Sample records for disturb hazardous substances

  1. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    , and a number of other organic substances, as well as some biological effects of hazardous substances. Chapter 3 substances in the marine food web ...12 1.3 Effects of hazardous substances in the marine environment ..........................................40 2.5 Other organic substances............................................

  2. Hazardous Substances Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

  3. Extremely Hazardous Substances Risk Management Act (Delaware)

    Broader source: Energy.gov [DOE]

    This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

  4. Hazardous Materials and Controlled Hazardous Substances (Maryland)

    Broader source: Energy.gov [DOE]

    A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

  5. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

  6. Prevention, Abatement, and Control of Hazardous Substance Release (Iowa)

    Broader source: Energy.gov [DOE]

    The Department of Natural Resources is authorized to establish rules regarding the prevention and mitigation of hazardous substance release. These sections contain information on the notification...

  7. Hazard Communication Definitions Chemical means any substance or mixture of substances

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Definitions Chemical means any substance or mixture of substances Container that contains a hazardous chemical. Exposure or exposed means that an employee is subjected in the course of employment to a chemical that is a physical or health hazard and includes potential (e.g. accidental

  8. Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)

    Broader source: Energy.gov [DOE]

    These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

  9. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01T23:59:59.000Z

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  10. ROYAL HOLLOWAY, UNIVERSITY OF LONDON THE CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    ROYAL HOLLOWAY, UNIVERSITY OF LONDON THE CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS 2002's arrangements for the management of hazardous substances as defined in the Control of Substances Hazardous who may be affected by the work of the College to substances hazardous to health is either prevented

  11. Oil and Hazardous Substance Discharge Preparedness (Minnesota)

    Broader source: Energy.gov [DOE]

    Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

  12. Funding Opportunity: Superfund Hazardous Substance Research and Training Program Sponsor: National Institute of Health

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42) Sponsor Sciences (NIEHS) is announcing the continuation of the Superfund Hazardous Substance Research and Training techniques for the detection, assessment, and evaluation of the effect on human health of hazardous

  13. Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42)

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Funding Opportunity: Superfund Hazardous Substance Research and Training Program (P42) Sponsor (NIEHS) is announcing the continuation of the Superfund Hazardous Substance Research and Training Program techniques for the detection, assessment, and evaluation of the effect on human health of hazardous

  14. The evaluation of an analytical protocol for the determination of substances in waste for hazard classification

    E-Print Network [OSTI]

    Boyer, Edmond

    1 The evaluation of an analytical protocol for the determination of substances in waste for hazard The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol

  15. Fees For Disposal Of Hazardous Waste Or Substances (Alabama)

    Broader source: Energy.gov [DOE]

    The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

  16. Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Proper classification is necessary to be in compliance with the laws regulating each waste type.

    E-Print Network [OSTI]

    George, Steven C.

    Pharmaceutical waste may be a hazardous chemical waste, controlled substance or biomedical waste. Hazardous Chemical Pharmaceutical Waste: A number of common pharmaceuticals are regulated as hazardous or more of the EPA characteristics of a hazardous chemical waste are also regulated as a hazardous

  17. Respiratory symptoms among glass bottle makers exposed to stannic chloride solution and other potentially hazardous substances

    SciTech Connect (OSTI)

    Levy, B.S.; Davis, F.; Johnson, B.

    1985-04-01T23:59:59.000Z

    Concern about upper respiratory tract irritation and other symptoms among workers at a glass bottle manufacturing plant led to an epidemiologic and an industrial hygiene survey. Questionnaire responses from 35 hot end and 53 cold end workers indicated that the incidence of wheezing, chest pain, dyspnea on exertion, and cough was significantly elevated among hot end workers. Among both smokers and nonsmokers, hot end workers reported higher, but not significantly higher, rates of wheezing and chest pain. Among smokers, hot end workers reported significantly higher rates of dyspnea on exertion and cough than did cold end workers. Data suggest that reported exposure to stannic chloride solution likely caused these symptoms. The industrial hygiene survey, conducted when stannic chloride use had been reduced, cleaning had been done, and ventilation improved, focused on measuring air contaminants that might possibly cause symptoms. Levels of hydrogen chloride, which apparently was formed by the combination of stannic chloride and water in the presence of heat, were elevated. The finding of increased prevalence of respiratory symptoms among hot end workers was consistent with this exposure. Recommendations were made to reduce hazardous exposures at this plant. Individuals responsible for occupational health should be aware that relatively benign substances, such as stannic chloride and water, can combine spontaneously to form hazardous substances.

  18. Safe Method of Use for Hazardous Substances of Higher Risk 16 Version 2 July 2008 Page 1 of 5

    E-Print Network [OSTI]

    Auckland, University of

    Safe Method of Use for Hazardous Substances of Higher Risk 16 Version 2 July 2008 Page 1 of 5 SafeBr depend on the nature of the waste materials and the concentration of EtBr that they contain. Much a choice of protocols, the sodium nitrite method is preferred as the reaction products retain very little

  19. Investigation of measuring hazardous substances in printed circuit boards using the micro-focus X-ray fluorescence screening

    E-Print Network [OSTI]

    Fu, M L; Fakhrtdinov, R; Grigoriev, M; Quan, B S; Le, Z C; Roshchupkin, D

    2014-01-01T23:59:59.000Z

    Printed circuit boards (PCBs) are widely used in most electrical and electronic equipments or products. Hazardous substances such as Pb, Hg, Cd, etc, can be present in high concentrations in PCBs and the degradation and release of these substances poses a huge threat to humans and the environment. To investigation the chemical composition of PCBs in domestic market of China, a practical micro-focus X-ray fluorescence system is setup to make the elements analysis, especially for detecting hazardous substances. Collimator is adopted to focus the X-ray emitted from X-ray tube. BRUKER X-ray detector with proportional counter is used to detect the emitted fluorescence from the PCB samples. Both single layer PCB samples and double layers PCB samples made of epoxy glass fiber are purchased from the domestic market of China. Besides, a MC55 wireless communication module made by SIEMENS in Germany is used as the reference material. Experimental results from the fluorescence spectrums of the testing points of PCB sampl...

  20. HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard Communication

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard about chemical hazards and other hazardous substances via our comprehensive Hazard Communication Program. The Hazard Communication Program will include: WORKPLACE CHEMICAL LIST MATERIAL SAFETY DATA SHEETS CONTAINER

  1. Apparatus and methods for monitoring the concentrations of hazardous airborne substances, especially lead

    DOE Patents [OSTI]

    Zaromb, Solomon

    2004-07-13T23:59:59.000Z

    Air is sampled at a rate in excess of 100 L/min, preferably at 200-300 L/min, so as to collect therefrom a substantial fraction, i.e., at least 20%, preferably 60-100%, of airborne particulates. A substance of interest (analyte), such as lead, is rapidly solubilized from the the collected particulates into a sample of liquid extractant, and the concentration of the analyte in the extractant sample is determined. The high-rate air sampling and particulate collection may be effected with a high-throughput filter cartridge or with a recently developed portable high-throughput liquid-absorption air sampler. Rapid solubilization of lead is achieved by a liquid extractant comprising 0.1-1 M of acetic acid or acetate, preferably at a pH of 5 or less and preferably with inclusion of 1-10% of hydrogen peroxide. Rapid determination of the lead content in the liquid extractant may be effected with a colorimetric or an electroanalytical analyzer.

  2. Hazardous Substance Release Reporting Under CERCLA, EPCR {section}304 and DOE Emergency Management System (EMS) and DOE Occurrence Reporting Requirements. Environmental Guidance

    SciTech Connect (OSTI)

    Traceski, T.T.

    1994-06-01T23:59:59.000Z

    Releases of various substances from DOE facilities may be subject to reporting requirements under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Emergency Planning and Community Right-to-Know Act (EPCRA), as well as DOE`s internal ``Occurrence Reporting and Processing of Operations Information`` and the ``Emergency Management System`` (EMS). CERCLA and EPCPA are Federal laws that require immediate reporting of a release of a Hazardous Substance (HS) and an Extremely Hazardous Substance (EHS), respectively, in a Reportable Quantity (RQ) or more within a 24-hour period. This guidance uses a flowchart, supplemental information, and tables to provide an overview of the process to be followed, and more detailed explanations of the actions that must be performed, when chemical releases of HSs, EHSs, pollutants, or contaminants occur at DOE facilities. This guidance should be used in conjunction with, rather than in lieu of, applicable laws, regulations, and DOE Orders. Relevant laws, regulations, and DOE Orders are referenced throughout this guidance.

  3. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    THE IMPLEMENTATION OF HAZARDOUS WASTE POLICIES IN CALIFORNIAfrom the release of hazardous waste and toxic substances.The mishandling of hazardous waste by industry has created

  4. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  5. Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS

    E-Print Network [OSTI]

    Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS as required under the CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS (COSHH) and the DANGEROUS SUBSTANCES AND EXPLOSIVE ATMOSPHERES Involving the Use of Hazardous Chemicals. COSHH requires health risks to be assessed and controlled

  6. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  7. airborne hazardous transport: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    risk exposure. The report describes the application of recent advances in network analysis methodologies to the problem of routing hazardous substances. Several specific...

  8. 6/6/2014 1 of 6 OHS 11-033 revision Animal Research Protocols Involving Hazardous Chemicals

    E-Print Network [OSTI]

    Kay, Mark A.

    OHS 11-033 revision Animal Research Protocols Involving Hazardous Chemicals I. OVERVIEW Hazardous Chemicals: Known or suspect carcinogens, reproductive toxins or other highly toxic substances (e. Reference the SU Chemical Hygiene Plan for hazardous chemical definitions. Potential Exposures: Research

  9. Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996

    E-Print Network [OSTI]

    Disposal of Hazardous Medical Waste Policy and Procedures Commencement Date: 27 November, 1996 containing or used in work involving cytotoxic substances. Hazardous Medical Waste Means any substance, edges, points or protuberances capable of cutting or penetrating the skin. 5. POLICY STATEMENT Hazardous

  10. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides) or other sources of information. In cases where substances with significant or unusual potential hazards of experience and the degree of potential hazard associated with the proposed experiment, it may be necessary

  11. Electrical hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and certification by ANL prior to use. The Control of Hazardous Energy Sources - LockoutTagout (LOTO) Types of Energy Sources 1. Electricity 2. Gas, steam & pressurized...

  12. Hazardous Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

  13. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21T23:59:59.000Z

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  14. 1992 system disturbances

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    When a utility experiences an electric system emergency that requires reporting to the DOE, the utility sends a copy of the report to its Regional Council, which then sends a copy to NERC. Canadian utilities often voluntarily file emergency reports to DOE and NERC as well. NERC's annual review of system disturbances begins in November when the Disturbance Analysis Working Group meets to discuss each disturbance reported to NERC so far that year. The Group then contacts the Regional Council or utility(ies) involved and requests a detailed report of each incident. The Group then summarizes the report for this Review and analyzes it using the NERC Operating Guides and Planning Policies and Guides as the analysis categories. The Commentary section includes the conclusions and recommendations that were formulated from the analyses in this report plus the general experiences of the Working Group through the years. In 1992, utilities reported 22 incidents of system disturbances, load reductions, or unusual occurrences. This is eight fewer than reported in 1991. These incidents are listed chronologically and categorized as: fourteen system interruptions that resulted in loss of customer service, eight unusual occurrences that did not cause a service interruption. No public appeals to reduce demand or voltage reductions occurred in 1992. This document contains reports of 11 incidents plus a summary of the damage from Hurricane Andrew. Each utility or Region approved its analysis in this report. Included is a table of Disturbances by Analysis Category that offers a quick review of the categories applicable to each incident.

  15. Hazardous materials in Fresh Kills landfill

    SciTech Connect (OSTI)

    Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

    1997-12-31T23:59:59.000Z

    No environmental monitoring and corrective action programs can pinpoint multiple locations of hazardous materials the total amount of them in a large landfill. Yet the consequences of hazardous materials in MSW landfills are considerable, in terms of public health concerns, environmental damage, and cleanup costs. In this paper a rough estimation is made of how much hazardous material may have been disposed in Fresh Kills landfill in Staten Island, New York. The logic and methods could be used for other MSW landfills. Fresh Kills has frequently been described as the world`s largest MSW landfill. While records of hazardous waste disposal at Fresh Kills over nearly 50 years of operation certainly do not exist, no reasonable person would argue with the conclusion that large quantities of hazardous waste surely have been disposed at Fresh Kills, both legally and illegally. This study found that at least 2 million tons of hazardous wastes and substances have been disposed at Fresh Kills since 1948. Major sources are: household hazardous waste, commercial RCRA hazardous waste, incinerator ash, and commercial non-RCRA hazardous waste, governmental RCRA hazardous waste. Illegal disposal of hazardous waste surely has contributed even more. This is a sufficient amount to cause serious environmental contamination and releases, especially from such a landfill without an engineered liner system, for example. This figure is roughly 1% of the total amount of waste disposed in Fresh Kills since 1948, probably at least 200 million tons.

  16. Safety Requirements for the Packaging and Transportation of Hazardous Materials, Hazardous Substances, and Hazardous Wastes

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-07-09T23:59:59.000Z

    Cancels Chapter 3 of DOE 5480.1A. Canceled by DOE O 460.1 of 9-27-1995 and by DOE N 251.4 & Para. 9c canceled by DOE O 231.1 of 9-30-1995.

  17. Hazard evaluation

    SciTech Connect (OSTI)

    Vervalin, C.H.

    1986-12-01T23:59:59.000Z

    Recent major disasters in the hydrocarbon processing industry (HPI) have inspired renewed interest in the fine-tuning of hazard evaluation methods. In addition to traditional risk-study methods, the computer promises eventual expert systems to vastly improve the speed of assembling and using loss-prevention information. But currently, the computerization of hazard evaluation finds the HPI taking a back seat to aerospace/nuclear industries. The complexity of creating computer databases and expert systems has not-however-kept some HPI companies from plunging in. Arabian American Oil Co. (Aramco) has used computer-generated information in working with probabilistic risk analysis. Westinghouse has used its risk-analysis experience in the nuclear field to build a computer-based program for HPI clients. An Exxon plant has a huge data bank as the basis for its Hazard Loss Information System.

  18. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  19. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  1. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  2. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  3. If you have established that your waste is hazardous or may be hazardous the next step is to identify the "Risk Phrases" that apply to each component in the waste.

    E-Print Network [OSTI]

    Siddharthan, Advaith

    If you have established that your waste is hazardous or may be hazardous the next step. Use the Approved Supply List (available from HSE books). This shows hazard information are aiming to clarify the following: · the categories of danger exhibited by the substance (Hazard Groups

  4. 300 Area Disturbance Report

    SciTech Connect (OSTI)

    LL Hale; MK Wright; NA Cadoret

    1999-01-07T23:59:59.000Z

    The objective of this study was to define areas of previous disturbance in the 300 Area of the U.S. Department of Energy (DOE) Hanford Site to eliminate these areas from the cultural resource review process, reduce cultural resource monitoring costs, and allow cultural resource specialists to focus on areas where subsurface disturbance is minimal or nonexistent. Research into available sources suggests that impacts from excavations have been significant wherever the following construction activities have occurred: building basements and pits, waste ponds, burial grounds, trenches, installation of subsurface pipelines, power poles, water hydrants, and well construction. Beyond the areas just mentioned, substrates in the' 300 Area consist of a complex, multidimen- sional mosaic composed of undisturbed stratigraphy, backfill, and disturbed sediments; Four Geographic Information System (GIS) maps were created to display known areas of disturbance in the 300 Area. These maps contain information gleaned from a variety of sources, but the primary sources include the Hanford GIS database system, engineer drawings, and historic maps. In addition to these maps, several assumptions can be made about areas of disturbance in the 300 Area as a result of this study: o o Buried pipelines are not always located where they are mapped. As a result, cultural resource monitors or specialists should not depend on maps depicting subsurface pipelines for accurate locations of previous disturbance. Temporary roads built in the early 1940s were placed on layers of sand and gravel 8 to 12 in. thick. Given this information, it is likely that substrates beneath these early roads are only minimally disturbed. Building foundations ranged from concrete slabs no more than 6 to 8 in. thick to deeply excavated pits and basements. Buildings constructed with slab foundations are more numerous than may be expected, and minimally disturbed substrates may be expected in these locations. Historic black and white photographs provide a partial record of some excavations, including trenches, building basements, and material lay-down yards. Estimates of excavation depth and width can be made, but these estimates are not accurate enough to pinpoint the exact location where the disturbedhmdisturbed interface is located (e.g., camera angles were such that depths and/or widths of excavations could not be accurately determined or estimated). In spite of these limitations, these photographs provide essential information. Aerial and historic low-level photographs have captured what appears to be backfill throughout much of the eastern portion of the 300 Area-near the Columbia River shoreline. This layer of fill has likely afforded some protection for the natural landscape buried beneath the fill. This assumption fits nicely with the intermittent and inadvertent discoveries of hearths and stone tools documented through the years in this part of the 300 Area. Conversely, leveling of sand dunes appears to be substantial in the northwestern portion of the 300 Area during the early stages of development. o Project files and engineer drawings do not contain information on any impromptu but necessary adjustments made on the ground during project implementation-after the design phase. Further, many projects are planned and mapped but never implemented-this information is also not often placed in project files. Specific recommendations for a 300 Area cultural resource monitoring strategy are contained in the final section of this document. In general, it is recommended that monitoring continue for all projects located within 400 m of the Columbia River. The 400-m zone is culturally sensitive and likely retains some of the most intact buried substrates in the 300 Area.

  5. Waveguide disturbance detection method

    DOE Patents [OSTI]

    Korneev, Valeri A. (Albany, CA); Nihei, Kurt T. (Oakland, CA); Myer, Larry R. (Benicia, CA)

    2000-01-01T23:59:59.000Z

    A method for detection of a disturbance in a waveguide comprising transmitting a wavefield having symmetric and antisymmetric components from a horizontally and/or vertically polarized source and/or pressure source disposed symmetrically with respect to the longitudinal central axis of the waveguide at one end of the waveguide, recording the horizontal and/or vertical component or a pressure of the wavefield with a vertical array of receivers disposed at the opposite end of the waveguide, separating the wavenumber transform of the wavefield into the symmetric and antisymmetric components, integrating the symmetric and antisymmetric components over a broad frequency range, and comparing the magnitude of the symmetric components and the antisymmetric components to an expected magnitude for the symmetric components and the antisymmetric components for a waveguide of uniform thickness and properties thereby determining whether or not a disturbance is present inside the waveguide.

  6. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  7. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  8. A question of substance

    E-Print Network [OSTI]

    Gitlin, Jane M

    1986-01-01T23:59:59.000Z

    During the week of January 27th to February 2nd, 1986 a design symposium was held in the Department of Architecture at Massachusetts Institute of Technology. This symposium, entitled "An Architecture of Substance" was ...

  9. Hazardous substance source seeking in a diffusion based noisy environment

    E-Print Network [OSTI]

    Hu, Huosheng

    --Recent ecological and natural disasters have high- lighted the need for further research into pollution monitoring ecological and natural disasters of the gulf of Mexico underwater oil pipe leak and the tsunami stricken or spatiotemporal quantity such as pollution using robotic agents has received a lot of interest in recent years

  10. Title 40 CFR 300 National Oil and Hazardous Substances Pollution

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson EthanolTillson,OpenOpen EnergyR.toEnergyAgreements

  11. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  12. Hazard Baseline Documentation

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1995-12-04T23:59:59.000Z

    This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

  13. Sustainable System for Residual Hazards Management

    SciTech Connect (OSTI)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-06-01T23:59:59.000Z

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

  14. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    SciTech Connect (OSTI)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01T23:59:59.000Z

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  15. The Control of Reproductive Hazards in the Workplace: A Prescription for Prevention

    E-Print Network [OSTI]

    Ashford, Nicholas

    1983-01-01T23:59:59.000Z

    As workers become more aware that occupational exposure to toxic substances can impair their ability to bring healthy children into the world. they will begin to focus on legal mechanisms for reducing reproductive hazards ...

  16. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  17. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  18. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  19. Climate Change and Forest Disturbances

    E-Print Network [OSTI]

    Dale, Virginia H.; Joyce, Linda A.; McNulty, Steve; Neilson, Ronald P.; Ayres, Matthew P.; Flannigan, Michael D.; Hanson, Paul J.; Irland, Lloyd C.; Lugo, Ariel E.; Peterson, Chris J.; Simberloff, Daniel; Swanson, Frederick J.; Stocks, Brian J.; Wotton, B. Michael; Peterson, A. Townsend

    2001-01-01T23:59:59.000Z

    of disturbances caused by climate change (e.g., Ojima et al. 1991).Yet modeling studies indicate the im- portance of climate effects on disturbance regimes (He et al. 1999). Local, regional, and global changes in temperature and precipitation can influence... circulation models (GCMs)—one de- veloped by the Hadley Center in the United Kingdom (HADCM2SUL) and one by the Canadian Climate Center (CGCM1)—have been selected for this national assessment (MacCracken et al. 2000). These transient GCMs simulate at...

  20. Hazardous Waste Management (Arkansas)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

  1. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  2. Hazard Analysis Database report

    SciTech Connect (OSTI)

    Niemi, B.J.

    1997-08-12T23:59:59.000Z

    This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

  3. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30T23:59:59.000Z

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  4. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Faraon, Andrei

    Principal Investigators 7 Laboratory Personnel 8 EH&S Personnel 8 HAZARDOUS WASTE ACCUMULATION AREAS 9 Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT LabelingHAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office

  5. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

  6. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    records. The initial training of Hazardous Waste Management and Waste Minimization is done in a classHazardous Waste Management Training Persons (including faculty, staff and students) working before handling hazardous waste. Departments are re- quired to keep records of training for as long

  7. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GRAMS, W.H.

    2000-12-28T23:59:59.000Z

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

  8. The Ecology of Risk in a Sunbelt City: A Multi-Hazard Analysis Amy Nelson, Bob Bolin, Ed Hackett, David Pijawka, Ed Sadalla, Diane Sicotte, Eric Matranga

    E-Print Network [OSTI]

    Hall, Sharon J.

    in the Phoenix, Arizona metropolitan area. The key focus is on the locations of hazardous industrial and toxic, and Disposal Facilities for hazardous substances, and Superfund sites are inequitably located in areas of potential risks produced by the colligation of point-source hazards in areas with disadvantaged populations

  9. Health-hazard evaluation report HETA 91-338-2187, IMC Corporation, Sterlington, Louisiana

    SciTech Connect (OSTI)

    Kiefer, M.; Tepper, A.; Miller, R.

    1992-03-01T23:59:59.000Z

    In response to a request from an authorized representative of the Construction and General Laborers Union, Local 762, an investigation was made of potential hazards for asbestos abatement contract workers at IMC Corporation, (SIC-2869), Sterlington, Louisiana. The IMC facility consisted of two ammonia facilities, a nitroparaffin (NP) facility, and a NP derivatives facility. An explosion occurred on May 1, 1991 in the NP facility, caused by a faulty compressor. During the post explosion renovation activities, an asbestos abatement firm was working on site due to the large amounts of asbestos (1332214) insulation which had been disturbed by the explosion. Records indicated that several workers complained of ill effects and odors on June 17 and 19. The incidents were investigated but no chemical exposure explanation was found. Routine and complaint based industrial hygiene monitoring was primarily area monitoring and not substance specific. Of the 25 workers interviewed, 22 had symptoms they felt were related to their work at IMC. The symptoms included those of the upper respiratory tract, central nervous system, and gastrointestinal system. The most common included diarrhea, nausea, headache, dizziness, and cough, each experienced by significantly more than half the subjects. The symptoms could not be linked conclusively to any specific chemical release, job task, work location, or food or drink source.

  10. Disturbance Rejection for Nonlinear Systems Zongxuan Sun

    E-Print Network [OSTI]

    Tsao, Tsu-Chin

    Disturbance Rejection for Nonlinear Systems Zongxuan Sun Research and Development Center General result for a class of minimum phase nonlinear systems with linear disturbances. Sun and Tsao (1999, 2001

  11. CONTROLLABILITY MEASURES FOR DISTURBANCE Sigurd Skogestad

    E-Print Network [OSTI]

    Skogestad, Sigurd

    of combined disturbances in the frequency domain using the singular value decomposition. Skogestad and MorariCONTROLLABILITY MEASURES FOR DISTURBANCE REJECTION Sigurd Skogestad and Erik A. Wol Chemical-in" disturbance rejection capabilities than others, that is, their dynamic resilience controllability with respect

  12. RECORD OF DESIGNATED SUBSTANCE ASSESSMENT SUBSTANCE: LEAD (plates and Gamma

    E-Print Network [OSTI]

    Thompson, Michael

    RECORD OF DESIGNATED SUBSTANCE ASSESSMENT SUBSTANCE: LEAD (plates and Gamma Source holder) DATE Direct / Indirect Per Month / Year Lead Mechanical Indirect No change Engineering CONCLUSIONS Read the plant? Product Title: Lead Type of Container: none Size of Container: not applicable 2. Is this form

  13. Hazard baseline documentation

    SciTech Connect (OSTI)

    Not Available

    1994-08-01T23:59:59.000Z

    This DOE limited technical standard establishes uniform Office of Environmental Management (EM) guidance on hazards baseline documents that identify and control radiological and nonradiological hazards for all EM facilities. It provides a road map to the safety and health hazard identification and control requirements contained in the Department`s orders and provides EM guidance on the applicability and integration of these requirements. This includes a definition of four classes of facilities (nuclear, non-nuclear, radiological, and other industrial); the thresholds for facility hazard classification; and applicable safety and health hazard identification, controls, and documentation. The standard applies to the classification, development, review, and approval of hazard identification and control documentation for EM facilities.

  14. Shedding a new light on hazardous waste

    SciTech Connect (OSTI)

    Reece, N.

    1991-02-01T23:59:59.000Z

    The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

  15. Adaptive Rejection of Narrow Band Disturbance in Hard Disk Drives

    E-Print Network [OSTI]

    Zheng, Qixing

    2009-01-01T23:59:59.000Z

    of attenuating low frequency disturbances. There are several0 Hz to reject low frequency disturbances, but the resultingattenuation at the disturbance frequency. We can also notice

  16. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  17. An OSHA based approach to safety analysis for nonradiological hazardous materials

    SciTech Connect (OSTI)

    Yurconic, M.

    1992-08-01T23:59:59.000Z

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

  18. Surveillance Guides - Hazards Control

    Broader source: Energy.gov (indexed) [DOE]

    Facility Representative RL Facility Representative Program March 9, 1995 Surveillance Guide Revision 0 Hazard Controls Page 5 of Error Bookmark not defined....

  19. Hazardous Wastes Management (Alabama)

    Broader source: Energy.gov [DOE]

    This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

  20. Safety Hazards of Batteries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Hazards of Batteries Battery technology is at the heart of much of our technological revolution. One of the most prevalent rechargeable batteries in use today is the...

  1. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  2. Hazardous Material Security (Maryland)

    Broader source: Energy.gov [DOE]

    All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

  3. HAZARDOUS MATERIALS Hazardous materials can be silent killers.

    E-Print Network [OSTI]

    Shinozuka, Masanobu

    HAZARDOUS MATERIALS #12;Hazardous materials can be silent killers. Almost every household they may be found, and what to do, or not do, about hazardous material spills. #12;Ways that hazardous or eyes · Ingestion; swallowing · Injection; penetrating skin #12;The key to dealing with hazardous

  4. Chapter 1 -Hazard Communication Hazard Communication and Training Act

    E-Print Network [OSTI]

    and Training Act require employers to inform workers about hazardous chemicals in their work areas13 Chapter 1 - Hazard Communication Hazard Communication and Training Act The Hazard Communication and Safety (EH&S) to administer a program to comply with this law. Hazardous Chemicals Index EH&S maintains

  5. Hazardous Waste Remedial Actions Program annual progress report, FY 1990

    SciTech Connect (OSTI)

    Not Available

    1990-12-01T23:59:59.000Z

    The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

  6. Hazard Communication at Purdue University

    E-Print Network [OSTI]

    Holland, Jeffrey

    Hazard Communication at Purdue University Radiological and Environmental Management Written APPENDICES A OSHA Health Hazard Definitions B OSHA Method Of Hazard Determination C Expanded List Completed Work Area Forms HCP-4, HCP-5, HCP-8 I Health Hazard Warning Information 1. Health Hazard Rating 2

  7. Effect of sample disturbance in opalinus clay shales

    E-Print Network [OSTI]

    Pei, Jianyong, 1975-

    2004-01-01T23:59:59.000Z

    The sample disturbance problem for different geomaterials is reviewed in this thesis. A general discussion on the disturbance sources and complexities of the disturbance problem is followed by detailed reviews on disturbance ...

  8. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-10-28T23:59:59.000Z

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  9. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  10. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  11. Hazardous Sites Cleanup Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

  12. Federal Substance Abuse Testing Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2014-01-30T23:59:59.000Z

    The Order establishes the requirements and responsibilities for the DOE Federal Substance Abuse Testing Program which covers drug and alcohol testing. Cancels DOE O 3792.3 Chg 1.

  13. NORTH AMERICAN ELECTRIC RELIABILITY COUNCIL: Preliminary Disturbance...

    Office of Environmental Management (EM)

    Preliminary Disturbance Report The following information represents a partial sequence of events based upon Reliability Coordinator information available to NERC. It is not...

  14. Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP)

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP) Site Specific Information The responsible party for a unit/area should complete this section to make the Hazard Communication Program site specific. The responsible party will ensure that the Hazard Communication Program

  15. Hazardous Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

  16. Hazardous Waste Management (Oklahoma)

    Broader source: Energy.gov [DOE]

    This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

  17. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  18. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  19. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  20. HAZARD ANALYSIS SOFTWARE

    SciTech Connect (OSTI)

    Sommer, S; Tinh Tran, T

    2008-04-08T23:59:59.000Z

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  1. Optimal Plant Shaping for High Bandwidth Disturbance Rejection in Discrete Disturbance Observers

    E-Print Network [OSTI]

    Mofrad, Mohammad R. K.

    Chen and Masayoshi Tomizuka Abstract-- The Q-filter cut-off frequency in a Disturbance Observer (DOB to a small value. From the disturbance rejection point of view, the higher the cut-off frequency c@me.berkeley.edu robust compensator to attenuate the low frequency disturbance and to provide the required robust perfor

  2. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  3. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  4. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    - Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

  5. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    /Eyes Hands Foot Body 7. THERMAL HAZARD DOES NOT EXIST DOES EXIST SOURCE OF HAZARD Welding Brazing Furnace/NON-IONIZING RADIATION HAZARD DOES NOT EXIST DOES EXIST SOURCE OF HAZARD Heat Treating Brazing Welding Oxygen Cutting Laser High Intensity Lighting Body Part Affected Head Face/Eyes Hands Foot Body #12;

  6. Hazardous Waste Disposal Sites (Iowa)

    Broader source: Energy.gov [DOE]

    These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

  7. Chemical process hazards analysis

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  8. Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-01-01T23:59:59.000Z

    The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

  9. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08T23:59:59.000Z

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  10. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01T23:59:59.000Z

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  11. abiotic disturbance population: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disturbing, but that the disturbance is still non-zero. Asger C. Ipsen 2014-09-11 269 Timber supply on public land in response to catastrophic natural disturbance: a...

  12. ameliorating metabolic disturbances: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disturbing, but that the disturbance is still non-zero. Asger C. Ipsen 2014-09-11 218 Timber supply on public land in response to catastrophic natural disturbance: a...

  13. acutely disturbed patients: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    disturbing, but that the disturbance is still non-zero. Asger C. Ipsen 2014-09-11 258 Timber supply on public land in response to catastrophic natural disturbance: a...

  14. Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction

    E-Print Network [OSTI]

    Bolding, M. Chad

    Soil Disturbance from an Integrated Mechanical Forest Fuel Reduction Operation in Southwest Oregon1 literature has quantified harvesting system effectiveness or soil disturbance concerns from such operations. This paper reports results of soil disturbance generated from an integrated forest harvesting

  15. Adaptive Algorithms for the Rejection of Sinusoidal Disturbances

    E-Print Network [OSTI]

    Douglas, Scott C.

    Adaptive Algorithms for the Rejection of Sinusoidal Disturbances with Unknown Frequency Marc Bodson Abstract Two algorithms are presented for the rejection of sinusoidal disturbances with un­ known frequency presented in which frequency estimation and disturbance cancellation are performed simultaneously. Ap

  16. Documentation of Disturbance-Dependent Threatened and Endangered Species

    E-Print Network [OSTI]

    Documentation of Disturbance-Dependent Threatened and Endangered Species on U.S. Army-05 #12;#12;Disturbance Dependent T&E Species Documentation of Disturbance-Dependent Threatened

  17. Environmental Hazards and

    E-Print Network [OSTI]

    Murphy, Bob

    . 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

  18. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01T23:59:59.000Z

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  19. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  20. Information-Disturbance theorem and Uncertainty Relation

    E-Print Network [OSTI]

    Takayuki Miyadera; Hideki Imai

    2007-07-31T23:59:59.000Z

    It has been shown that Information-Disturbance theorem can play an important role in security proof of quantum cryptography. The theorem is by itself interesting since it can be regarded as an information theoretic version of uncertainty principle. It, however, has been able to treat restricted situations. In this paper, the restriction on the source is abandoned, and a general information-disturbance theorem is obtained. The theorem relates information gain by Eve with information gain by Bob.

  1. Electric Disturbance Events (OE-417) | Department of Energy

    Energy Savers [EERE]

    Events (OE-417) Electric Disturbance Events (OE-417) The Electric Emergency Incident and Disturbance Report (Form OE-417) collects information on electric incidents and...

  2. Hazardous Waste Management (North Dakota)

    Broader source: Energy.gov [DOE]

    The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

  3. Montana Hazardous Waste Act (Montana)

    Broader source: Energy.gov [DOE]

    This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

  4. Coordination of Care in Substance Abuse Treatment: An Interorganizational Perspective

    E-Print Network [OSTI]

    Spear, Suzanne Evelyn

    2012-01-01T23:59:59.000Z

    substance abuse treatment under the Affordable Care Act.Coordination of Care in Substance Abuse Treatment: AnCoordination of Care in Substance Abuse Treatment: An

  5. antifungi substances produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extract was diluted with physiologic saline solution to a volume corresponding L. Bennett; B. Beeson 1953-01-01 3 Substance Use Disorders (Substance Dependence and Substance...

  6. antiphagocytic substances produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    extract was diluted with physiologic saline solution to a volume corresponding L. Bennett; B. Beeson 1953-01-01 3 Substance Use Disorders (Substance Dependence and Substance...

  7. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  8. Hazard Sampling Dialog General Layout

    E-Print Network [OSTI]

    Zhang, Tao

    1 Hazard Sampling Dialog General Layout The dialog's purpose is to display information about the hazardous material being sampled by the UGV so either the system or the UV specialist can identify the risk level of the hazard. The dialog is associated with the hazmat reading icons (Table 1). Components

  9. Appendix C: Hazardous Property Assessment

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Appendix C: Hazardous Property Assessment The aim of this appendix is to: · give advice on the hazards properties H1 to H14 identified in Annex III of the HWD; · provide assessment methods and threshold concentrations for the hazards; and · advise on which test methods should be considered

  10. LOG HAZARD REGRESSION Huiying Sun

    E-Print Network [OSTI]

    Heckman, Nancy E.

    LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 regression splines to estimate the two log marginal hazard func­ tions of bivariate survival times, where, 1995) hazard regression for estimating a univariate survival time. We derive an approach to find

  11. Written Hazard Communication (HAZCOM) Program

    E-Print Network [OSTI]

    Jia, Songtao

    chemicals The potential hazards of chemicals in the work area How to protect yourself from these potential for their respective work areas MSDS's shall be maintained by each department for all hazardous chemicals&S office has developed several employee training modules for specific work areas and hazardous materials

  12. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

  13. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23T23:59:59.000Z

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  14. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  15. National Nuclear Security Administration Categorical Exclusion...

    National Nuclear Security Administration (NNSA)

    disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that preexist in the environment such that there would be...

  16. Microsoft Word - DOE-ID-11-022 Ohio State - Cao EC.doc

    Broader source: Energy.gov (indexed) [DOE]

    3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be...

  17. Microsoft Word - DOE-ID-11-009 Utah EC.doc

    Broader source: Energy.gov (indexed) [DOE]

    3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be...

  18. Microsoft Word - DOE-ID-13-059 UC Irvine EC B3-15.doc

    Broader source: Energy.gov (indexed) [DOE]

    3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be...

  19. Microsoft Word - DOE-ID-12-010 VCU EC.doc

    Broader source: Energy.gov (indexed) [DOE]

    3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be...

  20. Microsoft Word - DOE-ID-11-004 Illinois EC.doc

    Broader source: Energy.gov (indexed) [DOE]

    3) disturb hazardous substances, pollutants, contaminants, or CERCLA-excluded petroleum and natural gas products that pre-exist in the environment such that there would be...

  1. Microsoft Word - CX_Memo_L0276.docx

    Broader source: Energy.gov (indexed) [DOE]

    siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities, (iii) disturb hazardous substances, pollutants, contaminants, or...

  2. ENVIRONMENT AL REVIEW for CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    but the proposal may include categorically excluded waste storage disposal, recovery, or treatment actions. --- 3) Disturb hazardous substances. pollutants. x contaminants,...

  3. ENVIRONMENTAL REVIEW FOR CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    but the proposal may include categorically excluded waste storage, disposal, recovery, or treatment actions or facilities; (3) Disturb hazardous substances, pollutants,...

  4. Microsoft Word - DRAFT Cowlitz Longview CX memo 080910.doc

    Broader source: Energy.gov (indexed) [DOE]

    siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities, (iii) disturb hazardous substances, pollutants, contaminants, or...

  5. Microsoft Word - 2010_NESC_Power_Purchase_Contract_CX.doc

    Broader source: Energy.gov (indexed) [DOE]

    siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities, (iii) disturb hazardous substances, pollutants, contaminants, or...

  6. ENVIRONMENTAL REVIEW for CATEGORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    the proposal may include categorically excluded was te storage, disposal. recovery. or treatment actions o r facilities: (3) Disturb hazardous substances, pollutants,...

  7. Microsoft Word - CX_Memo_Santiam.docx

    Broader source: Energy.gov (indexed) [DOE]

    siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities, (iii) disturb hazardous substances, pollutants, contaminants, or...

  8. Microsoft Word - CX_Memo_Naselle.docx

    Broader source: Energy.gov (indexed) [DOE]

    siting and construction or major expansion of waste storage, disposal, recovery, or treatment facilities, (iii) disturb hazardous substances, pollutants, contaminants, or...

  9. ENVIRONMENTAL REVIEW f"rCATECORICAL EXCLUSION DETERMINATION

    Broader source: Energy.gov (indexed) [DOE]

    but the proposal may include categorically excluded waste storage, disposal. recovery. or treatment actions or facilities; (3) Disturb hazardous substances, pollutants,...

  10. EV I

    Broader source: Energy.gov (indexed) [DOE]

    but the proposal may include categorically excluded waste storage. disposal. recovery. or treatment actions or facilities; (3) Disturb hazardous substances, pollutants....

  11. The radioactive Substances (Uranium and Thorium) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No.2710 ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption Order 1962...

  12. MERCURY RELEASE FROM DISTURBED ANOXIC SOILS

    SciTech Connect (OSTI)

    Jaroslav Solc; Bethany A. Bolles

    2001-07-16T23:59:59.000Z

    The primary objectives of experiments conducted at the Energy & Environmental Research Center (EERC) were to provide information on the secondary release of mercury from contaminated anoxic sediments to an aqueous environment after disturbance/change of in situ physical conditions and to evaluate its migration and partitioning under controlled conditions, including implications of these processes for treatment of contaminated soils. Experimental work included (1) characterization of the mercury-contaminated sediment; (2) field bench-scale dredging simulation; (3) laboratory column study to evaluate a longer-term response to sediment disturbance; (4) mercury volatilization from sediment during controlled drying; (5) resaturation experiments to evaluate the potential for secondary release of residual mercury after disturbance, transport, drying, and resaturation, which simulate a typical scenario during soil excavation and transport to waste disposal facilities; and (6) mercury speciation and potential for methylation during column incubation experiments.

  13. ORISE: Hazard Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE ProjectCrisis and RiskEnvironment AtGraduateH1N1Hazard

  14. Solar Processes for the Destruction of Hazardous Chemicals

    SciTech Connect (OSTI)

    Blake, D. M.

    1993-06-01T23:59:59.000Z

    Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

  15. adjacent fire disturbed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B. 339 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

  16. Surveillance Guides - Identification of Hazards

    Broader source: Energy.gov (indexed) [DOE]

    Date: Facility Representative RL Facility Representative Program March 9, 1995 Surveillance Guide Revision 0 Identification of hazards Page 1 of 5...

  17. Hazardous Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    "Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

  18. Hazardous Waste Facilities Siting (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

  19. Hazardous Waste Transporter Permits (Connecticut)

    Broader source: Energy.gov [DOE]

    Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

  20. Nebraska Hazardous Waste Regulations (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

  1. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  2. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  3. Disturbance, spatial turnover, and species coexistence in grassland plant communities

    E-Print Network [OSTI]

    Questad, Erin

    2008-08-18T23:59:59.000Z

    Humans have dramatically altered natural disturbance regimes. We thus need to understand how these alterations affect plant communities and whether natural disturbance regimes can be restored. I explored the effect of ...

  4. PROFILING SUBSTANCE ABUSE PROVIDER TRENDS IN

    E-Print Network [OSTI]

    West, Mike

    PROFILING SUBSTANCE ABUSE PROVIDER TRENDS IN HEALTH CARE DELIVERY SYSTEMS || James F. Burgess, Jr using several covariates. This is illustrated here in the context of sub- stance abuse care. One common process monitor for systems delivering substance abuse care is follow-up outpatient care within a certain

  5. Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 UC Regents Page 1 of 28

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 © UC Regents Page 1 of 28 This Laboratory Hazard Assessment Tool (LHAT) facilitates identification of hazards and identifies the Personal as hazards and personnel change, and at least once every 12 months, irrespective of changes to hazards

  6. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. [Oak Ridge National Lab., TN (United States); Taylor, E.R. Jr. [ABB Power Systems, Inc., Pittsburgh, PA (United States); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems` responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  7. Electric utility industry experience with geomagnetic disturbances

    SciTech Connect (OSTI)

    Barnes, P.R.; Rizy, D.T.; McConnell, B.W. (Oak Ridge National Lab., TN (United States)); Taylor, E.R. Jr. (ABB Power Systems, Inc., Pittsburgh, PA (United States)); Tesche, F.M.

    1991-09-01T23:59:59.000Z

    A geomagnetic disturbance (GMD) by its nature occurs globally and almost simultaneously. Severe geomagnetic storms cause problems for electric power systems. The vulnerability of electric power systems to such events has apparently increased during the last 10 to 20 years because power system transmission lines have become more interconnected and have increased in length and because power systems are now operated closer to their limits than in the past. In this report, the experience of electric utilities during geomagnetic storms is examined and analyzed. Measured data, effects on power system components, and power system impacts are considered. It has been found that electric power systems are susceptible to geomagnetically induced earth-surface potential gradients as small as few (2 to 3) volts per kilometer, corresponding to a storm of K-6 intensity over an area of high earth resistivity. The causes and effects are reasonably well understood, but additional research is needed to develop a better understanding of solar-induced geomagnetic storms and the responses of power systems to these types of storms. A better understanding of geomagnetic storms and the power systems' responses to GMDs is needed so that mitigation measures can be implemented that will make power systems less susceptible to severe geomagnetic disturbances. A GMD caused by a large high-altitude nuclear detonation is similar in many ways to that of solar-induced geomagnetic storms except that a nuclear-caused disturbance would be much more intense with a far shorter duration. 49 refs.

  8. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  9. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  10. Hazardous Waste Facility Siting Program (Maryland)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

  11. COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD

    E-Print Network [OSTI]

    Sheehan, Anne F.

    COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado, seismic, seismicity, crust, fault, hazard ABSTRACT Construction of seismic hazard and risk maps depends upon carefully constrained input parameters including background seismicity, seismic attenuation

  12. Analysis of Periodic GrowthDisturbance Models Timothy C. Reluga

    E-Print Network [OSTI]

    Reluga, Tim

    model for a fluctuating population. Changes in the disturbance frequency are shown to generate a period-bubbling bifurcation structure and population dynamics that are most variable at intermediate disturbance frequenciesAnalysis of Periodic Growth­Disturbance Models Timothy C. Reluga treluga

  13. Tracking and disturbance rejection for passive nonlinear systems Bayu Jayawardhana

    E-Print Network [OSTI]

    Sontag, Eduardo

    signals of frequency . If the reference and disturbance signals are periodic, then the internal modelTracking and disturbance rejection for passive nonlinear systems Bayu Jayawardhana Abstract tracking of constant reference signal and disturbance rejection of a finite superposition of sine waves

  14. Disturbance and Landscape Dynamics The Rocky Mountains, Lander's Peak, 1863

    E-Print Network [OSTI]

    Hansen, Andrew J.

    environment. (Pickett and White 1985) Defining and Quantifying Disturbance #12;Frequency - number a specified time. Defining and Quantifying Disturbance #12;Frequency: none Frequency: 250-500 yrs SeverityBioe 515 Disturbance and Landscape Dynamics #12;The Rocky Mountains, Lander's Peak, 1863 Albert

  15. Fire and Sudden Oak Death in Coast Redwood Forests: Effects of Two Distinct Disturbances

    E-Print Network [OSTI]

    Ramage, Benjamin Sean

    2011-01-01T23:59:59.000Z

    2009. Effects of disturbance frequency, species traits andinclude disturbance type, frequency, scale/size, intensity,frequency, intensity), or they may result from entirely new disturbance

  16. Disturbance Cancellation by State Derivative Feedback with Application to Ramp-Connected Surface Effect Ships

    E-Print Network [OSTI]

    Basturk, Halil I.

    for only single frequency wave disturbance. This feature ofsinusoidal disturbances with unknown frequency,” Automatica,soidal disturbances with unknown frequency,” Automatica, 33,

  17. Realtime controller tuning for periodic disturbance rejection with application to active noise control

    E-Print Network [OSTI]

    Kinney, Charles E.

    2009-01-01T23:59:59.000Z

    precisely model the disturbance frequency and therefore manyknowledge of the disturbance frequency. To overcome this,perturbations in the disturbance frequency. Steinbuch [2002

  18. Hazard Lewis Farms Collection Binghamton University Libraries

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Hazard Lewis Farms Collection Binghamton University Libraries Special Collections Hazard Lewis Farms Collection Finding Aid created 2012 Jean Green, Head of Special Collections, Preservation

  19. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  20. Bibliography of work on the photocatalytic removal of hazardous compounds from water and air

    SciTech Connect (OSTI)

    Blake, D.M.

    1994-05-01T23:59:59.000Z

    This is a bibliography of information in the open literature on work that has been done to date on the photocatalytic oxidation of compounds, principally organic compounds. The goal of the listing is removing hazardous oompounds from water or air. It contains lists of substances and literature citations. The bibliography includes information obtained through the middle of 1993 and some selected references for the balance of that year.

  1. Quenching Reactive Substances Virginia Tech Chemistry Department

    E-Print Network [OSTI]

    Crawford, T. Daniel

    . The solid can then be transferred to a waste container, preferably one that does not also contain by the Hazardous Waste crew without further treatment. Bottles containing large amounts of leftover reagent, large that they may be transferred to ordinary Hazardous Waste containers. Workers should not hesitate to ask

  2. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01T23:59:59.000Z

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  3. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    SciTech Connect (OSTI)

    R. Longwell; J. Keifer; S. Goodin

    2001-01-22T23:59:59.000Z

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

  4. Method of recycling hazardous waste

    SciTech Connect (OSTI)

    NONE

    1999-11-11T23:59:59.000Z

    The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

  5. Hazardous and Industrial Waste (Minnesota)

    Broader source: Energy.gov [DOE]

    This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

  6. Hazardous Waste Management Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

  7. Hazardous Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

  8. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01T23:59:59.000Z

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  9. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    Kolker, A.; Sarofim, A.F.; Palmer, C.A.; Huggins, F.E.; Huffman, G.P.; Lighty, J.; Veranth, J.; Helble, J.J.; Wendt, J.O.L.; Ames, M.R.; Finkelman, R.; Mamani-Paco, M.; Sterling, R.; Mroczkowsky, S.J.; Panagiotou, T.; Seames, W.

    1999-05-10T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environ-mental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NOx combustion systems, and new power generation plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 January 1999 to 31 March 1999. During this period, a full Program Review Meeting was held at the University of Arizona. At this meeting, the progress of each group was reviewed, plans for the following 9 month period were discussed, and action items (principally associated with the transfer of samples and reports among the various investigators) were identified.

  10. Toxic Substances Control Act Uranium Enrichment Federal Facility...

    Office of Environmental Management (EM)

    Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic Substances Control Act Uranium Enrichment Federal Facility Compliance Agreement Toxic...

  11. Extracellular Polymeric Substances from Shewanella sp. HRCR-1...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polymeric Substances from Shewanella sp. HRCR-1 Biofilms: Characterization by Infrared Spectroscopy and Proteomics Extracellular Polymeric Substances from Shewanella sp. HRCR-1...

  12. The radioactive Substances (Prepared Uranium Thorium Compounds) Exemption Order 1962 

    E-Print Network [OSTI]

    Joseph, Keith

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2711 ATOMIC ENERGY AND RADIOACI1VE SUBSTANCES The Radioactive Substances (prepared Uranium and Thorium Compounds) Exemption Order 1962...

  13. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01T23:59:59.000Z

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  14. Safety Policy Arrangement 19-2002 (rev. 20010) Control of Substances Hazardous to Health (COSHH)

    E-Print Network [OSTI]

    Davidson, Fordyce A.

    testing of local exhaust ventilation systems is carried out at least annually. Deans/Directors are responsible for ensuring maintenance of local exhaust ventilation is carried out when required, eg filter for ensuring testing of ventilation systems and fume cupboards is carried out at least annually and that any

  15. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH Part A--Toxic/Hazardous Substances & Environmental Engineering

    E-Print Network [OSTI]

    Rockne, Karl J.

    for the remediation of the residual chloroethene. We hypothesized that ethyl lactate, a ``green'' solvent, could serve

  16. Program to monitor Department of Energy workers exposed to hazardous and radioactive substances

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | Department of EnergyTheTheUpdate:50 CHAPTER

  17. System and method for identifying, reporting, and evaluating presence of substance

    DOE Patents [OSTI]

    Smith, Maurice (Kansas City, MO); Lusby, Michael (Kansas City, MO); Van Hook, Arthur (Lake Lotawana, MO); Cook, Charles J. (Raytown, MO); Wenski, Edward G. (Lenexa, KS); Solyom, David (Overland Park, KS)

    2006-10-24T23:59:59.000Z

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  18. System and method for identifying, reporting, and evaluating presence of substance

    SciTech Connect (OSTI)

    Smith, Maurice (Kansas City, MO); Lusby, Michael (Kansas City, MO); Van Hook, Arthur (Lotawana, MO); Cook, Charles J. (Raytown, MO); Wenski, Edward G. (Lenexa, KS); Solyom, David (Overland Park, KS)

    2012-02-14T23:59:59.000Z

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  19. System And Method For Identifying, Reporting, And Evaluating Presence Of Substance

    DOE Patents [OSTI]

    Smith, Maurice (Kansas City, MO); Lusby, Michael (Kansas City, MO); Hook, Arthur Van (Lake Lotawana, MO); Cook, Charles J. (Raytown, MO); Wenski, Edward G. (Lenexa, KS); Solyom, David (Overland Park, KS)

    2005-09-20T23:59:59.000Z

    A system and method for identifying, reporting, and evaluating a presence of a solid, liquid, gas, or other substance of interest, particularly a dangerous, hazardous, or otherwise threatening chemical, biological, or radioactive substance. The system comprises one or more substantially automated, location self-aware remote sensing units; a control unit; and one or more data processing and storage servers. Data is collected by the remote sensing units and transmitted to the control unit; the control unit generates and uploads a report incorporating the data to the servers; and thereafter the report is available for review by a hierarchy of responsive and evaluative authorities via a wide area network. The evaluative authorities include a group of relevant experts who may be widely or even globally distributed.

  20. Bulletin No. 233 Ergonomic Hazards of the

    E-Print Network [OSTI]

    Martin, Jeff

    July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

  1. LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Portman, Douglas

    1 LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE MANAGEMENT UNIVERSITY OF ROCHESTER the effects of improper hazardous waste management and disposal. Each person who works with hazardous is managed by the Hazardous Waste Management Unit (HWMU) of Facilities and Services. To contact HWMU dial x

  2. Hazard % free free espresso Over Run

    E-Print Network [OSTI]

    Dill, David L.

    Total Products Hazard­ Hazard­ % free free espresso­ Over­ Run­ name in/out Method exact head time 5 0 1 dme­fast­opt 5/3 8 8 0 1 Table 2. Comparison of Hazard­Free Logic Minimization with espresso­level hazard­free minimization prob­ lem for several reasons: the general problem has not pre­ viously been

  3. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  4. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  5. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  6. Toxicities of selected substances to freshwater biota

    SciTech Connect (OSTI)

    Hohreiter, D.W.

    1980-05-01T23:59:59.000Z

    The amount of data available concerning the toxicity of various substances to freshwater biota is so large that it is difficult to use in a practical situation, such as environmental impact assessment. In this document, summary tables are presented showing acute and/or chronic toxicity of selected substances for various groups of aquatic biota. Each entry is referenced to its original source so that details concerning experimental conditions may be consulted. In addition, general information concerning factors modifying toxicity, synergisms, evidence of bioaccumulation, and water quality standards and criteria for the selected substances is given. The final table is a general toxicity table designed to provide an easily accessible and general indication of toxicity of selected substances in aquatic systems.

  7. Humic substance formation during wastewater infiltration

    SciTech Connect (OSTI)

    Siegrist, R.L. (Oak Ridge National Lab., TN (United States)); Hildmann-Smed, R.; Filip, Z.K. (Bundesgesundheitsamt (BGA), Langen (Germany). Inst. fuer Wasser-, Boden- und Lufthygiene); Jenssen, P.D. (Norges Landbrukshoegskole, Aas (Norway). Centre for Soil and Environmental Research)

    1991-01-01T23:59:59.000Z

    Soil infiltration of wastewater effluents is a widely practiced method of treatment and disposal/reuse throughout the world. Renovation of the wastewater results from a wide variety of complex physicochemical and biological processes. One set of processes is speculated to involve the accumulation of organic matter by filtration and sorption followed by formation of humic substances. This humic substance formation can effect the performance of soil treatment systems by contributing to soil pore clogging and reduction in hydraulic capacity, and by yielding reactive substances and an enhancement of purification processes. While there has been a wealth of research into the nature and genesis of humic substances in terrestrial environments, there has been limited research of humic substance formation during soil infiltration of wastewater. The purpose of the research reported herein was to determine if humic substances can form under conditions typical of those present during wastewater infiltration into natural soil systems. This work was conducted during 1989 to 1990 as a collaborative effort between the Centre for Soil and Environmental Research, located in Aas, Norway and the Institute for Water, Soil and Air Hygiene located in Langen, West Germany. 11 refs., 3 figs., 6 tabs.

  8. Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards

    E-Print Network [OSTI]

    Fleskes, Joe

    Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards Demonstration Survey #12;#12;Increasing Resiliency to Natural Hazards--A Strategic Plan for the Multi-Hazards on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  9. Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard Assessment Tool This form must Hazard Assessment specific to activities in their laboratories. The Activity Hazard Assessment identifies hazards to employees and specifies personal protective equipment (PPE) to protect employees during work

  10. Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products

    E-Print Network [OSTI]

    de Lijser, Peter

    over a larger area and releases them into the air. Pouring hazardous liquids on the ground can poisonHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

  11. Chemical hazards associated with treatment of waste electrical and electronic equipment

    SciTech Connect (OSTI)

    Tsydenova, Oyuna [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan); Bengtsson, Magnus, E-mail: bengtsson@iges.or.jp [Institute for Global Environmental Strategies, 2108-11 Kamiyamaguchi, Hayama, Kanagawa 240-0115 (Japan)

    2011-01-15T23:59:59.000Z

    This review paper summarizes the existing knowledge on the chemical hazards associated with recycling and other end-of-life treatment options of waste electrical and electronic equipment (e-waste). The hazards arise from the presence of heavy metals (e.g., mercury, cadmium, lead, etc.), flame retardants (e.g., pentabromophenol, polybrominated diphenyl ethers (PBDEs), tetrabromobisphenol-A (TBBPA), etc.) and other potentially harmful substances in e-waste. If improperly managed, the substances may pose significant human and environmental health risks. The review describes the potentially hazardous content of e-waste, examines the existing e-waste management practices and presents scientific data on human exposure to chemicals, workplace and environmental pollution associated with the three major e-waste management options, i.e., recycling, incineration and landfilling. The existing e-waste management practices and associated hazards are reviewed separately for developed and developing countries. Finally, based on this review, the paper identifies gaps in the existing knowledge and makes some recommendations for future research.

  12. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  13. Secondary plant succession on disturbed sites at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    Angerer, J.P.; Ostler, W.K.; Gabbert, W.D.; Schultz, B.W.

    1994-12-01T23:59:59.000Z

    This report presents the results of a study of secondary plant succession on disturbed sites created during initial site investigations in the late 1970s and early 1980s at Yucca Mountain, NV. Specific study objectives were to determine the rate and success of secondary plant succession, identify plant species found in disturbances that may be suitable for site-specific reclamation, and to identify environmental variables that influence succession on disturbed sites. During 1991 and 1992, fifty seven disturbed sites were located. Vegetation parameters, disturbance characteristics and environmental variables were measured at each site. Disturbed site vegetation parameters were compared to that of undisturbed sites to determine the status of disturbed site plant succession. Vegetation on disturbed sites, after an average of ten years, was different from undisturbed areas. Ambrosia dumosa, Chrysothamnus teretifolius, Hymenoclea salsola, Gutierrezia sarothrae, Atriplex confertifolia, Atriplex canescens, and Stephanomeria pauciflora were the most dominant species across all disturbed sites. With the exception of A. dumosa, these species were generally minor components of the undisturbed vegetation. Elevation, soil compaction, soil potassium, and amounts of sand and gravel in the soil were found to be significant environmental variables influencing the species composition and abundance of perennial plants on disturbed sites. The recovery rate for disturbed site secondary succession was estimated. Using a linear function (which would represent optimal conditions), the recovery rate for perennial plant cover, regardless of which species comprised the cover, was estimated to be 20 years. However, when a logarithmic function (which would represent probable conditions) was used, the recovery rate was estimated to be 845 years. Recommendations for future studies and site-specific reclamation of disturbances are presented.

  14. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    SciTech Connect (OSTI)

    R.J. Garrett

    2005-02-17T23:59:59.000Z

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

  15. TOXIC SUBSTANCES FROM COAL COMBUSTION

    SciTech Connect (OSTI)

    A KOLKER; AF SAROFIM; CL SENIOR; FE HUGGINS; GP HUFFMAN; I OLMEZ; J LIGHTY; JOL WENDT; JOSEPH J HELBLE; MR AMES; N YAP; R FINKELMAN; T PANAGIOTOU; W SEAMES

    1998-12-08T23:59:59.000Z

    The Clean Air Act Amendments of 1990 identify a number of hazardous air pollutants (HAPs) as candidates for regulation. Should regulations be imposed on HAP emissions from coal-fired power plants, a sound understanding of the fundamental principles controlling the formation and partitioning of toxic species during coal combustion will be needed. With support from the Federal Energy Technology Center (FETC), the Electric Power Research Institute, the Lignite Research Council, and VTT (Finland), Physical Sciences Inc. (PSI) has teamed with researchers from USGS, MIT, the University of Arizona (UA), the University of Kentucky (UK), the University of Connecticut (UC), the University of Utah (UU) and the University of North Dakota Energy and Environmental Research Center (EERC) to develop a broadly applicable emissions model useful to regulators and utility planners. The new Toxics Partitioning Engineering Model (ToPEM) will be applicable to all combustion conditions including new fuels and coal blends, low-NO combustion systems, and new power generation x plants. Development of ToPEM will be based on PSI's existing Engineering Model for Ash Formation (EMAF). This report covers the reporting period from 1 July 1998 through 30 September 1998. During this period distribution of all three Phase II coals was completed. Standard analyses for the whole coal samples were also completed. Mössbauer analysis of all project coals and fractions received to date has been completed in order to obtain details of the iron mineralogy. The analyses of arsenic XAFS data for two of the project coals and for some high arsenic coals have been completed. Duplicate splits of the Ohio 5,6,7 and North Dakota lignite samples were taken through all four steps of the selective leaching procedure. Leaching analysis of the Wyodak coal has recently commenced. Preparation of polished coal/epoxy pellets for probe/SEM studies is underway. Some exploratory mercury LIII XAFS work was carried out during August at the Advanced Photon Source (APS), the new synchrotron facility at Argonne National Laboratory, Chicago, IL. Further analysis of small-scale combustion experiments conducted at PSI in Phase I was completed this quarter. The results of these experiments for the first time suggest almost complete vaporization of certain trace elements (Se, Zn) from coal combustion in the flame zone, in accordance with theoretical equilibrium predictions. Other elements (As, Sb, Cr) appeared considerably less volatile and may react with constituents in the bulk ash at combustion temperatures. The combustion section of the University of Arizona's Downflow Combustor was completely rebuilt. The University of Utah worked on setting up EPA Method 26A to give the capability to measure chlorine in flue gas. The chlorine kinetic calculations performed as part of the Phase I program were found to have an error in the initial conditions. Therefore, the calculations were re-done this quarter with the correct starting conditions. Development of a quasi-empirical emissions model based on reported emissions of particulate matter from field measurements was continued this quarter. As a first step in developing the ToPEM, we developed a sub-model that calculates the evaporation of major elements (Na, K, Fe, Si, Al, Ca and Mg) from both inherent and extraneous minerals of coal. During this quarter, this sub-model was included into EMAF, which formed the ToPEM. Experimental data from the Phase I program were used to test and modify the sub-model and the ToPEM.

  16. Health physics and public health activities at hazardous wastes sites

    SciTech Connect (OSTI)

    Charp, P.A. [Agency for Toxic Substances and Disease Registry, Atlanta, GA (United States)

    1995-12-31T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry (ATSDR) has worked with the U.S. Environmental Protection Agency (EPA) at several sites contaminated with radioactive materials. The Navajo Brown Vandever (B-V) uranium mine site near Bluewater, New Mexico, and the Austin Avenue Radiation Site (AAR) in Lansdowne, Pennsylvania were the subject of ATSDR health advisories. The sites were contamined with uranium or uranium byproducts but the identification of potential health effects and actions taken to prevent or reduce exposures were approached from different perspectives. At B-V contaminants included uranium and mine tailings, radium, and radon. Contaminants at the site and physical hazards were removed. At AAR, radium and radon were located in residential settings. Residents who might have had annual exposures greater than accepted standards or recommendations were relocated and contaminated building demolished.

  17. A Green Laser Pointer Hazard

    E-Print Network [OSTI]

    Jemellie Galang; Allesandro Restelli; Edward W. Hagley; Charles W. Clark

    2010-08-09T23:59:59.000Z

    An inexpensive green laser pointer was found to emit 20 mW of infrared radiation during normal use. This is potentially a serious hazard that would not be noticed by most users of such pointers. We find that this infrared emission derives from the design of the pointer, and describe a simple method of testing for infrared emissions using common household items.

  18. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31T23:59:59.000Z

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  19. WHC fire hazards analysis policy

    SciTech Connect (OSTI)

    Evans, C.B.

    1994-04-01T23:59:59.000Z

    The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

  20. Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for hazardous air...

  1. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01T23:59:59.000Z

    Chlorine Gas: An Evolving Hazardous Material Threat andChlorine gas represents a hazardous material threat fromrepresents a persistent hazardous material (HAZMAT) threat.

  2. The Cost of Power Disturbances to Industrial & Digital Economy Companies

    E-Print Network [OSTI]

    Schrijver, Karel

    's Consortium for Electric Infrastructure for a Digital Society (CEIDS) By 1001 Fourier Drive, Suite 200 MadisonThe Cost of Power Disturbances to Industrial & Digital Economy Companies Submitted to: EPRI To Client #12;The Cost of Power Disturbances to Industrial & Digital Economy Companies Confidential

  3. UNPACKING COMPLEXITIES OF DISTURBANCE: INSIGHTS FROM CROSS-SYSTEM COMPARISONS

    E-Print Network [OSTI]

    Minnesota, University of

    Duniway, and Christine Laney are with the US Department of Agriculture-Agricultural Research Service;Abstract Current use of definitions of disturbance limit quantitative comparisons of the effects: disturbance, drought, ecological theory, global change, hurricane, overgrazing, thresholds, wildfire 2 #12

  4. Universally Valid Error-Disturbance Relations in Continuous Measurements

    E-Print Network [OSTI]

    Atsushi Nishizawa; Yanbei Chen

    2015-05-31T23:59:59.000Z

    In quantum physics, measurement error and disturbance were first naively thought to be simply constrained by the Heisenberg uncertainty relation. Later, more rigorous analysis showed that the error and disturbance satisfy more subtle inequalities. Several versions of universally valid error-disturbance relations (EDR) have already been obtained and experimentally verified in the regimes where naive applications of the Heisenberg uncertainty relation failed. However, these EDRs were formulated for discrete measurements. In this paper, we consider continuous measurement processes and obtain new EDR inequalities in the Fourier space: in terms of the power spectra of the system and probe variables. By applying our EDRs to a linear optomechanical system, we confirm that a tradeoff relation between error and disturbance leads to the existence of an optimal strength of the disturbance in a joint measurement. Interestingly, even with this optimal case, the inequality of the new EDR is not saturated because of doublely existing standard quantum limits in the inequality.

  5. Owning Hazard, A Tragedy Barbara Young Welke*

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    693 Owning Hazard, A Tragedy Barbara Young Welke* In Memory of Frances Young Welke (March 21, 1992 in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

  6. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  7. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  8. Oklahoma Hazardous Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

  9. D-Area Preliminary Hazards Analysis

    SciTech Connect (OSTI)

    Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

    1998-04-01T23:59:59.000Z

    A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

  10. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  11. Hazard & Disaster Management College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Hazard & Disaster Management College of Science 09 For further information about the University Postgraduate Programmes #12;PostgraduateProgrammes in Hazard & Disaster Management Postgraduate Diploma - BSc by risk management. These programmes aim to develop skills of hazard and disaster management through

  12. University of Florida Hazard Communication Program

    E-Print Network [OSTI]

    Slatton, Clint

    in the following areas with regard to the inventoried hazardous chemicals to which I am exposed: a. The chemical involving them in my work area. c. The proper and safe handling of the hazardous chemicals. d. The location chemicals. f. The physical and health hazards of the chemicals in my work area. g. Methods to protect myself

  13. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  14. HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS

    E-Print Network [OSTI]

    Kim, Duck O.

    containers, pickup hazardous drug waste and provide chemo spill kits to appropriate areas. The OfficeHAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC AND OTHER HAZARDOUS DRUGS, administration and disposal of drug residues. Drugs are classified as hazardous if studies in animals and

  15. Environmental and occupational hazards of the anesthesia workplace

    SciTech Connect (OSTI)

    Kole, T.E.

    1990-10-01T23:59:59.000Z

    Our present state of research and knowledge strongly suggests that the volatile agents, halothane, enflurane and isoflurane, present only a minimal threat to our environment. Nitrous oxide, however, has ozone-depleting potential as well as a greenhouse gas effect which may contribute much to the problem of global warming over the next few decades. Release of anesthetic gases into the atmosphere presents a small problem in contrast to other sources of ozone-depleting chemicals and greenhouse gases, but anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by reevaluating the use of N2O, using low flows of gases and exploring the use of activated charcoal absorption in the scavenging systems to remove volatile agents. Infectious waste, radiation, lasers, chemicals and waste gases pose possible occupational health hazards in the operating room. Each of us should play a critical role in monitoring harmful substances and should actively practice techniques which would lessen the hazards. We should be cognizant of the fact that sources not yet introduced into our environment may have adverse effects on our health and that vigilance and education are key factors in maintaining a safe work environment.24 references.

  16. Hazard Avoidance in Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    Hazard Avoidance in Wireless Sensor and Actor Networks Ramanuja Vedantham Zhenyun Zhuang Prof [Akyildiz'04] Network Low bandwidth (Hazards Hazards undesirable changes in the environment Reason for hazards Different latencies For different sensors and actors

  17. Canister Storage Building (CSB) Hazard Analysis Report

    SciTech Connect (OSTI)

    POWERS, T.B.

    2000-03-16T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

  18. Peculiarities of Ferro-Antiferroelectric Phase Transitions 9. Alternative for dipole-glass description of properties of substances with coexisting ferroelectric and antiferroelectric phases

    E-Print Network [OSTI]

    V. M. Ishchuk; V. L. Sobolev

    2010-07-01T23:59:59.000Z

    It is demonstrated that the substances with small difference in the free energies of the ferroelectric and antiferroelectric phases possess a set of properties characteristic for the so-called "dipole glasses". Possible phase diagrams of the substances that can be misguidedly attributed to glasses are discussed. Main attention has been paid to the process of long-time relaxation of physical characteristics of these compounds after their state of thermodynamic equilibrium was disturbed by external influences. The long-time relaxation along with the pronounced frequency dependence of parameters (for example, dependence of dielectric or magnetic characteristics on the frequency of measuring field) is considered as main features due to which these systems are classified as dipole glasses. Our main purpose is to call attention to the fact that one has to be cautious during the interpretation of experimental results in substances with inhomogeneous states of coexisting domains of ferroelectric and antiferroelectric phases.

  19. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  20. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  1. Training for hazardous waste workers

    SciTech Connect (OSTI)

    Favel, K.

    1990-10-26T23:59:59.000Z

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  2. A meta-analysis of soil microbial biomass responses to forest disturbances

    E-Print Network [OSTI]

    Holden, Sandra R; Treseder, Kathleen K

    2013-01-01T23:59:59.000Z

    linked increases in disturbance frequency will affect soilthe frequency and severity of forest disturbances, withfrequency and severity of distur- bance events in forests. Our results imply that these disturbance

  3. Geographic patterns of diversity in streams are predicted by a multivariate model of disturbance and productivity

    E-Print Network [OSTI]

    Cardinale, Bradley J; Hillebrand, H; Charles, D F

    2006-01-01T23:59:59.000Z

    of productivity and disturbance frequency, and an increasing= ?4.81, P disturbance frequency (b 4 = ?4.57 ±stream lati- tude and disturbance frequency (r = 0.03, P =

  4. University of Nevada, Reno Plant Community Invasibility in Riparian Landscapes: Role of Disturbance,

    E-Print Network [OSTI]

    Weisberg, Peter J.

    , diversions, and inter-basin water transfers alter disturbance regimes (flood frequency, magnitude, timingUniversity of Nevada, Reno Plant Community Invasibility in Riparian Landscapes: Role of Disturbance GRACE MORTENSON entitled Plant Community Invasibility in Riparian Landscapes: Role of Disturbance

  5. Classification of power quality disturbances using time-frequency ambiguity plane and

    E-Print Network [OSTI]

    Mamishev, Alexander

    Classification of power quality disturbances using time-frequency ambiguity plane and neural disturbances in power systems is an important task in power system monitoring and protection, This paper discussed. Keywords -- Power Quality Disturbances, Classification, Ambiguity Plane, Modified Fisher

  6. The steady-state mosaic of disturbance and succession across an old-growth Central Amazon forest landscape

    E-Print Network [OSTI]

    2013-01-01T23:59:59.000Z

    on return frequencies for episodic disturbances, a balancereturn frequency of succession-inducing disturbances, variesEpisodic disturbance events with return frequencies greater

  7. Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can be (but is not

    E-Print Network [OSTI]

    Chapman, Michael S.

    Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can of severity of hazard and alert the reader to a potential hazard on the label. There are only two signal words, "Danger" and "Warning." Within a specific hazard class, "Danger" is used for the more severe hazards

  8. Scanning probe microscopy with inherent disturbance suppression using micromechanical systems

    E-Print Network [OSTI]

    Sparks, Andrew William, 1977-

    2005-01-01T23:59:59.000Z

    All scanning probe microscopes (SPMs) are affected by disturbances, or mechanical noise, in their environments which can limit their imaging resolution. This thesis introduces a general approach for suppressing out-of-plane ...

  9. ORIGINAL PAPER Does off-trail backcountry skiing disturb moose?

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    consequences on wildlife's energy budget if wildlife resists habituation, if an animal's risk perception and Gutzwiller 1995; Stankowich 2008). Human-induced disturbances may affect wildlife ecology because they may

  10. Disturbances, organisms and ecosystems: a global change perspective

    E-Print Network [OSTI]

    -called "barbarians" are weakly efficient in a stable environment because they waste energy for foraging, growth, to anticipate disturbances will be examined in the light of evolutionary processes. At last, strategies by which

  11. Evolution of aquatic insect behaviours across a gradient of disturbance predictability

    E-Print Network [OSTI]

    Evolution of aquatic insect behaviours across a gradient of disturbance predictability David A `sufficient'. At one extreme, large infrequent disturbances such as hurricanes and tsunamis may devastate

  12. Hazards assessment for the INEL Landfill Complex

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01T23:59:59.000Z

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  13. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  14. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31T23:59:59.000Z

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  15. Project management plan, Hazardous Materials Management and Emergency Response Training Center

    SciTech Connect (OSTI)

    Borgeson, M.E.

    1994-12-12T23:59:59.000Z

    For the next 30 years, the main activities at the Hanford Site will involve the handling and cleanup of toxic substances. Thousands of workers involved in these new activities will need systematic training appropriate to their tasks and associated risks. This project is an important part of the Hanford Site mission and will enable the US Department of Energy (DOE) to meet high standards for safety. The Hazardous Materials Management and Emergency Response Training Center (HAMMER) project will construct a centralized regional training center dedicated to training hazardous materials workers and emergency responders in classrooms and with hands-on, realistic training aids representing actual field conditions. The HAMMER Training Center will provide a cost-effective, high-quality way to meet the Hanford Site training needs. The training center creates a partnership among DOE; government contractors; labor; local, state, and tribal governments; and selected institutions of higher education.

  16. Conceptual design report, Hazardous Materials Management and Emergency Response (HAMMER) Training Center

    SciTech Connect (OSTI)

    Kelly, K.E. [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States)

    1994-11-09T23:59:59.000Z

    For the next 30 years, the main activities at the US Department of Energy (DOE) Hanford Site will involve the management, handling, and cleanup of toxic substances. If the DOE is to meet its high standards of safety, the thousands of workers involved in these activities will need systematic training appropriate to their tasks and the risks associated with these tasks. Furthermore, emergency response for DOE shipments is the primary responsibility of state, tribal, and local governments. A collaborative training initiative with the DOE will strengthen emergency response at the Hanford Site and within the regional communities. Local and international labor has joined the Hazardous Materials Management and Emergency Response (HAMMER) partnership, and will share in the HAMMER Training Center core programs and facilities using their own specialized trainers and training programs. The HAMMER Training Center will provide a centralized regional site dedicated to the training of hazardous material, emergency response, and fire fighting personnel.

  17. Mission Support Alliance, LLC Volpentest Hazardous Materials...

    Broader source: Energy.gov (indexed) [DOE]

    should use caution to preclude an overreliance on individual expertise and ensure hazard analysis procedures and policies are fully integrated into the systematic approach...

  18. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    POWERS, T.B.

    1999-05-11T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

  19. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  20. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  1. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  2. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30T23:59:59.000Z

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  3. Hazardous Material Transportation Safety (South Dakota)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

  4. Fire hazards analysis of central waste complex

    SciTech Connect (OSTI)

    Irwin, R.M.

    1996-05-30T23:59:59.000Z

    This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  5. BNL | CFN: Transport of Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation of Hazardous Materials and Nanomaterials The following contains guidance for transporting materials to and from BNL and for on-site transfers. All staff and users...

  6. DC Hazardous Waste Management (District of Columbia)

    Broader source: Energy.gov [DOE]

    This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

  7. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  8. Chapter 38 Hazardous Waste Permitting Process (Kentucky)

    Broader source: Energy.gov [DOE]

    This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

  9. Hazardous Waste Minimum Distance Requirements (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

  10. Louisiana Hazardous Waste Control Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

  11. Hazardous Liquid Pipelines and Storage Facilities (Iowa)

    Broader source: Energy.gov [DOE]

    This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

  12. Lessons learned from the EG&G consolidated hazardous waste subcontract and ESH&Q liability assessment process

    SciTech Connect (OSTI)

    Fix, N.J.

    1995-03-01T23:59:59.000Z

    Hazardous waste transportation, treatment, recycling, and disposal contracts were first consolidated at the Idaho National Engineering Laboratory in 1992 by EG&G Idaho, Inc. At that time, disposition of Resource, Conservation and Recovery Act hazardous waste, Toxic Substance Control Act waste, Comprehensive Environmental Response, Compensation, and Liability Act hazardous substances and contaminated media, and recyclable hazardous materials was consolidated under five subcontracts. The wastes were generated by five different INEL M&O contractors, under the direction of three different Department of Energy field offices. The consolidated contract reduced the number of facilities handling INEL waste from 27 to 8 qualified treatment, storage, and disposal facilities, with brokers specifically prohibited. This reduced associated transportation costs, amount and cost of contractual paperwork, and environmental liability exposure. EG&G reviewed this approach and proposed a consolidated hazardous waste subcontract be formed for the major EG&G managed DOE sites: INEL, Mound, Rocky Flats, Nevada Test Site, and 10 satellite facilities. After obtaining concurrence from DOE Headquarters, this effort began in March 1992 and was completed with the award of two master task subcontracts in October and November 1993. In addition, the effort included a team to evaluate the apparent awardee`s facilities for environment, safety, health, and quality (ESH&Q) and financial liability status. This report documents the evaluation of the process used to prepare, bid, and award the EG&G consolidated hazardous waste transportation, treatment, recycling, and/or disposal subcontracts and associated ESH&Q and financial liability assessments; document the strengths and weaknesses of the process; and propose improvements that would expedite and enhance the process for other DOE installations that used the process and for the re-bid of the consolidated subcontract, scheduled for 1997.

  13. Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead to Minimization of Hazardous Waste section. If you do not, continue on in this section. · Determine whether

  14. OIKOS 92: 215224. Copenhagen 2001 Sequence effects of disturbance on community structure

    E-Print Network [OSTI]

    Fukami, Tadashi

    on the frequency or intensity of disturbance, probably reflecting the influence of the intermediate disturbance. This divergence occurred even under the same frequency and intensity of disturbance. These results suggestOIKOS 92: 215­224. Copenhagen 2001 Sequence effects of disturbance on community structure Tadashi

  15. Self-tuning for disturbance transmission decoupling in active vehicle suspensions

    E-Print Network [OSTI]

    Duffy, Ken

    sources of disturbance inputs to a vehicle suspension. One is a high frequency road disturbance due frequency load disturbance is typically due to load and inertial forces experienced by, or generatedSelf-tuning for disturbance transmission decoupling in active vehicle suspensions Mark C. Readman

  16. vol. 157, no. 5 the american naturalist may 2001 Disturbance Regimes and Life-History Evolution

    E-Print Network [OSTI]

    -history the- ory. "Disturbance regime" is defined in terms of disturbance timing, frequency, predictability 1988; Turner et al. 1998) have suggested that the frequency of disturbances relative to an organismvol. 157, no. 5 the american naturalist may 2001 Disturbance Regimes and Life-History Evolution

  17. Integration of site-specific health information: Agency for Toxic Substances and Disease Registry health assessments

    SciTech Connect (OSTI)

    Lesperance, A.M.; Siegel, M.R.

    1990-12-01T23:59:59.000Z

    The Agency for Toxic Substances and Disease Registry is required to conduct a health assessment of any site that is listed on or proposed for the US Environmental Protection Agency's National Priorities List. Sixteen US Department of Energy (DOE) sites currently fall into this category. Health assessments contain a qualitative description of impacts to public health and the environment from hazardous waste sites, as well as recommendations for actions to mitigate or eliminate risk. Because these recommendations may have major impacts on compliance activities at DOE facilities, the health assessments are an important source of information for the monitoring activities of DOE's Office of Environmental Compliance (OEC). This report provides an overview of the activities involved in preparing the health assessment, its role in environmental management, and its key elements.

  18. Comparison of Hazard Analysisp y Requirements of I&C

    E-Print Network [OSTI]

    ) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

  19. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    None

    1981-12-01T23:59:59.000Z

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  20. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Oliver, Douglas L.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Officer Biological (Accident Reports) 2204 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN (CHP) (4/2007) 1

  1. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Clinical Engineering 2964 #12;TABLE OF CONTENTS CHEMICAL HYGIENE

  2. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    CHEMICAL HYGIENE PLAN AND HAZARD COMMUNICATION PLAN Occupational Exposures to Hazardous Chemicals and Safety Numbers Research Safety 2723 Environmental Health/Safety Chemical Hygiene Officer Radiation Safety Human Resources (Accident Reports) 4589 Bioengineering 2965 #12;TABLE OF CONTENTS CHEMICAL HYGIENE PLAN

  3. Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS

    E-Print Network [OSTI]

    Kääb, Andreas

    and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

  4. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01T23:59:59.000Z

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  5. Why is Eastern Redcedar a Hazardous Fuel?

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

  6. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-08-28T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls This report documents the technical basis for assigning risk bins for Natural Event Hazards Representative Accident and associated represented hazardous conditions.

  7. Ventura County hazardous waste minimization program

    SciTech Connect (OSTI)

    Hanlon, D.A.; Koepp, D.W.

    1987-05-01T23:59:59.000Z

    In 1985, Ventura County Environmental Health Department began a technical assistance program to encourage hazardous waste generators to reduce their dependence on land disposal. In order to accomplish this, information from the California State Hazardous Waste Manifest Information System was analyzed to identify the types, quantities and disposition of hazardous waste produced by companies in Ventura County. All generators that rely on land disposal were also surveyed to determine future waste management plans. Waste audits were conducted at each site to determine if alternative waste handling methods were feasible and to ensure that reuse, recycling and waste reduction methods are used when possible. This article summarizes these findings and projects future hazardous waste generation and disposal patterns for industries in Ventura County. It also identifies barriers to volume reduction and provides a framework for future local hazardous waste alternative technology/volume reduction program activities.

  8. Nat. Hazards Earth Syst. Sci., 8, 577586, 2008 www.nat-hazards-earth-syst-sci.net/8/577/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 577­586, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Integrated approach for coastal hazards and risks in Sri Lanka M. Garcin the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries

  9. Nat. Hazards Earth Syst. Sci., 6, 553561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 553­561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Introduction Risk consists of hazard and vulnerability. We can define "hazard" like "a threatening event

  10. Nat. Hazards Earth Syst. Sci., 6, 637651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 637­651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Hazards and Landscape (BFW), Department of Natural Hazards and Alpine Timberline, Innsbruck, Austria 3

  11. Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the probability of occurrence. Imminent and serious procedures or hazards Description Correction Date 1 EMERGENCY HAZARD Emergency Hazards threaten life safety or health, property

  12. Revegetation studies on oil shale related disturbances in Colorado

    SciTech Connect (OSTI)

    Redente, E.F.; Cook, C.W.

    1982-06-01T23:59:59.000Z

    An interdisciplinary research project was initiated in 1976 to provide both basic and applied information that would aid in the reestablishment of natural functioning ecosystems on land disturbances associated with energy development. The approach included field, laboratory, and greenhouse experiments designed to provide both structural and functional information about disturbed ecological systems in the semiarid west. This report presents results from the sixth year of the study. Separate abstracts have been prepared for each of the 4 studies reported for inclusion in the Energy Data Base. (DMC)

  13. antimicrobial substances produced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    care delivery system studies, the US Department of Veterans A11PROFILING SUBSTANCE ABUSE PROVIDER TRENDS IN HEALTH CARE DELIVERY SYSTEMS || James F. Burgess, Jr., Viridiana...

  14. adolescent substance abuse: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    care delivery system studies, the US Department of Veterans A11PROFILING SUBSTANCE ABUSE PROVIDER TRENDS IN HEALTH CARE DELIVERY SYSTEMS || James F. Burgess, Jr., Viridiana...

  15. antibacterial substances active: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    care delivery system studies, the US Department of Veterans A11PROFILING SUBSTANCE ABUSE PROVIDER TRENDS IN HEALTH CARE DELIVERY SYSTEMS || James F. Burgess, Jr., Viridiana...

  16. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  17. Uintah -a scalable framework for hazard analysis Martin Berzins

    E-Print Network [OSTI]

    Utah, University of

    Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

  18. A Hazardous Inquiry: The Rashomon Effect at Love Canal

    E-Print Network [OSTI]

    Fortunato, Mary Beth

    2000-01-01T23:59:59.000Z

    Review: A Hazardous Inquiry: The Rashomon Effect at LoveUSA Mazur, Allan. A Hazardous Inquiry: The Rashomon EffectISBN 0674748336. A Hazardous Inquiry: The Rashomon Effect at

  19. Judging Hazard from Native Trees in California Recreational Areas

    E-Print Network [OSTI]

    Standiford, Richard B.

    Judging Hazard from Native Trees in California Recreational Areas : - -a Guide for Professional;Introduction . . . . . . . . . . . . . . . 1 . . . . . . . . . . . . . .The Problem of Hazard 1 Weather and Hazard . . . . . . . . . . . . . . 5 Types and Classes of Rot . . . . . 6 . . . . . . . . . . . .Trunk

  20. Nonvolatile memory disturbs due to gate and junction leakage currents

    E-Print Network [OSTI]

    Schroder, Dieter K.

    ) from traps within the gate oxides. Such low gate leakage currents can lead to sufficient charge; accepted 10 September 2002 Abstract We address disturbs due to gate oxide and junction leakage currents in floating gate nonvolatile memories (NVM). The junction leakage is important, because the gate oxide current

  1. DISTURBANCE ATTENUATION IN A MAGNETIC LEVITATION SYSTEM WITH

    E-Print Network [OSTI]

    Nagurka, Mark L.

    and inherently nonlinear. Feedback control loops are used to manipulate the electromagnetic forces strategies. Shan and Menq [1] reported two disturbance rejection algorithms-- internal model-based control] reported a position regulation control strategy developed for a magnetic levitation system operating

  2. the wave model A traveling wave is an organized disturbance

    E-Print Network [OSTI]

    Winokur, Michael

    1 waves the wave model A traveling wave is an organized disturbance propagating at a well-defined wave speed v. · In transverse waves the particles of the medium move perpendicular to the direction of wave propagation. · In longitudinal waves the particles of the medium move parallel to the direction

  3. Selection of wavelets for analysis of power system disturbances

    E-Print Network [OSTI]

    Todorovic, Milos

    2002-01-01T23:59:59.000Z

    system applications . . . . . . . . . . . . . . 4 C. Summary, . 7 II WAVELET TRANSFORM . A. Introduction . . B. Wavelet transform and multiresolution analysis . . . C. Characteristic properties of wavelets. D. Summary . . . . . . . . 8... algorithm. . . . . . . I 3 3. Two-channel perfect reconstruction filter . . . 14 4. Typical voltage swell waveform. . . . . . . 22 5. Typical voltage sag waveform. . . . . 24 6. Typical voltage transinet disturbance waveform . . 7. Typical power...

  4. Rill erosion in natural and disturbed forests: 1. Measurements

    E-Print Network [OSTI]

    Flury, Markus

    , but measurements of the runoff and erosion at the rill scale are uncommon. Simulated rill erosion experiments were and agricultural use, and forest disturbances that increase erosion have a broad human impact. [3] Various forms of agriculture, timber harvest, wildfire, and construction. Ero- sion experiments under natural

  5. Sensitivity of climate mitigation strategies to natural disturbances

    SciTech Connect (OSTI)

    Le Page, Yannick LB; Hurtt, George; Thomson, Allison M.; Bond-Lamberty, Benjamin; Patel, Pralit L.; Wise, Marshall A.; Calvin, Katherine V.; Kyle, G. Page; Clarke, Leon E.; Edmonds, James A.; Janetos, Anthony C.

    2013-02-19T23:59:59.000Z

    The present and future concentration of atmospheric carbon dioxide depends on both anthropogenic and natural sources and sinks of carbon. Most proposed climate mitigation strategies rely on a progressive transition to carbon12 efficient technologies to reduce industrial emissions, substantially supported by policies to maintain or enhance the terrestrial carbon stock in forests and other ecosystems. This strategy may be challenged if terrestrial sequestration capacity is affected by future climate feedbacks, but how and to what extent is little understood. Here, we show that climate mitigation strategies are highly sensitive to future natural disturbance rates (e.g. fires, hurricanes, droughts), because of potential effect of disturbances on the terrestrial carbon balance. Generally, altered disturbance rates affect the pace of societal and technological transitions required to achieve the mitigation target, with substantial consequences on the energy sector and on the global economy. Understanding the future dynamics and consequences of natural disturbances on terrestrial carbon balance is thus essential for developing robust climate mitigation strategies and policies

  6. Disturbance Control of the Hydraulic Brake in a Wind Turbine

    E-Print Network [OSTI]

    Yang, Zhenyu

    Disturbance Control of the Hydraulic Brake in a Wind Turbine Frank Jepsen, Anders Søborg brake in a wind turbine. Brake torque is determined by friction coefficient and clamp force; the latter brake is one1 of the two independent brake systems in a wind turbine. As a consequence of the gearing

  7. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17T23:59:59.000Z

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  8. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Environmental Management (EM)

    National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

  9. airflow hazard visualization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    257 Brookhaven National Laboratory LIGHT SOURCES DIRECTORATE Subject: Building 725 Fire Hazard AnalysisFire Hazard Assessment Physics Websites Summary: Brookhaven National...

  10. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  11. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  12. Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

  13. October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...

    Office of Environmental Management (EM)

    Seismic Hazard Analysis for Nuclear Facilities at the Hanford Site, Eastern Washington, USA Natural Phenomena Hazards DOE-STD 1020-2012 & DOE Handbook A Probabilistic Approach to...

  14. The Idaho National Laboratory (INL) Senior Seismic Hazard Analysis...

    Office of Environmental Management (EM)

    SEISMIC HAZARD ANALYSIS FOR NUCLEAR FACILITIES AT THE HANFORD SITE, EASTERN WASHINGTON, USA A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East...

  15. Sandia National Laboratories: Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Glare Hazard Analysis Tool Solar Glare Hazard Analysis Tool Available for Download On March 13, 2014, in Energy, News, News & Events, Photovoltaic, Renewable Energy, Solar, Solar...

  16. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  17. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia Hoffman Patricia Hoffman Assistant Secretary The Energy...

  18. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  19. Control substances and alcohol use and testing

    SciTech Connect (OSTI)

    Przybylski, J.L.

    1994-07-01T23:59:59.000Z

    The Omnibus Transportation Employee Testing Act was signed into law in October of 1991. The Omnibus Transportation Employee Testing Act of 1991 required the United States Department of Transportation (DOT) to enact regulations requiring the testing of employees that perform ``safety sensitive functions`` for illegal controlled substance use and alcohol misuse. The Transportation Management Division, Office of Environmental Restoration and Waste Management (TMD/EM-261), United States Department of Energy (DOE), Training Program Manager is committed to promoting the availability of the necessary information to those affected members of the Department of Energy (DOE) community in an effort to attain the highest possible level of regulatory compliance and to enhance the safety of each individual in the workplace.

  20. Flame front disturbance induced by a weak pressure wave

    SciTech Connect (OSTI)

    Dobashi, Ritsu; Hirano, Toshisuke; Tsuruda, Takashi [Univ. of Tokyo (Japan)

    1994-12-31T23:59:59.000Z

    An experimental study has been conducted on the effect of unburned mixture properties on flame front disturbance induced by acceleration. Experiments were performed using a rectangular combustion chamber of 80 x 80 x 440 mm. The flame front disturbance was observed in two different directions by high-speed schlieren photography. Mixtures used are of three different concentrations (C = 0.8, 1.0, and 1.25) of methane/air and two different concentrations (C = 1.0 and 1.5) of propane/air. For the methane/air mixture of C = 1.0, experiments were performed at three different initial pressures (P{sub i} = 50, 70, and 101 kPa). The observed disturbance was of a very fine structure of circular spikes, which penetrated into the burned gas. The scales of disturbance were measured and indicated to be in the range of 1.7--4.0 mm. The circular spike shape is a typical structure induced by accelerating the flame front where the density changes steeply. However, the shape of the disturbance observed for a rich propane/air mixture was not of circular spikes but of a net of ridges. For the rich propane/air mixture, the effect by preferential diffusion was remarkable and the disturbance of a different structure was generated. For the methane/air mixtures, the scale was the smallest at C = 1.0 and larger at C = 0.8 and 1.25. The scale for the propane/air mixture of C = 1.0 was slightly larger than that in the methane/air mixture of C = 1.0. The scale became larger with the decrease of the initial pressure. The measure scales were compared with the preheat zone thicknesses of corresponding flames. It was shown that the scale is closely related with the flame thickness. The scale of disturbance is found to be about 15 times as large as the preheat zone thickness.

  1. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20T23:59:59.000Z

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  2. WESF natural phenomena hazards survey

    SciTech Connect (OSTI)

    Wagenblast, G.R., Westinghouse Hanford

    1996-07-01T23:59:59.000Z

    A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

  3. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01T23:59:59.000Z

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  4. Hazardous Waste Compliance Program Plan

    SciTech Connect (OSTI)

    Potter, G.L.; Holstein, K.A.

    1994-05-01T23:59:59.000Z

    The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

  5. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01T23:59:59.000Z

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  6. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  7. 283-E and 283-W hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-26T23:59:59.000Z

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  8. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01T23:59:59.000Z

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  9. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01T23:59:59.000Z

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  10. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12T23:59:59.000Z

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  11. Ozone-depleting substances and the greenhouse gases HFCs, PFCs

    E-Print Network [OSTI]

    Ozone-depleting substances and the greenhouse gases HFCs, PFCs and SF6 Danish consumption contribution to the debate on environmental policy in Denmark. #12;3 Contents 1 SUMMARY 5 1.1 OZONE OZONE-DEPLETING SUBSTANCES 19 3.1 IMPORTS AND EXPORTS 19 3.1.1 CFCs 19 3.1.2 Tetrachloromethane 19 3

  12. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, Charles L. (Downers Grove, IL); Thilly, William G. (Winchester, MA)

    1985-01-01T23:59:59.000Z

    A line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity) is disclosed. Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. Mutation assays using these cells, and other cells with similar characteristics, are also disclosed.

  13. Hazards Control Department 1995 annual report

    SciTech Connect (OSTI)

    Campbell, G.W.

    1996-09-19T23:59:59.000Z

    This annual report of the Hazards Control Department activities in 1995 is part of the department`s efforts to foster a working environment at Lawrence Livermore National Laboratory (LLNL) where every person desire to work safely.

  14. Rainfall-induced Landslide Hazard Rating System

    E-Print Network [OSTI]

    Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

  15. Hazardous materials transportation and emergency response programs

    SciTech Connect (OSTI)

    Joy, D.S.; Fore, C.S.

    1983-01-01T23:59:59.000Z

    This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

  16. Wireless, automated monitoring for potential landslide hazards 

    E-Print Network [OSTI]

    Garich, Evan Andrew

    2007-09-17T23:59:59.000Z

    . Commercially available soil moisture probes and soil tilt sensors were combined with low-power, wireless data transmitters to form a self-configuring network of soil monitoring sensors. The remote locations of many slope stability hazard sites eliminates...

  17. Improving Tamper Detection for Hazardous Waste Security

    SciTech Connect (OSTI)

    Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

    2003-02-26T23:59:59.000Z

    Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

  18. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2002-03-28T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

  19. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    SciTech Connect (OSTI)

    J. L. Kubicek

    2001-09-07T23:59:59.000Z

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

  20. Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

  1. Hazardous Waste Management Act (South Dakota)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

  2. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20T23:59:59.000Z

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  3. Oil or Hazardous Spills Releases Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

  4. Technical basis document for natural event hazards

    SciTech Connect (OSTI)

    CARSON, D.M.

    2003-03-20T23:59:59.000Z

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report.

  5. Cold Vacuum Drying Facility hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.

    1998-02-23T23:59:59.000Z

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  6. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  7. Hazard Baseline Downgrade Effluent Treatment Facility

    SciTech Connect (OSTI)

    Blanchard, A.

    1998-10-21T23:59:59.000Z

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

  8. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01T23:59:59.000Z

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  9. Advanced Technology for Railway Hydraulic Hazard Forecasting

    E-Print Network [OSTI]

    Huff, William Edward 1988-

    2012-12-05T23:59:59.000Z

    Page 1.1 Map of Total Railway Hydraulic Hazard Events from 1982-2011 ............ 2 1.2 90 mi Effective Radar Coverage for Reliable Rainfall Rate Determination ....................................................................... 5 3... Administration (FRA) for the period of 1982-2011. This data was compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the railway hydraulic hazard events over the same time period is displayed in Figure 1.1. Table 1.1. U.S. Railway...

  10. The University of Texas at Dallas Texas Hazardous Communication Act

    E-Print Network [OSTI]

    O'Toole, Alice J.

    The University of Texas at Dallas Texas Hazardous Communication Act Handbook #12;TEXAS HAZARDOUS IV. Texas Hazard Communication Act Exemptions V. Implementation A. Employee Rights Under the Act Explanation IX. Written Hazard Communication Program A. Manufacturers' Labels and Other Forms of Warning B

  11. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  12. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496 and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program page. A. Purpose: This chapter establishes the NIH policy for working with hazardous chemicals

  13. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  14. Hazard Communication -Regulatory Compliance 1/17/2013 a

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Hazard Communication - Regulatory Compliance 1/17/2013 a OSHA has updated their Hazard Communication Standard (29 CFR 1910.1200) and requires that all employees that work with Hazardous Chemicals this standard applies are required to receive an updated training as new chemical hazards are introduced

  15. University of Twente hazardous wast regulations 1 Introduction

    E-Print Network [OSTI]

    Twente, Universiteit

    1 University of Twente hazardous wast regulations 1 Introduction Effective from June 2011 the collection of hazardous waste has been outsourced to van Gansewinkel. The hazardous waste is collected that the hazardous waste is to be offered directly to the collector by the parties offering waste at a designated

  16. Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE

    E-Print Network [OSTI]

    Reisslein, Martin

    Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE Arizona State University Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator) and has been assigned an EPA identification number (AZD042017723). As a hazardous waste generator facility

  17. NIH POLICY MANUAL 3015 -Admittance of Minors to Hazardous Areas

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3015 - Admittance of Minors to Hazardous Areas Issuing Office: OD/OM/ORS/DOHS 301 on admittance of minors to hazardous work areas that may contain inherently or potentially hazardous chemicals. Definitions: 1. Hazardous Area ­ Any area that poses an actual or potential risk of illness or injury

  18. Rules and Regulations for Hazardous Waste Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

  19. Confidentiality protections versus collaborative care in the treatment of substance use disorders

    E-Print Network [OSTI]

    Manuel, Jennifer K; Newville, Howard; Larios, Sandra E; Sorensen, James L

    2013-01-01T23:59:59.000Z

    substance abuse treatment with primary care. Substance Abuseof care. The field of substance abuse treatment has changedcare setting “whose primary function is the provision of alcohol or drug abuse diagnosis, treatment

  20. Using lake sediment records to reconstruct bark beetle disturbances in western North America

    E-Print Network [OSTI]

    Morris, Jesse Lee

    2013-01-01T23:59:59.000Z

    spruce  beetle  (Dendroctonus  rufipennis)  reproductive Spruce  beetle  (Dendroctonus  rufipennis)  outbreak  in spruce  beetle  (Dendroctonus  rufipennis)  disturbances.  

  1. Nat. Hazards Earth Syst. Sci., 7, 607614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 607­614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A probabilistic approach for earthquake hazard assessment of the Province of Eskis¸ehir, Turkey A

  2. Nat. Hazards Earth Syst. Sci., 13, 11431158, 2013 www.nat-hazards-earth-syst-sci.net/13/1143/2013/

    E-Print Network [OSTI]

    Wu, Yih-Min

    Nat. Hazards Earth Syst. Sci., 13, 1143­1158, 2013 www.nat-hazards-earth-syst-sci.net/13 Hazards and Earth System Sciences OpenAccess G Atmospheric Chemistry and Physics OpenAccess Atmospheric OpenAcces Time-dependent probabilistic seismic hazard assessment and its application to Hualien City

  3. Nat. Hazards Earth Syst. Sci., 6, 471483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 471­483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Integrating public risk perception into formal natural hazard risk assessment Th. Plattner1, T

  4. Nat. Hazards Earth Syst. Sci., 8, 539558, 2008 www.nat-hazards-earth-syst-sci.net/8/539/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 539­558, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management H. Staffler1, R. Pollinger2, A

  5. Nat. Hazards Earth Syst. Sci., 7, 283288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 283­288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Physical vulnerability modelling in natural hazard risk assessment J. Douglas BRGM ­ ARN/RIS, 3

  6. Nat. Hazards Earth Syst. Sci., 7, 495506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 495­506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System as a function of the hazard, the elements at risk and the vul- nerability. From a natural sciences perspective

  7. Nat. Hazards Earth Syst. Sci., 6, 293302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 293­302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural hazard

  8. Nat. Hazards Earth Syst. Sci., 6, 185193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 185­193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Geomorphological mapping and geophysical profiling for the evaluation of natural hazards

  9. Nat. Hazards Earth Syst. Sci., 7, 185193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 185­193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Validation of landslide hazard assessment by means of GPS monitoring technique ­ a case study

  10. Vibration Isolation with High Strain Shape Memory Alloy Actuators: Case of the impulse disturbance

    E-Print Network [OSTI]

    Hayward, Vincent

    disturbance, while an active stage is used to aug- ment low frequency damping and provide attenuationVibration Isolation with High Strain Shape Memory Alloy Actuators: Case of the impulse disturbance disturbance on a mass to be isolated from vibrations. The vibration isolation testbed consists of a `strong

  11. Oecologia (2000) 124:270279 Springer-Verlag 2000 Abstract Disturbance frequency, intensity, and areal ex-

    E-Print Network [OSTI]

    McCabe, Declan

    2000-01-01T23:59:59.000Z

    Oecologia (2000) 124:270­279 © Springer-Verlag 2000 Abstract Disturbance frequency, intensity The intensity, frequency, and area of disturbance may de- termine the abundance and species richness of an assem for recoloniza- tion. If disturbance frequency is greater than the rate of competitive exclusion, diversity may

  12. CONTROLLABILITY MEASURES FOR DISTURBANCE Sigurd Skogestad \\Lambda and Erik A. Wolff

    E-Print Network [OSTI]

    Skogestad, Sigurd

    limitations. 6. Maximum disturbance range For all six problems we obtain frequency­dependent measures and Matsubara (1985) discuss the direction of combined disturbances in the frequency domain using the singularCONTROLLABILITY MEASURES FOR DISTURBANCE REJECTION Sigurd Skogestad \\Lambda and Erik A. Wolff

  13. 778 Forest Science 49(5) 2003 Spatial and Temporal Disturbance

    E-Print Network [OSTI]

    Rentch, James

    with gaps disturbance frequency and size distribution of canopy gaps suggest to large and small openings. The absence of significant changes in overstory disturbance frequencies disturbance frequencies. He also provided a helpful review of the initial draft. Scientific Article No. 2842

  14. Author's personal copy Canopy disturbance and tree recruitment over two centuries

    E-Print Network [OSTI]

    Pederson, Neil

    , particularly reconstructing disturbance size, shape, frequency, and severity, is fundamental for developmentAuthor's personal copy Canopy disturbance and tree recruitment over two centuries in a managed 2007 Abstract Disturbance history was reconstructed across an 11300 ha managed longleaf pine (Pinus

  15. On Disturbance Propagation in Vehicle Formations with Inter-vehicle Communication

    E-Print Network [OSTI]

    Gupta, Vijay

    of the frequency response magnitude of the transfer function from a deterministic disturbance at the leadingOn Disturbance Propagation in Vehicle Formations with Inter-vehicle Communication Yingbo Zhao, Paolo Minero, and Vijay Gupta Abstract-- This paper focuses on disturbance propagation in a formation

  16. THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA

    E-Print Network [OSTI]

    conditions and influenced the frequency and intensity of disturbances, such as fire. The interplay THE HISTORY OF HUMAN DISTURBANCE IN FOREST ECOSYSTEMS OF SOUTHERN INDIANA Michael A. Jenkins1 Abstract.--The forests of southern Indiana have been shaped and defined by anthropogenic disturbance

  17. Vibration Suppression and Optimal Repetitive Disturbance Rejection Control in Semi-Nyquist Frequency Region using

    E-Print Network [OSTI]

    Fujimoto, Hiroshi

    suppression and disturbance rejec- tion even in the semi-Nyquist frequency region. First, the continuous and to reject disturbance in high frequency re- gion because the Nyquist frequency is relatively low-sample performance to reject disturbance in the semi-Nyquist frequency region [6]. On the other hand, authors

  18. First decadal response to treatment in a disturbance-based silviculture experiment in Maine

    E-Print Network [OSTI]

    Wagner, Robert G.

    ) in central Maine, that was designed to emulate the annual 1% disturbance frequency typicalFirst decadal response to treatment in a disturbance-based silviculture experiment in Maine Justin 3 April 2011 Available online xxxx Keywords: Irregular shelterwood Expanding gap Disturbance

  19. American Institute of Aeronautics and Astronautics Disturbance Filtering and Identification on the Naval

    E-Print Network [OSTI]

    the disturbance frequency to be used within the filter design for both filter types. I. Introduction A common1 American Institute of Aeronautics and Astronautics Disturbance Filtering and Identification, California 93943 This paper investigates spacecraft disturbance rejection filtering for both persistent

  20. SYNTHESIS Disturbance-driven changes in the variability of ecological patterns and processes

    E-Print Network [OSTI]

    Fraterrigo, Jennifer

    by considering disturbance extent, frequency and intensity, as well as ecosystem recovery, and thereby capturesREVIEW AND SYNTHESIS Disturbance-driven changes in the variability of ecological patterns Understanding how disturbance shapes the dynamics of ecological systems is of fundamental importance in ecology

  1. Species traits predict the effects of disturbance and productivity on diversity

    E-Print Network [OSTI]

    Haddad, Nick

    that ­ alone or in concert ­ increasing disturbance intensity or frequency, or decreasing productivity, reducedLETTER SpeciesÕ traits predict the effects of disturbance and productivity on diversity Nick M, University of Colorado, UCB 334, Boulder CO 80309, USA. Abstract Disturbance is an important factor

  2. 3) What makes a species invasive? i) Disturbance and land use hypothesis

    E-Print Network [OSTI]

    Nowak, Robert S.

    changes in the extent and frequency of disturbance to an ecosystem #12;3) What makes a species invasive? i3) What makes a species invasive? i) Disturbance and land use hypothesis Basic concepts: · Many;3) What makes a species invasive? i) Disturbance and land use hypothesis Basic concepts: · Invasive

  3. Method of removing and detoxifying a phosphorus-based substance

    DOE Patents [OSTI]

    Vandegrift, G.F.; Steindler, M.J.

    1985-05-21T23:59:59.000Z

    A method of removing a phosphorus-based poisonous substance from water contaminated is presented. In addition, the toxicity of the phosphorus-based substance is also subsequently destroyed. A water-immiscible organic solvent is first immobilized on a supported liquid membrane before the contaminated water is contacted with one side of the supported liquid membrane to absorb the phosphorus-based substance in the organic solvent. The other side of the supported liquid membrane is contacted with a hydroxy-affording strong base to react with phosphorus-based solvated species to form a non-toxic product.

  4. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

    1998-01-01T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  5. Hazardous waste Interpretation of the definition and classification of hazardous waste

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Hazardous waste Interpretation of the definition and classification of hazardous waste www Scottish Environment Protection Agency Environment and Heritage Service Rio House Corporate Office Waste.environment-agency.gov.uk www.sepa.org.uk www.ehsni.gov.uk © Environment Agency 2005 ISBN: 1 84432 454 0 An electronic pdf

  6. The radioactive Substances (Prepared Uranium and Thorium Compounds) Exemption (Scotland)Order 1962 

    E-Print Network [OSTI]

    Noble, Michael

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2772 (S. 132) ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Prepared Uranium and Thorium Compounds) Exemption (Scotland) Order 1962

  7. The radioactive Substances (Uranium and Thorium) Exemption (Scotland)Order 1962 

    E-Print Network [OSTI]

    Noble, Michael

    1962-01-01T23:59:59.000Z

    STATUTORY INSTRUMENTS 1962 No. 2766 (S. 126) ATOMIC ENERGY AND RADIOACTIVE SUBSTANCES The Radioactive Substances (Uranium and Thorium) Exemption (Scotland) Order 1962...

  8. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  9. antisocial behavior substance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scott r. robinson Biology and Medicine Websites Summary: an impact on postnatal behavior. A teratogen is any substance that can be transmitted to the fetus in utero to alter...

  10. Repository Subsurface Preliminary Fire Hazard Analysis

    SciTech Connect (OSTI)

    Richard C. Logan

    2001-07-30T23:59:59.000Z

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

  11. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31T23:59:59.000Z

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  12. Advanced Materials Laboratory hazards assessment document

    SciTech Connect (OSTI)

    Barnett, B.; Banda, Z.

    1995-10-01T23:59:59.000Z

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  13. Studies on Toxic Substances of Locoweeds, Astragalus earlei and Others. 

    E-Print Network [OSTI]

    Wender, S. H. (Simon Harold); Fraps, G. S. (George Stronach)

    1944-01-01T23:59:59.000Z

    G. S. FRAPS and S. H. WENDER Division of Chemistry TEXAS AGRICULTURAL EXPERIMENT STATION A. R. CONNER, Director College Station, Texas BULLETIN NO. 650 JUNE 1944 STUDIES ON TOXIC SUBSTANCES OF LOCOWEEDS, ASTRAGALUS EARLEI AND OTHERS... AGRICULTURAL AND MECHANICAL COLLEGE OF TEXAS GIBB GILCHRIST, President D-19-744-1500 [Blank Page in Original Bulletin] The concentrated toxic preparation of the loco weed contains several closely related toxic substances. The compounds precipi- tated...

  14. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, C.L.; Thilly, W.G.

    1999-08-10T23:59:59.000Z

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics. 3 figs.

  15. Mutation assays involving blood cells that metabolize toxic substances

    DOE Patents [OSTI]

    Crespi, Charles L. (Marblehead, MA); Thilly, William G. (Winchester, MA)

    1999-01-01T23:59:59.000Z

    The present invention pertains to a line of human blood cells which have high levels of oxidative activity (such as oxygenase, oxidase, peroxidase, and hydroxylase activity). Such cells grow in suspension culture, and are useful to determine the mutagenicity of xenobiotic substances that are metabolized into toxic or mutagenic substances. The invention also includes mutation assays using these cells, and other cells with similar characteristics.

  16. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15T23:59:59.000Z

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  17. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06T23:59:59.000Z

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  18. Hazard Classification for Fuel Supply Shutdown Facility

    SciTech Connect (OSTI)

    BENECKE, M.W.

    2000-09-07T23:59:59.000Z

    Final hazard classification for the 300 Area N Reactor fuel storage facility resulted in the assignment of Nuclear Facility Hazard Category 3 for the uranium metal fuel and feed material storage buildings (303-A, 303-B, 303-G, 3712, and 3716). Radiological for the residual uranium and thorium oxide storage building and an empty former fuel storage building that may be used for limited radioactive material storage in the future (303-K/3707-G, and 303-E), and Industrial for the remainder of the Fuel Supply Shutdown buildings (303-F/311 Tank Farm, 303-M, 313-S, 333, 334 and Tank Farm, 334-A, and MO-052).

  19. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01T23:59:59.000Z

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  20. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01T23:59:59.000Z

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  1. PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task

    E-Print Network [OSTI]

    Slatton, Clint

    PPE 7 Appendix A PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task: HAZARDS (Circle Hazards) Describe Specific Hazards Identify Type of PPE Required for the Hazards Eye Hazard Impact Penetration Dust Chemical Radiation Heat Bioaerosols Projectiles Head Hazard Burn Electric

  2. Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical

    E-Print Network [OSTI]

    Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. Each hazard(s). The pictogram on the label is determined by the chemical hazard classification. HCS Pictograms

  3. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect (OSTI)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01T23:59:59.000Z

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  4. Review of organic nitrile incineration at the Toxic Substances Control Act Incinerator

    SciTech Connect (OSTI)

    NONE

    1997-10-01T23:59:59.000Z

    Lockheed Martin Energy Systems, Inc. (LMES) operates the East Tennessee Technology Park (ETTP), formerly called the Oak Ridge K-25 Site, where uranium was enriched under contract with the US Department of Energy (DOE). Currently, ETTP missions include environmental management, waste management (WM), and the development of new technologies. As part of its WM mission, ETTP operates the TSCA (Toxic Substances Control Act) Incinerator (TSCAI) for treatment of hazardous waste and polychlorinated biphenyls (PCBs) contaminated with low-level radioactivity. Beginning in the autumn of 1995, employees from diverse ETTP buildings and departments reported experiencing headaches, fatigue, depression, muscle aches, sleeplessness, and muscle tremors. These symptoms were judged by a physician in the ETTP Health Services Department to be consistent with chronic exposures to hydrogen cyanide (HCN). The National Institute for Occupational Safety and Health (NIOSH) was called in to perform a health hazard evaluation to ascertain whether the employees` illnesses were in fact caused by occupational exposure to HCN. The NIOSH evaluation found no patterns for employees` reported symptoms with respect to work location or department. NIOSH also conducted a comprehensive air sampling study, which did not detect airborne cyanides at the ETTP. Employees, however, expressed concerns that the burning of nitrile-bearing wastes at the TSCAI might have produced HCN as a combustion product. Therefore, LMES and DOE established a multidisciplinary team (TSCAI Technical Review Team) to make a more detailed review of the possibility that combustion of nitrile-bearing wastes at the TSCAI might have either released nitriles or created HCN as a product of incomplete combustion (PIC).

  5. Bibliography of work on the heterogeneous photocatalytic removal of hazardous compounds from water and air, Update Number 2 to October 1996

    SciTech Connect (OSTI)

    Blake, D.M.

    1997-01-01T23:59:59.000Z

    The Solar Industrial Program has developed processes that destroy hazardous substances in or remove them from water and air. The processes of interest in this report are based on the application of heterogeneous photocatalysts, principally titanium dioxide or modifications thereof, but work on other heterogeneous catalysts is included in this compilation. This report continues bibliographies that were published in May, 1994, and October, 1995. The previous reports included 663 and 574 citations, respectively. This update contains an additional 518 references. These were published during the period from June 1995 to October 1996, or are references from prior years that were not included in the previous reports. The work generally focuses on removing hazardous contaminants from air or water to meet environmental or health regulations. This report also references work on properties of semiconductor photocatalysts and applications of photocatalytic chemistry in organic synthesis. This report follows the same organization as the previous publications. The first part provides citations for work done in a few broad categories that are generic to the process. Three tables provide references to work on specific substances. The first table lists organic compounds that are included in various lists of hazardous substances identified by the US Environmental Protection Agency (EPA). The second table lists compounds not included in those categories, but which have been treated in a photocatalytic process. The third table covers inorganic compounds that are on EPA lists of hazardous materials or that have been treated by a photocatalytic process. A short update on companies that are active in providing products or services based on photocatalytic processes is provided.

  6. New energy, new hazards ? The hydrogen scenario

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    engines using hydrogen or hydrogen based mixtures, fuel cell systems), electrical plants, systemsNew energy, new hazards ? The hydrogen scenario Lionel PERRETTE, Samira CHELHAOUI Institut National a practical experience on hydrogen safety. Among others, the following experimental topics have been dealt

  7. Control Of Hazardous Energy Lockout/Tagout

    E-Print Network [OSTI]

    Hardy, Christopher R.

    Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

  8. Freeze Concentration Applied to Hazardous Waste Management

    E-Print Network [OSTI]

    Ruemekorf, R.

    Ages. Potable water from seawater was recorded in the 17th century. Today this technology is emerging as a new unit operation for the recovery ofwater from RCRA hazardous waste streams. Typical streams are high in water content and contain soluble...

  9. Appendix B: Wastes and Potential Hazards for

    E-Print Network [OSTI]

    Siddharthan, Advaith

    of minerals including gypsum, salt, potash, asbestos, graphite, fluorite, calcite, clay, sand and gravel or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds

  10. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22T23:59:59.000Z

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  11. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

    1993-11-01T23:59:59.000Z

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  12. Hazardous Waste Contamination: Implications for Commercial/Industrial Land Transactions in Silicon Valley

    E-Print Network [OSTI]

    Scholz, Diane

    1989-01-01T23:59:59.000Z

    Magazine (October). Hazardous Waste Contamination, ScholzPatton. 1 988. State Hazardous Waste and Property TransferForbes. 1 985. "Hazardous Waste Problems: Implications for

  13. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01T23:59:59.000Z

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  14. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01T23:59:59.000Z

    in four areas: storage tanks, hazardous waste generatingprograms in hazardous waste and other areas. This resultof hazardous waste laws, requiring that every area be under

  15. The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context

    E-Print Network [OSTI]

    Scovazzi, Tullio

    2000-01-01T23:59:59.000Z

    HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

  16. Hazardous devices teams showcase skills at Robot Rodeo June 24...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

  17. Hazardous waste management in the Texas construction industry 

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01T23:59:59.000Z

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  18. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  19. Hazardous waste management in the Texas construction industry

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01T23:59:59.000Z

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  20. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    to Hazardous Chemicals in Laboratories, as noted in Subject H. Laboratory Safety. Items in the CHP include hazardous waste (see sample CHP for definitions), it is subject to the RCRA generator rules which are found

  1. Reducing Physical Hazards: Encouraging Inherently Safer Production (Chapter 17)

    E-Print Network [OSTI]

    Ashford, Nicholas A.

    Physical hazards differ from hazards related to the toxicity of chemicals and materials in a number of ways. Their origin is the sudden and accidental release of chemicals and/ or energy - that is, chemical accidents, ...

  2. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28T23:59:59.000Z

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  3. Shock Waves -An International Journal on Shock Waves, Detonations and On the temperature disturbances causing transition between regular and Mach

    E-Print Network [OSTI]

    Navon, Michael

    disturbances at large Mach numbers. Suggested Reviewers: Michael Ivanov, Professor laboratory head, ITAM ivanov@itam

  4. Role of Soil Disturbances in Determining Post-Harvest Plant1 Biodiversity and Invasive Weed Distributions2

    E-Print Network [OSTI]

    ) disturbance frequency, and (4) the severity9 of the disturbance. Both frequency and severity are important1 Role of Soil Disturbances in Determining Post-Harvest Plant1 Biodiversity and Invasive Weed Telephone: +01-928-556-2176, FAX +01-928-556-21308 9 SHORT TITLE: Soil Disturbances, Biodiversity

  5. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

  6. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25T23:59:59.000Z

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  7. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  8. TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12

    E-Print Network [OSTI]

    Meagher, Mary

    TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12 WORK AREA SPECIFIC TRAINING Department of Chemistry Attendance Record I hereby acknowledge receipt of the Texas A&M University (TAMU) Hazard. information on hazardous chemicals known to be present in the employee's work area and to which the employee

  9. Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet

    E-Print Network [OSTI]

    Wikswo, John

    Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet Vanderbilt Environmental.safety.vanderbilt.edu HIGHLY HAZARDOUS CHEMICAL WASTES Certain chemical wastes must be handled by special procedures due to their highly hazardous nature. These chemicals include expired isopropyl and ethyl ethers (these chemicals

  10. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  11. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2006) Units: 3 CCN (2 of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 22 Claims Based on Common: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro to RCRA

  12. Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK?

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK? o Labs that generate large volumes of solvent hazardous waste can contact EHS @ 255-8200 for approval of the use of safety cans. Once EHS approves the use we will provide the can. o A hang pocket will be placed on the can that states "Hazardous

  13. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2008) Units: 3 CCN (2, The Law of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 19 Claims on Federal Law: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro

  14. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  15. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    SciTech Connect (OSTI)

    COVEY, L.I.

    2000-11-28T23:59:59.000Z

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

  16. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area

  17. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  18. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    will be utilized. Please visit the VEHS website to submit an electronic Chemical Waste Collection Request FormDisposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  19. Preliminary hazards analysis for the National Ignition Facility

    SciTech Connect (OSTI)

    Brereton, S.J.

    1993-10-01T23:59:59.000Z

    This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

  20. Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP- ments (like embassies in the case of conventional threats) dis- play in the eye of potential aggressors

  1. Use of short-term test systems for the prediction of the hazard represented by potential chemical carcinogens

    SciTech Connect (OSTI)

    Glass, L.R.; Jones, T.D.; Easterly, C.E.; Walsh, P.J.

    1990-10-01T23:59:59.000Z

    It has been hypothesized that results from short-term bioassays will ultimately provide information that will be useful for human health hazard assessment. Historically, the validity of the short-term tests has been assessed using the framework of the epidemiologic/medical screens. In this context, the results of the carcinogen (long-term) bioassay is generally used as the standard. However, this approach is widely recognized as being biased and, because it employs qualitative data, cannot be used to assist in isolating those compounds which may represent a more significant toxicologic hazard than others. In contrast, the goal of this research is to address the problem of evaluating the utility of the short-term tests for hazard assessment using an alternative method of investigation. Chemicals were selected mostly from the list of carcinogens published by the International Agency for Research on Carcinogens (IARC); a few other chemicals commonly recognized as hazardous were included. Tumorigenicity and mutagenicity data on 52 chemicals were obtained from the Registry of Toxic Effects of Chemical Substances (RTECS) and were analyzed using a relative potency approach. The data were evaluated in a format which allowed for a comparison of the ranking of the mutagenic relative potencies of the compounds (as estimated using short-term data) vs. the ranking of the tumorigenic relative potencies (as estimated from the chronic bioassays). Although this was a preliminary investigation, it offers evidence that the short-term tests systems may be of utility in ranking the hazards represented by chemicals which may contribute to increased carcinogenesis in humans as a result of occupational or environmental exposures. 177 refs., 8 tabs.

  2. University of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE-SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA

    E-Print Network [OSTI]

    Texas at Arlington, University of

    -SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA SPECIFIC") Information specific to the employee's particular to be in the employee's work area(s): · the location of hazardous chemicals, · safe handling · warning signsUniversity of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE

  3. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  4. Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and

    E-Print Network [OSTI]

    ten Brink, Uri S.

    Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

  5. Small-scale disturbance and regeneration dynamics in a neotropical mangrove forest

    E-Print Network [OSTI]

    Battles, John

    , TIMOTHY J. FAHEY and JOHN J. BATTLES* Department of Natural Resources, Cornell University, Fernow Hall, given the present disturbance regime. Field observations indicated that the peat mat collapses

  6. Variation in physiological responses of forest trees to disturbance: implications for future forest carbon and management

    E-Print Network [OSTI]

    Reed, Alexis S.

    2012-05-31T23:59:59.000Z

    Rapid environmental change in recent decades has challenged Ecologists to focus on understanding ecosystem response and physiological functioning in the face of increased disturbances. Understanding physiological responses ...

  7. Challenges to Introducing and Managing Disturbance Regimes for Holocarpha macradenia, an

    E-Print Network [OSTI]

    Holl, Karen

    Challenges to Introducing and Managing Disturbance Regimes for Holocarpha macradenia, an Endangered sites to test the effects of clipping frequency and litter accumulation on seed germination, seedling

  8. Self-revegetation of disturbed ground in the deserts of Nevada and Washington

    SciTech Connect (OSTI)

    Rickard, W.H.; Sauer, R.H.

    1982-01-01T23:59:59.000Z

    Plant cover established without purposeful soil preparation or seeding was measured on ground disturbed by plowing in Washington and by aboveground nuclear explosions in Nevada. After a time lapse of three decades in Washington and two decades in Nevada, fewer species were self-established on the disturbed ground than the nearby undisturbed ground. Alien annual plants were the dominants on the disturbed ground. Cheatgrass (Bromus tectorum) dominated abandoned fields in Washington, and filaree (Erodium cicutarium) dominated disturbed ground in Nevada. Perennial grasses and shrubs appeared to be more successful as invaders in Nevada than in Washington. This distinction is attributed to the superior competitive ability of cheatgrass in Washington.

  9. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01T23:59:59.000Z

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  10. Natural phenomena hazards site characterization criteria

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

  11. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01T23:59:59.000Z

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  12. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1988-01-01T23:59:59.000Z

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  13. WHC natural phenomena hazards mitigation implementation plan

    SciTech Connect (OSTI)

    Conrads, T.J.

    1996-09-11T23:59:59.000Z

    Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

  14. Hazardous waste minimization report for CY 1986

    SciTech Connect (OSTI)

    Kendrick, C.M.

    1990-12-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) is a multipurpose research and development facility. Its primary role is the support of energy technology through applied research and engineering development and scientific research in basic and physical sciences. ORNL also is a valuable resource in the solution of problems of national importance, such as nuclear and chemical waste management. In addition, useful radioactive and stable isotopes which are unavailable from the private sector are produced at ORNL. As a result of these activities, hazardous, radioactive, and mixed wastes are generated at ORNL. A formal hazardous waste minimization program for ORNL was launched in mid 1985 in response to the requirements of Section 3002 of the Resource Conservation and Recovery Act (RCRA). During 1986, a task plan was developed. The six major tasks include: planning and implementation of a laboratory-wide chemical inventory and the subsequent distribution, treatment, storage, and/or disposal (TSD) of unneeded chemicals; establishment and implementation of a distribution system for surplus chemicals to other (internal and external) organizations; training and communication functions necessary to inform and motivate laboratory personnel; evaluation of current procurement and tracking systems for hazardous materials and recommendation and implementation of improvements; systematic review of applicable current and proposed ORNL procedures and ongoing and proposed activities for waste volume and/or toxicity reduction potential; and establishment of criteria by which to measure progress and reporting of significant achievements. 8 refs., 1 fig., 5 tabs.

  15. Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part

    E-Print Network [OSTI]

    Wilcock, William

    Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication the hazard communication training you need? A combination of hazard communication training resources

  16. Interactions of Arsenic and the Dissolved Substances Derived from

    E-Print Network [OSTI]

    Florida, University of

    As trapping and transport within porous soil media and in developing comprehensive plans for managingInteractions of Arsenic and the Dissolved Substances Derived from Turf Soils Z H A N G R O N G C H University, Miami, Florida 33199, Southeast Environmental Research Center, Florida International University

  17. MAILLER et al. Removal of priority and emerging substances by

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of micropollutants in conventional wastewater treatment plants (WWTPs) composed by primary and biological treatmentsMAILLER et al. Removal of priority and emerging substances by biological and tertiary treatments in the case of urban areas (Heberer 2002). This implies a large understanding of wastewater treatment

  18. Clarification of Institutional Controls at the Rocky Flats Site Central Operable Unit and Implementation of the Soil Disturbance Review Plan - 13053

    SciTech Connect (OSTI)

    DiSalvo, Rick [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States)] [Stoller LMS Team, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Surovchak, Scott [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States)] [U.S. Department of Energy, Office of Legacy Management, 11025 Dover St, Suite 1000, Westminster, CO 80021 (United States); Spreng, Carl [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States)] [Colorado Department of Public Health and Environment, 4300 Cherry Creek Dr. S, Denver, CO 80246-1530 (United States); Moritz, Vera [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)] [U.S. Environmental Protection Agency, Region 8, 1595 Wynkoop St., Denver, CO 80202-1129 (United States)

    2013-07-01T23:59:59.000Z

    Cleanup and closure of DOE's Rocky Flats Site in Colorado, which was placed on the CERCLA National Priority List in 1989, was accomplished under CERCLA, RCRA, and the Colorado Hazardous Waste Act (CHWA). The physical cleanup work was completed in late 2005 and all buildings and other structures that composed the Rocky Flats industrial complex were removed from the surface, but remnants remain in the subsurface. Other remaining features include two landfills closed in place with covers, four groundwater treatment systems, and surface water and groundwater monitoring systems. Under the 2006 Corrective Action Decision/Record of Decision for Rocky Flats Plant (US DOE) Peripheral Operable Unit and the Central Operable Unit (CAD/ROD), the response actions selected for the Central Operable Unit (OU) are institutional controls (ICs), physical controls, and continued monitoring and maintenance. The objectives of these ICs were to prevent unacceptable exposure to remaining subsurface contamination and to prevent contaminants from mobilizing to surface water and to prevent interfering with the proper functioning of the engineered components of the remedy. An amendment in 2011 of the 2006 CAD/ROD clarified the ICs to prevent misinterpretation that would prohibit work to manage and maintain the Central OU property. The 2011 amendment incorporated a protocol for a Soil Disturbance Review Plan for work subject to ICs that requires approval from the State and public notification by DOE prior to conducting approved soil-disturbing work. (authors)

  19. Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic*

    E-Print Network [OSTI]

    Li, Tim

    Developing versus Nondeveloping Disturbances for Tropical Cyclone Formation. Part I: North Atlantic the characteristic differences of tropical disturbances that eventually develop into tropical cyclones (TCs) versus for TC genesis in the North Atlantic. When the east and west (separated by 408W) Atlantic are examined

  20. Paper No.: 05-1769 Modeling Speed Disturbance Absorption Following State-Control Action-

    E-Print Network [OSTI]

    Wang, Yinhai

    Paper No.: 05-1769 Modeling Speed Disturbance Absorption Following State-Control Action- Expected such as steering, routing, etc.) [1]. Six types of car-following models have been developed or discussed tables and 6 figures Totally 7455 words Modeling Speed Disturbance Absorption Following

  1. Ecosystem carbon dioxide fluxes after disturbance in forests of North America

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Ecosystem carbon dioxide fluxes after disturbance in forests of North America B. D. Amiro,1 A. G, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a standreplacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most

  2. Influence of egg predation and physical disturbance on lake trout Salvelinus namaycush egg mortality and

    E-Print Network [OSTI]

    Marsden, Ellen

    mortality and implications for life-history theory J. D. FITZSIMONS*, J. L. JONAS, R. M. CLARAMUNT, B and physical disturbance on lake trout Salvelinus namaycush egg mortality was investigated in situ in Lake and egg predation on egg loss. Wind fetch was used as an index of physical disturbance and comparisons

  3. Disturbances in the US electric grid associated with geomagnetic Carolus J. Schrijver* and Sarah D. Mitchell

    E-Print Network [OSTI]

    Schrijver, Karel

    Disturbances in the US electric grid associated with geomagnetic activity Carolus J. Schrijver on the US electric power grid for the period from 1992 through 2010. We find, with more than 3r significance. solar magnetic activity ­ geomagnetic disturbances ­ US electric power grid ­ geomagnetically induced

  4. BIOTROPICA 28(4a): 414-423 1996 Introduction: Disturbance and Caribbean Ecosystems1

    E-Print Network [OSTI]

    Willig, Michael

    BIOTROPICA 28(4a): 414-423 1996 Introduction: Disturbance and Caribbean Ecosystems1 Jess K in Caribbean ecosystems. Most (11) of the articles describe the responses of Caribbean forests to hurricane of the comparative responses of Caribbean ecosystems to different disturbances. Finally, we identify those areas

  5. Analysis of Electric Power System Disturbance Data Jie Chen James S. Thorp Manu Parashar

    E-Print Network [OSTI]

    Analysis of Electric Power System Disturbance Data Jie Chen James S. Thorp Manu Parashar School. Besides SOC and HOT, this model gives another way to investigate power law behavior in power system disturbances. 1. Introduction Electric power transmission networks are complex systems which undergo non

  6. Interactive effects of disturbance and nitrogen availability on phosphorus dynamics of southern Appalachian forests

    E-Print Network [OSTI]

    Fraterrigo, Jennifer

    Interactive effects of disturbance and nitrogen availability on phosphorus dynamics of southern and interactive effects of chronically altered resource availability and disturbance on phosphorus (P) availability is increas- ingly important in light of the rapid pace at which human activities are altering

  7. Interactive effects of disturbance and nitrogen availability on phosphorus dynamics of southern Appalachian forests

    E-Print Network [OSTI]

    Fraterrigo, Jennifer

    Interactive effects of disturbance and nitrogen availability on phosphorus dynamics of southern Abstract Understanding the main and interactive effects of chronically altered resource availability and disturbance on phosphorus (P) availability is increas- ingly important in light of the rapid pace at which

  8. The Contrasting Response to Soil Disturbance between Lodgepole Pine and Hybrid White Spruce in Subboreal Forests

    E-Print Network [OSTI]

    Sanborn, Paul

    for evaluating the sustainability of forest management (Curran et al., 2005). Soil disturbance can play a roleThe Contrasting Response to Soil Disturbance between Lodgepole Pine and Hybrid White Spruce in Subboreal Forests J. M. Kranabetter,* P. Sanborn, B. K. Chapman, and S. Dube ABSTRACT Reductions in soil

  9. Historical and Modern Disturbance Regimes, Stand Structures, and Landscape Dynamics in

    E-Print Network [OSTI]

    Swetnam, Thomas W.

    Historical and Modern Disturbance Regimes, Stand Structures, and Landscape Dynamics in Piñon, OR 97331 12 Natural Heritage New Mexico, University of New Mexico, Albuquerque, NM 87131 13 of the variability in historical and modern ecosystem structure and disturbance processes that exists among the many

  10. Adaptive Disturbance Rejection in the Presence of Uncertain Resonance Mode in Hard Disk Drives

    E-Print Network [OSTI]

    Ge, Shuzhi Sam

    Adaptive Disturbance Rejection in the Presence of Uncertain Resonance Mode in Hard Disk Drives Fan to provide stronger capability of disturbance suppression. The scheme does not require any extra excitation margin at high frequency subject to the variation of the resonance frequency and the peak gain

  11. L1=Q Approach for efficient computation of disturbance rejection measures for feedback control q

    E-Print Network [OSTI]

    Skogestad, Sigurd

    L1=Q Approach for efficient computation of disturbance rejection measures for feedback control q of disturbance rejection measures, which are useful for assessing the dynamic operability of the process. Using L1 optimal control theory, we consider the cases of steady-state, frequency-wise and dynamic systems

  12. Managing steam and concentration disturbances in multi-effect evaporators via

    E-Print Network [OSTI]

    Gravdahl, Jan Tommy

    Managing steam and concentration disturbances in multi-effect evaporators via nonlinear modelling performance due to steam and concentration disturbances. An alternative architecture is then proposed which mill, the volatile component is water, with the remainder being sugar. Steam is used as a heating

  13. Exact propagating nonlinear singular disturbances in strongly coupled dusty plasmas

    SciTech Connect (OSTI)

    Das, Amita; Tiwari, Sanat Kumar; Kaw, Predhiman; Sen, Abhijit [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2014-08-15T23:59:59.000Z

    The dynamical response of the strongly coupled dusty plasma medium has recently been described by utilizing the Generalized Hydrodynamic (GHD) model equations. The GHD equations capture the visco-elastic properties of the medium and have been successful in predicting a host of phenomena (e.g., existence of novel transverse shear waves in the fluid medium, modification of longitudinal wave dispersion by elastic effects, etc.) which have found experimental confirmation. In this paper, the nonlinear longitudinal response of the medium governed by GHD equations in strong coupling limit is discussed analytically. The structure of the equations rules out the balance between dispersion and nonlinearity, thereby, forbidding soliton formation. However, a host of new varieties of nonlinear solutions are found to exist, which have singular spatial profiles and yet have conservative properties. For instance, existence of novel conservative shock structures with zero strength is demonstrated, waves whose breaking produces no dissipation in the medium are observed, propagating solutions which produce cusp like singularities can exist and so on. It is suggested that simulations and experiments should look for these novel nonlinear structures in the large amplitude strong coupling limit of longitudinal disturbances in dusty plasmas.

  14. Method for warning of radiological and chemical substances using detection paints on a vehicle surface

    DOE Patents [OSTI]

    Farmer, Joseph C. (Tracy, CA)

    2012-03-13T23:59:59.000Z

    A system for warning of corrosion, chemical, or radiological substances. The system comprises painting a surface with a paint or coating that includes an indicator material and monitoring the surface for indications of the corrosion, chemical, or radiological substances.

  15. ILLEGAL SUBSTANCE ABUSE POLICY San Diego State University recognizes a responsibility to provide a safe

    E-Print Network [OSTI]

    Ponce, V. Miguel

    ILLEGAL SUBSTANCE ABUSE POLICY San Diego State University recognizes a responsibility to provide policy regarding illegal substance abuse. 1.0 Prohibitions San Diego State University prohibits the unlawful manufacture, distribution, dispensation, possession, promotion, sale, or use of illegal drugs

  16. Enhancing Railroad Hazardous Materials Transportation Safety

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,OfficeEnd of Year 2010 SNFEnergySession0-02 -Railroad Hazardous g Materials

  17. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting andSolar Glare Hazard

  18. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri GlobalJump to: navigation, search Contents 1Wastes Hazardous or Solid

  19. WIPP Documents - Hazardous Waste Facility Permit (RCRA)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEureka AnalyticsLarge fileHazardous Waste

  20. Natural Hazards and Earth System Sciences (2001) 1: 4351 c European Geophysical Society 2001 Natural Hazards

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2001-01-01T23:59:59.000Z

    that the electromagnetic wave monitor- ing system has the potential to monitor and/or warn of vol- canic activity as a field trial for monitoring volcanic activities through the use of the electromagnetic method. Up Natural Hazards and Earth System Sciences Electromagnetic-wave radiation due to diastrophism of magma dike

  1. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27T23:59:59.000Z

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  2. Pinellas Plant contingency plan for the hazardous waste management facility

    SciTech Connect (OSTI)

    NONE

    1988-04-01T23:59:59.000Z

    Subpart D of Part 264 (264.50 through .56) of the Resource Conservation and Recovery Act (RCRA) regulations require that each facility maintain a contingency plan detailing procedures to {open_quotes}minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water.{close_quotes}

  3. Reduced adsorption of caesium on clay minerals caused by various humic substances

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Reduced adsorption of caesium on clay minerals caused by various humic substances C. Dumat, S!ect of the addition of various humic substances on the adsorption of caesium on two mineral clays has been studied the amount of humic substance adsorbed and the decrease in Cs adsorption when all complexes were considered

  4. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

    2008-07-01T23:59:59.000Z

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  5. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01T23:59:59.000Z

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  6. Hurricane Andrew: Impact on hazardous waste management

    SciTech Connect (OSTI)

    Kastury, S.N. (Dept. of Environmental Regulation, Tallahassee, FL (United States))

    1993-03-01T23:59:59.000Z

    On August 24, 1992, Hurricane Andrew struck the eastern coast of South Florida with winds of 140 mph approximately and a storm surge of 15 ft. The Florida Department of Environmental Regulation finds that the Hurricane Andrew caused a widespread damage throughout Dade and Collier County as well as in Broward and Monroe County and has also greatly harmed the environment. The Department has issued an emergency final order No. 92-1476 on August 26, 1992 to address the environmental cleanup and prevent any further spills of contaminants within the emergency area. The order authorizes the local government officials to designate certain locations in areas remote from habitation for the open burning in air certain incinerators of hurricane generated yard trash and construction and demolition debris. The Department staff has assisted the county and FEMA staff in establishing procedures for Hazardous Waste Management, Waste Segregation and disposal and emergency responses. Local governments have issued these burn permits to public agencies including FDOT and Corps of Engineering (COE). Several case studies will be discussed on the Hazardous Waste Management at this presentation.

  7. The Hazard Posed by Depleted Uranium Munitions

    E-Print Network [OSTI]

    Steve Fetter And; Steve Fetter A

    This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

  8. Los Alamos National Laboratory Hazardous Waste Facility Permit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan CommentSuggestion Form Instructions for completing the form: Please reference the section in the plan that your...

  9. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    Sheet Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL On October 17, 2012, the National Nuclear Security Administration (NNSA) issued a Preliminary...

  10. Surveillance Guide - OSS 19.5 Hazardous Waste Operations and...

    Broader source: Energy.gov (indexed) [DOE]

    RL Facility Representative Program March 21, 1995 Surveillance Guide OSS 19.5 Revision 0 Hazardous Waste Operations and Emergency Response Page 6 of Error Bookmark...

  11. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Oregon Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  12. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  13. asteroid impact hazard: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Peter 2015-01-01 87 Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? Environmental Sciences and Ecology Websites Summary: 30...

  14. additive hazards model: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of spatial occurrence of landslides by discriminant analysis Boyer, Edmond 212 Lesson 1. Natural Hazards & Natural Disasters Geosciences Websites Summary: Lesson 1. Natural...

  15. Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...

    Broader source: Energy.gov (indexed) [DOE]

    the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need...

  16. Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to characterize and certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The report contains the results of the recertification audit...

  17. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pilot Plant (WIPP) facility. This notification fulfills the requirements of the W IPP Hazardous Waste Facility Perm it (Permit), (NM4890139088-TSDF), Permit Part 3, Section...

  18. Packaging and Transfer of Hazardous Materials and Materials of...

    Broader source: Energy.gov (indexed) [DOE]

    PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

  19. Fire hazards analysis of transuranic waste storage and assay facility

    SciTech Connect (OSTI)

    Busching, K.R., Westinghouse Hanford

    1996-07-31T23:59:59.000Z

    This document analyzes the fire hazards associated with operations at the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

  20. Experiment Hazard Class 6.7 - Explosive and Energetic Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    section of this hazard class will be reviewed by either the APS Chemical Hygiene Officer andor a member of the APS Experiment Safety Review Board on an individual...