Sample records for divisions commercial demand

  1. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Strategies for Demand Response in Commercial Buildings DavidStrategies for Demand Response in Commercial Buildings Davidadjusted for demand response in commercial buildings. The

  2. Commercial Demand Module

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    heaters. The use of wind energy is projected based on an estimate of existing distributed wind turbines and the potential endogenous penetration of wind turbines in the commercial...

  3. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsDemand Response Strategies and National Conference on BuildingDemand Response Strategies and Commissioning Commercial Building

  4. Strategies for Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Watson, David S.; Kiliccote, Sila; Motegi, Naoya; Piette, Mary Ann

    2006-01-01T23:59:59.000Z

    Fully Automated Demand Response Tests in Large Facilities”of Fully Automated Demand Response in Large Facilities”,was coordinated by the Demand Response Research Center and

  5. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    Demand Response in Commercial Buildings 3.1. Demand Response in Commercial Buildings ElectricityDemand Response: Understanding the DR potential in commercial buildings

  6. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    PA. 3. DEMAND RESPONSE IN COMMERCIAL BUILDINGS ElectricityDemand Response and Energy Efficiency in Commercial BuildingsDemand Response and Energy Efficiency in Commercial Buildings

  7. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Building,” Report No.Demand Response Infrastructure for Commercial Buildings MaryDemand Response Infrastructure for Commercial Buildings Mary

  8. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Automated Demand Response for Small Commercial Buildings. ”Demand Response Strategies and Commissioning Commercial Buildingfor Automated Demand Response in Commercial Buildings Sila

  9. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    Demand Response for Small Commercial Buildings.   Lawrence small?medium buildings’ roles in demand response  efforts.  demand response for small? medium commercial buildings 

  10. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1998-01-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. The NEMS Commercial Sector Demand Module is a simulation tool based upon economic and engineering relationships that models commercial sector energy demands at the nine Census Division level of detail for eleven distinct categories of commercial buildings. Commercial equipment selections are performed for the major fuels of electricity, natural gas, and distillate fuel, for the major services of space heating, space cooling, water heating, ventilation, cooking, refrigeration, and lighting. The algorithm also models demand for the minor fuels of residual oil, liquefied petroleum gas, steam coal, motor gasoline, and kerosene, the renewable fuel sources of wood and municipal solid waste, and the minor services of office equipment. Section 2 of this report discusses the purpose of the model, detailing its objectives, primary input and output quantities, and the relationship of the Commercial Module to the other modules of the NEMS system. Section 3 of the report describes the rationale behind the model design, providing insights into further assumptions utilized in the model development process to this point. Section 3 also reviews alternative commercial sector modeling methodologies drawn from existing literature, providing a comparison to the chosen approach. Section 4 details the model structure, using graphics and text to illustrate model flows and key computations.

  11. Machine to machine (M2M) technology in demand responsive commercial buildings

    E-Print Network [OSTI]

    Watson, David S.; Piette, Mary Ann; Sezgen, Osman; Motegi, Naoya; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” Highoperate buildings to maximize demand response and minimizeDemand Response Demonstration”, 2004 ACEEE Summer Study on Energy Efficiency in Buildings.

  12. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    E-Print Network [OSTI]

    Motegi, N.

    2011-01-01T23:59:59.000Z

    for Demand Response in New and Existing Commercial BuildingsBuilding Control Strategies and Techniques for Demand Response -Building Control Strategies and Techniques for Demand Response

  13. Demand Shifting with Thermal Mass in Light and Heavy Mass Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    as a Demand Response (DR) strategy for commercial buildings.demand response program because the added demand reduction from different buildingsdemand response, thermal mass INTRODUCTION The structural mass within existing commercial buildings

  14. Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under

    E-Print Network [OSTI]

    Boutaba, Raouf

    Division of IT Convergence Engineering Optimal Demand-Side Energy Management Under Real-time Demand of appliance specific adapters. Designed and implemented GHS Modeled the demand-side energy management problem (NP-hard) Designed a scheduling algorithm for demand side energy management Showed that our

  15. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01T23:59:59.000Z

    of demand response (DR) strategies in commercial buildingscommercial buildings. Introduction Demand response (DR) is ademand response quick assessment tool – DRQAT – was developed for evaluating DR strategies in commercial buildings.

  16. Photovoltaics for demand-side management: Opportunities for early commercialization

    SciTech Connect (OSTI)

    Byrne, J.; Letendre, S.; Govindarajalu, C.; Wang, Y.D. [Univ. of Delaware, Newark, DE (United States). Center for Energy and Environmental Policy; Nigro, R. [Delmarva Power, Newark, DE (United States); Wallace, W. [National Renewable Energy Lab., Golden, CO (United States)

    1995-10-01T23:59:59.000Z

    Recently, interest in utilizing photovoltaics (PV) in a demand-side management (DSM) role has been increasing. Research has shown that many utilities across the US have a good match between peak loads and the availability of the solar resource. Maximum value for PV in DSM applications can be achieved by incorporating a dispatching capability to PV systems (through the addition of storage). This enables utilities to evaluate PV systems as a peak-shaving technology. To date, peak-shaving has been a high-value DSM application for US utilities. The authors analysis of the value of dispatchable PV-DSM systems indicates that small-scale, customer-sited systems are approaching competitive cost levels in several regions of the US that have favorable load matching and high demand charges. This paper presents the results of an economic analysis for high-value PV-DSM systems located in the service territories of five case study utilities. The results suggest that PV is closer to commercialization when viewed as a DSM technology relative to analyses that focus on the technology as a supply-side option.

  17. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    4 9 . Piette et at Automated Demand Response Strategies andDynamic Controls for Demand Response in New and ExistingFully Automated Demand Response Tests in Large Facilities"

  18. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officethe demand controlled ventilation system increased the ratedemand controlled ventilation systems will, because of poor

  19. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Fisk, William J.; Sullivan, Douglas P.; Faulkner, David; Eliseeva, Ekaterina

    2010-03-17T23:59:59.000Z

    Carbon dioxide (CO{sub 2}) sensors are often deployed in commercial buildings to obtain CO{sub 2} data that are used, in a process called demand-controlled ventilation, to automatically modulate rates of outdoor air ventilation. The objective is to keep ventilation rates at or above design specifications and code requirements and also to save energy by avoiding excessive ventilation rates. Demand controlled ventilation is most often used in spaces with highly variable and sometime dense occupancy. Reasonably accurate CO{sub 2} measurements are needed for successful demand controlled ventilation; however, prior research has suggested substantial measurement errors. Accordingly, this study evaluated: (a) the accuracy of 208 CO{sub 2} single-location sensors located in 34 commercial buildings, (b) the accuracy of four multi-location CO{sub 2} measurement systems that utilize tubing, valves, and pumps to measure at multiple locations with single CO{sub 2} sensors, and (c) the spatial variability of CO{sub 2} concentrations within meeting rooms. The field studies of the accuracy of single-location CO{sub 2} sensors included multi-concentration calibration checks of 90 sensors in which sensor accuracy was checked at multiple CO{sub 2} concentrations using primary standard calibration gases. From these evaluations, average errors were small, -26 ppm and -9 ppm at 760 and 1010 ppm, respectively; however, the averages of the absolute values of error were 118 ppm (16%) and 138 ppm (14%), at concentrations of 760 and 1010 ppm, respectively. The calibration data are generally well fit by a straight line as indicated by high values of R{sup 2}. The Title 24 standard specifies that sensor error must be certified as no greater than 75 ppm for a period of five years after sensor installation. At 1010 ppm, 40% of sensors had errors greater than {+-}75 ppm and 31% of sensors has errors greater than {+-}100 ppm. At 760 ppm, 47% of sensors had errors greater than {+-}75 ppm and 37% of sensors had errors greater than {+-}100 ppm. A significant fraction of sensors had errors substantially larger than 100 ppm. For example, at 1010 ppm, 19% of sensors had an error greater than 200 ppm and 13% of sensors had errors greater than 300 ppm. The field studies also included single-concentration calibration checks of 118 sensors at the concentrations encountered in the buildings, which were normally less than 500 ppm during the testing. For analyses, these data were combined with data from the calibration challenges at 510 ppm obtained during the multi-concentration calibration checks. For the resulting data set, the average error was 60 ppm and the average of the absolute value of error was 154 ppm. Statistical analyses indicated that there were statistically significant differences between the average accuracies of sensors from different manufacturers. Sensors with a 'single lamp single wavelength' design tended to have a statistically significantly smaller average error than sensors with other designs except for 'single lamp dual wavelength' sensors, which did not have a statistically significantly lower accuracy. Sensor age was not consistently a statistically significant predictor of error.

  20. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    SciTech Connect (OSTI)

    Yin, Rongxin; Kiliccote, Sila; Piette, Mary Ann; Parrish, Kristen

    2010-05-14T23:59:59.000Z

    This paper reports on the potential impact of demand response (DR) strategies in commercial buildings in California based on the Demand Response Quick Assessment Tool (DRQAT), which uses EnergyPlus simulation prototypes for office and retail buildings. The study describes the potential impact of building size, thermal mass, climate, and DR strategies on demand savings in commercial buildings. Sensitivity analyses are performed to evaluate how these factors influence the demand shift and shed during the peak period. The whole-building peak demand of a commercial building with high thermal mass in a hot climate zone can be reduced by 30percent using an optimized demand response strategy. Results are summarized for various simulation scenarios designed to help owners and managers understand the potential savings for demand response deployment. Simulated demand savings under various scenarios were compared to field-measured data in numerous climate zones, allowing calibration of the prototype models. The simulation results are compared to the peak demand data from the Commercial End-Use Survey for commercial buildings in California. On the economic side, a set of electricity rates are used to evaluate the impact of the DR strategies on economic savings for different thermal mass and climate conditions. Our comparison of recent simulation to field test results provides an understanding of the DR potential in commercial buildings.

  1. Strategies for Marketing and Driving Demand for Commercial Financing...

    Energy Savers [EERE]

    Slides and Discussion Summary More Documents & Publications Using Partnerships to Drive Demand and Provide Services in Communities Financial Vehicles within an Integrated Energy...

  2. Demand Responsive and Energy Efficient Control Technologies andStrategies in Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Kiliccote, Sila

    2006-09-01T23:59:59.000Z

    Commercial buildings account for a large portion of summer peak electric demand. Research results show that there is significant potential to reduce peak demand in commercial buildings through advanced control technologies and strategies. However, a better understanding of commercial buildings contribution to peak demand and the use of energy management and control systems is required to develop this demand response resource to its full potential. The main objectives of the study were: (1) To evaluate the size of contributions of peak demand commercial buildings in the U.S.; (2) To understand how commercial building control systems support energy efficiency and DR; and (3) To disseminate the results to the building owners, facility managers and building controls industry. In order to estimate the commercial buildings contribution to peak demand, two sources of data are used: (1) Commercial Building Energy Consumption Survey (CBECS) and (2) National Energy Modeling System (NEMS). These two sources indicate that commercial buildings noncoincidental peak demand is about 330GW. The project then focused on technologies and strategies that deliver energy efficiency and also target 5-10% of this peak. Based on a building operations perspective, a demand-side management framework with three main features: (1) daily energy efficiency, (2) daily peak load management and (3) dynamic, event-driven DR are outlined. A general description of DR, its benefits, and nationwide DR potential in commercial buildings are presented. Case studies involving these technologies and strategies are described. The findings of this project are shared with building owners, building controls industry, researchers and government entities through a webcast and their input is requested. Their input is presented in the appendix section of this report.

  3. Assumption to the Annual Energy Outlook 2014 - Commercial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are thereDemand Module This

  4. Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard Schmalensee and Thomas M. Stoker*

    E-Print Network [OSTI]

    Economic Development and the Structure of the Demand for Commercial Energy Ruth A. Judson, Richard development and energy demand, this study estimates the Engel curves that relate per-capita energy consumption of the demands for commercial energy in its various forms and of the technologies that will be used to meet those

  5. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Mathieu, Johanna; Parrish, Kristen

    2010-05-14T23:59:59.000Z

    California is a leader in automating demand response (DR) to promote low-cost, consistent, and predictable electric grid management tools. Over 250 commercial and industrial facilities in California participate in fully-automated programs providing over 60 MW of peak DR savings. This paper presents a summary of Open Automated DR (OpenADR) implementation by each of the investor-owned utilities in California. It provides a summary of participation, DR strategies and incentives. Commercial buildings can reduce peak demand from 5 to 15percent with an average of 13percent. Industrial facilities shed much higher loads. For buildings with multi-year savings we evaluate their load variability and shed variability. We provide a summary of control strategies deployed, along with costs to install automation. We report on how the electric DR control strategies perform over many years of events. We benchmark the peak demand of this sample of buildings against their past baselines to understand the differences in building performance over the years. This is done with peak demand intensities and load factors. The paper also describes the importance of these data in helping to understand possible techniques to reach net zero energy using peak day dynamic control capabilities in commercial buildings. We present an example in which the electric load shape changed as a result of a lighting retrofit.

  6. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    SciTech Connect (OSTI)

    Page, Janie; Kiliccote, Sila; Dudley, Junqiao Han; Piette, Mary Ann; Chiu, Albert K.; Kellow, Bashar; Koch, Ed; Lipkin, Paul

    2011-07-01T23:59:59.000Z

    Small and medium commercial customers in California make up about 20-25% of electric peak load in California. With the roll out of smart meters to this customer group, which enable granular measurement of electricity consumption, the investor-owned utilities will offer dynamic prices as default tariffs by the end of 2011. Pacific Gas and Electric Company, which successfully deployed Automated Demand Response (AutoDR) Programs to its large commercial and industrial customers, started investigating the same infrastructures application to the small and medium commercial customers. This project aims to identify available technologies suitable for automating demand response for small-medium commercial buildings; to validate the extent to which that technology does what it claims to be able to do; and determine the extent to which customers find the technology useful for DR purpose. Ten sites, enabled by eight vendors, participated in at least four test AutoDR events per site in the summer of 2010. The results showed that while existing technology can reliably receive OpenADR signals and translate them into pre-programmed response strategies, it is likely that better levels of load sheds could be obtained than what is reported here if better understanding of the building systems were developed and the DR response strategies had been carefully designed and optimized for each site.

  7. Hot Thermal Storage/Selective Energy System Reduces Electric Demand for Space Cooling As Well As Heating in Commercial Application

    E-Print Network [OSTI]

    Meckler, G.

    1985-01-01T23:59:59.000Z

    Based on an experimental residential retrofit incorporating thermal storage, and extensive subsequent modeling, a commercial design was developed and implemented to use hot thermal storage to significantly reduce electric demand and utility energy...

  8. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Program Participation Rates on Demand Response MarketTable 3-1. Methods of Estimating Demand Response PenetrationDemand Response

  9. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    2010 Assessment of Demand Response and  Advanced Metering:  Development for Demand Response  Calculation ? Findings and Energy  Efficiency and  Demand Response with Communicating 

  10. Findings from Seven Years of Field Performance Data for Automated Demand Response in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Open Automated Demand Response Demonstration Project” LBNL-2009a). “Open Automated Demand Response Communications inand Actions for Industrial Demand Response in California. ”

  11. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    perspective, a demand-side management framework with threethe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  12. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    2001. “Electricity Demand Side Management Study: Review ofEpping/North Ryde Demand Side Management Scoping Study:Energy Agency Demand Side Management (IEA DSM) Programme:

  13. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    buildings. A demand-side management framework from buildingthe integration of DR in demand-side management activitiesdevelopments. The demand-side management (DSM) framework

  14. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    implement demand-response programs involving buildingthan the building envelope in demand response effectiveness.demand response, thermal mass, hot climates, office buildings

  15. Demand Shifting With Thermal Mass in Large Commercial Buildings: Field Tests, Simulation and Audits

    E-Print Network [OSTI]

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-01-01T23:59:59.000Z

    implement demand response programs involving buildingbased demand response (DR) technologies in real buildings.BUILDING AUDITS Introduction Customers’ attitudes to prospective utility demand response

  16. Web-based energy information systems for energy management and demand response in commercial buildings

    SciTech Connect (OSTI)

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-04-18T23:59:59.000Z

    Energy Information Systems (EIS) for buildings are becoming widespread in the U.S., with more companies offering EIS products every year. As a result, customers are often overwhelmed by the quickly expanding portfolio of EIS feature and application options, which have not been clearly identified for consumers. The object of this report is to provide a technical overview of currently available EIS products. In particular, this report focuses on web-based EIS products for large commercial buildings, which allow data access and control capabilities over the Internet. EIS products combine software, data acquisition hardware, and communication systems to collect, analyze and display building information to aid commercial building energy managers, facility managers, financial managers and electric utilities in reducing energy use and costs in buildings. Data types commonly processed by EIS include energy consumption data; building characteristics; building system data, such as heating, ventilation, and air-conditioning (HVAC) and lighting data; weather data; energy price signals; and energy demand-response event information. This project involved an extensive review of research and trade literature to understand the motivation for EIS technology development. This study also gathered information on currently commercialized EIS. This review is not an exhaustive analysis of all EIS products; rather, it is a technical framework and review of current products on the market. This report summarizes key features available in today's EIS, along with a categorization framework to understand the relationship between EIS, Energy Management and Control Systems (EMCSs), and similar technologies. Four EIS types are described: Basic Energy Information Systems (Basic-EIS); Demand Response Systems (DRS); Enterprise Energy Management (EEM); and Web-based Energy Management and Control Systems (Web-EMCS). Within the context of these four categories, the following characteristics of EIS are discussed: Metering and Connectivity; Visualization and Analysis Features; Demand Response Features; and Remote Control Features. This report also describes the following technologies and the potential benefits of incorporating them into future EIS products: Benchmarking; Load Shape Analysis; Fault Detection and Diagnostics; and Savings Analysis.

  17. Model documentation report: Commercial Sector Demand Module of the National Energy Modeling System

    SciTech Connect (OSTI)

    NONE

    1995-02-01T23:59:59.000Z

    This report documents the objectives, analytical approach and development of the National Energy Modeling System (NEMS) Commercial Sector Demand Module. The report catalogues and describes the model assumptions, computational methodology, parameter estimation techniques, model source code, and forecast results generated through the synthesis and scenario development based on these components. This report serves three purposes. First, it is a reference document providing a detailed description for model analysts, users, and the public. Second, this report meets the legal requirement of the Energy Information Administration (EIA) to provide adequate documentation in support of its statistical and forecast reports (Public Law 93-275, section 57(b)(1)). Third, it facilitates continuity in model development by providing documentation from which energy analysts can undertake model enhancements, data updates, and parameter refinements as future projects.

  18. Testing of peak demand limiting using thermal mass at a small commercial building

    E-Print Network [OSTI]

    Lee, Kyoung-Ho; Braun, James E; Fredrickson, Steve; Konis, Kyle; Arens, Edward

    2007-01-01T23:59:59.000Z

    Figure 1. Building Picture / Satellite Photo Demand ResponseDemand Response Research Center, July 2007 https://escholarship.org/uc/item/19p737k1 The buildingbuilding in Palm Desert, California. The precooling Demand Response

  19. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response options, or benchmarking, are probably not all that meaningful. The “best practices”

  20. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    response, automation, commercial, industrial buildings, peakautomation system design. Auto-DR for commercial and industrialautomation server renamed as the DRAS. This server was operated at a secure industrial

  1. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    demand response, participation can imply: (1) customer enrollment in voluntary programs and tariffs, or (2) the retention

  2. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    SciTech Connect (OSTI)

    Motegi, N.; Piette, M.A.; Watson, D.S.; Kiliccote, S.; Xu, P.

    2007-05-01T23:59:59.000Z

    There are 3 appendices listed: (A) DR strategies for HVAC systems; (B) Summary of DR strategies; and (C) Case study of advanced demand response.

  3. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    Reliability - Emergency - Conservation - Environmental Protection - Efficient Shell, Equipment &equipment cycling. DR methods such as demand limiting and shifting can be utilized when the economics and reliability

  4. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Data for Automated Demand Response in Commercial Buildings,Demand Response Infrastructure for Commercial Buildings",demand response and energy efficiency functions into the design of buildings,

  5. Demand Shifting With Thermal Mass in Large Commercial Buildings:Field Tests, Simulation and Audits

    SciTech Connect (OSTI)

    Xu, Peng; Haves, Philip; Piette, Mary Ann; Zagreus, Leah

    2005-09-01T23:59:59.000Z

    The principle of pre-cooling and demand limiting is to pre-cool buildings at night or in the morning during off-peak hours, storing cooling in the building thermal mass and thereby reducing cooling loads and reducing or shedding related electrical demand during the peak periods. Cost savings are achieved by reducing on-peak energy and demand charges. The potential for utilizing building thermal mass for load shifting and peak demand reduction has been demonstrated in a number of simulation, laboratory, and field studies (Braun 1990, Ruud et al. 1990, Conniff 1991, Andresen and Brandemuehl 1992, Mahajan et al. 1993, Morris et al. 1994, Keeney and Braun 1997, Becker and Paciuk 2002, Xu et al. 2003). This technology appears to have significant potential for demand reduction if applied within an overall demand response program. The primary goal associated with this research is to develop information and tools necessary to assess the viability of and, where appropriate, implement demand response programs involving building thermal mass in buildings throughout California. The project involves evaluating the technology readiness, overall demand reduction potential, and customer acceptance for different classes of buildings. This information can be used along with estimates of the impact of the strategies on energy use to design appropriate incentives for customers.

  6. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    A demand-side management framework from building operationsdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This paper summarizes the integration of DR in demand-side management

  7. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    a building operations perspective, a demand-side managementdemand-side management (DSM) framework presented in Table 2 provides three major areas for changing electric loads in buildings:buildings in California. This report summarizes the integration of DR in demand-side management

  8. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01T23:59:59.000Z

    Commercial Building Energy Benchmarking Database”.2002 ACEEE Summer Study on Energy Efficiency in Buildings.Burns, August 2001. “Energy-Related Information Services”.

  9. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Commercial Building Energy Consumption Survey (EIA 2003) andEnergy Consumption Survey (EIA 2002). NYISO EDRP customersEnergy Consumption Survey database (EIA 2003), and personal

  10. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings”, Lawrencesystems. Demand Response using HVAC in Commercial BuildingsDemand Response Test in Large Facilities13 National Conference on Building

  11. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    choices in the face of real options, or surveys can beoptions may differ from their actual behavior when faced with realReal-Time Demand Response (RTDR) program offers customers two advance-notice options:

  12. Demand Relief and Weather Sensitivity in Large California Commercial Office Buildings

    E-Print Network [OSTI]

    Kinney, S.; Piette, M. A.; Gu, L.; Haves, P.

    2001-01-01T23:59:59.000Z

    an aggregate reduction of 1 Megawatt (MW) during a curtailment period, for any number of meters, can participate as a load aggregator in the California Independent System Operator (ISO) Summer Demand Reduction Program (DRP; see Load Reduction Incentives). The U... ISO Summer Demand Relief Program is offering an incentive of $20,000 per MW each month in addition to $500 per MWhour for actual curtailment. Participants who fail to meet the target will be paid on a sliding scale, and must achieve at least 25...

  13. Integrating climate change into energy demand forecasts: A commercial sector analysis

    SciTech Connect (OSTI)

    Scott, M.J.; Belzer, D.B.; Hadley, D.L.; Wrench, L.E.

    1993-10-01T23:59:59.000Z

    This study examines the effects of global climate change on commercial building energy use. The methodology used included estimating balance points and degree-day response coefficients, estimating cross-section regressions to extrapolate to a full sample, extrapolating the building sample to the year 2030, and estimating the energy consumption in the year 2030 under different temperature regimes. Results show that total primary energy consumption in U.S. commercial buildings will rise although the absolute increase in consumption may not be large, given offsetting heating benefits. Nonetheless, the effect on electric utilities may be severe.

  14. Guidelines for Marketing Demand-Side Management in the Commercial Sector

    E-Print Network [OSTI]

    George, S. S.

    1988-01-01T23:59:59.000Z

    (EPRI) began a study of the DSM activity of utilities in order to assess the effectiveness of such programs for meeting a variety of objectives. One element of this broad based study was an investigation into the factors that influence commercial...

  15. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    SciTech Connect (OSTI)

    Piette, Mary Ann; Ghatikar, Girish; Kiliccote, Sila; Watson, David; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This paper describes the concept for and lessons from the development and field-testing of an open, interoperable communications infrastructure to support automated demand response (auto-DR). Automating DR allows greater levels of participation, improved reliability, and repeatability of the DR in participating facilities. This paper also presents the technical and architectural issues associated with auto-DR and description of the demand response automation server (DRAS), the client/server architecture-based middle-ware used to automate the interactions between the utilities or any DR serving entity and their customers for DR programs. Use case diagrams are presented to show the role of the DRAS between utility/ISO and the clients at the facilities.

  16. Final Scientific Technical Report: INTEGRATED PREDICTIVE DEMAND RESPONSE CONTROLLER FOR COMMERCIAL BUILDINGS

    SciTech Connect (OSTI)

    Wenzel, Mike

    2013-10-14T23:59:59.000Z

    This project provides algorithms to perform demand response using the thermal mass of a building. Using the thermal mass of the building is an attractive method for performing demand response because there is no need for capital expenditure. The algorithms rely on the thermal capacitance inherent in the building?s construction materials. A near-optimal ?day ahead? predictive approach is developed that is meant to keep the building?s electrical demand constant during the high cost periods. This type of approach is appropriate for both time-of-use and critical peak pricing utility rate structures. The approach uses the past days data in order to determine the best temperature setpoints for the building during the high price periods on the next day. A second ?model predictive approach? (MPC) uses a thermal model of the building to determine the best temperature for the next sample period. The approach uses constant feedback from the building and is capable of appropriately handling real time pricing. Both approaches are capable of using weather forecasts to improve performance.

  17. Economic development and the structure of the demand for commercial energy

    SciTech Connect (OSTI)

    Judson, R.A.; Schmalensee, R.; Stoker, T.M.

    1999-07-01T23:59:59.000Z

    To deepen understanding of the relation between economic development and energy demand, this study estimates the relations between per-capita GDP and per-capita energy consumption in major economic sectors. Panel data covering up to 123 nations are employed, and measurement problems are treated both in dataset construction and in estimation. Time and country fixed effects are assumed, and flexible forms for income effects are employed. There are substantial differences among sectors in the structure of country, time, and income effects. In particular, the household sector's share of aggregate energy consumption tends to fall with income, the share of transportation tends to rise, and the share of industry follows an inverse-U pattern.

  18. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  19. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    Demand  Response for Small Commercial Buildings.   CEC?500?automated demand response  For small commercial buildings, AUTOMATED DEMAND RESPONSE FOR SMALL COMMERCIAL BUILDINGS

  20. Consideration of the environmental impact of aircraft has become critical in commercial aviation. The continued growth of air traffic has caused increasing demands to reduce aircraft emissions,

    E-Print Network [OSTI]

    Papalambros, Panos

    ABSTRACT Consideration of the environmental impact of aircraft has become critical in commercial. Demands by the public, environ- mentalists, and governments to reduce aircraft environmental impact, have technologies can reduce the environmental impact of air travel per passenger-mile flown. However, with current

  1. Analysis of Open Automated Demand Response Deployments in California and Guidelines to Transition to Industry Standards

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    Automated  Demand  Response  in  Commercial  Buildings.  Demand  Response  Infrastructure  for   Commercial  Buildings.  

  2. Model Predictive Control Approach to Online Computation of Demand-Side Flexibility of Commercial Buildings HVAC Systems for Supply Following

    E-Print Network [OSTI]

    Maasoumy, Mehdi

    2014-01-01T23:59:59.000Z

    of commercial building HVAC fan as ancillary service foralgorithm design for hvac systems in energy efficientoptimal control design for HVAC systems,” in Dynamic System

  3. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    in California. DEMAND RESPONSE AND COMMERCIAL BUILDINGSload and demand response against other buildings and alsoDemand Response and Energy Efficiency in Commercial Buildings",

  4. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  5. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Keywords: Demand response, automation, commercial buildings,Demand Response and Energy Efficiency in Commercial Buildings,Building Control Strategies and Techniques for Demand Response.

  6. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utilitythe 2006-2016 Forecast. Commercial natural gas demand isforecasts and demand scenarios. Electricity planning area Natural gas

  7. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  8. Research scoping report: visualizing information in commercial buildings

    E-Print Network [OSTI]

    Lehrer, David

    2009-01-01T23:59:59.000Z

    and demand response in commercial buildings," Lawrencefor basic building monitoring, demand response, enterprise

  9. Behavioral Aspects in Simulating the Future US Building Energy Demand

    E-Print Network [OSTI]

    Stadler, Michael

    2011-01-01T23:59:59.000Z

    USA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity DemandUSA, and published in the Conference Proceedings SBEAM Functionality Commercial Lighting Equipment Marketshare Commercial Electricity Demand

  10. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. ” InAutomated Demand Response for Small Commercial Buildings. ”in automated demand response programs with building control

  11. Intelligent Building Energy Information and Control Systems for Low-Energy Operations and Optimal Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2014-01-01T23:59:59.000Z

    account  demand  response  signals,  building?integrated of Automated Demand Response in Commercial Buildings.  and Demand Response in Commercial  Buildings. , LBNL 

  12. Design and Implementation of an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-01-01T23:59:59.000Z

    is manual demand response -- where building staff receives aand Demand Response in Commercial Building. ,April, LBNL-Keywords: Demand response, automation, commercial buildings,

  13. Automated Demand Response Technologies and Demonstration in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    commercial building, demand response, dynamic pricing,demand response (Auto-DR) in large commercial buildingsdemand response (Auto-DR) in large commercial buildings

  14. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    A. Barat, D. Watson. Demand Response Spinning ReserveOpen Automated Demand Response Communication Standards:Dynamic Controls for Demand Response in a New Commercial

  15. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    Keywords: demand response, buildings, electricity use, Interface  Automated Demand Response  Building Automation of demand response in  commercial buildings.   One key 

  16. Results and commissioning issues from an automated demand response pilot

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, Dave; Sezgen, Osman; Motegi, Naoya

    2004-01-01T23:59:59.000Z

    Management and Demand Response in Commercial Buildings", L BAutomated Demand Response National Conference on BuildingAutomated Demand Response National Conference on Building

  17. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. Inbased demand response information to building controlDemand Response Standard for the Residential Sector. California Energy Commission, PIER Buildings

  18. Commercial & Industrial Demand Response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration would like submit the following comments response NAESB

  19. Demand Response: Load Management Programs 

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs...

  20. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  1. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    for Demand Response in a New Commercial Building in NewDemand Response and Energy Efficiency in Commercial Buildings.Demand Response Mary Ann Piette, Sila Kiliccote, and Girish Ghatikar Lawrence Berkeley National Laboratory Building

  2. Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, Joyce Jihyun

    2014-01-01T23:59:59.000Z

    and demand response for large commercial buildings in Newdemand response and energy efficiency in commercial buildings.demand response participation for large commercial buildings

  3. Hawaii demand-side management resource assessment. Final report, Reference Volume 3 -- Residential and commercial sector DSM analyses: Detailed results from the DBEDT DSM assessment model; Part 1, Technical potential

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    The Hawaii Demand-Side Management Resource Assessment was the fourth of seven projects in the Hawaii Energy Strategy (HES) program. HES was designed by the Department of Business, Economic Development, and Tourism (DBEDT) to produce an integrated energy strategy for the State of Hawaii. The purpose of Project 4 was to develop a comprehensive assessment of Hawaii`s demand-side management (DSM) resources. To meet this objective, the project was divided into two phases. The first phase included development of a DSM technology database and the identification of Hawaii commercial building characteristics through on-site audits. These Phase 1 products were then used in Phase 2 to identify expected energy impacts from DSM measures in typical residential and commercial buildings in Hawaii. The building energy simulation model DOE-2.1E was utilized to identify the DSM energy impacts. More detailed information on the typical buildings and the DOE-2.1E modeling effort is available in Reference Volume 1, ``Building Prototype Analysis``. In addition to the DOE-2.1E analysis, estimates of residential and commercial sector gas and electric DSM potential for the four counties of Honolulu, Hawaii, Maui, and Kauai through 2014 were forecasted by the new DBEDT DSM Assessment Model. Results from DBEDTs energy forecasting model, ENERGY 2020, were linked with results from DOE-2.1E building energy simulation runs and estimates of DSM measure impacts, costs, lifetime, and anticipated market penetration rates in the DBEDT DSM Model. Through its algorithms, estimates of DSM potential for each forecast year were developed. Using the load shape information from the DOE-2.1E simulation runs, estimates of electric peak demand impacts were developed. Numerous tables and figures illustrating the technical potential for demand-side management are included.

  4. Toward the Holy Grail of Perfect Information: Lessons Learned Implementing an Energy Information System in a Commercial Building

    E-Print Network [OSTI]

    Kircher, Kevin

    2010-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. LBNL- 52510.building controls, energy efficiency and demand response.

  5. Demand Reduction

    Broader source: Energy.gov [DOE]

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  6. Demand Response: Load Management Programs

    E-Print Network [OSTI]

    Simon, J.

    2012-01-01T23:59:59.000Z

    CenterPoint Load Management Programs CATEE Conference October, 2012 Agenda Outline I. General Demand Response Definition II. General Demand Response Program Rules III. CenterPoint Commercial Program IV. CenterPoint Residential Programs... V. Residential Discussion Points Demand Response Definition of load management per energy efficiency rule 25.181: ? Load control activities that result in a reduction in peak demand, or a shifting of energy usage from a peak to an off...

  7. PHOTOVOLTAICS AND COMMERCIAL BUILDINGS--

    E-Print Network [OSTI]

    Perez, Richard R.

    management of electricity demand. · PV applications are now being integrated directly into building roofs, Valuation of Demand-Side Commercial PV Systems in the United States, we sought to measure the costPHOTOVOLTAICS AND COMMERCIAL BUILDINGS-- A NATURAL MATCH A study highlighting strategic

  8. California Baseline Energy Demands to 2050 for Advanced Energy Pathways

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    gas demands are forecast for the four natural gas utility2013 Forecast, these trends lead to declining natural gasthe 2006-2016 Forecast. Commercial natural gas demand is

  9. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    LBNL-62226 Demand Responsive Lighting: A Scoping Study F. Rubinstein, S. Kiliccote Energy Environmental Technologies Division January 2007 #12;LBNL-62226 Demand Responsive Lighting: A Scoping Study in this report was coordinated by the Demand Response Research Center and funded by the California Energy

  10. Transportation Demand

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific technology attributes...

  11. Open Automated Demand Response Technologies for Dynamic Pricing and Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    for Automated Demand Response in Commercial Buildings. ” In2010. “Open Automated Demand Response Dynamic Pricing2009. “Open Automated Demand Response Communications

  12. Design and Implementation of an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila; Ghatikar, Girish

    2008-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities. CEC-Fully Automated Demand Response Tests in Large Facilities.Management and Demand Response in Commercial Building. ,

  13. Examining Uncertainty in Demand Response Baseline Models and Variability in Automated Response to Dynamic Pricing

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    demand response and energy ef?ciency in commercial buildings,”building control strategies and techniques for demand response,”building electricity use with application to demand response,”

  14. Development and evaluation of fully automated demand response in large facilities

    E-Print Network [OSTI]

    Piette, Mary Ann; Sezgen, Osman; Watson, David S.; Motegi, Naoya; Shockman, Christine; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” LBNL Reportautomated Demand Response (DR) technologies in buildings.Automated Demand Response is initiated at a building or

  15. Architecture Concepts and Technical Issues for an Open, Interoperable Automated Demand Response Infrastructure

    E-Print Network [OSTI]

    Koch, Ed; Piette, Mary Ann

    2008-01-01T23:59:59.000Z

    is manual demand response -- where building staff receives aKeywords: Demand response, automation, commercial buildings,buildings, especially as it applies to Demand Response

  16. Chilled Water Thermal Storage System and Demand Response at the University of California at Merced

    E-Print Network [OSTI]

    Granderson, Jessica

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.of Automated Demand Response in a Large Office Building.there demand response potential in commercial building that

  17. Measurement and evaluation techniques for automated demand response demonstration

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Watson, David S.; Sezgen, Osman; ten Hope, Laurie

    2004-01-01T23:59:59.000Z

    and Demand Response in Commercial Buildings. ” Highdemand-response technologies in large commercial and institutional buildings.building method California Independent System Operator (Cal ISO)’s Demand Response

  18. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    for demand controlled ventilation in commercial buildings.The energy costs of classroom ventilation and some financialEstimating potential benefits of increased ventilation

  19. Optimization of Demand Response Through Peak Shaving

    E-Print Network [OSTI]

    2013-06-19T23:59:59.000Z

    Jun 19, 2013 ... efficient linear programming formulation for the demand response of such a consumer who could be a price taker, industrial or commercial user ...

  20. Global Energy: Supply, Demand, Consequences, Opportunities

    ScienceCinema (OSTI)

    Arun Majumdar

    2010-01-08T23:59:59.000Z

    July 29, 2008 Berkeley Lab lecture: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  1. Demand Control Utilizing Energy Management Systems - Report of Field Tests

    E-Print Network [OSTI]

    Russell, B. D.; Heller, R. P.; Perry, L. W.

    1984-01-01T23:59:59.000Z

    Energy Management systems and particularly demand controllers are becoming more popular as commercial and light industrial operations attempt to reduce their electrical usage and demand. Numerous techniques are used to control energy use and demand...

  2. Japan's Long-term Energy Demand and Supply Scenario to 2050 - Estimation for the Potential of Massive CO2 Mitigation

    E-Print Network [OSTI]

    Komiyama, Ryoichi

    2010-01-01T23:59:59.000Z

    industrial sector, oil demand will decrease due particularlyand commercial sectors, oil demand will decline on a shifttransportation sector, oil demand will shrink on a fall in

  3. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    potential demand response in commercial buildings with EMCSbuildings for integrated energy efficiency and demand response (buildings provide an excellent resource for demand response.

  4. Estimating Demand Response Load Impacts: Evaluation of Baseline Load Models for Non-Residential Buildings in California

    E-Print Network [OSTI]

    Coughlin, Katie; Piette, Mary Ann; Goldman, Charles; Kiliccote, Sila

    2008-01-01T23:59:59.000Z

    commercial buildings participating in a demand?response (buildings participating in an Automated Demand Response buildings  participating  in  an  event?driven  demand?response  (

  5. SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION SUMMER 2007 ELECTRICITY SUPPLY AND DEMAND OUTLOOK DRAFTSTAFFREPORT May ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION B. B assessment of the capability of the physical electricity system to provide power to meet electricity demand

  6. Variability in Automated Responses of Commercial Buildings and Industrial Facilities to Dynamic Electricity Prices

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    building control strategies and techniques for demand response,”demand response and energy ef?ciency in commercial buildings,”building electricity use with application to demand response,”

  7. Participation through Automation: Fully Automated Critical Peak Pricing in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    Figure 2. Demand Response Automation Server and BuildingDemand Response Control Strategies in Commercial Buildings,X X Example of Demand Response from an Office Building This

  8. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2014-01-01T23:59:59.000Z

    demand-side management activities and commercial buildings’demand-side management (DSM) framework presented in Figure 1 provides continuous energy management concepts for shaping electric loads in buildings,demand-side management activities, DR methods and levels of automation. We highlight OpenADR as a standard for commercial buildings

  9. The Role of Demand Response Policy Forum Series

    E-Print Network [OSTI]

    California at Davis, University of

    The Role of Demand Response Policy Forum Series Beyond 33 Percent: California's Renewable Future and Demand Response #12;Historic focus on Seasonal Grid Stress PG&E Demand Bid Test Day 0 2000 4000 6000 8000 Communication Latency #12;Bottom Up Review of End-Use Loads for Demand Response 5 Commercial Residential

  10. Capitalize on Existing Assets with Demand Response

    E-Print Network [OSTI]

    Collins, J.

    2008-01-01T23:59:59.000Z

    Industrial facilities universally struggle with escalating energy costs. EnerNOC will demonstrate how commercial, industrial, and institutional end-users can capitalize on their existing assets—at no cost and no risk. Demand response, the voluntary...

  11. Fast Automated Demand Response to Enable the Integration of Renewable Resources

    E-Print Network [OSTI]

    Watson, David S.

    2013-01-01T23:59:59.000Z

    demand response is more environmentally friendly than fossil fueldemand response (DR) used in the commercial and industrial sectors is more environmentally friendly than fossil fuelfossil fuels are the predominant heating fuels for California’s commercial buildings, heating electricity demand

  12. Using Partnerships to Drive Demand and Provide Services in Communities...

    Energy Savers [EERE]

    and Discussion Summary More Documents & Publications Strategies for Marketing and Driving Demand for Commercial Financing Products Information Technology Tools for Multifamily...

  13. Demand Response and Open Automated Demand Response

    E-Print Network [OSTI]

    LBNL-3047E Demand Response and Open Automated Demand Response Opportunities for Data Centers G described in this report was coordinated by the Demand Response Research Center and funded by the California. Demand Response and Open Automated Demand Response Opportunities for Data Centers. California Energy

  14. Energy Conservation and Commercialization in Gujarat: Report...

    Open Energy Info (EERE)

    Conservation and Commercialization in Gujarat: Report On Demand Side Management (DSM) In Gujarat Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy Conservation and...

  15. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Majumdar, Arun

    2008-07-29T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  16. Global Energy: Supply, Demand, Consequences, Opportunities (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Majumdar, Arun

    2011-04-28T23:59:59.000Z

    Summer Lecture Series 2009: Arun Majumdar, Director of the Environmental Energy Technologies Division, discusses current and future projections of economic growth, population, and global energy demand and supply, and explores the implications of these trends for the environment.

  17. High Temperatures & Electricity Demand

    E-Print Network [OSTI]

    High Temperatures & Electricity Demand An Assessment of Supply Adequacy in California Trends.......................................................................................................1 HIGH TEMPERATURES AND ELECTRICITY DEMAND.....................................................................................................................7 SECTION I: HIGH TEMPERATURES AND ELECTRICITY DEMAND ..........................9 BACKGROUND

  18. Division of Finance Division of Finance Alignment

    E-Print Network [OSTI]

    Hayden, Nancy J.

    Division of Finance Division of Finance Alignment September 11, 2014 1 #12;Division of Finance of Finance Goal of the DF Alignment Project The internal and external alignment of the Division of Finance of Finance The Process We Followed 17 Meetings17 Meetings 120+ Pages of Data 103 Themes 12 Meta Themes Goals

  19. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    Energy Commission's preliminary forecasts for 2014­2024 electricity consumption and peak: Electricity Demand by Utility Planning Area MAY 2013 CEC-200-2013-004-SD-V2 Sylvia Bender Deputy Director ELECTRICITY SUPPLY ANALYSIS DIVISION Robert P. Oglesby Executive

  20. Resource assessment/commercialization planning meeting

    SciTech Connect (OSTI)

    None

    1980-01-24T23:59:59.000Z

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  1. Superconducting Magnet Division

    E-Print Network [OSTI]

    Superconducting Magnet Division DOE NP Program Review - July 06 1 Brookhaven Magnet Division - Nuclear Physics Program Support Activities Superconducting Magnet Program RHIC Operations Support Spin Summary Peter Wanderer, DOE review, July 25, 2006 Acting Head, Superconducting Magnet Division #12

  2. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  3. Commercial Weatherization

    Broader source: Energy.gov [DOE]

    Commercial buildings consume 19 percent of the energy used in the U.S. Learn how the Energy Department is supporting research and deployment on commercial weatherization.

  4. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  5. Optimal Demand Response Capacity of Automatic Lighting Control

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . To remedy this problem, different demand side management programs have been proposed to shape the energy prior studies have extensively studied the capacity of offering demand response in buildings and office buildings. Keywords: Demand response, automatic lighting control, commercial and office buildings

  6. Finance Division Employee Status Form Finance Division

    E-Print Network [OSTI]

    Crews, Stephen

    Finance Division Employee Status Form Finance Division CB 1225, 104 Airport Drive Chapel Hill, NC Phone: 919-962-7242 finance.unc.edu Failure to Follow Instructions Below Will Delay Processing Today information in five areas: 1. Division-wide emergency call tree 2. Finance Web site contacts 3. Departmental

  7. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CA Control Areas CO 2 Carbon Dioxide CHP Combined Heat and Power CPP Critical Peak Pricing DG Distributed Generation DOE Department of Energy DR Demand Response DRCC Demand...

  8. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  9. RESEARCH UPDATE Ecology Division

    E-Print Network [OSTI]

    1 RESEARCH UPDATE Ecology Division Biotype has changed its name to Ecotype! Following the re-organisation of Forest Research into five science Divisions and three Support Divisions, the former Woodland Ecology Branches to form the new Ecology Division. We decided to give the divisional newsletter a new name (and

  10. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    of integrating demand response and energy efficiencyand D. Kathan (2009), Demand Response in U.S. ElectricityFRAMEWORKS THAT PROMOTE DEMAND RESPONSE 3.1. Demand Response

  11. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    Addressing Energy Demand through Demand Response:both the avoided energy costs (and demand charges) as wellCoordination of Energy Efficiency and Demand Response,

  12. Advanced Demand Responsive Lighting

    E-Print Network [OSTI]

    Advanced Demand Responsive Lighting Host: Francis Rubinstein Demand Response Research Center demand responsive lighting systems ­ Importance of dimming ­ New wireless controls technologies · Advanced Demand Responsive Lighting (commenced March 2007) #12;Objectives · Provide up-to-date information

  13. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    benefits of Demand Side Management (DSM) are insufficient toefficiency, demand side management (DSM) cost effectivenessResearch Center Demand Side Management Demand Side Resources

  14. Transportation Demand This

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    energy consumption across the nine Census Divisions (see Figure 5) and over ten fuel types. Each fuel type is modeled according to fuel-specific and associated technology...

  15. Oklahoma Municipal Power Authority- Commercial and Industrial Energy Efficiency Program

    Broader source: Energy.gov [DOE]

    The Oklahoma Municipal Power Authority (OMPA) offers the Demand and Energy Efficiency Program (DEEP) to eligible commercial, industrial, and municipal government customers served by OMPA. This...

  16. Open Automated Demand Response for Small Commerical Buildings

    SciTech Connect (OSTI)

    Dudley, June Han; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2009-05-01T23:59:59.000Z

    This report characterizes small commercial buildings by market segments, systems and end-uses; develops a framework for identifying demand response (DR) enabling technologies and communication means; and reports on the design and development of a low-cost OpenADR enabling technology that delivers demand reductions as a percentage of the total predicted building peak electric demand. The results show that small offices, restaurants and retail buildings are the major contributors making up over one third of the small commercial peak demand. The majority of the small commercial buildings in California are located in southern inland areas and the central valley. Single-zone packaged units with manual and programmable thermostat controls make up the majority of heating ventilation and air conditioning (HVAC) systems for small commercial buildings with less than 200 kW peak electric demand. Fluorescent tubes with magnetic ballast and manual controls dominate this customer group's lighting systems. There are various ways, each with its pros and cons for a particular application, to communicate with these systems and three methods to enable automated DR in small commercial buildings using the Open Automated Demand Response (or OpenADR) communications infrastructure. Development of DR strategies must consider building characteristics, such as weather sensitivity and load variability, as well as system design (i.e. under-sizing, under-lighting, over-sizing, etc). Finally, field tests show that requesting demand reductions as a percentage of the total building predicted peak electric demand is feasible using the OpenADR infrastructure.

  17. Energy Demand (released in AEO2010)

    Reports and Publications (EIA)

    2010-01-01T23:59:59.000Z

    Growth in U.S. energy use is linked to population growth through increases in demand for housing, commercial floorspace, transportation, manufacturing, and services. This affects not only the level of energy use, but also the mix of fuels and consumption by sector.

  18. Demand Responsive Lighting: A Scoping Study

    SciTech Connect (OSTI)

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-03T23:59:59.000Z

    The objective of this scoping study is: (1) to identify current market drivers and technology trends that can improve the demand responsiveness of commercial building lighting systems and (2) to quantify the energy, demand and environmental benefits of implementing lighting demand response and energy-saving controls strategies Statewide. Lighting systems in California commercial buildings consume 30 GWh. Lighting systems in commercial buildings often waste energy and unnecessarily stress the electrical grid because lighting controls, especially dimming, are not widely used. But dimmable lighting equipment, especially the dimming ballast, costs more than non-dimming lighting and is expensive to retrofit into existing buildings because of the cost of adding control wiring. Advances in lighting industry capabilities coupled with the pervasiveness of the Internet and wireless technologies have led to new opportunities to realize significant energy saving and reliable demand reduction using intelligent lighting controls. Manufacturers are starting to produce electronic equipment--lighting-application specific controllers (LAS controllers)--that are wirelessly accessible and can control dimmable or multilevel lighting systems obeying different industry-accepted protocols. Some companies make controllers that are inexpensive to install in existing buildings and allow the power consumed by bi-level lighting circuits to be selectively reduced during demand response curtailments. By intelligently limiting the demand from bi-level lighting in California commercial buildings, the utilities would now have an enormous 1 GW demand shed capability at hand. By adding occupancy and light sensors to the remotely controllable lighting circuits, automatic controls could harvest an additional 1 BkWh/yr savings above and beyond the savings that have already been achieved. The lighting industry's adoption of DALI as the principal wired digital control protocol for dimming ballasts and increased awareness of the need to standardize on emerging wireless technologies are evidence of this transformation. In addition to increased standardization of digital control protocols controller capabilities, the lighting industry has improved the performance of dimming lighting systems over the last two years. The system efficacy of today's current dimming ballasts is approaching that of non-dimming program start ballasts. The study finds that the benefits of applying digital controls technologies to California's unique commercial buildings market are enormous. If California were to embark on an concerted 20 year program to improve the demand responsiveness and energy efficiency of commercial building lighting systems, the State could avoid adding generation capacity, improve the elasticity of the grid, save Californians billion of dollars in avoided energy charges and significantly reduce greenhouse gas emissions.

  19. Retrofitting Existing Buildings for Demand Response & Energy Efficiency

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Retrofitting Existing Buildings for Demand Response & Energy Efficiency www rate periods to avoid high charges. · Assembly Bill 1103 ­ Building Energy Efficiency Disclosure - Starting January 1, 2010, all commercial building lease transactions must disclose the energy efficiency

  20. Demand Response Enabling Technologies and Approaches for Industrial Facilities

    E-Print Network [OSTI]

    Epstein, G.; D'Antonio, M.; Schmidt, C.; Seryak, J.; Smith, C.

    2005-01-01T23:59:59.000Z

    There are numerous programs sponsored by Independent System Operators (ISOs) and utility or state efficiency programs that have an objective of reducing peak demand. Most of these programs have targeted the residential and commercial sector, however...

  1. Division of Agriculture,

    E-Print Network [OSTI]

    Ray, David

    DAFVM Division of Agriculture, Forestry, and Veterinary M e d i c i n e Visit us online at www to the Mississippi State University Division of Agriculture, Forestry, and Veterinary Medicine. Discrimination based-3-14) Mississippi State University's Division of Agriculture, Forestry, and Veterinary Medicine, or DAFVM

  2. DIVISION OF GRADUATE STUDIES

    E-Print Network [OSTI]

    Palffy-Muhoray, Peter

    recipients at the time of their graduation to monitor and project the scientific workforce. Between 1961DIVISION OF GRADUATE STUDIES 2012-2013 ACADEMIC YEAR REpORT Excellence in Action Division of Graduate Studies #12;Division of Graduate Studies Kent State University 2012 - 2013 Academic Year Report

  3. AEP Ohio- Commercial Self Direct Rebate Program

    Broader source: Energy.gov [DOE]

    AEP Ohio offers incentives for commercial customers who have implemented energy efficiency upgrades as if the customer commits the energy efficiency savings and/or peak demand reductions to AEP...

  4. Hawaii demand-side management resource assessment. Final report, Reference Volume 2: Final residential and commercial building prototypes and DOE-2.1E developed UECs and EUIs; Part 2

    SciTech Connect (OSTI)

    NONE

    1995-04-01T23:59:59.000Z

    This section contains the detailed measured impact results and market segment data for each DSM case examined for this building type. A complete index of all base and measure cases defined for this building type is shown first. This index represents an expansion of the base and measure matrix presented in Table 1 (residential) or Table 2 (commercial) for the applicable sector. Following this index, a summary report sheet is provided for each DSM measure case in the order shown in the index. The summary report sheet contains a host of information and selected graphs which define and depict the measure impacts and outline the market segment data assumptions utilized for each case in the DBEDT DSM Forecasting models. The variables and figures included in the summary report sheet are described. Numerous tables and figures are included.

  5. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DECC aggregator managed portfolio automated demand responseaggregator designs their own programs, and offers demand responseaggregator is responsible for designing and implementing their own demand response

  6. LEED Demand Response Credit: A Plan for Research towards Implementation

    E-Print Network [OSTI]

    the need and methods for commercial building sector involvement in demand response (DR). We summarize, including architects, engineers, consultants, contractors, and building owners and managers. Finally, we in the US increased the focus on the need for flexible demand-side resources to address four major

  7. A Demand-Side Management Experience in Existing Building Commissioning

    E-Print Network [OSTI]

    Franconi, E.; Selch, M.; Bradford, J.; Gruen, B.

    2003-01-01T23:59:59.000Z

    As part of a suite of demand-side management (DSM) program offerings, Xcel Energy provides a recommissioning program to its Colorado commercial customers. The program has a summer peak-demand savings goal of 7.8 MW to be achieved by 2005. Commenced...

  8. Pennsylvania: Window Technology First of Its Kind for Commercial...

    Energy Savers [EERE]

    manufacturer Traco, a division of Kawneer (an Alcoa company), to develop the OptiQ(tm) Ultra Thermal Window series (OptiQ(tm)) for the commercial buildings sector. These windows...

  9. Demand response enabling technology development

    E-Print Network [OSTI]

    Arens, Edward; Auslander, David; Huizenga, Charlie

    2008-01-01T23:59:59.000Z

    behavior in developing a demand response future. Phase_II_Demand Response Enabling Technology Development Phase IIYi Yuan The goal of the Demand Response Enabling Technology

  10. Demand Response Spinning Reserve Demonstration

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    F) Enhanced ACP Date RAA ACP Demand Response – SpinningReserve Demonstration Demand Response – Spinning Reservesupply spinning reserve. Demand Response – Spinning Reserve

  11. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Demand Response Enabling Technology Development Phase IEfficiency and Demand Response Programs for 2005/2006,Application to Demand Response Energy Pricing” SenSys 2003,

  12. Energy Demand Staff Scientist

    E-Print Network [OSTI]

    Eisen, Michael

    Energy Demand in China Lynn Price Staff Scientist February 2, 2010 #12;Founded in 1988 Focused,000 2,000 3,000 4,000 5,000 6,000 7,000 2007 USChina #12;Overview:Overview: Key Energy Demand DriversKey Energy Demand Drivers · 290 million new urban residents 1990-2007 · 375 million new urban residents 2007

  13. Industrial Demand Module

    Gasoline and Diesel Fuel Update (EIA)

    Boiler, Steam, and Cogeneration (BSC) Component. The BSC Component satisfies the steam demand from the PA and BLD Components. In some industries, the PA Component produces...

  14. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATLAS Operations personnel, and to various experimental instrument specialists in the Physics Division. The PAC members will review each proposal for scientific merit and...

  16. Commercial Fertilizers in 1934-35.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Asbury, S. E. (Samuel E.)

    1935-01-01T23:59:59.000Z

    materials. Crude, inert, or slow-acting nitrogellous materials are unprocessed organic substances relatively high in nitrogen but having a very low value as plant food and showing a low activity by both the alkaline and COMMERCIAL FERTILIZER SALES...TEXAS AGRIC~JL'IURAL Exur;KIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS BULLETIN NO. 5-17 DECEMBER, 1935 DIVISION OF' CHEMISTRY COMMERCIAL FERTILIZERS AGRICULTURAL AND MECHANICAIL COLLEGE OF TEXAS T. 0. IFATITON...

  17. Controlling electric power demand

    SciTech Connect (OSTI)

    Eikenberry, J.

    1984-11-15T23:59:59.000Z

    Traditionally, demand control has not been viewed as an energy conservation measure, its intent being to reduce the demand peak to lower the electric bill demand charge by deferring the use of a block of power to another demand interval. Any energy savings were essentially incidental and unintentional, resulting from curtailment of loads that could not be assumed at another time. This article considers a microprocessor-based multiplexed system linked to a minicomputer to control electric power demand in a winery. In addition to delivering an annual return on investment of 55 percent in electric bill savings, the system provides a bonus in the form of alarm and monitoring capability for critical processes.

  18. Superconducting Magnet Division

    E-Print Network [OSTI]

    Gupta, Ramesh

    Superconducting Magnet Division Permanent Magnet Designs with Large Variations in Field Strength the residual field of the magnetized bricks by concentrating flux lines at the iron pole. Low Field Design Medium Field Design Superconducting Magnet Division Dipole and Quadrupole Magnets for RHIC e

  19. Hypertension Research Division

    E-Print Network [OSTI]

    Berdichevsky, Victor

    Hypertension & Vascular Research Division Department of Internal Medicine Jeffrey L. Garvin, Ph.D. ­ Division Head #12;Prevalence of Hypertension in U.S. Men by Age and Ethnicity 18 ­ 29 30 ­ 39 40 ­ 49 50 Prevalence of High BP Adapted from Burt et al. Hypertension 1995;25:305. 25 50 75 #12;Introduction

  20. Superconducting Magnet Division

    E-Print Network [OSTI]

    McDonald, Kirk

    Superconducting Magnet Division Ramesh Gupta 20T Target Solenoid with HTS Insert Solenoid Capture Laboratory New York, USA http://www.bnl.gov/magnets/staff/gupta #12;Superconducting Magnet Division Ramesh of HTS may significantly reduce the amount of Tungsten shielding · Summary #12;Superconducting Magnet

  1. Innovative Faade Systems for Low-energy Commercial Buildings

    E-Print Network [OSTI]

    Innovative Façade Systems for Low-energy Commercial Buildings Eleanor Lee, Stephen Selkowitz abstract Glazing and façade systems have very large impacts on all aspects of commercial building for commercial buildings to significantly reduce energy and demand, helping to move us toward our goal of net

  2. PHYSICS DIVISION CHEMICAL HYGIENE PLAN

    E-Print Network [OSTI]

    Kemner, Ken

    PHYSICS DIVISION CHEMICAL HYGIENE PLAN 2008 Prepared by _________________________________________________ T. Mullen Physics Division Chemical Hygiene Officer Reviewed by ___________________________________________________ J. Woodring Site Chemical Hygiene Officer Approved

  3. Autimated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR 

    E-Print Network [OSTI]

    Kim, J. J.; Yin, R.; Kiliccote, S.

    2013-01-01T23:59:59.000Z

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject...

  4. Autimated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    E-Print Network [OSTI]

    Kim, J. J.; Yin, R.; Kiliccote, S.

    2013-01-01T23:59:59.000Z

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject...

  5. Dynamic Controls for Energy Efficiency and Demand Response: Framework Concepts and a New Construction Study Case in New York

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Watson, David S.; Hughes, Glenn

    2006-01-01T23:59:59.000Z

    Demand-Side Management Framework for Commercial BuildingsTimes (NYT) Building and Its Demand-Side Management Lawrencedemand-side management (DSM) framework presented in Table 1 provides three major areas for changing electric loads in buildings:

  6. Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. The Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

  7. Abstract--This paper formulates and develops a peak demand control tool for electric systems within the framework of direct

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    techniques. Index Terms--Demand Side Management, direct load control, peak demand control, genetic algorithms in order to evaluate the suitability of the decision chosen. Demand Side Management (DSM) plans attempt for central air conditioning systems in commercial buildings, hence allowing a measured control of peak demand

  8. Demand and Price Uncertainty: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2013-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  9. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    World crude oil and natural gas: a demand and supply model.analysis of the demand for oil in the Middle East. EnergyEstimates elasticity of demand for crude oil, not gasoline.

  10. EnerNOC Inc. Commercial & Industrial Demand Response

    E-Print Network [OSTI]

    Valley Authority C&I DR: 560 MW Tucson Electric Power C&I DR: 40 MW Xcel Energy (Colorado) C&I DR: 44 MW Baltimore Gas & Electric C&I DR:120 MW Bonneville Power Administration C&I DR: Multiple Pilots Delmarva with 2010 revenues of $280 million 500+ full-time employees Energy Efficiency Industrial EE Program

  11. Automated Demand Response Strategies and Commissioning Commercial Building Controls

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Linkugel, Eric

    2006-01-01T23:59:59.000Z

    Conference on Building Commissioning: April 19-21, 2006Auto-DR Strategies and Commissioning One common questionConference on Building Commissioning: April 19-21, 2006

  12. Scenario Analysis of Peak Demand Savings for Commercial Buildings with

    E-Print Network [OSTI]

    response (DR) is a process of managing customer consumption of electricity in response to supply conditions sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University

  13. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Laboratory-based evaluations of nine sensors with largespecified existing sensor for evaluation. In the prior fieldIn summary, these evaluations of faulty sensors did not

  14. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    evaluations of the performance of sensor electronics and measurements of the output of infrared sources within sensors

  15. CO2 MONITORING FOR DEMAND CONTROLLED VENTILATION IN COMMERCIAL BUILDINGS

    E-Print Network [OSTI]

    Fisk, William J.

    2010-01-01T23:59:59.000Z

    Transactions 105(2). Emmerich, S. J. and A. K. Persily (Fisk and de Almeida 1998; Emmerich and Persily 2001), CO 2Fisk and de Almeida 1998; Emmerich and Persily 2001; Apte

  16. Strategies for Marketing and Driving Demand for Commercial Financing

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Site EnvironmentalEnergySafelyVirtualStephanie PriceStrategic PlanFluctuationsProducts |

  17. Strategies for Marketing and Driving Demand for Commercial Financing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic Safety Goals Strategic Safety Goals JulyIntegrated Emission

  18. Energy Conservation and Commercialization in Gujarat: Report On Demand Side

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 No revision|LLC Place: Ketchum, Idaho Zip: IDConcepts Jump

  19. Demand and Price Volatility: Rational Habits in International Gasoline Demand

    E-Print Network [OSTI]

    Scott, K. Rebecca

    2011-01-01T23:59:59.000Z

    An Exploration of Australian Petrol Demand: Unobserv- ableRelative Prices: Simulating Petrol Con- sumption Behavior.habit stock variable in a petrol demand regression, they

  20. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    call 911 on the internal phones (or 252-1911 on cell phones) Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding...

  1. Director, Division of Investigations

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission is looking for an experienced, highly skilled executive to serve as Director of the Division of Investigations (DOI) in the Office of Enforcement (OE). The...

  2. Division Student Liaisons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    None Fire Protection (FP-DO) Robert J. Farris (Rob) 667-9045 sirraf@lanl.gov K493 Nuclear Criticality Safety None Operations Support Division (OS-DO) None Radiological...

  3. Guidance Systems Division ,

    Office of Legacy Management (LM)

    Oockec No. 10-0772 22 OCT 1981 Bcndlx CorporaLion ' Guidance Systems Division , ATTN: Mr. Wf 11 la,,, Hnrr,,or Manngar, PlanL Englne0rtny Teterboro, New Jersey 07608 uwm STATES...

  4. Demand Response Valuation Frameworks Paper

    E-Print Network [OSTI]

    Heffner, Grayson

    2010-01-01T23:59:59.000Z

    No. ER06-615-000 CAISO Demand Response Resource User Guide -8 2.1. Demand Response Provides a Range of Benefits to8 2.2. Demand Response Benefits can be Quantified in Several

  5. Optimal Demand Response Libin Jiang

    E-Print Network [OSTI]

    Optimal Demand Response Libin Jiang Steven Low Computing + Math Sciences Electrical Engineering Caltech Oct 2011 #12;Outline Caltech smart grid research Optimal demand response #12;Global trends 1

  6. Travel Demand Modeling

    SciTech Connect (OSTI)

    Southworth, Frank [ORNL; Garrow, Dr. Laurie [Georgia Institute of Technology

    2011-01-01T23:59:59.000Z

    This chapter describes the principal types of both passenger and freight demand models in use today, providing a brief history of model development supported by references to a number of popular texts on the subject, and directing the reader to papers covering some of the more recent technical developments in the area. Over the past half century a variety of methods have been used to estimate and forecast travel demands, drawing concepts from economic/utility maximization theory, transportation system optimization and spatial interaction theory, using and often combining solution techniques as varied as Box-Jenkins methods, non-linear multivariate regression, non-linear mathematical programming, and agent-based microsimulation.

  7. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  8. Installation and Commissioning Automated Demand Response Systems

    SciTech Connect (OSTI)

    Global Energy Partners; Pacific Gas and Electric Company; Kiliccote, Sila; Kiliccote, Sila; Piette, Mary Ann; Wikler, Greg; Prijyanonda, Joe; Chiu, Albert

    2008-04-21T23:59:59.000Z

    Demand Response (DR) can be defined as actions taken to reduce electric loads when contingencies, such as emergencies and congestion, occur that threaten supply-demand balance, or market conditions raise supply costs. California utilities have offered price and reliability DR based programs to customers to help reduce electric peak demand. The lack of knowledge about the DR programs and how to develop and implement DR control strategies is a barrier to participation in DR programs, as is the lack of automation of DR systems. Most DR activities are manual and require people to first receive notifications, and then act on the information to execute DR strategies. Levels of automation in DR can be defined as follows. Manual Demand Response involves a labor-intensive approach such as manually turning off or changing comfort set points at each equipment switch or controller. Semi-Automated Demand Response involves a pre-programmed demand response strategy initiated by a person via centralized control system. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. The receipt of the external signal initiates pre-programmed demand response strategies. We refer to this as Auto-DR (Piette et. al. 2005). Auto-DR for commercial and industrial facilities can be defined as fully automated DR initiated by a signal from a utility or other appropriate entity and that provides fully-automated connectivity to customer end-use control strategies. One important concept in Auto-DR is that a homeowner or facility manager should be able to 'opt out' or 'override' a DR event if the event comes at time when the reduction in end-use services is not desirable. Therefore, Auto-DR is not handing over total control of the equipment or the facility to the utility but simply allowing the utility to pass on grid related information which then triggers facility defined and programmed strategies if convenient to the facility. From 2003 through 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) developed and tested a series of demand response automation communications technologies known as Automated Demand Response (Auto-DR). In 2007, LBNL worked with three investor-owned utilities to commercialize and implement Auto-DR programs in their territories. This paper summarizes the history of technology development for Auto-DR, and describes the DR technologies and control strategies utilized at many of the facilities. It outlines early experience in commercializing Auto-DR systems within PG&E DR programs, including the steps to configure the automation technology. The paper also describes the DR sheds derived using three different baseline methodologies. Emphasis is given to the lessons learned from installation and commissioning of Auto-DR systems, with a detailed description of the technical coordination roles and responsibilities, and costs.

  9. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  10. MANDATORY PRINTING CONTRACTS Division of Enterprise Operations, State Bureau of Procurement

    E-Print Network [OSTI]

    Sheridan, Jennifer

    @amerlitho.com W: American Litho Shari Beder T: (414) 342-5050 F: (414) 342-9950 Lot 3D Inks: 3 & up, Covers upMANDATORY PRINTING CONTRACTS Division of Enterprise Operations, State Bureau of Procurement Print or longer Envelopes (quantities 500-5,000), Printing Commercial & Catalog Envelopes Quantities: Commercial

  11. Demand Dispatch-Intelligent

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power Administration wouldDECOMPOSITIONPortal DecisionRichlandDelegations,Demand

  12. Energy Technology Division research summary 1997.

    SciTech Connect (OSTI)

    NONE

    1997-10-21T23:59:59.000Z

    The Energy Technology Division provides materials and engineering technology support to a wide range of programs important to the US Department of Energy. As shown on the preceding page, the Division is organized into ten sections, five with concentrations in the materials area and five in engineering technology. Materials expertise includes fabrication, mechanical properties, corrosion, friction and lubrication, and irradiation effects. Our major engineering strengths are in heat and mass flow, sensors and instrumentation, nondestructive testing, transportation, and electromechanics and superconductivity applications. The Division Safety Coordinator, Environmental Compliance Officers, Quality Assurance Representative, Financial Administrator, and Communication Coordinator report directly to the Division Director. The Division Director is personally responsible for cultural diversity and is a member of the Laboratory-wide Cultural Diversity Advisory Committee. The Division's capabilities are generally applied to issues associated with energy production, transportation, utilization or conservation, or with environmental issues linked to energy. As shown in the organization chart on the next page, the Division reports administratively to the Associate Laboratory Director (ALD) for Energy and Environmental Science and Technology (EEST) through the General Manager for Environmental and Industrial Technologies. While most of our programs are under the purview of the EEST ALD, we also have had programs funded under every one of the ALDs. Some of our research in superconductivity is funded through the Physical Research Program ALD. We also continue to work on a number of nuclear-energy-related programs under the ALD for Engineering Research. Detailed descriptions of our programs on a section-by-section basis are provided in the remainder of this book. This Overview highlights some major trends. Research related to the operational safety of commercial light water nuclear reactors (LWRS) is funded by the US Nuclear Regulatory Commission (NRC). In addition to our ongoing work on environmentally assisted cracking and steam generator integrity, a major new multiyear program has been initiated to assess the performance of high-burnup fuel during loss-of-coolant accidents. The bulk of the NRC research work is carried out in four ET sections: Corrosion: Mechanics of Materials; Irradiation Performance: and Sensors, Instrumentation, and Nondestructive Evaluation. The Transportation of Hazardous Materials Section is the other main contributor; staff from that Section have worked closely with NRC staff to draft a new version of the NRC Standard Review Plan that will be used to provide guidance to NRC reviewers of applications for the renewal of nuclear plant licenses.

  13. Chemistry Division Department of Biological

    E-Print Network [OSTI]

    Heller, Barbara

    1 Chemistry Division Department of Biological and Chemical Sciences, Illinois Institute-13 Chemistry Division invites nominations for Kilpatrick Fellowship for the academic year 2012's Chemistry Department from 1947­1960. Mary Kilpatrick was a chemistry faculty member from 1947

  14. Superconducting Magnet Division

    E-Print Network [OSTI]

    Ohta, Shigemi

    Superconducting Magnet Division MAGNETIC DESIGN OF E-LENS SOLENOID AND CORRECTOR SYSTEM FOR RHIC* R.6 A gun collectors gun Combined Horizontal and Vertical Corrector Design Both types of dipole correctors. Gupta, M. Anerella, W. Fischer, G. Ganetis, X. Gu, A. Ghosh, A. Jain, P. Kovach, A. Marone, S. Plate, A

  15. Solid State Division

    SciTech Connect (OSTI)

    Green, P.H.; Watson, D.M. (eds.)

    1989-08-01T23:59:59.000Z

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  16. integration division Human Systems

    E-Print Network [OSTI]

    integration division Human Systems Eye-Movement Metrics: Non-Intrusive Quantitative Tools for Monitoring Human Visual Performance Objective Approach Impact A reliable quantitative yet non-intrusive methodologies that provide quantitative yet non-intrusive measures of human visual performance for use

  17. Commercial Fertilizers in 1937-38.

    E-Print Network [OSTI]

    Ogier, T. L. (Thomas Louis); Asbury, S. E. (Samuel E.); Fraps, G. S. (George Stronach)

    1938-01-01T23:59:59.000Z

    and does not give results on soils which need fertilizer, as shown in Bulletins 408' and 414. Sulphur is sometimes used to acidify soils that are alkaline or neutra1 when the plants being grown do best on an acid soil. The organisms in the COMMERCIAL...LIBRARY, A & M COLLEGE, CA~~PUS. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS 3 BULLETIN NO. 565 AUGUST, I938 DIVISION OF CHEMISTRY COMMERCIAL FERTILIZERS IN 1937-38 AGRICULTURAL...

  18. Commercial Fertilizers in 1922-23.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Asbury, S. E. (Samuel E.)

    1923-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERlMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President BULLETIN NO. 312 SEPTEMBER, 1923 DIVISION OF CHEMISTRY COMMERCIAL FERTILIZERS IN 1922-23 B. YOUNGBLOOD, DIRECTOR, COLLEGE STATION.... eder 3IOLOGY 6 Botanist ,t tor unty n) COMMERCIAL FERT I ERS IN 1922-23 G. S. FRAPS AND S. E. ASBURY treat increase in fertilizer sold in Texas occurred in 1922-23, hut 'btal amount did not reach that sold in 1913-14. le quantities...

  19. Security Division 2007 Annual Report

    E-Print Network [OSTI]

    Computer Security Division 2007 Annual Report #12;TAble of ConTenTS Welcome Division Organization The Computer Security Division Responds to the Federal Information Security Management Act of 2002 Security Information Technology 15 Security Testing and Metrics 17 Validation Programs and Laboratory Accreditation 17

  20. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    BEST PRACTICES AND RESULTS OF DR IMPLEMENTATION . 31 Encouraging End-User Participation: The Role of Incentives 16 Demand Response

  1. Commercial Fertilizers in 1923-24.

    E-Print Network [OSTI]

    Asbury, S. E. (Samuel E.); Fraps, G. S. (George Stronach)

    1924-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President --- -- --- -- -- - - -- - - - -- - -. BULLETIN NO. 322 SEPTEMBER, 1924 DIVISION OF CHEMISTRY COMMERCIAL FERTILIZERS IN 1923... cooperation with United States Department of Agriculture. SUMMARY This Bulletin contains a report of the Fertilizer Control for 1923-24. Sales of fertilizer in Texas were 126,180 tons in 1923-24. In 1922-23 they were 73,300 tons. The sales of fertilizers...

  2. Computer, Computational, and Statistical Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computing CCS Division Computer, Computational, and Statistical Sciences Division Computational physics, computer science, applied mathematics, statistics and the integration of...

  3. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  4. CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014-2024 PRELIMINARY FORECAST Volume 1: Statewide Electricity Demand, End-User Natural Gas Demand, and Energy Efficiency The California Energy Demand 2014-2024 Preliminary Forecast, Volume 1: Statewide Electricity Demand

  5. Impacts of Temperature Variation on Energy Demand in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    In the residential and commercial sectors, heating and cooling account for more than 40% of end-use energy demand. As a result, energy consumption in those sectors can vary significantly from year to year, depending on yearly average temperatures.

  6. Electrical Demand Control

    E-Print Network [OSTI]

    Eppelheimer, D. M.

    1984-01-01T23:59:59.000Z

    to the reservoir. Util i ties have iiting for a number of years. d a rebate for reducing their When the utility needs to shed is sent to turn off one or mnre mer's electric water heater or equipment. wges have enticed more and more same strategies... an increased need for demand 1 imiting. As building zone size is reduced, total instal led tonnage increases due to inversfty. Each compressor is cycled by a space thermostat. There is no control system to limit the number of compressors running at any...

  7. Procedure for Measuring and Reporting Commercial Building Energy Performance

    SciTech Connect (OSTI)

    Barley, D.; Deru, M.; Pless, S.; Torcellini, P.

    2005-10-01T23:59:59.000Z

    This procedure is intended to provide a standard method for measuring and characterizing the energy performance of commercial buildings. The procedure determines the energy consumption, electrical energy demand, and on-site energy production in existing commercial buildings of all types. The performance metrics determined here may be compared against benchmarks to evaluate performance and verify that performance targets have been achieved.

  8. Assessment of Demand Response Resource

    E-Print Network [OSTI]

    Assessment of Demand Response Resource Potentials for PGE and Pacific Power Prepared for: Portland January 15, 2004 K:\\Projects\\2003-53 (PGE,PC) Assess Demand Response\\Report\\Revised Report_011504.doc #12;#12;quantec Assessment of Demand Response Resource Potentials for I-1 PGE and Pacific Power I. Introduction

  9. U.S. electric utility demand-side management 1995

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The US Electric Utility Demand-Side Management report is prepared by the Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternative Fuels; Energy Information Administration (EIA); US Department of Energy. The report presents comprehensive information on electric power industry demand-side management (DSM) activities in the US at the national, regional, and utility levels. The objective of the publication is to provide industry decision makers, government policy makers, analysts, and the general public with historical data that may be used in understanding DSM as it relates to the US electric power industry. The first chapter, ``Profile: US Electric Utility Demand-Side Management``, presents a general discussion of DSM, its history, current issues, and a review of key statistics for the year. Subsequent chapters present discussions and more detailed data on energy savings, peak load reductions and costs attributable to DSM. 9 figs., 24 tabs.

  10. COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments

    E-Print Network [OSTI]

    Waliser, Duane E.

    11/13/2013 COMMERCIAL SPACE ACCOMPLISHMENTS Commercial Cargo Space Accomplishments The Obama Administration's ambitious commercial space program, which has bipartisan support in Congress, has enabled NASA's successful partnership with two American companies now able to resupply the station - SpaceX and Orbital

  11. Estimating Demand Response Market Potential Among Large Commercialand Industrial Customers:A Scoping Study

    SciTech Connect (OSTI)

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan,Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    Demand response is increasingly recognized as an essentialingredient to well functioning electricity markets. This growingconsensus was formalized in the Energy Policy Act of 2005 (EPACT), whichestablished demand response as an official policy of the U.S. government,and directed states (and their electric utilities) to considerimplementing demand response, with a particular focus on "price-based"mechanisms. The resulting deliberations, along with a variety of stateand regional demand response initiatives, are raising important policyquestions: for example, How much demand response is enough? How much isavailable? From what sources? At what cost? The purpose of this scopingstudy is to examine analytical techniques and data sources to supportdemand response market assessments that can, in turn, answer the secondand third of these questions. We focus on demand response for large(>350 kW), commercial and industrial (C&I) customers, althoughmany of the concepts could equally be applied to similar programs andtariffs for small commercial and residential customers.

  12. Commercial Feeding Stuffs, September 1, 1923 to August 31, 1924.

    E-Print Network [OSTI]

    Youngblood, B. (Bonney); Fuller, F. D. (Frederick Driggs); Pearce, S. D.

    1924-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President BULLETIN NO. 324 OCTOBER, 1924 DIVISION OF FEED CONTROL SERVICE COMMERCIAL FEEDING STUFFS SEPTEMBER 1, 1923, TO AUGUST 3 1, 1924 B... ................................................ Results of Analyses 28 .......................................... Table of Inspection Results 29 Bulletin No. 324 October, 1924 COMMERCIAL FEEDING STUFFS; SEPTEMBER 1, 1923, TO AUGUST 31, 1924: BY B. Youngblood Fuller S. D.' Pearcc , Ithe Texas...

  13. Direct Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg

    E-Print Network [OSTI]

    Waterloo, University of

    Report CS-2010-17 ABSTRACT The legacy electrical grid upper-bounds a customer's en- ergy demand using An electrical grid supplies reliable power to residential, industrial, and commercial customers by dynamicallyDirect Adaptive Control of Electricity Demand S. Keshav and C. Rosenberg School of Computer Science

  14. Demand Response Programs, 6. edition

    SciTech Connect (OSTI)

    NONE

    2007-10-15T23:59:59.000Z

    The report provides a look at the past, present, and future state of the market for demand/load response based upon market price signals. It is intended to provide significant value to individuals and companies who are considering participating in demand response programs, energy providers and ISOs interested in offering demand response programs, and consultants and analysts looking for detailed information on demand response technology, applications, and participants. The report offers a look at the current Demand Response environment in the energy industry by: defining what demand response programs are; detailing the evolution of program types over the last 30 years; discussing the key drivers of current initiatives; identifying barriers and keys to success for the programs; discussing the argument against subsidization of demand response; describing the different types of programs that exist including:direct load control, interruptible load, curtailable load, time-of-use, real time pricing, and demand bidding/buyback; providing examples of the different types of programs; examining the enablers of demand response programs; and, providing a look at major demand response programs.

  15. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    raising transportation oil demand. Growing internationalcoal by wire could reduce oil demand by stemming coal roadEastern oil production. The rapid growth of coal demand

  16. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    their partnership in demand response automation research andand Techniques for Demand Response. LBNL Report 59975. Mayof Fully Automated Demand Response in Large Facilities.

  17. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    and D. Kathan (2009). Demand Response in U.S. ElectricityEnergy Financial Group. Demand Response Research Center [2008). Assessment of Demand Response and Advanced Metering.

  18. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    23 ii Retail Demand Response in SPP List of Figures and10 Figure 3. Demand Response Resources by11 Figure 4. Existing Demand Response Resources by Type of

  19. Home Network Technologies and Automating Demand Response

    E-Print Network [OSTI]

    McParland, Charles

    2010-01-01T23:59:59.000Z

    and Automating Demand Response Charles McParland, Lawrenceand Automating Demand Response Charles McParland, LBNLCommercial and Residential Demand Response Overview of the

  20. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    Rubinstein, Francis

    2010-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities,”Fully Automated Demand Response Tests in Large Facilities.for Automated Demand Response. Technical Document to

  1. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Strategies Linking Demand Response and Energy Efficiency,”Fully Automated Demand Response Tests in Large Facilities,technical support from the Demand Response Research Center (

  2. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    District Small Business Summer Solutions: Energy and DemandSummer Solutions: Energy and Demand Impacts Monthly Energy> B-2 Coordination of Energy Efficiency and Demand Response

  3. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    World: Renewable Energy and Demand Response Proliferation intogether the renewable energy and demand response communityimpacts of renewable energy and demand response integration

  4. DEMAND CONTROLLED VENTILATION AND CLASSROOM VENTILATION

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlledindicate the energy and cost savings for demand controlled24) (California Energy Commission 2008), demand controlled

  5. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    of energy and environmental benefits of demand controlled indicate the energy and cost savings for  demand controlled 24) (California Energy  Commission 2008), demand controlled 

  6. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    integrating HECO and Hawaii Energy demand response relatedpotential. Energy efficiency and demand response efforts areBoth  energy  efficiency  and  demand  response  should  

  7. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    of Energy demand-side management energy information systemdemand response. Demand-side management (DSM) program goalsa goal for demand-side management (DSM) coordination and

  8. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 2.1 Demand-Side Managementbuildings. The demand side management framework is discussedIssues 2.1 Demand-Side Management Framework Forecasting

  9. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    and best practices to guide HECO demand response developmentbest practices for DR renewable integration – Technically demand responseof best practices. This is partially because demand response

  10. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    Demand Response Systems National Conference on BuildingDemand Response Systems National Conference on BuildingDemand Response Systems National Conference on Building

  11. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    In terms of demand response capability, building operatorsautomated demand response and improve building energy andand demand response features directly into building design

  12. Home Network Technologies and Automating Demand Response

    SciTech Connect (OSTI)

    McParland, Charles

    2009-12-01T23:59:59.000Z

    Over the past several years, interest in large-scale control of peak energy demand and total consumption has increased. While motivated by a number of factors, this interest has primarily been spurred on the demand side by the increasing cost of energy and, on the supply side by the limited ability of utilities to build sufficient electricity generation capacity to meet unrestrained future demand. To address peak electricity use Demand Response (DR) systems are being proposed to motivate reductions in electricity use through the use of price incentives. DR systems are also be design to shift or curtail energy demand at critical times when the generation, transmission, and distribution systems (i.e. the 'grid') are threatened with instabilities. To be effectively deployed on a large-scale, these proposed DR systems need to be automated. Automation will require robust and efficient data communications infrastructures across geographically dispersed markets. The present availability of widespread Internet connectivity and inexpensive, reliable computing hardware combined with the growing confidence in the capabilities of distributed, application-level communications protocols suggests that now is the time for designing and deploying practical systems. Centralized computer systems that are capable of providing continuous signals to automate customers reduction of power demand, are known as Demand Response Automation Servers (DRAS). The deployment of prototype DRAS systems has already begun - with most initial deployments targeting large commercial and industrial (C & I) customers. An examination of the current overall energy consumption by economic sector shows that the C & I market is responsible for roughly half of all energy consumption in the US. On a per customer basis, large C & I customers clearly have the most to offer - and to gain - by participating in DR programs to reduce peak demand. And, by concentrating on a small number of relatively sophisticated energy consumers, it has been possible to improve the DR 'state of the art' with a manageable commitment of technical resources on both the utility and consumer side. Although numerous C & I DR applications of a DRAS infrastructure are still in either prototype or early production phases, these early attempts at automating DR have been notably successful for both utilities and C & I customers. Several factors have strongly contributed to this success and will be discussed below. These successes have motivated utilities and regulators to look closely at how DR programs can be expanded to encompass the remaining (roughly) half of the state's energy load - the light commercial and, in numerical terms, the more important residential customer market. This survey examines technical issues facing the implementation of automated DR in the residential environment. In particular, we will look at the potential role of home automation networks in implementing wide-scale DR systems that communicate directly to individual residences.

  13. Addressing Energy Demand through Demand Response: International Experiences and Practices

    E-Print Network [OSTI]

    Shen, Bo

    2013-01-01T23:59:59.000Z

    DEMAND RESPONSE .7 Wholesale Marketuse at times of high wholesale market prices or when systemenergy expenditure. In wholesale markets, spot energy prices

  14. Mission | APS Engineering Support Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User...

  15. Demand Response and Energy Efficiency

    E-Print Network [OSTI]

    Demand Response & Energy Efficiency International Conference for Enhanced Building Operations ESL-IC-09-11-05 Proceedings of the Ninth International Conference for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 2 ?Less than 5... for Enhanced Building Operations, Austin, Texas, November 17 - 19, 2009 5 What is Demand Response? ?The temporary reduction of electricity demanded from the grid by an end-user in response to capacity shortages, system reliability events, or high wholesale...

  16. Automated Price and Demand Response Demonstration for Large Customers in New York City using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Yin, Rongxin; Kiliccote, Sila

    2013-10-01T23:59:59.000Z

    Open Automated Demand Response (OpenADR), an XML-based information exchange model, is used to facilitate continuous price-responsive operation and demand response participation for large commercial buildings in New York who are subject to the default day-ahead hourly pricing. We summarize the existing demand response programs in New York and discuss OpenADR communication, prioritization of demand response signals, and control methods. Building energy simulation models are developed and field tests are conducted to evaluate continuous energy management and demand response capabilities of two commercial buildings in New York City. Preliminary results reveal that providing machine-readable prices to commercial buildings can facilitate both demand response participation and continuous energy cost savings. Hence, efforts should be made to develop more sophisticated algorithms for building control systems to minimize customer's utility bill based on price and reliability information from the electricity grid.

  17. Demand Response Technology Roadmap A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    workshop agendas, presentation materials, and transcripts. For the background to the Demand Response Technology Roadmap and to make use of individual roadmaps, the reader is...

  18. Driving Demand | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    strategies, results achieved to date, and advice for other programs. Driving Demand for Home Energy Improvements. This guide, developed by the Lawrence Berkeley National...

  19. Demand Response Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    between May 2014 and February 2015. The Bonneville Power Administration (BPA) Demand Response Executive Sponsor Team decided upon the scope of the project in May. Two subsequent...

  20. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  1. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Data Collection for Demand-side Management for QualifyingPrepared by Demand-side Management Task Force of the

  2. Technology Commercialization Fund - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fund The Technology Commercialization Fund (TCF) is designed to complement angel investment or early stage corporate product development. The fund totaled nearly 14.3 million in...

  3. Systems Division NO. REV. NO.

    E-Print Network [OSTI]

    Rathbun, Julie A.

    Conditioning Unit (PCU) is compatible with a solar panel array. The Solar Panel Simulator and the PCU Test SetAerospace Systems Division NO. REV. NO. EATM-17 PCU - SOLAR PANEL SIMULATOR TEST REPORT:' Courtois ~ll~K. Hsi #12;MO. REV. MO. EATM-17 ~ Systems Division PCU - Solar Panel Simulator Test Report

  4. UBC STUDENT HOUSING DEMAND STUDY

    E-Print Network [OSTI]

    Ollivier-Gooch, Carl

    UBC STUDENT HOUSING DEMAND STUDY Presented by Nancy Knight and Andrew Parr FEBRUARY 5, 2010 #12;PURPOSE · To determine the need/demand for future on- campus student housing · To address requests from · A survey of students, and analysis of housing markets, and preparation of a forecast · The timeline

  5. Harnessing the power of demand

    SciTech Connect (OSTI)

    Sheffrin, Anjali; Yoshimura, Henry; LaPlante, David; Neenan, Bernard

    2008-03-15T23:59:59.000Z

    Demand response can provide a series of economic services to the market and also provide ''insurance value'' under low-likelihood, but high-impact circumstances in which grid reliablity is enhanced. Here is how ISOs and RTOs are fostering demand response within wholesale electricity markets. (author)

  6. ERCOT Demand Response Paul Wattles

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    changes or incentives.' (FERC) · `Changes in electric use by demand-side resources from their normalERCOT Demand Response Paul Wattles Senior Analyst, Market Design & Development, ERCOT Whitacre thermostats -- Other DLC Possible triggers: Real-time prices, congestion management, 4CP response paid

  7. Automated Demand Response and Commissioning

    SciTech Connect (OSTI)

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-04-01T23:59:59.000Z

    This paper describes the results from the second season of research to develop and evaluate the performance of new Automated Demand Response (Auto-DR) hardware and software technology in large facilities. Demand Response (DR) is a set of activities to reduce or shift electricity use to improve the electric grid reliability and manage electricity costs. Fully-Automated Demand Response does not involve human intervention, but is initiated at a home, building, or facility through receipt of an external communications signal. We refer to this as Auto-DR. The evaluation of the control and communications must be properly configured and pass through a set of test stages: Readiness, Approval, Price Client/Price Server Communication, Internet Gateway/Internet Relay Communication, Control of Equipment, and DR Shed Effectiveness. New commissioning tests are needed for such systems to improve connecting demand responsive building systems to the electric grid demand response systems.

  8. Demand Response for Ancillary Services

    SciTech Connect (OSTI)

    Alkadi, Nasr E [ORNL; Starke, Michael R [ORNL

    2013-01-01T23:59:59.000Z

    Many demand response resources are technically capable of providing ancillary services. In some cases, they can provide superior response to generators, as the curtailment of load is typically much faster than ramping thermal and hydropower plants. Analysis and quantification of demand response resources providing ancillary services is necessary to understand the resources economic value and impact on the power system. Methodologies used to study grid integration of variable generation can be adapted to the study of demand response. In the present work, we describe and illustrate a methodology to construct detailed temporal and spatial representations of the demand response resource and to examine how to incorporate those resources into power system models. In addition, the paper outlines ways to evaluate barriers to implementation. We demonstrate how the combination of these three analyses can be used to translate the technical potential for demand response providing ancillary services into a realizable potential.

  9. Physics division annual report 1999

    SciTech Connect (OSTI)

    Thayer, K., ed.; Physics

    2000-12-06T23:59:59.000Z

    This report summarizes the research performed in the past year in the Argonne Physics Division. The Division's programs include operation of ATLAS as a national heavy-ion user facility, nuclear structure and reaction research with beams of heavy ions, accelerator research and development especially in superconducting radio frequency technology, nuclear theory and medium energy nuclear physics. The Division took significant strides forward in its science and its initiatives for the future in the past year. Major progress was made in developing the concept and the technology for the future advanced facility of beams of short-lived nuclei, the Rare Isotope Accelerator. The scientific program capitalized on important instrumentation initiatives with key advances in nuclear science. In 1999, the nuclear science community adopted the Argonne concept for a multi-beam superconducting linear accelerator driver as the design of choice for the next major facility in the field a Rare Isotope Accelerator (WA) as recommended by the Nuclear Science Advisory Committee's 1996 Long Range Plan. Argonne has made significant R&D progress on almost all aspects of the design concept including the fast gas catcher (to allow fast fragmentation beams to be stopped and reaccelerated) that in large part defined the RIA concept the superconducting rf technology for the driver accelerator, the multiple-charge-state concept (to permit the facility to meet the design intensity goals with existing ion-source technology), and designs and tests of high-power target concepts to effectively deal with the full beam power of the driver linac. An NSAC subcommittee recommended the Argonne concept and set as tie design goal Uranium beams of 100-kwatt power at 400 MeV/u. Argonne demonstrated that this goal can be met with an innovative, but technically in-hand, design. The heavy-ion research program focused on GammaSphere, the premier facility for nuclear structure gamma-ray studies. One example of the ground-breaking research with Garnmasphere was the first study of the limits of stability with angular momentum in the shell stabilized nobelium isotopes. It was found that these heaviest nuclei could be formed at surprisingly high angular momentum, providing important new insight into the production mechanisms for super-heavy elements. Another focus continues to be experiments with short-lived beams for critical nuclear astrophysics applications. Measurements revealed that {sup 44}Ti is more readily destroyed in supernovae than was expected. Major progress was made in collecting and storing unstable ions in the Canadian Penning Trap. The technique of stopping and rapidly extracting ions from a helium gas cell led directly to the new paradigm in the production of rare isotope beams that became RIA. ATLAS provided a record 6046 hours of beam use for experiments in FY99. The facility pressed hard to support the heavy demands of the GammaSphere Research program but maintained an operational reliability of 93%. Of the 29 different isotopes provided as beams in FY99, radioactive beams of {sup 44}Ti and {sup 17}F comprised 6% of the beam time. The theoretical efforts in the Division made dramatic new strides in such topics as quantum Monte Carlo calculations of light nuclei to understand microscopic many-body forces in nuclei; QCD calculations based on the Dyson-Schwinger approach which were extended to baryon systems and finite temperatures and densities; the structure of heavy nuclei; and proton decay modes of nuclei far from stability. The medium-energy program continues to focus on new techniques to understand how the quark-gluon structure of matter impacts the structure of nuclei. The HERMES experiment began making measurements of the fraction of the spin of the nucleon carried by the glue. Drell-Yan experiments study the flavor composition of the sea of the proton. Experiments at Jefferson lab search for clues of QCD dynamics at the hadronic level. A major advance in trace isotope analysis was realized with pioneering work on Atom Trap Trace Analysis, exploitin

  10. Commercial Buildings Characteristics, 1992

    SciTech Connect (OSTI)

    Not Available

    1994-04-29T23:59:59.000Z

    Commercial Buildings Characteristics 1992 presents statistics about the number, type, and size of commercial buildings in the United States as well as their energy-related characteristics. These data are collected in the Commercial Buildings Energy Consumption Survey (CBECS), a national survey of buildings in the commercial sector. The 1992 CBECS is the fifth in a series conducted since 1979 by the Energy Information Administration. Approximately 6,600 commercial buildings were surveyed, representing the characteristics and energy consumption of 4.8 million commercial buildings and 67.9 billion square feet of commercial floorspace nationwide. Overall, the amount of commercial floorspace in the United States increased an average of 2.4 percent annually between 1989 and 1992, while the number of commercial buildings increased an average of 2.0 percent annually.

  11. Chemical Technology Division annual technical report, 1993

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1994-04-01T23:59:59.000Z

    Chemical Technology (CMT) Division this period, conducted research and development in the following areas: advanced batteries and fuel cells; fluidized-bed combustion and coal-fired magnetohydrodynamics; treatment of hazardous waste and mixed hazardous/radioactive waste; reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; separating and recovering transuranic elements, concentrating radioactive waste streams with advanced evaporators, and producing {sup 99}Mo from low-enriched uranium; recovering actinide from IFR core and blanket fuel in removing fission products from recycled fuel, and disposing removal of actinides in spent fuel from commercial water-cooled nuclear reactors; and physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, thin-film diamond surfaces, effluents from wood combustion, and molten silicates; and the geochemical processes involved in water-rock interactions. The Analytical Chemistry Laboratory in CMT also provides a broad range of analytical chemistry support.

  12. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect (OSTI)

    Not Available

    1992-03-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  13. ENERGY & ENVIRONMENT DIVISION ANNUAL REPORT 1979

    E-Print Network [OSTI]

    Cairns, E.J.

    2010-01-01T23:59:59.000Z

    Population Impacts of Geothermal Energy Development in thethe DOE Division of Geothermal Energy. S. L. Phillips and E.to DOE Division of Geothermal Energy, January 30, 1980.

  14. EARTH SCIENCES DIVISION ANNUAL REPORT 1978

    E-Print Network [OSTI]

    Authors, Various

    2012-01-01T23:59:59.000Z

    of Energy's Division of Geothermal Energy has undertaken aand Ghormley, E. L. , 1976. Geothermal energy conversion andof the Division of Geothermal Energy, and is compatible with

  15. Drivers of Commercial Building Operator Skills

    E-Print Network [OSTI]

    Domanski, J.

    2011-01-01T23:59:59.000Z

    0 Drivers of Commercial Building Operator Skills C&W OVERVIEW C&W SUSTAINABILITY STRATEGIES GROUP WHAT?S DRIVING THE NEED FOR TRAINING? NECESSARY SKILLS & KNOWLEDGE C&W DEVELOPMENT & TRAINING OPPORTUNITIES International Conference... from: ? Owners/investors 4 DRIVERS ? OWNER/INVESTOR DEMAND ?UN Global Compact / Accenture 2010 CEO survey: ?93% of CEOs believe sustainability is ?critical? ?96% believe should be integrated into core business/operations ?C&W 2011survey...

  16. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28T23:59:59.000Z

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  17. Commercial Fertilizers in 1935-36.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach); Asbury, S. E. (Samuel E.); Ogier, T. L. (Thomas Lories)

    1936-01-01T23:59:59.000Z

    F*! COLLEGE, CAMP US. TEXAS AGRICULTURAL EXPERIMENT STATION A. B. CONNER, DIRECTOR COLLEGE STATION, BRAZOS COUNTY, TEXAS --- BI'LLETIN NO. 529 SEPTEMBER, 1936 .- DIVISION OF CHEMISTRY COMMERCIAL FERTILIZERS IN 1935-36 LIBRARY... fertilizer sold in Texas is well up to guarantee. le total sales of fertilizer in Texas for 1935-36 mere 60,016 In 1934-35 the sales were 59,480 tons. In 1933-34 they 47,204 tons. Cottonseed meal sold as a feed but used as a lizer was not included...

  18. Commercial Fertilizers in 1912-1913.

    E-Print Network [OSTI]

    Fraps, G. S.

    1913-01-01T23:59:59.000Z

    263-713-35m TEXAS. AGRICULTURAL EXPERIMENT ST A TION.S BULLETIN NO. 160 JULY, 1913 Division of Chemistry Commercial Fertiliz;ers in 1912-13 POSTOFFICE: COLLEGE- STATION, BRAZOS COUNTY, TEXAS. AUSTIN, TEXAS VON BOECKMANN-JONES CO., PRINTERS....27. 128. 129. 13.2. 134. *136. 137. *138. *139. *14-0. 14L 144. 145. *147. 148. 149. *152. 153. 154. 155. 156. 15''1'. BULLETINS I Commercjal Fertilizers and Poisonous Insectjcides in 1906-07. Summary of all Bulletins from 1 to .94...

  19. Automated Demand Response and Commissioning

    E-Print Network [OSTI]

    Piette, Mary Ann; Watson, David S.; Motegi, Naoya; Bourassa, Norman

    2005-01-01T23:59:59.000Z

    Conference on Building Commissioning: May 4-6, 2005 Motegi,National Conference on Building Commissioning: May 4-6, 2005Demand Response and Commissioning Mary Ann Piette, David S.

  20. Marketing Demand-Side Management

    E-Print Network [OSTI]

    O'Neill, M. L.

    1988-01-01T23:59:59.000Z

    Demand-Side Management is an organizational tool that has proven successful in various realms of the ever changing business world in the past few years. It combines the multi-faceted desires of the customers with the increasingly important...

  1. Community Water Demand in Texas

    E-Print Network [OSTI]

    Griffin, Ronald C.; Chang, Chan

    Solutions to Texas water policy and planning problems will be easier to identify once the impact of price upon community water demand is better understood. Several important questions cannot be addressed in the absence of such information...

  2. Demand response enabling technology development

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Monitoring in an Agent-Based Smart Home, Proceedings of theConference on Smart Homes and Health Telematics, September,Smart Meter Motion sensors Figure 1: Schematic of the Demand Response Electrical Appliance Manager in a Home.

  3. Overview of Demand Side Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the utility PJM's demand side response (DSR) capabilities, including emergency and economic responses.

  4. Demand Response Spinning Reserve Demonstration

    SciTech Connect (OSTI)

    Eto, Joseph H.; Nelson-Hoffman, Janine; Torres, Carlos; Hirth,Scott; Yinger, Bob; Kueck, John; Kirby, Brendan; Bernier, Clark; Wright,Roger; Barat, A.; Watson, David S.

    2007-05-01T23:59:59.000Z

    The Demand Response Spinning Reserve project is a pioneeringdemonstration of how existing utility load-management assets can providean important electricity system reliability resource known as spinningreserve. Using aggregated demand-side resources to provide spinningreserve will give grid operators at the California Independent SystemOperator (CAISO) and Southern California Edison (SCE) a powerful, newtool to improve system reliability, prevent rolling blackouts, and lowersystem operating costs.

  5. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    A. Barat, D. Watson. 2006 Demand Response Spinning ReserveKueck, and B. Kirby 2008. Demand Response Spinning ReserveReport 2009. Open Automated Demand Response Communications

  6. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    E-Print Network [OSTI]

    Mares, K.C.

    2010-01-01T23:59:59.000Z

    Standardized Automated Demand Response Signals. Presented atand Automated Demand Response in Industrial RefrigeratedActions for Industrial Demand Response in California. LBNL-

  7. Physics Division computer facilities

    SciTech Connect (OSTI)

    Cyborski, D.R.; Teh, K.M.

    1995-08-01T23:59:59.000Z

    The Physics Division maintains several computer systems for data analysis, general-purpose computing, and word processing. While the VMS VAX clusters are still used, this past year saw a greater shift to the Unix Cluster with the addition of more RISC-based Unix workstations. The main Divisional VAX cluster which consists of two VAX 3300s configured as a dual-host system serves as boot nodes and disk servers to seven other satellite nodes consisting of two VAXstation 3200s, three VAXstation 3100 machines, a VAX-11/750, and a MicroVAX II. There are three 6250/1600 bpi 9-track tape drives, six 8-mm tapes and about 9.1 GB of disk storage served to the cluster by the various satellites. Also, two of the satellites (the MicroVAX and VAX-11/750) have DAPHNE front-end interfaces for data acquisition. Since the tape drives are accessible cluster-wide via a software package, they are, in addition to replay, used for tape-to-tape copies. There is however, a satellite node outfitted with two 8 mm drives available for this purpose. Although not part of the main cluster, a DEC 3000 Alpha machine obtained for data acquisition is also available for data replay. In one case, users reported a performance increase by a factor of 10 when using this machine.

  8. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  9. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  10. DIVISION 16 -ELECTRICAL 16000 GENERAL

    E-Print Network [OSTI]

    DIVISION 16 - ELECTRICAL _____________________________________________________________ 16000 GENERAL A. Design Considerations 1. All drawing, specifications and construction shall conform to the following: National Electrical Code National Electrical Safety Code National Fire Protection Association

  11. Division 1137 property control system

    SciTech Connect (OSTI)

    Pastor, D.J.

    1982-01-01T23:59:59.000Z

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  12. Lawrence Berkeley National Laboratory Engineering Division Office

    E-Print Network [OSTI]

    /4867399 DMAttia@lbl.gov Administrative Staff Glenda Fish Division Office Administrator 510/4867123 GJFish

  13. Demand response-enabled residential thermostat controls.

    E-Print Network [OSTI]

    Chen, Xue; Jang, Jaehwi; Auslander, David M.; Peffer, Therese; Arens, Edward A

    2008-01-01T23:59:59.000Z

    human dimension of demand response technology from a caseArens, E. , et al. 2008. Demand Response Enabling TechnologyArens, E. , et al. 2006. Demand Response Enabling Technology

  14. Demand Response as a System Reliability Resource

    E-Print Network [OSTI]

    Joseph, Eto

    2014-01-01T23:59:59.000Z

    Barat, and D. Watson. 2007. Demand Response Spinning ReserveKueck, and B. Kirby. 2009. Demand Response Spinning ReserveFormat of 2009-2011 Demand Response Activity Applications.

  15. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  16. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  17. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    California Energy Demand Scenario Projections to 2050 RyanCEC (2003a) California energy demand 2003-2013 forecast.CEC (2005a) California energy demand 2006-2016: Staff energy

  18. National Action Plan on Demand Response

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as related to the energy outlook.

  19. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    California Long-term Energy Efficiency Strategic Plan. B-2 Coordination of Energy Efficiency and Demand Response> B-4 Coordination of Energy Efficiency and Demand Response

  20. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    demand response: ? Distribution utility ? ISO ? Aggregator (demand response less obstructive and inconvenient for the customer (particularly if DR resources are aggregated by a load aggregator).

  1. Installation and Commissioning Automated Demand Response Systems

    E-Print Network [OSTI]

    Kiliccote, Sila; Global Energy Partners; Pacific Gas and Electric Company

    2008-01-01T23:59:59.000Z

    al: Installation and Commissioning Automated Demand ResponseConference on Building Commissioning: April 22 – 24, 2008al: Installation and Commissioning Automated Demand Response

  2. California Energy Demand Scenario Projections to 2050

    E-Print Network [OSTI]

    McCarthy, Ryan; Yang, Christopher; Ogden, Joan M.

    2008-01-01T23:59:59.000Z

    annual per-capita electricity consumption by demand15 California electricity consumption projections by demandannual per-capita electricity consumption by demand

  3. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    use of demand control ventilation systems in general officedemand controlled  ventilation systems, Dennis DiBartolomeo the demand controlled ventilation system increased the rate 

  4. Supply chain planning decisions under demand uncertainty

    E-Print Network [OSTI]

    Huang, Yanfeng Anna

    2008-01-01T23:59:59.000Z

    Sales and operational planning that incorporates unconstrained demand forecasts has been expected to improve long term corporate profitability. Companies are considering such unconstrained demand forecasts in their decisions ...

  5. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    sector, the demand response potential of California buildinga demand response event prohibit a building’s participationdemand response strategies in California buildings are

  6. Sandia National Laboratories: demand response inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    demand response inverter ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities,...

  7. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong 

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01T23:59:59.000Z

    Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

  8. Evaluation of a case-based Reasoning Energy Prediction Tool for Commercial Buildings 

    E-Print Network [OSTI]

    Monfet, D.; Arkhipova, E.; Choiniere, D.

    2013-01-01T23:59:59.000Z

    This paper presents the results of an energy predictor that predicts the energy demand of commercial buildings using Case Based Reasoning (CBR). The proposed approach is evaluated using monitored data in a real office building located in Varennes...

  9. Energy Savings with Energy-Efficient HVAC Systems in Commercial Buildings of Hong Kong

    E-Print Network [OSTI]

    Yang, J.; Chan, K.; Wu, X.

    2006-01-01T23:59:59.000Z

    Hong Kong has seen a dramatic increase in energy consumption in recent years, particularly electricity use in commercial buildings. The growth of electricity demand in future years is crucial both economically and environmentally. As over half...

  10. Commercialization strategies for emerging technologies : wireless power in the market for external power adapters

    E-Print Network [OSTI]

    Tseng, Ryan

    2009-01-01T23:59:59.000Z

    The purpose of this thesis is to explore the different challenges facing start-ups that are engaged in intense competition to lead the commercialization of a complex technology that is initially unable to meet the demands ...

  11. Commercialization of silicon on lattice-engineered substrate for electronic applications

    E-Print Network [OSTI]

    Liang, Yu Yan

    2008-01-01T23:59:59.000Z

    The commercial potential of SOLES (Silicon on Lattice-Engineered Substrate) is investigated considering the competing technologies, competing market players and market demands. Monolithic integration of Si devices with ...

  12. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1992-04-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--1990 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  13. Turkey's energy demand and supply

    SciTech Connect (OSTI)

    Balat, M. [Sila Science, Trabzon (Turkey)

    2009-07-01T23:59:59.000Z

    The aim of the present article is to investigate Turkey's energy demand and the contribution of domestic energy sources to energy consumption. Turkey, the 17th largest economy in the world, is an emerging country with a buoyant economy challenged by a growing demand for energy. Turkey's energy consumption has grown and will continue to grow along with its economy. Turkey's energy consumption is high, but its domestic primary energy sources are oil and natural gas reserves and their production is low. Total primary energy production met about 27% of the total primary energy demand in 2005. Oil has the biggest share in total primary energy consumption. Lignite has the biggest share in Turkey's primary energy production at 45%. Domestic production should be to be nearly doubled by 2010, mainly in coal (lignite), which, at present, accounts for almost half of the total energy production. The hydropower should also increase two-fold over the same period.

  14. International Oil Supplies and Demands

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The eleventh Energy Modeling Forum (EMF) working group met four times over the 1989--90 period to compare alternative perspectives on international oil supplies and demands through 2010 and to discuss how alternative supply and demand trends influence the world's dependence upon Middle Eastern oil. Proprietors of eleven economic models of the world oil market used their respective models to simulate a dozen scenarios using standardized assumptions. From its inception, the study was not designed to focus on the short-run impacts of disruptions on oil markets. Nor did the working group attempt to provide a forecast or just a single view of the likely future path for oil prices. The model results guided the group's thinking about many important longer-run market relationships and helped to identify differences of opinion about future oil supplies, demands, and dependence.

  15. US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

    E-Print Network [OSTI]

    US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Massimo www.cepe.ethz.ch #12;US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier Approach Page 1 of 25 US Residential Energy Demand and Energy Efficiency: A Stochastic Demand Frontier

  16. Chemical Technology Division annual technical report, 1990

    SciTech Connect (OSTI)

    Not Available

    1991-05-01T23:59:59.000Z

    Highlights of the Chemical Technology (CMT) Division's activities during 1990 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for coal- fired magnetohydrodynamics and fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for a high-level waste repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, concentrating plutonium solids in pyrochemical residues by aqueous biphase extraction, and treating natural and process waters contaminated by volatile organic compounds; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the scientific and engineering programs at Argonne National Laboratory (ANL). 66 refs., 69 figs., 6 tabs.

  17. Commercial New Construction

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers support to encourage energy efficient design for new construction. Efficiency Vermont will provide support for new commercial buildings, including technical assistance at...

  18. Small Commercial Refrigeration Incentive

    Broader source: Energy.gov [DOE]

    Efficiency Vermont offers financial incentives to cover the incremental costs of energy efficient refrigeration for commercial, industrial, agricultural and institutional buildings. To receive the...

  19. Computer Sciences and Mathematics Division | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer Sciences and Mathematics Division SHARE Computer Sciences and Mathematics Division The Computer Science and Mathematics Division (CSMD) is ORNL's premier source of basic...

  20. Computational Sciences and Engineering Division | ornl.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Sciences and Engineering Division SHARE Computational Sciences and Engineering Division The Computational Sciences and Engineering Division is a major research...

  1. Projecting Electricity Demand in 2050

    SciTech Connect (OSTI)

    Hostick, Donna J.; Belzer, David B.; Hadley, Stanton W.; Markel, Tony; Marnay, Chris; Kintner-Meyer, Michael CW

    2014-07-01T23:59:59.000Z

    This paper describes the development of end-use electricity projections and load curves that were developed for the Renewable Electricity (RE) Futures Study (hereafter RE Futures), which explored the prospect of higher percentages (30% ? 90%) of total electricity generation that could be supplied by renewable sources in the United States. As input to RE Futures, two projections of electricity demand were produced representing reasonable upper and lower bounds of electricity demand out to 2050. The electric sector models used in RE Futures required underlying load profiles, so RE Futures also produced load profile data in two formats: 8760 hourly data for the year 2050 for the GridView model, and in 2-year increments for 17 time slices as input to the Regional Energy Deployment System (ReEDS) model. The process for developing demand projections and load profiles involved three steps: discussion regarding the scenario approach and general assumptions, literature reviews to determine readily available data, and development of the demand curves and load profiles.

  2. Demand Response Programs for Oregon

    E-Print Network [OSTI]

    wholesale prices and looming shortages in Western power markets in 2000-01, Portland General Electric programs for large customers remain, though they are not active at current wholesale prices. Other programs demand response for the wholesale market -- by passing through real-time prices for usage above a set

  3. Revelation on Demand Nicolas Anciaux

    E-Print Network [OSTI]

    is willing to reveal the aggregate response (according to his company's policy) to the customer dataRevelation on Demand Nicolas Anciaux 1 · Mehdi Benzine1,2 · Luc Bouganim1 · Philippe Pucheral1 time to support epidemiological studies. In these and many other situations, aggregate data or partial

  4. Water demand management in Kuwait

    E-Print Network [OSTI]

    Milutinovic, Milan, M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Kuwait is an arid country located in the Middle East, with limited access to water resources. Yet water demand per capita is much higher than in other countries in the world, estimated to be around 450 L/capita/day. There ...

  5. obesity demands more than just

    E-Print Network [OSTI]

    Qian, Ning

    #12;The World That Makes Us Fat ***** ***** ***** Overcoming obesity demands more than just. By Melinda Wenner Moyer Illustrations by A. Richard Allen 27 #12;ON ONE LEVEL, of course, obesity has a sim to pollutants. Their research suggests that to solve the problem of obesity--and, ultimately, to prevent it from

  6. Effects of the drought on California electricity supply and demand

    E-Print Network [OSTI]

    Benenson, P.

    2010-01-01T23:59:59.000Z

    DEMAND . . . .Demand for Electricity and Power PeakDemand . . • . . ELECTRICITY REQUIREMENTS FOR AGRICULTUREResults . . Coriclusions ELECTRICITY SUPPLY Hydroelectric

  7. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response, report for theand Reliability Demand Response Programs: Final Report.Demand Response

  8. Automated Demand Response Opportunities in Wastewater Treatment Facilities

    E-Print Network [OSTI]

    Thompson, Lisa

    2008-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure,study of automated demand response in wastewater treatmentopportunities for demand response control strategies in

  9. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Report 2009. Open Automated Demand Response Communicationsand Techniques for Demand Response. California Energyand S. Kiliccote. Estimating Demand Response Load Impacts:

  10. Assessment of Demand Response and Advanced Metering

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    #12;#12;2008 Assessment of Demand Response and Advanced Metering Staff Report Federal Energy metering penetration and potential peak load reduction from demand response have increased since 2006. Significant activity to promote demand response or to remove barriers to demand response occurred at the state

  11. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  12. Demand Side Management in Rangan Banerjee

    E-Print Network [OSTI]

    Banerjee, Rangan

    Demand Side Management in Industry Rangan Banerjee Talk at Baroda in Birla Corporate Seminar August 31,2007 #12;Demand Side Management Indian utilities ­ energy shortage and peak power shortage. Supply for Options ­ Demand Side Management (DSM) & Load Management #12;DSM Concept Demand Side Management (DSM) - co

  13. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy's Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  14. Naval Undersea Warfare Center Division Newport utilities metering, Phase 1

    SciTech Connect (OSTI)

    Carroll, D.M.

    1992-11-01T23:59:59.000Z

    Pacific Northwest Laboratory developed this report for the US Navy`s Naval Undersea Warfare Center Division Newport, Rhode Island (NUWC). The purpose of the report was to review options for metering electricity and steam used in the NUWC compound, and to make recommendations to NUWC for implementation under a follow-on project. An additional NUWC concern is a proposed rate change by the servicing utility, Newport Electric, which would make a significant shift from consumption to demand billing, and what effect that rate change would have on the NUWC utility budget. Automated, remote reading meters are available which would allow NUWC to monitor its actual utility consumption and demand for both the entire NUWC compound and by end-use in individual buildings. Technology is available to perform the meter reads and manipulate the data using a personal computer with minimal staff requirement. This is not meant to mislead the reader into assuming that there is no requirement for routine preventive maintenance. All equipment requires routine maintenance to maintain its accuracy. While PNL reviewed the data collected during the site visit, however, it became obvious that significant opportunities exist for reducing the utility costs other than accounting for actual consumption and demand. Unit costs for both steam and electricity are unnecessarily high, and options are presented in this report for reducing them. Additionally, NUWC has an opportunity to undertake a comprehensive energy resource management program to significantly reduce its energy demand, consumption, and costs.

  15. Algae Biodiesel: Commercialization

    E-Print Network [OSTI]

    Tullos, Desiree

    Algae Biodiesel: A Path to Commercialization Algae Biodiesel: A Path to Commercialization Center conservation and biomonitoring · Algae biodiesel is largest CEHMM project #12;Project Overview: The Missing Piece of the Biodiesel Puzzle Project Overview: The Missing Piece of the Biodiesel Puzzle · Began

  16. Nanotechnology Commercialization in Oregon

    E-Print Network [OSTI]

    Moeck, Peter

    Nanotechnology Commercialization in Oregon February 27, 2012 Portland State University Physics Seminar Robert D. "Skip" Rung President and Executive Director #12;2 Nanotechnology Commercialization on "green" nanotechnology and gap fund portfolio company examples #12;3 Goals of the National Nanotechnology

  17. Demand Response and Open Automated Demand Response Opportunities for Data Centers

    SciTech Connect (OSTI)

    Ghatikar, Girish; Piette, Mary Ann; Fujita, Sydny; McKane, Aimee; Dudley, Junqiao Han; Radspieler, Anthony; Mares, K.C.; Shroyer, Dave

    2009-12-30T23:59:59.000Z

    This study examines data center characteristics, loads, control systems, and technologies to identify demand response (DR) and automated DR (Open Auto-DR) opportunities and challenges. The study was performed in collaboration with technology experts, industrial partners, and data center facility managers and existing research on commercial and industrial DR was collected and analyzed. The results suggest that data centers, with significant and rapidly growing energy use, have significant DR potential. Because data centers are highly automated, they are excellent candidates for Open Auto-DR. 'Non-mission-critical' data centers are the most likely candidates for early adoption of DR. Data center site infrastructure DR strategies have been well studied for other commercial buildings; however, DR strategies for information technology (IT) infrastructure have not been studied extensively. The largest opportunity for DR or load reduction in data centers is in the use of virtualization to reduce IT equipment energy use, which correspondingly reduces facility cooling loads. DR strategies could also be deployed for data center lighting, and heating, ventilation, and air conditioning. Additional studies and demonstrations are needed to quantify benefits to data centers of participating in DR and to address concerns about DR's possible impact on data center performance or quality of service and equipment life span.

  18. Price Responsiveness in the AEO2003 NEMS Residential and Commercial Buildings Sector Models

    Reports and Publications (EIA)

    2003-01-01T23:59:59.000Z

    This paper describes the demand responses to changes in energy prices in the Annual Energy Outlook 2003 versions of the Residential and Commercial Demand Modules of the National Energy Modeling System (NEMS). It updates a similar paper completed for the Annual Energy Outlook 1999 version of the NEMS.

  19. Field Test Results of Automated Demand Response in a Large Office Building

    SciTech Connect (OSTI)

    Han, Junqiao; Piette, Mary Ann; Kiliccote, Sila

    2008-10-20T23:59:59.000Z

    Demand response (DR) is an emerging research field and an effective tool that improves grid reliability and prevents the price of electricity from rising, especially in deregulated markets. This paper introduces the definition of DR and Automated Demand Response (Auto-DR). It describes the Auto-DR technology utilized at a commercial building in the summer of 2006 and the methodologies to evaluate associated demand savings. On the basis of field tests in a large office building, Auto-DR is proven to be a reliable and credible resource that ensures a stable and economical operation of the power grid.

  20. Regression Models for Demand Reduction based on Cluster Analysis of Load Profiles

    SciTech Connect (OSTI)

    Yamaguchi, Nobuyuki; Han, Junqiao; Ghatikar, Girish; Piette, Mary Ann; Asano, Hiroshi; Kiliccote, Sila

    2009-06-28T23:59:59.000Z

    This paper provides new regression models for demand reduction of Demand Response programs for the purpose of ex ante evaluation of the programs and screening for recruiting customer enrollment into the programs. The proposed regression models employ load sensitivity to outside air temperature and representative load pattern derived from cluster analysis of customer baseline load as explanatory variables. The proposed models examined their performances from the viewpoint of validity of explanatory variables and fitness of regressions, using actual load profile data of Pacific Gas and Electric Company's commercial and industrial customers who participated in the 2008 Critical Peak Pricing program including Manual and Automated Demand Response.

  1. DIVISION 6 -WOOD AND PLASTICS 06000 GENERAL

    E-Print Network [OSTI]

    DIVISION 6 - WOOD AND PLASTICS ________________________________________________________________________ 06000 GENERAL 1. For both woods and plastics, special attention is called to matters of flame spread-dried. 3. For exterior wood or plastic framed structures, see Division 4 for dimensions of Sample Panel

  2. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    SciTech Connect (OSTI)

    Mortensen, Dorthe K.; Walker, Iain S.; Sherman, Max H.

    2011-05-01T23:59:59.000Z

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as 'dose') as the metric to evaluate the effectiveness and air quality implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant generation. The pollutant generation had two components: a background rate associated with the building materials and furnishings and a second component related to occupants. The demand controlled ventilation system operated at a low airflow rate when the residence was unoccupied and at a high airflow rate when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we can optimize the demand controlled airflow rates to reduce the quantity of air used for ventilation without introducing problematic acute conditions.

  3. Flexible design of commercial systems under market uncertainty: framework and application

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Flexible design of commercial systems under market uncertainty: framework and application to respond to changing market conditions. The basic premise is that commercial systems optimization aims price of oil, demand for a particular product, or technological innovations that affect the price

  4. Education Strategy Team Policy Division

    E-Print Network [OSTI]

    Rambaut, Andrew

    Education Strategy Team Policy Division DFID 1 Palace Street London SW1E 5HE 30 October 2009 TEL fellowships in India under the Wellcome Trust/DBT India Alliance2 . We believe that such investment is vital/Global-health-research/WTX055734.htm 2 Wellcome Trust/DBT India Alliance: http://www.wellcomedbt.org/index.htm #12;to support

  5. Publishing Division The Edinburgh Building

    E-Print Network [OSTI]

    Rosenberger, Alfred H.

    Publishing Division The Edinburgh Building Shaftesbury Road Cambridge CB2 2RU, UK TELEPHONE 01223 Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York NY 10011-4211, USA 477 Williamstown Road Record [1] walter carl hartwig 2 The origin of primates [5] david tab rasmussen The earliest primates

  6. Biosciences Division Media Mentions | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biosciences Division Publications Newsletters Organizational Charts Research Highlights Media Mentions Clean Energy Home | Science & Discovery | Clean Energy | Supporting...

  7. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  8. Commercial Fertilizers and Commercial Poisonous Insecticides.

    E-Print Network [OSTI]

    Harrington, H. H. (Henry Hill)

    1903-01-01T23:59:59.000Z

    - organized. They are all most excellent fertilizers. The amount of potash is quite exceptional. This can probably be explained by the nature of the vegetation on which they graze. Barnyard Manure. The sample below was taken from a car-lot shipped... chemical elements of commercial fertilizers, barnyard manure still has an agricultural value difficult to explain, possibly due to the number of microscopic organisms which it contains, and to par- . ticular combinations which it sets up in the soil...

  9. Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing

    E-Print Network [OSTI]

    Boutaba, Raouf

    Near Optimal Demand-Side Energy Management Under Real-time Demand-Response Pricing Jin Xiao, Jae--In this paper, we present demand-side energy manage- ment under real-time demand-response pricing as a task, demand-response, energy management I. INTRODUCTION The growing awareness of global climate change has

  10. Finance Division EXTRA MILE AWARD PROGRAM

    E-Print Network [OSTI]

    Crews, Stephen

    Finance Division EXTRA MILE AWARD PROGRAM Nomination Form Instructions Any fulltime or parttime permanent or temporary SPA employee within the Finance Division who works 20 or more provided. The seven major departments within the Finance Division to choose from are described below

  11. Analytical Chemistry Division's sample transaction system

    SciTech Connect (OSTI)

    Stanton, J.S.; Tilson, P.A.

    1980-10-01T23:59:59.000Z

    The Analytical Chemistry Division uses the DECsystem-10 computer for a wide range of tasks: sample management, timekeeping, quality assurance, and data calculation. This document describes the features and operating characteristics of many of the computer programs used by the Division. The descriptions are divided into chapters which cover all of the information about one aspect of the Analytical Chemistry Division's computer processing.

  12. EARTH SCIENCES Lower-Division Requirements

    E-Print Network [OSTI]

    Constable, Steve

    2012-2013 EARTH SCIENCES Lower-Division Requirements Math 20A_____ 20B_____ 20C_____ 20D (BILD 3) _____ SIO 50* _____ Group A: Earth Science Upper-Division Core Requirements (all courses _____ Introduction to Geophysics SIO 104 _____ Paleobiology and History of Life* Group B: Upper-Division Earth

  13. Computer Security Division 2008 Annual Report

    E-Print Network [OSTI]

    Computer Security Division 2008 Annual Report #12;TAble of ConTenTS Welcome 1 Division Organization 2 The Computer Security Division Responds to the Federal Information Security Management Act of 2002 3 Security Management and Assistance Group (SMA) 4 FISMA Implementation Project 4 Publications

  14. Chemical Technology Division annual technical report, 1992

    SciTech Connect (OSTI)

    Battles, J.E.; Myles, K.M.; Laidler, J.J.; Green, D.W.

    1993-06-01T23:59:59.000Z

    In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous waste, mixed hazardous/radioactive waste, and municipal solid waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams, treating water contaminated with volatile organics, and concentrating radioactive waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (EFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials (corium; Fe-U-Zr, tritium in LiAlO{sub 2} in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel` ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, and molecular sieve structures; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  15. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    of trans­ uranium organometallic chemistry, particularlyfor Uranium Isotope Separation," Chemistry Division, IsotopeOlander, "Uranium Enrichment by Laser," Chemistry Division,

  16. analytical sciences division: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Division Environmental Management and Restoration Websites Summary: Chemical Sciences and Engineering Division Director Assoc Director Ops Assoc Director Science Yates...

  17. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    for Uranium Isotope Separation," Chemistry Division, Isotopeof trans­ uranium organometallic chemistry, particularlyOlander, "Uranium Enrichment by Laser," Chemistry Division,

  18. 2013 Utility Bundled Retail Sales- Commercial

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 Oil demand8)Commercial (Data from forms

  19. IID Energy- Commercial Rebate Program (Commercial Check Me)

    Broader source: Energy.gov [DOE]

    Imperial Irrigation District (IID) offers incentives to its commercial customers to encourage the adoption of energy efficient technologies. Several distinct programs cover general commercial...

  20. Retail Demand Response in Southwest Power Pool

    SciTech Connect (OSTI)

    Bharvirkar, Ranjit; Heffner, Grayson; Goldman, Charles

    2009-01-30T23:59:59.000Z

    In 2007, the Southwest Power Pool (SPP) formed the Customer Response Task Force (CRTF) to identify barriers to deploying demand response (DR) resources in wholesale markets and develop policies to overcome these barriers. One of the initiatives of this Task Force was to develop more detailed information on existing retail DR programs and dynamic pricing tariffs, program rules, and utility operating practices. This report describes the results of a comprehensive survey conducted by LBNL in support of the Customer Response Task Force and discusses policy implications for integrating legacy retail DR programs and dynamic pricing tariffs into wholesale markets in the SPP region. LBNL conducted a detailed survey of existing DR programs and dynamic pricing tariffs administered by SPP's member utilities. Survey respondents were asked to provide information on advance notice requirements to customers, operational triggers used to call events (e.g. system emergencies, market conditions, local emergencies), use of these DR resources to meet planning reserves requirements, DR resource availability (e.g. seasonal, annual), participant incentive structures, and monitoring and verification (M&V) protocols. Nearly all of the 30 load-serving entities in SPP responded to the survey. Of this group, fourteen SPP member utilities administer 36 DR programs, five dynamic pricing tariffs, and six voluntary customer response initiatives. These existing DR programs and dynamic pricing tariffs have a peak demand reduction potential of 1,552 MW. Other major findings of this study are: o About 81percent of available DR is from interruptible rate tariffs offered to large commercial and industrial customers, while direct load control (DLC) programs account for ~;;14percent. o Arkansas accounts for ~;;50percent of the DR resources in the SPP footprint; these DR resources are primarily managed by cooperatives. o Publicly-owned cooperatives accounted for 54percent of the existing DR resources among SPP members. For these entities, investment in DR is often driven by the need to reduce summer peak demand that is used to set demand charges for each distribution cooperative. o About 65-70percent of the interruptible/curtailable tariffs and DLC programs are routinely triggered based on market conditions, not just for system emergencies. Approximately, 53percent of the DR resources are available with less than two hours advance notice and 447 MW can be dispatched with less than thirty minutes notice. o Most legacy DR programs offered a reservation payment ($/kW) for participation; incentive payment levels ranged from $0.40 to $8.30/kW-month for interruptible rate tariffs and $0.30 to $4.60/kW-month for DLC programs. A few interruptible programs offered incentive payments which were explicitly linkedto actual load reductions during events; payments ranged from 2 to 40 cents/kWh for load curtailed.

  1. Southwest Division, Naval Facilities Engineering Command, Demand Side Management Program Implementation

    E-Print Network [OSTI]

    Gates, G. G.

    the many benefits of this program is the short time between initial audit and contract award. A project can be under construction within 60 days of completion of the audit. Light Emitting Diode (LED) Exit Signs - Over 9700 LED Exit Signs have been...

  2. Technology Commercialization Program 1991

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    This reference compilation describes the Technology Commercialization Program of the Department of Energy, Defense Programs. The compilation consists of two sections. Section 1, Plans and Procedures, describes the plans and procedures of the Defense Programs Technology Commercialization Program. The second section, Legislation and Policy, identifies legislation and policy related to the Program. The procedures for implementing statutory and regulatory requirements are evolving with time. This document will be periodically updated to reflect changes and new material.

  3. Local Option- Commercial PACE Financing

    Broader source: Energy.gov [DOE]

    In June 2012, Connecticut passed legislation enabling Commercial Property Assessed Clean Energy financing (C-PACE), targeting commercial, industrial and multifamily property owners.  C-PACE is a ...

  4. Open Automated Demand Response Communications in Demand Response for Wholesale Ancillary Services

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    in Demand Response for Wholesale Ancillary Services Silain Demand Response for Wholesale Ancillary Services Silasuccessfully in the wholesale non- spinning ancillary

  5. Physically-based demand modeling 

    E-Print Network [OSTI]

    Calloway, Terry Marshall

    1980-01-01T23:59:59.000Z

    Transactions on Automatic Control, vol. AC-19, December 1974, pp. 887-893. L3] |4] LS] [6] [7] LB] C. W. Brice and S. K. Jones, MPhysically-Based Demand Modeling, d EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, October 1978.... C. W. Br ice and 5, K, Jones, MStochastically-Based Physical Load Models Topical Report, " EC-77-5-01-5057, RF 3673, Electric Power Institute, Texas A&M University, May 1979. S. K. Jones and C. W. Brice, "Point Process Models for Power System...

  6. Justice and the demands of realism

    E-Print Network [OSTI]

    Munro, Daniel K., 1972-

    2006-01-01T23:59:59.000Z

    The dissertation examines how concerns about the demands of realism should be addressed in political theories of justice. It asks whether the demands of realism should affect the construction of principles of justice and, ...

  7. Industrial Equipment Demand and Duty Factors

    E-Print Network [OSTI]

    Dooley, E. S.; Heffington, W. M.

    Demand and duty factors have been measured for selected equipment (air compressors, electric furnaces, injection molding machines, centrifugal loads, and others) in industrial plants. Demand factors for heavily loaded air compressors were near 100...

  8. Health, Safety, and Environment Division

    SciTech Connect (OSTI)

    Wade, C [comp.] [comp.

    1992-01-01T23:59:59.000Z

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  9. Marketing & Driving Demand Collaborative - Social Media Tools...

    Energy Savers [EERE]

    drivingdemandsocialmedia010611.pdf More Documents & Publications Marketing & Driving Demand: Social Media Tools & Strategies - January 16, 2011 Social Media for Natural...

  10. Hawaiian Electric Company Demand Response Roadmap Project

    E-Print Network [OSTI]

    Levy, Roger

    2014-01-01T23:59:59.000Z

    renewable integration capability. Coordinating and integrating HECO and Hawaii Energy demand response related activities has the potential

  11. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    temperature-based demand response in buildings that havedemand response advantages of global zone temperature setup in buildings

  12. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    demand-side management (DSM) framework presented in Table x provides three major areas for changing electric loads in buildings:

  13. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response (DR) can.S. and internationally and lay out ideas that could help move California forward. KEY WORDS demand response, peak

  14. THE STATE OF DEMAND RESPONSE IN CALIFORNIA

    E-Print Network [OSTI]

    THE STATE OF DEMAND RESPONSE IN CALIFORNIA Prepared For: California Energy in this report. #12; ABSTRACT By reducing system loads during criticalpeak times, demand response can help reduce the threat of planned rotational outages. Demand response is also widely regarded as having

  15. Demand Response Resources in Pacific Northwest

    E-Print Network [OSTI]

    Demand Response Resources in Pacific Northwest Chuck Goldman Lawrence Berkeley National Laboratory cagoldman@lbl.gov Pacific Northwest Demand Response Project Portland OR May 2, 2007 #12;Overview · Typology Annual Reports ­ Journal articles/Technical reports #12;Demand Response Resources · Incentive

  16. Barrier Immune Radio Communications for Demand Response

    E-Print Network [OSTI]

    LBNL-2294E Barrier Immune Radio Communications for Demand Response F. Rubinstein, G. Ghatikar, J Ann Piette of Lawrence Berkeley National Laboratory's (LBNL) Demand Response Research Center (DRRC and Environment's (CIEE) Demand Response Emerging Technologies Development (DRETD) Program, under Work for Others

  17. Demand Response and Ancillary Services September 2008

    E-Print Network [OSTI]

    Demand Response and Ancillary Services September 2008 #12;© 2008 EnerNOC, Inc. All Rights Reserved programs The purpose of this presentation is to offer insight into the mechanics of demand response and industrial demand response resources across North America in both regulated and restructured markets As of 6

  18. Modeling Energy Demand Aggregators for Residential Consumers

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling Energy Demand Aggregators for Residential Consumers G. Di Bella, L. Giarr`e, M. Ippolito, A. Jean-Marie, G. Neglia and I. Tinnirello § January 2, 2014 Abstract Energy demand aggregators are new actors in the energy scenario: they gather a group of energy consumers and implement a demand

  19. Transportation Energy: Supply, Demand and the Future

    E-Print Network [OSTI]

    Saldin, Dilano

    Transportation Energy: Supply, Demand and the Future http://www.uwm.edu/Dept/CUTS//2050/energy05 as a source of energy. Global supply and demand trends will have a profound impact on the ability to use our) Transportation energy demand in the U.S. has increased because of the greater use of less fuel efficient vehicles

  20. Demand Side Bidding. Final Report

    SciTech Connect (OSTI)

    Spahn, Andrew

    2003-12-31T23:59:59.000Z

    This document sets forth the final report for a financial assistance award for the National Association of Regulatory Utility Commissioners (NARUC) to enhance coordination between the building operators and power system operators in terms of demand-side responses to Location Based Marginal Pricing (LBMP). Potential benefits of this project include improved power system reliability, enhanced environmental quality, mitigation of high locational prices within congested areas, and the reduction of market barriers for demand-side market participants. NARUC, led by its Committee on Energy Resources and the Environment (ERE), actively works to promote the development and use of energy efficiency and clean distributive energy policies within the framework of a dynamic regulatory environment. Electric industry restructuring, energy shortages in California, and energy market transformation intensifies the need for reliable information and strategies regarding electric reliability policy and practice. NARUC promotes clean distributive generation and increased energy efficiency in the context of the energy sector restructuring process. NARUC, through ERE's Subcommittee on Energy Efficiency, strives to improve energy efficiency by creating working markets. Market transformation seeks opportunities where small amounts of investment can create sustainable markets for more efficient products, services, and design practices.

  1. Demand Response Valuation Frameworks Paper

    SciTech Connect (OSTI)

    Heffner, Grayson

    2009-02-01T23:59:59.000Z

    While there is general agreement that demand response (DR) is a valued component in a utility resource plan, there is a lack of consensus regarding how to value DR. Establishing the value of DR is a prerequisite to determining how much and what types of DR should be implemented, to which customers DR should be targeted, and a key determinant that drives the development of economically viable DR consumer technology. Most approaches for quantifying the value of DR focus on changes in utility system revenue requirements based on resource plans with and without DR. This ''utility centric'' approach does not assign any value to DR impacts that lower energy and capacity prices, improve reliability, lower system and network operating costs, produce better air quality, and provide improved customer choice and control. Proper valuation of these benefits requires a different basis for monetization. The review concludes that no single methodology today adequately captures the wide range of benefits and value potentially attributed to DR. To provide a more comprehensive valuation approach, current methods such as the Standard Practice Method (SPM) will most likely have to be supplemented with one or more alternative benefit-valuation approaches. This report provides an updated perspective on the DR valuation framework. It includes an introduction and four chapters that address the key elements of demand response valuation, a comprehensive literature review, and specific research recommendations.

  2. Commercial Space Activities at Goddard

    E-Print Network [OSTI]

    Waliser, Duane E.

    Facilities ­ Commercial Payload Partnerships/Rideshares ­ Technology Infusion to Industry · Technology

  3. Commercial Buildings Consortium

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial BuildingCommercial

  4. Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes

    E-Print Network [OSTI]

    Sastry, S. Shankar

    Secure Demand Shaping for Smart Grid On constructing probabilistic demand response schemes. Developing novel schemes for demand response in smart electric gird is an increasingly active research area/SCADA for demand response in smart infrastructures face the following dilemma: On one hand, in order to increase

  5. Patterns of crude demand: Future patterns of demand for crude oil as a func-

    E-Print Network [OSTI]

    Langendoen, Koen

    #12;2 #12;Patterns of crude demand: Future patterns of demand for crude oil as a func- tion schemes, and/or change quality of the feedstock (crude). Demand for crude oil is growing, especially perspective. This thesis aims pre- cisely at understanding the quality of oil from a demand side perspective

  6. Northwest Open Automated Demand Response Technology Demonstration Project

    SciTech Connect (OSTI)

    Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

    2010-03-17T23:59:59.000Z

    The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

  7. Development of a demand defrost controller. Final report

    SciTech Connect (OSTI)

    Borton, D.N. [Power Kinetics, Troy, NY (United States); Walker, D.H. [Foster-Miller, Inc., Waltham, MA (United States)

    1993-10-01T23:59:59.000Z

    The purpose of this project was to develop and commercialize a demand defrost controller that initiates defrosts of refrigeration systems only when required. The standard method of control is a time clock that usually defrosts too often, which wastes energy. The controller developed by this project uses an algorithm based on the temperature difference between the discharge and return of the display case air curtain along with several time settings to defrost only when needed. This controller was field tested in a supermarket where it controlled defrost of the low-temperature display cases. According to test results the controller could reduce annual energy consumption by 20,000 and 62,000 kWh for hot gas and electric defrost, respectively. The controller saves electric demand as well as energy, is adaptable to ambient air conditions, and provides valuable savings throughout the year. The savings are greatest for low-temperature systems that use the most energy. A less tangible benefit of the demand controller is the improvement in food quality that results from fewer defrosts.

  8. Enron sees major increases in U. S. gas supply, demand

    SciTech Connect (OSTI)

    Carson, M.M.; Stram, B. (Enron Corp., Houston, TX (US))

    1991-10-07T23:59:59.000Z

    Enron Corp., Houston, in an extensive study of U.S. natural-gas supply and demand through the year 2000, has found that the U.S. gas-resource base is 1,200 tcf. Despite current weaknesses in natural-gas prices, demand growth will be strong although affected by oil-price assumptions. This paper reports on highlights in the areas of reserves and production which include gains in both categories in the Rockies/Wyoming, San Juan basin, and Norphlet trends (offshore Alabama). The Midcontinent/Hugoton area exhibits reserve declines in a period of flat production. In the U.S. Gulf Coast (USGC) offshore, both production and reserves decline over the forecast period. These projections are derived from a base-case price of $4.07/MMBTU by 2000. U.S. gas production exhibits a production decline in a low oil-price case from 19 to 16.4 tcf by 2000, if prices are 30% below the base case, that is, $2.93/MMBTU. Gains in commercial gas use are strong under either scenario of a base oil price of $29.80 in 1990 dollars in the year 2000 or a low oil price of $20.50 in 1990 dollars in 2000. Demand for natural gas for power generation grows as much as 1.5 tcf by 2000 in the Enron base case and by 300 bcf by 2000 in the low crude-oil price case.

  9. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    to the most recent CBECS survey (EIA, 2003) only 24% of theEIA, 2003, “Commercial Building Energy Consumption Survey,”

  10. Chemical Technology Division annual technical report 1997

    SciTech Connect (OSTI)

    NONE

    1998-06-01T23:59:59.000Z

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  11. Commercial Vehicles Collaboration for

    E-Print Network [OSTI]

    Waliser, Duane E.

    events (level derived from integrated design and safety analysis) · Protection against fire, depress Vehicle Transition Concepts Astronaut Office letter (June, 2010) describes position on crew suit as a resource to expedite this transition to the commercial market The current astronaut corps can be used

  12. On Making Relational Division Comprehensible

    E-Print Network [OSTI]

    McCann, Lester I.

    pno jno qty S1 P1 J1 200 ... ... ... ... S5 P6 J4 500 FIE 2003 ­ p.8/33 #12;A More Practical Example,pno(SPJ) and pno(weight=17(P)) sno pno pno S1 P1 P2 S2 P3 P3 S2 P5 S3 P3 S3 P4 S4 P6 S5 P1 S5 P2 S5 P3 S5 P4 S5 P5 S5 P6 FIE 2003 ­ p.10/33 #12;Division in Relational Algebra Idea: Find the values that do

  13. Optimal Sizing of Energy Storage and Photovoltaic Power Systems for Demand Charge Mitigation (Poster)

    SciTech Connect (OSTI)

    Neubauer, J.; Simpson, M.

    2013-10-01T23:59:59.000Z

    Commercial facility utility bills are often a strong function of demand charges -- a fee proportional to peak power demand rather than total energy consumed. In some instances, demand charges can constitute more than 50% of a commercial customer's monthly electricity cost. While installation of behind-the-meter solar power generation decreases energy costs, its variability makes it likely to leave the peak load -- and thereby demand charges -- unaffected. This then makes demand charges an even larger fraction of remaining electricity costs. Adding controllable behind-the-meter energy storage can more predictably affect building peak demand, thus reducing electricity costs. Due to the high cost of energy storage technology, the size and operation of an energy storage system providing demand charge management (DCM) service must be optimized to yield a positive return on investment (ROI). The peak demand reduction achievable with an energy storage system depends heavily on a facility's load profile, so the optimal configuration will be specific to both the customer and the amount of installed solar power capacity. We explore the sensitivity of DCM value to the power and energy levels of installed solar power and energy storage systems. An optimal peak load reduction control algorithm for energy storage systems will be introduced and applied to historic solar power data and meter load data from multiple facilities for a broad range of energy storage system configurations. For each scenario, the peak load reduction and electricity cost savings will be computed. From this, we will identify a favorable energy storage system configuration that maximizes ROI.

  14. Colorado Air Pollution Control Division - Construction Permits...

    Open Energy Info (EERE)

    search OpenEI Reference LibraryAdd to library Web Site: Colorado Air Pollution Control Division - Construction Permits Forms and Air Pollutant Emission Notices (APENs)...

  15. EARTH SCIENCES DIVISION. ANNUAL REPORT 1977.

    E-Print Network [OSTI]

    Witherspoon, P.A.

    2011-01-01T23:59:59.000Z

    8erkeley Laboratory (LBL), the Earth Sciences Division, wasactivation analysis: rare earth element distribution (D)can be used to generate earth- quake records for use in

  16. Enforcement Letter, Westinghouse Waste Isolation Division - October...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Westinghouse Waste Isolation Division related to Quality Assurance and Occupational Radiation Protection Noncompliances at the Waste Isolation Pilot Plant On October 3, 2000,...

  17. Sandia National Laboratories: Internal Combustion Engine Division...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal Combustion Engine Division conference CRF Researchers Received "Best Paper" Award for Paper Presented at American Society of Mechanical Engineers' (ASME) 2012 Internal...

  18. Chemical Sciences Division | Advanced Materials |ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reduce costs, and minimize the environmental impact in the production of rare-earth metals and alloys. The division's Nuclear Analytical Chemistry and Isotopics...

  19. Open Automated Demand Response Communications Specification (Version 1.0)

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    and Techniques for Demand Response. May 2007. LBNL-59975.to facilitate automating  demand response actions at the Interoperable Automated Demand Response Infrastructure,

  20. Role of Standard Demand Response Signals for Advanced Automated Aggregation

    E-Print Network [OSTI]

    Kiliccote, Sila

    2013-01-01T23:59:59.000Z

    for the Open Automated Demand Response (OpenADR) StandardsControl for Automated Demand Response, Grid Interop, 2009. [C. McParland, Open Automated Demand Response Communications

  1. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    reliability signals for demand response GTA HTTPS HVAC IT kWand Commissioning Automated Demand Response Systems. ”and Techniques for Demand Response. California Energy

  2. Scenarios for Consuming Standardized Automated Demand Response Signals

    E-Print Network [OSTI]

    Koch, Ed

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand Response in Large Facilities.Fully Automated Demand Response Tests in Large Facilities.Interoperable Automated Demand Response Infrastructure.

  3. Demand Response in U.S. Electricity Markets: Empirical Evidence

    E-Print Network [OSTI]

    Cappers, Peter

    2009-01-01T23:59:59.000Z

    Reliability Corporation. Demand response data task force:Energy. Benefits of demand response in electricity marketsAssessment of demand response & advanced metering, staff

  4. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    E-Print Network [OSTI]

    Goli, Sasank

    2012-01-01T23:59:59.000Z

    and Open Automated Demand Response. In Grid Interop Forum.work was sponsored by the Demand Response Research Center (load-management.php. Demand Response Research Center (2009).

  5. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    E-Print Network [OSTI]

    Ghatikar, Girish

    2010-01-01T23:59:59.000Z

    Goodin. 2009. “Open Automated Demand Response Communicationsin Demand Response for Wholesale Ancillary Services. ” InOpen Automated Demand Response Demonstration Project. LBNL-

  6. Modeling, Analysis, and Control of Demand Response Resources

    E-Print Network [OSTI]

    Mathieu, Johanna L.

    2012-01-01T23:59:59.000Z

    advanced metering and demand response in electricityGoldman, and D. Kathan. “Demand response in U.S. electricity29] DOE. Benefits of demand response in electricity markets

  7. Coordination of Retail Demand Response with Midwest ISO Markets

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2008-01-01T23:59:59.000Z

    Robinson, Michael, 2008, "Demand Response in Midwest ISOPresentation at MISO Demand Response Working Group Meeting,Coordination of Retail Demand Response with Midwest ISO

  8. Direct versus Facility Centric Load Control for Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Interoperable Automated Demand Response Infrastructure.and Techniques for Demand Response. LBNL Report 59975. Mayand Communications for Demand Response and Energy Efficiency

  9. Open Automated Demand Response for Small Commerical Buildings

    E-Print Network [OSTI]

    Dudley, June Han

    2009-01-01T23:59:59.000Z

    of Fully Automated Demand  Response in Large Facilities.  Fully Automated Demand Response Tests in Large Facilities.  Open Automated  Demand Response Communication Standards: 

  10. Linking Continuous Energy Management and Open Automated Demand Response

    E-Print Network [OSTI]

    Piette, Mary Ann

    2009-01-01T23:59:59.000Z

    description of six energy and demand management concepts.how quickly it can modify energy demand. This is not a newimprovements in both energy efficiency and demand response (

  11. India Energy Outlook: End Use Demand in India to 2020

    E-Print Network [OSTI]

    de la Rue du Can, Stephane

    2009-01-01T23:59:59.000Z

    Institute, “Curbing Global Energy Demand Growth: The Energyup Assessment of Energy Demand in India Transportationa profound effect on energy demand. Policy analysts wishing

  12. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  13. Opportunities, Barriers and Actions for Industrial Demand Response in California

    E-Print Network [OSTI]

    McKane, Aimee T.

    2009-01-01T23:59:59.000Z

    13 Table 2. Demand Side Management Framework for IndustrialDR Strategies The demand-side management (DSM) frameworkpresented in Table 2. Demand Side Management Framework for

  14. SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY | Department of...

    Energy Savers [EERE]

    SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY SAN ANTONIO SPURS DEMAND FOR ENERGY EFFICIENCY As a city that experiences seasonal...

  15. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    Building Control Strategies and Techniques for Demand Response.Building Systems and DR Strategies 16 Demand ResponseDemand Response Systems. ” Proceedings, 16 th National Conference on Building

  16. Northwest Open Automated Demand Response Technology Demonstration Project

    E-Print Network [OSTI]

    Kiliccote, Sila

    2010-01-01T23:59:59.000Z

    is manual demand response where building staff receive acommercial buildings’ demand response technologies andBuilding Control Strategies and Techniques for Demand Response.

  17. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    electricity costs (energy and demand charges), $ C EVTOU pricing for both energy and power (demand) charges. Themicrogrid to avoid high demand and energy charges during

  18. Physics Division ESH Bulletin 02-7 New Physics Division Procedure

    E-Print Network [OSTI]

    Physics Division ESH Bulletin 02-7 New Physics Division Procedure Applies to disablement of Physics-Interlock Disablement form is completed and given to the ESH Officer for filing 6/10/02 INTERLOCKS, TEMPORARY DISABLEMENT FILE maintained by Physics Division ESH Officer) #12;

  19. National Microalgae Biofuel Production Potential and Resource Demand

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Coleman, Andre M.; Skaggs, Richard; Huesemann, Michael H.; Lane, Leonard J.

    2011-04-14T23:59:59.000Z

    Microalgae continue to receive global attention as a potential sustainable "energy crop" for biofuel production. An important step to realizing the potential of algae is quantifying the demands commercial-scale algal biofuel production will place on water and land resources. We present a high-resolution national resource and oil production assessment that brings to bear fundamental research questions of where open pond microalgae production can occur, how much land and water resource is required, and how much energy is produced. Our study suggests under current technology microalgae have the potential to generate 220 billion liters/year of oil, equivalent to 48% of current U.S. petroleum imports for transportation fuels. However, this level of production would require 5.5% of the land area in the conterminous U.S., and nearly three times the volume of water currently used for irrigated agriculture, averaging 1,421 L water per L of oil. Optimizing the selection of locations for microalgae production based on water use efficiency can greatly reduce total water demand. For example, focusing on locations along the Gulf Coast, Southeastern Seaboard, and areas adjacent to the Great Lakes, shows a 75% reduction in water demand to 350 L per L of oil produced with a 67% reduction in land use. These optimized locations have the potential to generate an oil volume equivalent to 17% of imports for transportation fuels, equal to the Energy Independence and Security Act year 2022 "advanced biofuels" production target, and utilizing some 25% of the current irrigation consumptive water demand for the U. S. These results suggest that, with proper planning, adequate land and water are available to meet a significant portion of the U.S. renewable fuel goals.

  20. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Charles; Neenan, Bernie

    2005-11-09T23:59:59.000Z

    Dynamic retail pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response has been an afterthought, and in some cases not given any weight at all. But that may be changing, as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period during which utilities were required to offer a default or standard offer generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached the end of their transitional period, and several have adopted or are actively considering an RTP-type default service for large commercial and industrial (C&I) customers. In most cases, the primary reason for adopting RTP as the default service has been to advance policy objectives related to the development of competitive retail markets. However, if attention is paid in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This article, which draws from a lengthier report, describes experience to date with RTP as a default service, focusing on its role as an instrument for cultivating price responsive demand.1 As of summer 2005, default service RTP was in place or approved for future implementation in five U.S. states: New Jersey, Maryland, Pennsylvania, New York, and Illinois. For each of these states, we conducted a detailed review of the regulatory proceedings leading to adoption of default RTP and interviewed regulatory staff and utilities in these states, as well as eight competitive retail suppliers active in these markets.

  1. Electricity Demand and Energy Consumption Management System

    E-Print Network [OSTI]

    Sarmiento, Juan Ojeda

    2008-01-01T23:59:59.000Z

    This project describes the electricity demand and energy consumption management system and its application to the Smelter Plant of Southern Peru. It is composted of an hourly demand-forecasting module and of a simulation component for a plant electrical system. The first module was done using dynamic neural networks, with backpropagation training algorithm; it is used to predict the electric power demanded every hour, with an error percentage below of 1%. This information allows management the peak demand before this happen, distributing the raise of electric load to other hours or improving those equipments that increase the demand. The simulation module is based in advanced estimation techniques, such as: parametric estimation, neural network modeling, statistic regression and previously developed models, which simulates the electric behavior of the smelter plant. These modules allow the proper planning because it allows knowing the behavior of the hourly demand and the consumption patterns of the plant, in...

  2. Lead -- supply/demand outlook

    SciTech Connect (OSTI)

    Schnull, T. [Noranda, Inc., Toronto, Ontario (Canada)

    1999-03-01T23:59:59.000Z

    As Japan goes--so goes the world. That was the title of a recent lead article in The Economist that soberly discussed the potential of much more severe global economic problems occurring, if rapid and coordinated efforts were not made to stabilize the economic situation in Asia in general, and in Japan in particular. During the first 6 months of last year, commodity markets reacted violently to the spreading economic problems in Asia. More recent currency and financial problems in Russia have exacerbated an already unpleasant situation. One commodity after another--including oil, many of the agricultural commodities, and each of the base metals--have dropped sharply in price. Many are now trading at multiyear lows. Until there is an overall improvement in the outlook for these regions, sentiment will likely continue to be negative, and metals prices will remain under pressure. That being said, lead has maintained its value better than many other commodities during these difficult times, finding support in relatively strong fundamentals. The author takes a closer look at those supply and demand fundamentals, beginning with consumption.

  3. The Role of Demand Response in Default Service Pricing

    SciTech Connect (OSTI)

    Barbose, Galen; Goldman, Chuck; Neenan, Bernie

    2006-03-10T23:59:59.000Z

    Dynamic retail electricity pricing, especially real-time pricing (RTP), has been widely heralded as a panacea for providing much-needed demand response in electricity markets. However, in designing default service for competitive retail markets, demand response often appears to be an afterthought. But that may be changing as states that initiated customer choice in the past 5-7 years reach an important juncture in retail market design. Most states with retail choice established an initial transitional period, during which utilities were required to offer a default or ''standard offer'' generation service, often at a capped or otherwise administratively-determined rate. Many retail choice states have reached, or are nearing, the end of their transitional period and several states have adopted an RTP-type default service for large commercial and industrial (C&I) customers. Are these initiatives motivated by the desire to induce greater demand response, or is RTP being called upon to serve a different role in competitive markets? Surprisingly, we found that in most cases, the primary reason for adopting RTP as the default service was not to encourage demand response, but rather to advance policy objectives related to the development of competitive retail markets. However, we also find that, if efforts are made in its design and implementation, default RTP service can also provide a solid foundation for developing price responsive demand, creating an important link between wholesale and retail market transactions. This paper, which draws from a lengthier report, describes the experience to date with default RTP in the U.S., identifying findings related to its actual and potential role as an instrument for cultivating price responsive demand [1]. For each of the five states currently with default RTP, we conducted a detailed review of the regulatory proceedings leading to its adoption. To further understand the intentions and expectations of those involved in its design and implementation, we also interviewed regulatory staff and utilities in each state, as well as eight of the most prominent competitive retail suppliers operating in these markets which, together, comprised about 60-65% of competitive C&I sales in the U.S. in 2004 [2].

  4. Industrial Demand-Side Management in Texas

    E-Print Network [OSTI]

    Jaussaud, D.

    of programs result in lower consumption and/or lower peak demand, and ultimately reduce the need to build new capacity. Hence demand-side management can be used as a resource option to be considered alongside more traditional supply-side resources in a...INDUSTRIAL DEMAND-SIDE MANAGEMENT IN TEXAS Danielle Jaussaud Economic Analysis Section Public Utility Commission of Texas Austin, Texas ABSTRACT The industrial sector in Texas is highly energy intensive and represents a large share...

  5. Demand Controlled Ventilation and Classroom Ventilation

    E-Print Network [OSTI]

    Fisk, William J.

    2014-01-01T23:59:59.000Z

    2 -based demand controlled ventilation using ASHRAE Standardoptimizing energy use and ventilation. ASHRAE TransactionsWJ, Grimsrud DT, et al. 2011. Ventilation rates and health:

  6. China's Coal: Demand, Constraints, and Externalities

    E-Print Network [OSTI]

    Aden, Nathaniel

    2010-01-01T23:59:59.000Z

    Drivers of demand: urbanization, heavy industry, and risingdemand: urbanization, heavy industry, and rising income Theprocesses of urbanization, heavy industry growth, and rising

  7. Retail Demand Response in Southwest Power Pool

    E-Print Network [OSTI]

    Bharvirkar, Ranjit

    2009-01-01T23:59:59.000Z

    Commission (FERC) 2008a. “Wholesale Competition in RegionsDemand Response into Wholesale Electricity Markets,” (URL:1 2. Wholesale and Retails Electricity Markets in

  8. Demand Response - Policy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    prices or when grid reliability is jeopardized. In regions with centrally organized wholesale electricity markets, demand response can help stabilize volatile electricity prices...

  9. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    peak demand management. Photo sensors for daylight drivenare done by local photo-sensors and control hardwaresensing device in a photo sensor is typically a photodiode,

  10. Coordination of Energy Efficiency and Demand Response

    E-Print Network [OSTI]

    Goldman, Charles

    2010-01-01T23:59:59.000Z

    in peak demand. This definition of energy efficiency makesthe following definitions are used: Energy efficiency refersThis definition implicitly distinguishes energy efficiency

  11. Geographically Based Hydrogen Demand and Infrastructure Rollout...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rollout Scenario Analysis Geographically Based Hydrogen Demand and Infrastructure Rollout Scenario Analysis Presentation by Margo Melendez at the 2010-2025 Scenario Analysis for...

  12. Geographically Based Hydrogen Demand and Infrastructure Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geographically Based Hydrogen Demand and Infrastructure Analysis Presentation by NREL's Margo Melendez at the 2010 - 2025 Scenario Analysis for Hydrogen Fuel Cell Vehicles...

  13. Natural Gas Demand Markets in the Northeast

    Broader source: Energy.gov (indexed) [DOE]

    Providing a Significant Opportunity for New and Expanding Natural Gas Demand Markets in the Northeast Prepared for: America's Natural Gas Alliance (ANGA) Prepared by: Bentek...

  14. Demand Responsive Lighting: A Scoping Study

    E-Print Network [OSTI]

    Rubinstein, Francis; Kiliccote, Sila

    2007-01-01T23:59:59.000Z

    3 3.0 Previous Experience with Demand Responsive Lighting11 4.3. Prevalence of Lighting13 4.4. Impact of Title 24 on Lighting

  15. Wastewater plant takes plunge into demand response

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commission and the Bonneville Power Administration, the Eugene-Springfield Water Pollution Control Facility in Eugene, Ore., was put through a series of demand response tests....

  16. Robust newsvendor problem with autoregressive demand

    E-Print Network [OSTI]

    2014-05-19T23:59:59.000Z

    May 19, 2014 ... business decision problems, in fields such as managing booking and ...... Q? having available the demand historical records for t = 1, ..., T. 2.

  17. Honeywell Demonstrates Automated Demand Response Benefits for...

    Broader source: Energy.gov (indexed) [DOE]

    Honeywell's Smart Grid Investment Grant (SGIG) project demonstrates utility-scale performance of a hardwaresoftware platform for automated demand response (ADR). This project...

  18. Wireless Demand Response Controls for HVAC Systems

    E-Print Network [OSTI]

    Federspiel, Clifford

    2010-01-01T23:59:59.000Z

    Response Controls for HVAC Systems Clifford Federspiel,tests. Figure 5: Specific HVAC electric power consumptioncontrol, demand response, HVAC, wireless Executive Summary

  19. Coupling Renewable Energy Supply with Deferrable Demand

    E-Print Network [OSTI]

    Papavasiliou, Anthony

    2011-01-01T23:59:59.000Z

    the dispatch of flexible loads and generation resources bothof controllable generation and flexible demand. In the casecontrollable generation resources and flexible loads in the

  20. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  1. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 of this administrative procedure has been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event

  2. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 3 Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted

  3. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  4. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Employment been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  5. West Virginia University Division of Human Resources

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Division of Human Resources Web page hr.wvu.edu. In the event of a conflict between the current posted version and this printed copy, the posted version on the Web page is controlling. Page 1 of 2 Access been posted on the WVU Division of Human Resources Web page hr.wvu.edu. In the event of a conflict

  6. Satellite Meteorology and Climatology Division Roadmap

    E-Print Network [OSTI]

    Kuligowski, Bob

    Satellite Meteorology and Climatology Division Roadmap NOAA NESDIS Center for Satellite Applications and Research #12;SMCD Roadmap 2 NOAA/NESDIS/STAR Satellite Meteorology and Climatology Division Roadmap September 2005 NOAA Science Center, 5200 Auth Road, Room 712, Camp Springs, MD 20746 #12;SMCD

  7. Nuclear Engineering Division Think, explore, discover, innovate

    E-Print Network [OSTI]

    Kemner, Ken

    : "Application of an Annular Metallic Fuel with Lower Gas Plenum for Sodium- cooled Fast Reactor") ANS N. Stauff Award ANS K. Laurin-Kovitz 2013 Best Paper Award in Reactor Physics Division (RPD) (Paper Title Nuclear Society E. Merzari, H. Ninokata(***) 2010 Best Paper in Reactor Physics Division (RPD) American

  8. Progress Report on Power Division Work Plan

    E-Print Network [OSTI]

    RPS & impacts on PNW · Analysis of negative wholesale power prices · Wind Integration Forum · Maintain balancing" DR pilot programs · Tracking Smart Grid Demo Project ­ ­ Will include "conventional" and "load/windProgress Report on Power Division Work Plan Power Committee Meeting October 2010 1 #12;The Division

  9. EMS Division Potential Benefits of Selected

    E-Print Network [OSTI]

    driven by a high speed gas turbine supplied power to a 400 HP superconductive homopolar motor during at Overcome by New Technology: Cryocoolers & Cu Fiber brushes2 #12;EMS Division Baseline with Multi-turn Field Coil Multi-turn Armature Cryostat Steel Flux Return #12;EMS Division Homopolar Motor Technology

  10. LEADERSHIP TRAINING DIVISION Undergraduate Program Application

    E-Print Network [OSTI]

    Emmons, Scott

    LEADERSHIP TRAINING DIVISION Undergraduate Program Application 1 For more information: Questions in school: College: School in Israel: (if applicable): Major/Minor: High School: #12;LEADERSHIP TRAINING DIVISION Undergraduate Program Application 2 QUEST LEADERSHIP FELLOWSHIP The mission of Quest is to inspire

  11. Materials Sciences Division 1990 annual report

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    This report is the Materials Sciences Division`s annual report. It contains abstracts describing materials research at the National Center for Electron Microscopy, and for research groups in metallurgy, solid-state physics, materials chemistry, electrochemical energy storage, electronic materials, surface science and catalysis, ceramic science, high tc superconductivity, polymers, composites, and high performance metals.

  12. PHYSICS DIVISION ESH BULLETIN 07-02

    E-Print Network [OSTI]

    , and sealed or open celled lead-acid. No batteries should be disposed of in the trash. HOW TO MANAGE USED the Division Waste Generator to dispose lead-acid (car) batteries or if you have any questions. ReferencePHYSICS DIVISION ESH BULLETIN 07-02 BATTERY RECYCLING May 21, 2007 ORNL recycles all types

  13. Aviation Human Factors Division Institute of Aviation

    E-Print Network [OSTI]

    AHFD Aviation Human Factors Division Institute of Aviation University of Illinois at Urbana Systems Monitoring and Control Gavin R. Essenberg, Douglas A. Wiegmann, Aviation Human Factors Division experiments with more difficult path selection tasks might reveal if there are advantages for motion. Overall

  14. School of Art Division of Graphic Design

    E-Print Network [OSTI]

    Moore, Paul A.

    .372.7763 419.372.6955 fax lyoung@bgsu.edu www.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY Division of Graphic.bgsu.edu/art BOWLING GREEN STATE UNIVERSITY 1) Be of Junior (60+ hours) or Senior (90+ hours) standing withinSchool of Art Division of Graphic Design 1020 Fine Arts Center Bowling Green, Ohio 43403-0204 419

  15. Fixed Income Division Nomura International plc

    E-Print Network [OSTI]

    Macrina, Andrea

    Fixed Income Division © Nomura International plc Symmetry methods for quadratic Gaussian models International plc Outline Motivation The quadratic Gaussian distribution The quadratic Gaussian process The quadratic Gaussian model #12;Fixed Income Division 3© Nomura International plc Part 1 Motivation #12;Fixed

  16. Ultrafast time-division demultiplexing of polarization-entangled photons

    E-Print Network [OSTI]

    John M. Donohue; Jonathan Lavoie; Kevin J. Resch

    2014-10-16T23:59:59.000Z

    Maximizing the information transmission rate through quantum channels is essential for practical implementation of quantum communication. Time-division multiplexing is an approach for which the ultimate rate requires the ability to manipulate and detect single photons on ultrafast timescales while preserving their quantum correlations. Here we demonstrate the demultiplexing of a train of pulsed single photons using time-to-frequency conversion while preserving their polarization entanglement with a partner photon. Our technique converts a pulse train with 2.69 ps spacing to a frequency comb with 307 GHz spacing which may be resolved using diffraction techniques. Our work enables ultrafast multiplexing of quantum information with commercially available single-photon detectors.

  17. Strategies for Aligning Program Demand with Contractor's Seasonal...

    Energy Savers [EERE]

    Aligning Program Demand with Contractor's Seasonal Fluctuations Strategies for Aligning Program Demand with Contractor's Seasonal Fluctuations Better Buildings Neighborhood Program...

  18. Assessing Vehicle Electricity Demand Impacts on California Electricity Supply

    E-Print Network [OSTI]

    McCarthy, Ryan W.

    2009-01-01T23:59:59.000Z

    fuel electricity demands, and generation from these plantplants .. 47 Additional generation .. 48 Electricityelectricity demand increases generation from NGCC power plants.

  19. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect (OSTI)

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06T23:59:59.000Z

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  20. Commercial Building Funding Opportunity Webinar

    Broader source: Energy.gov [DOE]

    This webinar provide an overview of the Commercial Building Technology Demonstrations Funding Opportunity Announcement DE-FOA-0001084.

  1. Electric Storage in California's Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael

    2014-01-01T23:59:59.000Z

    to enable demand response or any other building strategy (demand response. By using EVs connected to the buildings for

  2. Commercial Feeding Stuffs: September 1, 1919 to August 31, 1920. 

    E-Print Network [OSTI]

    Fuller, F. D. (Frederick Driggs)

    1920-01-01T23:59:59.000Z

    I. E. COWART. M. S., Superinfendenf R. E. I~ARPER, R. S., Superinfendenf No. 2. Troup, Smith County W. S. MOTCHKISS, Super~ntendenf No. 3. Angleton.. Brazoria County E. B. REYNOLDS, M. S., Superinfendenf No. 4. Beaumont, Jefferson County A. H...TEXAS AGRICULTUR~~-KP~R~~I~ENT- STATION AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS W. B. BIZZELL, President BULLETIN NO. 268 OCTOBER, 1920 DIVISION OF FEED CONTROL SERVICE COMMERCIAL FEEDING STUFFS SEPTEh4EER 1, 1919, TO AUGUST 31, 1920 B...

  3. High-performance commercial building systems

    SciTech Connect (OSTI)

    Selkowitz, Stephen

    2003-10-01T23:59:59.000Z

    This report summarizes key technical accomplishments resulting from the three year PIER-funded R&D program, ''High Performance Commercial Building Systems'' (HPCBS). The program targets the commercial building sector in California, an end-use sector that accounts for about one-third of all California electricity consumption and an even larger fraction of peak demand, at a cost of over $10B/year. Commercial buildings also have a major impact on occupant health, comfort and productivity. Building design and operations practices that influence energy use are deeply engrained in a fragmented, risk-averse industry that is slow to change. Although California's aggressive standards efforts have resulted in new buildings designed to use less energy than those constructed 20 years ago, the actual savings realized are still well below technical and economic potentials. The broad goal of this program is to develop and deploy a set of energy-saving technologies, strategies, and techniques, and improve processes for designing, commissioning, and operating commercial buildings, while improving health, comfort, and performance of occupants, all in a manner consistent with sound economic investment practices. Results are to be broadly applicable to the commercial sector for different building sizes and types, e.g. offices and schools, for different classes of ownership, both public and private, and for owner-occupied as well as speculative buildings. The program aims to facilitate significant electricity use savings in the California commercial sector by 2015, while assuring that these savings are affordable and promote high quality indoor environments. The five linked technical program elements contain 14 projects with 41 distinct R&D tasks. Collectively they form a comprehensive Research, Development, and Demonstration (RD&D) program with the potential to capture large savings in the commercial building sector, providing significant economic benefits to building owners and health and performance benefits to occupants. At the same time this program can strengthen the growing energy efficiency industry in California by providing new jobs and growth opportunities for companies providing the technology, systems, software, design, and building services to the commercial sector. The broad objectives across all five program elements were: (1) To develop and deploy an integrated set of tools and techniques to support the design and operation of energy-efficient commercial buildings; (2) To develop open software specifications for a building data model that will support the interoperability of these tools throughout the building life-cycle; (3) To create new technology options (hardware and controls) for substantially reducing controllable lighting, envelope, and cooling loads in buildings; (4) To create and implement a new generation of diagnostic techniques so that commissioning and efficient building operations can be accomplished reliably and cost effectively and provide sustained energy savings; (5) To enhance the health, comfort and performance of building occupants. (6) To provide the information technology infrastructure for owners to minimize their energy costs and manage their energy information in a manner that creates added value for their buildings as the commercial sector transitions to an era of deregulated utility markets, distributed generation, and changing business practices. Our ultimate goal is for our R&D effort to have measurable market impact. This requires that the research tasks be carried out with a variety of connections to key market actors or trends so that they are recognized as relevant and useful and can be adopted by expected users. While some of this activity is directly integrated into our research tasks, the handoff from ''market-connected R&D'' to ''field deployment'' is still an art as well as a science and in many areas requires resources and a timeframe well beyond the scope of this PIER research program. The TAGs, PAC and other industry partners have assisted directly in this effort

  4. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12T23:59:59.000Z

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  5. Commercialization of clean coal technologies

    SciTech Connect (OSTI)

    Bharucha, N. [Dept. of Primary Industries and Energy, Canberra (Australia)

    1994-12-31T23:59:59.000Z

    The steps to commercialization are reviewed in respect of their relative costs, the roles of the government and business sectors, and the need for scientific, technological, and economic viability. The status of commercialization of selected clean coal technologies is discussed. Case studies related to a clean coal technology are reviewed and conclusions are drawn on the factors that determine commercialization.

  6. The NASA Food Commercial Space

    E-Print Network [OSTI]

    Lin, Zhiqun

    The NASA Food Technology Commercial Space Center and How Your Company Can Participate space Commercial Space Center Iowa State University 2901 South Loop Drive, Suite 3700 Ames, IA 50010-8632 Phone Manager NASA Food Technology Commercial Space Center Iowa State University 2901 South Loop Drive, Suite

  7. Earth Sciences Division Research Summaries 2006-2007

    E-Print Network [OSTI]

    DePaolo, Donald

    2008-01-01T23:59:59.000Z

    the commencement of the Earth Sciences Division 30 yearstelling. Happy Anniversary! Earth Sciences Division ears YTritium in Engineered and Earth Materials Stefan Finsterle,

  8. APS Engineering Support Division (AES) | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    APS Engineering Support Division (AES) The APS Engineering Support Division provides reliable operations and technical support to the Advanced Photon Source user community. AES...

  9. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  10. Optimal Trading Strategy Supply/Demand Dynamics

    E-Print Network [OSTI]

    Gabrieli, John

    prices through the changes in their supply/demand.2 Thus, to study how market participants trade can have interesting implications on the observed behavior of intraday volume, volatility and prices: November 15, 2004. This Draft: April 8, 2006 Abstract The supply/demand of a security in the market

  11. INTEGRATION OF PV IN DEMAND RESPONSE

    E-Print Network [OSTI]

    Perez, Richard R.

    . It may also be implemented by means of customer-sited emergency power generation (e.g., diesel generators the case that distributed PV generation deserves a substantial portion of the credit allotted to demand response programs. This is because PV generation acts as a catalyst to demand response, markedly enhancing

  12. Demand Response Programs Oregon Public Utility Commission

    E-Print Network [OSTI]

    , Demand Side Management #12;Current Programs/Tariffs ­ Load Control Programs Cool Keeper, Utah (currentlyDemand Response Programs Oregon Public Utility Commission January 6, 2005 Mike Koszalka Director 33 MW, building to 90 MW) Irrigation load control, Idaho (35 MW summer, 2004) Lighting load control

  13. Uranium 2009 resources, production and demand

    E-Print Network [OSTI]

    Organisation for Economic Cooperation and Development. Paris

    2010-01-01T23:59:59.000Z

    With several countries currently building nuclear power plants and planning the construction of more to meet long-term increases in electricity demand, uranium resources, production and demand remain topics of notable interest. In response to the projected growth in demand for uranium and declining inventories, the uranium industry – the first critical link in the fuel supply chain for nuclear reactors – is boosting production and developing plans for further increases in the near future. Strong market conditions will, however, be necessary to trigger the investments required to meet projected demand. The "Red Book", jointly prepared by the OECD Nuclear Energy Agency and the International Atomic Energy Agency, is a recognised world reference on uranium. It is based on information compiled in 40 countries, including those that are major producers and consumers of uranium. This 23rd edition provides a comprehensive review of world uranium supply and demand as of 1 January 2009, as well as data on global ur...

  14. Opportunities and prospects for demand-side efficiency improvements

    SciTech Connect (OSTI)

    Kuliasha, M.A.

    1993-12-31T23:59:59.000Z

    Substantial progress has been made over the last 20 years in improving energy efficiency in all sectors of the US economy. Although there remains a large potential for further efficiency gains, progress in improving energy efficiency has slowed recently. A combination of low energy prices, environmental challenges, and life-style changes have caused energy consumption to resume rising. Both new policies and technologies will be necessary to achieve cost-effective levels of energy efficiency. This paper describes some of the promising new demand-side technologies that are currently being implemented, nearing commercialization, or in advanced stages of development. The topics discussed include finding replacements for chlorofluorocarbons (CFCs), new building equipment and envelope technologies, lessons learned about conservation program implementation, and the role of utilities in promoting the efficient use of energy.

  15. Commercial Buildings Integration | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    types of commercial buildings. Read more DOE Invests 6 Million to Support Commercial Building Efficiency DOE Invests 6 Million to Support Commercial Building Efficiency These...

  16. Commercial Motor Vehicle Brake-Related Research

    E-Print Network [OSTI]

    Commercial Motor Vehicle Brake-Related Research Commercial Motor Vehicle Roadside Technology Corridor Safety Technology Showcase October 14, 2010 Commercial Motor Vehicle Roadside Technology Corridor

  17. Coordination of Energy Efficiency and Demand Response

    SciTech Connect (OSTI)

    Goldman, Charles; Reid, Michael; Levy, Roger; Silverstein, Alison

    2010-01-29T23:59:59.000Z

    This paper reviews the relationship between energy efficiency and demand response and discusses approaches and barriers to coordinating energy efficiency and demand response. The paper is intended to support the 10 implementation goals of the National Action Plan for Energy Efficiency's Vision to achieve all cost-effective energy efficiency by 2025. Improving energy efficiency in our homes, businesses, schools, governments, and industries - which consume more than 70 percent of the nation's natural gas and electricity - is one of the most constructive, cost-effective ways to address the challenges of high energy prices, energy security and independence, air pollution, and global climate change. While energy efficiency is an increasingly prominent component of efforts to supply affordable, reliable, secure, and clean electric power, demand response is becoming a valuable tool in utility and regional resource plans. The Federal Energy Regulatory Commission (FERC) estimated the contribution from existing U.S. demand response resources at about 41,000 megawatts (MW), about 5.8 percent of 2008 summer peak demand (FERC, 2008). Moreover, FERC recently estimated nationwide achievable demand response potential at 138,000 MW (14 percent of peak demand) by 2019 (FERC, 2009).2 A recent Electric Power Research Institute study estimates that 'the combination of demand response and energy efficiency programs has the potential to reduce non-coincident summer peak demand by 157 GW' by 2030, or 14-20 percent below projected levels (EPRI, 2009a). This paper supports the Action Plan's effort to coordinate energy efficiency and demand response programs to maximize value to customers. For information on the full suite of policy and programmatic options for removing barriers to energy efficiency, see the Vision for 2025 and the various other Action Plan papers and guides available at www.epa.gov/eeactionplan.

  18. Demand Response This is the first of the Council's power plans to treat demand response as a resource.1

    E-Print Network [OSTI]

    Demand Response This is the first of the Council's power plans to treat demand response the resource and describes some of the potential advantages and problems of the development of demand response. WHAT IS DEMAND RESPONSE? Demand response is a change in customers' demand for electricity corresponding

  19. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91 8.10

  20. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47 8.91

  1. Average Commercial Price

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0Proved Reserves (Billion0.06 9.47

  2. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96

  3. Commercial Buildings Characteristics 1992

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96(92) Distribution Category

  4. Computers in Commercial Buildings

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21Company Level ImportsYear Jan EIA

  5. Contacts - EERE Commercialization Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercializationValidation andInformationContactContacts

  6. 1999 Commercial Buildings Characteristics

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N Y M E Building8)Data Reports

  7. Commercial Building Partnership

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial Building EnergyBuilding

  8. Commercial Buildings Integration (CBI)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  9. Commercial Buildings Integration Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave the WhiteNational BroadbandofCommercial1 | Energy Efficiency and

  10. Commercial | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png ElColumbia, North Carolina:Cooking EquipmentandCommercial

  11. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    With the roll out of smart meters to this customer group, data collection.   Smart Meters provided data at  fifteen?

  12. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    E-Print Network [OSTI]

    Motegi, N.

    2011-01-01T23:59:59.000Z

    6 - Packaging & Cold Storage Facility 7 - (Packaging & SColdfarm pumps .. Shut off cold storage and selected process and30 p.m . .. Shut off cold storage for maximum allowed period

  13. Design and Operation of an Open, Interoperable Automated Demand Response Infrastructure for Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann

    2010-01-01T23:59:59.000Z

    Power Research Institute (EPRI) IntelliGrid Consortium, “ThePower Delivery System,” EPRI, Jan. 2, http://www.epri.com/Power Research Institute (EPRI) that started in 2004. The

  14. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    EIA), 2005. Form EIA-861 Database http://www.eia.doe.gov/Energy Consumption Survey database (EIA 2003), and personal

  15. Intelligent Commercial Lighting: Demand-Responsive Conditioning and Increased User Satisfaction

    E-Print Network [OSTI]

    Agogino, Alice M.

    2005-01-01T23:59:59.000Z

    requirements, one time of use (TOU) tariff for smallerthat on a representative time of use electricity tariff, the

  16. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    electric loads in buildings: energy efficiency (for steadyof Building Controls and Energy Efficiency Options Usingof Building Controls and Energy Efficiency Options Using

  17. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    electric loads in buildings: energy efficiency (for steady-of Building Controls and Energy Efficiency Options Usingof Building Controls and Energy Efficiency Options Using

  18. Scenario Analysis of Peak Demand Savings for Commercial Buildings with Thermal Mass in California

    E-Print Network [OSTI]

    Yin, Rongxin

    2010-01-01T23:59:59.000Z

    by utilizing thermal energy storage such as ice storage orThermal Storage Utilization. ” Journal of Solar Energy

  19. Introduction to Commercial Building Control Strategies and Techniques for Demand Response -- Appendices

    E-Print Network [OSTI]

    Motegi, N.

    2011-01-01T23:59:59.000Z

    limit 70% High Price GTA cooling -7 7S0F Supply fan quantityOffice GTA cooling 1.5°F increase Supply fan VFD lock ~to total chilled water supply Btu/h. Cooling power dropped

  20. Estimating Demand Response Market Potential Among Large Commercial and Industrial Customers: A Scoping Study

    E-Print Network [OSTI]

    Goldman, Charles; Hopper, Nicole; Bharvirkar, Ranjit; Neenan, Bernie; Cappers, Peter

    2007-01-01T23:59:59.000Z

    of Residential Response in Time of Use Pricing Experiments”,as critical-peak pricing, time-of-use rates, and real-timebusinesses. Time-of-use and real-time-pricing (RTP)-type

  1. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    was provided by the New York State Energy and Researchwork was supported by the New York State Energy and Researchsupplies of affordable energy. In New York and California,

  2. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    was provided by the New York State Energy and ResearchCalifornia Energy Commission and the New York State Energysupplies of affordable energy. In New York and California,

  3. Web-based energy information systems for energy management and demand response in commercial buildings

    E-Print Network [OSTI]

    Motegi, Naoya; Piette, Mary Ann; Kinney, Satkartar; Herter, Karen

    2003-01-01T23:59:59.000Z

    to include the use of PACRAT 25 . IMDS IMDS uses Enflex fortechnology industries. PACRAT and other diagnostic tools arealso include the use of PACRAT (Friedman and Piette, 2001).

  4. Evaluation of Demand Shifting with Thermal Mass in Two Large Commercial Buildings

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    in AutoCAD. The lighting power density and equipment loadand west. The lighting power density and equipment load were

  5. Advanced Controls and Communications for Demand Response and Energy Efficiency in Commercial Buildings

    E-Print Network [OSTI]

    Kiliccote, Sila; Piette, Mary Ann; Hansen, David

    2006-01-01T23:59:59.000Z

    reliability of the electricity system; reducing costs associated with generation, transmission and distribution;

  6. Demand Responsive and Energy Efficient Control Technologies and Strategies in Commercial Buildings

    E-Print Network [OSTI]

    Piette, Mary Ann; Kiliccote, Sila

    2006-01-01T23:59:59.000Z

    reliability of the electricity system; Reducing costs associated with generation, transmission and distribution;

  7. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    Power [kW] Actual OAT_MA BL 10/10 BL Constant air volume system cycling is also seen in the load profile 

  8. Automated Demand Response Technology Demonstration Project for Small and Medium Commercial Buildings

    E-Print Network [OSTI]

    Page, Janie

    2012-01-01T23:59:59.000Z

    the  DRAS, was acquired by Honeywell, a potential bidder on over the RFP process, and Honeywell was disqualified from 

  9. Demand Shifting with Thermal Mass in Large Commercial Buildings in a California Hot Climate Zone

    E-Print Network [OSTI]

    Xu, Peng

    2010-01-01T23:59:59.000Z

    of Cooling Strategies and Building Features on EnergyPerformance of Office Buildings. ”Energy and Buildings 34(2002): Braun, J. E. 1990. “Reducing

  10. Automated Demand Response Benefits California Utilities and Commercial & Industrial Customers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The FutureComments from TarasaName4ServicesTribalWorkplace Charging Summit U.S.

  11. Demand Side Dispatching, Part 1: A Novel Approach for Industrial Load Shaping Applications

    E-Print Network [OSTI]

    Kumana, J. D.; Nath, R.

    ) systems fo commercial HVAC applications. Load co trol generally involves scheduling the use of electrotechnologies (e.g. air compression, pumping) during off-peak periods only, an shutting them off during on-peak periods. In order to provide... incentives to the custom r to modulate his demand, most DSM progranis combine the foregoing technologies with l1ime of-Use rate structures, capital cost subsidies (rebates), and technical support services. 317 ESL-IE-93-03-45 Proceedings from...

  12. Computational Sciences and Engineering Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting theCommercialization and Innovation2010CompositionalChemistry forScience The

  13. Biology and Medicine Division: Annual report 1986

    SciTech Connect (OSTI)

    Not Available

    1987-04-01T23:59:59.000Z

    The Biology and Medicine Division continues to make important contributions in scientific areas in which it has a long-established leadership role. For 50 years the Division has pioneered in the application of radioisotopes and charged particles to biology and medicine. There is a growing emphasis on cellular and molecular applications in the work of all the Division's research groups. The powerful tools of genetic engineering, the use of recombinant products, the analytical application of DNA probes, and the use of restriction fragment length polymorphic DNA are described and proposed for increasing use in the future.

  14. Chemical Sciences Division annual report 1994

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The division is one of ten LBL research divisions. It is composed of individual research groups organized into 5 scientific areas: chemical physics, inorganic/organometallic chemistry, actinide chemistry, atomic physics, and chemical engineering. Studies include structure and reactivity of critical reaction intermediates, transients and dynamics of elementary chemical reactions, and heterogeneous and homogeneous catalysis. Work for others included studies of superconducting properties of high-{Tc} oxides. In FY 1994, the division neared completion of two end-stations and a beamline for the Advanced Light Source, which will be used for combustion and other studies. This document presents summaries of the studies.

  15. Earth Sciences Division collected abstracts: 1979

    SciTech Connect (OSTI)

    Henry, A.L.; Schwartz, L.L.

    1980-04-30T23:59:59.000Z

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  16. Physics Division annual report 2004.

    SciTech Connect (OSTI)

    Glover, J.

    2006-04-06T23:59:59.000Z

    This report highlights the research performed in 2004 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The intellectual challenges of this research represent some of the most fundamental challenges in modern science, shaping our understanding of both tiny objects at the center of the atom and some of the largest structures in the universe. A great strength of these efforts is the critical interplay of theory and experiment. Notable results in research at ATLAS include a measurement of the charge radius of He-6 in an atom trap and its explanation in ab-initio calculations of nuclear structure. Precise mass measurements on critical waiting point nuclei in the rapid-proton-capture process set the time scale for this important path in nucleosynthesis. An abrupt fall-off was identified in the subbarrier fusion of several heavy-ion systems. ATLAS operated for 5559 hours of research in FY2004 while achieving 96% efficiency of beam delivery for experiments. In Medium Energy Physics, substantial progress was made on a long-term experiment to search for the violation of time-reversal invariance using trapped Ra atoms. New results from HERMES reveal the influence of quark angular momentum. Experiments at JLAB search for evidence of color transparency in rho-meson production and study the EMC effect in helium isotopes. New theoretical results include a Poincare covariant description of baryons as composites of confined quarks and non-point-like diquarks. Green's function Monte Carlo techniques give accurate descriptions of the excited states of light nuclei and these techniques been extended to scattering states for astrophysics studies. A theoretical description of the phenomena of proton radioactivity has been extended to triaxial nuclei. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make RIA, in the words of NSAC, ''the world-leading facility for research in nuclear structure and nuclear astrophysics''. The performance standards for new classes of superconducting cavities continue to increase. Driver linac transients and faults have been analyzed to understand reliability issues and failure modes. Liquid-lithium targets were shown to successfully survive the full-power deposition of a RIA beam. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for RIA holds the keys to unlocking important secrets of nature. The work described here shows how far we have come and makes it clear we know the path to meet these intellectual challenges. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  17. Aerocapacitor commercialization plan

    SciTech Connect (OSTI)

    NONE

    1995-09-12T23:59:59.000Z

    The purpose of the Power-One Aerocapacitor Commercialization Plan is to communicate to members of management and to all employees the overall objectives of the corporation. Power-One, Inc., has participated in a US Federal Government Technology Reinvestment Project (TRP), entitled {open_quotes}Advanced Power Conversion based on the Aerocapacitor{close_quotes}: the project is a group effort, with Lawrence Livermore National Labs, GenCorp/Aerojet, PolyStor Corp. (a start-up company), and Power-One forming the consortium. The expected resulting technology is the {open_quotes}Aerocapacitor{close_quotes}, which possesses much higher performance levels than the usual capacitors on the market today. Power-One hopes to incorporate the Aerocapacitor into some of its products, hence enhancing their performance, as well as market privately-labeled aerocapacitors through its distribution channels. This document describes the details of Power-One`s plan to bring to market and commercialize the Aerocapacitor and Aerocapacitor-based products. This plan was formulated while Power-One was part of the Oerocap project. It has since pulled out of this project. What is presented in this plan is the work which was developed prior to the business decision to terminate this work.

  18. Commercial nuclear power 1990

    SciTech Connect (OSTI)

    Not Available

    1990-09-28T23:59:59.000Z

    This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

  19. Demand Response Opportunities in Industrial Refrigerated Warehouses in California

    SciTech Connect (OSTI)

    Goli, Sasank; McKane, Aimee; Olsen, Daniel

    2011-06-14T23:59:59.000Z

    Industrial refrigerated warehouses that implemented energy efficiency measures and have centralized control systems can be excellent candidates for Automated Demand Response (Auto-DR) due to equipment synergies, and receptivity of facility managers to strategies that control energy costs without disrupting facility operations. Auto-DR utilizes OpenADR protocol for continuous and open communication signals over internet, allowing facilities to automate their Demand Response (DR). Refrigerated warehouses were selected for research because: They have significant power demand especially during utility peak periods; most processes are not sensitive to short-term (2-4 hours) lower power and DR activities are often not disruptive to facility operations; the number of processes is limited and well understood; and past experience with some DR strategies successful in commercial buildings may apply to refrigerated warehouses. This paper presents an overview of the potential for load sheds and shifts from baseline electricity use in response to DR events, along with physical configurations and operating characteristics of refrigerated warehouses. Analysis of data from two case studies and nine facilities in Pacific Gas and Electric territory, confirmed the DR abilities inherent to refrigerated warehouses but showed significant variation across facilities. Further, while load from California's refrigerated warehouses in 2008 was 360 MW with estimated DR potential of 45-90 MW, actual achieved was much less due to low participation. Efforts to overcome barriers to increased participation may include, improved marketing and recruitment of potential DR sites, better alignment and emphasis on financial benefits of participation, and use of Auto-DR to increase consistency of participation.

  20. Open Automated Demand Response Dynamic Pricing Technologies and Demonstration

    SciTech Connect (OSTI)

    Ghatikar, Girish; Mathieu, Johanna L.; Piette, Mary Ann; Koch, Ed; Hennage, Dan

    2010-08-02T23:59:59.000Z

    This study examines the use of OpenADR communications specification, related data models, technologies, and strategies to send dynamic prices (e.g., real time prices and peak prices) and Time of Use (TOU) rates to commercial and industrial electricity customers. OpenADR v1.0 is a Web services-based flexible, open information model that has been used in California utilities' commercial automated demand response programs since 2007. We find that data models can be used to send real time prices. These same data models can also be used to support peak pricing and TOU rates. We present a data model that can accommodate all three types of rates. For demonstration purposes, the data models were generated from California Independent System Operator's real-time wholesale market prices, and a California utility's dynamic prices and TOU rates. Customers can respond to dynamic prices by either using the actual prices, or prices can be mapped into"operation modes," which can act as inputs to control systems. We present several different methods for mapping actual prices. Some of these methods were implemented in demonstration projects. The study results demonstrate show that OpenADR allows interoperability with existing/future systems/technologies and can be used within related dynamic pricing activities within Smart Grid.