Powered by Deep Web Technologies
Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Susanville District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

2

Table 5a. Total District Heat Consumption per Effective Occupied Square  

U.S. Energy Information Administration (EIA) Indexed Site

a. Total District Heat Consumption per Effective a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 94 429 84 93 Building Floorspace (Square Feet) 1,001 to 5,000 18 Q Q Q 5,001 to 10,000 11 Q Q Q 10,001 to 25,000 28 65 144 155 25,001 to 50,000 16 Q Q Q 50,001 to 100,000 9 50 79 81 100,001 to 200,000 6 59 76 79 200,001 to 500,000 5 109 71 77 Over 500,000 1 65 62 80 Principal Building Activity Education 22 50 71 78 Food Sales and Service Q Q Q Q Health Care 3 57 100 142 Lodging 9 66 112 116 Mercantile and Service 9 Q Q Q Office 24 110 63 70 Public Assembly 10 23 64 66 Public Order and Safety Q Q Q Q Religious Worship Q Q Q Q Warehouse and Storage

3

Table 5b. Relative Standard Errors for Total District Heat Consumption per  

U.S. Energy Information Administration (EIA) Indexed Site

b. Relative Standard Errors for Total District Heat Consumption per b. Relative Standard Errors for Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption (trillion Btu) District Heat Intensities (thousand Btu) Per Square Foot Per Effective Occupied Square Foot All Buildings 11 16 16 16 Building Floorspace (Square Feet) 1,001 to 5,000 27 78 76 76 5,001 to 10,000 38 60 51 51 10,001 to 25,000 18 43 36 35 25,001 to 50,000 24 68 51 51 50,001 to 100,000 18 40 30 30 100,001 to 200,000 27 33 35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging 30 40 30 29 Mercantile and Service 40 74 59 58 Office 23 28 26 27 Public Assembly 25 33 25 26 Public Order and Safety

4

Geothermal district heating systems  

DOE Green Energy (OSTI)

Ten district heating demonstration projects and their present status are described. The projects are Klamath County YMCA, Susanville District Heating, Klamath Falls District Heating, Reno Salem Plaza Condominium, El Centro Community Center Heating/Cooling, Haakon School and Business District Heating, St. Mary's Hospital, Diamond Ring Ranch, Pagosa Springs District Heating, and Boise District Heating.

Budney, G.S.; Childs, F.

1982-01-01T23:59:59.000Z

5

Kethcum District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

6

Midland District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

7

Boise City Geothermal District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

8

San Bernardino District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature...

9

Philip District Heating District Heating Low Temperature Geothermal...  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

10

Pagosa Springs District Heating District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal...

11

City of Klamath Falls District Heating District Heating Low Temperatur...  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature...

12

Elko County School District District Heating Low Temperature...  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal...

13

Warm Springs Water District District Heating Low Temperature...  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

14

ABSORPTION HEAT PUMP IN THE DISTRICT HEATING  

E-Print Network (OSTI)

#12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation #12;JSC RGAS SILTUMS · the biggest District Heating company in Latvia and in the Baltic states

Oak Ridge National Laboratory

15

Boise City Geothermal District Heating District Heating Low Temperature  

Open Energy Info (EERE)

Boise City Geothermal District Heating District Heating Low Temperature Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Facility Boise City Geothermal District Heating Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

16

Philip District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Philip District Heating District Heating Low Temperature Geothermal Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal Facility Facility Philip District Heating Sector Geothermal energy Type District Heating Location Philip, South Dakota Coordinates 44.0394329°, -101.6651441° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

17

Pagosa Springs District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating District Heating Low Temperature Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Facility Pagosa Springs District Heating Sector Geothermal energy Type District Heating Location Pagosa Springs, Colorado Coordinates 37.26945°, -107.0097617° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

18

City of Klamath Falls District Heating District Heating Low Temperature  

Open Energy Info (EERE)

District Heating District Heating Low Temperature District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Facility City of Klamath Falls District Heating Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

19

Kethcum District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Kethcum District Heating District Heating Low Temperature Geothermal Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal Facility Facility Kethcum District Heating Sector Geothermal energy Type District Heating Location Ketchum, Idaho Coordinates 43.6807402°, -114.3636619° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

20

San Bernardino District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Bernardino District Heating District Heating Low Temperature Geothermal Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low Temperature Geothermal Facility Facility San Bernardino District Heating Sector Geothermal energy Type District Heating Location San Bernardino, California Coordinates 34.1083449°, -117.2897652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Midland District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Midland District Heating District Heating Low Temperature Geothermal Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal Facility Facility Midland District Heating Sector Geothermal energy Type District Heating Location Midland, South Dakota Coordinates 44.0716539°, -101.1554178° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

22

Susanville District Heating District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Susanville District Heating District Heating Low Temperature Geothermal Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature Geothermal Facility Facility Susanville District Heating Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

23

Elko District Heat District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Heat District Heating Low Temperature Geothermal Facility Heat District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko District Heat District Heating Low Temperature Geothermal Facility Facility Elko District Heat Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

24

Table 20. Coal Imports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Coal Imports by Customs District Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 20. Coal Imports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 469,878 331,008 156,004 800,886 350,124 128.7 Baltimore, MD - - 106,118 - 154,318 - Boston, MA 373,985 154,438 - 528,423 51,185 NM Buffalo, NY 44 - - 44 - - New York City, NY 1,373 1,402 487 2,775 507 447.3 Norfolk, VA - 68,891 - 68,891 35,856 92.1 Ogdensburg, NY - 1 12 1 12 -91.7 Portland, ME 42,428 44,547 - 86,975 - - Providence, RI 52,028 61,729 49,387 113,757 108,226 5.1 St. Albans, VT 20

25

Table 13. U.S. Coal Exports by Customs District  

Annual Energy Outlook 2012 (EIA)

Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 13. U.S. Coal Exports by Customs District...

26

Compare All CBECS Activities: District Heat Use  

U.S. Energy Information Administration (EIA) Indexed Site

District Heat Use District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433 trillion Btu of district heat (district steam or district hot water) in 1999. There were only five building types with statistically significant district heat consumption; education buildings used the most total district heat. Figure showing total district heat consumption by building type. If you need assistance viewing this page, please call 202-586-8800. District Heat Consumption per Building by Building Type Health care buildings used the most district heat per building. Figure showing district heat consumption per building by building type. If you need assistance viewing this page, please call 202-586-8800.

27

Litchfield Correctional Center District Heating Low Temperature...  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal...

28

Embedded Agents for District Heating Management  

Science Conference Proceedings (OSTI)

We investigate the applicability of multi-agent systems as a control approach for district heating systems. The consumers, i.e., the heat exchange systems, in current district heating systems are purely reactive devices without communication capabilities. ...

Paul Davidsson; Fredrik Wernstedt

2004-07-01T23:59:59.000Z

29

Elko County School District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

County School District District Heating Low Temperature Geothermal County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature Geothermal Facility Facility Elko County School District Sector Geothermal energy Type District Heating Location Elko, Nevada Coordinates 40.8324211°, -115.7631232° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

30

Warm Springs Water District District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Water District District Heating Low Temperature Geothermal Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal Facility Facility Warm Springs Water District Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

31

Definition: District heat | Open Energy Information  

Open Energy Info (EERE)

District heat District heat Jump to: navigation, search Dictionary.png District heat A heating system that uses steam or hot water produced outside of a building (usually in a central plant) and piped into the building as an energy source for space heating, hot water or another end use.[1][2][3] View on Wikipedia Wikipedia Definition District heating (less commonly called teleheating) is a system for distributing heat generated in a centralized location for residential and commercial heating requirements such as space heating and water heating. The heat is often obtained from a cogeneration plant burning fossil fuels but increasingly biomass, although heat-only boiler stations, geothermal heating and central solar heating are also used, as well as nuclear power. District heating plants can provide higher efficiencies and better

32

Groundwater and geothermal: urban district heating applications  

DOE Green Energy (OSTI)

This report describes how several cities use groundwater and geothermal energy in district heating systems. It begins with groundwater, introducing the basic technology and techniques of development, and describing two case studies of cities with groundwater-based district heating systems. The second half of the report consists of three case studies of cities with district heating systems using higher temperature geothermal resources.

Mounts, R.; Frazier, A.; Wood, E.; Pyles, O.

1982-01-01T23:59:59.000Z

33

First university owned district heating system using biomass heat  

E-Print Network (OSTI)

Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

Northern British Columbia, University of

34

Modeling Satellite District Heating and Cooling Networks.  

E-Print Network (OSTI)

??Satellite District Heating and Cooling (DHC) systems offer an alternative structure to conventional, centralized DHC networks. Both use a piping network carrying steam or water (more)

Rulff, David

2011-01-01T23:59:59.000Z

35

Fort Boise Veteran's Hospital District Heating Low Temperature...  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

36

New Mexico State University District Heating Low Temperature...  

Open Energy Info (EERE)

State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal...

37

Oregon Institute of Technology District Heating Low Temperature...  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility...

38

Table 14. Steam Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Steam Coal Exports by Customs District Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 14. Steam Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 4,951,041 5,566,950 6,554,494 10,517,991 11,407,664 -7.8 Baltimore, MD 1,275,530 831,976 1,715,016 2,107,506 2,852,092 -26.1 Boston, MA 7 - 12 7 24 -70.8 Buffalo, NY 1,180 1,516 2,826 2,696 5,257 -48.7 New York City, NY 3,088 2,664 2,168 5,752 6,106 -5.8 Norfolk, VA 3,578,715 4,697,769 4,760,354 8,276,484 8,443,756 -2.0 Ogdensburg, NY 36,894 3,610 3,090 40,504 6,838 492.3 Philadelphia, PA

39

Table 15. Metallurgical Coal Exports by Customs District  

U.S. Energy Information Administration (EIA) Indexed Site

Metallurgical Coal Exports by Customs District Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Table 15. Metallurgical Coal Exports by Customs District (short tons) U.S. Energy Information Administration | Quarterly Coal Report, April - June 2013 Year to Date Customs District April - June 2013 January - March 2013 April - June 2012 2013 2012 Percent Change Eastern Total 11,716,074 14,136,513 15,167,377 25,852,587 27,578,514 -6.3 Baltimore, MD 2,736,470 4,225,450 5,123,600 6,961,920 9,037,970 -23.0 Boston, MA - - - - 28,873 - Buffalo, NY 247,714 121,347 524,040 369,061 725,698 -49.1 Norfolk, VA 8,730,257 9,784,866 9,519,119 18,515,123 17,784,479 4.1 Ogdensburg, NY 1,633 4,850 618 6,483 1,494 333.9 Southern Total 3,551,564 3,824,484

40

Midland, South Dakota geothermal district heating  

SciTech Connect

This article describes historical aspects and present usage of geothermal district heating systems in the town of Midland, South Dakota. The use of geothermal resources exists due to a joint venture between the school district and the city back in the early 1960`s. A total of approximately 30,000 square feet (2800 square meters) of floor space is heated using geothermal energy in Midland. This provides an estimated annual saving in propane cost of $15,000 to the community.

Lund, J.W.

1997-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

District-heating system, La Grande, Oregon  

DOE Green Energy (OSTI)

The area suggested for district heating feasibility study encompassed slightly over 400 acres extending north and south from the geographic center of the city. This district was subdivided into 8 areas, which include the Grande Ronde Hospital, Eastern Oregon State College, La Grande school district, one institutional area, one commercial area and three residential areas. Basic space heating loads developed for the various areas after a survey by county personnel and computation using a computer program form the basis for this economic feasibility study.

Not Available

1982-01-01T23:59:59.000Z

42

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 233 Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District, and Selected States (Cents per Gallon...

43

Table 28. PAD District 3 - Imports of Crude Oil and Petroleum ...  

U.S. Energy Information Administration (EIA)

Table 28. PAD District 3 - Imports of Crude Oil and Petroleum Products by Country of Origin, 2010 (Thousand Barrels) Continued Country of Origin

44

Planning analyses for geothermal district heating  

DOE Green Energy (OSTI)

Methodology and data bases are described which can provide a comprehensive planning assessment of the potential for geothermal district heating in any US market. This economic systems model encompasses life-cycle costing over a period of rising competitive fuel prices, it addresses the expansion and financing of a district system over time, and it includes an overall optimization of system design. The elemental area for all analyses is the census tract, for which published data allow estimation of residential and commercial heating demands, building retrofit requirements, and competitive fuel consumption and cost. A system type design, an appropriate hot water district piping system, and costing of heat supply is performed for groups of contiguous tracts in any urban market. Groups are aggregated, in decreasing benefit to cost order, to achieve optimal systems. A specific application for Salt Lake City, Utah, is also described.

Tessmer, R.G. Jr.; Karkheck, J.

1979-12-01T23:59:59.000Z

45

Geothermal district heating: basics to success  

DOE Green Energy (OSTI)

A district heating system using geothermal energy is a viable and economic option in many locations. A successful system, however, is dependent upon a variety of factors, and it is the purpose of this presentation to accent those items that are proving to have significant impact upon the successful operation of geothermal district heating systems. (These lessons can also apply to other sources of energy.) The six major basics to success that are discussed in this paper are economic viability, an adequate geothermal resource, simplicity of design, a closed loop system, a local champion, and good public relations.

Lunis, B.C.

1985-01-01T23:59:59.000Z

46

CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS  

E-Print Network (OSTI)

CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS T.S. Nielsen, H. Madsen Informatics the supply temperature in district heating systems using stochastic modelling, prediction and control at Roskilde Varmeforsyning. The results obtained for the Roskilde district heating utility are evaluated

47

Predictive control of supply temperature in district heating systems  

E-Print Network (OSTI)

Predictive control of supply temperature in district heating systems Torben Skov Nielsen Henrik This report considers a new concept for controlling the supply temperature in district heating systems using stochastic modelling, prediction and control. A district heating systems is a di#30;cult system to control

48

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, 1949-2011 (Million Btu per Barrel)

49

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on...

50

District Heating with Renewable Energy Webinar | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Heating with Renewable Energy Webinar November 20, 2012 1:00PM MST Webinar This no cost Community Renewable Energy Success Stories webinar on "District Heating with...

51

Alternative institutional vehicles for geothermal district heating  

DOE Green Energy (OSTI)

The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

1980-06-01T23:59:59.000Z

52

New directions for district heating in the United States  

DOE Green Energy (OSTI)

Within the past five years there has been a growing awareness of the energy conservation and economic advantages of modern hot-water district heating systems. A description is given of the status of major US district heating projects and the potential impact of the newly implemented US National District Heating Plan is examined. At the present time there are five major district heating projects moving into the construction and demonstration phase. Although all have hot water distribution systems a variety of heat sources are being utilized. These heat sources include geothermal water, industrial reject heat, and utility cogeneration using coal-fired power plants.

Olszewski, M.; Karnitz, M.A.

1981-01-01T23:59:59.000Z

53

District heating system, City of Caliente, Nevada  

DOE Green Energy (OSTI)

An updated feasibility study of the district heating system is described. The study was made in two parts, Option 1 and Option 2. Option 1 is a district heating system for the city of Caliente only, whereas Option 2 assumes making 140{sup 0}F water available to the Mark West Development, about five miles to the west of the city. The city district heating system is based on a supply water temperature of 175{sup 0}F and 120{sup 0}F return temperature. The capital cost estimate for Option 1 is $3,140,000. The resultant savings in conventional energy cost over a 20 year project life, assuming 12% bond financing, show a present worth of $4,074,000. This shows that the project should be economically feasible. The capital cost for Option 2 is estimated to be $4,230,000. The additional cost of Option 2 over Option 1, $1,090,000, will have to be recovered by the fee charged to the Mark West Development users for the water made available to them. Since, however, this use is unknown an evaluation of the economic feasibility of Option 2 cannot be made at this time.

Karlsson, T.

1984-06-01T23:59:59.000Z

54

Generic model for district heating: a geothermal appliance  

DOE Green Energy (OSTI)

Brookhaven National Laboratory (BNL) is developing a model desgined to assess the engineering and economic requirements which must be addressed when the implementation of district heating is seriously considered. A brief overview of the structure of the BNL District Heating Model is presented, including a discussion of the function of each of its major program components. The model is composed of four submodels, each of which serves a distinct function in the analysis of district heating. These are the Heat Demand, Heat Source, District Heating, and Market analysis Submodels. (MHR)

Reisman, A.

1980-11-01T23:59:59.000Z

55

Woodfuel community heating at Kielder A wood-fired district heating  

E-Print Network (OSTI)

Woodfuel community heating at Kielder A wood-fired district heating system, one of the first of its-fired district heating system was installed in 2004 as a practical low-carbon solution to providing heat and hot 2010. Contact for further information: Graham Gill (graham.gill@forestry.gsi.gov.uk) District heating

56

Economic feasibility of geothermal district heating: a case study  

DOE Green Energy (OSTI)

The application of a computerized methodology developed at Brookhaven National Laboratory (BNL) to an assessment of the economic feasibility of district heating in Reno, Nevada is described. To apply this methodology, assumptions concerning the characteristics of the heat load served, the price of competing fuels, and alternate forms of district heat utility ownership are combined with data describing the geothermal resource. Using these inputs along with engineering costs for geothermal field development and pipe installation, the methodology generates detailed engineering and economic descriptors of several proposed district heating systems. The impact of alternate construction expenditure schedules, retrofit costs, and system size on the unit cost of district heat is examined.

Reisman, A.; Peterson, E.

1981-12-01T23:59:59.000Z

57

Berlin, Maryland, district heating assessment program. Feasibility study  

DOE Green Energy (OSTI)

Ebasco conducted the technical and economic portion of this study to determine the feasibility of constructing a district heating system with a geothermal energy source for the town of Berlin, Maryland. The Berlin District Heating Assessment Work Group (DHAWG) provided the information on the energy needs of all potential users. Previous work was used to estimate the potential geothermal energy available beneath the town. A computer program, GRITS, developed by JHU was also used to evaluate various district heating systems that would satisfy the town's needs. It is concluded that a district heating system is technically and economically feasible based on the criteria and data used in this study.

Not Available

1982-09-01T23:59:59.000Z

58

A Geothermal District-Heating System and Alternative Energy Research...  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project...

59

District Heating System, City of Caliente, Nevada.  

SciTech Connect

Considerable preliminary information has been gathered on the heating requirements of Caliente. It is reported that the City consists of 320 residential buildings, 90 commercial buildings, and two industries, a total of 412. Heating is predominantly by fuel oil or LPG. Only 113 of the residential, 17 of the commercial, and 1 of the industrial buildings are heated electrically. It is also reported that the average electrically heated home consumed 13,600 KWH in the year 1978, and the average all-electric commercial building 53,100 KWH. A geothermal district heating system for the city of Caliente, Nevada is economically feasible. This assumes that a 160/sup 0/F geothermal source capable of delivering a peak load of 850 gallons per minute from a relatively shallow depth can be located within, or near, the City boundaries. Total volume needed from the geothermal reservoir during the 20 year project life is 5400 acre-feet. Based on 8% bond financing of a capital investment for equipment of $2,500,000, a present worth of about $5,400,000 is generated over the project life. Total energy saved during the project life is 63 million KWH of electricity, and 7.5 millions therms of fuel.

1980-12-31T23:59:59.000Z

60

Table WH1. Total Households Using Water Heating Equipment, 2005 ...  

U.S. Energy Information Administration (EIA)

Table WH1. Total Households Using Water Heating Equipment, 2005 Million U.S. Households Fuels Used (million U.S. households) Number of Water Heaters Used

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration / Annual Energy Review 2011 323 Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, Selected ...

62

Table A3. Approximate Heat Content of Petroleum Consumption and ...  

U.S. Energy Information Administration (EIA)

Table A3. Approximate Heat Content of Petroleum Consumption and Biofuels Production, 1949-2011 (Million Btu per Barrel) Year: Total Petroleum 1 ...

63

November 20, 2012 Webinar: District Heating with Renewable Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy November 20, 2012 Webinar: District Heating with Renewable Energy This webinar was held November 20, 2012, and provided information on Indiana's Ball State University geothermal heat pump system, and a hot-water district heating system in St. Paul, Minnesota. Download the presentations below, watch the webinar (WMV 194 MB), or view the text version. Find more CommRE webinars. Paradigm Shift-Coal to Geothermal Ball State University in Indianapolis, Indiana, is converting its campus district heating and cooling system from a coal-fired steam boiler to a ground source geothermal system that produces simultaneously hot water for heating and chilled water for cooling. It will be the largest ground source

64

Application of district heating system to U. S. urban areas  

DOE Green Energy (OSTI)

In the last few decades district-heating systems have been widely used in a number of European countries using waste heat from electric generation or refuse incineration, as well as energy from primary sources such as geothermal wells or fossil-fired boilers. The current world status of district-heat utilization is summarized. Cost and implementation projections for district-heating systems in the U. S. are discussed in comparison with existing modes of space conditioning and domestic water heating. A substantial fraction, i.e., up to approximately one-half of the U.S. population could employ district-heating systems using waste heat, with present population-distribution patterns. U.S. energy usage would be reduced by an equivalent of approximately 30 percent of current oil imports. Detailed analyses of a number of urban areas are used to formulate conceptual district energy-supply systems, potential implementation levels, and projected energy costs. Important national ancillary economic and social benefits are described, and potential difficulties relating to the implementation of district-heating systems in the U.S. are discussed. District-heating systems appear very attractive for meeting future U.S. energy needs. The technology is well established. The cost/benefit yield is favorable, and the conservation potential is significant. District heating can be applied in urban and densely populated suburban areas. The remaining demand, in rural and low-population-density communities, appears to be better suited to other forms of system substitution.

Karkheck, J.; Powell, J.

1978-01-01T23:59:59.000Z

65

District heating and cooling market assessment  

SciTech Connect

For more than 10 years, the U.S. Department of Energy (DOE) has supported research on and development of district steam, hot-water, and chilled-water systems in the residential and commercial sectors. In 1991, DOE sponsored a research project at Argonne National Laboratory (ANL) to reestimate the national market for district heating and cooling (DHC) systems to the year 2010. ANL had previously developed a DHC market-penetration model and used it to project future market penetration. The first step in the project was to conduct a literature search to identify major data sources on historical DHC markets and any past studies on the future market potential of DHC systems. On the basis of an evaluation of the available data and methodologies for estimating market penetration of new technologies, it was concluded that ANL should develop a new econometric model for forecasting DHC markets. By using the 1989 DOE/Energy Information Administration Commercial Buildings Energy Consumption Surveys (CBECS) public-use-tape data, a model was estimated for steam, hot-water, and chilled-water demand in the buildings surveyed. The model provides estimates of building steam, hot-water, and chilled-water consumption and expenditures between now and the year 2010. The analysis shows that the total U.S. market for district steam, hot water, and chilled water could grow from 0.8 quadrillion British thermal units (quad) in 1989 to 1.0 quad by 2000 and 1.25 quad by 2010. The demand for chilled water could nearly double in the forecast period, and its share could approach one-third of the total DHC market. This model, and the results, should be of use to policymakers, researchers, and market participants involved in the planning and implementation of community-based, energy-conserving, and environmentally beneficial energy systems.

Teotia, A.P.S.; Karvelas, D.E.; Daniels, E.J.; Anderson, J.L.

1993-06-01T23:59:59.000Z

66

U.S. geothermal district heating : barriers and enablers  

E-Print Network (OSTI)

Geothermal district heating experience in the U.S. is reviewed and evaluated to explore the potential impact of utilizing this frequently undervalued renewable energy resource for space and hot water heating. Although the ...

Thorsteinsson, Hildigunnur H

2008-01-01T23:59:59.000Z

67

Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen  

E-Print Network (OSTI)

July 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5 in soil 28 5.3 Other experienced constructions: 30 6 Consequences of establishing solar heat in CHP areas

68

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

State energy information, detailed and overviews. Maps. ... Table A6. Approximate Heat Rates for Electricity, and Heat Content of Electricity, 1949-2011

69

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

70

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

62.0 70.7 92.7 90.7 81.5 72.8 - 78.0 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

71

Table 4. Estimation Results for PAD District Regions  

Gasoline and Diesel Fuel Update (EIA)

4. Estimation Results for PAD District Regions 4. Estimation Results for PAD District Regions Dependent Variable: D(RETPAD1) Dependent Variable: D(RETPAD2) Dependent Variable: D(RETPAD3) Dependent Variable: D(RETPAD4) Dependent Variable: D(RETPAD5) Sample: 1/03/2000 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Sample: 6/15/1998 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient C 0.008 C -0.019 C -0.015 C -0.030 C 0.049 (0.098) (0.199) (0.115) (0.087) (0.148) DSPOTPAD1(-1) 0.295*** DSPOTPAD2(-1) 0.671*** DSPOTPAD3(-1) 0.334*** DSPOTPAD4(-1) 0.132*** DSPOTPAD5(-1) 0.184*** (0.023) (0.034) (0.026) (0.021) (0.023)

72

Optimizing the operation of an urban district heating system by means of variable speed drives  

Science Conference Proceedings (OSTI)

In this work is presenting an urban district heating system which is subjected to a modernization process. The urban district heating system is composed by the pumping station of the primary heat carrier and the district heating stations. The modernization ... Keywords: district heating system, energetic efficiency, pumping station, static frequency converter, testing

Sorin Ioan Deaconu; Gabriel Nicolae Popa; Iosif Popa

2008-07-01T23:59:59.000Z

73

Oregon Institute of Technology District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

District Heating Low Temperature Geothermal District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Facility Oregon Institute of Technology Sector Geothermal energy Type District Heating Location Klamath Falls, Oregon Coordinates 42.224867°, -121.7816704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

74

New Mexico State University District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

State University District Heating Low Temperature Geothermal State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New Mexico State University Sector Geothermal energy Type District Heating Location Las Cruces, New Mexico Coordinates 32.3123157°, -106.7783374° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

75

Idaho Capitol Mall District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Capitol Mall District Heating Low Temperature Geothermal Facility Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Facility Idaho Capitol Mall Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

76

Warren Estates District Heating Low Temperature Geothermal Facility | Open  

Open Energy Info (EERE)

Warren Estates District Heating Low Temperature Geothermal Facility Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility Warren Estates Sector Geothermal energy Type District Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

77

Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Boise Veteran's Hospital District Heating Low Temperature Geothermal Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Facility Fort Boise Veteran's Hospital Sector Geothermal energy Type District Heating Location Boise, Idaho Coordinates 43.6135002°, -116.2034505° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

78

Manzanita Estates District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Manzanita Estates District Heating Low Temperature Geothermal Facility Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility Facility Manzanita Estates Sector Geothermal energy Type District Heating Location Reno, Nevada Coordinates 39.5296329°, -119.8138027° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

79

Litchfield Correctional Center District Heating Low Temperature Geothermal  

Open Energy Info (EERE)

Correctional Center District Heating Low Temperature Geothermal Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Facility Litchfield Correctional Center Sector Geothermal energy Type District Heating Location Susanville, California Coordinates 40.4162842°, -120.6530063° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

80

World Energy Projection System Plus Model Documentation: District Heat Model  

Reports and Publications (EIA)

This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS+) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

Brian Murphy

2011-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Gila Hot Springs District Heating Low Temperature Geothermal Facility |  

Open Energy Info (EERE)

Gila Hot Springs District Heating Low Temperature Geothermal Facility Gila Hot Springs District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Gila Hot Springs District Heating Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

82

Community Renewable Energy Success Stories Webinar: District Heating with  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012. Operator: The broadcast is now starting. All attendees are in listen-only mode. Sarah Busche: Hi, good afternoon everyone, and welcome to today's webinar sponsored by the U.S. Department of Energy. I'm Sarah Busche, and I'm here with Devin Egan. We're broadcasting live from the National Renewable Energy Lab in Golden, Colorado. And we're going to give everyone a few minutes to call in and log on, but while we do that, Devin's going to go over some of the logistics, and then we'll get started. Devin?

83

Geothermal-district-heating assessment model for decision making  

DOE Green Energy (OSTI)

A methodology developed to assess the economic feasibility of district heating for any community in the United States is described. The overall philosophy which has guided its development is the conviction that district heating must be examined on a site-by-site basis. To support this approach, a set of extensive, in-house supporting data bases has been created and useful external data bases with national coverage have been identified. These data bases provide information at a sufficient level of detail to permit a first-cut examination of the district heating potential of a community without requiring outside data collection (allowing a substantial cost and time savings). The results of this blind look at a community permit a rapid, yet adequate estimate of district heating potential, costs, and energy savings. The data utilized in the initial examination can be supplemented or replaced by more detailed information obtained from on-site data collection, if the first results are promising. The fact that the data and methodology are computerized allows many locations within the community, alternate heat sources, ownership options, pipe technologies, etc. to be examined in a short period of time. The structure of the District Heating Model (DHM) (the methodology in computerized form) is described followed by a discussion of the application of the model to Provo, UT.

Reisman, A.

1981-11-01T23:59:59.000Z

84

Simulation and analysis of district-heating and -cooling systems  

DOE Green Energy (OSTI)

A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

Bloomster, C.H.; Fassbender, L.L.

1983-03-01T23:59:59.000Z

85

Assessment of turbine generator technology for district heating applications  

SciTech Connect

Steam turbines for cogeneration plants may carry a combination of industrial, space heating, cooling and domestic hot water loads. These loads are hourly, weekly, and seasonally irregular and require turbines of special design to meet the load duration curve, while generating electric power. Design features and performance characteristics of large cogeneration turbine units for combined electric generation and district heat supply are presented. Different modes of operation of the cogeneration turbine under variable load conditions are discussed in conjunction with a heat load duration curve for urban heat supply. The performance of the 250 MW district heating turbine as applied to meet the heat load duration curve for Minneapolis--St. Paul area is analyzed, and associated fuel savings are estimated.

Oliker, I.

1978-09-01T23:59:59.000Z

86

District cooling and heating development in Stamford, CT. Final report  

SciTech Connect

This report summarizes the development options for introducing district cooling and heating in downtown Stamford, Connecticut. A district energy system as defined for the Stamford project is the production of chilled and hot water at a central energy plant, and its distribution underground to participating building in the vicinity. The objective of the study was to investigate implementation of a district energy system in conjunction with cogeneration as a means to encourage energy conservation and provide the city with an economic development tool. Analysis of the system configuration focused on selecting an arrangement which offered a realistic opportunity for implementation. Three main alternatives were investigated: (1) construction of an 82 MW cogeneration plant and a district heating and cooling system to serve downtown buildings, (2) construction of a small (4 MW) in-fence cogeneration plant combined with cooling and heating, and (3) construction of a district cooling and heating plant to supply selected buildings. Option (1) was determined to be unfeasible at this time due to low electricity prices. The analysis demonstrated that alternatives (2) and (3) were feasible. A number of recommendations are made for detailed cost estimates and ownership, leasing, and financial issues. 12 figs., 10 tabs.

1994-12-01T23:59:59.000Z

87

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

88

Table WH2. Total Households by Water Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Water Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Table WH2.

89

"Table HC4.4 Space Heating Characteristics by Renter-Occupied...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC4.4 Space Heating...

90

"Table HC11.4 Space Heating Characteristics by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption Survey. " " Energy Information Administration 2005 Residential Energy Consumption Survey: Preliminary Housing Characteristics Tables" "Table HC11.4 Space Heating...

91

Philip, South Dakota geothermal district heating systems  

SciTech Connect

The geothermal heating project in Philip, South Dakota which uses the waste water from the Haakon School has now been in operation for 15 years. This project was one of the 23 cost shared by the U.S. DOE starting in 1978, of which 15 became operational. This article describes the geothermal heating system for eight buildings in downtown Philip.

Lund, J.W.

1997-12-01T23:59:59.000Z

92

Thermodynamic Analysis of Combined Cycle District Heating System  

E-Print Network (OSTI)

This paper presents a thermodynamic analysis of the University of Massachusetts' Combined Heat and Power (CHP) District Heating System. Energy and exergy analyses are performed based on the first and second laws of thermodynamics for power generation systems that include a 10 MW Solar combustion gas turbine, a 4-MW steam turbine, a 100,000 pph heat recovery steam generator (HRSG), three 125,000 pph package boilers, and auxiliary equipment. In the analysis, actual system data is used to assess the district heating system performance, energy and exergy efficiencies, exergetic improvement potential and exergy losses. Energy and exergy calculations are conducted for the whole year on an hourly basis. System efficiencies are calculated for a wide range of component operating loads. The results show how thermodynamic analysis can be used to identify the magnitudes and location of energy losses in order to improve the existing system, processes or components.

Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

2011-01-01T23:59:59.000Z

93

Retrofitting Power Plants to Provide District Heating and Cooling  

Science Conference Proceedings (OSTI)

Case studies at five utilities documented consumer and utility benefits of retrofitting fossil steam and combined-cycle plants to provide thermal energy for district heating and cooling (DHC) for nearby loads. This cogeneration strategy helps utilities boost revenues and plant energy utilization efficiencies. It can also revitalize communities by providing inexpensive electricity and thermal energy while reducing emissions.

1997-03-27T23:59:59.000Z

94

"Table B22. Primary Space-Heating Energy Sources, Number of...  

U.S. Energy Information Administration (EIA) Indexed Site

.....",894,894,213,498,79,5 "District Heat ...",96,96,"Q",2,"Q",77 "Boilers ...",581,581,40,364,136,"Q" "Packaged Heating Units...

95

Table C37. Total District Heat Consumption and Expenditures for ...  

U.S. Energy Information Administration (EIA)

HVAC Maintenance ..... 60 5,154 86 612 6,987 Energy Management and Control System (EMCS) ..... 18 2,782 158 320 3,636 Equipment Usage Reduced When ...

96

Steamtown District Heating and Cooling Project, Scranton, Pennsylvania. Final report  

SciTech Connect

This report summarizes the activities of a study intended to examine the feasibility of a district heating and cooling alternative for the Steamtown National Historic Site in Scranton, PA. The objective of the study was to investigate the import of steam from the existing district heating system in Scranton which is operated by the Community Central Energy Corporation and through the use of modern technology provide hot and chilled water to Steamtown for its internal heating and cooling requirements. Such a project would benefit Steamtown by introducing a clean technology, eliminating on-site fuel use, avoiding first costs for central heating and cooling plants and reducing operation and maintenance expenditures. For operators of the existing district heating system, this project represents an opportunity to expand their customer base and demonstrate new technologies. The study was conducted by Joseph Technology Corporation, Inc. and performed for the Community Central Energy Corporation through a grant by the US Department of Energy. Steamtown was represented by the National Park Service, the developers of the site.

NONE

1990-04-01T23:59:59.000Z

97

A Functional Regression Approach for Prediction in a District-Heating System  

E-Print Network (OSTI)

A Functional Regression Approach for Prediction in a District-Heating System Aldo Goia Dipartimento in a district heating sys- tem. Our dataset consists of four separated periods, with 198 days each period and 24 load forecasting, district heat- ing system Introduction Among the activities of support

Paris-Sud XI, Université de

98

Simple models of district heating systems for load and demand side management  

E-Print Network (OSTI)

Simple models of district heating systems for load and demand side management and operational Energiforskningsprogrammet EFP ENS J.nr. 1373/01-0041 December 2004 #12;Simple models of district heating systems for load 87-7475-323-1 #12;Preface The research project "Simple models of district heating systems for load

99

Skyscrapers and District Heating, an inter-related History 1876-1933.  

E-Print Network (OSTI)

Skyscrapers and District Heating, an inter-related History 1876-1933. Introduction: The aim, and an equally new urban infrastructure, district heating, both of witch were born in the north-east United example in Europe of skyscrapers and district heating planned together, at Villeurbanne near Lyons

Paris-Sud XI, Université de

100

School of Architecture, Design and the Built Environment Delta T optimisation of district heating network  

E-Print Network (OSTI)

School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

Evans, Paul

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Contribution of Integrated Green District Heating to the Sustainable Cities: A Case Study of Ferrara, Italy  

Science Conference Proceedings (OSTI)

This study aims to provide brief introduction to district heating (DH) concept and its history, in addition current market situation is reviewed shortly. Ferrara (Italy) District Heating System, which is utilizing 83 % renewable sources for the purposes ... Keywords: District Heating, Local Energy, Ferrara, Potential Benefits, Primary Resource Factor (PRF)

Irem Aksulu; Rongchang Wang

2012-05-01T23:59:59.000Z

102

Return temperature influence of a district heating network on the CHP plant production costs.  

E-Print Network (OSTI)

?? The aim of this Project is to study the influence of high return temperatures in district heating on the costs for heat and power (more)

Sallent, Roger

2009-01-01T23:59:59.000Z

103

Absorption cooling in district heating network: Temperature difference examination in hot water circuit.  

E-Print Network (OSTI)

?? Absorption cooling system driven by district heating network is relized as a smart strategy in Sweden. During summer time when the heating demand is (more)

Yuwardi, Yuwardi

2013-01-01T23:59:59.000Z

104

Feasibility analysis of geothermal district heating for Lakeview, Oregon  

DOE Green Energy (OSTI)

An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

Not Available

1980-12-23T23:59:59.000Z

105

CHP, Waste Heat & District Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHP Technologies and Applications CHP Technologies and Applications 25 Oct 11 Today's Electric Grid What is CHP * ASHRAE Handbook: "Combined heat and power (CHP). Simultaneous production of electrical or mechanical energy and useful thermal energy from a single energy stream." * CHP is not a single technology but a suite of technologies that can use a variety of fuels to generate electricity or power at the point of use. * CHP technology can be deployed quickly, cost-effectively, and with few geographic limitations. 11/1/2011 Slide 6 5/20/11 Slide 7 What is CHP? * On-site generation of Power and Thermal Energy from a single fuel source * 'Conventional' grid based generators are located remote from thermal applications while CHP plants are located close to thermal applications

106

Geothermal district heating system feasibility analysis, Thermopolis, Wyoming  

DOE Green Energy (OSTI)

The purpose of this study is to determine the technical and economic feasibility of constructing and operating a district heating system to serve the residential, commercial, and public sectors in Thermopolis. The project geothermal resource assessment, based on reviews of existing information and data, indicated that substantial hot water resources likely exist in the Rose Dome region 10 miles northeast of Thermopolis, and with quantities capable of supporting the proposed geothermal uses. Preliminary engineering designs were developed to serve the space heating and hot water heating demands for buildings in the Thermopolis-East Thermopolis town service area. The heating district design is based on indirect geothermal heat supply and includes production wells, transmission lines, heat exchanger units, and the closed loop distribution and collection system necessary to serve the individual customers. Three options are presented for disposal of the cooled waters-reinjection, river disposal, and agricultural reuse. The preliminary engineering effort indicates the proposed system is technically feasible. The design is sized to serve 1545 residences, 190 businesses, and 24 public buildings. The peak design meets a demand of 128.2 million Btu at production rates of 6400 gpm.

Goering, S.W.; Garing, K.L.; Coury, G.; Mickley, M.C.

1982-04-26T23:59:59.000Z

107

Table HC3-1a. Space Heating by Climate Zone, Million U.S ...  

U.S. Energy Information Administration (EIA)

Table HC3-1a. Space Heating by Climate Zone, Million U.S. Households, 2001 Space Heating Characteristics RSE Column Factor: Total Climate Zone1 RSE

108

Table HC14.8 Water Heating Characteristics by West Census Region ...  

U.S. Energy Information Administration (EIA)

Table HC14.8 Water Heating Characteristics by West Census Region, 2005 Million U.S. Housing Units Water Heating Characteristics Mountain Pacific West Census Region

109

Table WH10. Consumption Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (physical units/number of household members) Electricity Table WH10. Consumption Intensity by Main Water Heating Fuel Used, 2005

110

Table WH11. Expenditures Intensity by Main Water Heating Fuel Used ...  

U.S. Energy Information Administration (EIA)

Main Water Heating Fuel Used (Dollars/number of household members) Electricity Table WH11. Expenditures Intensity by Main Water Heating Fuel Used, 2005

111

Table SH7. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil (gallons) Main Space Heating Fuel Used (physical units of consumption per household using the fuel as a main heating source) Table SH7.

112

Table SH8. Average Consumption for Space Heating by Main Space ...  

U.S. Energy Information Administration (EIA)

Fuel Oil Main Space Heating Fuel Used (million Btu of consumption per household using the fuel as a main heating source) Any Major Fuel 4 Table SH8.

113

Combined Heat and Power, Waste Heat, and District Energy  

Energy.gov (U.S. Department of Energy (DOE))

Presentationgiven at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meetingcovers combined heat and power (CHP) technologies and their applications.

114

A generalized adaptive predictive controller design-based direct identification for district heating system  

Science Conference Proceedings (OSTI)

To realize accurate control for district heating system, a GPC (generalized predictive control) adaptive algorithm was presented that directly identified controller's parameters with two identifiers. The algorithm could adapt characteristics of district ... Keywords: adaptive, direct identification, district heating system, generalized predictive control

Zhao Youen

2009-06-01T23:59:59.000Z

115

Life cycle assessment of base-load heat sources for district heating system options  

Science Conference Proceedings (OSTI)

Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

2011-03-01T23:59:59.000Z

116

Environmental Assessment for the Bison School District Heating Plant Project, Institutional Conservation Program (ICP)  

SciTech Connect

This environmental assessment analyzes the environmental impacts of replacing the Bison, South Dakota School District`s elementary school and high school heating system consisting of oil-fired boilers and supporting control system and piping

1995-12-31T23:59:59.000Z

117

District heating and cooling: a 28-city assessment  

DOE Green Energy (OSTI)

Findings of a project that assessed the potential for construction of district heating and cooling (DHC) systems in 28 US cities are presented. The project sought to determine whether DHC could promote local community and economic development. In the preliminary assessment, 17 of the cities identified up to 23 projects that could be built within three to five years. Most of these projects would rely on nonscarce heat sources such as refuse or geothermal energy, and to improve financial feasibility, the majority would cogenerate electricity along with heat. Many would use existing power plants or industrial boilers to hold down capital costs. Overall, the projects could generate as amany as 24,000 jobs and retain $165 million that otherwise could leave the communities, thereby helping to stabilize local economies.

Meshenberg, M.J.

1983-08-01T23:59:59.000Z

118

Methodology for modeling geothermal district heating for residential markets  

DOE Green Energy (OSTI)

Methodology is presented for geothermal district heat service and for evaluating the economic market potential for such nonelectrical utilization of the geothermal resource. It is based upon accurate determination of the heating demand and its spatial and temporal profile in each potential market, determination of the cost to provide such service, and correlation of markets and resource sites. Two components of the model are discussed in this report. the residential demand submodel and data base, which includes building characteristics and population distribution on a census tract or minor civil division grid for the nation, projects heating demand densities, and temporal profiles along with the building service modifications and costs. The service submodel and data base designs and costs a subtransmission and distribution network, and it evaluates operating losses at design conditions.

Karkheck, J.; Tessmer, R.G. Jr.

1978-08-01T23:59:59.000Z

119

Maryvale Terrace: geothermal residential district space heating and cooling  

DOE Green Energy (OSTI)

A preliminary study of the technical and economic feasibility of installing a geothermal district heating and cooling system is analyzed for the Maryvale Terrace residential subdevelopment in Phoenix, Arizona, consisting of 557 residential houses. The design heating load was estimated to be 16.77 million Btu/h and the design cooling load was estimated to be 14.65 million Btu/h. Average annual energy use for the development was estimated to be 5870 million Btu/y and 14,650 million Btu/y for heating and cooling, respectively. Competing fuels are natural gas for heating and electricity for cooling. A geothermal resource is assumed to exist beneath the site at a depth of 6000 feet. Five production wells producing 1000 gpm each of 220/sup 0/F geothermal fluid are required. Total estimated cost for installing the system is $5,079,300. First year system operations cost (including debt service) is $974,361. The average annual geothermal heating and cooling cost per home is estimated to be $1750 as compared to a conventional system annual cost of $1145. Further, the cost of geothermal heating and cooling is estimated to be $47.50 per million Btu when debt service is included and $6.14 per million Btu when only operating costs are included. Operating (or fuel) costs for conventional heating and cooling are estimated to be $15.55 per million Btu.

White, D.H.; Goldstone, L.A.

1982-08-01T23:59:59.000Z

120

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district  

E-Print Network (OSTI)

Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3c Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.3a; Trillion ...

122

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power ...  

U.S. Energy Information Administration (EIA)

Table 8.3b Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.3a; Trillion Btu)

123

Table 1A","Refiner Acquisition Cost of Crude Oil by PAD District (Domestic  

U.S. Energy Information Administration (EIA) Indexed Site

A","Refiner Acquisition Cost of Crude Oil by PAD District (Domestic)" A","Refiner Acquisition Cost of Crude Oil by PAD District (Domestic)" ,"(Dollars per Barrel)" ,,," "," " ,,,"Previous ","Final" "Frequency","Date","Area","Price","Price","Difference" "Annual",2010,"PAD District 2",78.7,78.85,0.15 ,,"PAD District 4",73.65,73.56,-0.09 ,,"U.S.",77.96,78.01,0.05 ,2011,"PAD District 3",103.19,103.24,0.05 ,,"PAD District 2",96.82,96.81,-0.01 ,,"PAD District 4",89.36,89.34,-0.02 ,,"U.S.",100.74,100.71,-0.03 ,,"PAD District 5",103.85,103.83,-0.02 "Month","application/vnd.ms-excel","PAD District 4",73.68,72.66,-1.02

124

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume II. Appendices  

DOE Green Energy (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. Volume II contains all the appendices, including cost equations and models for the reservoir and fluid transmission system and the distribution system, descriptions of predefined residential district types for the distribution system, key equations for the cooling degree hour methodology, and a listing of the sample case output. Both volumes include the complete table of contents and lists of figures and tables. In addition, both volumes include the indices for the input parameters and subroutines defined in the user manual.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

125

Klamath County geo-heating district feasibility study  

DOE Green Energy (OSTI)

The results are presented of an agreement between the Klamath County Commissioners and Oregon Institute of Technology Geo-Heat Utilization Center for the conceptual design, cost analysis and plan for space heating a number of public buildings in Klamath Falls, Oregon with geothermal hot water. This project was principally aimed at supplying geothermal heat to ten city and county buildings by hot water extracted from the existing museum well. The supply system is also designed to include the post office and a new building to be built in the vicinity of the courthouse. The fluid would be piped from the museum well to three liquid-to-liquid heat exchangers and returned to the area of the producing well for reinjection into the same aquifer. The study also considered space heating of 98 additional buildings in the downtown business district equivalent to the ten public buildings and incorporating a snow removal grid on Main Street between Eleventh and Fourth Streets. The geothermal fluid would be supplied from wells in the vicinity of Old Fort Road (city police pistol range) and returned for reinjection. Based on the study, the Center has concluded that no major resource or engineering difficulties exist that would prevent the ten-building project from being completed successfully with a significant long-term savings in both scarce fossil fuels and total heating costs. A direct environmental benefit of the large-scale plan would be a significant reduction in air pollutants (16 tons per year) from the burning of natural gas. For a capital investment of approximately $548,900 the delivery system, conversion of building heating systems and waste disposal could be accomplished for the ten buildings with potential expansion to twelve.

Lienau, P.J.; Lund, J.W.; Culver, G.G.

1977-01-01T23:59:59.000Z

126

Table A4. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A4. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994: Part 2" "...

127

Table A36. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A36. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Fuel Type, Industry Group, Selected Industries, and End Use, 1991:" " Part 2" " (Estimates in...

128

Table A10. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

"Table A10. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Fuel Type, Industry Group, Selected Industries, and End Use, 1994:" " Part 2" " (Estimates in...

129

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Table CE4-6.1u. Water-Heating Energy Consumption and Expenditures by Household Member and Usage Indicators, 2001 Usage Indicators RSE Column Factor:

130

Table WH3. Total Consumption for Water Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Table WH3. Total Consumption for Water Heating by Major Fuels Used, 2005 Physical Units Electricity (billion kWh) Natural Gas (billion cf) Fuel Oil

131

Table WH5. Total Expenditures for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Total Table WH5. Total Expenditures for Water Heating by Major Fuels Used, 2005 Billion Dollars Electricity Natural Gas Fuel Oil LPG U.S. Households

132

Table SH5. Total Expenditures for Space Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Space Heating Fuel 4 (millions) Fuel Oil U.S. Households ... 2005 Residential Energy Consumption Survey: Energy Consumption and Expenditures Tables. Natural Gas

133

Table SH3. Total Consumption for Space Heating by Major Fuels Used ...  

U.S. Energy Information Administration (EIA)

Natural Gas (billion cf) Major Fuels Used 4 (physical units) Table SH3. Total Consumption for Space Heating by Major Fuels Used, 2005 Physical Units

134

The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System  

E-Print Network (OSTI)

Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from the fume hood ducts at the Intalco aluminum reduction plant and transmits the energy to commercial, residential, and institutional users in Bellingham, Washington for space and hot water heating.

McCabe, J.; Olszewski, M.

1980-01-01T23:59:59.000Z

135

An Agent-Based Approach to Monitoring and Control of District Heating Systems  

Science Conference Proceedings (OSTI)

The aim is to improve the monitoring and control of district heating systems through the use of agent technology. In order to increase the knowledge about the current and future state in a district heating system at the producer side, each substation ...

Fredrik Wernstedt; Paul Davidsson

2002-06-01T23:59:59.000Z

136

Table 42. Residual Fuel Oil Prices by PAD District and State  

Gasoline and Diesel Fuel Update (EIA)

by PAD District and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Sulfur Less Than or Equal to 1 Percent Sulfur Greater Than 1 Percent Average...

137

Table 40. No. 2 Diesel Fuel Prices by Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

District, and Selected States (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Sales to End Users Sales for Resale Commercial Institutional Consumers...

138

Table 10a. Fuel Consumed at Refineries by PAD District, 2010 ...  

U.S. Energy Information Administration (EIA)

Natural Gas Used as Feedstock for Hydrogen Production by PAD District, 2010 (Million Cubic Feet) Natural Gas Used As Feedstock For Hydrogen Production

139

Union County - La Grande, Oregon geothermal district heating: feasibility assessment. Final report  

DOE Green Energy (OSTI)

This report presents an assessment of geothermal district heating in the City of La Grande, Oregon. Eight study area districts were analyzed to determine their economic feasibility. Results from the analyses conclude that certain districts within the City of La Grande are economically feasible if certain assumptions are correct. Development of geothermal district heating for these areas would provide direct energy and dollar savings to the building owners and would also provide direct and indirect benefits to low and moderate income households within the City.

Jenkins, H. II; Giddings, M.; Hanson, P.

1982-09-01T23:59:59.000Z

140

GEOCITY: a computer code for calculating costs of district heating using geothermal resources  

DOE Green Energy (OSTI)

GEOCITY is a computer simulation model developed to study the economics of district heating using geothermal energy. GEOCITY calculates the cost of district heating based on climate, population, resource characteristics, and financing conditions. The principal input variables are minimum temperature, heating degree days, population size and density, resource temperature and distance from load center, and the interest rate. From this input data the model designs the transmission and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system, including the production and disposal of the geothermal water. GEOCITY consists of two major submodels: the geothermal reservoir model and the distribution system model. The distribution system model calculates the cost of heat by simulating the design and the operation of the district heating system. The reservoir model calculates the cost of energy by simulating the discovery, development and operation of a geothermal resource and the transmission of this energy to a distribution center.

McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1977-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum  

E-Print Network (OSTI)

Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

Skogestad, Sigurd

142

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems  

E-Print Network (OSTI)

Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

Raghavan, Srinivasa

143

Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District...  

Annual Energy Outlook 2012 (EIA)

Type, PAD District, and State (Cents per Gallon Excluding Taxes) - Continued Geographic Area Month Premium All Grades Sales to End Users Sales for Resale Sales to End Users Sales...

144

Energy recovery from waste incineration: Assessing the importance of district heating networks  

SciTech Connect

Municipal solid waste incineration contributes with 20% of the heat supplied to the more than 400 district heating networks in Denmark. In evaluation of the environmental consequences of this heat production, the typical approach has been to assume that other (fossil) fuels could be saved on a 1:1 basis (e.g. 1 GJ of waste heat delivered substitutes for 1 GJ of coal-based heat). This paper investigates consequences of waste-based heat substitution in two specific Danish district heating networks and the energy-associated interactions between the plants connected to these networks. Despite almost equal electricity and heat efficiencies at the waste incinerators connected to the two district heating networks, the energy and CO{sub 2} accounts showed significantly different results: waste incineration in one network caused a CO{sub 2} saving of 48 kg CO{sub 2}/GJ energy input while in the other network a load of 43 kg CO{sub 2}/GJ. This was caused mainly by differences in operation mode and fuel types of the other heat producing plants attached to the networks. The paper clearly indicates that simple evaluations of waste-to-energy efficiencies at the incinerator are insufficient for assessing the consequences of heat substitution in district heating network systems. The paper also shows that using national averages for heat substitution will not provide a correct answer: local conditions need to be addressed thoroughly otherwise we may fail to assess correctly the heat recovery from waste incineration.

Fruergaard, T.; Christensen, T.H. [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark); Astrup, T., E-mail: tha@env.dtu.d [Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby (Denmark)

2010-07-15T23:59:59.000Z

145

Table  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 295: Muons in water as calc from steam to check code ZA gcm 3 I eV a k m s x 0 x 1 C 0 0.55509 1.000 71.6 0.44251 3.0000 0.2000 2.0000 3.5017 0.00 T p...

146

A Geothermal District-Heating System and Alternative Energy Research Park  

Open Energy Info (EERE)

Geothermal District-Heating System and Alternative Energy Research Park Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type / Topic 3 Low Temperature Resources Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource likely has sufficient permeability (3000 Darcies) and temperatures (80-112 oC) to develop a campus-wide district heating system.

147

Table HC10.8 Water Heating Characteristics by U.S. Census Region ...  

U.S. Energy Information Administration (EIA)

No Separate Water Heater..... 3.4 1.1 0.5 0.9 1.0 Housing Units (millions) Table HC10.8 Water Heating ...

148

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE4-7c. Water-Heating Energy Consumption in U.S. Households by Four Most Populated States, 1997 RSE Column Factor: Total U.S. Four Most Populated States

149

Table HC13.8 Water Heating Characteristics by South Census Region ...  

U.S. Energy Information Administration (EIA)

No Separate Water Heater..... 3.4 0.9 0.6 Q Q Total South Table HC13.8 Water Heating Characteristics by South Census Region, 2005 Million U.S. Housing Units ...

150

Table WH6. Average Consumption for Water Heating by Major Fuels ...  

U.S. Energy Information Administration (EIA)

Major Fuels Used 5 (physical units of consumption per household using the fuel as a water heating source) Electricity (kWh) Table WH6. Average Consumption for Water ...

151

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-3e. Space-Heating Energy Expenditures in U.S. Households by Household Income, 2001 RSE Column Factor: Total 2001 Household Income Below Poverty

152

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Table CE2-7e. Space-Heating Energy Expenditures in U.S. Households by Four Most Populated States, 2001 RSE Column Factor: Total U.S. Four Most Populated States

153

User manual for GEOCITY: a computer model for geothermal district heating cost analysis  

DOE Green Energy (OSTI)

A computer model called GEOCITY has been developed to systematically calculate the potential cost of district heating using hydrothermal geothermal resources. GEOCITY combines climate, demographic factors, and heat demand of the city, resource conditions, well drilling costs, design of the distribution system, tax rates, and financial factors into one systematic model. The GEOCITY program provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heat from a geothermal resource. Both the geothermal reservoir and distribution system are simulated to model the complete district heating system. GEOCITY consists of two major parts: the geothermal reservoir submodel and the distribution submodel. The reservoir submodel calculates the unit cost of energy by simulating the exploration, development, and operation of a geothermal reservoir and the transmission of this energy to a distribution center. The distribution submodel calculates the unit cost of heat by simulating the design and operation of a district heating distribution system. GEOCITY calculates the unit cost of energy and the unit cost of heat for the district heating system based on the principle that the present worth of the revenues will be equal to the present worth of the expenses including investment return over the economic life of the distribution system.

Huber, H.D.; McDonald, C.L.; Bloomster, C.H.; Schulte, S.C.

1978-10-01T23:59:59.000Z

154

An Agent-Based Approach to Monitoring and Control of District Heating Systems  

E-Print Network (OSTI)

The aim is to improve the monitoring and control of district heating systems through the use of agent technology. In order to increase the knowledge about the current and future state in a district heating system at the producer side, each substation is equipped with an agent that makes predictions of future consumption and monitors current consumption. The contributions to the consumers, will be higher quality of service, e.g., better ways to deal with major shortages of heat water, which is facilitated by the introduction of redistribution agents, and lower costs since less energy is needed for the heat production. Current substations are purely reactive devices and have no communication capabilities.

Fredrik Wernstedt; Paul Davidsson

2002-01-01T23:59:59.000Z

155

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. ...

156

Table 5.14c Heat Content of Petroleum Consumption ...  

U.S. Energy Information Administration (EIA)

1 Electricity-only and combined-heat-and-power (CHP) plants within the NAICS 22 category whose primary business is to sell electricity, or electricity ...

157

Table 3. Estimation Results for National and Sub-PAD District Regions  

Gasoline and Diesel Fuel Update (EIA)

3. Estimation Results for National and Sub-PAD District Regions 3. Estimation Results for National and Sub-PAD District Regions Dependent Variable: D(RETUS) Dependent Variable: D(RETPAD1X) Dependent Variable: D(RETPAD1Y) Dependent Variable: D(RETPAD1Z) Dependent Variable: D(RETCA) Sample: 1/03/2000 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Sample: 1/03/2000 to 6/24/2002 Sample: 5/29/2000 to 4/30/2001 11/05/2001 to 6/24/2002 Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient Variable Coefficient C 0.005 C -0.001 C 0.017 C -0.013 C 0.013 (0.114) (0.101) (0.100) (0.112) (0.215) DSPOTUS(-1) 0.437*** DSPOTPAD1X(-1) 0.210*** DSPOTPAD1Y(-1) 0.249*** DSPOTPAD1Z(-1) 0.346*** DSPOTCA(-1) 0.241*** (0.026) (0.023) (0.023) (0.026) (0.031)

158

Additional studies of geothermal district heating for Mammoth Lakes Village, California. Final report, October 1977--March 1978  

DOE Green Energy (OSTI)

A field survey of three heating uses: snow melting, jacuzzi pool heating, and swimming pool heating in Mammoth was undertaken. Based on the results, monthly heating capacity factors were calculated and rough designs were prepared for hydronic district heating for each system. Capital cost estimates were prepared for snow melting, jacuzzi pool heating and swimming pool heating systems using LPG and geothermal district heating. It was determined that incorporation of the three additional heating uses in the District Heating System previously defined would require a capacity increase from 52 MWt to 60 MWt to meet peak demands. Energy sales would increase by about 40 percent to 127 million kwh(t) per year. The unit cost for delivered heat at 1977 price levels would decrease from 4.26 cents to 3.22 cents/kwh(t) for an investor owned District Heating System, or from 2.89 cents to 2.24 cents/kwh(t) for public ownership. The total heating costs, including annual costs of customer's heating equipment for a typical building in the Village with district heating, were compared with costs to heat the same building with electricity. The total annual costs for snow melting, jacuzzi heating and swimming pool heating using a 60 MWt District Heating System were compared with costs to heat with LPG. It was determined that 11 permits must be obtained prior to beginning construction of the District Heating System. A project schedule outlining regulatory, engineering, design, construction and operation activities for the District Heating System was prepared.

Sims, A.V.; Racine, W.C.

1978-03-30T23:59:59.000Z

159

Additional studies of geothermal district heating for Mammoth Lakes Village, California. Final report, October 1977--March 1978  

SciTech Connect

A field survey of three heating uses: snow melting, jacuzzi pool heating, and swimming pool heating in Mammoth was undertaken. Based on the results, monthly heating capacity factors were calculated and rough designs were prepared for hydronic district heating for each system. Capital cost estimates were prepared for snow melting, jacuzzi pool heating and swimming pool heating systems using LPG and geothermal district heating. It was determined that incorporation of the three additional heating uses in the District Heating System previously defined would require a capacity increase from 52 MWt to 60 MWt to meet peak demands. Energy sales would increase by about 40 percent to 127 million kwh(t) per year. The unit cost for delivered heat at 1977 price levels would decrease from 4.26 cents to 3.22 cents/kwh(t) for an investor owned District Heating System, or from 2.89 cents to 2.24 cents/kwh(t) for public ownership. The total heating costs, including annual costs of customer's heating equipment for a typical building in the Village with district heating, were compared with costs to heat the same building with electricity. The total annual costs for snow melting, jacuzzi heating and swimming pool heating using a 60 MWt District Heating System were compared with costs to heat with LPG. It was determined that 11 permits must be obtained prior to beginning construction of the District Heating System. A project schedule outlining regulatory, engineering, design, construction and operation activities for the District Heating System was prepared.

Sims, A.V.; Racine, W.C.

1978-03-30T23:59:59.000Z

160

Table 2.3 Manufacturing Energy Consumption for Heat, Power ...  

U.S. Energy Information Administration (EIA)

CHP 6 and/or Cogeneration Process - - 10: 1 (s) 814: 19 - - Direct End Use : All Process Uses: 657,810: 10: 9: 10: 2,709: 19 - - Process Heating : ...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

CBECS 1992 - Consumption & Expenditures, Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Detailed Tables Detailed Tables Detailed Tables Figure on Energy Consumption in Commercial Buildings by Energy Source, 1992 Divider Line The 49 tables present detailed energy consumption and expenditure data for buildings in the commercial sector. This section provides assistance in reading the tables by explaining some of the headings for the data categories. It will also explain the use of row and column factors to compute both the confidence levels of the estimates given in the tables and the statistical significance of differences between the data in two or more categories. The section concludes with a "Quick-Reference Guide" to the statistics in the different tables. Categories of Data in the Tables After Table 3.1, which is a summary table, the tables are grouped into the major fuel tables (Tables 3.2 through 3.13) and the specific fuel tables (Tables 3.14 through 3.29 for electricity, Tables 3.30 through 3.40 for natural gas, Tables 3.41 through 3.45 for fuel oil, and Tables 3.46 through 3.47 for district heat). Table 3.48 presents energy management and DSM data as reported by the building respondent. Table 3.49 presents data on participation in electric utility-sponsored DSM programs as reported by both the building respondent and the electricity supplier.

162

GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs  

DOE Green Energy (OSTI)

GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

Fassbender, L.L.; Bloomster, C.H.

1981-06-01T23:59:59.000Z

163

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1984 ...................................... 92.3 84.8 NA NA 102.5 92.4 91.6 84.2 1985 ...................................... 93.6 85.2 NA NA 104.2 93.3 93.4 85.2 1986 ...................................... 63.9 53.2 NA NA 76.1 62.1 65.3 55.2 1987 ...................................... 67.5 57.7 NA NA 80.5 68.2 69.9 60.6 1988 ...................................... 67.1 56.1 NA NA 81.3 68.7 70.8 60.2 1989 ...................................... 74.1 62.7 82.0 70.0 90.5 76.7 79.4 67.9 1990 ...................................... 87.6 77.7 94.8 83.2 101.9 89.0 91.8 81.5 1991 ...................................... 79.2 70.6 87.5 75.7 95.9 83.2 83.8 74.2 1992 ...................................... 74.0 65.1 84.1 71.4 93.0 78.4 79.6 69.3 1993 ...................................... 69.7 59.0 80.2 66.1

164

Table A1. Refiner/Reseller Motor Gasoline Prices by Grade, PAD District  

Gasoline and Diesel Fuel Update (EIA)

PAD District I 1984 ...................................... 92.3 84.8 NA NA 102.5 92.4 91.6 84.2 1985 ...................................... 93.6 85.2 NA NA 104.2 93.3 93.4 85.2 1986 ...................................... 63.9 53.2 NA NA 76.1 62.1 65.3 55.2 1987 ...................................... 67.5 57.7 NA NA 80.5 68.2 69.9 60.6 1988 ...................................... 67.1 56.1 NA NA 81.3 68.7 70.8 60.2 1989 ...................................... 74.1 62.7 82.0 70.0 90.5 76.7 79.4 67.9 1990 ...................................... 87.6 77.7 94.8 83.2 101.9 89.0 91.8 81.5 1991 ...................................... 79.2 70.6 87.5 75.7 95.9 83.2 83.8 74.2 1992 ...................................... 74.0 65.1 84.1 71.4 93.0 78.4 79.6 69.3 1993 ...................................... 69.7 59.0 80.2 66.1

165

Public data sources and modeling of district heating in the United States  

DOE Green Energy (OSTI)

A methodology for computerized modelling of hot water district heating service in any urban area in the United States is described. It is distinguished by the depth and breadth of its data bases, the ease with which any urban market can be analyzed and the wide variety of intermediate information which is obtained. Real housing and employment data, canvassed for the entire nation and made available on a very small area basis, are conjoined with local climate profiles, labor costs, land use intensity factors, fuel prices and fuel use profiles to generate profiles of heating demands and markets for district heat. This characterization of residential and commercial space and water heating demands permits a system design and costing of piping systems for distribution of hot water, subject to any penetration constraints imposed. A minimal number of assumptions are needed to generate these products from the data bases, many of which were generated in the public domain for other purposes.

Karkheck, J.; Tessmer, R.G., Jr.

1979-01-01T23:59:59.000Z

166

Municipal waste incineration; An environmentally benign energy source for district heating  

SciTech Connect

Municipal solid waste should be regarded as a good fuel. Emissions from solid waste incineration can be kept within any reasonable limit. Compared with fossil fuels, waste can be regarded as a renewable source of energy that does not contribute to the greenhouse effect. Finally, waste incineration for district heating can be very economical.

Astrand, L.E. (Uppsala Energi AB, Uppsala (SE))

1990-01-01T23:59:59.000Z

167

Particulate matter emissions from combustion of wood in district heating applications  

Science Conference Proceedings (OSTI)

The utilization of wood biomass to generate district heat and power in communities that have access to this energy source is increasing. In this paper the effect of wood fuel properties, combustion condition, and flue gas cleaning system on variation in the amount and formation of particles in the flue gas of typical district heating wood boilers are discussed based on the literature survey. Direct measurements of particulate matter (PM) emissions from wood boilers with district heating applications are reviewed and presented. Finally, recommendations are given regarding the selection of wood fuel, combustion system condition, and flue gas cleaning system in district heating systems in order to meet stringent air quality standards. It is concluded that utilization of high quality wood fuel, such as wood pellets produced from natural, uncontaminated stem wood, would generate the least PM emissions compared to other wood fuel types. Particulate matter emissions from grate burners equipped with electrostatic precipitators when using wood pellets can be well below stringent regulatory emission limit such as particulate emission limit of Metro Vancouver, Canada.

Ghafghazi, S. [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Bi, X.T. [University of British Columbia, Vancouver; Melin, Staffan [Delta Research Corporation

2011-01-01T23:59:59.000Z

168

Blueprint for financing geothermal district heating in California  

DOE Green Energy (OSTI)

The current legal and investment climate surrounding geothermal development is depicted. Changes that would make the climate more favorable to direct heat geothermal development are recommended. The Boise, Susanville, and Brady Hot Springs projects are analyzed. (MHR)

Grattan, J.P.; Hansen, D.P.

1981-03-01T23:59:59.000Z

169

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project |  

Open Energy Info (EERE)

BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project BSU GHP District Heating and Cooling System (PHASE I) Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title BSU GHP District Heating and Cooling System (PHASE I) Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description The Project will result in the construction of the largest ground source geothermal-based closed loop GHP heating and cooling system in America. Phase I of the Project began with the design, competitive bidding, and contract award for the drilling and "looping" of 1,800 boreholes in sports fields and parking lots on the north side of campus. The components of the entire Project include: (1) 4,100 four hundred feet deep boreholes spread over about 25 acres of sport fields and parking lots (Phase I will involve 1,800 boreholes spread over about 8 acres); (2) Each Phase will require a district energy station (about 9,000 sq. feet) that will each contain (A) two 2,500 ton heat pump chillers (which can produce 150 degree (F) water for heating purposes and 42 degree (F) water for cooling purposes); and (B) a variety of water pumps, electrical and other control systems; (3) a closed loop piping system that continuously circulates about 20,000 gallons of water (no anti-freeze) per minute through the boreholes, energy stations, a (two pipe) hot water loop and a (two pipe) chilled water loop (no water is drawn from the aquifer at any point in the operation); and (4) hot/chilled water-to-air heat exchangers in each of the buildings.

170

Geothermal district heating and cooling system for the city of Calistoga, California  

DOE Green Energy (OSTI)

Calistoga has long been known for having moderate (270/sup 0/F maximum) hydrothermal deposits. The economic feasibility of a geothermal heating and cooling district for a portion of the downtown commercial area and city-owned building was studied. Descriptions of existing and proposed systems for each building in the block are presented. Heating and cooling loads for each building, retrofit costs, detailed cost estimates, system schematics, and energy consumption data for each building are included. (MHR)

Frederick, J.

1982-01-01T23:59:59.000Z

171

Low Temperature Direct Use District Heating Geothermal Facilities | Open  

Open Energy Info (EERE)

Heating Geothermal Facilities Heating Geothermal Facilities Jump to: navigation, search Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":800,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":"Geothermal

172

"Table B21. Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

1. Space-Heating Energy Sources, Floorspace, 1999" 1. Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",67338,61612,32291,37902,5611,5534,2728,945 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,2651,3250,598,"Q",469,"Q" "5,001 to 10,000 ..............",8238,7090,2808,4613,573,"Q",688,"Q" "10,001 to 25,000 .............",11153,9865,5079,6069,773,307,682,"Q"

173

"Table B26. Water-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

6. Water-Heating Energy Sources, Floorspace, 1999" 6. Water-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",67338,56115,24171,29196,2218,4182,1371 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4280,2307,1719,"Q","Q","Q" "5,001 to 10,000 ..............",8238,5748,2287,3204,"Q","Q","Q" "10,001 to 25,000 .............",11153,9000,4220,4221,224,164,493

174

"Table B23. Primary Space-Heating Energy Sources, Floorspace, 1999"  

U.S. Energy Information Administration (EIA) Indexed Site

3. Primary Space-Heating Energy Sources, Floorspace, 1999" 3. Primary Space-Heating Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings with Space Heating","Primary Space-Heating Energy Source Useda" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ................",67338,61602,17627,32729,3719,5077 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,5684,1567,3080,482,"Q" "5,001 to 10,000 ..............",8238,7090,1496,4292,557,"Q" "10,001 to 25,000 .............",11153,9865,3035,5320,597,232 "25,001 to 50,000 .............",9311,8565,2866,4416,486,577

175

Nuclear steam turbines for power production in combination with district heating and desalination  

SciTech Connect

The optimization of the turbine plant of a nuclear power station in combination with heat production is dependent upon many factors, the most important being the heat requirements, full-load equivalent operating time, and the heat transport distance, i.e., the trunk mains' costs. With hot-water-based heat transport, this usually results in a large temperature difference between supply and return water and heating in two or three stages. The turbine can consist of a back-pressure turbine, a back-pressure turbine with condensing tail, or a condensing turbine with heat extractions. The most attractive solution from technical as well as economic points of view is the condensing turbine with extraction for district heating or desalination as appropriate. The turbines can be of conventional design, with only minor modifications needed to adapt them to the operating conditions concerned.

Frilund, B.; Knudsen, K.

1978-04-01T23:59:59.000Z

176

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network (OSTI)

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates annual dynamic load of a real project to calculate the first investments, annual operation cost and LCC (life cycle cost) of the four schemes, which are electric chillers, electric chillers with ice-storage system, absorption refrigerating machines using excess heat from power plant and absorption refrigerating machines using excess heat from power plant along with ice-storage system. On the basis of the results, the paper analyzes the prospect of the absorption refrigeration using municipal excess heat, as well as the reasonable heat price, which provides a theoretical basis for municipal heating and cooling co-generation development.

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

177

Basin View Geothermal Heating District, Klamath Falls, Oregon: conceptual design and economic-feasibility study report  

DOE Green Energy (OSTI)

The findings of a feasibility study performed for Basin View Heating District in Klamath Falls, Oregon are reported. The purpose of the study is to determine the physical, economic, and political feasibility of establishing a geothermal heating district to provide space heat to housing units in the Basin View Development of Klamath Falls. Of the several systems considered, all are physically feasible. The project is politically feasible if the owner compiles with governmental requirements. Economic feasibility is based on considerations of money value rates, tax rates and expected rates of return, which are dependent on government and money markets. For analysis a money value rate of 21% and an owner's marginal tax rate of 35% were adopted.

Not Available

1981-07-01T23:59:59.000Z

178

District heating system, College Industrial Park, Klamath Falls, Oregon  

DOE Green Energy (OSTI)

The College Industrial Park (CIP) is located to the northwest of the Oregon Institute of Technology (OIT) campus. Waste water from the OIT campus geothermal heating system flows through an open ditch to the south of the Park. Being aware of this, city personnel have requested the Geo-Heat Center design a distribution network for the Park to eventually utilize an estimated 600 GPM of the 130/sup 0/F waste water. Geothermal water from each campus building is discharged into storm drains which also collect surface run off from parking lots, roofs and grounds. Waste water temperatures are generally between 120/sup 0/F and 130/sup 0/F, however, it may drop as low as 90/sup 0/F when mixing occurs with large amounts of surface run off. Peak heating load requirements for the OIT campus are estimated to be 17.8 x 10/sup 6/ Btu/hour for 567,000 square feet of space. Peak flow rate of geothermal fluid to satisfy this load is then 593 GPM based on a net 60/sup 0/F temperature differential. Three wells are available to supply the necessary flow. A Lithium-Bromide Absorption Chiller (185 ton) was installed in 1980 to provide space cooling. The chiller requires a constant flow rate of 550 GPM and discharges 170/sup 0/F water to the storm drains during summer months.

Not Available

1981-10-01T23:59:59.000Z

179

IRP applied to district heating in Eastern Europe  

Science Conference Proceedings (OSTI)

The cities of Plzen, Czech Republic, and Handlova, Republic of Slovakia, are examining options for meeting the thermal energy requirements of their citizens with consideration of both economics and the environment. Major energy related issues faced by the cities are: the frequent need to replace and/or implement a major rehabilitation of the central heating plants and the transmission and distribution systems that supply the consumers; and the need to reduce emissions in order to comply with more stringent environmental regulations and improve air quality; and the need to minimize consumer energy bills, particularly to accommodate the upcoming decontrol of energy prices and to minimize non-payment problems. The intent of the integrated resource planning (IRP) projects is to present analyses of options to support the cities` decision-making processes, not to provide specific recommendations or guidance for the cities to follow.

Bull, M. [USDOE Bonneville Power Administration, Portland, OR (United States); Secrest, T. [Pacific Northwest Lab., Richland, WA (United States); Zeman, J. [Czech Energy Efficiency Center (SEVEn) (Czech Republic); Popelka, A. [TECOGEN, Inc., Waltham, MA (United States)

1994-08-01T23:59:59.000Z

180

Selected cost considerations for geothermal district heating in existing single-family residential areas  

DOE Green Energy (OSTI)

In the past, district heating (geothermal or conventionally fueled) has not been widely applied to the single-family residential sector. Low-heat load density is the commonly cited reason for this. Although it`s true that load density in these areas is much lower than for downtown business districts, other frequently overlooked factors may compensate for load density. In particular, costs for distribution system installation can be substantially lower in some residential areas due to a variety of factors. This reduced development cost may partially compensate for the reduced revenue resulting from low-load density. This report examines cost associated with the overall design of the system (direct or indirect system design), distribution piping installation, and customer branch lines. It concludes with a comparison of the costs for system development and the revenue from an example residential area.

Rafferty, K.

1996-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Impact of Deferral Option on Investment: Empirical Evidence from Residential Customers of District Heating Company  

E-Print Network (OSTI)

This paper examines an option to defer an investment in the thermal rehabilitation of a building. Heat savings generated by energy efficiency investment in two distinctive areas connected to the district heating system in Prague are studied. Despite substantial difference of heat price over several years, no significant difference in heat savings between the two areas was found. It is shown that different volatility of heat prices in different areas and its changes influencing value of deferral option can partly explain the observed flat owners behavior. Two specific real features of the deferral option are further introduced, improvement of the option valuation model is proposed and expected impact on the value of deferral option is discussed.

Martin Hajek

2009-01-01T23:59:59.000Z

182

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 25. Cooling Energy Sources, Number of Buildings and Floorspace, 1995 Table 26. Water-Heating Energy Sources, Number of Buildings, 1995 Table 27. Water-Heating Energy...

183

Finding of No Significant Impact for the I'SOT Canby District Heating Project, Modoc County, California Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coiorado 80401-3393 Coiorado 80401-3393 March 7, 2003 DOEEA-1460 FINDING OF NO SIGNIFICANT IMPACT For the IN SEARCH OF TRUTH CANBY DISTRICT HEATING PROJECT CANBY, MODOC COUNTY, CALIFORNIA AGENCY: U.S. Department of Energy, Golden Field Office ACTION: Finding of No Significant Impact (FONSI) SUMMARY: The U.S. Department of Energy (DOE) conducted an Environmental ,4ssessment (EA) of the In Search of Truth (I'SOT) Canby District Heating Project, Modoc County, California, to evaluate potential environmental impacts of project construction and operations for three years. DOE would provide partial fundin g, through its National Renewable Energy Laboratory (NREL), to I'SOT for the development and field verification of a small-scale, geothermal district heating system. Local district heating projects have the potential for widespread

184

Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report  

Science Conference Proceedings (OSTI)

The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

Cable, J.H.; Gilday, L.T.; Moss, M.E.

1995-11-01T23:59:59.000Z

185

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network (OSTI)

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

186

Bridgeport Geothermal Energy Project: a heating district and small-scale-electric feasibility investigation. Final report  

SciTech Connect

The Bridgeport Geothermal Project, a proposed community heating district, appears to be feasible. Analysis of the feasibility of the Bridgeport Geothermal Project required three critical assumptions: a successful supply well, a commercially viable wellhead generator, and successfully obtaining simultaneous financing from private investors, a commercial lendor and a granting agency. The geothermal supply well for the Bridgeport Project will be sited near Travertine Hot Springs about 1 1/2 miles southeast of town. The well should yield 1000 gallons per minute at 205/sup 0/F to 240/sup 0/F. The hot brine will be piped (1) to a primary heat exchanger for the heating district which will distribute heat to public and commercial buildings via a fresh water loop, and (2) to an organic Rankine boiler to drive a 500 kW (gross) generator. The institutional structure for the project is well established. The capital cost of the installed project will be about $4.1 million to be raised through equity, commercial debt and grant funding. The system revenues are projected to result in a positive cash flow in the eighth year of operation, and over a 20 year payout are projected to yield an internal rate of return (IRR) of 23/sup +/% to the private investors.

1982-09-01T23:59:59.000Z

187

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

188

Table A6. Approximate Heat Rates for Electricity, and Heat Content ...  

U.S. Energy Information Administration (EIA)

Total Fossil Fuels 6,7: ... 7 The fossil-fuels heat rate is used as the thermal conversion factor for ... approximate the quantity of fossil fuels replaced by these ...

189

Table E11A. District Heat Consumption (Btu) and Energy Intensities ...  

U.S. Energy Information Administration (EIA)

Climate Zone: 30-Year Average Under 2,000 CDD and --- More than 7,000 HDD ..... 88 80 8 Q (*) 106.3 96.7 9.4 Q (*) - 5,500-7,000 HDD ...

190

Institutional and financial guide to geothermal district heating. Serial No. 2  

DOE Green Energy (OSTI)

General planning considerations which affect nearly every community are reviewed, and alternative operating structures which are available to communities are reviewed, including local governments, nonprofit cooperatives, private enterprises, and joint ventures. The financing options available to publicly-owned and privately-owned district heating systems are then summarized. The geothermal production and distribution activities most appropriate to each type of operating structure are reviewed, along with typical equity and debt funding sources. The tax advantages for private developers are described, as are the issures of customer contracts and service prices, and customer retrofit financing. The treatment is limited to an introductory overview. (LEW)

Not Available

1982-03-01T23:59:59.000Z

191

CBECS Buildings Characteristics --Revised Tables  

Gasoline and Diesel Fuel Update (EIA)

Table 37. Refrigeration Equipment, Number of Buildings and Floorspace, 1995 Table 38. Water-Heating Equipment, Number of Buildings and Floorspace, 1995 Table 39. Lighting...

192

BASIC METHODS FOR AUTOMATED FAULT DETECTION AND ENERGY DATA VALIDATION IN EXISTING DISTRICT HEATING SYSTEMS  

E-Print Network (OSTI)

behaviour over time, as expected for any kind of instrumentation. For example, incorrect information can be generated if there is a bias change or high level of noise in the signal from a sensor, or if there is a malfunctioning flow meter or temperature sensor. Defect or incorrectly dimensioned valves can degrade the energy efficiency of the system and also need to be detected through the effects on the measurements. Fault detection and diagnostics (FDD) of district heating substations (DHS) are important activities because malfunctioning components can lead to incorrect billing and waste of energy. Although FDD has been an activate research area for nearly two decades, only a few simple tools are commonly deployed in the district energy industry. Some of the methods proposed in the literature are promising, but their complexity may prevent broader application. Other methods require sensor data that are not commonly available, or cannot be expected to function well in practice due to oversimplification. Here we present two basic methods for improved FDD and data validation that are compatible with the data acquisition systems that are commonly used today. We propose that correlation analysis can be used to identify substations with similar supply temperatures and that the corresponding temperature difference is a useful quantity for FDD. The second method is a limitchecking approach for the validation of thermal power usage, which is sensitive to faults affecting both the primary flow and temperature sensors in a DHS. These methods are suitable for automated FDD and are demonstrated with hourly data provided by a Swedish district energy company.

Fredrik S; Jonas Gustafsson; Robert Eklund; Jerker Delsing

2012-01-01T23:59:59.000Z

193

I'SOT Canby District Heating Project, Modoc County, California Final Environmental Assessment  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 17, 2003 Dear Stakeholder: SUBJECT: NOTICE OF AVAILABILITY OF FINAL ENVIRONMENTAL ASSESSMENT OF THE PROPOSED IN SEARCH OF TRUTH CANBY DISTRICT HEATING PROJECT, MODOC COUNTY, CALIFORNIA (DOE/EA 1460) The U.S. Department of Energy's (DOE's) Golden Field Office (GO) has issued the final Environmental Assessment (EA) and a Finding of No Significant Impact (FONSI) for the subject geothermal project. These documents are available online in the GO electronic reading room at www.golden.doe.gov. Copies of the documents can be obtained by contacting Steve Blazek at the address and telephone number listed below. GO has prepared the final EA and FONSI in accordance with the National Environmental Policy Act (NEPA) and DOE's NEPA implementation guidance.

194

District space heating potential of low temperature hydrothermal geothermal resources in the southwestern United States. Technical report  

DOE Green Energy (OSTI)

A computer simulation model (GIRORA-Nonelectric) is developed to study the economics of district space heating using geothermal energy. GIRORA-Nonelectric is a discounted cashflow investment model which evaluates the financial return on investment for space heating. This model consists of two major submodels: the exploration for and development of a geothermal anomaly by a geothermal producer, and the purchase of geothermal fluid by a district heating unit. The primary output of the model is a calculated rate of return on investment earned by the geothermal producer. The results of the sensitivity analysis of the model subject to changes in physical and economic parameters are given in this report. Using the results of the economic analysis and technological screening criteria, all the low temperature geothermal sites in Southwestern United States are examined for economic viability for space heating application. The methodology adopted and the results are given.

McDevitt, P.K.; Rao, C.R.

1978-10-01T23:59:59.000Z

195

"Table B27. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 7. Space Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane","Other a" "All Buildings* ...............",64783,60028,28600,36959,5988,5198,3204,842 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,2367,2829,557,"Q",665,183 "5,001 to 10,000 ..............",6585,5786,2560,3358,626,"Q",529,"Q" "10,001 to 25,000 .............",11535,10387,4872,6407,730,289,597,"Q"

196

"Table B32. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" 2. Water-Heating Energy Sources, Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Elec- tricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings* ...............",64783,56478,27490,28820,1880,3088,1422 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,4759,2847,1699,116,"N",169 "5,001 to 10,000 ..............",6585,5348,2821,2296,"Q","Q",205 "10,001 to 25,000 .............",11535,9562,4809,4470,265,"Q",430

197

"Table B29. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003"  

U.S. Energy Information Administration (EIA) Indexed Site

9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" 9. Primary Space-Heating Energy Sources, Total Floorspace for Non-Mall Buildings, 2003" ,"Total Floorspace (million square feet)" ,"All Buildings*","Buildings with Space Heating","Primary Space-Heating Energy Source Used a" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings* ...............",64783,60028,15996,32970,3818,4907 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6789,5668,1779,2672,484,"Q" "5,001 to 10,000 ..............",6585,5786,1686,3068,428,"Q" "10,001 to 25,000 .............",11535,10387,3366,5807,536,"Q" "25,001 to 50,000 .............",8668,8060,2264,4974,300,325

198

Feasibility Study for the Ivano-Frankivsk District Heating Repowering: Analysis of Options  

Science Conference Proceedings (OSTI)

Part of the U.S. Initiative on Joint Implementation with the Ukraine Inter-Ministerial Commission on Climate Change, financed by the US Department of Energy. The project was implemented by a team consisting of the US company SenTech, Inc. and the Ukrainian company Esco-West. The main objective of the effort was to assess available alternatives of Ivano-Frankivsk (I-F) District Heating repowering and provide information for I-F's investment decision process. This study provides information on positive and negative technical and economic aspects of available options. Three options were analyzed for technical merit and economic performance: 1. Installation of cogeneration system based on Gas Turbine (GT) and Heat Recovery Heat Exchanger with thermal capacity of 30 MW and electrical capacity of 13.5 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. Equipment in this Option was sized for longest operating hours, about 8000 based on the available summer baseload. 2. Installation of Gas Turbine Combined Cycle (GTCC) and Heat Recovery Steam Generator (HRSG) with thermal capacity 45 MW and electrical capacity of 58.7 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. The equipment was sized for medium, shoulder season thermal load, and some cooling was assumed during the summer operation for extension of operating hours for electricity production. 3. Retrofit of six existing boilers (NGB) with total thermal capacity of 255.9 MW by installation of modern control system and minor upgrades. This option assumes only heat production with minimum investment. The best economic performance and the largest investment cost would result from alternative GTCC. This alternative has positive Net Present Value (NPV) with discount rate lower than about 12%, and has IRR slightly above 12%. The lowest economic results, and the lowest required investment, would result from alternative NGB. This Option's NPV is negative even at 0% discount rate, and would not become positive even by improving some parameters within a reasonable range. The Option with Gas Turbine displays relatively modest results and the NPV is positive for low discount rate, higher price of sold electricity and lower cost of natural gas. The IRR of this alternative is 9.75%, which is not very attractive. The largest influences on the investment are from the cost of electricity sold to the grid, the heat tariff, and the cost of natural gas. Assuming the implementation of the GTCC alternative, the benefit of the project is also reflected in lower Green House Emissions.

Markel, L.; Popelka, A.; Laskarevsky, V.

2002-03-20T23:59:59.000Z

199

Retro-Commissioning and Improvement for District Heating and Cooling System Using Simulation  

E-Print Network (OSTI)

In order to improve the energy performance of a district heating and cooling (DHC) system, retro-commissioning was analyzed using visualization method and simulation based on mathematical models, and improved operation schemes were proposed according to simulation analysis results. The first part of this paper describes the system performance through visualizing the current operation modes. The second part introduces the retro-commissioning analysis for the system using mathematical models of each component. The third part studies the energy and cost performance of several improved operation proposals using simulation. The results are as follows.1) The carpet plots of current operation modes can be generated automatically and they are useful to check whether the operation is proper or not. 2) The total system simulation model was constructed. The simulation error of the total energy consumption was 1.5% and the percentage of root mean square error (%RMSE) was 16.3%, which show that the simulation is accurate enough to study the performance of proposed operation.3) System simulations for proposed operation schemes were performed. The simulation results show that the system operation with the optimal temperature set point of cooling water at 22oC can improve the total energy coefficient of the heat pump and cooling tower by 2.2 %. Another proposal is that if the return water temperature from users can be kept at the designed value, which is 131? compared with the current average value of 10.5?, the total energy consumption can be reduced by 9.5%, and energy cost can be reduced by 11.6%.

Shingu, H.; Nakajima, R.; Yoshida, H.; Wang, F.

2006-01-01T23:59:59.000Z

200

Community Renewable Energy Success Stories Webinar: District...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

District Heating with Renewable Energy (text version) Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version) Below is the text...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Global carbon impacts of using forest harvest residues for district heating in Vermont  

DOE Green Energy (OSTI)

Forests in Vermont are selectively logged periodically to generate wood products and useful energy. Carbon remains stored in the wood products during their lifetime and in fossil fuel displaced by using these products in place of energy-intensive products. Additional carbon is sequestered by new forest growth, and the forest inventory is sustained using this procedure. A significant portion of the harvest residue can be used as biofuel in central plants to generate electricity and thermal energy, which also displaces the use of fossil fuels. The impact of this action on the global carbon balance was analyzed using a model derived from the Graz/Oak Ridge Carbon Accounting Model (GORCAM). The analysis showed that when forests are harvested only to manufacture wood products, more than 100 years are required to match the sequestered carbon present if the forest is left undisturbed. If part of the harvest residue is collected and used as biofuel in place of oil or natural gas, it is possible to reduce this time to about 90 years, but it is usually longer. Given that harvesting the forest for products will continue, carbon emission benefits relative to this practice can start within 10 to 70 years if part of the harvest residue is used as biofuel. This time is usually higher for electric generation plants, but it can be reduced substantially by converting to cogeneration operation. Cogeneration makes possible a ratio of carbon emission reduction for district heating to carbon emission increase for electricity generation in the range of 3 to 5. Additional sequestering benefits can be realized by using discarded wood products as biofuels.

McLain, H.A.

1998-07-01T23:59:59.000Z

202

Table CE2-5.1u. Space-Heating Energy Consumption and Expenditures ...  

U.S. Energy Information Administration (EIA)

Space-Heating Energy Consumption and Expenditures by Household Member and Demographics, 2001 Household ... Total Households Using a Major Space-Heating

203

Table SH1. Total Households Using a Space Heating Fuel, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households Using a Space Heating Fuel, 2005 Million U.S. Households Using a Non-Major Fuel 5 ... Space Heating (millions) Energy Information Administration

204

Table CE2-3c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household4,a Physical Units of Space-Heating Consumption per Household,3 Where the Main Space-Heating Fuel Is:

205

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

206

Table CE2-12c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

207

Table CE2-4c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3,a Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

208

Table CE2-7c. Space-Heating Energy Consumption in U.S. Households ...  

U.S. Energy Information Administration (EIA)

Physical Units (PU) per Household3 Physical Units of Space-Heating Consumption per Household,2 Where the Main Space-Heating Fuel Is:

209

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

210

Table B28. Percent of Floorspace Heated, Number of Buildings and Floorspace, 199  

U.S. Energy Information Administration (EIA) Indexed Site

8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" 8. Percent of Floorspace Heated, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated","All Buildings","Not Heated","1 to 50 Percent Heated","51 to 99 Percent Heated","100 Percent Heated" "All Buildings ................",4657,641,576,627,2813,67338,5736,7593,10745,43264 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,366,230,272,1479,6774,1091,707,750,4227 "5,001 to 10,000 ..............",1110,164,194,149,603,8238,1148,1504,1177,4409

211

Table 1.9 Heating Degree-Days by Census Division  

U.S. Energy Information Administration (EIA)

Normala 2012 2013 Percent Change Normala 2012 2013 ... F would report 25 heating degree-days for that day ... See ...

212

Table A56. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Industry-Specific Technologies for Selected Industries, 1994: Part 2" ,,,"RSE" "SIC",,,"Row" "Code(a)","Industry Group and Industry","Total(b)","Factors" ,"RSE Column Factors:",1 20,"FOOD and KINDRED PRODUCTS" ,"Industry-Specific Technologies" ,"One or More Industry-Specific Technologies Present",2353,9 ," Infrared Heating",607,13 ," Microwave Drying",127,21 ," Closed-Cycle Heat Pump System Used to Recover Heat",786,19

213

PAD District  

U.S. Energy Information Administration (EIA) Indexed Site

District District and State Production Capacity Alkylates Aromatics Asphalt and Road Oil Isomers Lubricants Marketable Petroleum Coke Sulfur (short tons/day) Hydrogen (MMcfd) Table 2. Production Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013 (Barrels per Stream Day, Except Where Noted) a 91,429 10,111 26,500 110,165 21,045 21,120 74 1,127 PAD District I Delaware 11,729 5,191 0 6,000 0 13,620 40 596 Georgia 0 0 24,000 0 0 0 0 0 New Jersey 37,200 0 63,500 4,000 12,000 7,500 31 290 Pennsylvania 42,500 4,920 22,065 16,500 2,945 0 0 240 West Virginia 0 0 600 0 6,100 0 3 1 268,106 95,300 159,000 260,414 9,100 158,868 584 7,104 PAD District II Illinois 83,900 19,900 38,100 16,000 0 70,495 202 2,397 Indiana 27,200 16,800 33,700 27,100 0 10,000 0 653

214

"Table HC14.4 Space Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by West Census Region, 2005" 4 Space Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Space Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Do Not Have Space Heating Equipment",1.2,0.7,"Q",0.7 "Have Main Space Heating Equipment",109.8,23.4,7.5,16 "Use Main Space Heating Equipment",109.1,22.9,7.4,15.4 "Have Equipment But Do Not Use It",0.8,0.6,"Q",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,14.7,4.6,10.1 "Central Warm-Air Furnace",44.7,11.4,4,7.4

215

"Table HC12.4 Space Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Midwest Census Region, 2005" 4 Space Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N" "Have Main Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Main Space Heating Equipment",109.1,25.6,17.7,7.9 "Have Equipment But Do Not Use It",0.8,"N","N","N" "Main Heating Fuel and Equipment"

216

"Table HC13.4 Space Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by South Census Region, 2005" 4 Space Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Space Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","N","Q" "Have Main Space Heating Equipment",109.8,40.3,21.4,6.9,12 "Use Main Space Heating Equipment",109.1,40.1,21.2,6.9,12 "Have Equipment But Do Not Use It",0.8,"Q","Q","N","N"

217

"Table HC7.5 Space Heating Usage Indicators by Household Income, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Household Income, 2005" 5 Space Heating Usage Indicators by Household Income, 2005" " Million U.S. Housing Units" ,,"2005 Household Income",,,,,"Below Poverty Line","Eligible for Federal Assistance1" ,"Housing Units (millions)" ,,"Less than $20,000","$20,000 to $39,999","$40,000 to $59,999","$60,000 to $79,999","$80,000 or More" "Space Heating Usage Indicators" "Total U.S. Housing Units",111.1,26.7,28.8,20.6,13.1,22,16.6,38.6 "Do Not Have Heating Equipment",1.2,0.5,0.3,0.2,"Q",0.2,0.3,0.6 "Have Space Heating Equipment",109.8,26.2,28.5,20.4,13,21.8,16.3,37.9 "Use Space Heating Equipment",109.1,25.9,28.1,20.3,12.9,21.8,16,37.3

218

User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices  

DOE Green Energy (OSTI)

A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

Huber, H.D.; Brown, D.R.; Reilly, R.W.

1982-04-01T23:59:59.000Z

219

Table A54. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of General Technologies, 1994: Part 2" ,," "," ",," "," ",," "," "," "," " ,,,,"Computer Control" ,," "," ","of Processes"," "," ",," "," ",," " ,," ","Computer Control","or Major",,,"One or More"," ","RSE" "SIC"," ",,"of Building","Energy-Using","Waste Heat"," Adjustable-Speed","General Technologies","None","Row"

220

Table HC11.8 Water Heating Characteristics by Northeast Census ...  

U.S. Energy Information Administration (EIA)

Water Heating Characteristics Middle Atlantic New England Northeast Census Region U.S. Housing Units (millions) Census Division Total Northeast Energy Information ...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

"Table HC11.8 Water Heating Characteristics by Northeast Census...  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division"...

222

Table B37. Water Heating Equipment, Number of Buildings and Floorspace...  

U.S. Energy Information Administration (EIA) Indexed Site

7. Water Heating Equipment, Number of Buildings and Floorspace, 1999" ,"Number of Buildings (thousand)",,,,,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings...

223

Table HC12.8 Water Heating Characteristics by Midwest Census ...  

U.S. Energy Information Administration (EIA)

Water Heating Characteristics East North Central West North Central Midwest Census Region U.S. Housing Units (millions) Census Division Total Midwest

224

Table HC2.8 Water Heating Characteristics by Type of Housing Unit ...  

U.S. Energy Information Administration (EIA)

Water Heating Characteristics Attached 2 to 4 Units 5 or More Units Mobile Homes Apartments in Buildings Housing With--Units (millions) Energy Information Administration

225

Table SH2. Total Households by Space Heating Fuels Used, 2005 ...  

U.S. Energy Information Administration (EIA)

Total Households by Space Heating Fuels Used, 2005 ... 2005 Residential Energy Consumption Survey: ... Electricity Natural Gas Fuel Oil Kerosene LPG Other

226

Table A12. Total Inputs of Energy for Heat, Power, and Electricity...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Btu or Physical...

227

Solar heating and hot water system installed at Southeast of Saline, Unified School District 306, Mentor, Kansas  

DOE Green Energy (OSTI)

A cooperative agreement was negotiated in April 1978 for the installation of a space and domestic hot water system at Southeast of Saline, Kansas Unified School District 306, Mentor, Kansas. The solar system was installed in a new building and was designed to provide 52 percent of the estimated annual space heating load and 84 percent of the estimated annual potable hot water requirement. The collectors are liquid flat plate. They are ground-mounted and cover a total area of 5125 square feet. The system will provide supplemental heat for the school's closed-loop water-to-air heat pump system and domestic hot water. The storage medium is water inside steel tanks with a capacity of 11,828 gallons for space heating and 1,600 gallons for domestic hot water. This final report, which describes in considerable detail the solar heating facility, contains detailed drawings of the completed system. The facility was declared operational in September 1978, and has functioned successfully since.

Not Available

1979-07-01T23:59:59.000Z

228

Table HC6.5 Space Heating Usage Indicators by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Number of Household Members, 2005 5 Space Heating Usage Indicators by Number of Household Members, 2005 Total U.S. Housing Units.................................. 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Heating Equipment..................... 1.2 0.3 0.3 Q 0.2 0.2 Have Space Heating Equipment....................... 109.8 29.7 34.5 18.2 15.6 11.8 Use Space Heating Equipment........................ 109.1 29.5 34.4 18.1 15.5 11.6 Have But Do Not Use Equipment.................... 0.8 Q Q Q Q Q Space Heating Usage During 2005 Heated Floorspace (Square Feet) None............................................................ 3.6 1.0 0.8 0.5 0.5 0.7 1 to 499........................................................ 6.1 3.0 1.6 0.6 0.6 0.3 500 to 999.................................................... 27.7 11.6 8.3 3.6 2.7 1.6 1,000 to 1,499..............................................

229

Table A55. Number of Establishments by Total Inputs of Energy for Heat, Powe  

U.S. Energy Information Administration (EIA) Indexed Site

Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," Number of Establishments by Total Inputs of Energy for Heat, Power, and Electricity Generation," " by Industry Group, Selected Industries, and" " Presence of Cogeneration Technologies, 1994: Part 2" ,,,"Steam Turbines",,,,"Steam Turbines" ,," ","Supplied by Either","Conventional",,,"Supplied by","One or More",," " " "," ",,"Conventional","Combustion ","Combined-Cycle","Internal Combustion","Heat Recovered from","Cogeneration",,"RSE" "SIC"," ",,"or Fluidized","Turbines with","Combustion","Engines with","High-Temperature","Technologies","None","Row"

230

Table HC9.4 Space Heating Characteristics by Climate Zone, 2005  

Annual Energy Outlook 2012 (EIA)

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

231

"Table HC9.5 Space Heating Usage Indicators by Climate Zone...  

U.S. Energy Information Administration (EIA) Indexed Site

areas, determined according to the 30-year average (1971-2000) of the annual heating and cooling degree-days. A household is assigned to a climate zone according to the 30-year...

232

Table CE4-1c. Water-Heating Energy Consumption in U.S ...  

U.S. Energy Information Administration (EIA)

heating or cooling degree-days are a measure of how cold or how hot a location is over a period of one ... To obtain the RSE percentage for any ...

233

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

234

Table A32. Total Consumption of Offsite-Produced Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

Consumption of Offsite-Produced Energy for Heat, Power, and" Consumption of Offsite-Produced Energy for Heat, Power, and" " Electricity Generation by Value of Shipment Categories, Industry Group, and" " Selected Industries, 1991" " (Estimates in Trillion Btu)" ,,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,," ","-","-","-","-","-","-","RSE" ," "," "," ",,,,,500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"," "," "," "," "," "

235

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

236

Table HC4.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Renter-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 33.0 8.0 3.4 5.9 14.4 1.2 Do Not Have Space Heating Equipment....... 1.2 0.6 Q Q Q 0.3 Q Have Main Space Heating Equipment.......... 109.8 32.3 8.0 3.3 5.8 14.1 1.1 Use Main Space Heating Equipment............ 109.1 31.8 8.0 3.2 5.6 13.9 1.1 Have Equipment But Do Not Use It.............. 0.8 0.5 N Q Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 16.4 4.5 2.1 3.2 6.2 0.3 Central Warm-Air Furnace........................ 44.7 10.0 3.3 1.4 1.6 3.3 0.3 For One Housing Unit........................... 42.9 8.6 3.3 1.2 1.4 2.4 0.3 For Two Housing Units..........................

237

Table HC6.4 Space Heating Characteristics by Number of Household Members, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Number of Household Members, 2005 4 Space Heating Characteristics by Number of Household Members, 2005 Total..................................................................... 111.1 30.0 34.8 18.4 15.9 12.0 Do Not Have Space Heating Equipment............ 1.2 0.3 0.3 Q 0.2 0.2 Have Main Space Heating Equipment............... 109.8 29.7 34.5 18.2 15.6 11.8 Use Main Space Heating Equipment................. 109.1 29.5 34.4 18.1 15.5 11.6 Have Equipment But Do Not Use It................... 0.8 Q Q Q Q Q Main Heating Fuel and Equipment Natural Gas....................................................... 58.2 15.6 18.0 9.5 8.4 6.7 Central Warm-Air Furnace............................. 44.7 10.7 14.3 7.6 6.9 5.2 For One Housing Unit................................ 42.9 10.1 13.8 7.3 6.5 5.2 For Two Housing Units...............................

238

Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005  

U.S. Energy Information Administration (EIA) Indexed Site

.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 .4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005 Million U.S. Housing Units Total................................................................ 111.1 78.1 64.1 4.2 1.8 2.3 5.7 Do Not Have Space Heating Equipment....... 1.2 0.6 0.3 N Q Q Q Have Main Space Heating Equipment.......... 109.8 77.5 63.7 4.2 1.8 2.2 5.6 Use Main Space Heating Equipment............ 109.1 77.2 63.6 4.2 1.8 2.1 5.6 Have Equipment But Do Not Use It.............. 0.8 0.3 Q N Q Q Q Main Heating Fuel and Equipment Natural Gas.................................................. 58.2 41.8 35.3 2.8 1.2 1.0 1.6 Central Warm-Air Furnace........................ 44.7 34.8 29.7 2.3 0.7 0.6 1.4 For One Housing Unit........................... 42.9 34.3 29.5 2.3 0.6 0.6 1.4 For Two Housing Units..........................

239

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

8. Energy Sources, Floorspace, 1999" 8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,6309,6280,3566,620,"Q","Q",635,292 "5,001 to 10,000 ..............",8238,7721,7721,5088,583,"Q","Q",986,"Q"

240

"Table HC12.8 Water Heating Characteristics by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Midwest Census Region, 2005" 8 Water Heating Characteristics by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Water Heating Characteristics",,,"East North Central","West North Central" "Total",111.1,25.6,17.7,7.9 "Number of Water Heaters" "1.",106.3,24.5,17.1,7.4 "2 or More",3.7,0.9,0.5,0.4 "Do Not Use Hot Water",1.1,"Q","Q","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,23.5,16.2,7.3 "Two or More Housing Units",10.3,1.9,1.4,0.5 "Do Not Use Hot Water",1.1,"Q","Q","Q"

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

"Table HC13.8 Water Heating Characteristics by South Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by South Census Region, 2005" 8 Water Heating Characteristics by South Census Region, 2005" " Million U.S. Housing Units" ,,"South Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total South" "Water Heating Characteristics",,,"South Atlantic","East South Central","West South Central" "Total",111.1,40.7,21.7,6.9,12.1 "Number of Water Heaters" "1.",106.3,39,21.1,6.6,11.3 "2 or More",3.7,1.5,0.5,0.3,0.7 "Do Not Use Hot Water",1.1,"Q","Q","N","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,38.2,20.2,6.7,11.3 "Two or More Housing Units",10.3,2.4,1.5,0.2,0.7

242

"Table HC14.8 Water Heating Characteristics by West Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by West Census Region, 2005" 8 Water Heating Characteristics by West Census Region, 2005" " Million U.S. Housing Units" ,,"West Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total West" "Water Heating Characteristics",,,"Mountain","Pacific" "Total",111.1,24.2,7.6,16.6 "Number of Water Heaters" "1.",106.3,23.2,7.1,16.1 "2 or More",3.7,1,0.4,0.6 "Do Not Use Hot Water",1.1,"Q","Q","N" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,21.9,7.1,14.8 "Two or More Housing Units",10.3,2.3,0.4,1.9 "Do Not Use Hot Water",1.1,"Q","Q","N"

243

Table A50. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" A50. Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Census Region, Industry Group, Selected Industries, and Type of" " Energy-Management Program, 1994" " (Estimates in Trillion Btu)" ,,,," Census Region",,,"RSE" "SIC",,,,,,,"Row" "Code(a)","Industry Group and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.2,1.1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",12605,1209,3303,6386,1706,2.9

244

Table A39. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

9. Selected Combustible Inputs of Energy for Heat, Power, and" 9. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type, Census" " Region, and End Use, 1991: Part 2" " (Estimates in Trillion Btu)" ,,,"Distillate",,,"Coal" ,"Net Demand",,"Fuel Oil",,,"(excluding","RSE" ,"for","Residual","and",,,"Coal Coke","Row" "End-Use Categories","Electricity(a)","Fuel Oil","Diesel Fuel(b)","Natural Gas(c)","LPG","and Breeze)","Factors" "Total United States" "RSE Column Factors:",0.4,1.7,1.5,0.7,1,1.6

245

Table A13. Selected Combustible Inputs of Energy for Heat, Power, and  

U.S. Energy Information Administration (EIA) Indexed Site

3. Selected Combustible Inputs of Energy for Heat, Power, and" 3. Selected Combustible Inputs of Energy for Heat, Power, and" " Electricity Generation and Net Demand for Electricity by Fuel Type," " Census Region, Census Division, and End Use, 1994: Part 1" " (Estimates in Btu or Physical Units)" ,,,,,,"Coal" ,,,"Distillate",,,"(excluding" ,"Net Demand",,"Fuel Oil",,,"Coal Coke" ,"for","Residual","and","Natural Gas(c)",,"and Breeze)","RSE" ,"Electricity(a)","Fuel Oil","Diesel Fuel(b)","(billion","LPG","(1000 short","Row"

246

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

247

Table A41. Total Inputs of Energy for Heat, Power, and Electricity  

U.S. Energy Information Administration (EIA) Indexed Site

A41. Total Inputs of Energy for Heat, Power, and Electricity" A41. Total Inputs of Energy for Heat, Power, and Electricity" " Generation by Census Region, Industry Group, Selected Industries, and Type of" " Energy Management Program, 1991" " (Estimates in Trillion Btu)" ,,," Census Region",,,,"RSE" "SIC","Industry Groups",," -------------------------------------------",,,,"Row" "Code(a)","and Industry","Total","Northeast","Midwest","South","West","Factors" ,"RSE Column Factors:",0.7,1.3,1,0.9,1.2 "20-39","ALL INDUSTRY GROUPS" ,"Participation in One or More of the Following Types of Programs",10743,1150,2819,5309,1464,2.6,,,"/WIR{D}~"

248

Santa Ana Pueblo assessment of district heating and cooling. Final report  

SciTech Connect

The evaluation covered six major tasks of technical, financial, environmental and cultural considerations of several heat sources including: traditional Indian bread ovens; community solid waste disposal; cogeneration and electric power plant; active solar collectors with fresh water pond storage; salt gradient ponds, both gel and free standing; heat pumps; geothermal - both hot dry rock and hydrothermal sources; and biomass resources for methane production.

Not Available

1982-07-01T23:59:59.000Z

249

Table A52. Total Inputs of Energy for Heat, Power, and Electricity Generatio  

U.S. Energy Information Administration (EIA) Indexed Site

2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" 2. Total Inputs of Energy for Heat, Power, and Electricity Generation by Employment Size" " Categories and Presence of General Technologies and Cogeneration Technologies, 1994" " (Estimates in Trillion Btu)" ,,,,"Employment Size(a)" ,,,,,,,,"RSE" ,,,,,,,"1000 and","Row" "General/Cogeneration Technologies","Total","Under 50","50-99","100-249","250-499","500-999","Over","Factors" "RSE Column Factors:",0.5,2,2.1,1,0.7,0.7,0.9 "One or More General Technologies Present",14601,387,781,2054,2728,3189,5462,3.1 " Computer Control of Building Environment (b)",5079,64,116,510,802,1227,2361,5

250

Potential benefits of thermal energy storage in the proposed Twin Cities district heating-cogeneration system. Final report  

DOE Green Energy (OSTI)

A new, large, cogeneration-district heating system has been proposed for the Twin Cities area, using hot water in a closed-loop system. The proposed system, as described by Studsvik Energiteknik AB of Sweden, does not employ thermal energy storage (TES). Four cases have been developed, describing system configurations which would employ TES, to evaluate the potential benefits of incorporating annual-cycle TES into the Twin Cities system. The potential benefits are found to be substantial, confirming results of earlier, generic studies of aquifer TES. The reference (Studsvik) system employs oil-fired boilers to supplement cogenerated heat, for handling peak loads and providing standby reserve. TES can serve the same function, with net energy savings in spite of heat losses during storage, by making it possible to operate the cogeneration equipment at higher capacity factors. Coal replaces oil as the fuel consumed. Energy savings of the reference system are impressive; energy savings with TES are 2 to 22% better. Capital cost requirements for boilers, cogeneration equipment, and pipelines are reduced by $66 to $258 million. The breakeven capital cost of TES is estimated to range from $43 to $76 per kilowatt peak thermal input to or withdrawal from aquifer TES. A factor in evaluating the breakeven operating cost of TES is the $14 to $31 million per year saving in cost of fuel. Abatement of air pollution and thermal pollution are concomitant benefits.

Meyer, C.F.

1979-10-01T23:59:59.000Z

251

Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report  

DOE Green Energy (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

252

Exploration and drilling for geothermal heat in the Capital District, New York. Final report  

DOE Green Energy (OSTI)

The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

Not Available

1983-08-01T23:59:59.000Z

253

The calculation method of heating and cooling energy saving potential in urban district  

Science Conference Proceedings (OSTI)

We used to be focus in concerns by taking particulate matters, NOx, VOCs and CO2 emission by combustion of fossil fuels, i.e. coal, crude oil and natural gas. The combustion of these fuels has been a major source of environmental pollution ... Keywords: cooling, electricity, energy, gas, heating, potential, saving

Shin Do Kim; Im Hack Lee; Sung Moon Cheon

2010-03-01T23:59:59.000Z

254

,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"  

U.S. Energy Information Administration (EIA) Indexed Site

7. Energy Sources, Number of Buildings, 1999" 7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",2348,2193,2186,1193,220,"Q","Q",215,93 "5,001 to 10,000 ..............",1110,1036,1036,684,74,"Q","Q",124,"Q" "10,001 to 25,000 .............",708,689,688,448,65,24,"Q",74,19

255

Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 6: Process Heat and Hydrogen Co-Generation PIRTs  

DOE Green Energy (OSTI)

A Phenomena Identification and Ranking Table (PIRT) exercise was conducted to identify potential safety-0-related physical phenomena for the Next Generation Nuclear Plant (NGNP) when coupled to a hydrogen production or similar chemical plant. The NGNP is a very high-temperature reactor (VHTR) with the design goal to produce high-temperature heat and electricity for nearby chemical plants. Because high-temperature heat can only be transported limited distances, the two plants will be close to each other. One of the primary applications for the VHTR would be to supply heat and electricity for the production of hydrogen. There was no assessment of chemical plant safety challenges. The primary application of this PIRT is to support the safety analysis of the NGNP coupled one or more small hydrogen production pilot plants. However, the chemical plant processes to be coupled to the NGNP have not yet been chosen; thus, a broad PIRT assessment was conducted to scope alternative potential applications and test facilities associated with the NGNP. The hazards associated with various chemicals and methods to minimize risks from those hazards are well understood within the chemical industry. Much but not all of the information required to assure safe conditions (separation distance, relative elevation, berms) is known for a reactor coupled to a chemical plant. There is also some experience with nuclear plants in several countries that have produced steam for industrial applications. The specific characteristics of the chemical plant, site layout, and the maximum stored inventories of chemicals can provide the starting point for the safety assessments. While the panel identified events and phenomena of safety significance, there is one added caveat. Multiple high-temperature reactors provide safety-related experience and understanding of reactor safety. In contrast, there have been only limited safety studies of coupled chemical and nuclear plants. The work herein provides a starting point for those studies; but, the general level of understanding of safety in coupling nuclear and chemical plants is less than in other areas of high-temperature reactor safety.

Forsberg, Charles W [ORNL; Gorensek, M. B. [Savannah River National Laboratory (SRNL); Herring, S. [Idaho National Laboratory (INL); Pickard, P. [Sandia National Laboratories (SNL)

2008-03-01T23:59:59.000Z

256

Estimating market penetration of new district heating and cooling systems using a combination of economic cost and diffusion models  

SciTech Connect

The economic-cost model and the diffusion model are among the many market-penetration forecasting approaches that are available. These approaches have been used separately in many applications. In this paper, the authors briefly review these two approaches and then describe a methodology for forecasting market penetration using both approaches sequentially. This methodology is illustrated with the example of market-penetration forecasting of new district heating and cooling (DHC) systems in the Argonne DHC Market Penetration Model, which was developed and used over the period 1979--1983. This paper discusses how this combination approach, which incorporates the strengths of the economic-cost and diffusion models, has been superior to any one approach for market forecasts of DHC systems. Also discussed are the required modifications for revising and updating the model in order to generate new market-penetration forecasts for DHC systems. These modifications are required as a result of changes in DHC engineering, economic, and market data from 1983 to 1990. 13 refs., 5 figs., 2 tabs.

Teotia, A.P.S.; Karvelas, D.E.

1991-05-10T23:59:59.000Z

257

Direct use of geothermal energy, Elko, Nevada district heating. Final report  

DOE Green Energy (OSTI)

In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

Lattin, M.W.; Hoppe, R.D.

1983-06-01T23:59:59.000Z

258

Table of Exhibits..................................................................................................... iii  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

Pjm Interconnection

2007-01-01T23:59:59.000Z

259

Life cycle assessment of an energy-system with a superheated steam dryer integrated in a local district heat and power plant  

SciTech Connect

Life cycle assessment (LCA) is a method for analyzing and assessing the environmental impact of a material, product or service throughout the entire life cycle. In this study 100 GWh heat is to be demanded by a local heat district. A mixture of coal and wet biofuel is frequently used as fuel for steam generation (Case 1). A conversion of the mixed fuel to dried biofuel is proposed. In the district it is also estimated that it is possible for 4000 private houses to convert from oil to wood pellets. It is proposed that sustainable solution to the actual problem is to combine heat and power production together with an improvement in the quality of wood residues and manufacture of pellets. It is also proposed that a steam dryer is integrated to the system (Case 2). Most of the heat from the drying process is used by the municipal heating networks. In this study the environmental impact of the two cases is examined with LCA. Different valuation methods shows the Case 2 is an improvement over Case 1, but there is diversity in the magnitudes of environmental impact in the comparison of the cases. The differences depend particularly on how the emissions of CO{sub 2}, NO{sub x} and hydrocarbons are estimated. The impact of the organic compounds from the exhaust gas during the drying is estimated as low in all of the three used methods.

Bjoerk, H.; Rasmuson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering Design

1999-07-01T23:59:59.000Z

260

Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type...  

Annual Energy Outlook 2012 (EIA)

220 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 43. Refiner Motor Gasoline Volumes by Grade, Sales Type, PAD District, and State (Thousand Gallons per...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales...  

Annual Energy Outlook 2012 (EIA)

250 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 44. Refiner Motor Gasoline Volumes by Formulation, Sales Type, PAD District, and State (Thousand Gallons...

262

Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly January 2012 56 Table 28. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

263

Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type ...  

U.S. Energy Information Administration (EIA)

U.S. Energy Information Administration/Petroleum Marketing Monthly February 2012 76 Table 31. Refiner Motor Gasoline Prices by Grade, Sales Type, PAD District, and State

264

Table 45. Prime Supplier Sales Volumes of Motor Gasoline by ...  

U.S. Energy Information Administration (EIA)

Table 45. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State (Thousand Gallons per Day) Continued

265

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information AdministrationPetroleum Marketing Annual 2000 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

266

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

Information Administration Petroleum Marketing Annual 1995 Table 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State (Cents per Gallon Excluding Taxes) -...

267

Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

268

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

269

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

270

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

See footnotes at end of table. 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State 386 Energy Information...

271

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane ...  

U.S. Energy Information Administration (EIA)

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) Geographic Area

272

Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

273

Table 25  

Gasoline and Diesel Fuel Update (EIA)

89 89 Table 25 Created on: 1/3/2014 3:10:33 PM Table 25. Natural gas home customer-weighted heating degree days, New England Middle Atlantic East North Central West North Central South Atlantic Month/Year/Type of data CT, ME, MA, NH, RI, VT NJ, NY, PA IL, IN, MI, OH, WI IA, KS, MN, MO, ND, NE, SD DE, FL, GA, MD, DC, NC, SC, VA, WV November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0 November to November Normal 702 665 758 841 442 2012 751 738 772 748 527 2013 756 730 823 868 511 % Diff (normal to 2013) 7.7 9.8 8.6 3.2 15.6 % Diff (2012 to 2013) 0.7 -1.1 6.6 16.0 -3.0

274

User manual for GEOCITY: a computer model for cost analysis of geothermal district-heating-and-cooling systems. Volume I. Main text  

DOE Green Energy (OSTI)

The purpose of this model is to calculate the costs of residential space heating, space cooling, and sanitary water heating or process heating (cooling) using geothermal energy from a hydrothermal reservoir. The model can calculate geothermal heating and cooling costs for residential developments, a multi-district city, or a point demand such as an industrial factory or commercial building. GEOCITY simulates the complete geothermal heating and cooling system, which consists of two principal parts: the reservoir and fluid transmission system and the distribution system. The reservoir and fluid transmission submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the reservoir and fluid transmission system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. Geothermal space heating is assumed to be provided by circulating hot water through radiators, convectors, fan-coil units, or other in-house heating systems. Geothermal process heating is provided by directly using the hot water or by circulating it through a process heat exchanger. Geothermal space or process cooling is simulated by circulating hot water through lithium bromide/water absorption chillers located at each building. Retrofit costs for both heating and cooling applications can be input by the user. The life-cycle cost of thermal energy from the reservoir and fluid transmission system to the distribution system and the life-cycle cost of heat (chill) to the end-users are calculated using discounted cash flow analysis.

Huber, H.D.; Fassbender, L.L.; Bloomster, C.H.

1982-09-01T23:59:59.000Z

275

Ohio's 4th congressional district: Energy Resources | Open Energy...  

Open Energy Info (EERE)

a congressional district in Ohio. Registered Energy Companies in Ohio's 4th congressional district American Tower Company Energy Technologies, Inc. Fetz Plumbing, Heating & Air...

276

New Jersey's 2nd congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

277

Table Contents Page i 2013 Nonresidential Compliance Manual January 2014  

E-Print Network (OSTI)

Table B-1 Room Air Conditioner, Room Air-Conditioning Heat Pump, Packaged Terminal Air Conditioner, and Packaged Terminal Heat Pump Test Methods.....................................................3 Table C-1...........................................4 Table E-1 Gas and Oil Space Heater Test Methods

278

"Table HC10.5 Space Heating Usage Indicators by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by U.S. Census Region, 2005" 5 Space Heating Usage Indicators by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Usage Indicators",,"Northeast","Midwest","South","West" "Total U.S. Housing Units",111.1,20.6,25.6,40.7,24.2 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have But Do Not Use Equipment",0.8,"N","N","Q",0.6 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

279

"Table HC8.5 Space Heating Usage Indicators by Urban/Rural Location, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Urban/Rural Location, 2005" 5 Space Heating Usage Indicators by Urban/Rural Location, 2005" " Million U.S. Housing Units" ,,"Urban/Rural Location (as Self-Reported)" ,"Housing Units (millions)" "Space Heating Usage Indicators",,"City","Town","Suburbs","Rural" "Total U.S. Housing Units",111.1,47.1,19,22.7,22.3 "Do Not Have Heating Equipment",1.2,0.7,"Q",0.2,"Q" "Have Space Heating Equipment",109.8,46.3,18.9,22.5,22.1 "Use Space Heating Equipment",109.1,45.6,18.8,22.5,22.1 "Have But Do Not Use Equipment",0.8,0.7,"Q","N","N" "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

280

"Table HC15.5 Space Heating Usage Indicators by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Four Most Populated States, 2005" 5 Space Heating Usage Indicators by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"U.S. Housing Units (millions)","Four Most Populated States" "Space Heating Usage Indicators",,"New York","Florida","Texas","California" "Total U.S. Housing Units",111.1,7.1,7,8,12.1 "Do Not Have Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have But Do Not Use Equipment",0.8,"N","Q","N",0.5 "Space Heating Usage During 2005" "Heated Floorspace (Square Feet)"

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Manuscrit auteur, publi dans "42mes Journes de Statistique (2010)" A Functional Regression Approach for Prediction in a District-Heating System  

E-Print Network (OSTI)

Nous considrons le problme de la prdiction court terme des pics de demande dans un systme de chauffage urbain. Notre dataset consiste en quatre priodes spares, avec 198 jours pour chaque priode et 24 observations horaires dans chaque jour relatifs la consommation de chaleur et le climat. Nous tenons en considration la nature fonctionnelle des donnes et proposons une mthodologie de prdiction base sur la rgression fonctionnelle. Linfluence de variables explicatives exognes est modele dune faon approprie. Le rsultats out-of-sample de lapproche propose sont valus. We consider the problem of short-term peak demand forecasting in a district heating system. Our dataset consists of four separated periods, with 198 days each period and 24 hourly observations within each day relative to heat consumption and climate. We take advantage of the functional nature of the data and we propose a forecasting methodology based on functional regression. The influence of exogenous explanatory variables is modelled in a suitable way. The out-of-sample performances of the proposed approach are evaluated. Mots cls Functional linear model, penalized splines estimation, peak load forecasting, district heating system

Aldo Goia

2010-01-01T23:59:59.000Z

282

2005 RECS Consumption and Expenditures Detailed Tables  

U.S. Energy Information Administration (EIA)

Detailed Consumption and Expenditures (C&E) tables containing Space Heating, Air-Conditioning, Water Heating, and Appliance residential energy data are now available.

283

Prices by Sales Type, PAD District, and Selected States  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1998 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and Selected States b (Cents per Gallon Excluding Taxes)...

284

Prices by Sales Type, PAD District, and Selected States  

Gasoline and Diesel Fuel Update (EIA)

AdministrationPetroleum Marketing Annual 1999 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and Selected States b (Cents per Gallon Excluding Taxes)...

285

Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2012 (EIA)

Administration Petroleum Marketing Annual 1995 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and Selected States b (Cents per Gallon Excluding Taxes)...

286

District of Columbia - U.S. Energy Information Administration (EIA ...  

U.S. Energy Information Administration (EIA)

Table CT2. Primary Energy Consumption Estimates, Selected Years, 1960-2011, District of Columbia (Trillion Btu) ... Washington, DC 20585 About EIA Press Room Careers ...

287

What is District Energy and How Does it Work? District Energy (DE) systems use hot water or  

E-Print Network (OSTI)

wood used to supply a small district heating plant. The heating plant can be configured to use woody rapeseed oil is used. The district heating grid has a length of 3.3 miles, and the heat delivery is around heat. In the near future, District Energy may be an economical option to provide renewable, sustainable

288

"Table HC12.5 Space Heating Usage Indicators by Midwest Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Midwest Census Region, 2005" 5 Space Heating Usage Indicators by Midwest Census Region, 2005" " Million U.S. Housing Units" ,,"Midwest Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Midwest" "Space Heating Usage Indicators",,,"East North Central","West North Central" "Total U.S. Housing Units",111.1,25.6,17.7,7.9 "Do Not Have Heating Equipment",1.2,"Q","Q","N" "Have Space Heating Equipment",109.8,25.6,17.7,7.9 "Use Space Heating Equipment",109.1,25.6,17.7,7.9 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

289

"Table HC15.4 Space Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Four Most Populated States, 2005" 4 Space Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Space Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.2 "Have Main Space Heating Equipment",109.8,7.1,6.8,7.9,11.9 "Use Main Space Heating Equipment",109.1,7.1,6.6,7.9,11.4 "Have Equipment But Do Not Use It",0.8,"N","Q","N",0.5 "Main Heating Fuel and Equipment" "Natural Gas",58.2,3.8,0.4,3.8,8.4

290

"Table HC11.5 Space Heating Usage Indicators by Northeast Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Northeast Census Region, 2005" 5 Space Heating Usage Indicators by Northeast Census Region, 2005" " Million U.S. Housing Units" ,,"Northeast Census Region" ,"U.S. Housing Units (millions)" ,,,"Census Division" ,,"Total Northeast" "Space Heating Usage Indicators",,,"Middle Atlantic","New England" "Total U.S. Housing Units",111.1,20.6,15.1,5.5 "Do Not Have Heating Equipment",1.2,"Q","Q","Q" "Have Space Heating Equipment",109.8,20.5,15.1,5.4 "Use Space Heating Equipment",109.1,20.5,15.1,5.4 "Have But Do Not Use Equipment",0.8,"N","N","N" "Space Heating Usage During 2005"

291

"Table HC10.4 Space Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by U.S. Census Region, 2005" 4 Space Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Space Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Do Not Have Space Heating Equipment",1.2,"Q","Q","Q",0.7 "Have Main Space Heating Equipment",109.8,20.5,25.6,40.3,23.4 "Use Main Space Heating Equipment",109.1,20.5,25.6,40.1,22.9 "Have Equipment But Do Not Use It",0.8,"N","N","Q",0.6 "Main Heating Fuel and Equipment" "Natural Gas",58.2,11.4,18.4,13.6,14.7

292

Total Space Heating Water Heating Cook-  

Gasoline and Diesel Fuel Update (EIA)

Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

293

TABLE OF CONTENTS  

E-Print Network (OSTI)

Table of Contents......i List of Tables.....ii

Ingleside Tx; Base Realignment

2010-01-01T23:59:59.000Z

294

Development of Technologies on Innovative Simplified Nuclear Power Plant Using High-Efficiency Steam Injectors (10) Application to a Small District-Heating Reactor  

SciTech Connect

A steam injector (SI) is a simple, compact and passive pump and also acts as a high-performance direct-contact compact heater. This provides SI with capability to use as a passive ECCS pump and also as a direct-contact feedwater heater that heats up feedwater by using extracted steam from the turbine. In order to develop a high reliability passive ECCS pump and a compact feedwater heater, it is necessary to quantify the characteristics between physical properties of the flow field. We carried out experiments to observe the internal behavior of the water jet as well as measure the velocity of steam jet using a laser Doppler velocimetry. Its performance depends on the phenomena of steam condensation onto the water jet surface and heat transfer in the water jet due to turbulence on to the phase-interface. The analysis was also conducted by using a CFD code with the separate two-phase flow models. With regard to the simplified feed-water system, size of four-stage SI system is almost the same as the model SI that had done the steam and water test that pressures were same as that of current ABWR. The authors also conducted the hot water supply system test in the snow for a district heating. With regard to the SI core cooling system, the performance tests results showed that the low-pressure SI core cooling system will decrease the PCT to almost the same as the saturation temperature of the steam pressure in a pressure vessel. As it is compact equipment, SI is expected to bring about great simplification and materials-saving effects, while its simple structure ensures high reliability of its operation, thereby greatly contributing to the simplification of the power plant for not only an ABWR power plant but also a small PWR/ BWR for district heating system. (authors)

Tadashi Narabayashi; Yoichiro Shimadu; Toshiiro Murase; Masatoshi Nagai [Hokkaido University, Kita-ku, Sapporo (Japan); Michitsugu Mori; Shuichi Ohmori [Tokyo Electric Power Company (Japan)

2006-07-01T23:59:59.000Z

295

"Table HC3.4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" 4 Space Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Space Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Main Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

296

"Table HC4.5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,33,8,3.4,5.9,14.4,1.2 "Do Not Have Heating Equipment",1.2,0.6,"Q","Q","Q",0.3,"Q" "Have Space Heating Equipment",109.8,32.3,8,3.3,5.8,14.1,1.1

297

"Table HC3.5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" 5 Space Heating Usage Indicators by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ," Housing Units (millions)" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Space Heating Usage Indicators",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total U.S. Housing Units",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Do Not Have Heating Equipment",1.2,0.6,0.3,"N","Q","Q","Q" "Have Space Heating Equipment",109.8,77.5,63.7,4.2,1.8,2.2,5.6

298

110th Congressional Districts Geographic Relationship Tables...  

NLE Websites -- All DOE Office Websites (Extended Search)

the one-representative states (Alaska, Delaware, Montana, North Dakota, South Dakota, Vermont, and Wyoming) or for the statistically equivalent areas of non-voting delegates (The...

299

Empire District Electric - Residential Energy Efficiency Rebate |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate < Back Eligibility Construction Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Water Heating Windows, Doors, & Skylights Program Info State Missouri Program Type Utility Rebate Program Rebate Amount ENERGY STAR Home Performance Retrofit: 400 ENERGY STAR Qualified Home Designation: 800 Air Conditioner: 400 - 500; varies depending on SEER rating Provider Empire District Electric Company The Empire District Electric Company offers rebates for customers who

300

Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy  

E-Print Network (OSTI)

· Bottom-up R&D study financed by the district heating consumers · Prepared by an independent team increase of district heating · optimal zoning of district heating and natural gas networks based on overall · district heating shifts from fossil fuel boilers to CHP and renewable energy · This legislation ensures

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

"Table HC3.8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Owner-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Owner-Occupied Housing Units (millions)","Type of Owner-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,78.1,64.1,4.2,1.8,2.3,5.7 "Number of Water Heaters" "1.",106.3,74.5,60.9,4,1.8,2.2,5.5 "2 or More",3.7,3.3,3,"Q","Q","Q","Q" "Do Not Use Hot Water",1.1,0.3,"Q","Q","N","Q","Q"

302

"Table HC15.8 Water Heating Characteristics by Four Most Populated States, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Four Most Populated States, 2005" 8 Water Heating Characteristics by Four Most Populated States, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","Four Most Populated States" "Water Heating Characteristics",,"New York","Florida","Texas","California" "Total",111.1,7.1,7,8,12.1 "Number of Water Heaters" "1.",106.3,6.5,6.9,7.4,11.7 "2 or More",3.7,"Q","Q",0.5,0.4 "Do Not Use Hot Water",1.1,0.5,"N","Q","N" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,4.3,6.8,7.4,10.6 "Two or More Housing Units",10.3,2.3,"Q",0.5,1.5

303

"Table HC4.8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" 8 Water Heating Characteristics by Renter-Occupied Housing Unit, 2005" " Million U.S. Housing Units" ,," Renter-Occupied Housing Units (millions)","Type of Renter-Occupied Housing Unit" ,"U.S. Housing Units (millions" ,,,"Single-Family Units",,"Apartments in Buildings With--" "Water Heating Characteristics",,,"Detached","Attached","2 to 4 Units","5 or More Units","Mobile Homes" "Total",111.1,33,8,3.4,5.9,14.4,1.2 "Number of Water Heaters" "1.",106.3,31.9,7.9,3.4,5.8,13.7,1.1 "2 or More",3.7,0.4,"Q","Q","Q","Q","N" "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q",0.6,"Q"

304

"Table HC10.8 Water Heating Characteristics by U.S. Census Region, 2005"  

U.S. Energy Information Administration (EIA) Indexed Site

8 Water Heating Characteristics by U.S. Census Region, 2005" 8 Water Heating Characteristics by U.S. Census Region, 2005" " Million U.S. Housing Units" ,"Housing Units (millions)","U.S. Census Region" "Water Heating Characteristics",,"Northeast","Midwest","South","West" "Total",111.1,20.6,25.6,40.7,24.2 "Number of Water Heaters" "1.",106.3,19.6,24.5,39,23.2 "2 or More",3.7,0.3,0.9,1.5,1 "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q" "Housing Units Served by Main Water Heater" "One Housing Unit",99.7,16.1,23.5,38.2,21.9 "Two or More Housing Units",10.3,3.7,1.9,2.4,2.3 "Do Not Use Hot Water",1.1,0.7,"Q","Q","Q"

305

Table H2: Fuels and End Uses in Large Hospitals  

U.S. Energy Information Administration (EIA)

District Chilled Water ..... Propane ..... Space-Heating ... Cooling Energy Sources Water-Heating Energy Sources Cooking Energy Sources Energy End Uses (more than

306

Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6  

DOE Green Energy (OSTI)

This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

Engen, I.A.

1981-11-01T23:59:59.000Z

307

Emergency Operations Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii

unknown authors

2012-01-01T23:59:59.000Z

308

UNIVERSITY OF THE DISTRICT OF  

E-Print Network (OSTI)

UNIVERSITY OF THE DISTRICT OF COLUMBIA 1 Removal of Eutrophic Nutrients from Wastewater-Supplemented Digester Elutriate in the Fermentor 2. The Effect of Differential- Heating of Digester Elutriate on its

District of Columbia, University of the

309

Table Search (or Ranking Tables)  

E-Print Network (OSTI)

Table Search (or Ranking Tables) Alon Halevy Google DBRank @ ICDE March 1, 2010 #12;Structured Data organizations Requires infrastructure, concerns about losing control Hard to find structured data via search Search #1 store locations used cars radio stations patents recipes · Deep = not accessible through

Halevy, Alon

310

Conceptual design study of geothermal district heating of a thirty-house subdivision in Elko, Nevada, using existing water-distribution systems, Phase III. Final technical report, October 1, 1979-September 30, 1980  

DOE Green Energy (OSTI)

A conceptual design study for district heating of a 30-home subdivision located near the southeast extremity of the city of Elko, Nevada is presented. While a specific residential community was used in the study, the overall approach and methodologies are believed to be generally applicable for a large number of communities where low temperature geothermal fluid is available. The proposed district heating system utilizes moderate temperature, clean domestic water and existing community culinary water supply lines. The culinary water supply is heated by a moderate temperature geothermal source using a single heat exchanger at entry to the subdivision. The heated culinary water is then pumped to the houses in the community where energy is extracted by means of a water supplied heat pump. The use of heat pumps at the individual houses allows economic heating to result from supply of relatively cool water to the community, and this precludes the necessity of supplying objectionably hot water for normal household consumption use. Each heat pump unit is isolated from the consumptive water flow such that contamination of the water supply is avoided. The community water delivery system is modified to allow recirculation within the community, and very little rework of existing water lines is required. The entire system coefficient of performance (COP) for a typical year of heating is 3.36, exclusive of well pumping energy.

Pitts, D.R.

1980-09-30T23:59:59.000Z

311

Global Carbon Biomass Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Table 1c. Mixed Forest Classes Table 1d. NaturalBurnt Forest Mosaic Classes Table 1e. CropForest Mosaic Classes Table 1f. Shrub Cover Classes Table 1g. Grassland Classes Table...

312

International District Energy Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International District Energy Association International District Energy Association International District Energy Association November 1, 2013 - 11:40am Addthis International District Energy Association logo Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA

313

Property Assessed Clean Energy Financing (District of Columbia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) Property Assessed Clean Energy Financing (District of Columbia) < Back Eligibility Commercial Industrial Local Government Multi-Family Residential Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Solar Program Info State District of Columbia Program Type PACE Financing Provider District Department of the Environment The District of Columbia offers a commercial Property Assessed Clean Energy (PACE) program. In order to receive financing through the commercial PACE

314

this table  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table 1.2 World Petroleum Consumption, 1980-2006 (Thousand Barrels per Day) Page 1980.00 ...

315

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

125 69 112 131 137 158 7.36 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

316

Table 4  

Gasoline and Diesel Fuel Update (EIA)

378 913 993 1,130 1,316 1,625 8.24 Notes: -- To obtain the RSE percentage for any table cell, multiply the corresponding column and row factors. -- Because of rounding, data may...

317

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

Table CE4-1e. Water-Heating Energy Expenditures in U.S. Households by Climate Zone, 1997 RSE Column Factor: Total Climate Zone1 RSE Row Factors Fewer than 2,000 CDD ...

318

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters, windows, heat pumps, clothes washer, duct sealing and appliance recycling. Certain efficiency standards must be met in order to receive a rebate for water heaters or windows. Vera Irrigation District also provides a $450 rebate for the installation of energy-efficient heat pumps; ductless heat pumps are eligible incentives of up to $1,500. See the program web site or contact the utility for more information about this program. October 16, 2013 Underground Storage Tank Management (District of Columbia)

319

Utilities District of Western Indiana REMC - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 400 Air-sourceDual Fuel Heat Pump: 300 - 400 Geothermal Heat Pump: 1,500 Central Air Conditioning: 200 - 300 Utilities District of Western Indiana REMC offers...

320

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Annual Energy Outlook 2012 (EIA)

Energy Information Administration Petroleum Marketing Annual 1995 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Annual Energy Outlook 2012 (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1999 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

322

Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...  

Gasoline and Diesel Fuel Update (EIA)

200 Energy Information AdministrationPetroleum Marketing Annual 1998 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type, and PAD District (Cents per Gallon...

323

Table 37. Imports of Crude Oil and Petroleum Products by PAD ...  

U.S. Energy Information Administration (EIA)

48 Energy Information Administration/Petroleum Supply Monthly, October 2011 Table 37. Imports of Crude Oil and Petroleum Products by PAD District, October 2011

324

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information Administration Petroleum Marketing Annual 1996 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

325

Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by...  

Gasoline and Diesel Fuel Update (EIA)

Information AdministrationPetroleum Marketing Annual 1999 Table 47. Refiner Residual Fuel Oil and No. 4 Fuel Volumes by PAD District (Thousand Gallons per Day) - Continued...

326

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Annual Energy Outlook 2012 (EIA)

Marketing Annual 1995 467 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

327

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per Gallon Excluding Taxes) -...

328

Local Option - Special Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Special Districts Local Option - Special Districts Local Option - Special Districts < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Sealing Your Home Ventilation Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Windows, Doors, & Skylights Bioenergy Solar Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Heating Wind Program Info State Florida Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

329

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

330

Microsoft Word - district_of_columbia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

331

Microsoft Word - district_of_columbia.doc  

Gasoline and Diesel Fuel Update (EIA)

District of Columbia District of Columbia NERC Region(s) ....................................................................................................... RFC Primary Energy Source........................................................................................... Petroleum Net Summer Capacity (megawatts) ....................................................................... 790 51 Independent Power Producers & Combined Heat and Power ................................ 790 46 Net Generation (megawatthours) ........................................................................... 199,858 51 Independent Power Producers & Combined Heat and Power ................................ 199,858 51 Emissions (thousand metric tons) ..........................................................................

332

Table 1. 2010 Summary Statistics  

U.S. Energy Information Administration (EIA) Indexed Site

District of Columbia" District of Columbia" "NERC Region(s)",,"RFC" "Primary Energy Source",,"Petroleum" "Net Summer Capacity (megawatts)",790,51 " Independent Power Producers & Combined Heat and Power",790,46 "Net Generation (megawatthours)",199858,51 " Independent Power Producers & Combined Heat and Power",199858,51 "Emissions (thousand metric tons)" " Sulfur Dioxide",1,49 " Nitrogen Oxide","*",51 " Carbon Dioxide",191,50 " Sulfur Dioxide (lbs/MWh)",8.8,2 " Nitrogen Oxide (lbs/MWh)",4,3 " Carbon Dioxide (lbs/MWh)",2104,1 "Total Retail Sales (megawatthours)",11876995,43 " Full Service Provider Sales (megawatthours)",3388490,50

333

Nature Bulletin Table of Contents  

NLE Websites -- All DOE Office Websites (Extended Search)

Table of Contents: Table of Contents: Here is our table of contents for the Forset Preserve District of Cook Country Nature Bulletins. To search, go to the Natuere Bulletin's Search Engine and type in your topic. You can also use your browser's "FIND" command to search the 750+ article titles here for a specific subject! Fish Smother Under Ice Coyotes in Cook County Tough Times for the Muskrats Wild Geese and Ducks Fly North Squirrels Spring Frogs Snapping Turtles A Phenomenal Spring Good People Do Not Pick Wildflowers Fire is the Enemy of Field and Forest Crows Earthworms Bees Crayfish Floods Handaxes and Knives in the Forest Preserves Ant Sanctuary Conservation Mosquitoes More About Mosquitoes Fishing in the Forest Preserve Our River Grasshoppers Chiggers Ticks Poison Ivy Fireflies

334

Table 48. Prime Supplier Sales Volumes of Motor Gasoline by...  

Gasoline and Diesel Fuel Update (EIA)

- - 532.1 532.1 See footnotes at end of table. 48. Prime Supplier Sales Volumes of Motor Gasoline by Grade, Formulation, PAD District, and State 356 Energy Information...

335

Empire District Electric - Low Income New Homes Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program Empire District Electric - Low Income New Homes Program < Back Eligibility Construction Low-Income Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Total: $1,100 Program Info State Missouri Program Type Utility Rebate Program Rebate Amount Insulation: full incremental cost above the appropriate baseline Heat Pumps: $400 Central AC: $400 Refrigerator: $200 Lighting: $100 Provider Empire District Electric Empire District Electric offers rebates for the utilization of energy efficient measures and appliances in new, low-income homes. Rebates are

336

Business Energy Rebate Program (District of Columbia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Business Energy Rebate Program (District of Columbia) Business Energy Rebate Program (District of Columbia) Business Energy Rebate Program (District of Columbia) < Back Eligibility Commercial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Other Program Info Funding Source Sustainable Energy Trust Fund Start Date 05/01/2012 State District of Columbia Program Type State Rebate Program Rebate Amount Varies by equipment type and amount purchased Provider Business Energy Rebate Program The District of Columbia's Sustainable Energy Utility (SEU) administers the Business Energy Rebate Program. Rebates are available to businesses and institutions for the installation of energy-efficient equipment. Only new

337

TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION  

U.S. Energy Information Administration (EIA) Indexed Site

TABLE OF CONTENTS TABLE OF CONTENTS SECTION A: PREINTERVIEW OBSERVATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 SECTION B: HOUSING TYPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 SECTION C: HOME HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 SECTION D: AIR CONDITIONING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 SECTION E: WATER HEATING . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SECTION F: LIGHTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 SECTION G: APPLIANCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Cooking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Refrigerators and Freezers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

338

Table 92  

Gasoline and Diesel Fuel Update (EIA)

2. Domestic Refinery Distillation Base Capacity, Expansion, and Utilization 2. Domestic Refinery Distillation Base Capacity, Expansion, and Utilization (million barrels per day) 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 PAD District I Base Capacity 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 Capacity Additions 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Capacity 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 PAD District II Base Capacity 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 Capacity Additions 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Total Capacity 3.5 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 3.6 PAD District III Base Capacity 7.9 8.1 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 Capacity Additions 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 Total Capacity 7.9 8.1 8.3 8.3 8.3 8.3 8.4 8.4 8.4 8.4 8.4 8.5 8.6 PAD District IV Base Capacity 0.6 0.6 0.6 0.6 0.6 0.6 0.6

339

Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment  

Buildings Energy Data Book (EERE)

2 2 Main Commercial Heating and Cooling Equipment as of 1995, 1999, and 2003 (Percent of Total Floorspace) (1) Heating Equipment 1995 1999 2003 (2) Cooling Equipment 1995 1999 2003 (2) Packaged Heating Units 29% 38% 28% Packaged Air Conditioning Units 45% 54% 46% Boilers 29% 29% 32% Individual Air Conditioners 21% 21% 19% Individual Space Heaters 29% 26% 19% Central Chillers 19% 19% 18% Furnaces 25% 21% 30% Residential Central Air Conditioners 16% 12% 17% Heat Pumps 10% 13% 14% Heat Pumps 12% 14% 14% District Heat 10% 8% 8% District Chilled Water 4% 4% 4% Other 11% 6% 5% Swamp Coolers 4% 3% 2% Other 2% 2% 2% Note(s): Source(s): 1) Heating and cooling equipment percentages of floorspace total more than 100% since equipment shares floorspace. 2) Malls are no longer included in most CBECs tables; therefore, some data is not directly comparable to past CBECs.

340

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

5 5 Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format Excel logo Spreadsheets are provided in excel 1 to117 - Complete set of Supplemental Tables PDF Energy Consumption by Sector (Census Division) Table 1. New England XLS PDF Table 2. Middle Atlantic XLS PDF Table 3. East North Central XLS PDF Table 4. West North Central XLS PDF Table 5. South Atlantic XLS PDF Table 6. East South Central XLS PDF Table 7. West South Central XLS PDF Table 8. Mountain XLS PDF Table 9. Pacific XLS PDF Table 10. Total United States XLS PDF Energy Prices by Sector (Census Division) Table 11. New England XLS PDF Table 12. Middle Atlantic XLS PDF Table 13. East North Central XLS PDF Table 14. West North Central XLS PDF Table 15. South Atlantic XLS PDF Table 16. East South Central

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II  

NLE Websites -- All DOE Office Websites (Extended Search)

i i ii TABLE OF CONTENTS TABLE OF CONTENTS ...........................................................................................................................................II EXECUTIVE SUMMARY ........................................................................................................................................... 3 INTRODUCTION......................................................................................................................................................... 4 COMPLIANCE SUMMARY ....................................................................................................................................... 6 COMPREHENSIVE ENVIRONMENTAL RESPONSE, COMPENSATION, AND LIABILITY ACT (CERCLA) .................... 6

342

Heat Conduction  

Science Conference Proceedings (OSTI)

Table 2   Differential equations for heat conduction in solids...conduction in solids General form with variable thermal properties General form with constant thermal properties General form, constant properties, without heat

343

Financing Energy Upgrades for K-12 School Districts  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Upgrades for K-12 School Districts Financing Energy Upgrades for K-12 School Districts Page 2 Table of Contents Introduction................................................................................................................................................................................................................... 4 What This Guide Covers .................................................................................................................................................................................. 6 Chapter 1: Principles of Financing Energy Upgrades for Schools .................................................................................................. 7 Principle 1. Start with Clear Project Objectives.......................................................................................................................................... 7

344

Notices TABLE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7 Federal Register 7 Federal Register / Vol. 76, No. 160 / Thursday, August 18, 2011 / Notices TABLE 2-NET BURDEN CHANGE-Continued 2011-2012 2012-2013 Change % Change Burden disposition Total Applicants .................................... 23,611,500 24,705,864 +1,094,364 +4.63 Net decrease in burden. The increase in applicants is offset by the results of the Department's simplification changes. This has created an over- all decrease in burden of 8.94% or 2,881,475 hours. Total Applicant Burden ......................... 32,239,328 29,357,853 ¥2,881,475 ¥8.94 Total Annual Responses ....................... 32,239,328 46,447,024 +14,207,696 +44.07 Cost for All Applicants .......................... $159,370.20 $234,804.24 $75,434.04 +47.33 The Department is proud that efforts to simplify the FAFSA submission

345

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

4. Mean Annual Electricity Expenditures for Lighting, by Number of 4. Mean Annual Electricity Expenditures for Lighting, by Number of Household Members by Number of Rooms, 1993 (Dollars) Number of Rooms Number of Household Members All Households One to Three Four Five Six Seven Eight or More RSE Column Factors: 0.5 1.8 1.1 0.9 0.9 1.0 1.2 RSE Row Factors All Households................................... 83 49 63 76 87 104 124 2.34 One..................................................... 55 44 51 54 69 78 87 5.33 Two..................................................... 80 56 63 77 82 96 107 3.38 Three.................................................. 92 60 73 82 95 97 131 4.75 Four.................................................... 106 64 78 93 96 124 134 4.53 Five or More....................................... 112 70 83 98 99 117 150 5.89 Notes: -- To obtain the RSE percentage for any table cell, multiply the

346

Promotion of efficient heat pumps for heating (ProHeatPump)  

E-Print Network (OSTI)

and towns have (some) district heating, and DH currently supplies 1% of heating for buildings in Norway.2 to district heating if there is a supply. According to HP industry representatives, howeverProject Promotion of efficient heat pumps for heating (ProHeatPump) EIE/06/072 / S12

347

1992 CBECS Detailed Tables  

Gasoline and Diesel Fuel Update (EIA)

Detailed Tables Detailed Tables To download all 1992 detailed tables: Download Acrobat Reader for viewing PDF files. Yellow Arrow Buildings Characteristics Tables (PDF format) (70 tables, 230 pages, file size 1.39 MB) Yellow Arrow Energy Consumption and Expenditures Tables (PDF format) (47 tables, 208 pages, file size 1.28 MB) Yellow Arrow Energy End-Use Tables (PDF format) (6 tables, 6 pages, file size 31.7 KB) Detailed tables for other years: Yellow Arrow 1999 CBECS Yellow Arrow 1995 CBECS Background information on detailed tables: Yellow Arrow Description of Detailed Tables and Categories of Data Yellow Arrow Statistical Significance of Data 1992 Commercial Buildings Energy Consumption Survey (CBECS) Detailed Tables Data from the 1992 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables:

348

Southern Power District - Residential Energy Efficiency Rebate Programs |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Southern Power District - Residential Energy Efficiency Rebate Southern Power District - Residential Energy Efficiency Rebate Programs Southern Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air Source Heat Pump: $100- $300 Geothermal Heat Pump: $400 Heat Pump (14 Seer minimum): $50 contractor rebate Attic Insulation: $0.15/sq. ft. HVAC Tune-Up: $30 Provider Southern Power District Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups. Contractors who install 14 Seer or

349

Nebraska Public Power District - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Public Power District - Residential Energy Efficiency Nebraska Public Power District - Residential Energy Efficiency Rebate Programs Nebraska Public Power District - Residential Energy Efficiency Rebate Programs < Back Eligibility Construction Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Maximum Rebate Attic Insulation: $300 Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Air-Source Heat Pumps: 14 SEER - $200, 15 SEER - $400, 16+ SEER $600 Ground Source Heat Pumps: $1,200 Variable Capacity Ground Source Heat Pumps: $1,700 Heat Pump > 14 SEER (Contractor): $50 Cooling System Tune-Up: $30 Attic Insulation: $0.15/sq. ft. Provider Nebraska Public Power District The Nebraska Public Power District offers rebates to homeowners who purchase energy efficient heat pumps, upgrade their insulation, and/or have

350

Omaha Public Power District- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Omaha Public Power District (OPPD) offers energy credit refunds to its residential customers for installing high-efficiency heat pumps through the Energy Conservation Program. Newly constructed...

351

Underground Storage Tank Management (District of Columbia)  

Energy.gov (U.S. Department of Energy (DOE))

The installation, upgrade and operation of any petroleum UST (>110 gallons) or hazardous substance UST System, including heating oil tanks over 1,100 gallons capacity in the District requires a...

352

chapter 5. Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

5. Detailed Tables 5. Detailed Tables Chapter 5. Detailed Tables The following tables present detailed characteristics of vehicles in the residential sector. Data are from the 1994 Residential Transportation Energy Consumption Survey. Table Organization The "Detailed Tables" section consists of three types of tables: (1) Tables of totals such as number of vehicle-miles traveled (VMT) or gallons consumed; (2) tables of per household statistics such as VMT per household; and (3) tables of per-vehicle statistics, such as vehicle fuel consumption per vehicle. The tables have been grouped together by specific topics such as model-year data or family-income data to facilitate finding related information. The Quick-Reference Guide to the detailed tables indicates major topics of each table.

353

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Million U.S. . Light Usage by Heated Floorspace Category, Million U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.7 0.9 0.8 1.1 1.2 1.2 1.2 RSE Row Factors Total................................................. 96.6 7.5 21.8 27.8 12.4 9.6 8.2 9.3 3.62 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 9.6 1.2 2.2 2.7 1.1 0.9 0.7 0.6 11.83 1 ................................................. 22.1 2.4 6.7 6.5 2.5 1.5 1.5 1.1 7.39 2 ................................................. 27.4 2.4 6.9 8.0 3.6 2.4 2.1 2.0 6.60 3 ................................................. 16.8 0.8 3.4 5.2 2.2 2.0

354

Table 4  

U.S. Energy Information Administration (EIA) Indexed Site

. Light Usage by Heated Floorspace Category, Percent of U.S. . Light Usage by Heated Floorspace Category, Percent of U.S. Households, 1993 Heated Floorspace Category (square feet) Housing Unit and Household Characteristics Total Fewer than 600 600 to 999 1,000 to 1,599 1,600 to 1,999 2,000 to 2,399 2,400 to 2,999 3,000 or More RSE Column Factors: 0.4 1.6 0.9 0.8 1.1 1.2 1.3 1.2 RSE Row Factor Total................................................. 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0 Indoor Electric Lights Total Number Lights 1 to 4 Hours None........................................... 10.0 16.5 10.2 9.9 9.2 9.4 9.1 6.7 11.42 1 ................................................. 22.9 31.3 30.9 23.5 19.9 15.3 17.9 11.5 6.62 2 ................................................. 28.4 32.3 31.9 28.7 28.7 24.8 26.0 21.5 5.64 3 .................................................

355

Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part IV: Comparisons of Lookup Tables from Two- and Three-Dimensional Cloud-Resolving Model Simulations  

Science Conference Proceedings (OSTI)

The spectral latent heating (SLH) algorithm was developed to estimate latent heating profiles for the Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR). The method uses TRMM PR information (precipitation-top height, precipitation ...

Shoichi Shige; Yukari N. Takayabu; Satoshi Kida; Wei-Kuo Tao; Xiping Zeng; Chie Yokoyama; Tristan LEcuyer

2009-10-01T23:59:59.000Z

356

New Forestry Commission District Office The new Forestry Commission  

E-Print Network (OSTI)

New Forestry Commission District Office The new Forestry Commission District office at Smithton in construction The Forestry Commission's District office at Smithton in Inverness, Scotland, covers the national fuel heating system has proved effective during the winter of 2009/10, one of the harshest in 40 years

357

Certification and Training Requirements Table of Contents  

E-Print Network (OSTI)

Table of Exhibits..................................................................................................... iii

unknown authors

2008-01-01T23:59:59.000Z

358

Technical Report -DTU -Informatics and Mathematical Modeling (May 31, 2007) Temperature Prediction in District  

E-Print Network (OSTI)

Prediction in District Heating Systems with cFIR models Pierre Pinson , Torben S. Nielsen, Henrik Aa. Nielsen, Lyngby, Denmark Abstract Current methodologies for the optimal operation of district heating systems regularization. Results are given for the test case of the Roskilde district heating system, over a period

359

Major Source Permits (District of Columbia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) Major Source Permits (District of Columbia) < Back Eligibility Utility Commercial Industrial Program Info State District of Columbia Program Type Environmental Regulations Provider District Department of the Environment The District reviews designs for new pollution sources and design modifications for existing sources. Permits are issued to allow sources to emit limited and specified amounts of pollution as allowed by air quality laws and regulations. Major sources include power plants, heating plants, and large printing facilities. Three types of permits are issued: pre-construction review permits; new source review permits; and operating permits. These permits include conditions intended to minimize emissions of

360

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2004 Appendix tables A2 and A3,...

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

are in spreadsheet format. A total of one hundred and nine tables is presented. The data for tables 10 and 20 match those published in AEO2003 Appendix tables A2 and A3,...

362

Meson Summary Table See  

NLE Websites -- All DOE Office Websites (Extended Search)

Meson Summary Table See also the table of suggested qq quark-model assignments in the Quark Model section. * Indicates particles that appear in the preceding Meson Summary Table....

363

Supplement Tables - Supplemental Data  

Annual Energy Outlook 2012 (EIA)

Vehicle Fuel Economy Table 57. New Light-Duty Vehicle Prices Table 58. New Light-Duty Vehicle Range Table 59. Electric Power Projections for EMM Region 01- East Central Area...

364

Precision Flow Table | Open Energy Information  

Open Energy Info (EERE)

Table Table Jump to: navigation, search Basic Specifications Facility Name Flow Table Overseeing Organization United States Army Corp of Engineers (ERDC) Hydrodynamic Testing Facility Type Flow Table Length(m) 2.4 Beam(m) 1.2 Water Type Freshwater Cost(per day) Contact POC Towing Capabilities Towing Capabilities None Wavemaking Capabilities Wavemaking Capabilities None Channel/Tunnel/Flume Channel/Tunnel/Flume Yes Wind Capabilities Wind Capabilities None Control and Data Acquisition Description Automated data acquisition and control system Cameras None Available Sensors Flow, Pressure Range(psi), Turbulence, Velocity, Wave Probe Data Generation Capability Real-Time No Test Services Test Services Yes Past Pertinent Test Experience Users are District Engineers, Planners, and Engineering Consultants

365

Table 21  

Gasoline and Diesel Fuel Update (EIA)

4 4 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Equipment Stock (million units) Main Space Heaters Electric Heat Pumps 11.48 12.04 12.54 13.00 13.46 13.92 14.38 14.84 15.28 15.72 16.16 16.60 17.05 Electric Other 20.93 21.02 21.11 21.19 21.29 21.39 21.49 21.59 21.69 21.78 21.88 21.99 22.09 Natural Gas Heat Pumps 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Natural Gas Other 61.96 63.00 63.91 64.79 65.67 66.53 67.40 68.27 69.11 69.92 70.72 71.54 72.36 Distillate Fuel Oil 8.65 8.64 8.61 8.57 8.54 8.51 8.48 8.46 8.44 8.43 8.42 8.41 8.39 Liquefied Petroleum Gases 5.14 5.22 5.30 5.34 5.39 5.43 5.48 5.53 5.57 5.62 5.66 5.70 5.75 Kerosene 0.81 0.81 0.81 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 Wood Stoves 2.00 1.98 1.96 1.93 1.91 1.89 1.87 1.85 1.83 1.82 1.80 1.78 1.76 Geothermal Heat Pumps 0.12 0.16 0.20 0.24

366

District of Columbia Profile  

U.S. Energy Information Administration (EIA)

District of Columbia Quick Facts. In 2010, the average price of total energy in the District of Columbia was the highest in the contiguous United ...

367

All Consumption Tables  

U.S. Energy Information Administration (EIA)

2010 Consumption Summary Tables. Table C1. Energy Consumption Overview: Estimates by Energy Source and End-Use Sector, 2010 (Trillion Btu) ... Ranked by State, 2010

368

1995 Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Households, Buildings & Industry > Commercial Buildings Energy Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey > Detailed Tables 1995 Detailed Tables Data from the 1995 Commercial Buildings Energy Consumption Survey (CBECS) are presented in three groups of detailed tables: Buildings Characteristics Tables, number of buildings and amount of floorspace for major building characteristics. Energy Consumption and Expenditures Tables, energy consumption and expenditures for major energy sources. Energy End-Use Data, total, electricity and natural gas consumption and energy intensities for nine specific end-uses. Summary Table—All Principal Buildings Activities (HTML Format) Background information on detailed tables: Description of Detailed Tables and Categories of Data Statistical Significance of Data

369

"Table HC1.3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units"  

U.S. Energy Information Administration (EIA) Indexed Site

3 Heated Floorspace Usage Indicators, 2005" 3 Heated Floorspace Usage Indicators, 2005" " Million U.S. Housing Units" ,,"Heated Floorspace (square feet)" ,"Housing Units (millions)" ,,"Fewer than 500","500 to 999","1,000 to 1,499","1,500 to 1,999","2,000 to 2,499","2,500 to 2,999","3,000 or More" "Usage Indicators" "Total",111.1,6.1,27.7,26,17.6,10,"7 7.8",11.6 "No Main Space Heating Equipment",1.2,"N","N","N","N","N","N","N" "Have Main Space Heating Equipment",109.8,6.1,27.7,26,17.6,10,"7 7.8",11.6 "Use Main Space Heating Equipment",109.1,6.1,27.7,26,17.6,10,"7 7.8",11.6

370

Vera Irrigation District #15 - Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program Vera Irrigation District #15 - Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heating & Cooling Commercial Heating & Cooling Heat Pumps Water Heating Maximum Rebate $1,500 Program Info State District of Columbia Program Type Utility Rebate Program Rebate Amount Refrigerator/Freezer Recycling: $30 Water Heaters: $100 Windows: $6/sq. ft. Heat Pumps: $450 Duct Sealing: $400 - $500 Clothes Washer: $30 Ductless Heat Pumps: $1,500 Vera Irrigation District #15 offers rebates to electric customers who improve energy efficiency. Rebates are available for water heaters,

371

Heating oils, 1983  

Science Conference Proceedings (OSTI)

Properties of 195 heating oils marketed in the United States were submitted for study and compilation under agreement between the Bartlesville Energy Technology Center (BETC) and the American Petroleum Institute (API). The fuels were manufactured by 25 petroleum refining companies in 83 domestic refineries. The data are tabulated according to six grades of fuel and subdivided into five geographic regions in which the fuels are marketed. The six grades of fuels are defined by the American Society for Testing and Materials (ASTM) Specification D396. The five regions containing a total of 16 marketing districts are shown on a map in the report. Trend charts are included showing average properties of the six grades of fuel for the past several years. Summaries of the results of the tests by grade and by region for 1983 are compared with data for 1982. 7 figures, 12 tables.

Shelton, E.M.

1983-08-01T23:59:59.000Z

372

Truckee Donner Public Utility District - Energy Conservation Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Utility District - Energy Conservation Rebate Public Utility District - Energy Conservation Rebate Program Truckee Donner Public Utility District - Energy Conservation Rebate Program < Back Eligibility Commercial Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Lighting (Residential): see program web site Lighting (Commercial): $10,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Clothes Washers: $100 Refrigerators/Freezers: $100 Dishwashers: $100 Electric Water Heaters: $2/gallon Geothermal Heat Pumps: $200/ton Lighting (Residential): $2/fluorescent bulb Lighting (Commercial): 1/3 of project costs

373

Local Option - Improvement Districts for Energy Efficiency and Renewable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Improvement Districts for Energy Efficiency and Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements Local Option - Improvement Districts for Energy Efficiency and Renewable Energy Improvements < Back Eligibility Agricultural Commercial Industrial Institutional Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Design & Remodeling Windows, Doors, & Skylights Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Biofuels Alternative Fuel Vehicles Bioenergy Solar Hydrogen & Fuel Cells Buying & Making Electricity Water Water Heating Wind Program Info State Colorado Program Type PACE Financing

374

Just enough tabling  

Science Conference Proceedings (OSTI)

We introduce just enough tabling (JET), a mechanism to suspend and resume the tabled execution of logic programs at an arbitrary point. In particular, JET allows pruning of tabled logic programs to be performed without resorting to any recomputation. ... Keywords: logic programming, pruning, suspension/resumption in the WAM, tabling

Konstantinos Sagonas; Peter J. Stuckey

2004-08-01T23:59:59.000Z

375

EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana  

Energy.gov (U.S. Department of Energy (DOE))

This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

376

Table of Contents  

Science Conference Proceedings (OSTI)

... and Freedom Through Encryption (SAFE) Act Catherine Miller Horiuchi, Sacramento Municipal Utility District, University of Southern California ...

2000-11-30T23:59:59.000Z

377

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. Adobe Acrobat Reader Logo Adobe Acrobat Reader is required for PDF format. MS Excel Viewer Spreadsheets are provided in excel Errata - August 25, 2004 1 to117 - Complete set of of Supplemental Tables PDF Table 1. Energy Consumption by Source and Sector (New England) XLS PDF Table 2. Energy Consumption by Source and Sector (Middle Atlantic) XLS PDF Table 3. Energy Consumption by Source and Sector (East North Central) XLS PDF Table 4. Energy Consumption by Source and Sector (West North Central) XLS PDF Table 5. Energy Consumption by Source and Sector (South Atlantic) XLS PDF Table 6. Energy Consumption by Source and Sector (East South Central) XLS PDF Table 7. Energy Consumption by Source and Sector (West South Central) XLS PDF Table 8. Energy Consumption by Source and Sector (Mountain)

378

1999 CBECS Detailed Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables Commercial Buildings Energy Consumption Survey (CBECS) > Detailed Tables 1999 CBECS Detailed Tables Building Characteristics | Consumption & Expenditures Data from the 1999 Commercial Buildings Energy Consumption Survey (CBECS) are presented in the Building Characteristics tables, which include number of buildings and total floorspace for various Building Characteristics, and Consumption and Expenditures tables, which include energy usage figures for major energy sources. A table of Relative Standard Errors (RSEs) is included as a worksheet tab in each Excel tables. Complete sets of RSE tables are also available in .pdf format. (What is an RSE?) Preliminary End-Use Consumption Estimates for 1999 | Description of 1999 Detailed Tables and Categories of Data

379

Cogeneration Personal Property Tax Credit (District of Columbia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) Cogeneration Personal Property Tax Credit (District of Columbia) < Back Eligibility Commercial Industrial Residential Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Solar Heating & Cooling Heating Program Info Start Date 07/25/2012 State District of Columbia Program Type Property Tax Incentive Rebate Amount 100% exemption Provider Energy Division The District of Columbia Council created a personal property tax exemption for solar energy systems and cogeneration systems within the District by enacting B19-0749 in December of 2012. Eligible solar systems Solar energy is defined by D.C. Code § 34-1431 to mean "radiant energy, direct, diffuse, or reflected, received from the sun

380

Geothermal district piping - A primer  

DOE Green Energy (OSTI)

Transmission and distribution piping constitutes approximately 40 -60% of the capital costs of typical geothermal district heating systems. Selections of economical piping suitable for the fluid chemistry is critical. Presently, most piping (56%) in geothermal systems is of asbestos cement construction. Some fiberglass (19%) and steel (19%) is also in use. Identification of an economical material to replace asbestos cement is important to future project development. By providing information on relative costs, purchase considerations, existing material performance and new products, this report seeks to provide a background of information to the potential pipe purchaser. A brief discussion of the use of uninsulated piping in geothermal district heating systems is also provided. 5 refs., 19 figs., 1 tab.

Rafferty, K.

1989-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...  

Gasoline and Diesel Fuel Update (EIA)

- W 73.5 See footnotes at end of table. A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present Energy Information Administration ...

382

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Residual Fuel Imports by State Residual Fuel Imports by State Definitions Key Terms Definition Barrel A unit of volume equal to 42 U.S. gallons. Imports Receipts of crude oil and petroleum products into the 50 States and the District of Columbia from foreign countries, Puerto Rico, the Virgin Islands, and other U.S. possessions and territories. Petroleum Administration for Defense (PAD) Districts Geographic aggregations of the 50 States and the District of Columbia into five districts by the Petroleum Administration for Defense in 1950. These districts were originally defined during World War II for purposes of administering oil allocation. Description and maps of PAD Districts and Refining Districts. Residual Fuel Oil A general classification for the heavier oils, known as No. 5 and No. 6 fuel oils, that remain after the distillate fuel oils and lighter hydrocarbons are distilled away in refinery operations. It conforms to ASTM Specifications D396 and D975 and Federal Specification VV-F-815C. No. 5, a residual fuel oil of medium viscosity, is also known as Navy Special and is defined in Military Specification MIL-F-859E, including Amendment 2 (NATO Symbol F-770). It is used in steam-powered vessels in government service and inshore powerplants. No. 6 fuel oil includes Bunker C fuel oil and is used for the production of electric power, space heating, vessel bunkering, and various industrial purposes.

383

Local Option - Sustainable Energy Financing Districts | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Sustainable Energy Financing Districts Local Option - Sustainable Energy Financing Districts Local Option - Sustainable Energy Financing Districts < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Other Design & Remodeling Windows, Doors, & Skylights Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Bioenergy Solar Buying & Making Electricity Energy Sources Water Heating Wind Program Info Start Date 8/15/2009 State Louisiana Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs.

384

Local Option - Clean Energy Finance Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Finance Districts Clean Energy Finance Districts Local Option - Clean Energy Finance Districts < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Cooling Construction Design & Remodeling Sealing Your Home Windows, Doors, & Skylights Ventilation Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Bioenergy Solar Buying & Making Electricity Water Wind Program Info State Vermont Program Type PACE Financing Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs around the

385

Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged  

U.S. Energy Information Administration (EIA) Indexed Site

5. Cooling Equipment, Floorspace, 1999" 5. Cooling Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All Buildings ................",67338,58474,8329,9147,14276,2750,12909,36527,2219,1312 "Building Floorspace" "(Square Feet)" "1,001 to 5,000 ...............",6774,4879,890,700,962,"Q","Q",2613,253,"Q" "5,001 to 10,000 ..............",8238,6212,1606,707,1396,"Q","Q",3197,181,"Q"

386

Cost Development Guidelines Table of Contents  

E-Print Network (OSTI)

Table of Contents..................................................................................................... ii Table of Exhibits...................................................................................................... v Approval.................................................................................................................. vi

unknown authors

2011-01-01T23:59:59.000Z

387

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

December 22, 2000 (Next Release: December, 2001) Related Links Annual Energy Outlook 2001 Assumptions to the AEO2001 NEMS Conference Contacts Forecast Homepage EIA Homepage AEO Supplement Reference Case Forecast (1999-2020) (HTML) Table 1. Energy Consumption by Source and Sector (New England) Table 2. Energy Consumption by Source and Sector (Middle Atlantic) Table 3. Energy Consumption by Source and Sector (East North Central) Table 4. Energy Consumption by Source and Sector (West North Central) Table 5. Energy Consumption by Source and Sector (South Atlantic) Table 6. Energy Consumption by Source and Sector (East South Central) Table 7. Energy Consumption by Source and Sector (West South Central) Table 8. Energy Consumption by Source and Sector (Mountain)

388

Central Lincoln People's Utility District - Renewable Energy Incentive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Lincoln People's Utility District - Renewable Energy Central Lincoln People&#039;s Utility District - Renewable Energy Incentive Program (Oregon) Central Lincoln People's Utility District - Renewable Energy Incentive Program (Oregon) < Back Eligibility Commercial Nonprofit Residential Savings Category Solar Buying & Making Electricity Home Weatherization Water Heating & Cooling Water Heating Wind Maximum Rebate PV (Residential): $2,000 PV (Commercial): $5,000 Solar Water Heating: $800 Wind: $5,000 Hydro Electric: $5,000 Program Info State Oregon Program Type Utility Rebate Program Rebate Amount PV and Wind: $500/kW-DC Solar Water Heating: $800/system Hydro Electric: $0.50/kWh (first year) Provider Central Lincoln People's Utility District Central Lincoln People's Utility District provides financial incentives for

389

Table of Contents  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary......

390

FY 2005 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) Table of Contents Summary...................................................................................................... 1 Mandatory Funding....................................................................................... 3 Energy Supply.............................................................................................. 4 Non-Defense site acceleration completion................................................... 6 Uranium enrichment D&D fund.................................................................... 6 Non-Defense environmental services.......................................................... 6 Science.........................................................................................................

391

A Spatial Analytic Method for the Preliminary Design of a District Energy Network Utilizing Waste Heat in Mixed-Use Jurisdictions.  

E-Print Network (OSTI)

??A citys characteristics of mixed-use zoning, diverse built form, high-density development, and residual heat generation by urban processes, present potential for optimizing the thermal energy (more)

Ronn, Dave

2011-01-01T23:59:59.000Z

392

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2012 (million cubic feet) U.S. Energy Information Administration | Natural Gas Annual 4 Table 2 Alabama 215,710 7,110 -162,223 617,883 0 -2,478 0 666,738 Alaska 351,259 21,470 22,663 0 -9,342 0 0 343,110 Arizona 117 0 -13,236 389,036 -43,838 0 0 332,079 Arkansas 1,146,168 424 -18,281 -831,755 0 -103 0 295,811 California 246,822 12,755 104,820 2,222,355 -109,787 48,071 0 2,403,385 Colorado 1,709,376 81,943 -107,940 -1,077,968 0 2,570 4,412 443,367 Connecticut 0 0 4,191 225,228 0 260 0 229,159 Delaware 0 0 21,035 80,692 0 51 * 101,676 District of Columbia 0 0 497 28,075 0 0 0 28,572 Florida 18,681 0 15,168 1,294,620 0 0 0 1,328,469

393

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Homepage Homepage Supplement Tables to the AEO2001 The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2001 (AEO2001) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2001, but contain regional and other more detailed projections underlying the AEO2001 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables is presented. The data for tables 10 and 20 match those published in AEO2001 Appendix tables A2 and A3, respectively. Forecasts for 1999 and 2000 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

394

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

The AEO Supplementary tables were generated for the reference case of the The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2002 (AEO2002) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1999 to 2020. Most of the tables were not published in the AEO2002, but contain regional and other more detailed projections underlying the AEO2002 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seven tables is presented. The data for tables 10 and 20 match those published in AEO2002 Appendix tables A2 and A3, respectively. Forecasts for 2000-2002 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current

395

Table Definitions, Sources, and Explanatory Notes  

Gasoline and Diesel Fuel Update (EIA)

Heating Oil & Propane Prices Heating Oil & Propane Prices Definitions Key Terms Definition No. 2 Fuel Oil (Heating Oil) A distillate fuel oil for use in atomizing type burners for domestic heating or for use medium capacity commercial-industrial burner units, with distillation temperatures between 540-640 degrees Fahrenheit at the 90-percent recovery point; and the kinematic viscosities between 1.9-3.4 centistokes at 100 degrees Fahrenheit as defined in ASTM Specification D396-92. Petroleum Administration for Defense District (PADD): PADD 1 (East Coast): PADD 1A (New England): Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont. PADD 1B (Central Atlantic): Delaware, District of Columbia, Maryland, New Jersey, New York, Pennsylvania. PADD 1C (Lower Atlantic): Florida, Georgia, North Carolina, South Carolina, Virginia, West Virginia.

396

Category:Congressional Districts | Open Energy Information  

Open Energy Info (EERE)

Congressional Districts Congressional Districts Jump to: navigation, search This category contains all congressional districts in the United States of America. Pages in category "Congressional Districts" The following 200 pages are in this category, out of 437 total. (previous 200) (next 200) A Alabama's 1st congressional district Alabama's 2nd congressional district Alabama's 3rd congressional district Alabama's 4th congressional district Alabama's 5th congressional district Alabama's 6th congressional district Alabama's 7th congressional district Alaska's At-large congressional district Arizona's 1st congressional district Arizona's 2nd congressional district Arizona's 3rd congressional district Arizona's 4th congressional district Arizona's 5th congressional district Arizona's 6th congressional district

397

Petroleum Products Table 31. Motor Gasoline Prices by Grade...  

Annual Energy Outlook 2012 (EIA)

62.6 71.6 92.3 89.9 82.6 72.7 - 78.2 See footnotes at end of table. 31. Motor Gasoline Prices by Grade, Sales Type, PAD District, and State 56 Energy Information Administration ...

398

Modesto Irrigation District - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - Residential Energy Efficiency Rebate Modesto Irrigation District - Residential Energy Efficiency Rebate Program Modesto Irrigation District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Sealing Your Home Ventilation Heat Pumps Water Heating Program Info Expiration Date 12/15/2013 State California Program Type Utility Rebate Program Rebate Amount Room AC: $50 Clothes Washer: $35 Water Heater: $25 Heat Pump Water Heater: $100 Refrigerator/Freezer Recycling: $35 per unit Central AC: $250 Heat Pump: $350 High Efficiency AC/Heat Pump: $500 Mini-Split AC/Heat Pump: $500 Air Duct Sealing: up to $250 max Whole House Fan: $100 per unit

399

Table of Contents PJM Manual [18]: PJM Capacity Market  

E-Print Network (OSTI)

Table of Contents Table of Contents..................................................................................................... ii

unknown authors

2008-01-01T23:59:59.000Z

400

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 2000 (AEO2000) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1998 to 2020. Most of the tables were not published in the AEO2000, but contain regional and other more detailed projections underlying the AEO2000 projections. The files containing these tables are in spreadsheet format. A total of ninety-six tables are presented. The data for tables 10 and 20 match those published in AEO200 Appendix tables A2 and A3, respectively. Forecasts for 1998, and 2000 may differ slightly from values published in the Short Term Energy Outlook, Fourth Quarter 1999 or Short Term Energy Outlook, First Quarter 2000, which are the official EIA short-term forecasts and are based on more current information than the AEO.

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

FY 2005 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Congressional Budget Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. include both the discretionary and mandatory funding in the budget. balances, deferrals, rescissions, or other adjustments appropria ted as offsets to the DOE appropriations by the Congress.

402

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Supplemental Tables to the Annual Energy Outlook 2005 Supplemental Tables to the Annual Energy Outlook 2005 EIA Glossary Supplemental Tables to the Annual Energy Outlook 2005 Release date: February 2005 Next release date: February 2006 The AEO Supplemental tables were generated for the reference case of the Annual Energy Outlook 2005 (AEO2005) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 2003 to 2025. Most of the tables were not published in the AEO2005, but contain regional and other more detailed projections underlying the AEO2005 projections. The files containing these tables are in spreadsheet format. A total of one hundred and seventeen tables is presented. The data for tables 10 and 20 match those published in AEO2005 Appendix tables A2 and A3, respectively. Forecasts for 2003-2005 may differ slightly from values published in the Short Term Energy Outlook, which are the official EIA short-term forecasts and are based on more current information than the AEO.

403

Table of Contents  

Science Conference Proceedings (OSTI)

Table of Contents. A, B. 1, USGCB Settings. 2, This spreadsheet captures the USGCB defined configuration settings. 3, Tab Name, Tab Description. ...

2013-11-19T23:59:59.000Z

404

FY 2007 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy FY 2007 Congressional Budget Request February 2006 Office of Chief Financial Officer state tables preliminary Department of Energy FY 2007 Congressional Budget...

405

Economics of residential gas furnaces and water heaters in US new construction market  

E-Print Network (OSTI)

heating appliances, 3 solar water heating, district heating,Other includes solar, wood, and no heating b Table 2 US

Lekov, Alex B.; Franco, Victor H.; Wong-Parodi, Gabrielle; McMahon, James E.; Chan, Peter

2010-01-01T23:59:59.000Z

406

"RSE Table C10.2. Relative Standard Errors for Table C10.2;"  

U.S. Energy Information Administration (EIA) Indexed Site

2. Relative Standard Errors for Table C10.2;" 2. Relative Standard Errors for Table C10.2;" " Unit: Percents." ,,,"Establishments" " "," ",,"with Any"," Steam Turbines","Supplied","by Either","Conventional","Combustion","Turbines"," "," "," ","Internal","Combustion","Engines"," Steam Turbines","Supplied","by Heat",," " " "," ",,"Cogeneration","Conventional","or Fluidized","Bed Boilers","with","Heat","Recovery","Combined-Cycle","Combustion","Turbines","with","Heat","Recovery","Recovered from","High-Temperature","Processes"

407

Prices by Sales Type, PAD District, and Selected States  

Gasoline and Diesel Fuel Update (EIA)

98.6 75.5 77.3 90.7 86.1 91.1 64.5 See footnotes at end of table. 39. No. 2 Distillate Prices by Sales Type, PAD District, and Selected States 224 Energy Information Administration...

408

Prices by Sales Type, PAD District, and Selected States  

Annual Energy Outlook 2012 (EIA)

96.3 72.5 71.8 87.1 82.9 88.2 62.5 See footnotes at end of table. 39. No. 2 Distillate Prices by Sales Type, PAD District, and Selected States 224 Energy Information Administration...

409

Total Space Heat-  

Gasoline and Diesel Fuel Update (EIA)

Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

410

Waterway Management Districts (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

Waterway management districts are established to manage and supervise the use and development of waterways in municipalities with populations between 29,600 and 29,900.

411

Municipal Utility Districts (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

Municipal Utility Districts, regulated by the Texas Commission on Environmental Quality, may be created for the following purposes: (1) the control, storage, preservation, and distribution of its...

412

2003 CBECS RSE Tables  

Gasoline and Diesel Fuel Update (EIA)

cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" cbecs/cbecs2003/detailed_tables_2003/2003rsetables_files/plainlink.css" type=text/css rel=stylesheet> Home > Households, Buildings & Industry > Commercial Buildings Energy Consumption Survey (CBECS) > 2003 Detailed Tables > RSE Tables 2003 CBECS Relative Standard Error (RSE) Tables Released: Dec 2006 Next CBECS will be conducted in 2007 Standard error is a measure of the reliability or precision of the survey statistic. The value for the standard error can be used to construct confidence intervals and to perform hypothesis tests by standard statistical methods. Relative Standard Error (RSE) is defined as the standard error (square root of the variance) of a survey estimate, divided by the survey estimate and multiplied by 100. (More information on RSEs)

413

THERMODYNAMIC TABLES FOR NUCLEAR WASTE ISOLATION, V.1: AQUEOUS SOLUTIONS DATABASE  

E-Print Network (OSTI)

University, commented on the heat capacity of iodate; J. J.Table 2-6. Entropy and heat capacity values used to developLemire (33.95). Units of heat capacity are JhnoVK. Anion Pu(

Phillips, S.L.; Hale, F.V.; Silvester, L.F.

2008-01-01T23:59:59.000Z

414

Methods and Guidelines for Assessing Customer District Energy Needs  

Science Conference Proceedings (OSTI)

A district energy (DE) system is a central supply of cooling and heating to individual buildings, which offers substantial energy savings over individual building cooling and heating systems. This interim report describes a method for assessing total building energy needs, with emphasis on evaluating customer heating and cooling loads and determining seasonal efficiencies for boiler and chiller plants.

1998-12-31T23:59:59.000Z

415

Lassen Municipal Utility District - Residential Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lassen Municipal Utility District - Residential Energy Efficiency Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program Lassen Municipal Utility District - Residential Energy Efficiency Rebate Program < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Windows: $500 Duct Insulation/Sealing: $500 Radiant Barrier: $1,000 Program Info State California Program Type Utility Rebate Program Rebate Amount Refrigerator: $50 Freezer: $50 Clothes Washer: $35 Dishwasher: $35 Room AC: $75 Air Source Heat Pumps: $100 - $400 per ton Ground Source Heat Pump: $1,000 per ton Central A/C: $25 - $150 per ton Evaporative Cooled A/C: $175 per ton Evaporative Coolers: $75 - $200 per 1,000 sq. ft.

416

IRRIGATION & ELECTRICAL DISTRICTS  

NLE Websites -- All DOE Office Websites (Extended Search)

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R.D. JUSTICE SUITE 140 WILLIAM H. STACY PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 ELSTON GRUBAUGH (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 COUNSEL AND

417

IRRIGATION & ELECTRICAL DISTRICTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IRRIGATION & ELECTRICAL DISTRICTS IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA R. GALE PEARCE SUITE 140 ELSTON GRUBAUGH PRESIDENT 340 E. PALM LANE SECRETARY-TREASURER PHOENIX, ARIZONA 85004-4603 R.D. JUSTICE (602) 254-5908 ROBERT S. LYNCH VICE-PRESIDENT Fax (602) 257-9542 ASSISTANT SECRETARY-TREASURER

418

Empire District Electric - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Empire District Electric - Residential Energy Efficiency Rebate Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) Empire District Electric - Residential Energy Efficiency Rebate Program (Arkansas) < Back Eligibility Commercial Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Maximum Rebate Central Air Conditioner: $500 Weatherization Measures: Total cost of measures eligible for rebate cannot exceed $2,964 Program Info State Arkansas Program Type Utility Rebate Program Rebate Amount Energy Audits: Varies Weatherization Measures: 25% - 50% of cost Central Air Conditioner: $400 - $500 Programmable Thermostat: $25

419

ARM - Instrument Location Table  

NLE Websites -- All DOE Office Websites (Extended Search)

govInstrumentsLocation Table govInstrumentsLocation Table Instruments Location Table Contacts Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Instrument Locations Site abbreviations explained in the key. Instrument Name Abbreviation NSA SGP TWP AMF C1 C2 EF BF CF EF IF C1 C2 C3 EF IF Aerosol Chemical Speciation Monitor ACSM Atmospheric Emitted Radiance Interferometer AERI Aethalometer AETH Ameriflux Measurement Component AMC Aerosol Observing System AOS Meteorological Measurements associated with the Aerosol Observing System AOSMET Broadband Radiometer Station BRS

420

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

Operable Date of Last Operation Date Shutdown Table 11. New, Shutdown and Reactivated Refineries During 2012 a b REACTIVATED PAD District I 185,000 366,700 Monroe Energy LLC Trainer, PA 185,000 366,700 09/12 c SHUTDOWN PAD District I 80,000 47,000 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District III 16,800 19,500 Western Refining Southwest Inc Bloomfield, NM 16,800 19,500 12/09 11/12 PAD District VI 500,000 1,086,000 Hovensa LLC Kingshill, VI 500,000 1,086,000 02/12 02/12 a b bbl/cd=Barrels per calendar day. bbl/sd=Barrels per stream day. Sources: Energy Information Administration (EIA) Form EIA-810, "Monthly Refinery Report" and Form EIA-820, "Annual Refinery Report." c Formerly owned by ConocoPhillips Company.

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Empire District Electric Co | Open Energy Information  

Open Energy Info (EERE)

Electric Co Electric Co Jump to: navigation, search Name Empire District Electric Co Place Arkansas Utility Id 5860 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Schedule RG Residential RS Schedule RG Residential Average Rates Residential: $0.0938/kWh Commercial: $0.0860/kWh Industrial: $0.0670/kWh The following table contains monthly sales and revenue data for Empire District Electric Co (Arkansas). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

422

Empire District Electric Co | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Empire) (Redirected from Empire) Jump to: navigation, search Name Empire District Electric Co Place Arkansas Utility Id 5860 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png RS Schedule RG Residential RS Schedule RG Residential Average Rates Residential: $0.0938/kWh Commercial: $0.0860/kWh Industrial: $0.0670/kWh The following table contains monthly sales and revenue data for Empire District Electric Co (Arkansas). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

423

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

0 0 Table 20. Number of Natural Gas Residential Consumers by Type of Service and State, 2009-2010 Alabama ...................... R 785,005 0 R 785,005 768,921 0 768,921 Alaska.......................... 120,124 0 120,124 121,166 0 121,166 Arizona ........................ 1,130,047 0 1,130,047 1,138,448 0 1,138,448 Arkansas...................... 557,355 0 557,355 549,970 0 549,970 California ..................... R 10,454,747 R 56,203 R 10,510,950 10,469,734 72,850 10,542,584 Colorado ...................... 1,622,429 5 1,622,434 1,634,582 5 1,634,587 Connecticut.................. 488,614 735 489,349 489,380 805 490,185 Delaware ..................... 149,006 0 149,006 150,458 0 150,458 District of Columbia...... 129,738 13,698 143,436 130,048 14,103 144,151 Florida.......................... 659,725 14,365

424

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2008-2009 Alabama ...................... R 65,193 120 R 65,313 67,468 128 67,596 Alaska.......................... 12,267 497 12,764 12,854 363 13,217 Arizona ........................ 57,481 105 57,586 57,022 169 57,191 Arkansas...................... 68,943 201 69,144 68,794 249 69,043 California ..................... 417,531 29,629 447,160 406,270 35,225 441,495 Colorado ...................... 144,543 176 144,719 145,455 169 145,624 Connecticut.................. 50,023 3,880 53,903 50,106 4,404 54,510 Delaware ..................... 12,619 84 12,703 12,726 113 12,839 District of Columbia...... 6,838 3,186 10,024 6,706 3,582 10,288 Florida.......................... 41,164 16,961 58,125 41,748 17,801 59,549

425

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2009 (Dollars per Thousand Cubic Feet) Alabama ............................... 18.12 100.0 14.93 78.7 6.48 27.9 19.17 4.30 Alaska................................... 10.23 100.0 9.51 85.3 4.02 72.5 -- W Arizona ................................. 17.65 100.0 12.15 88.0 8.19 29.1 14.96 4.16 Arkansas............................... 13.39 100.0 10.71 59.4 8.47 3.6 -- 4.14 California .............................. 9.43 98.9 7.75 54.9 6.57 4.7 7.61 4.44 Colorado ............................... 8.80 100.0 7.56 94.8 6.57 0.5 9.12 4.27 Connecticut........................... 14.81 97.5 9.92 69.0 8.44 37.5 15.26 4.89 Delaware .............................. 17.79 100.0 15.87 53.5 13.99 2.1 14.12 W District of Columbia...............

426

Microsoft Word - table_19.doc  

Gasoline and Diesel Fuel Update (EIA)

6 6 Table 19. Number of Natural Gas Residential Consumers by Type of Service and State, 2004-2005 Alabama ...................... R 806,660 R 0 R 806,660 799,256 0 799,256 Alaska.......................... 104,360 0 104,360 108,401 0 108,401 Arizona ........................ 993,885 0 993,885 1,042,662 0 1,042,662 Arkansas...................... R 554,844 0 R 554,844 555,861 0 555,861 California ..................... 9,921,331 R 36,081 R 9,957,412 10,092,466 31,967 10,124,433 Colorado ...................... R 1,496,873 3 R 1,496,876 1,524,810 3 1,524,813 Connecticut.................. 468,918 414 469,332 474,807 414 475,221 District of Columbia...... 120,709 17,425 138,134 127,139 13,873 141,012 Delaware ..................... 133,197 0 133,197 137,115 0 137,115 Florida.......................... R 628,104 10,910

427

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

9 9 Table 20. Number of Natural Gas Commercial Consumers by Type of Service and State, 2006-2007 Alabama ...................... R 66,222 115 R 66,337 65,738 118 65,856 Alaska.......................... 12,858 1,526 14,384 12,491 917 13,408 Arizona ........................ 56,955 136 57,091 57,047 122 57,169 Arkansas...................... 69,318 157 69,475 69,319 176 69,495 California ..................... 426,379 15,673 442,052 421,449 24,671 446,120 Colorado ...................... 139,566 180 139,746 141,201 219 141,420 Connecticut.................. 49,056 3,926 52,982 48,522 3,867 52,389 Delaware ..................... 12,288 57 12,345 12,507 69 12,576 District of Columbia...... 7,004 3,406 10,410 6,867 3,048 9,915 Florida.......................... 41,190 14,069 55,259 41,325 15,995 57,320

428

Microsoft Word - table_23.doc  

Gasoline and Diesel Fuel Update (EIA)

4 4 Table 23. Average Price of Natural Gas Delivered to Consumers by State and Sector, 2005 (Dollars per Thousand Cubic Feet) Alabama ............................... 15.82 100.00 13.13 81.65 9.51 23.59 -- 9.67 Alaska................................... 5.73 100.00 4.93 51.19 2.59 68.65 -- 3.42 Arizona ................................. 13.54 100.00 9.85 93.29 8.53 43.63 7.91 8.24 Arkansas............................... 13.65 100.00 10.20 74.07 9.44 5.23 10.16 8.59 California .............................. 11.86 99.66 10.69 68.67 9.84 5.46 8.80 8.09 Colorado ............................... 10.29 99.99 9.39 95.15 8.68 0.59 8.17 7.41 Connecticut........................... 16.24 98.75 13.00 70.34 11.68 46.41 14.60 9.31 District of Columbia............... 16.87 79.76 13.17 100.00 --

429

Microsoft Word - table_02.doc  

Gasoline and Diesel Fuel Update (EIA)

Table 2. Natural gas production, transmission, and consumption, by state, 2011 (million cubic feet) Alabama 195,581 17,271 -53,277 480,317 0 7,282 0 598,068 Alaska 356,225 21,554 14,450 0 -16,398 0 0 332,723 Arizona 168 0 -17,607 348,820 -42,026 0 0 289,357 Arkansas 1,072,212 268 3,943 -791,878 0 212 0 283,797 California 250,177 12,095 72,353 1,954,947 -91,287 20,598 0 2,153,498 Colorado 1,637,576 90,801 -76,093 -1,005,837 0 3,128 4,268 465,985 Connecticut 0 0 1,253 228,585 0 129 0 229,710 Delaware 0 0 11,756 67,928 0 -31 0 79,716 District of Columbia 0 0 1,961 31,016 0 0 0 32,976 Florida 15,125 0 -5,102 1,208,317 0 0 0 1,218,340 Georgia 0 0 -10,315 459,390 75,641 2,542 701 522,874 Gulf of Mexico 1,812,328 0 -82 -1,711,029 0

430

Microsoft Word - table_26.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 26. Percent distribution of natural gas supply and disposition by state, 2011 Alabama 0.8 2.5 Alaska 1.5 1.4 Arizona < 1.2 Arkansas 4.7 1.2 California 1.0 8.8 Colorado 6.8 1.9 Connecticut -- 0.9 Delaware -- 0.3 District of Columbia -- 0.1 Florida 0.1 5.0 Georgia -- 2.1 Gulf of Mexico 7.9 0.4 Hawaii -- < Idaho -- 0.3 Illinois < 4.0 Indiana < 2.6 Iowa -- 1.3 Kansas 1.2 1.1 Kentucky 0.5 0.9 Louisiana 12.8 5.7 Maine -- 0.3 Maryland < 0.8 Massachusetts -- 1.8 Michigan 0.6 3.2 Minnesota -- 1.7 Mississippi 0.3 1.8 Missouri -- 1.1 Montana 0.3 0.3 Nebraska < 0.7 Nevada < 1.0 New Hampshire -- 0.3 New Jersey -- 2.7 New Mexico 5.0 1.0 New York 0.1

431

Microsoft Word - table_20.doc  

Gasoline and Diesel Fuel Update (EIA)

8 8 Table 20. Number of natural gas residential consumers by type of service and state, 2011-2012 Alabama R 772,892 0 R 772,892 767,412 0 767,412 Alaska 121,736 0 121,736 122,983 0 122,983 Arizona 1,146,280 6 1,146,286 1,157,682 6 1,157,688 Arkansas 551,795 0 551,795 549,959 0 549,959 California R 10,545,585 R 79,605 10,625,190 10,547,706 134,210 10,681,916 Colorado 1,645,711 5 1,645,716 1,659,803 5 1,659,808 Connecticut 494,065 905 494,970 503,241 897 504,138 Delaware 152,005 0 152,005 153,307 0 153,307 District of Columbia 130,888 14,636 145,524 129,674 16,264 145,938 Florida 664,564 R 14,635 R 679,199 672,160 14,861 687,021 Georgia 321,515 1,418,491 1,740,006 319,179 1,420,364 1,739,543 Hawaii 25,305 0 25,305

432

FY 2010 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2010 Congressional Budget Page 1 of 3 (Dollars In Thousands) 2:08:56PM Department Of Energy 5/4/2009 Page Number FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request Laboratory Table 1 1 $1,200

433

FY 2009 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2009 Congressional Budget 1/30/2008 Department Of Energy (Dollars In Thousands) 9:01:45AM Page 1 of 2 FY 2007 Appropriation FY 2008 Appropriation FY 2009 Request State Table 1 1 $27,588

434

FY 2005 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Management, Budget Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Preliminary Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 State Tables State Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number

435

FY 2010 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary May 2009 Office of Chief Financial Officer FY 2010 Congressional Budget Request State Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper State Index Page Number FY 2010 Congressional Budget 5/4/2009 Department Of Energy (Dollars In Thousands) 2:13:22PM Page 1 of 2 FY 2008 Appropriation FY 2009 Appropriation FY 2010 Request State Table 1 1 $46,946 $48,781 $38,844 Alabama 2 $6,569

436

Supplement Tables - Supplemental Data  

Gasoline and Diesel Fuel Update (EIA)

Annual Energy Outlook 1999 Annual Energy Outlook 1999 bullet1.gif (843 bytes) Assumptions to the AEO99 bullet1.gif (843 bytes) NEMS Conference bullet1.gif (843 bytes) Contacts bullet1.gif (843 bytes) To Forecasting Home Page bullet1.gif (843 bytes) EIA Homepage supplemental.gif (7420 bytes) (Errata as of 9/13/99) The AEO Supplementary tables were generated for the reference case of the Annual Energy Outlook 1999 (AEO99) using the National Energy Modeling System, a computer-based model which produces annual projections of energy markets for 1997 to 2020. Most of the tables were not published in the AEO99, but contain regional and other more detailed projections underlying the AEO99 projections. The files containing these tables are in spreadsheet format. A total of ninety-five tables are presented.

437

FY 2006 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 State Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2006 Congressional Budget 1/27/2005 Department Of Energy (Dollars In Thousands) 3:32:58PM Page 1 of 2 FY 2004 Comp/Approp FY 2005 Comp/Approp FY 2006 Request State Table

438

table E1  

U.S. Energy Information Administration (EIA)

AC Argentina AR Aruba AA Bahamas, The BF Barbados BB Belize BH Bolivia BL ... Table E.1 World Primary Energy Consumption (Btu), 1980-2006 (Quadrillion (10 15 ) Btu) Page

439

Table - Energy Information Administration  

U.S. Energy Information Administration (EIA)

September 2013 U.S. Energy Information 9/27/2013 9:52:45 AM Administration | Natural Gas Monthly 9 Created on: Table 4. U.S. natural gas imports ...

440

FY 2008 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Table State Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer State Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. State Index Page Number FY 2008 Congressional Budget 2/1/2007 Department Of Energy (Dollars In Thousands) 6:53:08AM Page 1 of 2 FY 2006 Appropriation FY 2007 Request FY 2008 Request State Table 1 1 $28,332 $30,341

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

1997 Consumption and Expenditures Tables - U.S. Energy ...  

U.S. Energy Information Administration (EIA)

heating or cooling degree-days are a measure of how cold or how hot a location is over ... To obtain the RSE percentage for any table cell, multiply ...

442

CBECS Buildings Characteristics --Revised Tables  

U.S. Energy Information Administration (EIA) Indexed Site

Buildings Use Tables Buildings Use Tables (24 pages, 129 kb) CONTENTS PAGES Table 12. Employment Size Category, Number of Buildings, 1995 Table 13. Employment Size Category, Floorspace, 1995 Table 14. Weekly Operating Hours, Number of Buildings, 1995 Table 15. Weekly Operating Hours, Floorspace, 1995 Table 16. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Number of Buildings, 1995 Table 17. Occupancy of Nongovernment-Owned and Government-Owned Buildings, Floorspace, 1995 These data are from the 1995 Commercial Buildings Energy Consumption Survey (CBECS), a national probability sample survey of commercial buildings sponsored by the Energy Information Administration, that provides information on the use of energy in commercial buildings in the

443

1997 Consumption and Expenditures Tables  

U.S. Energy Information Administration (EIA)

5HVLGHQWLDO (QHUJ\\ &RQVXPSWLRQ 6XUYH\\V 1997 Consumption and Expenditures Tables Appliances Consumption Tables (17 pages, 60 kb) Contents Pages CE5-1c.

444

Nebraska Public Power District - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Nebraska Public Power District - Commercial Energy Efficiency Nebraska Public Power District - Commercial Energy Efficiency Rebate Programs Nebraska Public Power District - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Maximum Rebate Incentives exceeding $5000 require pre-approval Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Lighting: $0.75 - $60 per fixture, depending on type and wattage Custom Lighting: $0.07 per kWh saved Air Conditioners: Varies, see program brochure Air Source Heat Pump: up to $300; or $25 x (EER - 10.1) x tons Water Source Heat Pump: $25 x (EER - 10.5) x tons

445

b33.pdf  

Annual Energy Outlook 2012 (EIA)

Characteristics Tables 104 Heat Pumps Furnaces Individual Space Heaters District Heat Boilers Packaged Heating Units Other Table B33. Heating Equipment, Floorspace, 1999 Total...

446

TABLE14.CHP:Corel VENTURA  

Annual Energy Outlook 2012 (EIA)

4. Production of Crude Oil by PAD District and State, January 1998 PAD District and State Total Daily Average (Thousand Barrels) PAD District I ......

447

District of Columbia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

United States » District of Columbia United States » District of Columbia District of Columbia October 16, 2013 Pacific Power - FinAnswer Express Pacific Power's FinAnswer Express Program includes incentives and technical assistance for lighting, HVAC and other equipment upgrades that increase energy efficiency and exceed code requirements in commercial and industrial facilities. Both retrofits of existing equipment and new construction projects are eligible for incentives. For retrofits, the utility may need to verify existing equipment. Prescriptive rebates and custom incentives calculated from energy savings are available. October 16, 2013 Pacific Power - Energy FinAnswer Pacific Power's Energy FinAnswer program provides cash incentives to help its commercial and industrial customers improve their heating, cooling,

448

Definition: District chilled water | Open Energy Information  

Open Energy Info (EERE)

chilled water chilled water Jump to: navigation, search Dictionary.png District chilled water Water chilled outside of a building in a central plant and piped into the building as an energy source for cooling. Chilled water may be purchased from a utility or provided by a central physical plant in a separate building that is part of the same multibuilding facility (e.g. a hospital complex or university).[1][2] View on Wikipedia Wikipedia Definition Related Terms District heat References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=D ↑ http://buildingsdatabook.eren.doe.gov/Glossary.aspx#Tech Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:District_chilled_water&oldid=423381"

449

Table 6.8 Natural Gas Prices by Sector, 1967-2011 (Dollars per ...  

U.S. Energy Information Administration (EIA)

1 Commercial sector, including commercial combined-heat-and-power (CHP) and commercial electricity-only plants. 7 The percentage of the sector's consumption in Table ...

450

Table 8.6c Estimated Consumption of Combustible Fuels for Useful ...  

U.S. Energy Information Administration (EIA)

Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and ...

451

Table 2.1c Commercial Sector Energy Consumption Estimates, 1949 ...  

U.S. Energy Information Administration (EIA)

1 See "Primary Energy Consumption" in Glossary. 9 Wind electricity net generation (converted to Btu using the fossil-fuels heat ratesee Table A6).

452

Table 8.6a Estimated Consumption of Combustible Fuels for ...  

U.S. Energy Information Administration (EIA)

Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 ...

453

Table 2.1f Electric Power Sector Energy Consumption, 1949-2011 ...  

U.S. Energy Information Administration (EIA)

1 See "Primary Energy Consumption" in Glossary. 9 Wind electricity net generation (converted to Btu using the fossil-fuels heat ratesee Table A6).

454

The Honolulu Engineer District Introduction  

E-Print Network (OSTI)

with jurisdiction over the Honolulu, Far East, and Okinawa districts.' Several histories of the engineer wartime

US Army Corps of Engineers

455

ELECTRICAL DISTRICT No.  

NLE Websites -- All DOE Office Websites (Extended Search)

ELECTRICAL ELECTRICAL DISTRICT No. 4 PINAL COUNTY POST OFFICE BOX 605- ELOY, ARIZONA 85131 Telephone: (520) 468-7338 BOARD OF DIRECTORS: DISTRICT MANAGER: MARK HAMILTON, CHAIRMAN RON McEACHERN CHARLES BUSH ThOMAS W. SCM JAMES F. SHEDD WILLIAM WARREN VIA ELECTRONIC MAIL TO: DSWFPP~2wapa.gov July 19, 2010 Mr. Darrick Moe Desert Southwest Regional Manager Western Area Power Authority P.O. Box 6457 Phoenix, AZ 85005-6457 Re: SPPR Proposed ED5 to Palo Verde Transmission Project Electrical District Number Four of Pinal County ("ED4") and Electrical District Number Five of Pinal County ("ED5") are members of the Southwest Public Power Resource ("SPPR") Group and support the ED5 to Palo Verde Project Statement of Interest ("SOT") submitted by the SPPR Group. ED4 is also a participant in the Southeast Valley C'SEV") Project and has offered to

456

Drainage Districts (Montana)  

Energy.gov (U.S. Department of Energy (DOE))

A Drainage District may be created by petition of landowners who desire to construct one or more drains, ditches, levees, waste ditches, or other works across the lands of others or to straighten,...

457

DISTRICT TECHNOLOGY PLAN  

E-Print Network (OSTI)

If you dont know where you are going, you will probably end up somewhere else. Lawrence J. Peter Ypsilanti School District established its school improvement process with the

Contact Person; Bob Wilkinson

2006-01-01T23:59:59.000Z

458

Heat Pump Markets UK in Europe  

E-Print Network (OSTI)

,000 units Total: 200,000 units 48% 19% 26% 0% 7% boilers heat pumps solar thermal micro chp & FC district% boilers heat pumps solar thermals micro chp & FC district heating 2010 2020Sales to new build 15% 51% 18 to Renewables Boiler non- con. Boilers con. Boiler Boiler + ST ST Boiler condensing Boiler non-condensing Boiler

Oak Ridge National Laboratory

459

2001 Housing Characteristics Detailed Tables  

U.S. Energy Information Administration (EIA)

2001 Residential Energy Consumption Survey-Housing Characteristics, 2001 Detailed Tables, Energy Information Administration

460

The Forest Preserve District  

NLE Websites -- All DOE Office Websites (Extended Search)

Forest Preserve District Forest Preserve District Nature Bulletin No. 109 March 29, 1947 Forest Preserve District of Cook County William N. Erickson, President Roberts Mann, Supt. of Conservation THE FOREST PRESERVE DISTRICT Forest Preserve Districts, in Illinois, are separate municipal bodies governed by a Board of Forest Preserve Commissioners consisting of the elected county commissioners, as in Cook County, or by a committee of the county board of supervisors, as in 7 other counties. The legislative act which provided for such a district, if authorized by referendum vote of the people, became a law on July 1, 1914. Under that act, the commissioners are empowered to levy taxes, issue bonds, and to acquire lands containing forests "for the purpose of protecting and preserving the flora, fauna and scenic beauties.... and to restore, restock, protect and preserve the natural forests and said lands with their flora and fauna, as nearly as may be in their natural state and condition for the purpose of the education, pleasure and recreation of the public". A limit of 35,000 acres was set; later increased to 39,000.

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

FY 2006 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary Department of Energy FY 2006 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2005 Laboratory Tables Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2006 Congressional Budget Page 1 of 3 (Dollars In Thousands) 3:43:16PM Department Of Energy 1/27/2005 Page Number FY 2004 Comp/Approp FY 2005 Comp/Approp

462

Fy 2009 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Preliminary February 2008 Office of Chief Financial Officer Department of Energy FY 2009 Congressional Budget Request Laboratory Tables Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Printed with soy ink on recycled paper Laboratory / Facility Index FY 2009 Congressional Budget Page 1 of 3 (Dollars In Thousands) 8:59:25AM Department Of Energy 1/30/2008 Page Number FY 2007 Appropriation FY 2008 Appropriation FY 2009

463

FY 2011 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

State Tables State Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 March 2010 Office of Chief Financial Officer State Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0054 State Index Page Number FY 2011 Congressional Budget 1/29/2010 Department Of Energy (Dollars In Thousands) 6:34:40AM Page 1 of 2 FY 2009 Appropriation

464

FY 2007 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory tables Laboratory tables preliminary Department of Energy FY 2007 Congressional Budget Request February 2006 Printed with soy ink on recycled paper Office of Chief Financial Officer Laboratory tables preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2007 Congressional Budget Page 1 of 3 (Dollars In Thousands) 12:10:40PM Department Of Energy 1/31/2006 Page Number FY 2005 Appropriation FY 2006 Appropriation FY 2007

465

FY 2011 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Tables Laboratory Tables Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 March 2010 Office of Chief Financial Officer Laboratory Tables Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Department of Energy FY 2011 Congressional Budget Request DOE/CF-0055 Laboratory / Facility Index FY 2011 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:24:57AM Department Of Energy 1/29/2010 Page

466

FY 2008 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Laboratory Table Laboratory Table Preliminary Department of Energy FY 2008 Congressional Budget Request February 2007 Office of Chief Financial Officer Laboratory Table Preliminary Printed with soy ink on recycled paper The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, uses of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. Laboratory / Facility Index FY 2008 Congressional Budget Page 1 of 3 (Dollars In Thousands) 6:51:02AM Department Of Energy 2/1/2007 Page Number FY 2006 Appropriation FY 2007 Request FY 2008 Request

467

FY 2013 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2011 FY 2012 FY 2013 Current Enacted Congressional Approp. Approp. * Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy........................................ 1,771,721 1,809,638 2,337,000 +527,362 +29.1% Electricity delivery and energy reliability......................................... 138,170 139,103 143,015 +3,912 +2.8% Nuclear energy................................................................................ 717,817 765,391 770,445 +5,054 +0.7% Fossil energy programs Clean coal technology.................................................................. -16,500 -- --

468

FY 2009 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2007 FY 2008 FY 2009 Current Current Congressional Op. Plan Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy.......................... -- 1,722,407 1,255,393 -467,014 -27.1% Electricity delivery and energy reliability........................... -- 138,556 134,000 -4,556 -3.3% Nuclear energy................................................................. -- 961,665 853,644 -108,021 -11.2% Legacy management........................................................ -- 33,872 -- -33,872 -100.0% Energy supply and conservation Operation and maintenance..........................................

469

Ohio's 13th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

3th congressional district: Energy Resources 3th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Ohio. US Recovery Act Smart Grid Projects in Ohio's 13th congressional district FirstEnergy Service Company Smart Grid Project Registered Energy Companies in Ohio's 13th congressional district A.J. Rose Manufacturing Company Advanced Hydro Solutions Akrong Machine Services Castle Energy Services Echogen Power Systems, Inc. FirstEnergy Free Energy Alliance Green Energy Technologies Green Energy Technologies LLC GreenField Solar Corp. Jennings The Energy Factory Pier Associates, Inc. Randa Energy Solutions LLC R A Energy Solutions Raymond Plumbing & Heating

470

Local Option - Special Improvement Districts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Special Improvement Districts Special Improvement Districts Local Option - Special Improvement Districts < Back Eligibility Commercial Industrial Multi-Family Residential Residential Savings Category Bioenergy Buying & Making Electricity Water Solar Home Weatherization Heating & Cooling Swimming Pool Heaters Water Heating Commercial Heating & Cooling Heating Wind Program Info Start Date 5/28/2009 State Nevada Program Type PACE Financing '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been suspended until further clarification is provided. ''''' Property-Assessed Clean Energy (PACE) financing effectively allows property

471

Local Option - Renewable Energy Financing District/Solar Energy Improvement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Local Option - Renewable Energy Financing District/Solar Energy Local Option - Renewable Energy Financing District/Solar Energy Improvement Special Assessments Local Option - Renewable Energy Financing District/Solar Energy Improvement Special Assessments < Back Eligibility Commercial Residential Savings Category Buying & Making Electricity Solar Heating & Cooling Commercial Heating & Cooling Heating Water Heating Wind Program Info Start Date 07/01/2009 State New Mexico Program Type PACE Financing Provider New Mexico Energy, Minerals and Natural Resources Department '''''Note: The Federal Housing Financing Agency (FHFA) issued a [http://www.fhfa.gov/webfiles/15884/PACESTMT7610.pdf statement] in July 2010 concerning the senior lien status associated with most PACE programs. In response to the FHFA statement, most local PACE programs have been

472

Omaha Public Power District - Commercial Energy Efficiency Rebate Programs  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Omaha Public Power District - Commercial Energy Efficiency Rebate Omaha Public Power District - Commercial Energy Efficiency Rebate Programs Omaha Public Power District - Commercial Energy Efficiency Rebate Programs < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Lighting: $20,000 or up to 20% of cost Program Info State Nebraska Program Type Utility Rebate Program Rebate Amount Fluorescent Lighting: $5 - $32/fixture High Intensity Discharge Lighting: $5 - $75/unit Exit Sign: $5/unit LED Lighting: $6 - $55/unit Incandescent: $4 - $8 Lamp Upgrade: $1 - $1.50/unit Custom Lighting Measures: Contact Utility Heat Pump: $50/nominal ton Innovative Energy Efficiency Project: 50% of study cost and $400/kW of peak

473

Demand side management in district heating systems  

Science Conference Proceedings (OSTI)

This paper describes a multiagent system that has made the voyage from research project to commercialised product. The purpose for the multiagent system is to dynamically control a system so that the load of the system is below certain threshold values ... Keywords: agent-based deployed applications

Fredrik Wernstedt; Paul Davidsson; Christian Johansson

2007-05-01T23:59:59.000Z

474

Modesto Irrigation District - New Home Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Modesto Irrigation District - New Home Energy Efficiency Rebate Modesto Irrigation District - New Home Energy Efficiency Rebate Program Modesto Irrigation District - New Home Energy Efficiency Rebate Program < Back Eligibility Construction Multi-Family Residential Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State California Program Type Utility Rebate Program Rebate Amount Single-Family Dwelling: $500 Multi-Family Dwelling: $250 Provider Energy Management Department Modesto Irrigation District's MPower New Home Program provides incentives to builders and homeowners for designing and building energy-efficient homes. Eligible homes must meet the guidelines for California Energy Star Qualified New Homes, listed on the program application. Each qualified new

475

b18.pdf  

Gasoline and Diesel Fuel Update (EIA)

Tables 64 Electricity Natural Gas Fuel Oil District Heat District Chilled Water Propane Other a Table B18. Energy Sources, Floorspace, 1999 Total Floorspace (million...

476

TABLE OF CONTENTS  

NLE Websites -- All DOE Office Websites (Extended Search)

/2011 /2011 Decades of Discovery Decades of Discovery Page 2 6/1/2011 TABLE OF CONTENTS 1 INTRODUCTION ...................................................................................................................... 6 2 BASIC ENERGY SCIENCES .................................................................................................. 7 2.1 Adenosine Triphosphate: The Energy Currency of Life .............................................. 7 2.2 Making Better Catalysts .............................................................................................. 8 2.3 Understanding Chemical Reactions............................................................................ 9 2.4 New Types of Superconductors ................................................................................ 10

477

PAD District / Refinery Location Total Atmospheric Distillation  

U.S. Energy Information Administration (EIA) Indexed Site

of Last of Last Operation Date Shutdown Table 13. Refineries Permanently Shutdown By PAD District Between January 1, 1990 and January 1, 2013 PAD District I 542,450 GNC Energy Corp Greensboro, NC 3,000 0 a Primary Energy Corp Richmond, VA 6,100 0 a Saint Mary's Refining Co Saint Mary's, WV 4,000 4,480 02/93 03/93 Cibro Refining Albany, NY 41,850 27,000 07/93 09/93 Calumet Lubricants Co LP Rouseville, PA 12,800 26,820 03/00 06/00 Young Refining Corp. Douglasville, GA 5,400 0 07/04 07/04 Sunoco Inc Westville, NJ 145,000 263,000 11/09 02/10 Western Refining Yorktown Inc Yorktown, VA 66,300 182,600 09/10 12/11 Sunoco Inc Marcus Hook, PA 178,000 278,000 12/11 12/11 ChevronUSA Inc Perth Amboy, NJ 80,000 47,000 03/08 07/12 PAD District II 460,315 Coastal Refining & Mktg El Dorado, KS 0 20,000 b Intercoastal Energy Svcs

478

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2007-2011 (volumes in million cubic feet) Alabama 4,722 20.2 4,999 19.8 5,160 21.2 5,494 R 20.3 5,313 21.1 Alaska 4,499 24.0 4,274 25.1 2,448 14.7 1,951 12.3 2,208 13.3 Arizona 2,172 6.6 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 Arkansas 9,534 29.6 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 California 98,776 39.3 108,738 43.3 111,702 45.1 113,903 45.9 112,561 45.7 Colorado 2,721 4.3 3,132 4.8 3,240 5.2 R 3,118 5.4 3,457 6.2 Connecticut 10,252 28.5 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 Delaware 2,178 25.2 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 District of Columbia 15,703 81.4 15,110 82.1 15,550 83.1 15,507 83.6 14,029

479

Microsoft Word - table_24.doc  

Gasoline and Diesel Fuel Update (EIA)

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2011 (dollars per thousand cubic feet) Alabama 15.09 100.0 12.37 78.9 5.56 23.4 11.45 4.36 Alaska 8.77 100.0 8.77 86.7 3.84 60.8 -- 5.04 Arizona 15.04 100.0 9.99 87.8 6.86 24.2 7.73 5.02 Arkansas 11.46 100.0 8.90 51.5 7.44 2.1 -- 4.73 California 9.93 98.3 8.28 54.3 7.04 4.5 7.32 4.71 Colorado 8.25 100.0 7.84 93.8 6.42 7.6 9.56 4.97 Connecticut 13.83 96.8 8.48 65.4 9.16 31.4 18.59 5.09 Delaware 15.38 100.0 13.58 53.4 11.69 1.6 28.76 W District of Columbia 13.06 75.0 12.24 16.9 -- -- 4.17 -- Florida 18.16 98.1 11.11 39.8 8.07 3.0 4.93 5.86 Georgia 15.72 100.0 10.51 100.0 5.90 18.2 5.57 4.72 Hawaii 55.28 100.0 45.58

480

Microsoft Word - table_18.doc  

Gasoline and Diesel Fuel Update (EIA)

5 5 Table 18. Natural gas delivered to commercial consumers for the account of others by state, 2008-2012 (volumes in million cubic feet) Alabama 4,999 19.8 5,160 21.2 5,494 20.3 5,313 21.1 5,126 23.8 Alaska 4,274 25.1 2,448 14.7 1,951 12.3 2,208 R 11.4 1,005 5.1 Arizona 2,258 6.9 3,866 12.0 3,605 11.3 3,988 12.2 4,213 13.4 Arkansas 13,112 35.5 14,776 40.6 17,862 44.4 19,402 48.5 24,772 59.8 California 108,738 43.3 111,702 45.1 113,903 45.9 R 112,448 45.7 126,571 50.0 Colorado 3,132 4.8 3,240 5.2 3,118 5.4 3,457 6.2 4,061 7.8 Connecticut 11,032 29.3 12,324 31.0 14,068 34.6 15,519 34.6 14,774 34.9 Delaware 2,611 29.4 5,438 46.5 6,117 50.2 4,879 46.6 5,647 56.3 District of Columbia 15,110 82.1 15,550 83.1 15,507 83.6 14,029

Note: This page contains sample records for the topic "district heat table" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Microsoft Word - table_24.doc  

U.S. Energy Information Administration (EIA) Indexed Site

7 7 Table 24. Average price of natural gas delivered to consumers by state and sector, 2012 (dollars per thousand cubic feet) Alabama 16.20 100.0 12.55 76.2 4.35 22.1 17.99 3.09 Alaska 8.47 100.0 8.09 94.9 5.11 100.0 -- 4.32 Arizona 15.75 100.0 9.35 86.6 5.78 21.4 13.19 3.51 Arkansas 11.82 100.0 7.99 40.2 6.38 1.9 9.04 3.19 California 9.14 97.5 7.05 50.0 5.77 4.2 7.01 3.68 Colorado 8.31 100.0 7.58 92.2 5.79 6.8 11.65 W Connecticut 14.17 96.7 8.40 65.1 8.83 32.3 13.70 3.99 Delaware 15.24 100.0 13.31 43.7 11.61 0.3 30.97 -- District of Columbia 12.10 73.9 11.19 17.9 -- -- 9.38 -- Florida 18.31 97.7 10.41 37.0 6.96 2.7 9.83 4.80 Georgia 16.23 100.0 9.74 100.0 4.60 20.0 14.51 3.40 Hawaii 52.86 100.0 47.03

482

1997 Housing Characteristics Tables Housing Unit Tables  

U.S. Energy Information Administration (EIA) Indexed Site

1.4 23.3 Kerosene ... 3.5 0.4 0.8 0.9 0.9 0.4 19.1 Solar ... 0.7 Q Q Q Q 0.4 51.1 Main Heating Fuel...

483

BLM Vale District Office | Open Energy Information  

Open Energy Info (EERE)

Vale District Office Jump to: navigation, search Name BLM Vale District Office Parent Organization BLM Place Vale, Oregon References BLM Vale District Office Directory1 This...

484

BLM Prineville District Office | Open Energy Information  

Open Energy Info (EERE)

Prineville District Office Jump to: navigation, search Name BLM Prineville District Office Place Prineville, Oregon References BLM Prineville District Office Directory1 This...

485

Westlands Water District | Open Energy Information  

Open Energy Info (EERE)

Westlands Water District Jump to: navigation, search Name Westlands Water District Place California Sector Solar Product Water district in central California which administers a...

486

Inland Navigation Districts and Florida Inland Navigation District Law  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Inland Navigation Districts and Florida Inland Navigation District Inland Navigation Districts and Florida Inland Navigation District Law (Florida) Inland Navigation Districts and Florida Inland Navigation District Law (Florida) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Florida Program Type Siting and Permitting Provider Florida Inland Navigation District (FIND) The first part of this legislation establishes Inland Navigation Districts,

487

Microsoft Word - table_A1.doc  

Gasoline and Diesel Fuel Update (EIA)

78 78 Table A1. Natural Gas Losses and Unaccounted for by State, 2010 (Volumes in Million Cubic Feet) Alabama .................................. 946 914 531,243 0.4 Alaska...................................... 534 5,228 333,316 1.7 Arizona .................................... 787 -124 331,257 0.2 Arkansas.................................. 666 4,170 271,512 1.8 California ................................. 4,217 31,286 2,273,958 1.6 Colorado .................................. 831 1,599 501,438 0.5 Connecticut.............................. 1,595 -1,192 199,440 0.2 Delaware ................................. 113 887 54,825 1.8 District of Columbia.................. 67 1,329 33,302 4.2 Florida...................................... 11,007 2,365 1,158,522 1.2 Georgia....................................

488

NEBRASKA PUBLIC POWER DISTRICT: CUSTOMER MEETING ON ENERGY ALTERNATIVES - SUMMARY OF RESULTS  

NLE Websites -- All DOE Office Websites (Extended Search)

NEBRASKA PUBLIC POWER DISTRICT NEBRASKA PUBLIC POWER DISTRICT CUSTOMER MEETING ON ENERGY ALTERNATIVES SUMMARY OF RESULTS August 19, 2003 Prepared by: The Public Decision Partnership: Will Guild, Ph.D. Ron Lehr Dennis Thomas, Ph.D. i Table of Contents Executive Summary ...........................................................................................................1 Summary of the Process....................................................................................................5 Contact persons ..................................................................................................................8 Response to Proposed Projects .........................................................................................9 Do you think NPPD should go forward with a 200 megawatt wind farm?

489

EJ and EK Pay Table  

Energy.gov (U.S. Department of Energy (DOE))

The EJ and EK pay table excludes locality pay. Refer to the General Schedule Complete Set of Locality Pay Tables to determine the locality pay for your applicable geographic area.

490

February 2013 Table of Contents  

Science Conference Proceedings (OSTI)

Inform February 2013 table of contents. February 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine me

491

Visualization of truth tables - CECM  

E-Print Network (OSTI)

Nov 19, 1997 ... Visualization of truth tables. The Figures are computer-generated tables that show the value 1 as being represented by a black pixel and 0 by a...

492

January 2013 Table of Contents  

Science Conference Proceedings (OSTI)

inform January 2013 table of contents. January 2013 Table of Contents inform Magazine algae algal AOCS biomass business chemistry cottonseed date detergents fats filing first history inform inform Magazine international inventor law magazine membe

493

FY 2012 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5 5 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0065 Department of Energy FY 2012 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2012 Congressional Budget

494

FY 2008 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2006 FY 2007 FY 2008 Current Congressional Congressional Approp. Request Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance........................................... 1,781,242 1,917,331 2,187,943 +270,612 +14.1% Construction.................................................................... 31,155 6,030 -- -6,030 -100.0% Total, Energy supply and conservation............................. 1,812,397 1,923,361 2,187,943 +264,582 +13.8% Fossil energy programs Clean coal technology.................................................... -20,000 -- -58,000 -58,000 N/A Fossil energy research and development......................

495

FY 2006 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2004 FY 2005 FY 2006 Comparable Comparable Request to FY 2006 vs. FY 2005 Approp Approp Congress Discretionary Summary By Appropriation Energy And Water Development Appropriation Summary: Energy Programs Energy supply Operation and maintenance................................................. 787,941 909,903 862,499 -47,404 -5.2% Construction......................................................................... 6,956 22,416 40,175 17,759 +79.2% Total, Energy supply................................................................ 794,897 932,319 902,674 -29,645 -3.2% Non-Defense site acceleration completion............................. 167,272 157,316 172,400 15,084 +9.6%

496

FY 2013 Laboratory Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 8 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables y Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0078 Department of Energy FY 2013 Congressional Budget Request Laboratory Tables P li i Preliminary h b d i d i hi d h l l f b d h i f h The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled paper Laboratory / Facility Index FY 2013 Congressional Budget

497

FY 2010 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2008 FY 2009 FY 2009 FY 2010 Current Current Current Congressional Approp. Approp. Recovery Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 1,704,112 2,178,540 16,800,000 2,318,602 +140,062 +6.4% Electricity delivery and energy reliability........................................ 136,170 137,000 4,500,000 208,008 +71,008 +51.8% Nuclear energy.............................................................................. 960,903 792,000 -- 761,274 -30,726 -3.9% Legacy management..................................................................... 33,872 -- -- --

498

FY 2012 State Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6 6 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary February 2012 Office of Chief Financial Officer DOE/CF-0066 Department of Energy FY 2012 Congressional Budget Request State Tables P li i Preliminary The numbers depicted in this document represent the gross level of DOE budget authority for the years displayed. The figures include both the discretionary and mandatory funding in the budget. They displayed. The figures include both the discretionary and mandatory funding in the budget. They do not consider revenues/receipts, use of prior year balances, deferrals, rescissions, or other adjustments appropriated as offsets to the DOE appropriations by the Congress. February 2012 Office of Chief Financial Officer Printed with soy ink on recycled

499

FY 2012 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2Statistical Table by Appropriation 2Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2010 FY 2011 FY 2011 FY 2012 Current Congressional Annualized Congressional Approp. Request CR Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy efficiency and renewable energy....................................... 2,216,392 2,355,473 2,242,500 3,200,053 +983,661 +44.4% Electricity delivery and energy reliability........................................ 168,484 185,930 171,982 237,717 +69,233 +41.1% Nuclear energy............................................................................. 774,578 824,052 786,637 754,028 -20,550 -2.7% Fossil energy programs Fossil energy research and development................................... 659,770 586,583 672,383 452,975

500

FY 2007 Statistical Table  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Statistical Table by Appropriation Statistical Table by Appropriation (dollars in thousands - OMB Scoring) FY 2005 FY 2006 FY 2007 Current Current Congressional Approp. Approp. Request $ % Discretionary Summary By Appropriation Energy And Water Development, And Related Agencies Appropriation Summary: Energy Programs Energy supply and conservation Operation and maintenance............................................ 1,779,399 1,791,372 1,917,331 +125,959 +7.0% Construction................................................................... 22,416 21,255 6,030 -15,225 -71.6% Total, Energy supply and conservation.............................. 1,801,815 1,812,627 1,923,361 +110,734 +6.1% Fossil energy programs Clean coal technology..................................................... -160,000 -20,000 -- +20,000 +100.0% Fossil energy research and development.......................