wastewater treatment facilities are often peripheral to major electricity-using industries, they are frequently an overlooked area for automated demand response opportunities. Demand response is a set of actions taken to reduce electric loads when contingencies, such as emergencies or congestion, occur that threaten supply-demand balance, and/or market conditions occur that raise electric supply costs. Demand response programs are designed to improve the reliability of the electric grid and to lower the use of electricity during peak times to reduce the total system costs. Open automated demand response is a set of continuous, open communication signals and systems provided over the Internet to allow facilities to automate their demand response activities without the need for manual actions. Automated demand response strategies can be implemented as an enhanced use of upgraded equipment and facility control strategies installed as energy efficiency measures. Conversely, installation of controls to support automated demand response may result in improved energy efficiency through real-time access to operational data. This paper argues that the implementation of energy efficiency opportunities in wastewater treatment facilities creates a base for achieving successful demand reductions. This paper characterizes energy use and the state of demand response readiness in wastewater treatment facilities and outlines automated demand response opportunities.

  7. Energy Technical Assistance: Industrial Processes Program

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  8. Energy Technical Assistance: Industrial Processes Program 

    E-Print Network [OSTI]

    McClure, J. D.

    1980-01-01T23:59:59.000Z

    The Energy Technical Assistance Division of Texas Engineering Extension Service (TEEX) has implemented an energy conservation program to assist small industry in using energy more efficiently. This full time service, an outgrowth of the Texas A...

  9. Innovative Energy Efficient Industrial Ventilation

    E-Print Network [OSTI]

    Litomisky, A.

    2005-01-01T23:59:59.000Z

    factories, we found striking dichotomy between the classical “static” design of ventilation systems and constantly changing workflow and business demands. Using data from real factories, we are able to prove that classical industrial ventilation design...

  10. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  11. Accelerator & Fusion Research Division: 1993 Summary of activities

    SciTech Connect (OSTI)

    Chew, J.

    1994-04-01T23:59:59.000Z

    The Accelerator and Fusion Research Division (AFRD) is not only one of the largest scientific divisions at LBL, but also the one of the most diverse. Major efforts include: (1) investigations in both inertial and magnetic fusion energy; (2) operation of the Advanced Light Source, a state-of-the-art synchrotron radiation facility; (3) exploratory investigations of novel radiation sources and colliders; (4) research and development in superconducting magnets for accelerators and other scientific and industrial applications; and (5) ion beam technology development for nuclear physics and for industrial and biomedical applications. Each of these topics is discussed in detail in this book.

  12. Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman

    E-Print Network [OSTI]

    Wierman, Adam

    Pricing Data Center Demand Response Zhenhua Liu, Iris Liu, Steven Low, Adam Wierman California Institute of Technology Pasadena, CA, USA {zliu2,iliu,slow,adamw}@caltech.edu ABSTRACT Demand response- ularly promising industry for demand response: data centers. We use simulations to show that, not only

  13. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  14. Chemistry Division Department of Biological

    E-Print Network [OSTI]

    Heller, Barbara

    1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

  15. Superconducting Magnet Division

    E-Print Network [OSTI]

    Ohta, Shigemi

    Superconducting Magnet Division MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM FOR RHIC* R.6 A gun collectors gun Combined Horizontal and Vertical Corrector Design Both types of dipole correctors. Gupta, M. Anerella, W. Fischer, G. Ganetis, X. Gu, A. Ghosh, A. Jain, P. Kovach, A. Marone, S. Plate, A

  16. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01T23:59:59.000Z

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  17. integration division Human Systems

    E-Print Network [OSTI]

    integration division Human Systems Eye-Movement Metrics: Non-Intrusive Quantitative Tools for Monitoring Human Visual Performance Objective Approach Impact A reliable quantitative yet non-intrusive methodologies that provide quantitative yet non-intrusive measures of human visual performance for use

  18. Security Division 2007 Annual Report

    E-Print Network [OSTI]

    Computer Security Division 2007 Annual Report #12;TAble of ConTenTS Welcome Division Organization The Computer Security Division Responds to the Federal Information Security Management Act of 2002 Security Information Technology 15 Security Testing and Metrics 17 Validation Programs and Laboratory Accreditation 17

  19. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  20. Computer, Computational, and Statistical Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing CCS Division Computer, Computational, and Statistical Sciences Division Computational physics, computer science, applied mathematics, statistics and the integration of...

  1. Review of China's Low-Carbon City Initiative and Developments in the Coal Industry

    E-Print Network [OSTI]

    Fridley, David

    2014-01-01T23:59:59.000Z

    industry moderates and energy demand from the buildingsChina control its future energy demand and carbon emissions.usual scenario, primary energy demand to fall to 28.18 Mtce

  2. Analysis and Decomposition of the Energy Intensity of Industries in California

    E-Print Network [OSTI]

    Can, Stephane de la Rue de

    2014-01-01T23:59:59.000Z

    looked at the effect on energy demand of this change in theCalifornia industry energy demand during the past 10 years.a positive effect on energy demand. In this scenario, the

  3. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  4. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  5. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  6. U.S. electric utility demand-side management 1996

    SciTech Connect (OSTI)

    NONE

    1997-12-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it related to the US electric power industry. The first chapter, ``Profile: U.S. Electric Utility Demand-Side Management,`` presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  7. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  8. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    NONE

    1997-10-21T23:59:59.000Z

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

  9. RESEARCH ACTIVITIES Division of Heat and Power Technology

    E-Print Network [OSTI]

    Kazachkov, Ivan

    Euro Necessary space Rig in use: 45m2 (9mx5m), storage: ca 14 m2 (7mx2m) General application Experimental to high subsonic operation Application for industry Testing of aerodynamic damping of blade rows Turbine - Division of Heat and Power Technology Object Cold Flow Test Turbine Brand name ABB STAL design

  10. Decision and Information Sciences Division Information Sciences Group CCyybbeerr SSeeccuurriittyy

    E-Print Network [OSTI]

    Kemner, Ken

    in industry (e.g., gas, oil, electric, water) to monitor and control remote equipment from a central facilityDecision and Information Sciences Division Information Sciences Group CCyybbeerr SSeeccuurriittyy Network analysis and cyber security lab Introduction In today's environment, it is essential to assure

  11. Energy Research and Development Division FINAL PROJECT REPORT

    E-Print Network [OSTI]

    that use natural gas water heaters could see their annual natural gas water heating consumption drop by 35Energy Research and Development Division FINAL PROJECT REPORT WATER HEATING DESIGN GUIDE DECEMBER · Environmentally Preferred Advanced Generation · Industrial/Agricultural/Water End-Use Energy Efficiency

  12. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  13. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    sjstems (ITS) Electricity Sector Promoting nuclear useindustrial and electricity generation sectors (Table 4-2).In the industrial sector, electricity demand will increase,

  14. Industrial Permit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protection Obeying Environmental Laws Industrial Permit Industrial Permit The Industrial Permit authorizes the Laboratory to discharge point-source effluents under the...

  15. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  16. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  17. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  18. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  19. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  20. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  1. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  2. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  3. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  4. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  5. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  6. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  7. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  8. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  9. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  10. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  11. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  12. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  13. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  14. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  15. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  16. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User...

  17. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  18. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  19. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  20. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  1. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  2. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  3. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  4. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  5. Industrial Gases as a Vehicle for Competitiveness

    E-Print Network [OSTI]

    Dale, J. R.

    -based separation technology was developing to offer an alternative to cryogenic separation for those instances when neither high purity or cryogenic properties were required by the application. It resulted in gas of lower than 99.9995%, "five-nines", purity...INDUSTRIAL GASES AS A VEHICLE FOR COMPETITIVENESS James R. Dale, Director, Technology Programs, Airco Industrial Gases Division, The BOC Group, Inc., Murray Hill, New Jersey ABSTRACT Industrial gases are produced using compressed air...

  6. U.S. Energy Demand, Offshore Oil Production and

    E-Print Network [OSTI]

    Patzek, Tadeusz W.

    U.S. Energy Demand, Offshore Oil Production and BP's Macondo Well Spill Tad Patzek, Petroleum form well-rounded petroleum engineers, and deliver science and technology to O&G Industry, while trying that run the U.S. Complexity, models, risks Gulf of Mexico's oil and gas production Conclusions ­ p.3/4 #12

  7. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  8. Online Modeling in the Process Industry for Energy Optimization

    E-Print Network [OSTI]

    Alexander, J.

    "This paper discusses how steady state models are being used in the process industry to perform online energy optimization of steam and electrical systems. It presents process demands commonly found in the processing industry in terms of steam...

  9. Impact of Electricity Deregulation on Industrial Assessment Strategies 

    E-Print Network [OSTI]

    Kasten, D. J.; Muller, M. R.; Pavlovic, F.

    2002-01-01T23:59:59.000Z

    of predictions in the electric industry is less mature than in the natural gas field. BIG OR SMALL EFFICENCY? As we mentioned earlier, many recommendations in industry do not improve efficiency. These include shifting operations to nighttime, demand...

  10. Systems Division NO. REV. NO.

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Conditioning Unit (PCU) is compatible with a solar panel array. The Solar Panel Simulator and the PCU Test SetAerospace Systems Division NO. REV. NO. EATM-17 PCU - SOLAR PANEL SIMULATOR TEST REPORT:' Courtois ~ll~K. Hsi #12;MO. REV. MO. EATM-17 ~ Systems Division PCU - Solar Panel Simulator Test Report

  11. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE · To determine the need/demand for future on- campus student housing · To address requests from · A survey of students, and analysis of housing markets, and preparation of a forecast · The timeline

  12. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  13. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) · `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  14. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  15. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  16. Physics division annual report 1999

    SciTech Connect (OSTI)

    Thayer, K., ed.; Physics

    2000-12-06T23:59:59.000Z

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

  17. Industrial Rates and Demand-Side Management Programs

    E-Print Network [OSTI]

    Kasprowicz, L. M.; House, R.

    ), Southwestern Public Service, Southwestern Electric Power, City of Austin, West Texas Utilities, EI Paso Electric, and Texas-New Mexico Power. Wholesale sales by major utilities included in "Others" category. Texas service areas only. Percentages based...,928,250 31.8% Texas Total 49,521 13,804 25.8% 93,847,494 36.9% wI Self-Gen 49,521 17,619 30.7% 119,841042 42.8% Note: Utilities are: TV Electric, Houston Lighting & Power, GulfStates Utilities, Central Power and Light, City Public Service (San Antonio...

  18. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    of these sectors: Cold storage Data centers and test labspromising DR measures. Cold storage associated with fruitfacilities, adjustment of cold storage was the principal

  19. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    Insulation Levels for Cold Storage Buildings. J. Arch.Livermore facility, a cold storage food distribution center

  20. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Sacramento, CA. P400-020016F EPRI (Electric Power ResearchWater (IAW) Energy Users by EPRI for the California Energyin more depth in Section 2.6. EPRI (Electric Power Research

  1. Energy and Demand Savings from Implementation Costs in Industrial Facilities

    E-Print Network [OSTI]

    Razinha, J. A.; Heffington, W. M.

    Improve Lubrication Practices 0.91 4 na 3 na 0 24 16 487 Use Waste Heat from Hot Flue Gases to Preheat Combustion Air 0.29 483 na 2 0.31 449 25 11 464 Use Synthetic Lubricant 0.03 198 0.03 198 na 0 5 Table 3. National IAC... 2 25 11 Use Synthetic Lubricant 0.00 159 0.00 24 6 Table 4. Texas A&M University IAC Energy Conservation - Implementation Cost Correlations Rank No. TAMU Assessment Recommendation (AR) Total Energy Electrical Consumption Natural...

  2. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    cooling, and storage; and For supporting system load sheds, aerators, multiple systems, electrical, and compressed air. Future

  3. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Manufacturing Resin, Synthetic Rubber, and ArtificialManufacturing Resin, Synthetic Rubber, and ArtificialManufacturing Resin, Synthetic Rubber, and Artificial

  4. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    Cooling Space Conditioning Transport System Battery ChargersConditioning Motors Process Cooling Storage Pump System Refrigeration Compressed Air System BatteryConditioning Multiple Compressed Air System Aerators Lighting Process Cooling Motors Process Heat Fan System Grinders Conveyors Electrical Storage Finishing Crushers Battery

  5. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    plants without onsite generation could, under pre- determined conditions, free up electricityplants without any onsite generation capability could, under pre-determined conditions, automatically free up electricity

  6. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    cooling, and storage; and For supporting system load sheds, aerators, multiple systems, electrical, and compressed air. Future Research

  7. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Cairns, E.J.

    2010-01-01T23:59:59.000Z

    Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

  8. EARTH SCIENCES DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andof the Division of Geothermal Energy, and is compatible with

  9. Open Automated Demand Response Communications Specification (Version 1.0)

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Koch, Ed; Hennage, Dan; Palensky, Peter; McParland, Charles

    2009-02-28T23:59:59.000Z

    The development of the Open Automated Demand Response Communications Specification, also known as OpenADR or Open Auto-DR, began in 2002 following the California electricity crisis. The work has been carried out by the Demand Response Research Center (DRRC), which is managed by Lawrence Berkeley National Laboratory. This specification describes an open standards-based communications data model designed to facilitate sending and receiving demand response price and reliability signals from a utility or Independent System Operator to electric customers. OpenADR is one element of the Smart Grid information and communications technologies that are being developed to improve optimization between electric supply and demand. The intention of the open automated demand response communications data model is to provide interoperable signals to building and industrial control systems that are preprogrammed to take action based on a demand response signal, enabling a demand response event to be fully automated, with no manual intervention. The OpenADR specification is a flexible infrastructure to facilitate common information exchange between the utility or Independent System Operator and end-use participants. The concept of an open specification is intended to allow anyone to implement the signaling systems, the automation server or the automation clients.

  10. IDENTIFICATION OF NORTHEAST REGIONAL PRIORITY INDUSTRIES OCTOBER 2000

    E-Print Network [OSTI]

    DIVISION OF ENERGY RESOURCES NEW YORK STATE ENERGY RESEARCH AND DEVELOPMENT AUTHORITY THE ENVIRONMENTAL in the seven northeastern states of New York, Massachusetts, Connecticut, Rhode Island, New Hampshire, Maine TECHNOLOGY COLLABORATIVE SPONSORS DEPARTMENT OF ENERGY, OFFICE OF INDUSTRIAL TECHNOLOGIES MASSACHUSETTS

  11. A complex order for industry : design of an urban factory

    E-Print Network [OSTI]

    Kaup, Thomas

    1993-01-01T23:59:59.000Z

    Whereas the separation of work from domestic life introduced during the industrial revolution has brought enormous increases in productivity through the division of labor, the cultural cost of this fracture for society is ...

  12. Evaluating Sites for Industrial Cogeneration in Chicago

    E-Print Network [OSTI]

    Fowler, G. L.; Baugher, A. H.

    1982-01-01T23:59:59.000Z

    and hospital complexes; and new, densely populated residential developments that have large thermal and electric demands. Potential sites have been evaluated as part of a project to encourage industrial cogeneration applications in Chicago. Energy...

  13. Program Strategies and Results for California’s Energy Efficiency and Demand Response Markets

    E-Print Network [OSTI]

    Ehrhard, R.; Hamilton, G.

    2008-01-01T23:59:59.000Z

    Global Energy Partners provides a review of California’s strategic approach to energy efficiency and demand response implementation, with a focus on the industrial sector. The official role of the state, through the California Energy Commission (CEC...

  14. Societal demand for increasing mineral resources continue to affect societythrough aspects as varied as

    E-Print Network [OSTI]

    Handy, Todd C.

    Societal demand for increasing mineral resources continue to affect societythrough aspects in investment. The discovery of new mineral resources requires increasing risk, increasing costs, and to provide trained individuals to industry. Vancouver has long been a global leader in exploration

  15. Incorporating Demand Resources into ISO New England’s Forward Capacity Market

    E-Print Network [OSTI]

    Winkler, E.

    2008-01-01T23:59:59.000Z

    The Forward Capacity Market was developed by ISO New England, the six New England states, and industry stakeholders to promote investment in demand- and supply-side resources. Under the new FCM design, ISO New England will project the needs...

  16. The role of demand uncertainty in materials selection : a case study on aluminum recycling

    E-Print Network [OSTI]

    Dabbas, Hashem H

    2007-01-01T23:59:59.000Z

    Aluminum is a versatile material that is used frequently in transportation and packaging, two industries with substantial recent growth. The increase in demand for aluminum, however, has outpaced the growth of primary ...

  17. Industrial Engineering Industrial Advisory Board

    E-Print Network [OSTI]

    Gelfond, Michael

    Industrial Engineering Industrial Advisory Board (IAB) #12;PURPOSE: The Texas Tech University - Industrial Engineering Industrial Ad- visory Board (IAB) is an association of professionals with a com- mon goal - promoting and developing the Texas Tech Department of Industrial Engineering and its students

  18. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28T23:59:59.000Z

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  19. Towards Hybrid Online On-Demand Querying of Realtime Data with Stateful Complex Event Processing

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    that is frequently accessed (hot data) is on fast storage compared to less-frequently accessed data (warm and cold like e- commerce and energy industry require both online and on- demand queries to be performed over to support scalable data storage and on-demand querying over large volumes of data. These systems usually

  20. Direct Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg

    E-Print Network [OSTI]

    Waterloo, University of

    Report CS-2010-17 ABSTRACT The legacy electrical grid upper-bounds a customer's en- ergy demand using An electrical grid supplies reliable power to residential, industrial, and commercial customers by dynamicallyDirect Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg School of Computer Science

  1. THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY PROFESSION

    E-Print Network [OSTI]

    1 THE CHALLENGES AND OPPORTUNITIES TO MEET THE WORKFORCE DEMAND IN THE ELECTRIC POWER AND ENERGY, Iowa State University ABSTRACT There is a tremendous imbalance between engineering workforce demand and supply in the world in general, and in the US, in particular. The electric power and energy industry

  2. July 26, 2010 The Global Supply and Demand for Agricultural Land in 2050

    E-Print Network [OSTI]

    Ginzel, Matthew

    new #12;source of industrial demand in agricultural markets (Energy Information Agency 2010). To compound matters, water, a key input into agricultural production, is rapidly diminishing in availabilityJuly 26, 2010 The Global Supply and Demand for Agricultural Land in 2050: A Perfect Storm

  3. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  4. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  5. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  6. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  7. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  8. PERISHSaving an Oil Industry at Risk FEBRUARY 2013

    E-Print Network [OSTI]

    Peak, Derek

    01 Global Demand Outlook for Crude Oil OVERVIEW 04 DEMAND BY COUNTRY 06 United States 06 China 06 supplies. On top of all that, demand for oil products in North America is falling. The continent's oilPIPEOR PERISHSaving an Oil Industry at Risk FEBRUARY 2013 MICHAEL HOLDEN, SENIOR ECONOMIST #12;The

  9. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  10. Industrial Energy Auditing: An Opportunity for Improving Energy Efficiency and Industrial Competitiveness

    E-Print Network [OSTI]

    Glaser, C.

    /Process Changes Buildings and Grounds Non-Energy Related Cost Savings Alternate Fuels The University City Science Center examines and critiques every audit report generated by the EADCs to ensure high quality work. They also periodically accompany the EADC...INDUSTRIAL ENERGY AUDITING: AN OPPORTUNITY FOR IMPROVING ENERGY EFFICIENCY AND INDUSTRIAL COMPETITIVENESS CHARLES GLASER, PROGRAM MANAGER, IMPLEMENTATION AND DEPLOYMENT DIVISION OFFICE OF INDUSTRIAL TECHNOLOGIES, U.S. DEPARTMENT OF ENERGY...

  11. Metals and Ceramics Division progress report for period ending December 31, 1993

    SciTech Connect (OSTI)

    Craig, D.F.; Bradley, R.A.; Weir, J.R. Jr.

    1994-07-01T23:59:59.000Z

    This report provides an overview of activities and accomplishsments of the division from October 1992 through December 1993; the division is organized to provide technical support, mainly in the area of high-temperature materials, for technologies being developed by DOE. Activities span the range from basic research to industrial interactions (cooperative research and technology transfer). Sections 1-5 describe the different functional groups (engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials). Sect. 6 provides an alternative view of the division in terms of the major programs, most of which cross group lines. Sect. 7 summarizes external interactions including cooperative R and D programs and technology transfer functions. Finally, Sect. 8 briefly describes the division`s involvement in educational activities. Several organizational changes were effected during this period.

  12. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  13. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  14. Physics Division computer facilities

    SciTech Connect (OSTI)

    Cyborski, D.R.; Teh, K.M.

    1995-08-01T23:59:59.000Z

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  15. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  16. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  17. DIVISION 16 -ELECTRICAL 16000 GENERAL

    E-Print Network [OSTI]

    DIVISION 16 - ELECTRICAL _____________________________________________________________ 16000 GENERAL A. Design Considerations 1. All drawing, specifications and construction shall conform to the following: National Electrical Code National Electrical Safety Code National Fire Protection Association

  18. Division 1137 property control system

    SciTech Connect (OSTI)

    Pastor, D.J.

    1982-01-01T23:59:59.000Z

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  19. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  20. Metals and Ceramics Division progress report for period ending December 31, 1992

    SciTech Connect (OSTI)

    Craig, D.F.; Weir, J.R. Jr.

    1993-04-01T23:59:59.000Z

    This report provides a brief overview of the activities and accomplishments of the division, whose purpose is to provide technical support, primarily in the area of high-temperature materials, for the various technologies being developed by US DOE. Activities range from basic research to industrial research and technology transfer. The division (and the report) is divided into the following: Engineering materials, high-temperature materials, materials science, ceramics, nuclear fuel materials, program activities, collaborative research facilities and technology transfer, and educational programs.

  1. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  2. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  3. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  4. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  5. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  6. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  7. Former Sites Restoration. Division

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- * -*

  8. Guidance Systems Division ,

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling CorpNewCF INDUSTRIES,L? . -. .- *' *---:Oockec

  9. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  11. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  12. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  13. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  14. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  15. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  16. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  17. aerospace industries division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute for Aerospace Survey & Earth Rossiter, D G "David" 31 AEROSPACE SAFETY ADVISORY PANEL Geosciences Websites Summary: AEROSPACE SAFETY ADVISORY PANEL ANNUAL...

  18. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  19. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  20. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  1. The Electricity Industry In Spain Edward Kahn

    E-Print Network [OSTI]

    California at Berkeley. University of

    import of natural gas from Algeria. The 1994 electricity reform legislation mandated the creation Sweden US Canada Finland Israel Greece Italy Austria 0.3 0.4 0.5 0.6 0.7 0.8 3 6 9 12 Industrial Prices preference for industrial demand. France, Sweden and Denmark have the lowest of these ratios in this sample

  2. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  3. Research Projects in Industrial Technology.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. Industrial Technology Section.

    1990-06-01T23:59:59.000Z

    The purpose of this booklet is to briefly describe ongoing and completed projects being carried out by Bonneville Power Administration's (BPA) Industrial Technology Section. In the Pacific Northwest, the industrial sector is the largest of the four consuming sectors. It accounted for thirty-nine percent of the total firm demand in the region in 1987. It is not easy to asses the conservation potential in the industrial sector. Recognizing this, the Northwest Power Planning Council established an objective to gain information on the size, cost, and availability of the conservation resource in the industrial sector, as well as other sectors, in its 1986 Power Plan. Specifically, the Council recommended that BPA operate a research and development program in conjunction with industry to determine the potential costs and savings from efficiency improvements in industrial processes which apply to a wide array of industrial firms.'' The section, composed of multidisciplinary engineers, provides technical support to the Industrial Programs Branch by designing and carrying out research relating to energy conservation in the industrial sector. The projects contained in this booklet are arranged by sector --industrial, utility, and agricultural -- and, within each sector, chronologically from ongoing to completed, with those projects completed most recently falling first. For each project the following information is given: its objective approach, key findings, cost, and contact person. Completed projects also include the date of completion, a report title, and report number.

  4. Climate Mitigation Policy Implications for Global Irrigation Water Demand

    SciTech Connect (OSTI)

    Chaturvedi, Vaibhav; Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Wise, Marshall A.

    2013-08-22T23:59:59.000Z

    Energy, water and land are scarce resources, critical to humans. Developments in each affect the availability and cost of the others, and consequently human prosperity. Measures to limit greenhouse gas concentrations will inevitably exact dramatic changes on energy and land systems and in turn alter the character, magnitude and geographic distribution of human claims on water resources. We employ the Global Change Assessment Model (GCAM), an integrated assessment model to explore the interactions of energy, land and water systems in the context of alternative policies to limit climate change to three alternative levels: 2.5 Wm-2 (445 ppm CO2-e), 3.5 Wm-2 (535 ppm CO2-e) and 4.5 Wm-2 (645 ppm CO2-e). We explore the effects of alternative land-use emissions mitigation policy options—one which values terrestrial carbon emissions equally with fossil fuel and industrial emissions, and an alternative which places no penalty on land-use change emissions. We find that increasing populations and economic growth could be anticipated to lead to increased demand for water for agricultural systems (+200%), even in the absence of climate change. In general policies to mitigate climate change will increase agricultural demands for water, regardless of whether or not terrestrial carbon is valued or not. Burgeoning demands for water are driven by the demand for bioenergy in response to emissions mitigation policies. We also find that the policy matters. Increases in the demand for water when terrestrial carbon emissions go un-prices are vastly larger than when terrestrial system carbon emissions are prices at the same rate as fossil fuel and industrial emissions. Our estimates for increased water demands when terrestrial carbon systems go un-priced are larger than earlier studies. We find that the deployment of improved irrigation delivery systems could mitigate some of the increase in water demands, but cannot reverse the increases in water demands when terrestrial carbon emissions go un-priced. Finally we estimates that the geospatial pattern of water demands could stress some parts of the world, e.g. China, India and other countries in south and east Asia, earlier and more intensely than in other parts of the world, e.g. North America.

  5. Computer Sciences and Mathematics Division | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Sciences and Mathematics Division SHARE Computer Sciences and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic...

  6. Computational Sciences and Engineering Division | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences and Engineering Division SHARE Computational Sciences and Engineering Division The Computational Sciences and Engineering Division is a major research...

  7. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  8. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  9. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  10. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  11. obesity demands more than just

    E-Print Network [OSTI]

    Qian, Ning

    #12;The World That Makes Us Fat ***** ***** ***** Overcoming obesity demands more than just. By Melinda Wenner Moyer Illustrations by A. Richard Allen 27 #12;ON ONE LEVEL, of course, obesity has a sim to pollutants. Their research suggests that to solve the problem of obesity--and, ultimately, to prevent it from

  12. Bottom-up Representation of Industrial Energy Efficiency Technologies in Integrated Assessment Models for the U.S. Pulp and Paper Sector

    E-Print Network [OSTI]

    Xu, Tengfang

    2014-01-01T23:59:59.000Z

    Sixth Annual Industrial Energy Technology Conference, VolumeBNL). 2001. The Energy Technology Systems AnalysisKramer Environmental Energy Technologies Division July 2012

  13. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  14. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  15. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  16. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  17. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  18. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith; Fthenakis, Vasilis

    2015-01-01T23:59:59.000Z

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantialmore »investments.« less

  19. Glass needs for a growing photovoltaics industry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Burrows, Keith [Columbia Univ., New York, NY (United States); Fthenakis, Vasilis [Columbia Univ., New York, NY (United States); Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-01-01T23:59:59.000Z

    With the projected growth in photovoltaics, the demand for glass for the solar industry will far exceed the current supply, and thousands of new float-glass plants will have to be built to meet its needs over the next 20 years. Such expansion will provide an opportunity for the solar industry to obtain products better suited to their needs, such as low-iron glass and borosilicate glass at the lowest possible price. While there are no significant technological hurdles that would prevent the flat glass industry from meeting the solar industry’s projected needs, to do so will require advance planning and substantial investments.

  20. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  1. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  2. How One Utility is Building Industrial Consumer Relationships

    E-Print Network [OSTI]

    Hamilton, D. E.

    HOW ONE UT1~ITY IS BUILDING INDUSTRIAL CONSUMER RELATIONSHIPS DONALD E. HAMILTON Manager-Industrial Services and Cogeneration Gulf States Utilities Company Beaumont, Texas COMPETITION AND THE UTILITY INDUSTRY The refining and petrochemical... in the eighties: depletion of old low cost oil and gas fields within the United States, the formation of OPEC, a run-up in oil and gas prices, leveling of demand in the petrochemical industry, the transfer of substantial wealth from industrial to oil...

  3. DIVISION 6 -WOOD AND PLASTICS 06000 GENERAL

    E-Print Network [OSTI]

    DIVISION 6 - WOOD AND PLASTICS ________________________________________________________________________ 06000 GENERAL 1. For both woods and plastics, special attention is called to matters of flame spread-dried. 3. For exterior wood or plastic framed structures, see Division 4 for dimensions of Sample Panel

  4. Education Strategy Team Policy Division

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education Strategy Team Policy Division DFID 1 Palace Street London SW1E 5HE 30 October 2009 TEL fellowships in India under the Wellcome Trust/DBT India Alliance2 . We believe that such investment is vital/Global-health-research/WTX055734.htm 2 Wellcome Trust/DBT India Alliance: http://www.wellcomedbt.org/index.htm #12;to support

  5. Publishing Division The Edinburgh Building

    E-Print Network [OSTI]

    Rosenberger, Alfred H.

    Publishing Division The Edinburgh Building Shaftesbury Road Cambridge CB2 2RU, UK TELEPHONE 01223 Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road Record [1] walter carl hartwig 2 The origin of primates [5] david tab rasmussen The earliest primates

  6. Biosciences Division Media Mentions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Division Publications Newsletters Organizational Charts Research Highlights Media Mentions Clean Energy Home | Science & Discovery | Clean Energy | Supporting...

  7. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  8. Health, Safety, and Environment Division: Annual progress report 1987

    SciTech Connect (OSTI)

    Rosenthal, M.A. (comp.)

    1988-04-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  9. Trajectory Description Conception for Industrial Robots. Sergey Alatartsev

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Trajectory Description Conception for Industrial Robots. Sergey Alatartsev Computer Systems for industrial robots programming. It should allow them to obtain difficult motions by easy com- bination of modern manufactur- ing process. At the present moment industrial robots do not meet these demands

  10. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  11. Finance Division EXTRA MILE AWARD PROGRAM

    E-Print Network [OSTI]

    Crews, Stephen

    Finance Division EXTRA MILE AWARD PROGRAM Nomination Form Instructions Any fulltime or parttime permanent or temporary SPA employee within the Finance Division who works 20 or more provided. The seven major departments within the Finance Division to choose from are described below

  12. Analytical Chemistry Division's sample transaction system

    SciTech Connect (OSTI)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01T23:59:59.000Z

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

  13. EARTH SCIENCES Lower-Division Requirements

    E-Print Network [OSTI]

    Constable, Steve

    2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

  14. Computer Security Division 2008 Annual Report

    E-Print Network [OSTI]

    Computer Security Division 2008 Annual Report #12;TAble of ConTenTS Welcome 1 Division Organization 2 The Computer Security Division Responds to the Federal Information Security Management Act of 2002 3 Security Management and Assistance Group (SMA) 4 FISMA Implementation Project 4 Publications

  15. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  16. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    of trans­ uranium organometallic chemistry, particularlyfor Uranium Isotope Separation," Chemistry Division, IsotopeOlander, "Uranium Enrichment by Laser," Chemistry Division,

  17. analytical sciences division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division Environmental Management and Restoration Websites Summary: Chemical Sciences and Engineering Division Director Assoc Director Ops Assoc Director Science Yates...

  18. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    for Uranium Isotope Separation," Chemistry Division, Isotopeof trans­ uranium organometallic chemistry, particularlyOlander, "Uranium Enrichment by Laser," Chemistry Division,

  19. OTHER INDUSTRIES

    Broader source: Energy.gov [DOE]

    AMO funded research results in novel technologies in diverse industries beyond the most energy intensive ones within the U.S. Manufacturing sector. These technologies offer quantifiable energy...

  20. Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation

    E-Print Network [OSTI]

    Gates, G. G.

    the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been...

  1. Abstract--Forecasting of future electricity demand is very important for decision making in power system operation and

    E-Print Network [OSTI]

    Ducatelle, Frederick

    Abstract--Forecasting of future electricity demand is very important for decision making in power industry, accurate forecasting of future electricity demand has become an important research area for secure operation, management of modern power systems and electricity production in the power generation

  2. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  3. Real-time Enabled IEEE 802.15.4 Sensor Networks in Industrial Automation

    E-Print Network [OSTI]

    Breu, Ruth

    Real-time Enabled IEEE 802.15.4 Sensor Networks in Industrial Automation Feng Chen, Thomas Talanis, Industry Automation Division, Germany Abstract--Sensor networks have been investigated in many scenarios, sensor networks became also an interesting topic in industrial automation. Here, the main focus

  4. QoS-oriented Integrated Network Planning for Industrial Wireless Sensor Networks

    E-Print Network [OSTI]

    Breu, Ruth

    , Industry Automation Division, Germany {feng.chen,german,dressler}@informatik.uni-erlangen.de Abstract including industrial automation. This also includes Wireless Sensor Network (WSN) technology [1] basedQoS-oriented Integrated Network Planning for Industrial Wireless Sensor Networks Feng Chen

  5. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  6. Justice and the demands of realism

    E-Print Network [OSTI]

    Munro, Daniel K., 1972-

    2006-01-01T23:59:59.000Z

    The dissertation examines how concerns about the demands of realism should be addressed in political theories of justice. It asks whether the demands of realism should affect the construction of principles of justice and, ...

  7. Applications for Computers in Industrial Powerhouses

    E-Print Network [OSTI]

    Delk, S. R.

    1981-01-01T23:59:59.000Z

    of electric motors due to their increased number of starts. In the industrial field, there are many processes that will not allow a cyclical operation. However, in batch processes, electric demand control can be very valuable. Electric demand reduction... these services you generally have several boilers, refrigeration machines, and air compres sors which may be driven by electric motors, topp ing or condensing steam turbines. How do you determine the most economical method to supply all the utilities...

  8. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  9. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  10. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  11. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  12. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  13. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  14. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  15. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  16. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  17. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  18. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  19. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30T23:59:59.000Z

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  20. IMPACT EVALUATION OF AN ENERGY SAVINGS PLAN PROJECT AT THE LINDE DIVISION OF UNION CARBIDE CORPORATION

    SciTech Connect (OSTI)

    Spanner, G. E.; Sullivan, G. P.

    1992-04-01T23:59:59.000Z

    This impact evaluation of an energy conservation measure (ECM) that was recently installed at the Linde Division of Union Carbide Corporation (Linde) was conducted far the Bonneville Power Administration (Bonneville) as part of an evaluation of its Energy Savings Plan (ESP) Program. The Program makes acquisition payments to firms that install energy conservation measures in their industrial processes. The objective of this impact evaluation was to assess how much electrical energy is being saved at Linde as a result of the ESP and to determine how much the savings cost Bonneville and the region. The impact of the ECM was evaluated with a combination of engineering analysis, financial analysis, site visit and interviews, and submittal reviews (Linde's Completion Report and Abstract). The ECM itself consists of replacing the plant's nitrogen feed compressor with a larger unit, which allows the plant to meet its argon demand using less compressed air and which results in net energy savings. Energy savings resulting from this ECM were 4,376,500 kWh/yr for the first two years after installation, but, because of a change in Linde's market position, long-term savings are expected to be lower at 2,549,200 kWh/yr. Linde considers energy consumption and savings on a per ton basis to be proprietary, so they are not reported here. The ECM cost $361,4.96 to install, and Linde received payment of $161,426 from Bonneville for the acquisition of energy savings. This ECM would not have been implemented without the acquisition payment from Bonneville. The levelized cost of these energy savings to Bonneville will be 4.5 mills/kWh over the ECM's expected 15-year life, and the levelized cost to th.e region will be 5.9 mills/kWh.

  1. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30T23:59:59.000Z

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  2. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    SciTech Connect (OSTI)

    Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

    2009-06-28T23:59:59.000Z

    This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

  3. COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day Friday April 1, 2005

    E-Print Network [OSTI]

    Van Stryland, Eric

    COLLEGE OF OPTICS AND PHOTONICS: CREOL & FPCE Industrial Affiliates Day ­ Friday April 1, 2005 "Optics & Photonics ­ Envisioning the Future" ­ Projecting Today's Research Into Tomorrow's Applications:45 "Optics & Photonics in Manufacturing..." Dr. Bruce Craig VP and General Manager, Laser Division, Newport

  4. The impact of changes in electric transmission regulation on coal demand

    SciTech Connect (OSTI)

    Finn, E.J.

    1996-12-31T23:59:59.000Z

    The likely impact of changes in regulation of electric transmission and the environmental impacts associated with those changes on the demand for coal by the electric utility industry are discussed. Since the electric utility industry is currently the largest user of coal (in 1992, 87% of coal consumed in the United States was used to generate electricity by electric utilities) any systematic change in the electric utility industry could ripple through the coal industry. What deregulation or changes in regulations in the electric industry is occurring or has occurred at the federal level and the expected impact on the demand for coal are discussed. From the point of view of the electric industry, at least, the primary variable driving demand for coal up or down is its price relative to alternate fuels, particularly natural gas. This is no surprise. Regardless of how the regulators increase or alter their scrutiny of the industry, fundamental economics will prevail. Indeed, with the changes in regulation moving toward more free and open competition, those forces will move even more to the forefront.

  5. The Korean Roadmap to OTEC Industrialization [ International OTEC Symposium

    E-Print Network [OSTI]

    The Korean Roadmap to OTEC Industrialization [ International OTEC Symposium ] hyeonju the dependency on imported fossil fuels => High dT OTEC + SWAC OTEC roadmap was established to meet such demands

  6. Outsourcing Logistics in the Oil and Gas Industry 

    E-Print Network [OSTI]

    Herrera, Cristina 1988-

    2012-04-30T23:59:59.000Z

    The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have...

  7. Outsourcing Logistics in the Oil and Gas Industry

    E-Print Network [OSTI]

    Herrera, Cristina 1988-

    2012-04-30T23:59:59.000Z

    The supply chain challenges that the Oil and Gas industry faces in material logistics have enlarged in the last few decades owing to an increased hydro-carbon demand. Many reasons justify the challenges, such as exploration activities which have...

  8. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  9. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  10. Industrial ecology Prosperity Game{trademark}

    SciTech Connect (OSTI)

    Beck, D.; Boyack, K.; Berman, M.

    1998-03-01T23:59:59.000Z

    Industrial ecology (IE) is an emerging scientific field that views industrial activities and the environment as an interactive whole. The IE approach simultaneously optimizes activities with respect to cost, performance, and environmental impact. Industrial Ecology provides a dynamic systems-based framework that enables management of human activity on a sustainable basis by: minimizing energy and materials usage; insuring acceptable quality of life for people; minimizing the ecological impact of human activity to levels that natural systems can sustain; and maintaining the economic viability of systems for industry, trade and commerce. Industrial ecology applies systems science to industrial systems, defining the system boundary to incorporate the natural world. Its overall goal is to optimize industrial activities within the constraints imposed by ecological viability, globally and locally. In this context, Industrial systems applies not just to private sector manufacturing and services but also to government operations, including provision of infrastructure. Sandia conducted its seventeenth Prosperity Game{trademark} on May 23--25, 1997, at the Hyatt Dulles Hotel in Herndon, Virginia. The primary sponsors of the event were Sandia National Laboratories and Los Alamos National Laboratory, who were interested in using the format of a Prosperity Game to address some of the issues surrounding Industrial Ecology. Honorary game sponsors were: The National Science Foundation; the Committee on Environmental Improvement, American Chemical Society; the Industrial and Engineering Chemistry Division, American Chemical Society; the US EPA--The Smart Growth Network, Office of Policy Development; and the US DOE-Center of Excellence for Sustainable Development.

  11. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  12. The geothermal partnership: Industry, utilities, and government meeting the challenges of the 90's

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal community. This year's conference, Program Review IX, was held in San Francisco on March 19--21, 1991. The theme of this review was The Geothermal Partnership -- Industry, Utilities, and Government Meeting the Challenges of the 90's.'' The importance of this partnership has increased markedly as demands for improved technology must be balanced with available research resources. By working cooperatively, the geothermal community, including industry, utilities, DOE, and other state and federal agencies, can more effectively address common research needs. The challenge currently facing the geothermal partnership is to strengthen the bonds that ultimately will enhance opportunities for future development of geothermal resources. Program Review IX consisted of eight sessions including an opening session. The seven technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy and the progress associated with the Long Valley Exploratory Well. Individual papers have been cataloged separately.

  13. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  14. ENERGY AND ENVIRONMENT DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Cairns, E.L.

    2011-01-01T23:59:59.000Z

    1, 1978. American Industrial Hygiene Association, "Communityare significant industrial hygiene and air pollution controla number of excellent industrial hygiene references dealing

  15. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  16. On Making Relational Division Comprehensible

    E-Print Network [OSTI]

    McCann, Lester I.

    pno jno qty S1 P1 J1 200 ... ... ... ... S5 P6 J4 500 FIE 2003 ­ p.8/33 #12;A More Practical Example,pno(SPJ) and pno(weight=17(P)) sno pno pno S1 P1 P2 S2 P3 P3 S2 P5 S3 P3 S3 P4 S4 P6 S5 P1 S5 P2 S5 P3 S5 P4 S5 P5 S5 P6 FIE 2003 ­ p.10/33 #12;Division in Relational Algebra Idea: Find the values that do

  17. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs)...

  18. EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2011-01-01T23:59:59.000Z

    8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

  19. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  20. Sandia National Laboratories: Internal Combustion Engine Division...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Combustion Engine Division conference CRF Researchers Received "Best Paper" Award for Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal...

  1. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce costs, and minimize the environmental impact in the production of rare-earth metals and alloys. The division's Nuclear Analytical Chemistry and Isotopics...

  2. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  3. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  4. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

  5. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  6. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  7. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  8. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  9. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  10. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  11. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  12. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  13. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  14. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  15. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  16. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  17. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

  18. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  19. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  20. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  1. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  2. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  3. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  4. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  5. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  6. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  7. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect (OSTI)

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01T23:59:59.000Z

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  8. Energy and Environmental Systems Division 1981 research review

    SciTech Connect (OSTI)

    Not Available

    1982-04-01T23:59:59.000Z

    To effectively manage the nation's energy and natural resources, government and industry leaders need accurate information regarding the performance and economics of advanced energy systems and the costs and benefits of public-sector initiatives. The Energy and Environmental Systems Division (EES) of Argonne National Laboratory conducts applied research and development programs that provide such information through systems analysis, geophysical field research, and engineering studies. During 1981, the division: analyzed the production economics of specific energy resources, such as biomass and tight sands gas; developed and transferred to industry economically efficient techniques for addressing energy-related resource management and environmental protection problems, such as the reclamation of strip-mined land; determined the engineering performance and cost of advanced energy-supply and pollution-control systems; analyzed future markets for district heating systems and other emerging energy technologies; determined, in strategic planning studies, the availability of resources needed for new energy technologies, such as the imported metals used in advanced electric-vehicle batteries; evaluated the effectiveness of strategies for reducing scarce-fuel consumption in the transportation sector; identified the costs and benefits of measures designed to stabilize the financial condition of US electric utilities; estimated the costs of nuclear reactor shutdowns and evaluated geologic conditions at potential sites for permanent underground storage of nuclear waste; evaluated the cost-effectiveness of environmental regulations, particularly those affecting coal combustion; and identified the environmental effects of energy technologies and transportation systems.

  9. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Piette, Mary Ann; Thompson, Lisa; Lekov, Alex

    2008-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This 'electricity value chain' defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to 'demo' potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives. In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  10. Automated Demand Response: The Missing Link in the Electricity Value Chain

    SciTech Connect (OSTI)

    McKane, Aimee; Rhyne, Ivin; Lekov, Alex; Thompson, Lisa; Piette, MaryAnn

    2009-08-01T23:59:59.000Z

    In 2006, the Public Interest Energy Research Program (PIER) Demand Response Research Center (DRRC) at Lawrence Berkeley National Laboratory initiated research into Automated Demand Response (OpenADR) applications in California industry. The goal is to improve electric grid reliability and lower electricity use during periods of peak demand. The purpose of this research is to begin to define the relationship among a portfolio of actions that industrial facilities can undertake relative to their electricity use. This ?electricity value chain? defines energy management and demand response (DR) at six levels of service, distinguished by the magnitude, type, and rapidity of response. One element in the electricity supply chain is OpenADR, an open-standards based communications system to send signals to customers to allow them to manage their electric demand in response to supply conditions, such as prices or reliability, through a set of standard, open communications. Initial DRRC research suggests that industrial facilities that have undertaken energy efficiency measures are probably more, not less, likely to initiate other actions within this value chain such as daily load management and demand response. Moreover, OpenADR appears to afford some facilities the opportunity to develop the supporting control structure and to"demo" potential reductions in energy use that can later be applied to either more effective load management or a permanent reduction in use via energy efficiency. Under the right conditions, some types of industrial facilities can shift or shed loads, without any, or minimal disruption to operations, to protect their energy supply reliability and to take advantage of financial incentives.1 In 2007 and 2008, 35 industrial facilities agreed to implement OpenADR, representing a total capacity of nearly 40 MW. This paper describes how integrated or centralized demand management and system-level network controls are linked to OpenADR systems. Case studies of refrigerated warehouses and wastewater treatment facilities are used to illustrate OpenADR load reduction potential. Typical shed and shift strategies include: turning off or operating compressors, aerator blowers and pumps at reduced capacity, increasing temperature set-points or pre-cooling cold storage areas and over-oxygenating stored wastewater prior to a DR event. This study concludes that understanding industrial end-use processes and control capabilities is a key to support reduced service during DR events and these capabilities, if DR enabled, hold significant promise in reducing the electricity demand of the industrial sector during utility peak periods.

  11. Physics Division ESH Bulletin 02-7 New Physics Division Procedure

    E-Print Network [OSTI]

    Physics Division ESH Bulletin 02-7 New Physics Division Procedure Applies to disablement of Physics-Interlock Disablement form is completed and given to the ESH Officer for filing 6/10/02 INTERLOCKS, TEMPORARY DISABLEMENT FILE maintained by Physics Division ESH Officer) #12;

  12. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  13. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  14. Current and future industrial energy service characterizations

    SciTech Connect (OSTI)

    Krawiec, F.; Thomas, T.; Jackson, F.; Limaye, D.R.; Isser, S.; Karnofsky, K.; Davis, T.D.

    1980-10-01T23:59:59.000Z

    Current and future energy demands, end uses, and cost used to characterize typical applications and resultant services in the industrial sector of the United States and 15 selected states are examined. A review and evaluation of existing industrial energy data bases was undertaken to assess their potential for supporting SERI research on: (1) market suitability analysis, (2) market development, (3) end-use matching, (3) industrial applications case studies, and (4) identification of cost and performance goals for solar systems and typical information requirements for industrial energy end use. In reviewing existing industrial energy data bases, the level of detail, disaggregation, and primary sources of information were examined. The focus was on fuels and electric energy used for heat and power purchased by the manufacturing subsector and listed by 2-, 3-, and 4-digit SIC, primary fuel, and end use. Projections of state level energy prices to 1990 are developed using the energy intensity approach. The effects of federal and state industrial energy conservation programs on future industrial sector demands were assessed. Future end-use energy requirements were developed for each 4-digit SIC industry and were grouped as follows: (1) hot water, (2) steam (212 to 300/sup 0/F, each 100/sup 0/F interval from 300 to 1000/sup 0/F, and greater than 1000/sup 0/F), and (3) hot air (100/sup 0/F intervals). Volume I details the activities performed in this effort.

  15. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  16. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  17. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  18. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  19. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  1. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  2. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  3. Natural Gas Demand Markets in the Northeast

    Broader source: Energy.gov (indexed) [DOE]

    Providing a Significant Opportunity for New and Expanding Natural Gas Demand Markets in the Northeast Prepared for: America's Natural Gas Alliance (ANGA) Prepared by: Bentek...

  4. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  5. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  6. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... business decision problems, in fields such as managing booking and ...... Q? having available the demand historical records for t = 1, ..., T. 2.

  7. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  8. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  9. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  10. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  11. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 of this administrative procedure has been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event

  12. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 3 Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted

  13. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  14. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Employment been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  15. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Access been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  16. Satellite Meteorology and Climatology Division Roadmap

    E-Print Network [OSTI]

    Kuligowski, Bob

    Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

  17. Nuclear Engineering Division Think, explore, discover, innovate

    E-Print Network [OSTI]

    Kemner, Ken

    : "Application of an Annular Metallic Fuel with Lower Gas Plenum for Sodium- cooled Fast Reactor") ANS N. Stauff Award ANS K. Laurin-Kovitz 2013 Best Paper Award in Reactor Physics Division (RPD) (Paper Title Nuclear Society E. Merzari, H. Ninokata(***) 2010 Best Paper in Reactor Physics Division (RPD) American

  18. Progress Report on Power Division Work Plan

    E-Print Network [OSTI]

    RPS & impacts on PNW · Analysis of negative wholesale power prices · Wind Integration Forum · Maintain balancing" DR pilot programs · Tracking Smart Grid Demo Project ­ ­ Will include "conventional" and "load/windProgress Report on Power Division Work Plan Power Committee Meeting October 2010 1 #12;The Division

  19. EMS Division Potential Benefits of Selected

    E-Print Network [OSTI]

    driven by a high speed gas turbine supplied power to a 400 HP superconductive homopolar motor during at Overcome by New Technology: Cryocoolers & Cu Fiber brushes2 #12;EMS Division Baseline with Multi-turn Field Coil Multi-turn Armature Cryostat Steel Flux Return #12;EMS Division Homopolar Motor Technology

  20. LEADERSHIP TRAINING DIVISION Undergraduate Program Application

    E-Print Network [OSTI]

    Emmons, Scott

    LEADERSHIP TRAINING DIVISION Undergraduate Program Application 1 For more information: Questions in school: College: School in Israel: (if applicable): Major/Minor: High School: #12;LEADERSHIP TRAINING DIVISION Undergraduate Program Application 2 QUEST LEADERSHIP FELLOWSHIP The mission of Quest is to inspire

  1. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  2. PHYSICS DIVISION ESH BULLETIN 07-02

    E-Print Network [OSTI]

    , and sealed or open celled lead-acid. No batteries should be disposed of in the trash. HOW TO MANAGE USED the Division Waste Generator to dispose lead-acid (car) batteries or if you have any questions. ReferencePHYSICS DIVISION ESH BULLETIN 07-02 BATTERY RECYCLING May 21, 2007 ORNL recycles all types

  3. Aviation Human Factors Division Institute of Aviation

    E-Print Network [OSTI]

    AHFD Aviation Human Factors Division Institute of Aviation University of Illinois at Urbana Systems Monitoring and Control Gavin R. Essenberg, Douglas A. Wiegmann, Aviation Human Factors Division experiments with more difficult path selection tasks might reveal if there are advantages for motion. Overall

  4. School of Art Division of Graphic Design

    E-Print Network [OSTI]

    Moore, Paul A.

    .372.7763 419.372.6955 fax lyoung@bgsu.edu www.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY Division of Graphic.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY 1) Be of Junior (60+ hours) or Senior (90+ hours) standing withinSchool of Art Division of Graphic Design 1020 Fine Arts Center Bowling Green, Ohio 43403-0204 419

  5. Fixed Income Division Nomura International plc

    E-Print Network [OSTI]

    Macrina, Andrea

    Fixed Income Division © Nomura International plc Symmetry methods for quadratic Gaussian models International plc Outline Motivation The quadratic Gaussian distribution The quadratic Gaussian process The quadratic Gaussian model #12;Fixed Income Division 3© Nomura International plc Part 1 Motivation #12;Fixed

  6. Laboratory Testing of Demand-Response Enabled Household Appliances

    SciTech Connect (OSTI)

    Sparn, B.; Jin, X.; Earle, L.

    2013-10-01T23:59:59.000Z

    With the advent of the Advanced Metering Infrastructure (AMI) systems capable of two-way communications between the utility's grid and the building, there has been significant effort in the Automated Home Energy Management (AHEM) industry to develop capabilities that allow residential building systems to respond to utility demand events by temporarily reducing their electricity usage. Major appliance manufacturers are following suit by developing Home Area Network (HAN)-tied appliance suites that can take signals from the home's 'smart meter,' a.k.a. AMI meter, and adjust their run cycles accordingly. There are numerous strategies that can be employed by household appliances to respond to demand-side management opportunities, and they could result in substantial reductions in electricity bills for the residents depending on the pricing structures used by the utilities to incent these types of responses.The first step to quantifying these end effects is to test these systems and their responses in simulated demand-response (DR) conditions while monitoring energy use and overall system performance.

  7. A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand Uncertainty

    E-Print Network [OSTI]

    de Weck, Olivier L.

    In White assembly systems in the automotive industry by applying the developed screening model. It shows3 A Screening Model to Explore Planning Decisions in Automotive Manufacturing Systems under Demand engineering systems, as for automotive manufacturing, often require significant capital investment

  8. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  9. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  10. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06T23:59:59.000Z

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  11. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12T23:59:59.000Z

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  12. Electric Utility Industrial DSM and M&V Program 

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  13. Department of Industrial Engineering Spring 2011 African Climate Exchange II

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Industrial Engineering Spring 2011 African Climate Exchange II Overview Mr. Sisay Shimelis, the sponsor and contact at African Climate Exchange approached the Industrial for packaging of the product, to reduce automation and increase job availability. Approach All required demands

  14. Electric Utility Industrial DSM and M&V Program

    E-Print Network [OSTI]

    Lau, K. P. K.

    2008-01-01T23:59:59.000Z

    for residential, commercial and industrial customers. The Power Smart Partners Program (PSP) is the premier demand-side management program for BC Hydro’s large commercial and industrial non-transmission class customers. It is a direct energy acquisition program...

  15. Earth Sciences Division Research Summaries 2006-2007

    E-Print Network [OSTI]

    DePaolo, Donald

    2008-01-01T23:59:59.000Z

    the commencement of the Earth Sciences Division 30 yearstelling. Happy Anniversary! Earth Sciences Division ears YTritium in Engineered and Earth Materials Stefan Finsterle,

  16. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  17. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  18. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  19. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  20. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control