National Library of Energy BETA

Sample records for district heat propane

  1. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  2. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  3. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    City of Klamath Falls District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name City of Klamath Falls District Heating District Heating...

  4. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    San Bernardino District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name San Bernardino District Heating District Heating Low...

  5. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  6. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  7. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Boise City Geothermal District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Boise City Geothermal District Heating District Heating...

  8. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  9. No. 2 heating oil/propane program

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy's (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  10. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Warm Springs Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature...

  11. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  12. Propane - A Mid-Heating Season Assessment

    Reports and Publications (EIA)

    2001-01-01

    This report will analyze some of the factors leading up to the rapid increase in propane demand and subsequent deterioration in supply that propelled propane prices to record high levels during December and early January.

  13. ABSORPTION HEAT PUMP IN THE DISTRICT HEATING

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    #12;ABSORPTION HEAT PUMP IN THE DISTRICT HEATING PLANT Dr.sc.ing. Agnese Lickrastina M.Sc. Normunds European Heat Pump Summit 2013, Nuremberg, 15-16.10.2013 · Riga District Heating company · Operation of the DH plant Imanta · Selection of the heat pump/chiller · Operation of the heat pump/chiller · Summary

  14. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  15. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  16. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  17. State Heating Oil & Propane Program. Final report 1997/98 heating season

    SciTech Connect (OSTI)

    Hunton, G.

    1998-06-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1997/98 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program is funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used for water heating and cooking in areas of the state where natural gas is not available. Lower installation cost, convenience, lower operating costs compared to electricity, and its perception as a clean heating fuel have all worked to increase the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  18. First university owned district heating system using biomass heat

    E-Print Network [OSTI]

    Northern British Columbia, University of

    Highlights · First university owned district heating system using biomass heat · Capacity: 15 MMBtu Main Campus District Heating Performance · Avoided: 3500 tonnes of CO2 · Particulate: less than 10 mg District Heating Goals To displace 85% of natural gas used for core campus heating. Fuel Bunker Sawmill

  19. Final report of the Rhode Island State Energy Office on residential no. 2 heating oil and propane prices [SHOPP

    SciTech Connect (OSTI)

    McClanahan, Janice

    2001-04-01

    Summary report on residential No.2 heating oil and propane prepared under grant. Summarizes the monitoring and analysis of heating oil and propane prices from October 2000 through March 2001.

  20. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  1. Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane (R290)

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Optimized design of a heat exchanger for an air-to-water reversible heat pump working with propane-to-water reversible heat pump unit was carried out using two different fin-and-tube heat exchanger ``coil'' designs concepts. The performance of the heat pump was evaluated for each coil design at different superheat

  2. State heating oil and propane program. Final report, 1996--1997

    SciTech Connect (OSTI)

    Hunton, G.

    1997-08-01

    The following is a summary report of the New Hampshire Governor`s Office of Energy and Community Services (ECS) participation in the State Heating Oil and Propane Program (SHOPP) for the 1996-97 heating season. SHOPP is a cooperative effort, linking energy offices in East Coast and Midwest states, with the Department of Energy (DOE), Energy Information Administration (EIA) for the purpose of collecting retail price data for heating oil and propane. The program funded by the participating state with a matching grant from DOE. SHOPP was initiated in response to congressional inquires into supply difficulties and price spikes of heating oil and propane associated with the winter of 1989/90. This is important to New Hampshire because heating oil controls over 55% of the residential heating market statewide. Propane controls 10% of the heating market statewide and is widely used in rural areas where Natural GAs is not available. Lower installation cost, convenience, lower operating costs compared to electricity and its perception as a clean heating fuel has increased the popularity of propane in New Hampshire and should continue to do so in the future. Any disruption in supply of these heating fuels to New Hampshire could cause prices to skyrocket and leave many residents in the cold.

  3. Number 2 heating oil/propane program. Final report, 1991/92

    SciTech Connect (OSTI)

    McBrien, J.

    1992-06-01

    During the 1991--92 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1991 through March, 1992. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1991--1992 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data and responses to the events which unfolded during the 1991--1992 heating season.

  4. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    New Mexico State University District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature...

  5. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    Oregon Institute of Technology District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Oregon Institute of Technology District Heating Low Temperature...

  6. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  7. No. 2 heating oil/propane program. Final report, 1990/91

    SciTech Connect (OSTI)

    McBrien, J.

    1991-06-01

    During the 1990/91 heating season, the Massachusetts Division of Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October 1990 through March 1991. This final report begins with an overview of the unique events which had an impact on the reporting period. Next, the report summarizes the results from the residential heating oil and propane price surveys conducted by DOER over the 1990/91 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states.

  8. No. 2 heating oil/propane program. Final report, 1992/93

    SciTech Connect (OSTI)

    McBrien, J.

    1993-05-01

    During the 1992--93 heating season, the Massachusetts Division Energy Resources (DOER) participated in a joint data collection program between several state energy offices and the federal Department of Energy`s (DOE) Energy Information Administration (EIA). The purpose of the program was to collect and monitor retail and wholesale heating oil and propane prices and inventories from October, 1992 through March, 1993. This final report begins with an overview of the unique events which had an impact on the petroleum markets prior to and during the reporting period. Next, the report summarizes the results from residential heating oil and propane price surveys conducted by DOER over the 1992--93 heating season. The report also incorporates the wholesale heating oil and propane prices and inventories collected by the EIA and distributed to the states. Finally, the report outlines DOER`s use of the data.

  9. District heating strategy model: community manual

    SciTech Connect (OSTI)

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  10. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Heated Seat Cushions as a Substitute for Propane Patio Heaters for the

    E-Print Network [OSTI]

    into Heated Seat Cushions as a Substitute for Propane Patio Heaters for the Perch Restaurant Arman Abadi SUMMARY This report investigates alternatives to propane patio heaters to keep patrons warm with the goal certification for the building. A triple bottom line analysis was conducted on heated seat cushions, propane

  11. Predictive control of supply temperature in district heating systems

    E-Print Network [OSTI]

    Predictive control of supply temperature in district heating systems Torben Skov Nielsen Henrik This report considers a new concept for controlling the supply temperature in district heating systems using stochastic modelling, prediction and control. A district heating systems is a di#30;cult system to control

  12. CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS

    E-Print Network [OSTI]

    CONTROL OF SUPPLY TEMPERATURE IN DISTRICT HEATING SYSTEMS T.S. Nielsen, H. Madsen Informatics the supply temperature in district heating systems using stochastic modelling, prediction and control at Roskilde Varmeforsyning. The results obtained for the Roskilde district heating utility are evaluated

  13. Solar heat storages in district heating Klaus Ellehauge Thomas Engberg Pedersen

    E-Print Network [OSTI]

    July 2007 . #12;#12;Solar heat storages in district heating networks July 2007 Klaus Ellehauge 97 22 11 tep@cowi.dk www.cowi.com #12;#12;Solar heat storages in district heating networks 5 References 45 Appendix 1 Danish companies 48 #12;6/50 Solar heat storages in district heating networks

  14. New Whole-House Solutions Case Study: Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware

    SciTech Connect (OSTI)

    2014-01-01

    In this project involving two homes, the IBACOS team evaluated the performance of the two space conditioning systems and the modeled efficiency of the two tankless domestic hot water systems relative to actual occupant use. Each house was built by Insight Homes and is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler).

  15. Alternative institutional vehicles for geothermal district heating

    SciTech Connect (OSTI)

    Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

    1980-06-01

    The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

  16. March 1, 2013. Campus Wide District Heating & Cooling System

    E-Print Network [OSTI]

    ____________________________ March 1, 2013. Campus Wide District Heating & Cooling System. Today · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5 · Decentralisation of the heating plant · Introduction of an Energy Loop · Geothermal 4. Results 5. Tomorrow 6

  17. November 20, 2012 Webinar: District Heating with Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar was held November 20, 2012, and provided information on Indiana's Ball State University geothermal heat pump system, and a hot-water district heating system in St. Paul, Minnesota....

  18. U.S. geothermal district heating : barriers and enablers

    E-Print Network [OSTI]

    Thorsteinsson, Hildigunnur H

    2008-01-01

    Geothermal district heating experience in the U.S. is reviewed and evaluated to explore the potential impact of utilizing this frequently undervalued renewable energy resource for space and hot water heating. Although the ...

  19. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  20. Energy Accounting for District Heating and Cooling Plants 

    E-Print Network [OSTI]

    Barrett, J. A.

    1979-01-01

    FOR DISTRICT HEATING AND COOLING PLANTS John A. Barrett, P.E. Manager, Central Plant Utilities University of Houston Houston, Texas Introduction Energy accounting combines engineering science with the insights of cost accoupting theory. It requires...-25, 1979 The Science of Plant Utilities Control While the Weiss papers are not as specific to district heating and cooling plants as the preceding papers, they do treat other problem areas of interest. Undoubtedly the northeastern United States, which...

  1. Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable is the use of the LHV? What is the dewpoint of the reaction products?

    E-Print Network [OSTI]

    Combustion: What is the Lower Heating Value (LHV) of Propane? Before we start: how reasonable temperature we can achieve with a propane-and-air blowtorch? We repeat this calculation for several different

  2. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season. Final report

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  3. Michigan residential No. 2 fuel oil and propane price survey for the 1990/91 heating season

    SciTech Connect (OSTI)

    Not Available

    1991-10-01

    This report summarizes the results of a survey of home heating oil and propane prices over the 1990/1991 heating season in Michigan. The survey was conducted under a cooperative agreement between the State of Michigan, Michigan Public Service Commission and the US Department of Energy (DOE), Energy Information Administration (EIA), and was funded by a grant from EIA. From October 1990 through May 1991, participating dealers/distributions were called and asked for their current residential retail prices of No. 2 home heating oil and propane. This information was then transmitted to the EIA, bi-monthly using an electronic reporting system called Petroleum Data Reporting Option (PEDRO). The survey was conducted using a sample provided by EIA of home heating oil and propane retailers which supply Michigan households. These retailers were contacted the first and third Mondays of each month. The sample was designed to account for distributors with different sales volumes, geographic distributions and sources of primary supply. It should be noted that this simple is different from the sample used in prior year surveys.

  4. Simulation and analysis of district-heating and -cooling systems

    SciTech Connect (OSTI)

    Bloomster, C.H.; Fassbender, L.L.

    1983-03-01

    A computer simulation model, GEOCITY, was developed to study the design and economics of district heating and cooling systems. GEOCITY calculates the cost of district heating based on climate, population, energy source, and financing conditions. The principal input variables are minimum temperature, heating degree-days, population size and density, energy supply temperature and distance from load center, and the interest rate. For district cooling, maximum temperature and cooling degree-hours are required. From this input data the model designs the fluid transport and district heating systems. From this design, GEOCITY calculates the capital and operating costs for the entire system. GEOCITY was originally developed to simulate geothermal district heating systems and thus, in addition to the fluid transport and distribution models, it includes a reservoir model to simulate the production of geothermal energy from geothermal reservoirs. The reservoir model can be adapted to simulate the supply of hot water from any other energy source. GEOCITY has been used extensively and has been validated against other design and cost studies. GEOCITY designs the fluid transport and distribution facilities and then calculates the capital and operating costs for the entire system. GEOCITY can simulate nearly any financial and tax structure through varying the rates of return on equity and debt, the debt-equity ratios, and tax rates. Both private and municipal utility systems can be simulated.

  5. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  6. Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

  7. Skyscrapers and District Heating, an inter-related History 1876-1933.

    E-Print Network [OSTI]

    Boyer, Edmond

    Skyscrapers and District Heating, an inter-related History 1876-1933. Introduction: The aim, and an equally new urban infrastructure, district heating, both of witch were born in the north-east United example in Europe of skyscrapers and district heating planned together, at Villeurbanne near Lyons

  8. A Functional Regression Approach for Prediction in a District-Heating System

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A Functional Regression Approach for Prediction in a District-Heating System Aldo Goia Dipartimento in a district heating sys- tem. Our dataset consists of four separated periods, with 198 days each period and 24 load forecasting, district heat- ing system Introduction Among the activities of support

  9. School of Architecture, Design and the Built Environment Delta T optimisation of district heating network

    E-Print Network [OSTI]

    Evans, Paul

    School of Architecture, Design and the Built Environment Delta T optimisation of district heating of any network. Most existing district heating systems work at small (10-15 C) delta T. Although for the conventional and optimised design of the district heating network. The network operation will be simulated

  10. Simple models of district heating systems for load and demand side management

    E-Print Network [OSTI]

    Simple models of district heating systems for load and demand side management and operational Energiforskningsprogrammet EFP ENS J.nr. 1373/01-0041 December 2004 #12;Simple models of district heating systems for load 87-7475-323-1 #12;Preface The research project "Simple models of district heating systems for load

  11. Propane Basics

    SciTech Connect (OSTI)

    NREL

    2010-03-01

    Propane powers about 190,000 vehicles in the U.S. and more than 14 million worldwide. Propane vehicles are a good choice for many fleet applications including school buses, shuttle buses, taxies and light-duty trucks.

  12. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  13. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed [University of British Columbia, Vancouver; Sowlati, T. [University of British Columbia, Vancouver; Sokhansanj, Shahabaddine [ORNL; Melin, Staffan [Delta Research Corporation

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  14. District-heating strategy model: computer programmer's manual

    SciTech Connect (OSTI)

    Kuzanek, J.F.

    1982-05-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling (DHC) systems. Such systems can reduce the amount and costs of fuels used to heat and cool buildings in a district. Twenty-eight communities have agreed to aid HUD in a national feasibility assessment of DHC systems. The HUD/DOE program entails technical assistance by Argonne National Laboratory and Oak Ridge National Laboratory. The assistance includes a computer program, called the district heating strategy model (DHSM), that performs preliminary calculations to analyze potential DHC systems. This report describes the general capabilities of the DHSM, provides historical background on its development, and explains the computer installation and operation of the model - including the data file structures and the options. Sample problems illustrate the structure of the various input data files, the interactive computer-output listings. The report is written primarily for computer programmers responsible for installing the model on their computer systems, entering data, running the model, and implementing local modifications to the code.

  15. The Use of Aluminum Process Reject Heat as the Source of Energy for a District Heating System 

    E-Print Network [OSTI]

    McCabe, J.; Olszewski, M.

    1980-01-01

    Rocket Research Company (RRC) is investigating the use of industrial process reject heat as a source of energy for large scale district heating. The District heating System is a network of closed-loop hot water pipes that recover energy from...

  16. Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district

    E-Print Network [OSTI]

    Cost-efficient monitoring of water quality in district heating systems This article examines the monitoring strategy for water quality in a large Danish district heating system ­ and makes a proposal for a technical and economic improvement. Monitoring of water quality in district heating systems is necessary

  17. Thesis proposal CSF Brazil 2014 Earth-Air Heat Exchangers at DISTRICT scale

    E-Print Network [OSTI]

    Bordenave, Charles

    Thesis proposal CSF Brazil 2014 Title: Earth-Air Heat Exchangers at DISTRICT scale Thesis. The objective of the work is to design new classes of Earth-Air Heat Exchangers at district scale in the context: This proposal is part of a more global research project dedicated to the study of Earth-Air Heat Exchangers

  18. Effect of heat recirculation on the self-sustained catalytic combustion of propane/air mixtures in a quartz reactor

    SciTech Connect (OSTI)

    Scarpa, A. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States); Pirone, R. [Istituto di Ricerche sulla Combustione-CNR, P.le V. Tecchio 80, 80125 Naples (Italy); Russo, G. [Dipartimento di Ingegneria Chimica, Universita degli Studi di Napoli ''Federico II'', P.le V. Tecchio 80, 80125 Naples (Italy); Vlachos, D.G. [Department of Chemical Engineering, Center for Catalytic Science and Technology (CCST), and Center for Composite Materials (CCM), University of Delaware, 150 Academy Street, Newark, DE 19716 (United States)

    2009-05-15

    The self-sustained catalytic combustion of propane is experimentally studied in a two-pass, quartz heat-recirculation reactor (HRR) and compared to that in a no (heat) recirculation reactor (NRR). Structured monolithic reactors with Pt/{gamma}-Al{sub 2}O{sub 3}, LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}, and Pt doped perovskite catalysts have been compared in the HRR and NRR configurations. Heat recirculation enhances combustion stability, by widening the operating window of self-sustained operation, and changes the mode of stability loss from blowout to extinction. It is found that thermal shields (upstream and downstream of the monolith) play no role in the stability of a HRR but increase the stability of a NRR. The stability of a HRR follows this trend: Pt/{gamma}-Al{sub 2}O{sub 3} > doped perovskite > LaMnO{sub 3}/{gamma}-Al{sub 2}O{sub 3}. Finally, a higher cell density monolith enlarges the operating window of self-sustained combustion, and allows further increase of the power density of the process. (author)

  19. Preliminary Retro-Commissioning Study on Optimal Operation for the Heat Source System of a District Heating Cooling Plant 

    E-Print Network [OSTI]

    Shingu, H.; Yoshida, H.; Wang, F.; Ono, E.

    2008-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) plant, the expected performance of the plant is studied using simulations based on mathematical models. A complete heat source system model, equipped with an embedded...

  20. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  1. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  2. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Marketing Annual 1998 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  3. Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    Marketing Annual 1999 Table 49. Prime Supplier Sales Volumes of Aviation Fuels, Propane, and Residual Fuel Oil by PAD District and State (Thousand Gallons per Day) -...

  4. Municipal District Heating and Cooling Co-generation System Feasibility Research 

    E-Print Network [OSTI]

    Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

    2006-01-01

    In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

  5. Propane Market Assessment for Winter

    Reports and Publications (EIA)

    1997-01-01

    1997-1998 Final issue of this report. This article reviews the major components of propane supply and demand in the United States and their status entering the 1997-1998 heating season.

  6. Optimal Operation of a Waste Incineration Plant for District Heating Johannes Jaschke, Helge Smedsrud, Sigurd Skogestad*, Henrik Manum

    E-Print Network [OSTI]

    Skogestad, Sigurd

    Optimal Operation of a Waste Incineration Plant for District Heating Johannes J¨aschke, Helge@chemeng.ntnu.no off-line. This systematic approach is here applied to a waste incineration plant for district heating. In district heating networks, operators usually wish to ob- tain the lowest possible return temperature

  7. Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating/Cooling Systems

    E-Print Network [OSTI]

    Raghavan, Srinivasa

    Photoreversible Micellar Solution as a Smart Drag-Reducing Fluid for Use in District Heating solution is developed as a promising working fluid for district heating/cooling systems (DHCs). It can systems. A promising application of DR fluids is in district heating/ cooling systems (DHCs)9

  8. Heating oil and propane households bills to be lower this winter despite recent cold spell

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide to CompleteWeeklyHeating

  9. Retro-Commissioning and Improvement for District Heating and Cooling System Using Simulation 

    E-Print Network [OSTI]

    Shingu, H.; Nakajima, R.; Yoshida, H.; Wang, F.

    2006-01-01

    In order to improve the energy performance of a district heating and cooling (DHC) system, retro-commissioning was analyzed using visualization method and simulation based on mathematical models, and improved operation schemes were proposed...

  10. Alaska Gateway School District Adopts Combined Heat and Power...

    Broader source: Energy.gov (indexed) [DOE]

    Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy, especially for the Alaska Gateway School District, with staff laid off and double...

  11. Economics of power plant district and process heating in Richland, Washington

    SciTech Connect (OSTI)

    Fassbender, L.L.; Bloomster, C.H.

    1981-04-01

    The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

  12. Propane update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane update

  13. "Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"

    E-Print Network [OSTI]

    Columbia University

    "Potential for Combined Heat and Power and District Heating and Cooling from Waste- to supplies 60% of the heated floor, and 75% of the heat generation is generated in Combined Heat and Power: cogeneration of heat and power at the power plant is achieved with a higher thermal efficiency, hot water

  14. Commissioning Process and Operational Improvement in the District Heating and Cooling-APCBC 

    E-Print Network [OSTI]

    Takase,T.; Takada,O; Shima,K.; Moriya, M.; Shimoda,Y.

    2014-01-01

    and Operational Improvements in the District Heating and Cooling Plant Tomoaki TAKASE, Mitsubishi Jisho Sekkei Inc., Osamu TAKADA, Mitsubishi Jisho Sekkei Inc., Kiyoshi SHIMA, Obayashi Corporation Mitsuru MORIYA, Takasago Thermal Engineering Co., Ltd... Conference for Enhanced Building Operations, Beijing, China, September 14-17, 2014 5ABOUT THE DHC PLANT DHC plant in Nishi-Umeda district of Osaka, Japan The 2nd Plant The 1st Plant ESL-IC-14-09-25 Proceedings of the 14th International Conference...

  15. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane...

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1999 421 Table A2. RefinerReseller Prices of Aviation Fuels, Propane, and Kerosene, by PAD District, 1983-Present (Cents per...

  16. GEOCITY: a computer model for systems analysis of geothermal district heating and cooling costs

    SciTech Connect (OSTI)

    Fassbender, L.L.; Bloomster, C.H.

    1981-06-01

    GEOCITY is a computer-simulation model developed to study the economics of district heating/cooling using geothermal energy. GEOCITY calculates the cost of district heating/cooling based on climate, population, resource characteristics, and financing conditions. The basis for our geothermal-energy cost analysis is the unit cost of energy which will recover all the costs of production. The calculation of the unit cost of energy is based on life-cycle costing and discounted-cash-flow analysis. A wide variation can be expected in the range of potential geothermal district heating and cooling costs. The range of costs is determined by the characteristics of the resource, the characteristics of the demand, and the distance separating the resource and the demand. GEOCITY is a useful tool for estimating costs for each of the main parts of the production process and for determining the sensitivity of these costs to several significant parameters under a consistent set of assumptions.

  17. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  18. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by...

  19. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of...

  20. Propane Market Model documentation report

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The purpose of this report is to define the objectives of the Propane Market Model (PMM), describe its basic approach, and to provide details on model functions. This report is intended as a reference document for model analysts, users, and the general public. Documentation of the model is in accordance with EIA`s legal obligation to provide adequate documentation in support of its models. The PMM performs a short-term (6- to 9-months) forecast of demand and price for consumer-grad propane in the national US market; it also calculates the end-of-month stock level during the term of the forecast. Another part of the model allows for short-term demand forecasts for certain individual Petroleum Administration for Defense (PAD) districts. The model is used to analyze market behavior assumptions or shocks and to determine the effect on market price, demand, and stock level.

  1. Making Combined Heat and Power District Heating(CHP-DH) networks in the United Kingdom economically viable: a comparative approach

    E-Print Network [OSTI]

    Kelly, S.; Pollitt, Michael G.

      fuels  more  efficiently, district heating allows flexibility in the choice of fuels being  used.   For  example,  dual?fuel  or  multi?fuel  CHP  systems  provide  choice amongst different  fuel  types for the generation of energy. Such  systems... networks have the potential to future- proof the delivery of energy through versatility, energy efficiency and the alleviation of fuel poverty. Realising these goals will ultimately require the development of a robust regulatory environment, consisting...

  2. Propane on Titan

    E-Print Network [OSTI]

    H. G. Roe; T. K. Greathouse; M. J. Richter; J. H. Lacy

    2003-09-23

    We present the first observations of propane (C$_3$H$_8$) on Titan that unambiguously resolve propane features from other numerous stratospheric emissions. This is accomplished using a $R=\\lambda/\\delta\\lambda\\approx10^5$ spectrometer (TEXES) to observe propane's $\

  3. Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water 

    E-Print Network [OSTI]

    Takahashi,N.; Niwa, H.; Kawano,M.; Koike,K.; Koga,O.; Ichitani, K.; Mishima,N.

    2014-01-01

    SEKKEI Research Institute Naoki Takahashi Study on Performance Verification and Evaluation of District Heating and Cooling System Using Thermal Energy of River Water ESL-IC-14-09-19 Proceedings of the 14th International Conference for Enhanced Building... Operations, Beijing, China, September 14-17, 2014 1The heating and cooling system used in Osaka’s Nakanoshima district uses heat pumps and river water to achieve the efficient use of the heat source and mitigate the heat island effect. The system...

  4. Case Study - Propane School Bus Fleets

    SciTech Connect (OSTI)

    Laughlin, M; Burnham, A.

    2014-08-31

    As part of the U.S. Department of Energy’s (DOE’s) effort to deploy transportation technologies that reduce U.S. dependence on imported petroleum, this study examines five school districts, one in Virginia and four in Texas, successful use of propane school buses. These school districts used school buses equipped with the newly developed liquid propane injection system that improves vehicle performance. Some of the school districts in this study saved nearly 50% on a cost per mile basis for fuel and maintenance relative to diesel. Using Argonne National Laboratory’s Alternative Fuel Life-Cycle Environmental and Economic Transportation (AFLEET) Tool developed for the DOE’s Clean Cities program to help Clean Cities stakeholders estimate petroleum use, greenhouse gas (GHG) emissions, air pollutant emissions and cost of ownership of light-duty and heavy-duty vehicles, the results showed payback period ranges from 3—8 years, recouping the incremental cost of the vehicles and infrastructure. Overall, fuel economy for these propane vehicles is close to that of displaced diesel vehicles, on an energy-equivalent basis. In addition, the 110 propane buses examined demonstrated petroleum displacement, 212,000 diesel gallon equivalents per year, and GHG benefits of 770 tons per year.

  5. Nationwide: Southeast Propane Autogas Development Program Brings...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the Road Nationwide: Southeast Propane Autogas Development Program Brings 1200 Propane Vehicles to the...

  6. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  7. East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.

    E-Print Network [OSTI]

    Webb, Peter

    East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

  8. Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report

    SciTech Connect (OSTI)

    Cable, J.H.; Gilday, L.T.; Moss, M.E.

    1995-11-01

    The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

  9. Liquid Propane Injection Applications

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology meets manufacturing/assembly guidelines, maintenance/repair strategy, and regulations, with same functionality, horsepower, and torque as gasoline counterpart.

  10. Woodfuel community heating at Kielder A wood-fired district heating

    E-Print Network [OSTI]

    is the use of a centralised boiler to provide heat for a number of buildings. Woodfuel heating from electrical power in combined heat and power (CHP) installations. Woodfuel boiler The 300 kilowatt Austrian woodfuel boiler at Kielder is fuelled by locally-grown Sitka spruce. The trees are felled, stacked

  11. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  12. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  13. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy ofFederalHas

  14. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy ofFederalHasState

  15. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy ofFederalHasStateSHOPP

  16. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full Genealogy

  17. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See full GenealogyHoliday Release Schedule

  18. Heating Oil and Propane Update

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide to Complete

  19. Propane Vehicle Demonstration Grant Program

    SciTech Connect (OSTI)

    Jack Mallinger

    2004-08-27

    Project Description: Propane Vehicle Demonstration Grants The Propane Vehicle Demonstration Grants was established to demonstrate the benefits of new propane equipment. The US Department of Energy, the Propane Education & Research Council (PERC) and the Propane Vehicle Council (PVC) partnered in this program. The project impacted ten different states, 179 vehicles, and 15 new propane fueling facilities. Based on estimates provided, this project generated a minimum of 1,441,000 new gallons of propane sold for the vehicle market annually. Additionally, two new off-road engines were brought to the market. Projects originally funded under this project were the City of Portland, Colorado, Kansas City, Impco Technologies, Jasper Engines, Maricopa County, New Jersey State, Port of Houston, Salt Lake City Newspaper, Suburban Propane, Mutual Liquid Propane and Ted Johnson.

  20. SOLAR HEATING OF TANK BOTTOMS Application of Solar Heating to Asphaltic and Parrafinic Oils Reducing Fuel Costs and Greenhouse Gases Due to Use of Natural Gas and Propane

    SciTech Connect (OSTI)

    Eugene A. Fritzler

    2005-09-01

    The sale of crude oil requires that the crude meet product specifications for BS&W, temperature, pour point and API gravity. The physical characteristics of the crude such as pour point and viscosity effect the efficient loading, transport, and unloading of the crude oil. In many cases, the crude oil has either a very high paraffin content or asphalt content which will require either hot oiling or the addition of diluents to the crude oil to reduce the viscosity and the pour point of the oil allowing the crude oil to be readily loaded on to the transport. Marginal wells are significantly impacted by the cost of preheating the oil to an appropriate temperature to allow for ease of transport. Highly paraffinic and asphaltic oils exist throughout the D-J basin and generally require pretreatment during cold months prior to sales. The current study addresses the use of solar energy to heat tank bottoms and improves the overall efficiency and operational reliability of stripper wells.

  1. The catalytic oxidation of propane 

    E-Print Network [OSTI]

    Sanderson, Charles Frederick

    1949-01-01

    for fuel use as small as 10 million Btu/hr or across operations of largest multi-facility organizations. We particularly encourage fuel oil and natural gas users to set up for switching to LPG (or propane) *, and propane users to set up to also use... butane and pentane as occasional alternatives. *The terms ?liquefied petroleum gas? (LPG) and propane are used somewhat interchangeably, even though LPG refers to mixtures of propane with some...

  2. Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study

    SciTech Connect (OSTI)

    Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

    1980-02-01

    A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

  3. Extension and improvement of Central Station District heating budget period 1 and 2, Krakow Clean Fossil Fuels and Energy Efficiency Program. Final report

    SciTech Connect (OSTI)

    NONE

    1997-07-01

    Project aim was to reduce pollution levels in the City of Krakow through the retirement of coal-fired (hand and mechanically-stoked) boiler houses. This was achieved by identifying attractive candidates and connecting them to the Krakow district heating system, thus permitting them to eliminate boiler operations. Because coal is less costly than district hot water, the district heating company Miejskie Przedsiebiorstwo Energetyki Cieplnej S.A., henceforth identified as MPEC, needed to provide potential customers with incentives for purchasing district heat. These incentives consisted of offerings which MPEC made to the prospective client. The offerings presented the economic and environmental benefits to district heating tie-in and also could include conservation studies of the facilities, so that consumption of energy could be reduced and the cost impact on operations mitigated. Because some of the targeted boiler houses were large, the capacity of the district heating network required enhancement at strategic locations. Consequently, project construction work included both enhancement to the district piping network as well as facility tie-ins. The process of securing new customers necessitated the strengthening of MPEC`s competitive position in Krakow`s energy marketplace, which in turn required improvements in marketing, customer service, strategic planning, and project management. Learning how US utilities address these challenges became an integral segment of the project`s scope.

  4. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district energy...

  5. ‘Back to the drawing board!’ Can failed technological innovations for sustainability play a role in socio-technical transitions? The case of Combined Heat and Power and District Heating in Edinburgh. 

    E-Print Network [OSTI]

    Scott-Mearns, Naomi

    2014-01-01

    This dissertation regards Combined Heat and Power (CHP) and District Heating (DH) technology (CHP-DH) as a technological innovation for sustainability which is currently under-utilized in the UK as DH meets less than 2% of heat demand (Delta Energy...

  6. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oil priceheating9, 2014propane

  7. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oil priceheating9,propane price

  8. Residential propane price

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oil priceheating9,propane

  9. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  10. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price1,

  11. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane

  12. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  13. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4, 2015

  14. Residential propane prices available

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane4,

  15. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane prices increase The

  16. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane prices increase

  17. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane prices

  18. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane pricespropane prices

  19. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane pricespropane

  20. Residential propane prices increase

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane pricespropanepropane

  1. Residential propane prices stable

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014propane

  2. 2013 Propane Market Outlook

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls onManual del vehículo eléctricoA25

  3. Wholesale Propane Weekly Heating Oil and Propane Prices (October - March)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Full report What Drives4 Paul0.503

  4. Residential Propane Weekly Heating Oil and Propane Prices (October - March)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996 2.003 1990-2016 East Coast (PADD 1) 2.669

  5. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  6. 9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Propane Buwe

    E-Print Network [OSTI]

    Schlegel, H. Bernhard

    9118 J. Am. Chem. SOC.1992, 114, 9118-9122 Scheme 111 Propane Buwe X =CHI and Y = H lossofH2 Z = H-82-8; ethane, 74- 84-0; propane, 74-98-6;butane, 106-97-8. (28) The heats of formation for C3H2are the scaled

  7. Emissions with butane/propane blends

    SciTech Connect (OSTI)

    1996-11-01

    This article reports on various aspects of exhaust emissions from a light-duty car converted to operate on liquefied petroleum gas and equipped with an electrically heated catalyst. Butane and butane/propane blends have recently received attention as potentially useful alternative fuels. Butane has a road octane number of 92, a high blending vapor pressure, and has been used to upgrade octane levels of gasoline blends and improve winter cold starts. Due to reformulated gasoline requirements for fuel vapor pressure, however, industry has had to remove increasing amounts of butane form the gasoline pool. Paradoxically, butane is one of the cleanest burning components of gasoline.

  8. District of Columbia Heat Content of Natural Gas Deliveries to Consumers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |Sector Full report (1.6 mb)District

  9. UNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA -FRESNO

    E-Print Network [OSTI]

    Hansen, James E.

    UNITED STATES DISTRICT COURT EASTERN DISTRICT OF CALIFORNIA - FRESNO CENTRAL VALLEY CHRYSLER Report, Abridged Text with all 48 Figures was submitted to United States District Court, Eastern District, decreased snow-pack in certain mountain ranges, increased strength of storms driven by latent heat

  10. Liquid Propane Injection Technology Conductive to Today's North...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Conductive to Today's North American Specification Liquid Propane Injection Technology Conductive to Today's North American Specification Liquid propane injection...

  11. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  12. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  13. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-05

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  14. Costs Associated With Propane Vehicle Fueling Infrastructure

    SciTech Connect (OSTI)

    Smith, M.; Gonzales, J.

    2014-08-01

    This document is designed to help fleets understand the cost factors associated with propane vehicle fueling infrastructure. It provides an overview of the equipment and processes necessary to develop a propane fueling station and offers estimated cost ranges.

  15. 1, 2341, 2001 OH + propane and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract Introduction Conclusions #12;ACPD 1, 23­41, 2001 OH + propane and iodopropanes S. A. Carl and J. N. Crowley Title Page Abstract

  16. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8977.

  17. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7 Relative Standard Errors for Table 5.7;" " Unit:8977.8.

  18. State Heating Oil and Propane Program

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan Feb MarDecade Year-0State

  19. Design and Operation of the Synthesis Gas Generator System for Reformed Propane and Glycerin Combustion

    E-Print Network [OSTI]

    Pickett, Derek

    2013-12-31

    Element LHV Lower Heating Value N2 Nitrogen NI National Instruments NOx Nitrogen Oxides O2 Oxygen PP Pure Propane REG Renewable Energy Group RFS Renewable Fuel Standards RG Reformed Glycerin RP Reformed Propane RPM Revolutions Per Minute SM... ignition (CI) engines in sufficient quantities that meets the Renewable Fuel Standards (RFS) set by the Environmental Protection Agency (EPA) [4]. Upcoming mandates surrounding biofuels (including bio- based ethanol) in the United States requires a...

  20. State of Maine residential heating oil survey 2001-02 season summary [SHOPP

    SciTech Connect (OSTI)

    Elder, Betsy

    2002-05-22

    This, as the title implies, is a summary report of the price trends for heating oil, propane and kerosene heating fuels for the heating season.

  1. Local Power Empowers: CHP and District Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy.

  2. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, R.W.; Skinner, D.F. Jr.; Thorsness, C.B.

    1983-05-26

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  3. Silane-propane ignitor/burner

    DOE Patents [OSTI]

    Hill, Richard W. (Livermore, CA); Skinner, Dewey F. (Livermore, CA); Thorsness, Charles B. (Livermore, CA)

    1985-01-01

    A silane propane burner for an underground coal gasification process which is used to ignite the coal and to controllably retract the injection point by cutting the injection pipe. A narrow tube with a burner tip is positioned in the injection pipe through which an oxidant (oxygen or air) is flowed. A charge of silane followed by a supply of fuel, such as propane, is flowed through the tube. The silane spontaneously ignites on contact with oxygen and burns the propane fuel.

  4. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2008-10-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels

  5. Comparison of Hydrogen and Propane Fuels (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01

    Factsheet comparing the chemical, physical, and thermal properties of hydrogen and propane, designed to facilitate an understanding of the differences and similarites of the two fuels.

  6. Important Propane Safety Information Propane is a fuel that is stored as a liquid and used as a gas. Propane is often used to fuel

    E-Print Network [OSTI]

    Kienzle, Stefan W.

    Important Propane Safety Information Propane is a fuel that is stored as a liquid and used as a gas. Propane is often used to fuel barbeques, appliances in recreational vehicles (RVs), and other portable equipment. Used properly, propane is a safe and convenient fuel. Follow these tips to stay safe. Basics

  7. Residential propane price decreases slightly

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating oilpropane pricepropane8,6,propane

  8. Residential propane price is unchanged

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNaturalOctoberheating13, 2014 Residential propane price

  9. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  10. 29Counting Atoms in a Molecule The complex molecule Propanal

    E-Print Network [OSTI]

    29Counting Atoms in a Molecule The complex molecule Propanal was discovered in a dense interstellar is the ratio of carbon atoms to hydrogen atoms in propanal? Problem 4 - If the mass of a hydrogen atom of a propanal molecule in AMUs? Problem 5 - What is the complete chemical formula for propanal? C3 H __ O

  11. Alternative Fuel Tool Kit How to Implement: Propane

    E-Print Network [OSTI]

    1 08/2014 Alternative Fuel Tool Kit How to Implement: Propane Contents Introduction to Propane (LPG...........................................................................................................2 Benefits of Using Propane (LPG) for Transportation of Energy under Award Number DE-EE0006083. #12;2 08/2014 Introduction to Propane (LPG) for Transportation

  12. Evolutionary History of a Specialized P450 Propane Monooxygenase

    E-Print Network [OSTI]

    Arnold, Frances H.

    Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substitutions compared to P450BM3 of propane activity. In contrast, refinement of the enzyme catalytic efficiency for propane oxidation (9000

  13. Propane vehicles : status, challenges, and opportunities.

    SciTech Connect (OSTI)

    Rood Werpy, M.; Burnham, A.; Bertram, K.; Energy Systems

    2010-06-17

    Propane as an auto fuel has a high octane value and has key properties required for spark-ignited internal combustion engines. To operate a vehicle on propane as either a dedicated fuel or bi-fuel (i.e., switching between gasoline and propane) vehicle, only a few modifications must be made to the engine. Until recently propane vehicles have commonly used a vapor pressure system that was somewhat similar to a carburetion system, wherein the propane would be vaporized and mixed with combustion air in the intake plenum of the engine. This leads to lower efficiency as more air, rather than fuel, is inducted into the cylinder for combustion (Myers 2009). A newer liquid injection system has become available that injects propane directly into the cylinder, resulting in no mixing penalty because air is not diluted with the gaseous fuel in the intake manifold. Use of a direct propane injection system will improve engine efficiency (Gupta 2009). Other systems include the sequential multi-port fuel injection system and a bi-fuel 'hybrid' sequential propane injection system. Carbureted systems remain in use but mostly for non-road applications. In the United States a closed-loop system is used in after-market conversions. This system incorporates an electronic sensor that provides constant feedback to the fuel controller to allow it to measure precisely the proper air/fuel ratio. A complete conversion system includes a fuel controller, pressure regulator valves, fuel injectors, electronics, fuel tank, and software. A slight power loss is expected in conversion to a vapor pressure system, but power can still be optimized with vehicle modifications of such items as the air/fuel mixture and compression ratios. Cold start issues are eliminated for vapor pressure systems since the air/fuel mixture is gaseous. In light-duty propane vehicles, the fuel tank is typically mounted in the trunk; for medium- and heavy-duty vans and trucks, the tank is located under the body of the vehicle. Propane tanks add weight to a vehicle and can slightly increase the consumption of fuel. On a gallon-to-gallon basis, the energy content of propane is 73% that of gasoline, thus requiring more propane fuel to travel an equivalent distance, even in an optimized engine (EERE 2009b).

  14. Wholesale Heating Oil Weekly Heating Oil and Propane Prices (October -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear Full report What Drives4 Paul

  15. Residential Heating Oil Weekly Heating Oil and Propane Prices (October -

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming

  16. Heat Plan DenmarkHeat Plan Denmark Anders Dyrelundy

    E-Print Network [OSTI]

    efficient use of renewable energy in district heating · individual heat pumps solar heating and wood pellets· individual heat pumps, solar heating and wood pellets 6Risø International Energy Conference 2009Heat Plan

  17. Knoxville Area Transit: Propane Hybrid Electric Trolleys

    SciTech Connect (OSTI)

    Not Available

    2005-04-01

    A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

  18. QER- Comment of National Propane Gas Association

    Broader source: Energy.gov [DOE]

    Ladies and Gentlemen: Please find attached the QER comments of the National Propane Gas Association. Please feel to contact us if we can provide further information. Thank you for your attention to our submission.

  19. QER- Comment of Propane Education & Research Council

    Broader source: Energy.gov [DOE]

    I plan to attend and ask a question of the Secretary regarding propane supply for the upcoming winter. Please do not hesitate to call or email if you have questions. Tucker Perkins

  20. Hydrogen Safety Issues Compared to Safety Issues with Methane and Propane

    E-Print Network [OSTI]

    Green, Michael A.

    2005-01-01

    Issues with Methane and Propane Michael A. Green LawrenceSAFETY ISSUES WITH METHANE AND PROPANE M. A. Green Lawrencehydrogen. Methane and propane are commonly used by ordinary

  1. An analysis of US propane markets, winter 1996-1997

    SciTech Connect (OSTI)

    1997-06-01

    In late summer 1996, in response to relatively low inventory levels and tight world oil markets, prices for crude oil, natural gas, and products derived from both began to increase rapidly ahead of the winter heating season. Various government and private sector forecasts indicated the potential for supply shortfalls and sharp price increases, especially in the event of unusually severe winter weather. Following a rapid runup in gasoline prices in the spring of 1996, public concerns were mounting about a possibly similar situation in heating fuels, with potentially more serious consequences. In response to these concerns, the Energy Information Administration (EIA) participated in numerous briefings and meetings with Executive Branch officials, Congressional committee members and staff, State Energy Offices, and consumers. EIA instituted a coordinated series of actions to closely monitor the situation and inform the public. This study constitutes one of those actions: an examination of propane supply, demand, and price developments and trends.

  2. Material Properties and Operating Configurations of Membrane Reactors for Propane Dehydrogenation

    E-Print Network [OSTI]

    Nair, Sankar

    Material Properties and Operating Configurations of Membrane Reactors for Propane Dehydrogenation material properties and operating configurations of packed-bed membrane reactors (PBMRs) for propane Keywords: membrane reactor, propane dehydrogenation, zeolite membrane, modeling, propane dehydrogenation

  3. UNIVERSITY OF THE DISTRICT OF

    E-Print Network [OSTI]

    District of Columbia, University of the

    UNIVERSITY OF THE DISTRICT OF COLUMBIA 1 Removal of Eutrophic Nutrients from Wastewater-Supplemented Digester Elutriate in the Fermentor 2. The Effect of Differential- Heating of Digester Elutriate on its

  4. Liquid Propane Injection Technology Conductive to Today's North American Specification

    Broader source: Energy.gov [DOE]

    Liquid propane injection technology can offer the same power, torque, and environmental vehicle performance while reducing imports of foreign oil

  5. Propane Vehicle and Infrastructure Codes and Standards Citations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    This document lists codes and standards typically used for U.S. propane vehicle and infrastructure projects.

  6. Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors

    E-Print Network [OSTI]

    Brinker, C. Jeffrey

    Catalytic Dehydrogenation of Propane in Hydrogen Permselective Membrane Reactors John P. Collins and Production, Amoco Research Center, 150 West Warrenville Road, Naperville, Illinois 60566-7011 Propane operated at liquid hourly space velocities (LHSVs) similar to those used in commercial reactors for propane

  7. Evolutionary History of a Specialized P450 Propane Monooxygenase

    E-Print Network [OSTI]

    Arnold, Frances H.

    Evolutionary History of a Specialized P450 Propane Monooxygenase Rudi Fasan1 , Yergalem T hydroxylase (P450BM3) to a laboratory-evolved P450 propane mono- oxygenase (P450PMO) having 20 heme domain substrate range and the emergence of propane activity. In contrast, refinement of the enzyme catalytic

  8. ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported

    E-Print Network [OSTI]

    ORIGINAL PAPER Tunability of Propane Conversion over Alumina Supported Pt and Rh Catalysts William Propane conversion over alumina supported Pt and Rh (1 wt% metals loading) was examined under fuel rich conversion and almost complete propane conversion) so long as the metal particle size was sufficiently low

  9. Correlation between homogeneous propane pyrolysis and pyrocarbon deposition

    E-Print Network [OSTI]

    Boyer, Edmond

    Correlation between homogeneous propane pyrolysis and pyrocarbon deposition C´edric Descamps, G propane pyrolysis is studied in a 1-D hot-wall CVD furnace. The gas-phase pyrolysis is modelled in previous reports [6]: total pressure equal to 2 kPa, temperature between 900 K and 1400 K, and pure propane

  10. Study of the Low Temperature Oxidation of Propane Maximilien Cord

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Study of the Low Temperature Oxidation of Propane Maximilien Cord , Benoit Husson , Juan of China, Hefei, Anhui 230029, P. R. China Abstract The lowtemperature oxidation of propane oxidation of propane in the gas phase has been the subject of very few experimental studies, mainly

  11. Portland Public School Children Move with Propane

    SciTech Connect (OSTI)

    Not Available

    2004-04-01

    This 2-page Clean Cities fact sheet describes the use of propane as a fuel source for Portland Public Schools' fleet of buses. It includes information on the history of the program, along with contact information for the local Clean Cities Coordinator and Portland Public Schools.

  12. Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE).

    SciTech Connect (OSTI)

    Kilgo, Alice C.; Eckelmeyer, Kenneth Hall; Susan, Donald Francis

    2005-01-01

    A severe fire and explosion occurred at a propane storage yard in Truth or Consequences, N.M., when a truck ran into the pumping and plumbing system beneath a large propane tank. The storage tank emptied when the liquid-phase excess flow valve tore out of the tank. The ensuing fire engulfed several propane delivery trucks, causing one of them to explode. A series of elevated-temperature stress-rupture tears developed along the top of a 9800 L (2600 gal) truck-mounted tank as it was heated by the fire. Unstable fracture then occurred suddenly along the length of the tank and around both end caps, along the girth welds connecting the end caps to the center portion of the tank. The remaining contents of the tank were suddenly released, aerosolized, and combusted, creating a powerful boiling liquid expanding vapor explosion (BLEVE). Based on metallography of the tank pieces, the approximate tank temperature at the onset of the BLEVE was determined. Metallurgical analysis of the ruptured tank also permitted several hypotheses regarding BLEVE mechanisms to be evaluated. Suggestions are made for additional work that could provide improved predictive capabilities regarding BLEVEs and for methods to decrease the susceptibility of propane tanks to BLEVEs.

  13. Propane Fuel Basics | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested PartiesBuildingBudget || Department of Energy Projects SelectedofPropane

  14. Alternative Fuels Data Center: Propane Vehicle Availability

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel to someone

  15. Alternative Fuels Data Center: Propane Vehicle Conversions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel to

  16. State Heating Oil and Propane Program Expansion of Propane Data Collection

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0 Year-1 Year-2Feet)Thousand7,Year Jan Feb MarDecade

  17. Titan's Prolific Propane: The Cassini CIRS Perspective

    E-Print Network [OSTI]

    Nixon, C A; Flaud, J -M; Bezard, B; Teanby, N A; Irwin, P G J; Ansty, T M; Coustenis, A; Vinatier, S; Flasar, F M; 10.1016/j.pss.2009.06.021

    2009-01-01

    In this paper we select large spectral averages of data from the Cassini Composite Infrared Spectrometer (CIRS) obtained in limb-viewing mode at low latitudes (30S--30N), greatly increasing the path length and hence signal-to-noise ratio for optically thin trace species such as propane. By modeling and subtracting the emissions of other gas species, we demonstrate that at least six infrared bands of propane are detected by CIRS, including two not previously identified in Titan spectra. Using a new line list for the range 1300-1400cm -1, along with an existing GEISA list, we retrieve propane abundances from two bands at 748 and 1376 cm-1. At 748 cm-1 we retrieve 4.2 +/- 0.5 x 10(-7) (1-sigma error) at 2 mbar, in good agreement with previous studies, although lack of hotbands in the present spectral atlas remains a problem. We also determine 5.7 +/- 0.8 x 10(-7) at 2 mbar from the 1376 cm-1 band - a value that is probably affected by systematic errors including continuum gradients due to haze and also an imperf...

  18. Adsorptive separation of propylene-propane mixtures

    SciTech Connect (OSTI)

    Jaervelin, H.; Fair, J.R. (Univ. of Texas, Austin, TX (United States))

    1993-10-01

    The separation of propylene-propane mixtures is of great commercial importance and is carried out by fractional distillation. It is claimed to be the most energy-intensive distillation practiced in the United States. The purpose of this paper is to describe experimental work that suggests a practical alternative to distillation for separating the C[sub 3] hydrocarbons: adsorption. As studied, the process involves three adsorptive steps: initial separation with molecular sieves with heavy dilution with an inert gas; separation of propylene and propane separately from the inert gas, using activated carbon; and drying of the product streams with any of several available desiccants. The research information presented here deals with the initial step and includes both equilibrium and kinetic data. Isotherms are provided for propylene and propane adsorbed on three zeolites, activated alumina, silica gel, and coconut-based activated carbon. Breakthrough data are provided for both adsorption and regeneration steps for the zeolites, which were found to be superior to the other adsorbents for breakthrough separations. A flow diagram for the complete proposed process is included.

  19. Ductless, Mini-Split Heat Pumps | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to houses with "non-ducted" heating systems, such as hydronic (hot water heat), radiant panels, and space heaters (wood, kerosene, propane). They can also be a good choice for...

  20. International District Energy Association

    Broader source: Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  1. Metallurgical failure analysis of a propane tank boiling liquid...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Metallurgical failure analysis of a propane tank boiling liquid expanding vapor explosion (BLEVE). Citation Details In-Document Search Title: Metallurgical failure...

  2. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

    E-Print Network [OSTI]

    Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-01-01

    catalysts: (a) ethane ODH, (b) propane ODH (663 K, 14 kPa CDehydrogenation of Ethane and Propane on Alumina-Supporteddehydrogenation of ethane and propane. UV-visible and Raman

  3. Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum, and Tungsten Oxides

    E-Print Network [OSTI]

    Iglesia, Enrique

    Kinetics and Mechanism of Oxidative Dehydrogenation of Propane on Vanadium, Molybdenum catalysts confirmed that oxidative dehydrogenation of propane occurs via similar pathways, which involve for propane dehydrogenation and for propene combustion increase in the sequence VOx/ZrO2

  4. CONTRIBUTION A L'TUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET ACTYLNE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    CONTRIBUTION A L'ÉTUDE DES FLAMMES D'HYDROCARBURES. PROPANE ET ACÉTYLÈNE Par MM. JEAN VAN DER POLL du propane et de l'acétylène qui ont montré que, dans certains cas, les flammes oxy-propane et oxy

  5. Susanville District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren)Model for theSunLanSuperDriveEconomies | OpenSuryaMSM

  6. Elko District Heat District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformationLabsKansas:EnergyCounty,

  7. San Bernardino District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources Jump to:Ohio:ProjectAugustine County,Facility |

  8. Midland District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickeyWestNewOhio: Energy

  9. Kethcum District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeithDelaware:DLR CooperationKersey,KesonaFacility

  10. Philip District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | Open Energy Information3 DevelopmentsNebraska:

  11. Pagosa Springs District Heating District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages Recent Changes All Special

  12. Boise City Geothermal District Heating District Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills,BluefieldBobBogota, New

  13. City of Klamath Falls District Heating District Heating Low Temperature

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurchFontanelle, IowaIowa (UtilityKing Cove,

  14. Propane/Propylene Days of Supply

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets160Product: Total Crude OilPropane update

  15. Alternative Fuels Data Center: Propane Vehicle Emissions

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel toEmissions to

  16. Commercial Buildings Characteristics 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    electricity, natural gas, fuel oil, district heat, district chilled water, propane, wood, coal, and active solar. In this survey, information about the use of these energy sources...

  17. Method for the removal of carbonyl sulfide from liquid propane

    SciTech Connect (OSTI)

    McClure, G.

    1980-06-17

    A method for the removal of carbonyl sulfide from liquid propane under liquid-liquid contact conditions by mixing liquid propane containing carbonyl sulfide as an impurity with 2-(2-aminoethoxy) ethanol as the principal agent for the carbonyl sulfide removal. The 2(2-aminoethoxy) ethanol is reclaimed and reused for further carbonyl sulfide removal. 5 claims.

  18. Parameter variation and scenario analysis in impact assessments of emerging energy technologies

    E-Print Network [OSTI]

    Breunig, Hanna Marie

    2015-01-01

    propane, fuel oils, and district heating. The FCS are sizedpropane (p), and district heating (dh) in large hospitals100% of energy from district heating and fuel oils (E DH and

  19. Technical Report -DTU -Informatics and Mathematical Modeling (May 31, 2007) Temperature Prediction in District

    E-Print Network [OSTI]

    Prediction in District Heating Systems with cFIR models Pierre Pinson , Torben S. Nielsen, Henrik Aa. Nielsen, Lyngby, Denmark Abstract Current methodologies for the optimal operation of district heating systems regularization. Results are given for the test case of the Roskilde district heating system, over a period

  20. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  1. Heating Oil and Propane Update - Energy Information Administration

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIA lowerslong4,Guide to CompleteWeekly

  2. New Forestry Commission District Office The new Forestry Commission

    E-Print Network [OSTI]

    New Forestry Commission District Office The new Forestry Commission District office at Smithton in construction The Forestry Commission's District office at Smithton in Inverness, Scotland, covers the national fuel heating system has proved effective during the winter of 2009/10, one of the harshest in 40 years

  3. Applied Solutions Webinar: Insights Into District Energy

    Office of Energy Efficiency and Renewable Energy (EERE)

    Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

  4. Southern Power District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, geothermal heat pumps, attic insulation, and HVAC tune-ups.  Contractors who...

  5. EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

  6. VEE-0040- In the Matter of Western Star Propane, Inc.

    Broader source: Energy.gov [DOE]

    On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

  7. VEE-0060- In the Matter of Blakeman Propane, Inc.

    Broader source: Energy.gov [DOE]

    On May 11, 1999, Blakeman Propane, Inc. (Blakeman) of Moorcroft, Wyoming, filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its...

  8. Microsoft Word - Joe Rose - Providence remarks.propane.JUR -...

    Broader source: Energy.gov (indexed) [DOE]

    and the greater Northeast. These include: The critical need for additional primary storage in the Northeast New England sells 7% of the nation's propane but has only 1% of the...

  9. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    E-Print Network [OSTI]

    2015-01-01

    oxi- dation of methane, ethane, propane and butane, Geochim.variability and air-sea ?ux of ethane and propane in thecation of novel methane-, ethane-, and propane-oxidizing

  10. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    E-Print Network [OSTI]

    Mendes, SD; Redmond, MC; Voigritter, K; Perez, C; Scarlett, R; Valentine, DL

    2015-01-01

    Bacterial oxidation of propane, FEMS Microbiol. Lett. , 122(oxi- dation of methane, ethane, propane and butane, Geochim.air-sea ?ux of ethane and propane in the plume of a large,

  11. Selective dehydrogenation of propane over novel catalytic materials

    SciTech Connect (OSTI)

    Sault, A.G.; Boespflug, E.P.; Martino, A.; Kawola, J.S.

    1998-02-01

    The conversion of small alkanes into alkenes represents an important chemical processing area; ethylene and propylene are the two most important organic chemicals manufactured in the U.S. These chemicals are currently manufactured by steam cracking of ethane and propane, an extremely energy intensive, nonselective process. The development of catalytic technologies (e.g., selective dehydrogenation) that can be used to produce ethylene and propylene from ethane and propane with greater selectivity and lower energy consumption than steam cracking will have a major impact on the chemical processing industry. This report details a study of two novel catalytic materials for the selective dehydrogenation of propane: Cr supported on hydrous titanium oxide ion-exchangers, and Pt nanoparticles encapsulated in silica and alumina aerogel and xerogel matrices.

  12. Effect of catalyst structure on oxidative dehydrogenation of ethane and propane on alumina-supported vanadia

    E-Print Network [OSTI]

    Argyle, Morris D.; Chen, Kaidong; Bell, Alexis T.; Iglesia, Enrique

    2001-01-01

    h) Figure 3. Example of ethane ODH (a) reaction rates and (x /Al 2 O 3 catalysts: (a) ethane ODH, (b) propane ODH (663Oxidative Dehydrogenation of Ethane and Propane on Alumina-

  13. Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia)

    E-Print Network [OSTI]

    Kushner, Mark

    Consequences of propene and propane on plasma remediation of NOx Rajesh Doraia) Department exhausts with hydrocarbons propane (C3H8) and propene (C3H6) has been investigated. In general

  14. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles Emissions tests of in-use heavy-duty vehicles...

  15. Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and David H. Olson,

    E-Print Network [OSTI]

    Li, Jing

    Zeolitic Imidazolate Frameworks for Kinetic Separation of Propane and Propene Kunhao Li, David H the first examples of MMOFs that are capable of kinetic separation of propane and propene (propylene), which

  16. Propane-Diesel Dual Fuel for CO2 and Nox Reduction | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Propane-Diesel Dual Fuel for CO2 and Nox Reduction Propane-Diesel Dual Fuel for CO2 and Nox Reduction Test results show significant CO2 and NOx emission reductions, fuel economy...

  17. Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane

    E-Print Network [OSTI]

    Gülder, Ömer L.

    Author's personal copy Unified behaviour of maximum soot yields of methane, ethane and propane the current study and the previous measurements in similar flames with methane, ethane, and propane flames

  18. Alternative Fuels Data Center: Propane School Buses Launched in Gloucester

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleans Propane PowersPropane

  19. Propane Vehicle and Infrastructure Codes and Standards Chart (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This chart shows the SDOs responsible for leading the support and development of key codes and standards for propane.

  20. Fourier transform microwave spectrum of the propane-water complex: A prototypical water-hydrophobe system

    E-Print Network [OSTI]

    Cohen, Ronald C.

    Fourier transform microwave spectrum of the propane-water complex: A prototypical water) The Fourier transform microwave spectrum of the propane-water complex (C3H,-H,O) has been observed and analyzed. This spectrum includes transitions assigned to propane complexed with both the ortho and para

  1. A KINETIC STUDY OF AEROBIC PROPANE UPTAKE AND COMETABOLIC DEGRADATION OF CHLOROFORM,

    E-Print Network [OSTI]

    Semprini, Lewis

    A KINETIC STUDY OF AEROBIC PROPANE UPTAKE AND COMETABOLIC DEGRADATION OF CHLOROFORM, CIS the behavior of different consortiums of aerobic propane-utilizing microorganisms, with respect to both the lag time for growth after exposure to propane, and their ability to transform three chlorinated aliphatic

  2. High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic

    E-Print Network [OSTI]

    High propylene/propane adsorption selectivity in a copper(catecholate)-decorated porous organic and propane isotherms measured at ambient temperatures and ideal adsorption solution theory (IAST) calculations revealed increasing propylene/propane selectivities with increasing pressures. The eld of highly

  3. Computational Study of Propylene and Propane Binding in Metal-Organic Frameworks Containing Highly Exposed Cu+

    E-Print Network [OSTI]

    Computational Study of Propylene and Propane Binding in Metal- Organic Frameworks Containing Highly than propane, suggesting their utility in adsorption separations. The nature of the propylene challenging problems in the field of separations is the separation of propane/propylene mixtures. Propylene

  4. PROPANE -C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET

    E-Print Network [OSTI]

    Choi, Kyu Yong

    PROPANE - C3H8 MSDS (Document # 001045) PAGE 1 OF 8 MATERIAL SAFETY DATA SHEET Prepared to U in an emergency? 1. PRODUCT IDENTIFICATION CHEMICAL NAME; CLASS: PROPANE - C3H8 Document Number: 001045 PRODUCT IN AIR ACGIH OSHA TLV STEL PEL STEL IDLH OTHER ppm ppm ppm ppm ppm Propane 74-98-6 > 96.0 Simple

  5. Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum Oxide Catalysts

    E-Print Network [OSTI]

    Iglesia, Enrique

    Isotopic Tracer Studies of Reaction Pathways for Propane Oxidative Dehydrogenation on Molybdenum of propane over ZrO2-supported MoOx catalysts. Competitive reactions of C3H6 and CH3 13 CH2CH3 showed combustion of propene, or by direct combustion of propane. A mixture of C3H8 and C3D8 undergoes oxidative

  6. Dehydrogenation of Propane to Propylene over Supported Model NiAu Catalysts

    E-Print Network [OSTI]

    Goodman, Wayne

    Dehydrogenation of Propane to Propylene over Supported Model Ni­Au Catalysts Zhen Yan · Yunxi Yao 2012 Ó Springer Science+Business Media, LLC 2012 Abstract Hydrogenolysis and dehydrogenation of propane. For the conversionofpropane in the presence of hydrogen, the dehydrogenation of propane to propylene was observed onthe Ni

  7. Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane

    E-Print Network [OSTI]

    Iglesia, Enrique

    Catalytic Properties of Supported MoO3 Catalysts for Oxidative Dehydrogenation of Propane Kaidong The effects of MoOx structure on propane oxidative dehydrogenation (ODH) rates and selectivity were examined with those obtained on MoOx/ZrO2. On MoOx/Al2O3 catalysts, propane turnover rate increased with increasing Mo

  8. Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed for outdoor

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Coleman Two Burner Stove The Coleman Matchlight 2-Burner Propane Stove is especially designed-burner propane stove has a high-pressure regulator that ensures a constant flame regardless of weather propane stove has a removable nickel-chrome-plated grate that makes for easy cleaning. The aluminized

  9. Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers,

    E-Print Network [OSTI]

    Texas at Arlington, University of

    1 Experimental Study of Propane-Fueled Pulsed Detonation Rocket Frank K. Lu,* Jason M. Meyers in comparison to cases without the spiral. Tests through a range of cycle frequencies up to 20 Hz in oxygen-propane spiral in a pulsed detonation engine operating with propane and oxygen. A high-energy igniter is used

  10. Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane{

    E-Print Network [OSTI]

    Kenis, Paul J. A.

    of propane{ Christian, Michael Mitchell and Paul J. A. Kenis* Received 31st May 2006, Accepted 10th August of propane into hydrogen at temperatures between 800 and 1000 uC. We characterized these microreactors. Kinetic analysis using a power law model showed reaction orders of 0.50 and 20.23 with respect to propane

  11. Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by

    E-Print Network [OSTI]

    Alvarez-Cohen, Lisa

    ARTICLE Functional Characterization of Propane-Enhanced N-Nitrosodimethylamine Degradation by Two: Propane-induced cometabolic degradation of n-nitrosodimethylamine (NDMA) by two propanotrophs is characterized through kinetic, gene presence, and expression studies. After growth on propane, resting cells

  12. Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational Preference

    E-Print Network [OSTI]

    Kim, Sang Kyu

    Ionization Spectroscopy of Conformational Isomers of Propanal: The Origin of the Conformational conformational isomers of propanal, cis and gauche, are investigated by the vacuum-UV mass- analyzed thresholdV and 9.9516 ( 0.0006 eV, respectively. cis-Propanal, which is the more stable conformer in the neutral

  13. Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations

    E-Print Network [OSTI]

    Arnold, Frances H.

    ARTICLE Improved Product-Per-Glucose Yields in P450-Dependent Propane Biotransformations Using propane monooxygenase prepared by directed evolu- tion [P450PMOR2; Fasan et al. (2007); Angew Chem Int Ed of the energy source (glucose) in the propane biotransformation com- pared to the native E. coli strain. Using

  14. Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation

    E-Print Network [OSTI]

    Jones, William D.

    Structural and dynamic properties of propane coordinated to TpRh(CNR) from a confrontation between] in interaction with propane. Two complexes have been found as minima coordinated through either a methyl the methylene complex of propane into a methyl complex of pro- pane. This latter reaction has a much lower

  15. Layering and orientational ordering of propane on graphite: An experimental and simulation study

    E-Print Network [OSTI]

    Borguet, Eric

    Layering and orientational ordering of propane on graphite: An experimental and simulation study 2002; accepted 30 July 2002 We report the results of an experimental and theoretical study of propane and experiments show that propane adsorbs in a layer-by-layer fashion and exhibits continuous growth beyond

  16. Absorption du rayonnement 12 et 8 millimtres par les vapeurs de propane sous pression

    E-Print Network [OSTI]

    Boyer, Edmond

    Absorption du rayonnement 12 et 8 millimètres par les vapeurs de propane sous pression A. Battaglia des pertes diélectriques (03B5") présentées par le propane gazeux aux fréquences de 24 et 36 GHz, à la Birnbaum. Abstract. 2014 Experimental study of dielectric losses (03B5") presented by gaseous propane

  17. Selective adsorption of ethylene over ethane and propylene over propane in the metalorganic

    E-Print Network [OSTI]

    Selective adsorption of ethylene over ethane and propylene over propane in the metal in the energy costs associated with the cryogenic separation of ethylene­ethane and propylene­propane mixtures adsorption data for ethylene, ethane, propylene, and propane at 45, 60, and 80 C for the entire series

  18. Molecular Properties of the "Ideal" Inhaled Anesthetic: Studies of Fluorinated Methanes, Ethanes, Propanes,

    E-Print Network [OSTI]

    Hudlicky, Tomas

    , Propanes, and Butanes E. 1Eger, 11, MD*, J. Liu, MD*, D. D. Koblin, PhD, MDt, M. J. Laster, DVM*, S. Taheri unfluorinated, partially fluorinated, and perfluorinated methanes, ethanes, propanes, and butanes to define fluorinated methanes, ethanes, propanes, and butanes, also obtaining limited data on longer- chained alkanes

  19. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a

    E-Print Network [OSTI]

    Iglesia, Enrique

    Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation Pingping Sun a , Georges and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane

  20. Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing

    E-Print Network [OSTI]

    Sessions, Alex L.

    Novel Methane, Ethane, and Propane Oxidizing Bacteria at Marine Hydrocarbon Seeps Identified by Stable Isotope Probing Running Title: Novel Methane, Ethane, and Propane Oxidizing Bacteria Section incubating sediment with 13 C-labeled methane, ethane, or propane, we5 confirmed the incorporation of 13 C

  1. Zeolitic imidazolate frameworks for kinetic separation of propane and propene

    SciTech Connect (OSTI)

    Li, Jing; Li, Kunhao; Olson, David H.

    2014-08-05

    Zeolitic Imidazolate Frameworks (ZIFs) characterized by organic ligands consisting of imidazole ligands that are either essentially all 2-chloroimidazole ligands or essentially all 2-bromoimidazole ligands are disclosed. Methods for separating propane and propene with the ZIFs of the present invention, as well as other ZIFs, are also disclosed.

  2. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  3. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  4. Case Study Â… Propane School Bus Fleets

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehiclesThe Heat Is onis

  5. Experimental comparison of hot water/propane injection to steam/propane injection for recovery of heavy oil 

    E-Print Network [OSTI]

    Nesse, Thomas

    2005-02-17

    , attempts have been made to inject hot water instead of steam. The results have all been rather poor, the major problem being low sweep efficiency. The hot water just doesn?t enhance oil recovery enough. Adding propane to the steam injected in the reservoir...

  6. Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique Iglesia*

    E-Print Network [OSTI]

    Iglesia, Enrique

    Isotopic Tracer Studies of Propane Reactions on H-ZSM5 Zeolite Joseph A. Biscardi and Enrique unlabeled products from mixtures of propene and propane-2-13C reactants. Aromatic products of propane-2-13C-Parmer) that allowed differential reactor operation (propane reactions were

  7. Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense Membrane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Effect of a current polarisation on BIMEVOX membranes for oxidation of propane in a Catalytic Dense of propane under OCV and under electrical bias. The propane conversion remained constantly equal to 12 by partial oxidation and oxidative dehydrogenation of propane, respectively. An anodic polarisation led

  8. Determination of Heat Capacities at Constant Volume from Experimental (P-Rho-T) Data 

    E-Print Network [OSTI]

    Tibaduiza Rincon, Andrea

    2015-07-27

    This work examines the uncertainty in the determination of the heat capacity at constant volume from experimental volumetric data. The proposed methodology uses the experimental (P-?-T) data for a ternary mixture of methane, ethane and propane...

  9. Dealing with big circulation flow, small temperature difference based on verified dynamic model simulations of a hot water district heating system 

    E-Print Network [OSTI]

    Zhong, L.

    2014-01-01

    d design en enclosure ex exchanger f fuel h heater int internal n number of HES o outside r return s supply sp set point sols solar radiation from south side v verify w, w2i water, water in secondary system for each HES z zone ESL... temperatures, solar radiation and wind speed; the heat balance has been regulated based on the average water temperature in the secondary system by adjusting the water mass flow rate (u1) of each HES in the primary system; and the water mass flow rate...

  10. An In-Situ XAS Study of the Structural Changes in a CuO-CeO2/Al2O3 Catalyst during Total Oxidation of Propane

    SciTech Connect (OSTI)

    Silversmith, Geert; Poelman, Hilde; Poelman, Dirk; Gryse, Roger de; Olea, Maria; Balcaen, Veerle; Heynderickx, Philippe; Marin, Guy B.

    2007-02-02

    A CuOx-CeOx/Al2O3 catalyst was studied with in-situ transmission Cu K XAS for the total oxidation of propane as model reaction for the catalytic elimination of volatile organic compounds. The local Cu structure was determined for the catalyst as such, after pre-oxidation and after reduction with propane. The catalyst as such has a local CuO structure. No structural effect was observed upon heating in He up to 600 deg. C or after pre-oxidation at 150 deg. C. A full reduction of the Cu2+ towards metallic Cu0 occurred, when propane was fed to the catalyst. The change in local Cu structure during propane reduction was followed with a time resolution of 1 min. The {chi}(k) scans appeared as linear combinations of start and end spectra, CuO and Cu structure, respectively. However, careful examination of the XANES edge spectra indicates the presence of a small amount of additional Cu1+ species.

  11. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  12. Integrating district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  13. Warm Springs Water District District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village ofWaialua,Wallington,Solar CoFacility | Open Energy

  14. Elko County School District District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence,NewInformationLabsKansas:Energy

  15. District Wide Geothermal Heating Conversion Blaine County School District |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM'sReport |Distribution:

  16. Propane-air peakshaving impact on natural gas vehicles. Topical report, August 1993-January 1997

    SciTech Connect (OSTI)

    Richards, M.E.; Shikari, Y.; Blazek, C.F.

    1997-01-01

    Propane-air peakshaving activities can lead to higher-than-normal propane levels in natural gas. Natural gas vehicle (NGV) fueling station operation and NGV performance can be affected by the presence of excess propane in natural gas. To assess the impact on NGV markets due to propane-air peakshaving, a comprehensive survey of gas utilities nationwide was undertaken to compile statistics on current practices. The survey revealed that about half of the responders continue to propane-air peakshave and that nearly two-thirds of these companies serve markets that include NGV fueling stations. Based on the survey results, it is estimated that nearly 13,000 NGVs could be affected by propane-air peakshaving activities by the year 2000.

  17. HEAT ROADMAP EUROPE 2050 SECOND PRE-STUDY FOR THE EU27

    E-Print Network [OSTI]

    Kolaei, Alireza Rezania

    Research Centre for 4th Generation District Heating (4DH), which has received funding from The Danish. However, this pre-study outlines the previously unconsidered potential of district heating and cooling requirements of district heating and cooling as technologies. The authors intend to continue developing

  18. Experimental study on transmission of an overdriven detonation wave from propane/oxygen to propane/air

    SciTech Connect (OSTI)

    Li, J.; Lai, W.H.; Chung, K.; Lu, F.K.

    2008-08-15

    Two sets of experiments were performed to achieve a strong overdriven state in a weaker mixture by propagating an overdriven detonation wave via a deflagration-to-detonation transition (DDT) process. First, preliminary experiments with a propane/oxygen mixture were used to evaluate the attenuation of the overdriven detonation wave in the DDT process. Next, experiments were performed wherein a propane/oxygen mixture was separated from a propane/air mixture by a thin diaphragm to observe the transmission of an overdriven detonation wave. Based on the characteristic relations, a simple wave intersection model was used to calculate the state of the transmitted detonation wave. The results showed that a rarefaction effect must be included to ensure that there is no overestimate of the post-transmission wave properties when the incident detonation wave is overdriven. The strength of the incident overdriven detonation wave plays an important role in the wave transmission process. The experimental results showed that a transmitted overdriven detonation wave occurs instantaneously with a strong incident overdriven detonation wave. The near-CJ state of the incident wave leads to a transmitted shock wave, and then the transition to the overdriven detonation wave occurs downstream. The attenuation process for the overdriven detonation wave decaying to a near-CJ state occurs in all tests. After the attenuation process, an unstable detonation wave was observed in most tests. This may be attributed to the increase in the cell width in the attenuation process that exceeds the detonability cell width limit. (author)

  19. Microsoft PowerPoint - Joe Rose.Providence.Propane Supply Infrastruct...

    Broader source: Energy.gov (indexed) [DOE]

    LLC. May 21, 2012. Appendix A Reversal of TEPPCO's line for ethane service (ATEX) Outage at Todhunter, OH Propane Storage Facility Growth in Priority Diluent Transportation *...

  20. Hy-Prop Jet Boat Hybrid Propane/Hydrogen and Electric Powered

    E-Print Network [OSTI]

    Wood, Stephen L.

    1 Hy-Prop Jet Boat Hybrid Propane/Hydrogen and Electric Powered Jet Boat Senior Design Project July ..........................................................................................................................28 Engineering Standards Addressed

  1. The determination of compressibility factors of gaseous propane-nitrogen mixtures 

    E-Print Network [OSTI]

    Dickson, Cecil Herman

    1955-01-01

    100 0 2 000 3000 4000 LEGEND DALTON + BE ATT IE- B RI DGEMAN V AMAGAT ~ EX PER I MENTAL 5000 6000 7000 8000 PR E SSUR E, P SI A 50 GRAPH X COMPA RISON OF EX PER IMENTAL DATA WITH CALCULATED VALUES F OR THE 48. 6I% PROPANE MIXTURE AT 300 F I... Percent Propane Mixture at 300 F. Comparison of Experimental Data wI. th Calculated Values for the 48. 6$ Mole Percent Propane Mixture at 260 F, Comparison of Experimental Data with Calculated Values for the &8. 6$ Mole Percent Propane Mixture st 300...

  2. Dynamics of Propane in Silica Mesopores Formed upon Propylene Hydrogenation over Pt Nanoparticles by Time-Resolved FT-IR Spectroscopy

    E-Print Network [OSTI]

    Waslylenko, Walter; Frei, Heinz

    2008-01-01

    state distribution of propane between gas and mesopore phaseWavenumber (cm ) B Gas Phase Propane 2968 cm k 1 = 3.1 ± 0.4slices showing the gas phase propane component at 216, 648,

  3. Alternative Fuels Data Center: Propane Buses Shuttle Visitors in Maine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMaryland ConservesElectricSurpassesPropane Buses

  4. Alternative Fuels Data Center: Propane Powers Airport Shuttles in New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleans Propane Powers Airport Shuttles

  5. Alternative Fuels Data Center: Propane Powers Fleets Across the Nation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA IMarylandOrleans Propane Powers Airport

  6. Microsoft PowerPoint - Propane_Briefing_140312.pptx

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963Residential2, 2014 MEMORANDUMProvedFeet) Year JanProved O iPropane

  7. Nationwide: Southeast Propane Autogas Development Program Brings 1200

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAand DOEDepartment ofProgram |(Upstate104-113] |Department ofPropane Vehicles

  8. Alternative Fuels Data Center: Propane Tank Overfill Safety Advisory

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home PageBlender PumpVehicles andProduction and DistributionPropane

  9. Availability of Canadian imports to meet U.S. demand for ethane, propane and butane

    SciTech Connect (OSTI)

    Hawkins, D.J.

    1996-12-31

    Historically, Canada has had a surplus of ethane, propane and butane. Almost all of the available propane and butane in Canadian natural gas streams is recovered. While there is significant ethane recovery in Canada, ethane that cannot be economically sold is left in the gas streams. All of the surplus Canadian ethane and most of the Canadian surplus propane and butane is exported to the US. Some volumes of Canadian propane and butane have been moved offshore by marine exports to the Asia-Pacific region or South America, or directly to Mexico by rail. Essentially all of the Canadian ethane, 86% of the propane and 74% of the butane are recovered by gas processing. Canadian natural gas production has increased significantly over the last 10 years. Canadian gas resources in the Western Canadian Sedimentary Basin should permit further expansion of gas exports, and several gas pipeline projects are pending to expand the markets for Canadian gas in the US. The prospective increase in Canadian gas production will yield higher volumes of ethane, propane and butane. While there is a potential to expand domestic markets for ethane, propane and butane, a significant part of the incremental production will move to export markets. This paper provides a forecast of the expected level of ethane, propane and butane exports from Canada and discusses the supply, demand and logistical developments which may affect export availability from Canada.

  10. Experimental studies of steam-propane and enriched gas injection for the Minas light crude oil 

    E-Print Network [OSTI]

    Yudishtira, Wan Dedi

    2003-01-01

    Experimental studies were carried out to compare the benefits of propane as an additive in steam injection and in lean gas injection to enhance production for the Minas light crude oil (34?API). The studies on steam-propane were specifically...

  11. Further experimental studies of steam-propane injection to enhance recovery of Morichal oil 

    E-Print Network [OSTI]

    Ferguson,Mark Anthony

    2000-01-01

    In 1998-1999, experimental research was conducted by Goite at Texas A&M University into steam-propane injection to enhance oil recovery from the Morichal field, Venezuela. Goite's results showed that, compared with steam injection alone, steam-propane...

  12. Compare All CBECS Activities: District Heat Use

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592Number of

  13. Korea District Heating Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar HydroElectric Cooperative Jump to: navigation,Kore Group

  14. Syngas Production from Propane Using Atmospheric Non-thermal Plasma

    E-Print Network [OSTI]

    Ouni, Fakhreddine; Cormier, Jean Marie; 10.1007/s11090-009-9166-2

    2009-01-01

    Propane steam reforming using a sliding discharge reactor was investigated under atmospheric pressure and low temperature (420 K). Non-thermal plasma steam reforming proceeded efficiently and hydrogen was formed as a main product (H2 concentration up to 50%). By-products (C2-hydrocarbons, methane, carbon dioxide) were measured with concentrations lower than 6%. The mean electrical power injected in the discharge is less than 2 kW. The process efficiency is described in terms of propane conversion rate, steam reforming and cracking selectivity, as well as by-products production. Chemical processes modelling based on classical thermodynamic equilibrium reactor is also proposed. Calculated data fit quiet well experimental results and indicate that the improvement of C3H8 conversion and then H2 production can be achieved by increasing the gas fraction through the discharge. By improving the reactor design, the non-thermal plasma has a potential for being an effective way for supplying hydrogen or synthesis gas.

  15. Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional dynamics of the hydrogen

    E-Print Network [OSTI]

    Elrod, Matthew J.

    Far-infrared laser vibration-rotation-tunneling spectroscopy of the propane-water compkx: Torsional 1993) The far-infrared laservibration-rotation-tunneling (FIR-VRT) spectrumof the propane-water complex calculations. In the present paper and in its counterpart,13we present our results for the water-propane

  16. Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia*

    E-Print Network [OSTI]

    Iglesia, Enrique

    Non-oxidative reactions of propane on Zn/Na-ZSM5 Joseph A. Biscardi and Enrique Iglesia* Department rates during propane conversion at 773 K on Zn/Na-ZSM5 are about ten times higher than on Zn/H-ZSM5 catalysts with similar Zn content. The total rate of propane conversion is also higher on Zn/Na-ZSM5

  17. Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H-ZSM5

    E-Print Network [OSTI]

    Iglesia, Enrique

    Kinetics and Reaction Pathways for Propane Dehydrogenation and Aromatization on Co/H-ZSM5 and H Co/H-ZSM5 catalyzes propane dehydrogenation and aromatization reactions. Initial product selectivities, product site-yields, and the 13C content and distribution in the products of 2-13C-propane show

  18. Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modeling of the formation of short-chain acids in propane flames F. Battin-Leclerc , 1 , A. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized in a combustion apparatus which can easily be modeled, a laminar premixed flame of propane at atmospheric pressure

  19. J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n-Butane, and Neopentane

    E-Print Network [OSTI]

    Goodman, Wayne

    J. Am. Chem. SOC.1988, 110, 8305-8319 8305 Hydrogenolysis of Ethane, Propane, n, Pasadena, California 91125. Received February I, 1988 Abstract: The hydrogenolysisof ethane, propane, n for ethane, propane, and neopentane involvesthe cleavage of a single carbon-carbon bond, resulting

  20. Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane) and R407C

    E-Print Network [OSTI]

    Fernández de Córdoba, Pedro

    Performance analysis of a series of hermetic reciprocating compressors working with R290 (propane with propane as refrigerant are analyzed in terms of the compressor model developed by [E. Navarro, E. Granryd. In addition, a comparison study between propane and R407C was carried out for one compressor and the observed

  1. State Heating Oil and Propane Program final report. Survey of No.2 heating oil and propane prices at the retail level October 2001 [sic] through March 2001 [SHOPP

    SciTech Connect (OSTI)

    2001-04-06

    Data collected by Division staff was entered into the EIA-PEDRO system. No written reports of data were required.

  2. Simulation of hydrogen and hydrogen-assisted propane ignition in Pt catalyzed microchannel

    SciTech Connect (OSTI)

    Seshadri, Vikram; Kaisare, Niket S.

    2010-11-15

    This paper deals with self-ignition of catalytic microburners from ambient cold-start conditions. First, reaction kinetics for hydrogen combustion is validated with experimental results from the literature, followed by validation of a simplified pseudo-2D microburner model. The model is then used to study the self-ignition behavior of lean hydrogen/air mixtures in a Platinum-catalyzed microburner. Hydrogen combustion on Pt is a very fast reaction. During cold start ignition, hydrogen conversion reaches 100% within the first few seconds and the reactor dynamics are governed by the ''thermal inertia'' of the microburner wall structure. The self-ignition property of hydrogen can be used to provide the energy required for propane ignition. Two different modes of hydrogen-assisted propane ignition are considered: co-feed mode, where the microburner inlet consists of premixed hydrogen/propane/air mixtures; and sequential feed mode, where the inlet feed is switched from hydrogen/air to propane/air mixtures after the microburner reaches propane ignition temperature. We show that hydrogen-assisted ignition is equivalent to selectively preheating the inlet section of the microburner. The time to reach steady state is lower at higher equivalence ratio, lower wall thermal conductivity, and higher inlet velocity for both the ignition modes. The ignition times and propane emissions are compared. Although the sequential feed mode requires slightly higher amount of hydrogen, the propane emissions are at least an order of magnitude lower than the other ignition modes. (author)

  3. Autoignited laminar lifted flames of propane in coflow jets with tribrachial edge and mild combustion

    SciTech Connect (OSTI)

    Choi, B.C.; Kim, K.N.; Chung, S.H.

    2009-02-15

    Characteristics of laminar lifted flames have been investigated experimentally by varying the initial temperature of coflow air over 800 K in the non-premixed jets of propane diluted with nitrogen. The result showed that the lifted flame with the initial temperature below 860 K maintained the typical tribrachial structure at the leading edge, which was stabilized by the balance mechanism between the propagation speed of tribrachial flame and the local flow velocity. For the temperature above 860 K, the flame was autoignited without having any external ignition source. The autoignited lifted flames were categorized in two regimes. In the case with tribrachial edge structure, the liftoff height increased nonlinearly with jet velocity. Especially, for the critical condition near blowout, the lifted flame showed a repetitive behavior of extinction and reignition. In such a case, the autoignition was controlled by the non-adiabatic ignition delay time considering heat loss such that the autoignition height was correlated with the square of the adiabatic ignition delay time. In the case with mild combustion regime at excessively diluted conditions, the liftoff height increased linearly with jet velocity and was correlated well with the square of the adiabatic ignition delay time. (author)

  4. Operation of a Four-Cylinder 1.9L Propane Fueled HCCI Engine

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-15

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  5. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    than one may apply) Elec- tricity Natural Gas Fuel Oil District Heat District Chilled Water Propane Other a All Buildings* ... 4,645 4,414 4,404 2,391...

  6. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    than one may apply) Elec- tricity Natural Gas Fuel Oil District Heat District Chilled Water Propane Other a All Buildings* ... 64,783 63,343 63,307...

  7. Effect of temperature and pressure on the dynamics of nanoconfined propane

    SciTech Connect (OSTI)

    Gautam, Siddharth Liu, Tingting Welch, Susan; Cole, David; Rother, Gernot; Jalarvo, Niina; Mamontov, Eugene

    2014-04-24

    We report the effect of temperature and pressure on the dynamical properties of propane confined in nanoporous silica aerogel studied using quasielastic neutron scattering (QENS). Our results demonstrate that the effect of a change in the pressure dominates over the effect of temperature variation on the dynamics of propane nano-confined in silica aerogel. At low pressures, most of the propane molecules are strongly bound to the pore walls, only a small fraction is mobile. As the pressure is increased, the fraction of mobile molecules increases. A change in the mechanism of motion, from continuous diffusion at low pressures to jump diffusion at higher pressures has also been observed.

  8. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect (OSTI)

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  9. Article published in Geothermics 47 (2013) 69-79 http://dx.doi.org/10.1016/j.geothermics.2013.02.005 1 Geothermal contribution to the energy mix of a heating

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2013-01-01

    and projected district heating networks. This article focuses on a remaining issue: estimating the geothermal contribution to the energy mix of a district heating network over time when using an ATES. This result would and providing energy to a new low-temperature district heating network heating 7,500 housing-equivalents. Non

  10. Experimental studies of steam-propane injection to enhance recovery of an intermediate crude oil 

    E-Print Network [OSTI]

    Tinss, Judicael Christopher

    2001-01-01

    in accelerating oil production and to compare the performance of steam-propane injection versus steam injection alone on an intermediate crude oil of 21 ?API gravity. Eight experimental runs were performed: three pure steam injection runs, three steam...

  11. Experimental study of Morichal heavy oil recovery using combined steam and propane injection 

    E-Print Network [OSTI]

    Goite Marcano, Jose Gregorio

    1999-01-01

    with steam (for the purpose of increasing steam recovery efficiency) are being evaluated. An experimental study has been performed to investigate the effect of combined steam and propane injection on recovery of heavy oil from the Morichal field, Venezuela...

  12. Emissions from In-Use NG, Propane, and Diesel Fueled Heavy Duty Vehicles

    Broader source: Energy.gov [DOE]

    Emissions tests of in-use heavy-duty vehicles showed that, natural gas- and propane-fueled vehicles have high emissions of NH3 and CO, compared to diesel vehicles, while meeting certification requirements

  13. Short-Term Energy Outlook Model Documentation: Regional Residential Propane Price Model

    Reports and Publications (EIA)

    2009-01-01

    The regional residential propane price module of the Short-Term Energy Outlook (STEO) model is designed to provide residential retail price forecasts for the 4 Census regions: Northeast, South, Midwest, and West.

  14. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam with propane-distillation 

    E-Print Network [OSTI]

    Ramirez Garnica, Marco Antonio

    2004-09-30

    Recent experimental and simulation studies -conducted at the Department of Petroleum Engineering at Texas A&M University - confirm oil production is accelerated when propane is used as an additive during steam injection. To better understand...

  15. Computers and Chemical Engineering 28 (2004) 683691 Selecting appropriate control variables for a heat-integrated

    E-Print Network [OSTI]

    Skogestad, Sigurd

    2004-01-01

    Computers and Chemical Engineering 28 (2004) 683­691 Selecting appropriate control variables for a heat-integrated distillation system with prefractionator H. K. Engelien, S. Skogestad Department A heat-integrated prefractionator arrangement is studied for a ternary separation of a propane

  16. Optimal control of a multi-energy district boiler: a case study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimal control of a multi-energy district boiler: a case study J. Eynard S. Grieu M. Polit of a multi-energy district boiler (La Rochelle, France) which supplies domestic hot water and heats optimizing the use of both the tank and the wood boiler. As a result, fossil energy consumption and CO2

  17. Etude cin\\'etique de CVD de pyrocarbone obtenu par pyrolyse de propane

    E-Print Network [OSTI]

    Ziegler-Devin, Isabelle; Marquaire, Paul-Marie

    2009-01-01

    High temeperature (900-1000\\degree C) low pressure (propane yields a pyrocarbon deposit, but also mainly hydrogen and hydrocarbons from methane to polyaromatics. 30 reaction products were exeperimentally quantified at different operating conditions. A detailed kinetic pyrolysis model (600 reactions) has been developed and validated based on the totality of experiments. This model includes a homogeneous model (describing the gas phase pyrolysis of propane) coupled with a heterogeneous model describing the pyrocarbon deposit.

  18. Experimental and analytical studies of hydrocarbon yields under dry-, steam-, and steam-with-propane distillation 

    E-Print Network [OSTI]

    Jaiswal, Namit

    2007-09-17

    the synthetic sample and experimental study previously carried out. (e) To correlate steam-propane distillation yields for some crude oils and synthetic hydrocarbons to generate steam-propane distillation data that could be used to develop the input data... there is need to develop a model to predict distillate yield under any set of conditions for any heavy oil, requiring only the simulated distillation (SIMDIS) trace (i.e. percent off vs. normal boiling temperature) of the oil. The expected deliverables from...

  19. Propane-fueled car records good marks in alternate-fuel testing

    SciTech Connect (OSTI)

    Not Available

    1989-04-01

    Testing of a 1988 Ford Crown Victoria, fueled by propane and provided by Petrolane (Long Beach, Calif.), has provided the NPGA Alternate Fuels Task Force with some powerful arguments as to the worth of propane as a motor fuel to help combat air pollution. The car was tested for high altitude performance in Denver and for sea level performance at the Environmental Protection Agency (EPA) test site in Ann Arbor, Mich.

  20. Continuous Commissioning® and Energy Management Control Strategies at Alamo Community College District 

    E-Print Network [OSTI]

    Martinez, J.; Verdict, M.; Baltazar, J.C.

    2008-01-01

    This paper presents an overview of energy savings through the optimization of facility Heating, Ventilation, and Air Conditioning (HVAC) systems for the college campuses of the Alamo Community College District. This Continuous Commissioning® process...

  1. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  2. Marine microbes rapidly adapt to consume ethane, propane, and butane within the dissolved hydrocarbon plume of a natural seep

    E-Print Network [OSTI]

    Mendes, SD; Redmond, MC; Voigritter, K; Perez, C; Scarlett, R; Valentine, DL

    2015-01-01

    Arp, D. J. (1999), Butane metabolismby butane-grown ‘Pseudomonas butanovora’, Microbiology, 145(ethane, propane and butane, Geochim. Cosmochim. Acta, 71,

  3. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  4. U.S. Weekly Heating Oil and Propane Prices (October - March)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Global CrudeWhat'sMay-15May-15 Jun-15Illinois

  5. Lower oil prices also cutting winter heating oil and propane bills

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural GasEIARegional energy challengesLower oil prices

  6. Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative dehydrogenation with N2O and N2O decomposition

    E-Print Network [OSTI]

    Sklenak, Stepan

    Structure and critical function of Fe and acid sites in Fe-ZSM-5 in propane oxidative species Steamed Fe-zeolites Mössbauer spectroscopy UV­Vis FTIR H2-TPR N2O decomposition Propane oxidative of propane to propene with N2O. The evacuated non-steamed FeH-ZSM-5 contained high concentration of Brønsted

  7. Transient behaviour of dense catalytic membranes based on Cu-and Co-doped Bi4V2O11 (BIMEVOX) in the oxidation of propene and propane

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ) in the oxidation of propene and propane A. Löfberg a,* , C. Pirovano b , M.C. Steil b , R.N. Vannier b , E. Bordes, propane oxidation, syngas, catalytic dense membrane reactor, transient behaviour Abstract ME-doped -Bi4V2O of propene and of propane. Mirror-polished BICUVOX and BICOVOX membranes studied previously were poorly

  8. SUR LA POSSIBILIT D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'TUDE DES RACTIONS NUCLAIRES

    E-Print Network [OSTI]

    Boyer, Edmond

    175 A. SUR LA POSSIBILITÉ D'UTILISATION D'UNE CHAMBRE A BULLES A PROPANE POUR L'ÉTUDE DES RÉACTIONS. - Mise au point et étude des caractéristiques du fonctionnement d'une chambre à bulles à propane de 6 135 MeV. Abstract. 2014 Adjustment and studies of some characteristics of a 6 litre propane bubble

  9. Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane Oxidative Dehydrogenation on the Cubic V4O10 Cluster

    E-Print Network [OSTI]

    Goddard III, William A.

    Single-Site Vanadyl Activation, Functionalization, and Reoxidation Reaction Mechanism for Propane of density functional theory) to examine the detailed mechanism for propane reacting with a V4O10 cluster to model the catalytic oxidative dehydrogenation (ODH) of propane on the V2O5(001) surface. We here report

  10. Modular approach for modelling a multi-energy district boiler Julien Eynard, Stphane Grieu1 and Monique Polit

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Modular approach for modelling a multi-energy district boiler Julien Eynard, Stéphane Grieu1 with the modelling of a district boiler (city of La Rochelle, west coast of France), as part of the OptiEnR research project. This "multi- energy" boiler supplies domestic hot water and heats residential and public

  11. Dawson Power District | Open Energy Information

    Open Energy Info (EERE)

    Dawson Power District Jump to: navigation, search Name: Dawson Power District Place: Nebraska Phone Number: 308-324-2386 Website: dawsonpower.com Twitter: @DawsonPower Facebook:...

  12. Simulation studies of steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Venturini, Gilberto Jose

    2002-01-01

    Simulation studies were performed to evaluate a novel technology, steam-propane injection, for the heavy Hamaca crude oil. The oil has a gravity of 9.3?API and a viscosity of 25,000 cp at 50?C. Two types of simulation studies were performed: a...

  13. Experimental studies of steam-propane injection for the Duri intermediate crude oil 

    E-Print Network [OSTI]

    Hendroyono, Arief

    2003-01-01

    for the intermediate Duri crude oil. The experiments involved injecting steam or a mixture of steam and propane into a cell in which was tamped a mixture of sand, oil and water. The cell was placed inside a vacuum jacket set at a reservoir temperature of 100?F...

  14. Alternative descriptions of catalyst deactivation in aromatization of propane and butane

    SciTech Connect (OSTI)

    Koshelev, Yu.N.; Vorob`ev, B.L.; Khvorova, E.P.

    1995-08-20

    Deactivation of a zeolite-containing catalyst has been studied in aromatization of propane and butane. Various descriptions of the dependence of the alkane conversion on the coke concentration on the catalyst have been considered, and using a statistical method of estimating the model validity, the most preferable form of the deactivation function has been proposed.

  15. Surface Termination of M1 Phase and Rational Design of Propane Ammoxidation Catalysts

    SciTech Connect (OSTI)

    Guliants, Vadim

    2015-02-16

    This final report describes major accomplishments in this research project which has demonstrated that the M1 phase is the only crystalline phase required for propane ammoxidation to acrylonitrile and that a surface monolayer terminating the ab planes of the M1 phase is responsible for their activity and selectivity in this reaction. Fundamental studies of the topmost surface chemistry and mechanism of propane ammoxidation over the Mo-V-(Te,Sb)-(Nb,Ta)-O M1 and M2 phases resulted in the development of quantitative understanding of the surface molecular structure – reactivity relationships for this unique catalytic system. These oxides possess unique catalytic properties among mixed metal oxides, because they selectively catalyze three alkane transformation reactions, namely propane ammoxidation to acrylonitrile, propane oxidation to acrylic acid and ethane oxidative dehydrogenation, all of considerable economic significance. Therefore, the larger goal of this research was to expand this catalysis to other alkanes of commercial interest, and more broadly, demonstrate successful approaches to rational design of improved catalysts that can be applied to other selective (amm)oxidation processes.

  16. Analysis of U.S. Propane Markets Winter 1996-97, An

    Reports and Publications (EIA)

    1997-01-01

    This study constitutes an examination of propane supply, demand, and price developments and trends. The Energy Information Administration's approach focused on identifying the underlying reasons for the tight supply/demand balance in the fall of 1996, and on examining the potential for a recurrence of these events next year.

  17. *Corresponding author at: NO.818 Fenghua Road, Jiangbei District, Ningbo, China. Tel: +86 5748760 0947; fax: +86 574 87600946.

    E-Print Network [OSTI]

    *Corresponding author at: NO.818 Fenghua Road, Jiangbei District, Ningbo, China. Tel: +86 5748760 of impurities and micro-crystal particles in prepared GGT glass samples, a rapid heating furnace and the fast

  18. Novel Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation

    SciTech Connect (OSTI)

    Sun, Pingping; Siddiqi, Georges; Vining, William C.; Chi, Miaofang; Bell, Alexis T.

    2011-10-28

    Catalysts for the dehydrogenation of light alkanes were prepared by dispersing Pt on the surface of a calcined hydrotalcite-like support containing indium, Mg(In)(Al)O. Upon reduction in H{sub 2} at temperatures above 673 K, bimetallic particles of PtIn are observed by TEM, which have an average diameter of 1 nm. Analysis of Pt LIII-edge extended X-ray absorption fine structure (EXAFS) data shows that the In content of the bimetallic particles increases with increasing bulk In/Pt ratio and reduction temperature. Pt LIII-edge X-ray absorption near edge structure (XANES) indicates that an increasing donation of electronic charge from In to Pt occurs with increasing In content in the PtIn particles. The activity and selectivity of the Pt/Mg(In)(Al)O catalysts for ethane and propane dehydrogenation reactions are strongly dependent on the bulk In/Pt ratio. For both reactants, maximum activity was achieved for a bulk In/Pt ratio of 0.48, and at this In/Pt ratio, the selectivity to alkene was nearly 100%. Coke deposition was observed after catalyst use for either ethane or propane dehydrogenation, and it was observed that the alloying of Pt with In greatly reduced the amount of coke deposited. Characterization of the deposit by Raman spectroscopy indicates that the coke is present as highly disordered graphite particles <30 nm in diameter. While the amount of coke deposited during ethane and propane dehydrogenation are comparable, the effects on activity are dependent on reactant composition. Coke deposition had no effect on ethane dehydrogenation activity, but caused a loss in propane dehydrogenation activity. This difference is attributed to the greater ease with which coke produced on the surface of PtIn nanoparticles migrates to the support during ethane dehydrogenation versus propane dehydrogenation.

  19. Study of Applications of Solar Heating Systems with Seasonal Storage in China 

    E-Print Network [OSTI]

    Yu, G.; Zhao, X.; Chen, P.

    2006-01-01

    In most northern parts of China, it is cold in winter and needs space heating in winter. This paper studies applications of solar heating systems with seasonal storage in China. A typical residential district was selected, ...

  20. Successful Application of Heat Pumps to a DHC System in the Tokyo Bay Area 

    E-Print Network [OSTI]

    Yanagihara, R.; Okagaki, A.

    2006-01-01

    The Harumi-Island District Heating & Cooling (DHC), which is located in the Tokyo Bay area, introduced the heat pump and thermal storage system with the aim of achieving minimum energy consumption, minimum environmental load, and maximum economical...

  1. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  2. Groundwater Conservation Districts: Success Stories 

    E-Print Network [OSTI]

    Porter, Dana; Persyn, Russell A.; Enciso, Juan

    1999-09-06

    Plains UWCD No. 1 7 Sandy Land UWCD 8 South Plains UWCD 9 Garza County U and Fresh WCD 10 Salt Fork UWCD 11 Mesa UWCD 12 Permian Basin UWCD 13 Hudspeth County UWCD No. 1 14 Glasscock County UWCD 15 Sterling UWCD 16 Coke County UWCD 17 Santa... Activities Groundwater Conservation Districts vary in size, from partial county or single county districts to multiple county districts. Staffing levels vary from one part-time position to several full-time positions, depending upon the goals of the Boards...

  3. Turlock Irrigation District- PV Rebate

    Office of Energy Efficiency and Renewable Energy (EERE)

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  4. Missouri School District Charges Up

    Broader source: Energy.gov [DOE]

    Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts.

  5. Propane reacts with O2 and H2 on gold supported TS-1 to form oxygenates with high selectivity

    E-Print Network [OSTI]

    Bravo Suarez, Juan J.

    2008-06-13

    Gold nanoparticles supported on a microporous titanosilicate (TS-1) were found to be highly selective (95%) towards the formation of acetone and isopropanol from propane, O2, and H2 at moderate temperatures (443 K)....

  6. The role of the district office in instructional practice reform

    E-Print Network [OSTI]

    Rizzi, Karen Schultz

    2008-01-01

    reality: Standards-based reform in urban districts. MenloW. A. (1989). Using reform: Conceptualizing districtHow districts support school reform. Seattle: University of

  7. Determination of usage patterns and emissions for propane/LPG in California. Final report

    SciTech Connect (OSTI)

    Sullivan, M.

    1992-05-01

    The purpose of the study was to determine California usage patterns of Liquified Petroleum Gas (LPG), and to estimate propane emissions resulting from LPG transfer operations statewide, and by county and air basin. The study is the first attempt to quantify LPG transfer emissions for California. This was accomplished by analyzing data from a telephone survey of California businesses that use LPG, by extracting information from existing databases.

  8. Numerical Modeling of Non-adiabatic Heat-Recirculating Combustors C. H. Kuo and P. D. Ronney

    E-Print Network [OSTI]

    @usc.edu Colloquium topic area: 12. New Technology Concepts Keywords: Micro-combustion, Heat-recirculating combustors) for propane-air mixtures. These limits showed reasonable quantitative agreement with experiments. Comparison based on existing macro-scale designs such as internal combustion engines may be impractical

  9. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Used (more than one may apply) Elec- tricity Natural Gas Fuel Oil District Heat Propane Other a All Buildings* ... 64,783 60,028 28,600 36,959...

  10. Downtown district cooling: A 21st century approach

    SciTech Connect (OSTI)

    NONE

    1995-12-01

    On December 1, 1992, the Board of Directors of the Metropolitan Pier and Exposition Authority (MPEA) met on Chicago`s historic Navy Pier and ushered in a new era of competition for energy supply in Chicago. The MPEA, a state agency created for the purposes of promoting and operating fair and exposition facilities within the Chicago area (including the McCormick Place exposition center and Navy Pier), voted to accept a third-party proposal to provide district heating and cooling services to the existing McCormick Place facilities and a million square feet of new exposition space. The winning bidder was a joint venture between Trigen Energy, the nation`s largest provider of district energy services, and Peoples Gas, the gas distribution company which serves Chicago. This vote culminated two years of effort by the Energy Division of Chicago`s Department of Environment to analyze the feasibility and promote the implementation of a district energy system to serve the expanded McCormick Place and its environs in the South Loop neighborhood. Initial services began in November, 1993, with a new hot and cold water piping system interconnecting the three existing exhibition facilities. The final buildout of the system, with a combined peak demand predicted at 160 MMBtu of heating and 15,920 tons of and cooling, is scheduled for completion in the summer of 1997.

  11. Evaluating Water Transfers in Irrigation Districts 

    E-Print Network [OSTI]

    Ghimire, Narishwar

    2013-04-11

    The participation of irrigation districts (IDs) in surface water transfers from agriculture-to-municipal uses is studied by examining IDs’ economic and political behavior, comparing their performance with non-districts (non-IDs), and analyzing...

  12. University of the District of Columbia District of Columbia Drinking Water Blind Taste

    E-Print Network [OSTI]

    District of Columbia, University of the

    University of the District of Columbia District of Columbia Drinking Water Blind Taste Testing University of the District of Columbia Date: May 2005 Prepared for the DC Water Resources Research Institute Funds provided by USGS through the US Department of Interior #12;1 District of Columbia Drinking Water

  13. By Steve Rochette Philadelphia District

    E-Print Network [OSTI]

    US Army Corps of Engineers

    By Steve Rochette Philadelphia District See Stream, Page 5 Dave Derrick, Research Hydraulic of the Tacony Creek in Philadelphia during a workshop July 23. (Photo by Steve Rochette) Corpsaimstorestore partnered with the Environmental Protection Agency and the Philadelphia Water Department to host a stream

  14. Series 50 propane-fueled Nova bus: Engine development, installation, and field trials

    SciTech Connect (OSTI)

    Smith, B.

    1999-01-01

    The report describes a project to develop the Detroit Diesel series 50 liquefied propane gas (LPG) heavy-duty engine and to conduct demonstrations of LPG-fuelled buses at selected sites (Halifax Regional Municipality and three sites in the United States). The project included five main elements: Engine development and certification, chassis re-engineering and engine installation, field demonstration, LPG fuel testing, and LPG fuel variability testing. Lessons learned with regard to engine design and other issues are discussed, and recommendations are made for further development and testing.

  15. Alternative Fuels Data Center: Biodiesel and Propane Fuel Buses for Dallas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O D S TA I NLoans TheCounty Schools Biodiesel and Propane

  16. U.S. Natural Gas Supplemental Gas - Propane Air (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan3 November18.5Gross Withdrawals (MillionBiomass Gas (MillionPropane

  17. Alternative Fuels Data Center: Propane Rolls on as Reliable Fleet Fuel

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page onPropane Rolls on as Reliable Fleet Fuel to someone by

  18. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  19. Analysis of ignition behavior in a turbocharged direct injection dual fuel engine using propane and methane as primary fuels

    SciTech Connect (OSTI)

    Polk, A. C.; Gibson, C. M.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-10-05

    This paper presents experimental analyses of the ignition delay (ID) behavior for diesel-ignited propane and diesel-ignited methane dual fuel combustion. Two sets of experiments were performed at a constant speed (1800 rev/min) using a 4-cylinder direct injection diesel engine with the stock ECU and a wastegated turbocharger. First, the effects of fuel-air equivalence ratios (���© pilot �¢���¼ 0.2-0.6 and ���© overall �¢���¼ 0.2-0.9) on IDs were quantified. Second, the effects of gaseous fuel percent energy substitution (PES) and brake mean effective pressure (BMEP) (from 2.5 to 10 bar) on IDs were investigated. With constant ���© pilot (> 0.5), increasing ���© overall with propane initially decreased ID but eventually led to premature propane autoignition; however, the corresponding effects with methane were relatively minor. Cyclic variations in the start of combustion (SOC) increased with increasing ���© overall (at constant ���© pilot), more significantly for propane than for methane. With increasing PES at constant BMEP, the ID showed a nonlinear (initially increasing and later decreasing) trend at low BMEPs for propane but a linearly decreasing trend at high BMEPs. For methane, increasing PES only increased IDs at all BMEPs. At low BMEPs, increasing PES led to significantly higher cyclic SOC variations and SOC advancement for both propane and methane. Finally, the engine ignition delay (EID) was also shown to be a useful metric to understand the influence of ID on dual fuel combustion.

  20. Co-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode containing nano-bimetallic catalyst

    E-Print Network [OSTI]

    Frenkel, Anatoly

    as an anode in direct propane fueled solid oxide fuel cells (SOFCs). After exposure of the initial single systems. Ó 2014 Elsevier B.V. All rights reserved. 1. Introduction Solid oxide fuel cells (SOFCsCo-generation of electricity and chemicals from propane fuel in solid oxide fuel cells with anode

  1. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    D. Straub; D. Ferguson; K. Casleton; G. Richards

    2006-03-01

    U.S. natural gas composition is expected to be more variable in the future. Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Unconventional gas supplies, like coal-bed methane, are also expected to grow. As a result of these anticipated changes, the composition of fuel sources may vary significantly from existing domestic natural gas supplies. To allow the greatest use of gas supplies, end-use equipment should be able to accommodate the widest possible gas composition. For this reason, the effect of gas composition on combustion behavior is of interest. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 589K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx emissions. These results vary from data reported in the literature for some engine applications and potential reasons for these differences are discussed.

  2. Effects of Propane/Natural Gas Blended Fuels on Gas Turbine Pollutant Emissions

    SciTech Connect (OSTI)

    Straub, D.L.; Ferguson, D.H.; Casleton, K.H.; Richards, G.A.

    2007-03-01

    Liquefied natural gas (LNG) imports to the U.S. are expected to grow significantly over the next 10-15 years. Likewise, it is expected that changes to the domestic gas supply may also introduce changes in natural gas composition. As a result of these anticipated changes, the composition of fuel sources may vary significantly from conventional domestic natural gas supplies. This paper will examine the effects of fuel variability on pollutant emissions for premixed gas turbine conditions. The experimental data presented in this paper have been collected from a pressurized single injector combustion test rig at the National Energy Technology Laboratory (NETL). The tests are conducted at 7.5 atm with a 588 K air preheat. A propane blending facility is used to vary the Wobbe Index of the site natural gas. The results indicate that propane addition of about five (vol.) percent does not lead to a significant change in the observed NOx or CO emissions. These results are different from data collected on some engine applications and potential reasons for these differences will be described.

  3. Comparison of propane and methane performance and emissions in a turbocharged direct injection dual fuel engine

    SciTech Connect (OSTI)

    Gibson, C. M.; Polk, A. C.; Shoemaker, N. T.; Srinivasan, K. K.; Krishnan, S. R.

    2011-04-20

    With increasingly restrictive NO x and particulate matter emissions standards, the recent discovery of new natural gas reserves, and the possibility of producing propane efficiently from biomass sources, dual fueling strategies have become more attractive. This paper presents experimental results from dual fuel operation of a four-cylinder turbocharged direct injection (DI) diesel engine with propane or methane (a natural gas surrogate) as the primary fuel and diesel as the ignition source. Experiments were performed with the stock engine control unit at a constant speed of 1800 rpm, and a wide range of brake mean effective pressures (BMEPs) (2.7-11.6 bars) and percent energy substitutions (PESs) of C 3 H 8 and CH 4. Brake thermal efficiencies (BTEs) and emissions (NO x, smoke, total hydrocarbons (THCs), CO, and CO 2) were measured. Maximum PES levels of about 80-95% with CH 4 and 40-92% with C 3 H 8 were achieved. Maximum PES was limited by poor combustion efficiencies and engine misfire at low loads for both C 3 H 8 and CH 4, and the onset of knock above 9 bar BMEP for C 3 H 8. While dual fuel BTEs were lower than straight diesel BTEs at low loads, they approached diesel BTE values at high loads. For dual fuel operation, NO x and smoke reductions (from diesel values) were as high as 66-68% and 97%, respectively, but CO and THC emissions were significantly higher with increasing PES at all engine loads

  4. Warren Estates District Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin,Village

  5. Thermodynamic Analysis of Combined Cycle District Heating System 

    E-Print Network [OSTI]

    Suresh, S.; Gopalakrishnan, H.; Kosanovic, D.

    2011-01-01

    thermal power plant using design data, where the exergy destruction from each component in the plant was calculated. Senthil Murugan and Subbarao [4] analyzed a Rankine-Kalina combined cycle plant with different modes of operation. Unlike... thermal power plant, Wiley-Interscience. [4] Senthil Murugan R., Subbarao P.M.V., Thermodynamic Analysis of Rankine-Kalina Combined Cycle. [5] Kotas T.J., 1985, The exergy method of thermal plant analysis, Butterworths, London. [6] Rivero R., Rend...

  6. Trends in Commercial Buildings--District Heat Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    confidence ranges. If you have trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial...

  7. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    Project Description With prior support from the Department of Energy (GRED III Program), New Mexico Institute of Mining and Technology (NM Tech) has established that this resource...

  8. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  9. Idaho Capitol Mall District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNewTexas:HydrothermallyIFB Agro| OpenWater PermitOpen Energy

  10. Gila Hot Springs District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpen EnergyGermencikWorldGig Harbor, Washington:Open

  11. Low Temperature Direct Use District Heating Geothermal Facilities | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: EnergyLloyd,LoudonLouviers,Resource | OpenEnergy

  12. Manzanita Estates District Heating Low Temperature Geothermal Facility |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5TransportManitouChange | Open

  13. Litchfield Correctional Center District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon: Energy ResourcesGrove, Iowa:Lisle, Illinois:ListFacility |

  14. New Mexico State University District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio:Archaeological Permits WebpageforLand Office

  15. Oregon Institute of Technology District Heating Low Temperature Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program | Open Energy Information| Open Energy

  16. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0Delaware2 1CubicYear

  17. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions1 0Delaware2 1CubicYearMay-15

  18. Geothermal District Heating System City of Klamath Falls | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock|GenesaGeographicGeospheraInformation

  19. Cedarville School District Retrofit of Heating and Cooling Systems with

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy Jump

  20. GEOTHERMAL DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FARWashers | Department of

  1. Alaska Gateway School District Adopts Combined Heat and Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I Due Date Adv. FossilMethodsDepartment»of Energy

  2. Published in Journal de Physique IV, vol 11, pp. Pr3-101 ---Pr3-108 Kinetic modelling of gas-phase decomposition of propane : correlation with pyrocarbon deposition

    E-Print Network [OSTI]

    Boyer, Edmond

    -phase decomposition of propane : correlation with pyrocarbon deposition Cédric Descamps, Gerard L. Vignoles , Olivier : A chemical kinetic model for gas-phase pyrolysis of propane has been set up, partially reduced, and validated the notion of "maturation" from propane to lighter hydrocarbons, then to aromatic compounds and PAHs. The gas

  3. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Short Report)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This report presents the a brief overview of the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems. A full report of this case study is also available.

  4. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.

  5. A simulation study of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production 

    E-Print Network [OSTI]

    Sandoval Munoz, Jorge Eduardo

    2004-11-15

    in an increase of oil recovery to 35.4-32.6% OOIP at 150-300 BPDCWE. Fifth, with steam-propane injection, for both well systems, oil production acceleration increases with lower injection rates. Sixth, the second oil production peak in the vertical...

  6. Effect of propane-air on NGVs and vehicle fueling stations. Topical report, January 1-October 1, 1993

    SciTech Connect (OSTI)

    Liss, W.E.; Moulton, D.S.

    1994-06-01

    Propane-air (P/A) peakshaving is an important element of peak-load management for some U.S. gas utilities. P/A is used as a supplemental energy medium with natural gas and has been shown to operate satisfactorily in most natural gas applications. The propane levels injected are compatible with the pressures (under 200 psig) and temperatures (over 40 F) found in utility distribution networks. However, P/A can create problems for natural gas vehicles (NGVs) operating on compressed gas as well as NGV fueling stations. This report contains information on P/A peakshaving and its compatibility with NGVs by documenting condensation impacts at nine conditions--i.e., three propane levels and three temperatures. These data portray the depressurization of a vehicle tank, an area selected because it illustrates NGV operation and can discriminate between acceptable and potentially non-acceptable operating points. These analyses show, not surprisingly, a correlation exists between propane level, ambient temperature, and condensation.

  7. Studies of n-Propanol, iso-Propanol, and Propane Flames

    SciTech Connect (OSTI)

    Veloo, Peter S.; Egolfopoulos, Fokion N.

    2011-01-01

    The phenomena of propagation and extinction of flames of saturated C{sub 3} alcohols and propane were studied experimentally and numerically in order to assess the effects of the presence and location of the hydroxyl radical in the fuel molecular structure. The experiments were carried out in the counterflow configuration under atmospheric pressure and for unreacted fuel-carrying stream temperature of 343 K. The simulations included detailed descriptions of molecular transport and chemical kinetics using a recently developed kinetic model for C{sub 3} alcohols. The experimental results revealed that the laminar flame speeds and extinction strain rates of n-propanol/air and propane/air flames are close to each other whereas those of iso-propanol/air flames are consistently lower. Similar behavior was observed also for the extinction strain rates of non-premixed n-propanol and iso-propanol flames. It was shown through sensitivity and reaction path analyses that there are two major differences between the intermediates of n-propanol/air and iso-propanol/air flames. In iso-propanol/air flames there are notably higher concentrations of propene whose consumption pathway results in the relatively unreactive allyl radicals, retarding thus the overall reactivity. In n-propanol/air flames there are notably higher concentrations of formaldehyde that reacts readily to form formyl radicals whose subsequent reactions enhance the overall reactivity. The kinetic model used in this study was found to overpredict the experimental results for rich n-propanol/air and propane/air flames. Analysis revealed that those discrepancies are most likely caused by deficiencies in the C{sub 3} alkane kinetics. Through sensitivity analysis, it was determined also that the propagation and extinction of n-propanol/air and iso-propanol/air flames are sensitive largely to hydrogen, carbon monoxide, and C{sub 1}–C{sub 3} kinetics and not to fuel-specific reactions. Finally, the relative sooting propensities of flames of these three fuels were assessed computationally.

  8. HEATMAP©CHP - The International Standard for Modeling Combined Heat and Power Systems 

    E-Print Network [OSTI]

    Bloomquist, R. G.; O'Brien, R. G.

    2000-01-01

    plants that are linked to district energy applications using hot water or steam for heating and/or chilled water-cooling and/or refrigeration connected to a network of buildings or other residential commercial, institutional, or industrial facilities...

  9. Playing Hot and Cold: How Can Russian Heat Policy Find Its Way Toward Energy Efficiency?

    SciTech Connect (OSTI)

    Roshchanka, Volha; Evans, Meredydd

    2012-09-15

    The Russian district heating has a large energy-saving potential, and, therefore, need for investments. The scale of needed investments is significant: the government estimates that 70 percent of the district heating infrastructure needs replacement or maintenance, a reflection of decades of under investment. Government budgets will be unable to cover them, and iInvolvingement ofthe private industry will be critical to attracting the necessary investementis necessary. For private parties to invest in district heating facilities across Russia, and not only in pockets of already successful enterprises, regulators have to develop a comprehensive policy that works district heating systems under various conditionscost-reflective tariffs, metering, incentives for efficiency and social support for the neediest (instead of subsidies for all).

  10. School District Harnesses Wind to Teach Students

    Broader source: Energy.gov [DOE]

    In addition to saving the school district money, a new wind turbine will give students hand-on experience and teach them about the benefits of renewable energy.

  11. The Metropolitan Water District of Southern California

    Broader source: Energy.gov (indexed) [DOE]

    ERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern California (Metropolitan) is...

  12. Douglas County School District Success Story

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    district in the state, had mounting maintenance needs and failing infrastructure with aging buildings. This was compounded by a budget already stretched to the limit, declining...

  13. Vietnam, March 2010 1 The districting problem:The districting problem

    E-Print Network [OSTI]

    Ferland, Jacques A.

    Vietnam, March 2010 1 The districting problem:The districting problem: applicationsTrois--RiviRivièèresres #12;Vietnam, March 2010 2 IntroductionIntroduction The districting problem consists in partitioning a considering different criteria or constraints.criteria or constraints. #12;Vietnam, March 2010 3 Main criteria

  14. Operation of a Four-Cylinder 1.9L Propane Fueled Homogeneous Charge Compression Ignition Engine: Basic Operating Characteristics and Cylinder-to-Cylinder Effects

    SciTech Connect (OSTI)

    Flowers, D; Aceves, S M; Martinez-Frias, J; Smith, J R; Au, M; Girard, J; Dibble, R

    2001-03-12

    A four-cylinder 1.9 Volkswagen TDI Engine has been converted to run in Homogeneous Charge Compression Ignition (HCCI) mode. The stock configuration is a turbocharged direct injection Diesel engine. The combustion chamber has been modified by discarding the in-cylinder Diesel fuel injectors and replacing them with blank inserts (which contain pressure transducers). The stock pistons contain a reentrant bowl and have been retained for the tests reported here. The intake and exhaust manifolds have also been retained, but the turbocharger has been removed. A heater has been installed upstream of the intake manifold and fuel is added just downstream of this heater. The performance of this engine in naturally aspirated HCCI operation, subject to variable intake temperature and fuel flow rate, has been studied. The engine has been run with propane fuel at a constant speed of 1800 rpm. This work is intended to characterize the HCCI operation of the engine in this configuration that has been minimally modified from the base Diesel engine. The performance (BMEP, IMEP, efficiency, etc) and emissions (THC, CO, NOx) of the engine are presented, as are combustion process results based on heat release analysis of the pressure traces from each cylinder.

  15. LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS

    SciTech Connect (OSTI)

    PACE, M.E.

    2004-01-13

    The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

  16. Cross sections for electron scattering by propane in the low- and intermediate-energy ranges

    SciTech Connect (OSTI)

    Souza, G. L. C. de; Lee, M.-T.; Sanches, I. P.; Rawat, P.; Iga, I.; Santos, A. S. dos; Machado, L. E.; Sugohara, R. T.; Brescansin, L. M.; Homem, M. G. P.; Lucchese, R. R.

    2010-07-15

    We present a joint theoretical-experimental study on electron scattering by propane (C{sub 3}H{sub 8}) in the low- and intermediate-energy ranges. Calculated elastic differential, integral, and momentum transfer as well as total (elastic + inelastic) and total absorption cross sections are reported for impact energies ranging from 2 to 500 eV. Also, experimental absolute elastic cross sections are reported in the 40- to 500-eV energy range. A complex optical potential is used to represent the electron-molecule interaction dynamics. A theoretical method based on the single-center-expansion close-coupling framework and corrected by the Pade approximant is used to solve the scattering equations. The experimental angular distributions of the scattered electrons are converted to absolute cross sections using the relative flow technique. The comparison of our calculated with our measured results, as well as with other experimental and theoretical data available in the literature, is encouraging.

  17. Performance and emissions of propane, natural gas, and methanol fuelled bus engines

    SciTech Connect (OSTI)

    Goetz, W.A.; Petherick, D.; Topaloglu, T.

    1988-01-01

    A comparative evaluation of six transit bus engines (three diesel, one propane (LPG), one natural gas for vehicles (NGV), and one methanol) has been performed. The purpose of the program was to assess the exhaust emissions and fuel consumption of current state-of-the-art large alternative fuel engines. Engine dynamometer test work was performed at the Ontario Research Foundation (ORF) which allowed a detailed comparison of several alternative-fuelled engines versus their diesel counterparts. Test data includes steady-state brake-specific fuel consumption maps, torque and horsepower curves. Transient performance, fuel consumption and emissions information came from computer-controlled engine dynamometer runs of the Advanced Design Bus (ADB) test cycle.

  18. On the phase between pressure and heat release fluctuations for propane/hydrogen flames and its role in mode transitions

    E-Print Network [OSTI]

    Speth, Raymond L.

    This paper presents an experimental investigation into mode-transitions observed in a 50-kW, atmospheric pressure, backward-facing step combustor burning lean premixed C[subscript 3]H[subscript 8]/H[subscript 2] fuel ...

  19. Synthesis and Characterization of Gold Clusters Ligated with 1,3-Bis(dicyclohexylphosphino)propane

    SciTech Connect (OSTI)

    Johnson, Grant E.; Priest, Thomas A.; Laskin, Julia

    2013-09-01

    In this multidisciplinary study we combine chemical reduction synthesis of novel gold clusters in solution with high-resolution analytical mass spectrometry (MS) to gain insight into the composition of the gold clusters and how their size, ionic charge state and ligand substitution influences their gas-phase fragmentation pathways. Ultra small cationic gold clusters ligated with 1,3-bis(dicyclohexylphosphino)propane (DCPP) were synthesized for the first time and introduced into the gas phase using electrospray ionization (ESI). Mass-selected cluster ions were fragmented employing collision induced dissociation (CID) and the product ions were analysed using MS. The solutions were found to contain the multiply charged cationic gold clusters Au9L43+, Au13L53+, Au6L32+, Au8L32+ and Au10L42+ (L = DCPP). The gas-phase fragmentation pathways of these cluster ions were examined systematically employing CID combined with MS. In addition, CID experiments were performed on related gold clusters of the same size and ionic charge state but capped with 1,3-bis(diphenylphosphino)propane (DPPP) ligands containing phenyl functional groups at the two phosphine centers instead of cyclohexane rings. It is shown that this relatively small change in the molecular substitution of the two phosphine centers in diphosphine ligands (C6H11 versus C6H5) exerts a pronounced influence on the size of the species that are preferentially formed in solution during reduction synthesis as well as the gas-phase fragmentation channels of otherwise identical gold cluster ions. The mass spectrometry results indicate that in addition to the length of the alkyl chain between the two phosphine centers, the substituents at the phosphine centers also play a crucial role in determining the composition, size and stability of diphosphine ligated gold clusters synthesized in solution.

  20. The effect of acoustics on an ethanol spray flame in a propane-fired pulse combustor

    SciTech Connect (OSTI)

    Dubey, R.K.; Black, D.L.; McQuay, M.Q. [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.; Carvalho, J.A. Jr. [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao] [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao

    1997-07-01

    The influence of an acoustic field on the combustion characteristics of a hydrogen-stabilized ethanol spray flame has been experimentally investigated using a phase-Doppler particle analyzer in a propane-fired, Rijke-tube, pulse combustor. The controlled sinusoidal acoustic field in the combustor had a sound pressure level of 155 dB and a frequency of 80 Hz. Experiments were performed to study the effect of oscillations on Sauter-mean and arithmetic-mean diameters, droplet velocity, and droplet number density for the present operating conditions of the Rijke-tube combustor. Similar measurements were also performed on a water spray in the propane-fired reactor to study the effect of the acoustic field on the atomization process for the nozzle type used. Spectral analysis of the droplet axial velocity component for the oscillating conditions revealed a dominant frequency equal to the frequency of the sinusoidal acoustic wave in the combustor. The Sauter-mean diameter of the ethanol spray decreased by 15%, on average, in the presence of the acoustic field because of enhanced evaporation, while the droplet arrival rate at the probe volume increased due to changes in the flame structure. Analysis of the measured size distributions indicated that under an oscillating flow there was a larger population of droplets in the diameter range of 3--20 {micro}m. Experiments conducted with the water spray indicated that the oscillations did affect droplet size distributions in the ethanol spray due to enhanced evaporation caused by the relocation of the flame front inside and around the spray cone.

  1. 4-70C Propane (molar mass = 44.1 kg/kmol) poses a greater fire danger than methane (molar mass = 16 kg/kmol) since propane is heavier than air (molar mass = 29 kg/kmol), and it will settle near the floor.

    E-Print Network [OSTI]

    Bahrami, Majid

    4-36 Ideal Gas 4-70C Propane (molar mass = 44.1 kg/kmol) poses a greater fire danger than methane (molar mass = 16 kg/kmol) since propane is heavier than air (molar mass = 29 kg/kmol), and it will settle

  2. An Overview of Operational Characteristics of Selected Irrigation Districts in the Texas Lower Rio Grande Valley: Delta Lake Irrigation District 

    E-Print Network [OSTI]

    Wolfe, Clint D.; Stubbs, Megan J.; Pennington, Ellen L.; Rister, M. Edward; Sturdivant, Allen W.; Lacewell, Ronald D.; Rogers, Callie S.

    2007-01-01

    to the topography, water-delivery infrastructure system, past financial decisions, and population demographics and clientele base of each irrigation district. Delta Lake Irrigation District (DLID) is one of the 29 irrigation districts in the Valley. This study...

  3. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  4. State-Ocean City Beach Erosion Control District (Maryland)

    Broader source: Energy.gov [DOE]

    A Beach Erosion Control District constitutes part of the Ocean City shoreline. Land clearing, construction activity, or the construction or placement of permanent structures within the district is...

  5. Workplace Charging Challenge Partner: Township High School District...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High School District 214's sustainability program by reducing its employees' carbon footprint in the community. The District currently has 8 charging stations with plans for an...

  6. School District Success Story-A Performance Contracting Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    School District Success Story-A Performance Contracting Program School District Success Story-A Performance Contracting Program Provides an overview case study of Douglas County,...

  7. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School...

  8. Making the Grade: Washington School District Invest in Energy...

    Office of Environmental Management (EM)

    Making the Grade: Washington School District Invest in Energy Efficiency Making the Grade: Washington School District Invest in Energy Efficiency September 10, 2015 - 11:55am...

  9. LBNL: Architecture 2030 District Toolkit - 2015 Peer Review ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Architecture 2030 District Toolkit - 2015 Peer Review LBNL: Architecture 2030 District Toolkit - 2015 Peer Review Presenter: Cindy Regnier, LBNL View the Presentation LBNL:...

  10. Architecture 2030 District Toolkit - 2014 BTO Peer Review | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Architecture 2030 District Toolkit - 2014 BTO Peer Review Architecture 2030 District Toolkit - 2014 BTO Peer Review Presenter: Cindy Regnier, Lawrence Berkeley National Laboratory...

  11. BLUE RIVER BASIN (Dodson Industrial District)

    E-Print Network [OSTI]

    US Army Corps of Engineers

    BLUE RIVER BASIN (Dodson Industrial District) Kansas City, Missouri MODIFICATION REQUEST capability to support this request. PROJECT PURPOSE Dodson Industrial District is located along the Blue of a 6,800 foot long levee- floodwall along the north bank of the Blue River from the Bannister Road

  12. DISTRICT OF HOPE SEWAGE TREATMENT STUDY

    E-Print Network [OSTI]

    #12;DISTRICT OF HOPE SEWAGE TREATMENT STUDY DOE FIL4P 1994-12 Preparedfor: Districtof Hope.0 7.0 8.0 . DISTRICT OF HOPE SEWAGE TREATMENT STUDY CONTENTS INTRODUCTION ASSESS LOADING AND IMPACT CONTROLLING SEPTAGE DISCHARGES EX(STING SLUDGE LEVELS IN LAGOONS Figure 3 Sounding Locations Figure 4 West

  13. Use of a thermodynamic cycle simulation to determine the difference between a propane-fuelled engine and an iso-octane-fuelled engine 

    E-Print Network [OSTI]

    Pathak, Dushyant

    2006-04-12

    the engine cycle simulation to determine the difference between a propane-fuelled and an iso-octane-fuelled engine for the same operating conditions and engine specifications. A comprehensive parametric investigation was conducted to examine the effects...

  14. Experimental study of enhancement of injectivity and in-situ oil upgrading by steam-propane injection for the Hamaca heavy oil field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2002-01-01

    Experiments were conducted to study the feasibility of using propane as a steam additive to accelerate oil production and improve steam injectivity in the Hamaca field, Venezuela. The experiments utilized a vertical injection cell into which a...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  16. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  17. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  18. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  19. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 636 580 46 1 Q 114.0...

  20. Adsorption of propane, isopropyl, and hydrogen on cluster models of the M1 phase of Mo-V-Te-Nb-O mixed metal oxide catalyst

    SciTech Connect (OSTI)

    Govindasamy, Agalya; Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2010-01-01

    The Mo-V-Te-Nb-O mixed metal oxide catalyst possessing the M1 phase structure is uniquely capable of directly converting propane into acrylonitrile. However, the mechanism of this complex eight-electron transformation, which includes a series of oxidative H-abstraction and N-insertion steps, remains poorly understood. We have conducted a density functional theory study of cluster models of the proposed active and selective site for propane ammoxidation, including the adsorption of propane, isopropyl (CH{sub 3}CHCH{sub 3}), and H which are involved in the first step of this transformation, that is, the methylene C-H bond scission in propane, on these active site models. Among the surface oxygen species, the telluryl oxo (Te=O) is found to be the most nucleophilic. Whereas the adsorption of propane is weak regardless of the MO{sub x} species involved, isopropyl and H adsorption exhibits strong preference in the order of Te=O > V=O > bridging oxygens > empty Mo apical site, suggesting the importance of TeO{sub x} species for H abstraction. The adsorption energies of isopropyl and H and consequently the reaction energy of the initial dehydrogenation of propane are strongly dependent on the number of ab planes included in the cluster, which points to the need to employ multilayer cluster models to correctly capture the energetics of surface chemistry on this mixed metal oxide catalyst.

  1. DEPARTMENT OF THE ARMY NEW YORK DISTRICT, CORPS OF ENGINEERS

    E-Print Network [OSTI]

    US Army Corps of Engineers

    DEPARTMENT OF THE ARMY NEW YORK DISTRICT, CORPS OF ENGINEERS JACOB K. JAVITS FEDERAL BUILDING NEW The U.S. Army Corps of Engineers, New York District (District) announces the availability of the Draft will be posted on the U.S. Army Corps of Engineers, New York District's website: http

  2. Simulation and Analysis for Applying the Double-Stage Coupled Heat Pump System in the Villa of Cold Area 

    E-Print Network [OSTI]

    Yang, L.; Yao, Y.; Ma, Z.

    2006-01-01

    -to-water double-stage coupled heat pump system, is presented in this paper based on analyzing the characteristics of the villa district heating. Prediction and analysis of the feasibility of the double-stage coupled heat pump system in cold areas were carried...

  3. Subnanometer platinum clusters highly active and selective catalysts for the oxidative dehydrogenation of propane.

    SciTech Connect (OSTI)

    Vajda, S; Pellin, M. J.; Greeley, J. P.; Marshall, C. L.; Curtiss, L. A.; Ballentine, G. A.; Elam, J. W.; Catillon-Mucherie, S.; Redfern, P. C.; Mehmood, F.; Zapol, P.; Yale Univ.

    2009-03-01

    Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt{sub 8-10} clusters stabilized on high-surface-area supports are 40-100 times more active for the oxidative dehydrogenation of propane than previously studied platinum and vanadia catalysts, while at the same time maintaining high selectivity towards formation of propylene over by-products. Quantum chemical calculations indicate that under-coordination of the Pt atoms in the clusters is responsible for the surprisingly high reactivity compared with extended surfaces. We anticipate that these results will form the basis for development of a new class of catalysts by providing a route to bond-specific chemistry, ranging from energy-efficient and environmentally friendly synthesis strategies to the replacement of petrochemical feedstocks by abundant small alkanes.

  4. A rapid compression machine study of the oxidation of propane in the negative temperature coefficient regime

    SciTech Connect (OSTI)

    Gallagher, S.M.; Curran, H.J.; Metcalfe, W.K.; Healy, D.; Simmie, J.M.; Bourque, G.

    2008-04-15

    The oxidation of propane has been studied in the temperature range 680-970 K at compressed gas pressures of 21, 27, and 37 atm and at varying equivalence ratios of 0.5, 1.0, and 2.0. These data are consistent with other experiments presented in the literature for alkane fuels in that, when ignition delay times are plotted as a function of temperature, a characteristic negative coefficient behavior is observed. In addition, these data were simulated using a detailed chemical kinetic model. It was found that qualitatively the model correctly simulated the effect of change in equivalence ratio and pressure, predicting that fuel-rich, high-pressure mixtures ignite fastest, while fuel-lean, low-pressure mixtures ignite slowest. Moreover, reactivity as a function of temperature is well captured, with the model predicting negative temperature coefficient behavior similar to the experiments. Quantitatively the model is faster than experiment for all mixtures at the lowest temperatures (650-750 K) and is also faster than experiment throughout the entire temperature range for fuel-lean mixtures. (author)

  5. Modeling of the formation of short-chain acids in propane flames

    E-Print Network [OSTI]

    Battin-Leclerc, Frédérique; Jaffrezo, J L; Legrand, M

    2009-01-01

    In order to better understand their potential formation in combustion systems, a detailed kinetic mechanism for the formation of short-chain monocarboxylic acids, formic (HCOOH), acetic (CH3COOH), propionic (C2H5COOH) and propenic (C2H3COOH)) acids, has been developed. Simulations of lean (equivalence ratios from 0.9 to 0.48) laminar premixed flames of propane stabilized at atmospheric pressure with nitrogen as diluent have been performed. It was found that amounts up to 25 ppm of acetic acid, 15 ppm of formic acid and 1 ppm of C3 acid can be formed for some positions in the flames. Simulations showed that the more abundant C3 acid formed is propenic acid. A quite acceptable agreement has been obtained with the scarce results from the literature concerning oxygenated compounds, including aldehydes (CH2O, CH3CHO) and acids. A reaction pathways analysis demonstrated that each acid is mainly derived from the aldehyde of similar structure.

  6. Solidere : the battle for Beirut's Central District

    E-Print Network [OSTI]

    Mango, Tamam, 1981-

    2004-01-01

    The Beirut Central District was destroyed during the Lebanese Civil War which extended from 1975 to 1990. Unable to reconstruct the center itself, the Lebanese government turned to a private Real Estate Holding Company ...

  7. Questions about Groundwater Conservation Districts in Texas 

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Silvy, Valeen

    2008-09-22

    Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

  8. District of Columbia Recovery Act State Memo

    Broader source: Energy.gov [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation’s energy and environmental future. The Recovery Act investments in the District of Columbia...

  9. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  10. Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural Characterization and Catalytic Function

    E-Print Network [OSTI]

    Iglesia, Enrique

    Oxidative Dehydrogenation of Propane over V2O5/MoO3/Al2O3 and V2O5/Cr2O3/Al2O3: Structural of stoichiometric reduction in H2, and the oxidative dehydrogenation of propane. VOx domains on Al2O3 modified The oxidative dehydrogenation (ODH) of propane provides an attractive route for the synthesis of propene.1

  11. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  12. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  13. Table A2. Refiner/Reseller Prices of Aviation Fuels, Propane, and Kerosene,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: AlternativeMonthly","10/2015"Monthly","10/2015" ,"Release7CubicthroughtheSeptember 24,4,630.22 Consumption Ratios PAD District

  14. ED-XAS Data Reveal In-situ Time-Resolved Adsorbate Coverage on Supported Molybdenum Oxide Catalysts during Propane Dehydrogenation

    SciTech Connect (OSTI)

    Ramaker, David; Gatewood, Daniel; Beale, Andrew M.; Weckhuysen, Bert M.

    2007-02-02

    Energy-Dispersive X-ray Absorption Spectroscopy (ED-XAS) data combined with UV/Vis, Raman, and mass spectrometry data on alumina- and silica-supported molybdenum oxide catalysts under propane dehydrogenation conditions have been previously reported. A novel {delta}{mu} adsorbate isolation technique was applied here to the time-resolved (0.1 min) Mo K-edge ED-XAS data by taking the difference of absorption, {mu}, at t>1 against the initial time, t=0. Further, full multiple scattering calculations using the FEFF 8.0 code are performed to interpret the {delta}{mu} signatures. The resulting difference spectra and interpretation provide real time propane coverage and O depletion at the MoOn surface. The propane coverage is seen to correlate with the propene and/or coke production, with the maximum coke formation occurring when the propane coverage is the largest. Combined, these data give unprecedented insight into the complicated dynamics for propane dehydrogenation.

  15. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  16. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A. (Santa Cruz, NM)

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  17. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L. (Annandale, VA)

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  18. Low-temperature superacid catalysis: Reactions of n - butane and propane catalyzed by iron- and manganese-promoted sulfated zirconia

    SciTech Connect (OSTI)

    Tsz-Keung, Cheung; d`Itri, J.L.; Lange, F.C.; Gates, B.C.

    1995-12-31

    The primary goal of this project is to evaluate the potential value of solid superacid catalysts of the sulfated zirconia type for light hydrocarbon conversion. The key experiments catalytic testing of the performance of such catalysts in a flow reactor fed with streams containing, for example, n-butane or propane. Fe- and Mn-promoted sulfated zirconia was used to catalyze the conversion of n-butane at atmospheric pressure, 225-450{degrees}C, and n-butane partial pressures in the range of 0.0025-0.01 atm. At temperatures <225{degrees}C, these reactions were accompanied by cracking; at temperatures >350{degrees}C, cracking and isomerization occurred. Catalyst deactivation, resulting at least in part from coke formation, was rapid. The primary cracking products were methane, ethane, ethylene, and propylene. The observation of these products along with an ethane/ethylene molar ratio of nearly 1 at 450{degrees}C is consistent with cracking occurring, at least in part, by the Haag-Dessau mechanism, whereby the strongly acidic catalyst protonates n-butane to give carbonium ions. The rate of methane formation from n-butane cracking catalyzed by Fe- and Mn-promoted sulfated zirconia at 450{degrees}C was about 3 x 10{sup -8} mol/(g of catalyst {center_dot}s). The observation of butanes, pentanes, and methane as products is consistent with Olah superacid chemistry, whereby propane is first protonated by a very strong acid to form a carbonium ion. The carbonium ion then decomposes into methane and an ethyl cation which undergoes oligocondensation reactions with propane to form higher molecular weight alkanes. The results are consistent with the identification of iron- and manganese-promoted sulfated zirconia as a superacid.

  19. The catalytic oxidation of propane and propylene with air: total aldehyde production and selectivity at low conversions. 

    E-Print Network [OSTI]

    Looney, Franklin Sittig

    1950-01-01

    ~ studies ware included The ~ar interest was ~ that of comparing ~ of oxcjdaticn, ~ (8) hells a patent for the method of introducing the ~o- carbon gas into a stream of hot Zine gas containing sufficient oxidiaing gas such 'as k method of sanufacturing... aldetydes from ethane and propane at ~ stares abcnrs six. ~ ~ centigrade over a ~ ~ surface has been patented bT Cmobs (7)~ The efTlnsat gases were scrubbed with water and the residue recyclsd~ 4 Tie1d of aldehyde of xdgh~ve par cent was re~ Tausch...

  20. Impacts of Water Quality on Residential Water Heating Equipment

    SciTech Connect (OSTI)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  1. Winter Heating Fuels - Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    gas storage - Weekly Natural Gas Storage Report Natural gas prices - Natural Gas Monthly Electricity data - Electricity Data Browser Presentations Propane update March 18, 2015...

  2. High-Pressure Micellar Solutions of Polystyrene-block-Polybutadiene and Polystyrene-block-Polyisoprene Solutions in Propane Exhibit Cloud-Pressure Reduction and Distinct Micellization End Points

    SciTech Connect (OSTI)

    Winoto, Winoto; Radosz, Maciej; Tan, Sugata; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    Micellar solutions of polystyrene-block-polybutadiene and polystyrene-block-polyisoprene in propane are found to exhibit significantly lower cloud pressures than the corresponding hypothetical non-micellar solutions. Such a cloud-pressure reduction indicates the extent to which micelle formation enhances the apparent diblock solubility in near-critical and hence compressible propane. Pressure-temperature points beyond which no micelles can be formed, referred to as the micellization end points, are found to depend on the block type, size and ratio, and on the polymer concentration. For a given pressure, the micellization end-point temperature corresponds to the "critical micelle temperature." The cloud-pressure reduction and the micellization end point measured for styrene-diene diblocks in propane should be characteristic of all amphiphilic diblock copolymer solutions that form micelles in compressible solvents.

  3. Energy Management Retrofit for Arlington Independent School District 

    E-Print Network [OSTI]

    Nooner, D.

    1989-01-01

    Like many school districts in the southwest, the Arlington Indement School District (AISD) felt a need to upgrade their schools to maximize their value for the gas and electricity being used. They felt they needed to make sure that energy...

  4. District Courts as Patent Laboratories Jeanne C. Fromer*

    E-Print Network [OSTI]

    Loudon, Catherine

    307 District Courts as Patent Laboratories Jeanne C. Fromer* Introduction .....................................................................................................................307 I. The Federal Circuit's Supervisory Role in Patent Law..........................................308 II. District Courts as the Federal Circuit's Patent Laboratories..............................311

  5. Collective private urban renewal in New Bedford's historic district

    E-Print Network [OSTI]

    Bullard, John K. (John Kilburn)

    1974-01-01

    This thesis examines the waterfront historic district in New Bedford, Massachusetts. It is, hopefully, the beginning of a process of collective private renewal that may lead the revival of the district as a vital element ...

  6. U.S. Army Corps of Engineers New York District

    E-Print Network [OSTI]

    US Army Corps of Engineers

    U.S. Army Corps of Engineers New York District Harbor Inspection September 16, 2015p , Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Colonel David Caldwell, Commander, USACE New York District 0945 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Group Photo of Partners New York Harbor Harbor Operations Overview

  7. Foster-Glocester Regional School District (Rhode Island) - Financing Profile

    SciTech Connect (OSTI)

    none,

    2008-12-01

    This document is an EnergySmart Schools Financing Profile of Foster-Glocester Regional School District in Rhode Island

  8. Washington's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    7th congressional district ARCH Venture Partners (Washington) Northwest National Marine Renewable Energy Center Washington Technology Center Registered Networking...

  9. West Basin Municipal Water District, California; Water/Sewer

    E-Print Network [OSTI]

    US Army Corps of Engineers

    Exhibit D #12;Summary: West Basin Municipal Water District, California; Water/Sewer Primary Credi90023!! #12;Sttmma1·y: West Basin Municipal Water District, California; Water/Sewer Credit Profile US$16.STANDARDANDPOORS.COM/RATJNGSDJRECT MAY31 2013 2 I126639 I 301008236 #12;Summary: West Basin Municipal Water District, California; Water/Sewer

  10. NORTH SAN MATEO COUNTY SANITATION DISTRICT December 1, 2014

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NORTH SAN MATEO COUNTY SANITATION DISTRICT December 1, 2014 US Army Corps of Engineers, Attn: CECW, on behalf of its subsidiary, the North San Mateo County Sanitation District, consistent with the Water of Daly City, California, on behalf of its subsidiary, the North San Mateo County Sanitation District. 2

  11. 2014 Central District Deadlines Third-Year Progress Assessment Packets

    E-Print Network [OSTI]

    Jawitz, James W.

    2014 Central District Deadlines Third-Year Progress Assessment Packets Feb. 4 Central District are on the last page.) for each year that has the CED and DED signatures and rating. June 3 Final version of Third-Year DED submits Third-Year Progress assessment packet to District Faculty with Permanent Status for input

  12. Synergistic effect of mixing dimethyl ether with methane, ethane, propane, and ethylene fuels on polycyclic aromatic hydrocarbon and soot formation

    SciTech Connect (OSTI)

    Yoon, S.S.; Anh, D.H.; Chung, S.H.

    2008-08-15

    Characteristics of polycyclic aromatic hydrocarbon (PAH) and soot formation in counterflow diffusion flames of methane, ethane, propane, and ethylene fuels mixed with dimethyl ether (DME) have been investigated. Planar laser-induced incandescence and fluorescence techniques were employed to measure relative soot volume fractions and PAH concentrations, respectively. Results showed that even though DME is known to be a clean fuel in terms of soot formation, DME mixture with ethylene fuel increases PAH and soot formation significantly as compared to the pure ethylene case, while the mixture of DME with methane, ethane, and propane decreases PAH and soot formation. Numerical calculations adopting a detailed kinetics showed that DME can be decomposed to produce a relatively large number of methyl radicals in the low-temperature region where PAH forms and grows; thus the mixture of DME with ethylene increases CH{sub 3} radicals significantly in the PAH formation region. Considering that the increase in the concentration of O radicals is minimal in the PAH formation region with DME mixture, the enhancement of PAH and soot formation in the mixture flames of DME and ethylene can be explained based on the role of methyl radicals in PAH and soot formation. Methyl radicals can increase the concentration of propargyls, which could enhance incipient benzene ring formation through the propargyl recombination reaction and subsequent PAH growth. Thus, the result substantiates the importance of methyl radicals in PAH and soot formation, especially in the PAH formation region of diffusion flames. (author)

  13. Cool Trends in District Energy: A Survey of Thermal Energy Storage Use in District Energy Utility Applications, June 2005

    Broader source: Energy.gov [DOE]

    A Survey of Thermal Energy Storage (TES) Use In District Energy (DE) Utility Applications in June 2005

  14. Bayonet heat exchangers in heat-assisted Stirling heat pump

    SciTech Connect (OSTI)

    Yagyu, S.; Fukuyama, Y.; Morikawa, T.; Isshiki, N.; Satoh, I.; Corey, J.; Fellows, C.

    1998-07-01

    The Multi-Temperature Heat Supply System is a research project creating a city energy system with lower environmental load. This system consists of a gas-fueled internal combustion engine and a heat-assisted Stirling heat pump utilizing shaft power and thermal power in a combination of several cylinders. The heat pump is mainly driven by engine shaft power and is partially assisted by thermal power from engine exhaust heat source. Since this heat pump is operated by proportioning the two energy sources to match the characteristics of the driving engine, the system is expected to produce cooling and heating water at high COP. This paper describes heat exchanger development in the project to develop a heat-assisted Stirling heat pump. The heat pump employs the Bayonet type heat exchangers (BHX Type I) for supplying cold and hot water and (BHX Type II) for absorbing exhaust heat from the driving engine. The heat exchanger design concepts are presented and their heat transfer and flow loss characteristics in oscillating gas flow are investigated. The main concern in the BHX Type I is an improvement of gas side heat transfer and the spirally finned tubes were applied to gas side of the heat exchanger. For the BHX Type II, internal heat transfer characteristics are the main concern. Shell-and-tube type heat exchangers are widely used in Stirling machines. However, since brazing is applied to the many tubes for their manufacturing processes, it is very difficult to change flow passages to optimize heat transfer and loss characteristics once they have been made. The challenge was to enhance heat transfer on the gas side to make a highly efficient heat exchanger with fewer parts. It is shown that the Bayonet type heat exchanger can have good performance comparable to conventional heat exchangers.

  15. Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996

    SciTech Connect (OSTI)

    NONE

    1996-05-01

    This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  16. Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1995--September 1995

    SciTech Connect (OSTI)

    Lienau, P.

    1995-12-01

    The report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-95. It describes 80 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment and resources. Research activities are summarized on low-temperature resource assessment, geothermal energy cost evaluation and marketing strategy for geothermal district heating. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  17. Experimental study of oil yields and properties of light and medium Venezuelan crude oils under steam and steam-propane distillation 

    E-Print Network [OSTI]

    Plazas Garcia, Joyce Vivia

    2002-01-01

    Six experimental runs were carried out to study the yields for a light crude oil (34.2°API) and an intermediate crude oil (25.1°API) under steam distillation and steam-propane distillation. Yields, were measured at five temperatures, 110, 150, 200...

  18. Experimental and kinetic study of autoignition in methane/ethane/air and methane/propane/air mixtures under engine-relevant conditions

    SciTech Connect (OSTI)

    Huang, J.; Bushe, W.K.

    2006-01-01

    The ignition delay of homogeneous methane/air mixtures enriched with small fractions of ethane/propane was measured using the reflected-shock technique at temperatures from 900 to 1400 K and pressures from 16 to 40 bar. The results show complex effects of ethane/propane on the ignition of methane, but a common trend observed with both hydrocarbons is an increased promotion effect for temperatures below 1100 K. A detailed kinetic mechanism was used to investigate the interaction between ethane/propane and the ignition chemistry of methane under the above conditions. It was found that at relatively low temperatures, the reactions between ethane/propane and methylperoxy (CH{sub 3}O{sub 2}) lead to an enhanced rate of formation of OH radicals in the initiation phase of the ignition. By systematically applying the quasi-steady-state assumptions to the intermediate species involved in the main reaction path identified, we have achieved an analytical description of the ignition process in the transitional temperature regime. The analytical solutions agree reasonably well with the detailed kinetic model and the experimental results for both ignition delay and concentrations of major intermediate species.

  19. Experimental studies of steam and steam-propane injection using a novel smart horizontal producer to enhance oil production in the San Ardo field 

    E-Print Network [OSTI]

    Rivero Diaz, Jose Antonio

    2007-09-17

    is the use of propane as a steam additive with the purpose of increasing recovery and accelerating oil production. The second process involves the use of a novel production configuration that makes use of a vertical injector and a smart horizontal producer...

  20. Lassen Municipal Utility District - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    35 Dishwasher: 35 Room AC: 75 Air Source Heat Pumps: 100 - 400 per ton Ground Source Heat Pump: 1,000 per ton Central AC: 25 - 150 per ton Evaporative Cooled AC:...

  1. Heating System Specification Specification of Heating System

    E-Print Network [OSTI]

    Day, Nancy

    Appendix A Heating System Specification /* Specification of Heating System (loosely based */ requestHeat : Room ­? bool; 306 #12; APPENDIX A. HEATING SYSTEM SPECIFICATION 307 /* user inputs */ living --- HEATERâ??ACTIVE --- ACTIVATINGâ??HEATER --- HEATERâ??RUNNING ; #12; APPENDIX A. HEATING SYSTEM SPECIFICATION

  2. The preliminary result from spectra of $K^0_s ?^-$ in reaction p+propane at 10 GeV/c

    E-Print Network [OSTI]

    P. Zh. Aslanyan

    2006-05-04

    The experimental data from 2m propane bubble chamber have been analyzed to search for scalar meson $\\kappa(800)$ in a $K^0_s\\pi$ decay mode for the reaction p+$C_3H_8$ at 10 GeV/c. The $K^0_s\\pi^-$ invariant mass spectrum has shown resonant structures with $M_{K^0_s\\pi^-}$=730, 900 and $\\Gamma$=143, 48 MeV/$c^2$, respectively. The statistical significance are estimated to be of 14.2$\\sigma$ and 4.2$\\sigma$, respectively. The peak in M(900) is identified as reflection from the well known resonance with mass of 892 MeV/c$^2$.

  3. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    The Small Particle Heat Exchange Receiver (SPHER) for Solarof the small particle heat exchange receiver (or SPHER), asabsorption process, the heat exchange to the gas, the choice

  4. Heat pump system

    DOE Patents [OSTI]

    Swenson, Paul F. (Cleveland, OH); Moore, Paul B. (Fedhaurn, FL)

    1982-01-01

    An air heating and cooling system for a building includes an expansion-type refrigeration circuit and a heat engine. The refrigeration circuit includes two heat exchangers, one of which is communicated with a source of indoor air from the building and the other of which is communicated with a source of air from outside the building. The heat engine includes a heat rejection circuit having a source of rejected heat and a primary heat exchanger connected to the source of rejected heat. The heat rejection circuit also includes an evaporator in heat exchange relation with the primary heat exchanger, a heat engine indoor heat exchanger, and a heat engine outdoor heat exchanger. The indoor heat exchangers are disposed in series air flow relationship, with the heat engine indoor heat exchanger being disposed downstream from the refrigeration circuit indoor heat exchanger. The outdoor heat exchangers are also disposed in series air flow relationship, with the heat engine outdoor heat exchanger disposed downstream from the refrigeration circuit outdoor heat exchanger. A common fluid is used in both of the indoor heat exchanges and in both of the outdoor heat exchangers. In a first embodiment, the heat engine is a Rankine cycle engine. In a second embodiment, the heat engine is a non-Rankine cycle engine.

  5. Water and Space Heating Heat Pumps 

    E-Print Network [OSTI]

    Kessler, A. F.

    1985-01-01

    This paper discusses the design and operation of the Trane Weathertron III Heat Pump Water Heating System and includes a comparison of features and performance to other domestic water heating systems. Domestic water is generally provided through...

  6. Industrial Waste Heat Recovery Using Heat Pipes 

    E-Print Network [OSTI]

    Ruch, M. A.

    1981-01-01

    For almost a decade now, heat pipes with secondary finned surfaces have been utilized in counter flow heat exchangers to recover sensible energy from industrial exhaust gases. Over 3,000 such heat exchangers are now in service, recovering...

  7. TIME-VARYING FLAME IONIZATION SENSING APPLIED TO NATURAL GAS AND PROPANE BLENDS IN A PRESSURIZED LEAN PREMIXED (LPM) COMBUSTOR

    SciTech Connect (OSTI)

    D. L. Straub; B. T. Chorpening; E. D. Huckaby; J. D. Thornton; W. L. Fincham

    2008-06-13

    In-situ monitoring of combustion phenomena is a critical need for optimal operation and control of advanced gas turbine combustion systems. The concept described in this paper is based on naturally occurring flame ionization processes that accompany the combustion of hydrocarbon fuels. Previous work has shown that flame ionization techniques may be applied to detect flashback, lean blowout, and some aspects of thermo-acoustic combustion instabilities. Previous work has focused on application of DC electric fields. By application of time-varying electric fields, significant improvements to sensor capabilities have been observed. These data have been collected in a lean premixed combustion test rig operating at 0.51-0.76 MPa (5-7.5 atm) with air preheated to 588 K (600°F). Five percent of the total fuel flow is injected through the centerbody tip as a diffusion pilot. The fuel composition is varied independently by blending approximately 5% (volume) propane with the pipeline natural gas. The reference velocity through the premixing annulus is kept constant for all conditions at a nominal value of 70 m/s. The fuel-air equivalence ratio is varied independently from 0.46 – 0.58. Relative to the DC field version, the time-varying combustion control and diagnostic sensor (TV-CCADS) shows a significant improvement in the correlation between the measured flame ionization current and local fuel-air equivalence ratio. In testing with different fuel compositions, the triangle wave data show the most distinct change in flame ionization current in response to an increase in propane content. Continued development of this sensor technology will improve the capability to control advanced gas turbine combustion systems, and help address issues associated with variations in fuel supplies.

  8. Groundbreaking High-Performance Building Districts 

    E-Print Network [OSTI]

    Jordan, J.

    2014-01-01

    to track and analysis performance In-kind member professional services and contributions, including project scoping and feasibility Influence on District-related policy issues, including incentives Member/Partner Benefits ESL-KT-14-11-28 CATEE 2014.... 18-20 Professional Services Stakeholder Opportunities to reach an engaged audience of developers, property owners and property managers Access to the most up-to-date information regarding potential new and renovation projects within the 2030...

  9. Panzhihua east district government | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio Program |View New Pages RecentPalomarPanich,east district

  10. Compressible Solution Properties of Amorphous Polystyrene-block-Polybutadiene, Crystalline Polystyrene-block-Poly(Hydrogenated Polybutadiene) and Their Corresponding Homopolymers: Fluid-Fluid, Fluid-Solid and Fluid-Micelle Phase Transitions in Propane and Propylene

    SciTech Connect (OSTI)

    Hong, Kunlun; Mays, Jimmy; Winoto, Winoto; Radosz, Maciej

    2009-01-01

    Abstract Polystyrene, polybutadiene, hydrogenated polybutadiene, and styrene diblock copolymers of these homopolymers can form homogenous solutions in compressible solvents, such as propane and propylene, which separate into two bulk phases upon reducing pressure. The cloud and micellization pressures for homopolymer and diblock copolymers are generally found to be higher in propane than in propylene, except for hydrogenated polybutadiene and polystyrene-block-(hydrogenated polybutadiene). Hydrogenated polybutadiene homopolymers and copolymers exhibit relatively pressure-independent crystallization and melting observed in both propane and propylene solutions.

  11. Heating systems for heating subsurface formations

    DOE Patents [OSTI]

    Nguyen, Scott Vinh (Houston, TX); Vinegar, Harold J. (Bellaire, TX)

    2011-04-26

    Methods and systems for heating a subsurface formation are described herein. A heating system for a subsurface formation includes a sealed conduit positioned in an opening in the formation and a heat source. The sealed conduit includes a heat transfer fluid. The heat source provides heat to a portion of the sealed conduit to change phase of the heat transfer fluid from a liquid to a vapor. The vapor in the sealed conduit rises in the sealed conduit, condenses to transfer heat to the formation and returns to the conduit portion as a liquid.

  12. Heat transfer and heat exchangers reference handbook

    SciTech Connect (OSTI)

    Not Available

    1991-01-15

    The purpose of this handbook is to provide Rocky Flats personnel with an understanding of the basic concepts of heat transfer and the operation of heat exchangers.

  13. Texas Legislative and Irrigation Districts of the Rio Grande River Basin: A Map Series 

    E-Print Network [OSTI]

    Leigh, Eric; Fipps, G.

    2008-01-01

    Improvement District No.3 HCWID3 La Feria Irrigation District-Cameron County No.3 La Feria Santa Cruz Irrigation District No.15 Santa Cruz Santa Maria Irrigation District-Cameron County No.4 Santa Maria United Irrigation District of Hidalgo County United....6 34,913 Hidalgo County Municipal Utility District No.1 1,120 Hidalgo County Water Improvement District No.3 9,753 La Feria Irrigation District-Cameron County No.3 75,626 Santa Cruz Irrigation District No.15 75,080 Santa Maria Irrigation...

  14. Integrated heat pump and heat storage system

    SciTech Connect (OSTI)

    Katz, A.

    1983-09-13

    An integrated heat pump and heat storage system is disclosed comprising a heat pump, a first conduit for supplying return air from an enclosure to the heat pump, a second conduit for supplying heated air from the heat pump to the enclosure, heat storage apparatus. A first damper is operative in a first orientation to permit return air from the enclosure to enter the first conduit and to prevent return air from passing through the heat storage apparatus and operative in a second orientation to cause return air to pass through the heat storage apparatus for being heated thereby before entering the first conduit. A second damper is operative in a first orientation to cause heated air from the second conduit to pass through the heat storage apparatus for giving up a portion of its heat for storage and operative in a second orientation to prevent heated air from the second conduit from passing through the heat storage apparatus and to permit the heated air from the second conduit to reach the enclosure. The heat storage apparatus may comprise phase change materials.

  15. Microsoft PowerPoint - Vicksburg District Federal Power Projects...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

  16. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Broader source: Energy.gov (indexed) [DOE]

    Alameda-Contra Costa Transit district for three protoype fuel cell buses and six diesel buses operating from the same location. 43545-2.pdf More Documents & Publications...

  17. Modesto Irrigation District- New Home Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Modesto Irrigation District's MPower New Home Program provides incentives to builders and homeowners for designing and building energy-efficient homes. Eligible homes must meet the guidelines for...

  18. Prices by Sales Type, PAD District, and Selected States

    Gasoline and Diesel Fuel Update (EIA)

    AdministrationPetroleum Marketing Annual 1999 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and Selected States b (Cents per Gallon Excluding Taxes)...

  19. Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and Selected States b (Cents per Gallon Excluding Taxes)...

  20. Distributing leadership to teachers through a District Level Math Council

    E-Print Network [OSTI]

    Robertson, Melavel Odviar

    2008-01-01

    to Distribute Leadership through a District-level Math21 Table 3.1: K-12 Math Council potentialinto changes in the Math Literacy Council’s organization,

  1. Maryland's 4th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    congressional district Clean Currents National Interest Security Company NISC Formerly Technology Management Services TMS Inc Standard Solar Standard Solar Inc Retrieved from...

  2. Missouri's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Kokam America Smith Electric Vehicles US SEV US Registered Financial Organizations in Missouri's 5th congressional district MRI Ventures Retrieved from "http:en.openei.orgw...

  3. Douglas County School District (Nevada) Bonds Case Study | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bonds Case Study Douglas County School District faced a challenging combination of aging equipment and buildings (most over 37 years old), rising energy costs, and limited...

  4. Dual source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Dallas, TX); Pietsch, Joseph A. (Dallas, TX)

    1982-01-01

    What is disclosed is a heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating the fluid in heat exchange relationship with a refrigerant fluid; at least two refrigerant heat exchangers, one for effecting heat exchange with the fluid and a second for effecting heat exchange between refrigerant and a heat exchange fluid and the ambient air; a compressor for efficiently compressing the refrigerant; at least one throttling valve for throttling liquid refrigerant; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circulating device and heat exchange fluid circuit for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and direction of flow of the refrigerant therethrough for selecting a particular mode of operation. The heat exchange fluid provides energy for defrosting the second heat exchanger when operating in the air source mode and also provides a alternate source of heat.

  5. Cool Trends in District Energy: A Survey of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in District Energy: A Survey of Thermal Energy Storage Use in District Energy Utility Applications, June 2005 Cool Trends in District Energy: A Survey of Thermal Energy Storage Use...

  6. Bond Underwriter Costs: Texas School Districts and the Hidden Cost of Issuing Bonds 

    E-Print Network [OSTI]

    Stasny, Mary Knetsar

    2011-02-22

    The purpose of this study was to investigate possible relationships between school district characteristics and bond underwriter costs for Texas independent school districts. Bond data for all school districts issuing bonds in the five-year period...

  7. School District Efficiency as Measured by the Financial Allocation Study of Texas 

    E-Print Network [OSTI]

    Steele, Ryan

    2013-11-01

    that larger districts are more efficient than smaller districts. Efficient districts spend less overall per pupil in 9 of the 15 functions of spending reported by schools and spend less on a variety of programs, including regular education, special education...

  8. Building Energy Monitoring and Analysis

    E-Print Network [OSTI]

    Hong, Tianzhen

    2014-01-01

    for cooling,  district heating  District cooling,  district 3 elevators Solar water heating, District heating and HX PVscooling  systems  and  district  heating  with  radiators, 

  9. Direct growth of few-layer graphene on 6H-SiC and 3C-SiC/Si via propane chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Portail, M.; Ouerghi, A.; Zielinski, M.; Chassagne, T.

    2010-10-25

    We propose to grow graphene on SiC by a direct carbon feeding through propane flow in a chemical vapor deposition reactor. X-ray photoemission and low energy electron diffraction show that propane allows to grow few-layer graphene (FLG) on 6H-SiC(0001). Surprisingly, FLG grown on (0001) face presents a rotational disorder similar to that observed for FLG obtained by annealing on (000-1) face. Thanks to a reduced growth temperature with respect to the classical SiC annealing method, we have also grown FLG/3C-SiC/Si(111) in a single growth sequence. This opens the way for large-scale production of graphene-based devices on silicon substrate.

  10. Nanostructure of Solid Precipitates Obtained by Expansion of Polystyrene-block-Polybutadiene Solutions in Near Critical Propane: Block Ratio and Micellar Solution Effects

    SciTech Connect (OSTI)

    Green, Jade; Tyrrell, Zachary; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy

    2011-01-01

    In contrast to incompressible liquid solutions, compressible near-critical solutions of block copolymers allow for controlling rapid structure transformations with pressure alone. For example, when dissolved in near-critical propane, polystyrene-block-polybutadiene can form a random molecular solution at high pressures, a micellar solution at moderate pressures, and a solvent-free precipitate at low pressures. In contrast to the unstructured virgin copolymer, such a propane-treated precipitate rapidly self-assembles toward structures characteristic of equilibrated block copolymers, such as lamellae, spheres, or cylinders, which depend on the block ratio rather than on the decompression rate or temperature, at least within the rate and temperature ranges investigated in this work. At lower temperatures, however, say below 40 C, glass transition of the styrene-butadiene diblocks can inhibit independent structure formation, while crystallization of their hydrogenated-butadiene analogues can preserve the micellar-solution structure.

  11. Deuteration Can Impact Micellization Pressure and Cloud Pressure of Polystyrene-block-polybutadiene and Polystyrene-block-polyisoprene in Compressible Propane

    SciTech Connect (OSTI)

    Winoto, Winoto; Shen, Youqin; Radosz, Maciej; Hong, Kunlun; Mays, Jimmy

    2009-01-01

    The deuterated homopolymers and their corresponding polystyrene-block-polybutadiene and polystyrene-block-polyisoprene copolymers require lower cloud pressures than their hydrogenous analogues to dissolve in a compressible alkane solvent, such as propane. For symmetric diblocks, deuteration reduces the micellization pressure. By contrast, for asymmetric diblocks with a long diene block relative to the styrene block, deuteration can increase the micellization pressure. All in all, however, the deuteration effects, while measurable, do not qualitatively change the principal diblock properties in compressible propane solutions, such as pressure-induced micelle decomposition, micelle formation and micelle size, and their temperature dependence. Therefore, isotope labeling should be a useful approach to neutron-scattering characterization for styrene-diene block copolymers in compressible alkane systems.

  12. Empire District Electric Co | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin, Illinois:JVEmpire District Electric

  13. BLM Elko District Office | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece: EnergyMontana)District Office Jump to:

  14. Twin Falls District | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP) | OpenTrack WindTuvalu:CreeksDistrict

  15. Vanadium oxide based nanostructured materials for catalytic oxidative dehydrogenation of propane : effect of heterometallic centers on the catalyst performance.

    SciTech Connect (OSTI)

    Khan, M. I.; Deb, S.; Aydemir, K.; Alwarthan, A. A.; Chattopadhyay, S.; Miller, J. T.; Marshall, C. L.

    2010-01-01

    Catalytic properties of a series of new class of catalysts materials-[Co{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42} (XO{sub 4})].24H{sub 2}O (VNM-Co), [Fe{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(XO{sub 4})].24H{sub 2}O (VNM-Fe) (X = V, S) and [H{sub 6}Mn{sub 3}(H{sub 2}O){sub 12}V{sub 18}O{sub 42}(VO{sub 4})].30H{sub 2}O for the oxidative dehydrogenation of propane is studied. The open-framework nanostructures in these novel materials consist of three-dimensional arrays of {l_brace}V{sub 18}O{sub 42}(XO{sub 4}){r_brace} (X = V, S) clusters interconnected by {l_brace}-O-M-O-{r_brace} (M = Mn, Fe, Co) linkers. The effect of change in the heterometallic center M (M = Mn, Co, Fe) of the linkers on the catalyst performance was studied. The catalyst material with Co in the linker showed the best performance in terms of propane conversion and selectivity at 350 C. The material containing Fe was most active but least selective and Mn containing catalyst was least active. The catalysts were characterized by Temperature Programmed Reduction (TPR), BET surface area measurement, Diffuse Reflectance Infrared Fourier Transform Spectroscopy, and X-ray Absorption Spectroscopy. TPR results show that all three catalysts are easily reducible and therefore are active at relatively low temperature. In situ X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure spectroscopy (EXAFS) studies revealed that the oxidation state of Co(II) remained unchanged up to 425 C (even after pretreatment). The reduction of Co(II) into metallic form starts at 425 C and this process is completed at 600 C.

  16. Performance and Emissions Characteristics of Bio-Diesel (B100)-Ignited Methane and Propane Combustion in a Four Cylinder Turbocharged Compression Ignition Engine

    SciTech Connect (OSTI)

    Shoemaker, N. T.; Gibson, C. M.; Polk, A. C.; Krishnan, S. R.; Srinivasan, K. K.

    2011-10-05

    Different combustion strategies and fuel sources are needed to deal with increasing fuel efficiency demands and emission restrictions. One possible strategy is dual fueling using readily available resources. Propane and natural gas are readily available with the current infrastructure and biodiesel is growing in popularity as a renewable fuel. This paper presents experimental results from dual fuel combustion of methane (as a surrogate for natural gas) and propane as primary fuels with biodiesel pilots in a 1.9 liter, turbocharged, 4 cylinder diesel engine at 1800 rev/min. Experiments were performed with different percentage energy substitutions (PES) of propane and methane and at different brake mean effective pressures (BMEP/bmep). Brake thermal efficiency (BTE) and emissions (NOx, HC, CO, CO2, O2 and smoke) were also measured. Maximum PES levels for B100-methane dual fuelling were limited to 70% at 2.5 bar bmep and 48% at 10 bar bmep, and corresponding values for B100-propane dual fuelling were 64% and 43%, respectively. Maximum PES was limited by misfire at 2.5 bar bmep and the onset of engine knock at 10 bar bmep. Dual fuel BTEs approached straight B100 values at 10 bar bmep while they were significantly lower than B100 values at 2.5 bar bmep. In general dual fuelling was beneficial in reducing NOx and smoke emissions by 33% and 50%, respectively from baseline B100 levels; however, both CO and THC emissions were significantly higher than baseline B100 levels at all PES and loads.

  17. Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study

    SciTech Connect (OSTI)

    2013-05-29

    Texas A&M University is operating a high-efficiency combined heat and power (CHP) system at its district energy campus in College Station, Texas. Texas A&M received $10 million in U.S. Department of Energy funding from the American Recovery and Reinvestment Act (ARRA) of 2009 for this project. Private-sector cost share totaled $40 million.

  18. Effects of pressure, temperature, and hydrogen during graphene growth on SiC(0001) using propane-hydrogen chemical vapor deposition

    SciTech Connect (OSTI)

    Michon, A.; Vezian, S.; Roudon, E.; Lefebvre, D.; Portail, M.; Zielinski, M.; Chassagne, T.

    2013-05-28

    Graphene growth from a propane flow in a hydrogen environment (propane-hydrogen chemical vapor deposition (CVD)) on SiC differentiates from other growth methods in that it offers the possibility to obtain various graphene structures on the Si-face depending on growth conditions. The different structures include the (6{radical}3 Multiplication-Sign 6{radical}3)-R30 Degree-Sign reconstruction of the graphene/SiC interface, which is commonly observed on the Si-face, but also the rotational disorder which is generally observed on the C-face. In this work, growth mechanisms leading to the formation of the different structures are studied and discussed. For that purpose, we have grown graphene on SiC(0001) (Si-face) using propane-hydrogen CVD at various pressure and temperature and studied these samples extensively by means of low energy electron diffraction and atomic force microscopy. Pressure and temperature conditions leading to the formation of the different structures are identified and plotted in a pressure-temperature diagram. This diagram, together with other characterizations (X-ray photoemission and scanning tunneling microscopy), is the basis of further discussions on the carbon supply mechanisms and on the kinetics effects. The entire work underlines the important role of hydrogen during growth and its effects on the final graphene structure.

  19. QER- Comment of Lake Charles Harbor & Terminal District

    Broader source: Energy.gov [DOE]

    Good Afternoon, Please find the Lake Charles Harbor and Terminal District’s comments on Infrastructure Constraints in re: the QER Investigation hearing scheduled for Bismarck, ND on August 8, 2014. Please include these comments in the public record of the hearing. Thank you.

  20. Palomar Community College District Portland State University Transfer Worksheet

    E-Print Network [OSTI]

    Caughman, John

    Palomar Community College District Portland State University Transfer Worksheet If you are taking classes that are part of the Intersegmental General Education Transfer Curriculum (IGETC) at a Palomar. Degree Requirements (BA, BS) #12;Palomar Community College District Portland State University 2. DEGREE

  1. Multiple source heat pump

    DOE Patents [OSTI]

    Ecker, Amir L. (Duncanville, TX)

    1983-01-01

    A heat pump apparatus for conditioning a fluid characterized by a fluid handler and path for circulating a fluid in heat exchange relationship with a refrigerant fluid, at least three refrigerant heat exchangers, one for effecting heat exchange with the fluid, a second for effecting heat exchange with a heat exchange fluid, and a third for effecting heat exchange with ambient air; a compressor for compressing the refrigerant; at least one throttling valve connected at the inlet side of a heat exchanger in which liquid refrigerant is vaporized; a refrigerant circuit; refrigerant; a source of heat exchange fluid; heat exchange fluid circuit and pump for circulating the heat exchange fluid in heat exchange relationship with the refrigerant; and valves or switches for selecting the heat exchangers and directional flow of refrigerant therethrough for selecting a particular mode of operation. Also disclosed are a variety of embodiments, modes of operation, and schematics therefor.

  2. Heat Exchangers for Solar Water Heating Systems | Department...

    Energy Savers [EERE]

    Heat Exchangers for Solar Water Heating Systems Heat Exchangers for Solar Water Heating Systems Image of a heat exchanger. | Photo from iStockphoto.com Image of a heat exchanger. |...

  3. Heat-Of-Reaction Chemical Heat Pumps--Possible Configurations 

    E-Print Network [OSTI]

    Kirol, L. D.

    1986-01-01

    Chemical heat pumps utilize working fluids which undergo reversible chemical changes. Mechanically driven reactive heat pump cycles or, alternatively, heat driven heat pumps in which either heat engine or heat pump ...

  4. Introduction to Heat Exchangers

    E-Print Network [OSTI]

    Heller, Barbara

    . Since, the effectiveness can be written in terms of heat capacitance rate [W/K], C, and change in temperature [K], . The heat capacitance rate is defined in terms of mass flow rate [kg/s], , and specific heat: ! ! ! " # = ! ! "# ! ! ! - ! ! ! ! ! ! = ! !! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! ! = ! ! ! ! ! - ! ! ! ! ! "# ! ! ! - ! ! ! ! ! Heat%Capacitance%Rate % ! = ! !! ! ! Heat%Capacitance%Rate%[W % ! = ! ! ! ! ! ! ! = ! ! !! ! ! ! max

  5. Construction-employment opportunities of four oil-replacing space-heating alternatives for core areas of thirteen major northeastern and midwestern cities

    SciTech Connect (OSTI)

    Santini, D.J.; Wernette, D.R.

    1980-07-01

    Construction employment opportunities are compared for four oil-replacing technologies providing equivalent space-heating services to the core areas of 13 major northeastern and midwestern cities. The four technologies are: cogeneration district heating, coal gasification, coal liquefaction and electrification (coal-fired power plant). It is observed that the district-heating option places a higher percentage of its capital stock within the center city. It also requires lower occupational skills for its construction than the other three alternatives. In view of the lower average educational level of minorities and their concentration in urban areas, substantially more minority employment should occur if district heating is implemented. This alternative also will provide employment opportunities for unemployed nonminority construction laborers and contribute indirectly to the improvement of inner-city neighborhoods where many unemployed construction laborers live.

  6. Synthesis of Pt?Pd Core?Shell Nanostructures by Atomic Layer Deposition: Application in Propane Oxidative Dehydrogenation to Propylene

    SciTech Connect (OSTI)

    Lei, Y.; Liu, Bin; Lu, Junling; Lobo-Lapidus, Rodrigo J.; Wu, Tianpin; Feng, Hao; Xia, Xiaoxing; Mane, Anil U.; Libera, Joseph A.; Greeley, Jeffrey P.; Miller, Jeffrey T.; Elam, J. W.

    2012-08-20

    Atomic layer deposition (ALD) was employed to synthesize supported Pt?Pd bimetallic particles in the 1 to 2 nm range. The metal loading and composition of the supported Pt?Pd nanoparticles were controlled by varying the deposition temperature and by applying ALD metal oxide coatings to modify the support surface chemistry. Highresolution scanning transmission electron microscopy images showed monodispersed Pt?Pd nanoparticles on ALD Al2O3 - and TiO2 -modi?ed SiO2 gel. X-ray absorption spectroscopy revealed that the bimetallic nanoparticles have a stable Pt-core, Pd-shell nanostructure. Density functional theory calculations revealed that the most stable surface con?guration for the Pt? Pd alloys in an H2 environment has a Pt-core, Pd-shell nanostructure. In comparison to their monometallic counterparts, the small Pt?Pd bimetallic core?shell nanoparticles exhibited higher activity in propane oxidative dehydrogenation as compared to their physical mixture.

  7. Heat Pump for High School Heat Recovery 

    E-Print Network [OSTI]

    Huang, K.; Wang, H.; Zhou, X.

    2006-01-01

    The heat pump system used for recycling and reusing waste heat in s high school bathroom was minutely analyzed in its coefficient of performance, onetime utilization ratio of energy, economic property and so on. The results showed that this system...

  8. Propane ammoxidation over the Mo-V-Te-Nb-O M1 phase: Reactivity of surface cations in hydrogen abstraction steps

    SciTech Connect (OSTI)

    Muthukumar, Kaliappan; Yu, Junjun; Xu, Ye; Guliants, Vadim V.

    2011-01-01

    Density functional theory calculations (GGA-PBE) have been performed to investigate the adsorption of C3 (propane, isopropyl, propene, and allyl) and H species on the proposed active center present in the surface ab planes of the bulk Mo-V-Te-Nb-O M1 phase in order to better understand the roles of the different surface cations in propane ammoxidation. Modified cluster models were employed to isolate the closely spaced V=O and Te=O from each other and to vary the oxidation state of the V cation. While propane and propene adsorb with nearly zero adsorption energy, the isopropyl and allyl radicals bind strongly to V=O and Te=O with adsorption energies, {Delta}E, being {le} -1.75 eV, but appreciably more weakly on other sites, such as Mo=O, bridging oxygen (Mo-O-V and Mo-O-Mo), and empty metal apical sites ({Delta}E > -1 eV). Atomic H binds more strongly to Te = O ({Delta}E {le} -3 eV) than to all the other sites, including V = O ({Delta}E = -2.59 eV). The reduction of surface oxo groups by dissociated H and their removal as water are thermodynamically favorable except when both H atoms are bonded to the same Te=O. Consistent with the strong binding of H, Te=O is markedly more active at abstracting the methylene H from propane (E{sub a} {le} 1.01 eV) than V = O (E{sub a} = 1.70 eV on V{sup 5+} = O and 2.13 eV on V{sup 4+} = O). The higher-than-observed activity and the loose binding of Te = O moieties to the mixed metal oxide lattice of M1 raise the question of whether active Te = O groups are in fact present in the surface ab planes of the M1 phase under propane ammoxidation conditions.

  9. Northeast Home Heating Oil Reserve System Heating Oil, PIA Office...

    Broader source: Energy.gov (indexed) [DOE]

    Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy Headquaters Northeast Home Heating Oil Reserve System Heating Oil, PIA Office of Fossil Energy...

  10. SMALL PARTICLE HEAT EXCHANGERS

    E-Print Network [OSTI]

    Hunt, A.J.

    2011-01-01

    heat exchangers. These types of heat exchangers have limitedheat exchanger to solar collection systems that utilize linear trough- typenon-solar heat exchangers. These may be of the type used to

  11. Concentrating solar heat collector

    SciTech Connect (OSTI)

    Fattor, A.P.

    1980-09-23

    A heat storage unit is integrated with a collection unit providing a heat supply in off-sun times, and includes movable insulation means arranged to provide insulation during off-sun times for the heat storage unit.

  12. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, G.

    1982-06-16

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  13. Absorption heat pump system

    DOE Patents [OSTI]

    Grossman, Gershon (Oak Ridge, TN)

    1984-01-01

    The efficiency of an absorption heat pump system is improved by conducting liquid from a second stage evaporator thereof to an auxiliary heat exchanger positioned downstream of a primary heat exchanger in the desorber of the system.

  14. Locating Heat Recovery Opportunities 

    E-Print Network [OSTI]

    Waterland, A. F.

    1981-01-01

    Basic concepts of heat recovery are defined as they apply to the industrial community. Methods for locating, ranking, and developing heat recovery opportunities are presented and explained. The needs for useful heat 'sinks' are emphasized as equal...

  15. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet), Building America Case Study: Whole-House Solutions for New Homes, Building Technologies Office (BTO)

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate WebinarProductionStorageHydrogen and

  16. Central Lincoln People's Utility District - Renewable Energy...

    Broader source: Energy.gov (indexed) [DOE]

    PV (Residential): 2,000 PV (Commercial): 5,000 Solar Water Heating: 800 Wind: 5,000 Hydro Electric: 5,000 Program Info Sector Name Utility Administrator Central Lincoln...

  17. Woven heat exchanger

    DOE Patents [OSTI]

    Piscitella, R.R.

    1984-07-16

    This invention relates to a heat exchanger for waste heat recovery from high temperature industrial exhaust streams. In a woven ceramic heat exchanger using the basic tube-in-shell design, each heat exchanger consisting of tube sheets and tube, is woven separately. Individual heat exchangers are assembled in cross-flow configuration. Each heat exchanger is woven from high temperature ceramic fiber, the warp is continuous from tube to tube sheet providing a smooth transition and unitized construction.

  18. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Revised: December, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings...

  19. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other All Buildings*...

  20. Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    Geothermal heat pumps are expensive to install but pay for themselves over time in reduced heating and cooling costs. Find out if one is right for your home.