National Library of Energy BETA

Sample records for district heat consumption

  1. ,"Total District Heat Consumption (trillion Btu)",,,,,"District...

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Consumption (trillion Btu)",,,,,"District Heat Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  2. Table 5a. Total District Heat Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total District Heat Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using District Heat (thousand) Total District Heat Consumption...

  3. Susanville District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Susanville District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Susanville District Heating District Heating Low Temperature...

  4. Compare All CBECS Activities: District Heat Use

    U.S. Energy Information Administration (EIA) Indexed Site

    District Heat Use Compare Activities by ... District Heat Use Total District Heat Consumption by Building Type Commercial buildings in the U.S. used a total of approximately 433...

  5. Kethcum District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Kethcum District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Kethcum District Heating District Heating Low Temperature Geothermal...

  6. Midland District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Midland District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Midland District Heating District Heating Low Temperature Geothermal...

  7. Pagosa Springs District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Pagosa Springs District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Pagosa Springs District Heating District Heating Low...

  8. Philip District Heating District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Philip District Heating District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Philip District Heating District Heating Low Temperature Geothermal...

  9. Geothermal District Heating Economics

    Energy Science and Technology Software Center (OSTI)

    1995-07-12

    GEOCITY is a large-scale simulation model which combines both engineering and economic submodels to systematically calculate the cost of geothermal district heating systems for space heating, hot-water heating, and process heating based upon hydrothermal geothermal resources. The GEOCITY program simulates the entire production, distribution, and waste disposal process for geothermal district heating systems, but does not include the cost of radiators, convectors, or other in-house heating systems. GEOCITY calculates the cost of district heating basedmore » on the climate, population, and heat demand of the district; characteristics of the geothermal resource and distance from the distribution center; well-drilling costs; design of the distribution system; tax rates; and financial conditions.« less

  10. Warm Springs Water District District Heating Low Temperature...

    Open Energy Info (EERE)

    Water District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warm Springs Water District District Heating Low Temperature Geothermal...

  11. Elko County School District District Heating Low Temperature...

    Open Energy Info (EERE)

    Elko County School District District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Elko County School District District Heating Low Temperature...

  12. Designs for maximum utilization of district heating systems ...

    Office of Scientific and Technical Information (OSTI)

    Subject: 15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DISTRICT HEATING; DESIGN; ECONOMIC ANALYSIS; GEOTHERMAL ...

  13. Litchfield Correctional Center District Heating Low Temperature...

    Open Energy Info (EERE)

    Litchfield Correctional Center District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Litchfield Correctional Center District Heating Low Temperature...

  14. Manzanita Estates District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Manzanita Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Manzanita Estates District Heating Low Temperature Geothermal Facility...

  15. Boise geothermal district heating system

    SciTech Connect (OSTI)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  16. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption and Expenditures Electricity Consumption Natural Gas Consumption Wood and Solar Energy Consumption Fuel Oil and District Heat Consumption Energy Consumption in...

  17. Cedarville School District Retrofit of Heating and Cooling Systems...

    Energy Savers [EERE]

    Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops Cedarville School District Retrofit of Heating and...

  18. Warren Estates District Heating Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Warren Estates District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Warren Estates District Heating Low Temperature Geothermal Facility Facility...

  19. Idaho Capitol Mall District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Idaho Capitol Mall District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Idaho Capitol Mall District Heating Low Temperature Geothermal Facility...

  20. Fort Boise Veteran's Hospital District Heating Low Temperature...

    Open Energy Info (EERE)

    Fort Boise Veteran's Hospital District Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Fort Boise Veteran's Hospital District Heating Low Temperature...

  1. Geothermal district heating and cooling in Vicenza, Italy

    SciTech Connect (OSTI)

    Leoni, P.

    1995-06-01

    The discovery of a large low-enthalpy geothermal water reservoir under the city of Vicenza (110,000 people) in northern Italy, through an oil prospecting venture, opened up the opportunity to install a district heating system with low energy consumption. Although the geothermal water is at 67{degrees}C, this is insufficient for heating the city`s commercial and residential buildings using their existing high-temperature heat distribution systems. Heat pumps are, therefore, used to obtain optimum useful heat energy from the geothermal source. Experience so far suggests that the system can reduce energy consumption by up to 60%, or 3885 MWh/year. The 2000 m deep well was completed in 1983 and is the first such well in Italy to be located within an urban area, making it ideal as a heat source for a district heating system. It produces 100 m{sup 3}/h of low salt-content water. The {open_quotes}Vicenza{close_quotes} geothermal heating and cooling project was developed by {open_quotes}Aziende Industriali Muncipalizzate{close_quotes} from 1988 to 1991, a utility company owned by the city of Vicenza, with the purpose of distributing approximately 40,000 MWh year to residential and commercial buildings. The project includes the installation of a power plant, and a district heating and cooling network. A reduction in the consumption of conventional fuels both for heating and domestic water has been achieved through a highly-efficient thermodynamic system based on reversible heat pumps. The system provides heating in the winter and air conditioning in summer.

  2. District heating strategy model: community manual

    SciTech Connect (OSTI)

    Hrabak, R. A.; Kron, Jr., N. F.; Pferdehirt, W. P.

    1981-10-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling systems. Twenty-eight communities have received HUD cooperative agreements to aid in a national feasibility assessment of district heating and cooling systems. The HUD/DOE program includes technical assistance provided by Argonne National Laboratory and Oak Ridge National Laboratory. Part of this assistance is a computer program, called the district heating strategy model, that performs preliminary calculations to analyze potential district heating and cooling systems. The model uses information about a community's physical characteristics, current electricity-supply systems, and local economic conditions to calculate heat demands, heat supplies from existing power plants and a new boiler, system construction costs, basic financial forecasts, and changes in air-pollutant emissions resulting from installation of a district heating and cooling system. This report explains the operation of the district heating strategy model, provides simplified forms for organizing the input data required, and describes and illustrates the model's output data. The report is written for three groups of people: (1) those in the HUD/DOE-sponsored communities who will be collecting input data, and studying output data, to assess the potential for district heating and cooling applications in their communiites; (2) those in any other communities who may wish to use the model for the same purpose; and (3) technical-support people assigned by the national laboratories to explain to community personnel how the model is used.

  3. Boise City Geothermal District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    66.20x109 Btuyr 19.40 GWhyr Delat T 53.00 F Load Factor 0.07 Contact Kent Johnson; 208-384-3926 References Oregon Institute of Technology's Geo-Heat Center1 Boise...

  4. San Bernardino District Heating District Heating Low Temperature...

    Open Energy Info (EERE)

    Annual Generation 75.00x109 Btuyr 22.00 GWhyr Delat T 24.00 F Load Factor 0.20 Start Up Date 1983 Contact 909-384-5298 References Oregon Institute of Technology's Geo-Heat...

  5. City of Klamath Falls District Heating District Heating Low Temperatur...

    Open Energy Info (EERE)

    Annual Generation 35.00x109 Btuyr 10.30 GWhyr Delat T 32.00 F Load Factor 0.25 Start Up Date 1981 Contact 541-883-5316 References Oregon Institute of Technology's Geo-Heat...

  6. New Mexico State University District Heating Low Temperature...

    Open Energy Info (EERE)

    Heating Low Temperature Geothermal Facility Jump to: navigation, search Name New Mexico State University District Heating Low Temperature Geothermal Facility Facility New...

  7. Alternative institutional vehicles for geothermal district heating

    SciTech Connect (OSTI)

    Bressler, S.; Gardner, T.C.; King, D.; Nimmons, J.T.

    1980-06-01

    The attributes of various institutional entities which might participate in various phases of geothermal heating applications are described. Public entities considered include cities, counties, and special districts. Private entities discussed include cooperative organizations and non-member-owned private enterprises. The powers, authority and manner of operation of each of the institutional entities are reviewed. Some of the public utility regulatory implications which may affect choices among available alternatives are considered. (MHR)

  8. District of Columbia Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) District of Columbia Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 34,105 30,409 32,281 2000's 33,468 29,802 32,898 32,814 32,227 32,085 29,049 32,966 31,880 33,177 2010's 33,251 32,862 28,561 32,743 34,057 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 4/29/2016 Next Release

  9. Gila Hot Springs District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Low Temperature Geothermal Facility Facility Gila Hot Springs Sector Geothermal energy Type District Heating Location Gila Hot Springs, New Mexico Coordinates Show Map...

  10. District of Columbia Heat Content of Natural Gas Deliveries to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot) Year Jan Feb ...

  11. Korea District Heating Corporation | Open Energy Information

    Open Energy Info (EERE)

    Korea (Republic) Zip: 463 908 Product: Korea-based organisation seeking to promote energy conservation and improve living standards through the efficient use of district...

  12. World Energy Projection System Plus Model Documentation: District Heat Model

    Reports and Publications (EIA)

    2011-01-01

    This report documents the objectives, analytical approach and development of the World Energy Projection System Plus (WEPS ) District Heat Model. It also catalogues and describes critical assumptions, computational methodology, parameter estimation techniques, and model source code.

  13. Commercial Buildings Energy Consumption and Expenditures 1992...

    U.S. Energy Information Administration (EIA) Indexed Site

    1992 Consumption and Expenditures 1992 Consumption & Expenditures Overview Full Report Tables National estimates of electricity, natural gas, fuel oil, and district heat...

  14. District Wide Geothermal Heating Conversion Blaine County School District

    Broader source: Energy.gov [DOE]

    This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost of ownership of available HVAC replacement options.

  15. 1992 National census for district heating, cooling and cogeneration

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    District energy systems are a major part of the energy use and delivery infrastructure of the United States. With nearly 6,000 operating systems currently in place, district energy represents approximately 800 billion BTU per hour of installed thermal production capacity, and provides over 1.1 quadrillion BTU of energy annually -- about 1.3% of all energy used in the US each year. Delivered through more that 20,000 miles of pipe, this energy is used to heat and cool almost 12 billion square feet of enclosed space in buildings that serve a diverse range of office, education, health care, military, industrial and residential needs. This Census is intended to provide a better understanding of the character and extent of district heating, cooling and cogeneration in the United States. It defines a district energy system as: Any system that provides thermal energy (steam, hot water, or chilled water) for space heating, space cooling, or process uses from a central plant, and that distributes the energy to two or more buildings through a network of pipes. If electricity is produced, the system is a cogenerating facility. The Census was conducted through surveys administered to the memberships of eleven national associations and agencies that collectively represent the great majority of the nation`s district energy system operators. Responses received from these surveys account for about 11% of all district systems in the United States. Data in this report is organized and presented within six user sectors selected to illustrate the significance of district energy in institutional, community and utility settings. Projections estimate the full extent of district energy systems in each sector.

  16. Community Renewable Energy Success Stories Webinar: District Heating with Renewable Energy (text version)

    Broader source: Energy.gov [DOE]

    Below is the text version of the webinar titled "District Heating with Renewable Energy," originally presented on November 20, 2012.

  17. Combined Heat and Power, Waste Heat, and District Energy

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers combined heat and power (CHP) technologies and their applications.

  18. Feasibility analysis of geothermal district heating for Lakeview, Oregon

    SciTech Connect (OSTI)

    Not Available

    1980-12-23

    An analysis of the geothermal resource at Lakeview, Oregon, indicates that a substantial resource exists in the area capable of supporting extensive residential, commercial and industrial heat loads. Good resource productivity is expected with water temperatures of 200{degrees}F at depths of 600 to 3000 feet in the immediate vicinity of the town. Preliminary district heating system designs were developed for a Base Case serving 1170 homes, 119 commercial and municipal buildings, and a new alcohol fuel production facility; a second design was prepared for a downtown Mini-district case with 50 commercial users and the alcohol plant. Capital and operating costs were determined for both cases. Initial development of the Lakeview system has involved conducting user surveys, well tests, determinations of institutional requirements, system designs, and project feasibility analyses. A preferred approach for development will be to establish the downtown Mini-district and, as experience and acceptance are obtained, to expand the system to other areas of town. Projected energy costs for the Mini-district are $10.30 per million Btu while those for the larger Base Case design are $8.20 per million Btu. These costs are competitive with costs for existing sources of energy in the Lakeview area.

  19. Fort Bidwell Indian Community - Geothermal District Heating and Power Production

    Energy Savers [EERE]

    DISTRICT HEATING STUDY JOHN R. VASS TRIBAL ADMINISTRATOR FORT BIDWELL INDIAN COMMUNITY NOVEMBER 2008 OUTLINE * Summary of Ft. Bidwell Tribe * Project Location * Objectives of Project * Project Participants * Outcome of Project * New Projects - Background Information - Technical Support * On-going Projects Status - Accomplishments - Lessons Learned - Upcoming Activities * Future Projects FORT BIDWELL PAIUTE TRIBE * 1865 established as a military outpost then in1934 dedicated as a Native American

  20. Life cycle assessment of base-load heat sources for district heating system options

    SciTech Connect (OSTI)

    Ghafghazi, Saeed; Sowlati, T.; Sokhansanj, Shahabaddine; Melin, Staffan

    2011-03-01

    Purpose There has been an increased interest in utilizing renewable energy sources in district heating systems. District heating systems are centralized systems that provide heat for residential and commercial buildings in a community. While various renewable and conventional energy sources can be used in such systems, many stakeholders are interested in choosing the feasible option with the least environmental impacts. This paper evaluates and compares environmental burdens of alternative energy source options for the base load of a district heating center in Vancouver, British Columbia (BC) using the life cycle assessment method. The considered energy sources include natural gas, wood pellet, sewer heat, and ground heat. Methods The life cycle stages considered in the LCA model cover all stages from fuel production, fuel transmission/transportation, construction, operation, and finally demolition of the district heating system. The impact categories were analyzed based on the IMPACT 2002+ method. Results and discussion On a life-cycle basis, the global warming effect of renewable energy options were at least 200 kgeqCO2 less than that of the natural gas option per MWh of heat produced by the base load system. It was concluded that less than 25% of the upstream global warming impact associated with the wood pellet energy source option was due to transportation activities and about 50% of that was resulted from wood pellet production processes. In comparison with other energy options, the wood pellets option has higher impacts on respiratory of inorganics, terrestrial ecotoxicity, acidification, and nutrification categories. Among renewable options, the global warming impact of heat pump options in the studied case in Vancouver, BC, were lower than the wood pellet option due to BC's low carbon electricity generation profile. Ozone layer depletion and mineral extraction were the highest for the heat pump options due to extensive construction required for these options. Conclusions Natural gas utilization as the primary heat source for district heat production implies environmental complications beyond just the global warming impacts. Diffusing renewable energy sources for generating the base load district heat would reduce human toxicity, ecosystem quality degradation, global warming, and resource depletion compared to the case of natural gas. Reducing fossil fuel dependency in various stages of wood pellet production can remarkably reduce the upstream global warming impact of using wood pellets for district heat generation.

  1. District-heating strategy model: computer programmer's manual

    SciTech Connect (OSTI)

    Kuzanek, J.F.

    1982-05-01

    The US Department of Housing and Urban Development (HUD) and the US Department of Energy (DOE) cosponsor a program aimed at increasing the number of district heating and cooling (DHC) systems. Such systems can reduce the amount and costs of fuels used to heat and cool buildings in a district. Twenty-eight communities have agreed to aid HUD in a national feasibility assessment of DHC systems. The HUD/DOE program entails technical assistance by Argonne National Laboratory and Oak Ridge National Laboratory. The assistance includes a computer program, called the district heating strategy model (DHSM), that performs preliminary calculations to analyze potential DHC systems. This report describes the general capabilities of the DHSM, provides historical background on its development, and explains the computer installation and operation of the model - including the data file structures and the options. Sample problems illustrate the structure of the various input data files, the interactive computer-output listings. The report is written primarily for computer programmers responsible for installing the model on their computer systems, entering data, running the model, and implementing local modifications to the code.

  2. Preliminary business plan: Plzen district heating system upgrade

    SciTech Connect (OSTI)

    1996-06-01

    The district heating system of the City of Plzen, Czech Republic, needs to have physical upgrades to replace aging equipment and to comply with upcoming environmental regulations. Also, its ownership and management are being changed as a result of privatization. As majority owner, the City has the primary goal of ensuring that the heating needs of its customers are met as reliably and cost-effectively as possible. This preliminary business plan is part of the detailed analysis (5 reports in all) done to assist the City in deciding the issues. Preparation included investigation of ownership, management, and technology alternatives; estimation of market value of assets and investment requirements; and forecasting of future cash flow. The district heating system consists of the Central Plzen cogeneration plant, two interconnected heating plants [one supplying both hot water and steam], three satellite heating plants, and cooperative agreements with three industrial facilities generating steam and hot water. Most of the plants are coal-fired, with some peaking units fired by fuel oil.

  3. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District Preprint Yuche Chen, Stanley Young, and Jeff Gonder National Renewable Energy Laboratory Xuewei Qi University of California Riverside Presented at the 4th International Conference on Connected Vehicles & Expo (ICCVE 2015) Shenzhen, China October 19-23, 2015 Conference Paper NREL/CP-5400-65257 December 2015 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable

  4. Influence of district heating water temperatures on the fuel saving and reduction of ecological cost of the heat generation

    SciTech Connect (OSTI)

    Portacha, J.; Smyk, A.; Zielinski, A.; Misiewicz, L.

    1998-07-01

    Results of examinations carried out on the district heating water temperature influence in the cogeneration plant with respect to both the fuel economy and the ecological cost reduction of heat generation for the purposes of heating and hot service water preparation are presented in this paper. The decrease of water return temperature effectively contributes to the increase of fuel savings in all the examined cases. The quantitative savings depend on the outlet water temperature of the cogeneration plant and on the fuel type combusted at the alternative heat generating plant. A mathematical model and a numerical method for calculations of annual cogeneration plant performance, e.g. annual heat and electrical energy produced in cogeneration mode, and the annual fuel consumption, are also discussed. In the discussed mathematical model, the variable operating conditions of cogeneration plant vs. outside temperature and method of control can be determined. The thermal system of cogeneration plant was decomposed into subsystems so as to set up the mathematical model. The determination of subsystem tasks, including a method of convenient aggregation thereof is an essential element of numerical method for calculations of a specific cogeneration plant thermal system under changing conditions. Costs of heat losses in the environment, resulting from the pollutants emission, being formed in the fuel combustion process in the heat sources, were defined. In addition, the environment quantitative and qualitative pollution characteristics were determined both for the heat generation in a cogeneration plant and for an alternative heat-generating plant. Based on the calculations, a profitable decrease of ecological costs is achieved in the cogeneration economy even if compared with the gas-fired heat generating plant. Ecological costs of coal-fired heat generating plant are almost three time higher than those of the comparable cogeneration plant.

  5. Commercial Buildings Energy Consumption and Expenditures 1995...

    U.S. Energy Information Administration (EIA) Indexed Site

    fuel oil, and district heat consumption and expenditures for commercial buildings by building characteristics. Previous Page Arrow Separater Bar File Last Modified: January 29,...

  6. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90[degrees]C and effective additives fore district cooling systems with temperatures of 5 to 15[degrees]C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  7. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.; Christensen, R.N.

    1992-10-01

    This project was designed to find effective surfactant friction reducing additives for use in district heating systems with temperatures of 50 to 90{degrees}C and effective additives fore district cooling systems with temperatures of 5 to 15{degrees}C. Heat transfer measurements in conventional shell and tube heat exchangers and in plate heat exchangers were also carried out to see how seriously these surfactant drag reducing additives reduce heat transfer coefficients.

  8. U.S. Total Consumption of Heat Content of Natural Gas (BTU per...

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot) Decade Year-0 Year-1 Year-2 Year-3 Year-4 ...

  9. Estimate of Fuel Consumption and GHG Emission Impact from an Automated Mobility District

    SciTech Connect (OSTI)

    Chen, Yuche; Young, Stanley; Qi, Xuewei; Gonder, Jeffrey

    2015-10-19

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  10. Estimate of Fuel Consumption and GHG Emission Impact on an Automated Mobility District: Preprint

    SciTech Connect (OSTI)

    Chen, Yuche; Young, Stanley; Gonder, Jeff; Qi, Xuewei

    2015-12-11

    This study estimates the range of fuel and emissions impact of an automated-vehicle (AV) based transit system that services campus-based developments, termed an automated mobility district (AMD). The study develops a framework to quantify the fuel consumption and greenhouse gas (GHG) emission impacts of a transit system comprised of AVs, taking into consideration average vehicle fleet composition, fuel consumption/GHG emission of vehicles within specific speed bins, and the average occupancy of passenger vehicles and transit vehicles. The framework is exercised using a previous mobility analysis of a personal rapid transit (PRT) system, a system which shares many attributes with envisioned AV-based transit systems. Total fuel consumption and GHG emissions with and without an AMD are estimated, providing a range of potential system impacts on sustainability. The results of a previous case study based of a proposed implementation of PRT on the Kansas State University (KSU) campus in Manhattan, Kansas, serves as the basis to estimate personal miles traveled supplanted by an AMD at varying levels of service. The results show that an AMD has the potential to reduce total system fuel consumption and GHG emissions, but the amount is largely dependent on operating and ridership assumptions. The study points to the need to better understand ride-sharing scenarios and calls for future research on sustainability benefits of an AMD system at both vehicle and system levels.

  11. EERE Success Story-Alaska Gateway School District Adopts Combined Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Power | Department of Energy Alaska Gateway School District Adopts Combined Heat and Power EERE Success Story-Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy€, especially for the Alaska Gateway School District, with staff laid off and double duties assigned to many. To help offset high energy costs, the school district decided to replace its

  12. GEOTHERMAL DISTRICT HEATING Dr. John W. Lund, PE Emeritus Director

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to a group of buildings, providing: *Space heating and cooling *Domestic hot water heating *Industrial process heat Could be a hybrid system augmented by: *Heat Pump to boost ...

  13. Annual emissions and air-quality impacts of an urban area district-heating system: Boston case study

    SciTech Connect (OSTI)

    Bernow, S.S.; McAnulty, D.R.; Buchsbaum, S.; Levine, E.

    1980-02-01

    A district-heating system, based on thermal energy from power plants retrofitted to operate in the cogeneration mode, is expected to improve local air quality. This possibility has been examined by comparing the emissions of five major atmospheric pollutants, i.e., particulates, sulfur oxides, carbon monoxide, hydrocarbons, and nitrogen oxides, from the existing heating and electric system in the City of Boston with those from a proposed district heating system. Detailed, spatial distribution of existing heating load and fuel mix is developed to specify emissions associated with existing heating systems. Actual electric-power-plant parameters and generation for the base year are specified. Additional plant fuel consumption and emissions resulting from cogeneration operation have been estimated. Six alternative fuel-emissions-control scenarios are considered. The average annual ground-level concentrations of sulfur oxides are calculated using a modified form of the EPA's Climatological Dispersion Model. This report describes the methodology, the results and their implications, and the areas for extended investigation. The initial results confirm expectations. Average sulfur oxides concentrations at various points within and near the city drop by up to 85% in the existing fuels scenarios and by 95% in scenarios in which different fuels and more-stringent emissions controls at the plants are used. These reductions are relative to concentrations caused by fuel combustion for heating and large commercial and industrial process uses within the city and Boston Edison Co. electric generation.

  14. Characterization of selected application of biomass energy technologies and a solar district heating and cooling system

    SciTech Connect (OSTI)

    D'Alessio, Dr., Gregory J.; Blaunstein, Robert P.

    1980-09-01

    The following systems are discussed: energy self-sufficient farms, wood gasification, energy from high-yield silviculture farms, and solar district heating and cooling. System descriptions and environmental data are included for each one. (MHR)

  15. Economics of power plant district and process heating in Richland, Washington

    SciTech Connect (OSTI)

    Fassbender, L.L.; Bloomster, C.H.

    1981-04-01

    The economic feasibility of utilizing hot water from nuclear reactors to provide district heating for private residences in Richland, Washington, and space and process heating for nearby offices, part of the Hanford Reservation, and the Lamb-Weston potato processing plant is assessed. Specifically, the practicality of using hot water from the Washington Public Power Supply System's WNP-1 reactor, which is currently under construction on the Hanford Reservation, just north of the City of Richland is established. World-wide experience with district heating systems and the advantages of using these systems are described. The GEOCITY computer model used to calculate district heating costs is described and the assumptions upon which the costs are based are presented. District heating costs for the city of Richland, process heating costs for the Lamb-Weston potato processing plant, district heating costs for the Horn Rapids triangle area, and process heating costs for the 300 and 3000 areas are discussed. An economic analysis is discussed and institutional restraints are summarized. (MCW)

  16. Alaska Gateway School District Adopts Combined Heat and Power

    Broader source: Energy.gov [DOE]

    Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Fuel Oil Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings Using Fuel Oil...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,"Total Floorspace of Buildings...

  17. Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumpsand Ground Source Water Loops

    Broader source: Energy.gov [DOE]

    Project objectives: Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School and Middle School.; Provide jobs; and reduce requirements of funds for the capital budget of the School District; and thus give relief to taxpayers in this rural region during a period of economic recession.

  18. Oregon Institute of Technology District Heating Low Temperature...

    Open Energy Info (EERE)

    Annual Generation 46.60x109 Btuyr 13.70 GWhyr Delat T 57.00 F Load Factor 0.25 Start Up Date 1964 Contact 541-885-1691 References Oregon Institute of Technology's Geo-Heat...

  19. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will impact the geothermal energy development market by showing that ground source heat pump systems using production and re-injection wells has the lowest total cost ...

  20. BSU GHP District Heating and Cooling System (Phase I)

    Broader source: Energy.gov [DOE]

    Project objectives: Create a campus geothermal heating and cooling system; Validate the cost savings associated with a geothermal system; Reduce emissions of CO2, CO, PM, SO2, NOx.

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Consumption and Gross Energy Intensity by Building Size for Sum of Major Fuels for Non-Mall Buildings, 2003" ,"Sum of Major Fuel Consumption (trillion Btu)",,,"Total Floorspace...

  2. Evaluation of the heating operation and transmission district: Feasibility of cogeneration. Final report

    SciTech Connect (OSTI)

    Cable, J.H.; Gilday, L.T.; Moss, M.E.

    1995-11-01

    The General Services Administration, through its National Capital Region, operates a district heating system - called the Heating Operation and Transmission District - that provides steam to approximately 100 government buildings in Washington, D.C. HOTD is examining a host of options that will improve its ability to provide reliable, environmentally sound, and cost-effective service to its customers. This report evaluates one of those options - cogeneration, a technology that would enable HOTD to produce steam and electricity simultaneously. The study concluded that, under current regulations, cogeneration is not attractive economically because the payback period (15 years) exceeds Federal return-on-investment guidelines. However, if the regulatory environment changes to allow wheeling (transmission of power by a non-utility power producer to another user), cogeneration would be attractive; HOTD would save anywhere from $38 million to $118 million and the investment would pay back in 7 to 10 years. Although incorporating cogeneration into the HOTD system has no strong benefit at this time, the report recommends that GSA reevaluate cogeneration in one or two years because Federal regulations regarding wheeling are under review. It also recommends that GSA work with the District of Columbia government to develop standards for cogeneration.

  3. Reduction of pumping energy losses in district heating and cooling systems

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  4. Reduction of pumping energy losses in district heating and cooling systems. Final report

    SciTech Connect (OSTI)

    Zakin, J.L.

    1991-12-01

    This project was designed to explore the effects of different structures of cationic surfactant drag reducing additives on their efficiency and on their effective temperature ranges. The goal was to develop surfactant systems that would be useful in the appropriate temperature ranges for district heating systems (50--110{degree}C) and for district cooling systems (2--20{degree}C). To this end the chemical compositions of quaternary annonium salts and of counter-ions were varied. More than twenty different commercial or semi commercial quarterly ammonium salts from US suppliers and two from a German supplier (Hoechst) were tested along with thirty five different counter-ions. In addition, blends of several of each were also tested. A further object of this project was to check the compatibility of surfactant drag reducers with commercial or semi-commercial corrosion inhibitors in regard to maintaining their drag reducing ability and corrosion inhibiting capability.

  5. Preliminary conceptual design for geothermal space heating conversion of school district 50 joint facilities at Pagosa Springs, Colorado. GTA Report No. 6

    SciTech Connect (OSTI)

    Engen, I.A.

    1981-11-01

    This feasibility study and preliminary conceptual design effort assesses the conversion of Colorado School District 50 facilities - a high school and gym, and a middle school building - at Pagosa Springs, Colorado to geothermal space heating. A preliminary cost-benefit assessment made on the basis of estimated costs for conversion, system maintenance, debt service, resource development, electricity to power pumps, and savings from reduced natural gas consumption concluded that an economic conversion depended on development of an adequate geothermal resource (approximately 150/sup 0/F, 400 gpm). Material selection assumed that the geothermal water to the main supply system was isolated to minimize effects of corrosion and deposition, and that system-compatible components would be used for the building modifications. Asbestos-cement distribution pipe, a stainless steel heat exchanger, and stainless steel lined valves were recommended for the supply, heat transfer, and disposal mechanisms, respectively. A comparison of the calculated average gas consumption cost, escalated at 10% per year, with conversion project cost, both in 1977 dollars, showed that the project could be amortized over less than 20 years at current interest rates. In view of the favorable economics and the uncertain future availability and escalating cost of natural gas, the conversion appears economicaly feasible and desirable.

  6. Influence of rheological properties of a lubricant on power consumption and heat transfer in a hydrostatic lubricating layer

    SciTech Connect (OSTI)

    Yablonskii, V.O.; Tyabin, N.V.; Yashchuk, V.M.

    1995-06-01

    The influence of rheological properties of lubricants on power consumption for pumping the lubricant in a hydrostatic lubricating layer and heat transfer of the lubricant with the supporting surfaces of a bearing is studied.

  7. Table 5b. Relative Standard Errors for Total District Heat Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    35 36 200,001 to 500,000 22 31 26 27 Over 500,000 42 26 14 10 Principal Building Activity Education 17 29 22 23 Food Sales and Service 67 93 207 150 Health Care 35 26 25 14 Lodging...

  8. Study of fuel consumption and cooling system in low heat rejection turbocharged diesel engines

    SciTech Connect (OSTI)

    Taymaz, I.; Gur, M.; Cally, I.; Mimaroglu, A.

    1998-07-01

    In a conventional internal combustion engine, approximately one-third of total fuel input energy is converted to useful work. Since the working gas in a practical engine cycle is not exhausted at ambient temperature, a major part of the energy is lost with the exhaust gases. In addition another major part of energy input is rejected in the form of heat via the cooling system. If the energy normally rejected to the coolant could be recovered instead on the crankshaft as useful work, then a substantial improvement in fuel economy would result. At the same time, the cooling water, antifreeze, thermostat, radiator, water pump, cooling fan, and associated hoses and clamps could be eliminated. A new trend in the field of internal combustion engines is to insulate the heat transfer surfaces such as the combustion chamber, cylinder wall, cylinder head, piston and valves by ceramic insulating materials for the improvement of engine performance and elimination of cooling system. In this study, the effect of insulated heat transfer surfaces on direct injected and turbocharged diesel engine fuel consumption and cooling system were investigated. The research engine was a four-stroke, direct injected, six cylinder, turbocharged and intercooled diesel engine. This engine was tested at different speeds and loads conditions without coating. Then, combustion chamber surfaces, cylinder head, valves and piston crown faces was coated with ceramic materials. Ceramic layers were made of CaZrO{sub 3} and MgZrO{sub 3} and plasma coated onto base of the NiCrAl bond coat. The ceramic coated research engine was tested at the same operation conditions as the standard (without coating) engine. The results indicate a reduction in fuel consumption and heat losses to engine cooling system of the ceramic coated engine.

  9. Commercial Buildings Energy Consumption Survey (CBECS) - U.S. Energy

    Gasoline and Diesel Fuel Update (EIA)

    Information Administration (EIA) Estimation of Energy End-use Consumption CBECS 2012 - Release date: March 18, 2016 2012 CBECS The energy end-use consumption tables for the 2012 CBECS provide estimates of the amount of electricity, natural gas, fuel oil, and district heat used for ten end uses: space heating, cooling, ventilation, water heating, lighting, cooking, refrigeration, computing (including servers), office equipment, and other uses. Although details vary by energy source, there are

  10. Operation and performance of a 350 kW (100 RT) single-effect/double-lift absorption chiller in a district heating network

    SciTech Connect (OSTI)

    Schweigler, C.J.; Preissner, M.; Demmel, S.; Hellmann, H.M.; Ziegler, F.F.

    1998-10-01

    The efficiency of combined heat, power, and cold production in total energy systems could be improved significantly if absorption chillers were available that could be driven with limited mass flows of low-temperature hot water. In the case of district heat-driven air conditioning, for example, currently available standard absorption chillers are often not applied because they cannot provide the low hot water return temperature and the specific cooling capacity per unit hot water mass flow that are required by many district heating networks. Above all, a drastic increase in the size of the machine (total heat exchanger area) due to low driving temperature differences if of concern in low-temperature applications. A new type of multistage lithium bromide/water absorption chiller has been developed for the summertime operating conditions of district heating networks. It provides large cooling of the district heating water (some 30 K) and large cooling capacity per unit hot water mass flow. Two pilot plants of this novel absorption chiller were designed within the framework of a joint project sponsored by the German Federal Ministry of Education, Science, Research and Technology (BMBF), a consortium of 15 district heating utilities, and two manufacturers. The plants have been operated since summer 1996 in the district heating networks of Berlin and Duesseldorf. This paper describes the concept, installation, and control strategy of the two pilot plants, and it surveys the performance and operating experience of the plants under varying practical conditions.

  11. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal energy storage coupled with district heating or cooling systems. Volume I. Main text

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. The AQUASTOR model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two principal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains the main text, including introduction, program description, input data instruction, a description of the output, and Appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  12. District Energy Technologies | Department of Energy

    Office of Environmental Management (EM)

    through the centralized system. District energy systems often operate with combined heat and power (CHP) and waste heat recovery technologies. Learn more about district energy...

  13. User manual for AQUASTOR: a computer model for cost analysis of aquifer thermal-energy storage oupled with district-heating or cooling systems. Volume II. Appendices

    SciTech Connect (OSTI)

    Huber, H.D.; Brown, D.R.; Reilly, R.W.

    1982-04-01

    A computer model called AQUASTOR was developed for calculating the cost of district heating (cooling) using thermal energy supplied by an aquifer thermal energy storage (ATES) system. the AQUASTOR Model can simulate ATES district heating systems using stored hot water or ATES district cooling systems using stored chilled water. AQUASTOR simulates the complete ATES district heating (cooling) system, which consists of two prinicpal parts: the ATES supply system and the district heating (cooling) distribution system. The supply system submodel calculates the life-cycle cost of thermal energy supplied to the distribution system by simulating the technical design and cash flows for the exploration, development, and operation of the ATES supply system. The distribution system submodel calculates the life-cycle cost of heat (chill) delivered by the distribution system to the end-users by simulating the technical design and cash flows for the construction and operation of the distribution system. The model combines the technical characteristics of the supply system and the technical characteristics of the distribution system with financial and tax conditions for the entities operating the two systems into one techno-economic model. This provides the flexibility to individually or collectively evaluate the impact of different economic and technical parameters, assumptions, and uncertainties on the cost of providing district heating (cooling) with an ATES system. This volume contains all the appendices, including supply and distribution system cost equations and models, descriptions of predefined residential districts, key equations for the cooling degree-hour methodology, a listing of the sample case output, and appendix H, which contains the indices for supply input parameters, distribution input parameters, and AQUASTOR subroutines.

  14. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing...

  15. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All...

  16. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    U.S. Energy Information Administration (EIA) Indexed Site

    7. Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",4657,4403,4395,2670,434,117,50,451,153 "Building

  17. ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Energy Sources, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Buildings Using Any Energy Source","Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","District Chilled Water","Propane","Othera" "All Buildings ................",67338,65753,65716,45525,13285,5891,2750,6290,2322

  18. Exploration and drilling for geothermal heat in the Capital District, New York. Volume 4. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastward toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  19. Exploration and drilling for geothermal heat in the Capital District, New York. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-08-01

    The Capital District area of New York was explored to determine the nature of a hydrothermal geothermal system. The chemistry of subsurface water and gas, the variation in gravity, magnetism, seismicity, and temperature gradients were determined. Water and gas analyses and temperature gradient measurements indicate the existence of a geothermal system located under an area from Ballston Spa, southward to Altamont, and eastware toward Albany. Gravimetric and magnetic surveys provided little useful data but microseismic activity in the Altamont area may be significant. Eight wells about 400 feet deep, one 600 feet and one 2232 feet were drilled and tested for geothermal potential. The highest temperature gradients, most unusual water chemistries, and greatest carbon dioxide exhalations were observed in the vicinity of the Saratoga and McGregor faults between Saratoga Springs and Schenectady, New York, suggesting some fault control over the geothermal system. Depths to the warm fluids within the system range from 500 meters (Ballston Spa) to 2 kilometers (Albany).

  20. Table 2.3 Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    Manufacturing Energy Consumption for Heat, Power, and Electricity Generation by End Use, 2006 End-Use Category Net Electricity 1 Residual Fuel Oil Distillate Fuel Oil LPG 2 and NGL 3 Natural Gas Coal 4 Total 5 Million Kilowatthours Million Barrels Billion Cubic Feet Million Short Tons Indirect End Use (Boiler Fuel) 12,109 21 4 2 2,059 25 – – Conventional Boiler Use 12,109 11 3 2 1,245 6 – – CHP 6 and/or Cogeneration Process – – 10 1 (s) 814 19 – – Direct End Use All Process Uses 657,810

  1. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  2. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  3. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  4. ,"Total Natural Gas Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (billion cubic feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  5. The impact of summer heat islands on cooling energy consumption and CO{sub 2} emissions

    SciTech Connect (OSTI)

    Akbari, H.; Huang, J.; Martien, P.; Rainer, L.; Rosenfeld, A.; Taha, H.

    1988-08-01

    It has been well documented that summer heat islands increase the demand for air conditioning. Several studies have suggested developing guidelines to mitigate this negative effect, on both micro- and meso-scales. Reducing summer heat islands saves cooling energy, reduces peak demand, and reduces the emission of CO{sub 2} from electric power plants. This paper summarizes some of the efforts to quantify the effects of techniques to reduce heat islands. In particular, the authors summarize simulations they have made on the effects of plating trees and switching to light colored surfaces in cities. The results indicate that these techniques effectively reduce building cooling loads and peak power in selected US cities, and are the cheapest way to save energy and reduce CO{sub 2} emissions. This paper compares the economics of technologies to mitigate summer heat islands with other types of conservation measures. The authors estimate the cost of energy conserved by planting trees and recoating surfaces on a national level and compare it with the cost of energy conserved by increasing efficiencies in electrical appliances and cars. Early results indicate that the cost of energy saved by controlling heat islands is less than 1{cents}/kWh, more attractive than efficient electric appliances ({approximately} 2{cents}/kWh), and far more attractive than new electric supplies ({approximately}10{cents}/kWh). In transportation, the cost of conserving a gallon of gasoline, though far more attractive than buying gasoline at current prices, is again more expensive than controlling heat islands. By accounting for the carbon content of the fuels used for power generation and transportation, the authors restate these comparisons in terms of cents per avoided pound of carbon emitted as CO{sub 2}. The results show that the cost of avoided CO{sub 2} from planting trees/increasing albedo is about 0.3--1.3{cents}/lb. of carbon; for buying efficient electric appliances, 2.5{cents}/lb. of carbon; and for efficient cars, 10{cents}/lb. of carbon.

  6. Direct use of geothermal energy, Elko, Nevada district heating. Final report

    SciTech Connect (OSTI)

    Lattin, M.W.; Hoppe, R.D.

    1983-06-01

    In early 1978 the US Department of Energy, under its Project Opportunity Notice program, granted financial assistance for a project to demonstrate the direct use application of geothermal energy in Elko, Nevada. The project is to provide geothermal energy to three different types of users: a commercial office building, a commercial laundry and a hotel/casino complex, all located in downtown Elko. The project included assessment of the geothermal resource potential, resource exploration drilling, production well drilling, installation of an energy distribution system, spent fluid disposal facility, and connection of the end users buildings. The project was completed in November 1982 and the three end users were brought online in December 1982. Elko Heat Company has been providing continuous service since this time.

  7. Comparison of heating and cooling energy consumption by HVAC system with mixing and displacement air distribution for a restaurant dining area in different climates

    SciTech Connect (OSTI)

    Zhivov, A.M.; Rymkevich, A.A.

    1998-12-31

    Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.

  8. Local Power Empowers: CHP and District Energy

    Broader source: Energy.gov [DOE]

    This webinar, held on Nov. 10, 2010, provides information on combined heat and power and district energy.

  9. District cooling gets hot

    SciTech Connect (OSTI)

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  10. District heating and cooling systems for communities through power plant retrofit distribution network, Phase 2. Final report, March 1, 1980-January 31, 1984. Volume 5, Appendix A

    SciTech Connect (OSTI)

    Not Available

    1984-01-31

    This volume contains the backup data for the portion of the load and service assessment in Section 2, Volume II of this report. This includes: locations of industrial and commercial establishments, locations of high rise buildings, data from the Newark (Essex County) Directory of Business, data from the Hudson County Industrial Directory, data from the N. J. Department of Energy Inventory of Public Buildings, data on commercial and industrial establishments and new developments in the Hackensack Meadowlands, data on urban redevelopment and Operation Breakthrough, and list of streets in the potential district heating areas of Newark/Harrison and Jersey City/Hoboken.

  11. US MidAtl PA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in ...

  12. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Texas A ...

  13. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Missouri ...

  14. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Illinois ...

  15. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Michigan ...

  16. New Jersey's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    district in New Jersey. Registered Energy Companies in New Jersey's 2nd congressional district Bartholomew Heating and Cooling Fishermen s Energy Fishermen s Energy of New...

  17. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Commercial Buildings Energy Consumption Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration...

  18. DOETEIAO32l/2 Residential Energy Consumption Survey; Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents comprising a Household Transportation Panel and is reported separately. * Wood used for heating. Although wood consumption data...

  19. US SoAtl FL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Florida ...

  20. US Mnt(S) AZ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Arizona ...

  1. US MidAtl NJ Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in New ...

  2. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Georgia ...

  3. US SoAtl VA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Survey www.eia.govconsumptionresidential Space heating Water heating Air conditioning Appliances, electronics, lighting Household Energy Use in Virginia ...

  4. ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES...

    Office of Scientific and Technical Information (OSTI)

    fuel-fired peak heating for geothermal greenhouses Rafferty, K. 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; GREENHOUSES; AUXILIARY HEATING; CAPITALIZED COST; OPERATING...

  5. Survey Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  6. Elko District Heat District Heating Low Temperature Geothermal...

    Open Energy Info (EERE)

    Annual Generation 22.20x109 Btuyr 6.50 GWhyr Delat T 40.00 F Load Factor 0.19 Start Up Date 1981 Contact Mike Lattin; 775-738-2210 References Oregon Institute of...

  7. International District Energy Association

    Broader source: Energy.gov [DOE]

    Since its formation in 1909, the International District Energy Association (IDEA) has served as a principal industry advocate and management resource for owners, operators, developers, and suppliers of district heating and cooling systems in cities, campuses, bases, and healthcare facilities. Today, with over 1,400 members in 26 countries, IDEA continues to organize high-quality technical conferences that inform, connect, and advance the industry toward higher energy efficiency and lower carbon emissions through innovation and investment in scalable sustainable solutions. With the support of DOE, IDEA performs industry research and market analysis to foster high impact projects and help transform the U.S. energy industry. IDEA was an active participant in the original Vision and Roadmap process and has continued to partner with DOE on combined heat and power (CHP) efforts across the country.

  8. Energy Consumption Series: Assessment of energy use in multibuilding facilities

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This study originally had two primary objectives: (1) to improve EIA`s estimates of district heat consumption for commercial buildings in the CBECS sample that lacked individual metering and (2) to provide a basis for estimating primary fuel consumption by central plants serving commercial buildings. These objectives were expanded to include additional questions relating to these central plants. Background information is provided on the CBECS and on district heating and cooling, which is the most important type of energy-related service provided by multibuilding facilities with central physical plants. Chapters 2 and 3 present data results on multibuilding facilities from the 1989 CBECS and the pilot Facility Survey. Chapter 2 presents the characteristics of multibuilding facilities and the individual buildings located on these facilities. Chapter 3 provides estimates of energy inputs and outputs of multibuilding facilities with central physical plants. Chapter 4 assesses the quality of the pilot Facility Survey and includes recommendations for future work in this area. The appendices provide more detailed information on the Facility Survey itself, in particular the limitations on the use of these results. Appendix B, ``Data Quality``, provides detailed information relating to the limitations of the data and the conclusions presented in this report. As a pilot study, the 1989 Facility Survey has some serious flaws and limitations which are recognized in this report.

  9. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Cooling Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All

  10. Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Cooling Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Cooled Buildings","Cooling Equipment (more than one may apply)" ,,,"Residential-Type Central Air Conditioners","Heat Pumps","Individual Air Conditioners","District Chilled Water","Central Chillers","Packaged Air Conditioning Units","Swamp Coolers","Other" "All

  11. Central Lincoln People's Utility District- Renewable Energy Incentive Program

    Broader source: Energy.gov [DOE]

    Central Lincoln People's Utility District provides financial incentives for its commercial and residential customers to install photovoltaic (PV), solar water heating, wind, and hydro electric...

  12. Omaha Public Power District- Commercial Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Omaha Public Power District (OPPD) offers incentives for commercial and industrial customers to install energy-efficient heat pumps and replace/retrofit existing lighting systems. The Commercial...

  13. Applied Solutions Webinar: Insights Into District Energy

    Broader source: Energy.gov [DOE]

    Local governments and their communities that inhabit dense locations can take advantage of district heating and/or cooling systems as a way to increase energy efficiency and reliability while...

  14. Data Analysis from Ground Source Heat Pump Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ground Source Heat Pump System Data Analysis CX-001515: Categorical Exclusion Determination Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat ...

  15. 2001 Residential Energy Consumption Survey Form EIA-457C (2001...

    Gasoline and Diesel Fuel Update (EIA)

    ... 08 District heat -- Steam or Hot Water, or ...... 09 ......... 03 A SteamHot water system with radiators or convectors in ...

  16. ,"Total Natural Gas Consumption (trillion Btu)",,,,,"Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption (trillion Btu)",,,,,"Natural Gas Energy Intensity (thousand Btusquare foot)" ,"Total ","Space Heating","Water Heating","Cook- ing","Other","Total ","Space...

  17. US MidAtl NY Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption in New York homes is much lower than the U.S. average, because many households use other fuels for major energy end uses like space heating, water heating, and cooking. ...

  18. Community Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    1992-02-21

    The TDIST3 program performs an analysis of large integrated community total energy systems (TES) supplying thermal and electrical energy from one or more power stations. The program models the time-dependent energy demands of a group of representative building types, distributes the thermal demands within a thermal utility system (TUS), simulates the dynamic response of a group of power stations in meeting the TUS demands, and designs an optimal base-loaded (electrically) power plant and thermal energymore » storage reservoir combination. The capital cost of the TES is evaluated. The program was developed primarily to analyze thermal utility systems supplied with high temperature water (HTW) from more than one power plant. The TUS consists of a transmission loop and secondary loops with a heat exchanger linking each secondary loop to the transmission loop. The power stations electrical output supplies all community buildings and the HTW supplies the thermal demand of the buildings connected through the TUS, a piping network. Basic components of the TES model are one or more power stations connected to the transmission loop. These may be dual-purpose, producing electricity and HTW, or just heating plants producing HTW. A thermal storage reservoir is located at one power station. The secondary loops may have heating plants connected to them. The transmission loop delivers HTW to local districts; the secondary loops deliver the energy to the individual buildings in a district.« less

  19. EA-0923: Winnett School District Boiler Replacement Project, Winnett, Montana

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to replace the Winnett School District complex's existing oil-fired heating system with a new coal-fired heating system with funds...

  20. Table 8.6a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c)

    U.S. Energy Information Administration (EIA) Indexed Site

    a Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Total (All Sectors), 1989-2011 (Sum of Tables 8.6b and 8.6c) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 16,509,639 1,410,151 16,356,550 353,000 247,409 19,356,746

  1. Table 8.6b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    b Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Electric Power Sector, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu 1989 638,798 119,640 1,471,031 762 – 1,591,433 81,669,945 2,804 24,182 5,687

  2. Table 8.6c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a)

    U.S. Energy Information Administration (EIA) Indexed Site

    c Estimated Consumption of Combustible Fuels for Useful Thermal Output at Combined-Heat-and-Power Plants: Commercial and Industrial Sectors, 1989-2011 (Subset of Table 8.6a) Year Coal 1 Petroleum Natural Gas 6 Other Gases 7 Biomass Other 10 Distillate Fuel Oil 2 Residual Fuel Oil 3 Other Liquids 4 Petroleum Coke 5 Total 5 Wood 8 Waste 9 Short Tons Barrels Short Tons Barrels Thousand Cubic Feet Billion Btu Billion Btu Billion Btu Commercial Sector 11<//td> 1989 711,212 202,091 600,653 – –

  3. US ENC IL Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    IL Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC IL Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC IL Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC IL Expenditures dollars ELECTRICITY ONLY average per household * Illinois households use 129 million Btu of energy per home, 44% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  4. US ENC MI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    MI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC MI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC MI Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US ENC MI Expenditures dollars ELECTRICITY ONLY average per household * Michigan households use 123 million Btu of energy per home, 38% more than the U.S. average. * High consumption, combined with low costs for heating fuels

  5. Conceptual design phase of a district heating and cooling plant with cogeneration to serve James Madison University and the Harrisonburg Electric Commission

    SciTech Connect (OSTI)

    Belcher, J.B.

    1995-12-31

    A unique opportunity for cooperation and community development exists in Harrisonburg, Virginia. James Madison University, located in Harrisonburg, is undergoing an aggressive growth plan of its academic base which also includes the physical expansion of its campus. The City of Harrisonburg is presently supplying steam to meet a portion of the heating needs of the existing James Madison campus from a city owned and operated waste-to-energy plant. In an effort of cooperation, Harrisonburg and James Madison University have now negotiated an agreement for the city to provide all of the heating and cooling requirements of the new campus expansion. In another unique turn of events, the local electrical power distributor, Harrisonburg Electric Commission, approached the city concerning the inclusion of cogeneration in the project in order to reduce and maintain existing electric rates thus further benefiting the community. Through the cooperation of these three entities, the conceptual design phase of the project has been completed. The plant design developed through this process includes 3,000 tons of chilled water capacity, an additional 64,000 lb/hr of steam capacity and 2.5 MW of cogeneration capacity. This paper describes the conceptual design process for this interesting project.

  6. Manufacturing Consumption of Energy 1991--Combined Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    call 202-586-8800 for help. Return to Energy Information Administration Home Page. Home > Energy Users > Manufacturing > Consumption and Fuel Switching Manufacturing Consumption of...

  7. Total Space Heat-

    Gasoline and Diesel Fuel Update (EIA)

    Survey: Energy End-Use Consumption Tables Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing Light- ing Cook- ing Refrig- eration Office Equip- ment Com- puters Other...

  8. Short-Term Energy Outlook Model Documentation: Natural Gas Consumption and Prices

    Reports and Publications (EIA)

    2015-01-01

    The natural gas consumption and price modules of the Short-Term Energy Outlook (STEO) model are designed to provide consumption and end-use retail price forecasts for the residential, commercial, and industrial sectors in the nine Census districts and natural gas working inventories in three regions. Natural gas consumption shares and prices in each Census district are used to calculate an average U.S. retail price for each end-use sector.

  9. Household energy consumption and expenditures 1993

    SciTech Connect (OSTI)

    1995-10-05

    This presents information about household end-use consumption of energy and expenditures for that energy. These data were collected in the 1993 Residential Energy Consumption Survey; more than 7,000 households were surveyed for information on their housing units, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information represents all households nationwide (97 million). Key findings: National residential energy consumption was 10.0 quadrillion Btu in 1993, a 9% increase over 1990. Weather has a significant effect on energy consumption. Consumption of electricity for appliances is increasing. Houses that use electricity for space heating have lower overall energy expenditures than households that heat with other fuels. RECS collected data for the 4 most populous states: CA, FL, NY, TX.

  10. Integrating district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.

    1996-11-01

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation in power plants using a steam cycle (steam turbine or gas turbine combined cycle plants). The foregone electric production increases with increasing temperature of heat recovery. Given a range of conditions for key variables (such as cogeneration utilization, chiller utilization, cost of fuel, value of electricity, value of heat and temperature of heat recovered), how do technology alternatives for combining district cooling with cogeneration compare? This paper summarizes key findings from a report recently published by the International Energy Agency which examines the energy efficiency and economics of alternatives for combining cogeneration technology options (gas turbine simple cycle, diesel engine, steam turbine, gas turbine combined cycle) with chiller options (electric centrifugal, steam turbine centrifugal one-stage steam absorption, two-stage steam absorption, hot water absorption).

  11. Major Fuels","Electricity","Natural Gas","Fuel Oil","District...

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)","Total of Major Fuels","Electricity","Natural Gas","Fuel Oil","District Heat" "All Buildings ...",4657,67338,81552,66424,10...

  12. Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District

    U.S. Energy Information Administration (EIA) Indexed Site

    of Buildings (thousand)","Floorspace (million square feet)","Sum of Major Fuels","Electricity",,"Natural Gas","Fuel Oil","District Heat" ,,,,"Primary","Site" "All Buildings...

  13. Empire District Electric- Low Income New Homes Program

    Broader source: Energy.gov [DOE]

    Empire District Electric offers rebates for energy efficient measures and appliances in new, low-income homes. Rebates are available for several types of building insulation, heat pumps, central...

  14. Southern Power District- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Southern Power District (SPD) offers rebates for the purchase and installation of efficient air source heat pumps, water heaters, attic insulation, LED lighting, and HVAC tune-ups. All equipment...

  15. Category:Congressional Districts | Open Energy Information

    Open Energy Info (EERE)

    19th congressional district California's 1st congressional district California's 20th congressional district California's 21st congressional district California's 22nd...

  16. Missouri Clean Energy District

    Broader source: Energy.gov [DOE]

    In July 2010 Missouri enacted the Property Assessed Clean Energy Act, which led to the creation of the statewide Missouri Clean Energy District (MCED) in January 2011.

  17. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for Non-Mall Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  18. ,"Total Fuel Oil Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Fuel Oil Consumption (gallons) and Energy Intensities by End Use for All Buildings, 2003" ,"Total Fuel Oil Consumption (million gallons)",,,,,"Fuel Oil Energy Intensity...

  19. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    (MECS) > MECS 1994 Combined Consumption and Fuel Switching Manufacturing Energy Consumption Survey 1994 (Combined Consumption and Fuel Switching) Manufacturing Energy Consumption...

  20. District of Columbia Natural Gas Consumption by End Use

    U.S. Energy Information Administration (EIA) Indexed Site

    ,072 1,740 2,437 2,907 5,148 4,776 2001-2016 Residential 253 520 911 1,335 2,524 2,285 1989-2016 Commercial 736 1,135 1,443 1,487 2,528 2,405 1989-2016 Industrial 0 0 0 0 0 0 2001-2016 Vehicle Fuel 83 86 83 86 95 86 2010-2016 Electric Power -- -- -- -- -- --

  1. District of Columbia Natural Gas Residential Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 13,730 13,686 13,041 13,007 17,374 16,605 17,296 16,729 17,471 17,433 1990's 15,137 15,286 16,587 16,589 15,865 15,690 17,290 15,807 13,249 14,147 2000's 15,437 12,947 14,249 15,156 14,276 13,853 11,412 13,371 13,222 13,466 2010's 13,608 12,386 11,260 13,214 14,242 12,371

  2. District of Columbia Natural Gas Vehicle Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 0 10 6 41 43 53 2000's 59 74 74 90 102 63 65 61 45 830 2010's 883 879 870 861 1,011 993

  3. District of Columbia Natural Gas Consumption by End Use

    Gasoline and Diesel Fuel Update (EIA)

    Gulf of Mexico Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New...

  4. District of Columbia Natural Gas Residential Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1989 2,903 2,556 2,762 1,663 1,025 649 507 483 494 655 1,099 2,637 1990 3,258 2,193 1,984 1,522 849 596 490 433 435 542 1,005 1,828 1991 2,703 2,543 2,076 1,493 804 503 460 432 463 587 1,220 2,001 1992 2,683 2,829 2,172 1,820 948 630 469 420 446 642 1,314 2,213 1993 2,768 2,823 2,867 1,641 825 546 437 419 427 588 1,115 2,134 1994 3,317 3,018 2,437 1,402 725 527 427 389 403 547 928 1,746 1995 2,503 2,877 2,239 1,299 813 472 431 379

  5. District of Columbia Natural Gas Vehicle Fuel Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 75 68 75 73 75 73 75 75 73 75 73 75 2011 75 67 75 72 75 72 75 75 72 75 72 75 2012 74 69 74 71 74 71 74 74 71 74 71 74 2013 73 66 73 71 73 71 73 73 71 73 71 73 2014 86 78 86 83 86 83 86 86 83 86 83 86 2015 83 75 83 80 83 79 86 86 83 86 83 86 2016 95 86

  6. District of Columbia Natural Gas Vehicle Fuel Consumption (Million...

    U.S. Energy Information Administration (EIA) Indexed Site

    Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 0 10 6 41 43 53 2000's 59 74 74 90 102 63 65 61 45 830 2010's 883 879 870 861 1,011...

  7. the District of Columbia Natural Gas Industrial Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 0 0 0 2000's 0 0 0 0 0 0 0 0 0 0 2010's 0 0 0 0

  8. the District of Columbia Natural Gas Industrial Consumption (Million Cubic

    U.S. Energy Information Administration (EIA) Indexed Site

    Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2001 0 0 0 0 0 0 0 0 0 0 0 0 2002 0 0 0 0 0 0 0 0 0 0 0 0 2003 0 0 0 0 0 0 0 0 0 0 0 0 2004 0 0 0 0 0 0 0 0 0 0 0 0 2005 0 0 0 0 0 0 0 0 0 0 0 0 2006 0 0 0 0 0 0 0 0 0 0 0 0 2007 0 0 0 0 0 0 0 0 0 0 0 0 2008 0 0 0 0 0 0 0 0 0 0 0 0 2009 0 0 0 0 0 0 0 0 0 0 0 0 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0

  9. District of Columbia - Compare - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  10. District of Columbia - Rankings - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  11. District of Columbia - Search - U.S. Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    (EIA) District of Columbia District of Columbia

  12. National Lighting Energy Consumption

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Energy National Lighting Energy Consumption Consumption 390 Billion kWh used for lighting in all 390 Billion kWh used for lighting in all commercial buildings in commercial buildings in 2001 2001 LED (<.1% ) Incandescent 40% HID 22% Fluorescent 38% Lighting Energy Consumption by Lighting Energy Consumption by Breakdown of Lighting Energy Breakdown of Lighting Energy Major Sector and Light Source Type Major Sector and Light Source Type Source: Navigant Consulting, Inc., U.S. Lighting

  13. Residential Energy Consumption Survey:

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... ...*...,,.<,<,...,,.,,.,,. 97 Table 6. Residential Fuel Oil and Kerosene Consumption and Expenditures April 1979 Through March 1980 Northeast...

  14. Cooling, Heating and Power in the Nation's Colleges and Universities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This 2002 study presents data on cooling, heating, and power in the collegeuniversity ... Campus: A Survey of Thermal Energy Storage Use in Campus District Energy Systems, May 2005

  15. All Consumption Tables.vp

    U.S. Energy Information Administration (EIA) Indexed Site

    4) June 2007 State Energy Consumption Estimates 1960 Through 2004 2004 Consumption Summary Tables Table S1. Energy Consumption Estimates by Source and End-Use Sector, 2004...

  16. BLM Prineville District Office | Open Energy Information

    Open Energy Info (EERE)

    Prineville District Office Jump to: navigation, search Name: BLM Prineville District Office Place: Prineville, Oregon References: BLM Prineville District Office Directory1 This...

  17. BLM Vale District Office | Open Energy Information

    Open Energy Info (EERE)

    Vale District Office Jump to: navigation, search Name: BLM Vale District Office Place: Vale, Oregon ParentHolding Organization: BLM References: BLM Vale District Office...

  18. Public Utility District #1 Of Jefferson County

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commissioners July 2,2008 Dana Roberts, District 1 M. Kelly Hays, District 2 Wayne G. King, District 3 Mark Gendron, Vice President Northwest Requirements Marketing James G....

  19. Southern Nevada Health District | Open Energy Information

    Open Energy Info (EERE)

    Health District Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Southern Nevada Health District Author Southern Nevada Health District Published...

  20. Westlands Water District | Open Energy Information

    Open Energy Info (EERE)

    Westlands Water District Jump to: navigation, search Name: Westlands Water District Place: California Sector: Solar Product: Water district in central California which administers...

  1. The Big Picture on Process Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Big Picture on Process Heating This brief provides an overview of process heating system components, energy consumption, and potential for savings. PDF icon The Big Picture on ...

  2. CSV File Documentation: Consumption

    Gasoline and Diesel Fuel Update (EIA)

    Consumption Estimates The State Energy Data System (SEDS) comma-separated value (CSV) files ... SG still gas SN special naphthas SO solar thermal and photovoltaic energy TE total ...

  3. Office Buildings - Energy Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Office buildings consumed more than 17 percent of the total energy used by the commercial buildings sector (Table 4). At least half of total energy, electricity,...

  4. Metro Wastewater Reclamation District Biomass Facility | Open...

    Open Energy Info (EERE)

    Wastewater Reclamation District Biomass Facility Jump to: navigation, search Name Metro Wastewater Reclamation District Biomass Facility Facility Metro Wastewater Reclamation...

  5. ENERGY USE AND DOMESTIC HOT WATER CONSUMPTION Final Report

    Office of Scientific and Technical Information (OSTI)

    USE AND DOMESTIC HOT WATER CONSUMPTION Final Report Phase 1 Prepared for THE N E W YORK ... operating data on combined domestic hot water @HW) and heating systems to be used in ...

  6. Residential energy consumption survey: consumption and expenditures, April 1982-March 1983. Part 1, national data

    SciTech Connect (OSTI)

    Thompson, W.

    1984-11-01

    This report presents data on the US consumption and expenditures for residential use of natural gas, electricity, fuel oil or kerosene, and liquefied petroleum gas (LPG) from April 1982 through March 1983. Data on the consumption of wood for this period are also presented. The consumption and expenditures data are based on actual household bills, obtained, with the permission of the household. from the companies supplying energy to the household. Data on wood consumption are based on respondent recall of the amount of wood burned during the winter and are subject to memory errors and other reporting errors described in the report. These data come from the 1982 Residential Energy Consumption Survey (RECS), the fifth in a series of comparable surveys beginning in 1978. The 1982 survey is the first survey to include, as part of its sample, a portion of the same households interviewed in the 1980 survey. A separate report is planned to report these longitudinal data. This summary gives the highlights of a comparison of the findings for the 5 years of RECS data. The data cover all types of housing units in the 50 states and the District of Columbia including single-family units, apartments, and mobile homes. For households with indirect energy costs, such as costs that are included in the rent or paid by third parties, the sonsumption and expenditures data are estimated and included in the figures reported here. The average household consumption of natural gas, electricity, fuel oil or kerosene, and LPG dropped in 1982 from the previous year, hitting a 5-year low since the first Residential Energy Consumption Survey (RECS) was conducted in 1978. The average consumption was 103 (+-3) million Btu per household in 1982, down from 114 (+-) million Btu in 1981. The weather was the main contributing factor. 8 figures, 46 tables.

  7. Energy and economic implications of combining district cooling with cogeneration

    SciTech Connect (OSTI)

    Spurr, M.; Larsson, I.

    1995-12-31

    Chillers can be driven with cogenerated thermal energy, thereby offering the potential to increase utilization of cogeneration throughout the year. However, cogeneration decreases electric output compared to condensing power generation. The foregone electric production increases with increasing temperature of heat recovery. The economics of alternatives for combining district cooling with cogeneration depend on many variables, including cogeneration utilization, chiller utilization, value of electricity, value and temperature of heat recovered and other factors.

  8. Commercial Buildings Energy Consumption Survey - Office Buildings

    Reports and Publications (EIA)

    2010-01-01

    Provides an in-depth look at this building type as reported in the 2003 Commercial Buildings Energy Consumption Survey. Office buildings are the most common type of commercial building and they consumed more than 17% of all energy in the commercial buildings sector in 2003. This special report provides characteristics and energy consumption data by type of office building (e.g. administrative office, government office, medical office) and information on some of the types of equipment found in office buildings: heating and cooling equipment, computers, servers, printers, and photocopiers.

  9. DOE/EIA-0321/HRIf Residential Energy Consumption Survey. Consumption

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    purchase diaries from a subset of respondents composing a Household Transportation Panel and is reported separately. Residential Energy Consumption Survey: Consumption and...

  10. District of Columbia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    (District of Columbia) Glacial Energy Holdings (District of Columbia) Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Integrys Energy Services, Inc. (District...

  11. EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska

    Broader source: Energy.gov [DOE]

    DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska.

  12. Residential Energy Consumption Survey (RECS) - Energy Information

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration U.S. Energy Information Administration - EIA - Independent Statistics and Analysis Sources & Uses Petroleum & Other Liquids Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas Exploration and reserves, storage, imports and exports, production, prices, sales. Electricity Sales, revenue and prices, power plants, fuel use, stocks, generation, trade, demand & emissions. Consumption &

  13. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    maximum utilization of district heating systems McDonald C L GEOTHERMAL ENERGY ENERGY PLANNING POLICY AND ECONOMY ENERGY CONSERVATION CONSUMPTION AND UTILIZATION DISTRICT HEATING...

  14. BLM Burns District Office | Open Energy Information

    Open Energy Info (EERE)

    Burns District Office Jump to: navigation, search Name: BLM Burns District Office Place: Hines, Oregon References: BLM Burns District Office1 This article is a stub. You can help...

  15. BLM Elko District Office | Open Energy Information

    Open Energy Info (EERE)

    Elko District Office Jump to: navigation, search Name: BLM Elko District Office Place: Elko, Nevada References: BLM Elko District Office Website1 This article is a stub. You can...

  16. 2030 District Program and Small Commercial Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Districts act as a concierge and GP - pointing partners towards tools for accurate diagnosis and treatment 22 2030 Districts 23 Small Commercial Toolkit: Web Resource Landscape ...

  17. Connecticut's 3rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. Registered Energy Companies in Connecticut's 3rd congressional district Avalence...

  18. Connecticut's 2nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Connecticut. US Recovery Act Smart Grid Projects in Connecticut's 2nd congressional district...

  19. Twin Falls District | Open Energy Information

    Open Energy Info (EERE)

    District Jump to: navigation, search Name: BML Twin Falls District Office Address: 2536 Kimberly Road Place: Twin Falls, ID Zip: 83301 Phone Number: 208-736-2350 Website:...

  20. BLM Boise District Office | Open Energy Information

    Open Energy Info (EERE)

    Boise District Office Jump to: navigation, search Name: BLM Boise District Office Abbreviation: Boise Place: Boise, Idaho ParentHolding Organization: BLM Idaho State Office...

  1. BLM Winnemucca District Office | Open Energy Information

    Open Energy Info (EERE)

    Winnemucca District Office Jump to: navigation, search Name: BLM Winnemucca District Office Abbreviation: Winnemucca Address: 5100 E. Winnemucca Blvd. Place: Winnemucca, Nevada...

  2. Merced Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    Irrigation District Place: California Website: mercedid.com Twitter: @MercedID Facebook: https:www.facebook.comMercedIrrigationDistrict Outage Hotline: 209-722-3041...

  3. Pascoag Utility District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  4. Dawson Power District | Open Energy Information

    Open Energy Info (EERE)

    Dawson Power District Jump to: navigation, search Name: Dawson Power District Place: Nebraska Phone Number: 308-324-2386 Website: dawsonpower.com Twitter: @DawsonPower Facebook:...

  5. Montana Association of Conservation Districts Webpage | Open...

    Open Energy Info (EERE)

    Districts Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Montana Association of Conservation Districts Webpage Abstract Homepage of...

  6. California's 42nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    district Inland Empire Utilities Agency IEUA Scheuten Solar USA Inc US South Coast Air Quality Management District SCAQMD Western Ethanol Company LLC Utility Companies in...

  7. Massachusetts's 2nd congressional district: Energy Resources...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Massachusetts. Registered Energy Companies in Massachusetts's 2nd congressional district Alyra...

  8. California's 43rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 43rd congressional district Ecosystem...

  9. California's 21st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 21st congressional district Agrimass...

  10. California's 41st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 41st congressional district BCL...

  11. California's 18th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 18th congressional district 1st Light...

  12. California's 38th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 38th congressional district California...

  13. California's 45th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in California. Registered Energy Companies in California's 45th congressional district Chuckawalla...

  14. Heat pipe array heat exchanger

    DOE Patents [OSTI]

    Reimann, Robert C.

    1987-08-25

    A heat pipe arrangement for exchanging heat between two different temperature fluids. The heat pipe arrangement is in a ounterflow relationship to increase the efficiency of the coupling of the heat from a heat source to a heat sink.

  15. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-03-02

    DOE2.1E-121SUNOS is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS).« less

  16. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Heating Equipment, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",4657,4016,492,1460,894,96,581,1347,185 "Building

  17. Buildings","All Heated

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Heating Equipment, Floorspace, 1999" ,"Total Floorspace (million square feet)" ,"All Buildings","All Heated Buildings","Heating Equipment (more than one may apply)" ,,,"Heat Pumps","Furnaces","Individual Space Heaters","District Heat","Boilers","Packaged Heating Units","Other" "All Buildings ................",67338,61602,8923,14449,17349,5534,19522,25743,4073

  18. Missouri School District Charges Up

    Broader source: Energy.gov [DOE]

    Missouri's Lee's Summit R-7 school district's distribution fleet was tired. Many of the vehicles had racked up more than 300,000 miles and made frequent trips to the shop to repair the 20 plus-year-old parts.

  19. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  20. Full Consumption Report.indd

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    214(2013) July 2015 State Energy Consumption Estimates 1960 Through 2013 2013 Consumption Summary Tables S U M M A R I E S U.S. Energy Information Administration | State Energy ...

  1. Health Care Buildings: Consumption Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumption Tables Sum of Major Fuel Consumption by Size and Type of Health Care Building Total (trillion Btu) per Building (million Btu) per Square Foot (thousand Btu) Dollars per...

  2. Building Energy Consumption Analysis

    Energy Science and Technology Software Center (OSTI)

    2005-01-24

    DOE2.1E-121 is a set of modules for energy analysis in buildings. Modules are included to calculate the heating and cooling loads for each space in a building for each hour of a year (LOADS), to simulate the operation and response of the equipment and systems that control temperature and humidity and distribute heating, cooling and ventilation to the building (SYSTEMS), to model energy conversion equipment that uses fuel or electricity to provide the required heating,more » cooling and electricity (PLANT), and to compute the cost of energy and building operation based on utility rate schedule and economic parameters (ECONOMICS). DOE2.1E-121 contains modifications to DOE2.1E which allows 1000 zones to be modeled.« less

  3. Table 1.6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010

    U.S. Energy Information Administration (EIA) Indexed Site

    6 State-Level Energy Consumption, Expenditure, and Price Estimates, 2010 Rank Consumption Consumption per Capita Expenditures 1 Expenditures 1 per Capita Prices 1 Trillion Btu Million Btu Million Dollars 2 Dollars 2 Dollars 2 per Million Btu 1 Texas 11,769.9 Wyoming 948.1 Texas 137,532 Alaska 8,807 Hawaii 30.75 2 California 7,825.7 Alaska 898.5 California 117,003 Louisiana 8,661 District of Columbia 26.19 3 Florida 4,381.9 Louisiana 894.4 New York 61,619 Wyoming 7,904 Connecticut 25.63 4

  4. PP-174 Imperial Irrigation District | Department of Energy

    Energy Savers [EERE]

    4 Imperial Irrigation District PP-174 Imperial Irrigation District Presidential permit authorizing Imperial Irrigation District to construct, operate, and maintain electric ...

  5. BLM Battle Mountain District Office | Open Energy Information

    Open Energy Info (EERE)

    Mountain District Office Jump to: navigation, search Logo: BLM Battle Mountain District Office Name: BLM Battle Mountain District Office Abbreviation: Battle Mountain Address: 50...

  6. Bureau Valley School District Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Valley School District Wind Farm Jump to: navigation, search Name Bureau Valley School District Wind Farm Facility Bureau Valley School District Sector Wind energy Facility Type...

  7. Choosing and Installing Geothermal Heat Pumps | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    translates into a GHP using one unit of electricity to move three units of heat from the earth. According to the EPA, geothermal heat pumps can reduce energy consumption -- and...

  8. Energy Intensity Indicators: Transportation Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transportation Energy Consumption Energy Intensity Indicators: Transportation Energy Consumption This section contains an overview of the aggregate transportation sector, combining ...

  9. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  10. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Detailed Tables 28 Energy Information AdministrationManufacturing Consumption of Energy 1994 1. In previous MECS, the term "primary energy" was used to denote the "first use" of...

  11. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    or commercial trucks (See Table 1). Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 5 The 1991 RTECS count includes vehicles that were owned or used...

  12. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    of vehicles in the residential sector. Data are from the 1991 Residential Transportation Energy Consumption Survey. The "Glossary" contains the definitions of terms used in the...

  13. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas to Residual Fuel Oil, by Industry Group and Selected Industries, 1994 369 Energy Information AdministrationManufacturing Consumption of Energy 1994 SIC Residual...

  14. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    logo printer-friendly version logo for Portable Document Format file Household Vehicles Energy Consumption 1991 December 1993 Release Next Update: August 1997. Based on the 1991...

  15. 2030 District Program and Small Commercial Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Districts act as a concierge and GP - pointing partners towards tools for accurate diagnosis and treatment 22 2030 Districts 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 ...

  16. California Local Air Districts | Open Energy Information

    Open Energy Info (EERE)

    by District Phone Number: Varies by local district Website: www.arb.ca.govcapcoaroster.h This article is a stub. You can help OpenEI by expanding it. References Retrieved from...

  17. Tips: Heating and Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    available to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  18. Tips: Heating and Cooling | Department of Energy

    Office of Environmental Management (EM)

    to heat our homes, nearly half of us use natural gas. | Source: Buildings Energy Data Book 2011, 2.1.1 Residential Primary Energy Consumption, by Year and Fuel Type...

  19. Downtown district cooling: A 21st century approach

    SciTech Connect (OSTI)

    1995-12-01

    On December 1, 1992, the Board of Directors of the Metropolitan Pier and Exposition Authority (MPEA) met on Chicago`s historic Navy Pier and ushered in a new era of competition for energy supply in Chicago. The MPEA, a state agency created for the purposes of promoting and operating fair and exposition facilities within the Chicago area (including the McCormick Place exposition center and Navy Pier), voted to accept a third-party proposal to provide district heating and cooling services to the existing McCormick Place facilities and a million square feet of new exposition space. The winning bidder was a joint venture between Trigen Energy, the nation`s largest provider of district energy services, and Peoples Gas, the gas distribution company which serves Chicago. This vote culminated two years of effort by the Energy Division of Chicago`s Department of Environment to analyze the feasibility and promote the implementation of a district energy system to serve the expanded McCormick Place and its environs in the South Loop neighborhood. Initial services began in November, 1993, with a new hot and cold water piping system interconnecting the three existing exhibition facilities. The final buildout of the system, with a combined peak demand predicted at 160 MMBtu of heating and 15,920 tons of and cooling, is scheduled for completion in the summer of 1997.

  20. Massachusetts's 7th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Networking Organizations in Massachusetts's 7th congressional district Northeast Energy Efficiency Partnerships, Inc Registered Energy Companies in Massachusetts's 7th...

  1. Biomass District Heat System for Interior Rural Alaska Villages

    SciTech Connect (OSTI)

    Wall, William A.; Parker, Charles R.

    2014-09-01

    Alaska Village Initiatives (AVI) from the outset of the project had a goal of developing an integrated village approach to biomass in Rural Alaskan villages. A successful biomass project had to be ecologically, socially/culturally and economically viable and sustainable. Although many agencies were supportive of biomass programs in villages none had the capacity to deal effectively with developing all of the tools necessary to build a complete integrated program. AVI had a sharp learning curve as well. By the end of the project with all the completed tasks, AVI developed the tools and understanding to connect all of the dots of an integrated village based program. These included initially developing a feasibility model that created the capacity to optimize a biomass system in a village. AVI intent was to develop all aspects or components of a fully integrated biomass program for a village. This meant understand the forest resource and developing a sustainable harvest system that included the “right sized” harvest equipment for the scale of the project. Developing a training program for harvesting and managing the forest for regeneration. Making sure the type, quality, and delivery system matched the needs of the type of boiler or boilers to be installed. AVI intended for each biomass program to be of the scale that would create jobs and a sustainable business.

  2. District of Columbia Heat Content of Natural Gas Consumed

    U.S. Energy Information Administration (EIA) Indexed Site

    35 1,045 1,039 1,044 1,051 1,049

  3. Trends in Commercial Buildings--District Heat Detail

    U.S. Energy Information Administration (EIA) Indexed Site

    confidence ranges. If you have trouble viewing this page, please contact the National Energy Information Center at (202) 586-8800. Energy Information Administration Commercial...

  4. Low Temperature Direct Use District Heating Geothermal Facilities...

    Open Energy Info (EERE)

    >

    Temperature: 79.0u00b0C, 174.0u00b0FnFlow: 4,000 gpm, 15,160 LminnAnnual Generation: 66.2 x109 Btuyrn

    ","title":"Boise City...

  5. Geothermal District Heating System City of Klamath Falls | Open...

    Open Energy Info (EERE)

    The system is not geologically homogeneous. Great variations in horizontal permeability and many vertical discontinuities exist because of stratigraphy and structure of...

  6. Cedarville School District Retrofit of Heating and Cooling Systems...

    Open Energy Info (EERE)

    The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+-. - Monitor for 3 years the performance of the...

  7. A Geothermal District-Heating System and Alternative Energy Research...

    Open Energy Info (EERE)

    2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and Geopressured Resources Project Type Topic 3 Low Temperature...

  8. District of Columbia Heat Content of Natural Gas Consumed

    Gasoline and Diesel Fuel Update (EIA)

    and Commercial Consumers by Local Distributio 18.17 16.21 12.60 10.70 9.96 9.53 1989-2016 Commercial Average Price 11.50 11.68 11.28 10.01 9.50 9.30

    2010 2011 2012 2013 2014 2015 View History Delivered to Consumers 1,014 1,016 1,029 1,048 1,037 1,044 2007-2015

  9. Alaska Gateway School District Adopts Combined Heat and Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    savings, Tok School has been able to rehire three staff members for the school: music teacher, counselor, and boiler operator. Once more savings are realized and biomass...

  10. BSU GHP District Heating and Cooling System (PHASE I) Geothermal...

    Open Energy Info (EERE)

    Total Project Cost 20,000,000.00 Principal Investigator(s) James W. Lowe, PE, Director, Engineering Operations, Facilities Planning and Management Targets Milestones -...

  11. Marketing the Klamath Falls Geothermal District Heating system

    SciTech Connect (OSTI)

    Rafferty, K.

    1993-06-01

    The new marketing strategy for the Klamath Falls system has concentrated on offering the customer an attractive and easy to understand rate structure, reduced retrofit cost and complexity for his building along with an attractive package of financing and tax credits. Initial retrofit costs and life-cycle cost analysis have been conducted on 22 buildings to date. For some, the retrofit costs are simply too high for the conversion to make sense at current geothermal rates. For many, however, the prospects are good. At this writing, two new customers are now connected and operating with 5 to 8 more buildings committed to connect this construction season after line extensions are completed. This represents nearly a 60% increase in the number of buildings connected to the system and a 40% increase in system revenue.

  12. LBNL: Architecture 2030 District Program and Small Commercial Toolkit |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Architecture 2030 District Program and Small Commercial Toolkit LBNL: Architecture 2030 District Program and Small Commercial Toolkit LBNL: Architecture 2030 District Program and Small Commercial Toolkit Lead Performer: Lawrence Berkeley National Laboratory - Berkeley, CA Partners: - Architecture 2030 - Santa Fe, NM - Cleveland 2030 District - Cleveland, OH - Green Building Alliance/Pittsburgh 2030 District - Pittsburgh, PA - Seattle 2030 District - Seattle, WA -

  13. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    Average 58.7 95.0 40.0 Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 ...

  14. 15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY...

    Office of Scientific and Technical Information (OSTI)

    of district heating systems McDonald, C.L. 15 GEOTHERMAL ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; DISTRICT...

  15. 1992 CBECS C & E

    U.S. Energy Information Administration (EIA) Indexed Site

    of District Heat by End Use, 1989 District Heat Consumption (trillion Btu) Space Water a Total Heating Heating Other RSE Building Row Characteristics Factor 1.0 NF NF NF RSE...

  16. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect (OSTI)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  17. US ESC TN Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    ESC TN Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ESC TN Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US ESC TN Site Consumption kilowatthours $0 $400 $800 $1,200 $1,600 US ESC TN Expenditures dollars ELECTRICITY ONLY average per household * Tennessee households consume an average of 79 million Btu per year, about 12% less than the U.S. average. * Average electricity consumption for Tennessee households is 33%

  18. US NE MA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    NE MA Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 $3,000 US NE MA Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US NE MA Site Consumption kilowatthours $0 $250 $500 $750 $1,000 $1,250 $1,500 US NE MA Expenditures dollars ELECTRICITY ONLY average per household * Massachusetts households use 109 million Btu of energy per home, 22% more than the U.S. average. * The higher than average site consumption

  19. US WSC TX Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WSC TX Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WSC TX Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 4,000 8,000 12,000 16,000 US WSC TX Site Consumption kilowatthours $0 $500 $1,000 $1,500 $2,000 US WSC TX Expenditures dollars ELECTRICITY ONLY average per household * Texas households consume an average of 77 million Btu per year, about 14% less than the U.S. average. * Average electricity consumption per Texas home is 26% higher than

  20. Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project

    Broader source: Energy.gov [DOE]

    -- This project is inactive -- The Sacramento Municipal Utility District (SMUD), under the Concentrating Solar Power (CSP) Heat Integration for Baseload Renewable Energy Development (HIBRED) program, is demonstrating a hybrid CSP solar energy system that takes advantage of an existing electrical generator for its power block and transmission interconnection.

  1. EECBG Success Story: Energy Efficiency Upgrades Part of Winning Formula for Oregon School District

    Broader source: Energy.gov [DOE]

    The rural community of Vernonia, Oregon is incorporating energy efficiency measures into the school district buildings, including an energy efficient integrated heating and cooling system. This feature, along with upgrades to the building envelope and lighting, are estimated to reduce the school district’s annual energy usage by 43 percent. Learn more.

  2. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    3 Main Commercial Primary Energy Use of Heating and Cooling Equipment as of 1995 Heating Equipment | Cooling Equipment Packaged Heating Units 25% | Packaged Air Conditioning Units 54% Boilers 21% | Room Air Conditioning 5% Individual Space Heaters 2% | PTAC (2) 3% Furnaces 20% | Centrifugal Chillers 14% Heat Pumps 5% | Reciprocating Chillers 12% District Heat 7% | Rotary Screw Chillers 3% Unit Heater 18% | Absorption Chillers 2% PTHP & WLHP (1) 2% | Heat Pumps 7% 100% | 100% Note(s):

  3. Geothermal Heat Pumps- Heating Mode

    Broader source: Energy.gov [DOE]

    In winter, fluid passing through this vertical, closed loop system is warmed by the heat of the earth; this heat is then transferred to the building.

  4. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    2(94) Distribution Category UC-950 Manufacturing Consumption of Energy 1994 December 1997 Energy Information Administration Office of Energy Markets and End Use U.S. Department of...

  5. 2014 Manufacturing Energy Consumption Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U S C E N S U S B U R E A U 2014 Manufacturing Energy Consumption Survey Sponsored by the Energy Information Administration U.S. Department of Energy Administered and Compiled by ...

  6. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    for 1994, will continue the 3-year cycle. The RTECS, a subsample of the Residential Energy Consumption Survey (RECS), is an integral part of a series of surveys designed by...

  7. Household Vehicles Energy Consumption 1991

    U.S. Energy Information Administration (EIA) Indexed Site

    16.8 17.4 18.6 18.9 1.7 2.2 0.6 1.5 Energy Information AdministrationHousehold Vehicles Energy Consumption 1991 15 Vehicle Miles Traveled per Vehicle (Thousand) . . . . . . . . ....

  8. Manufacturing consumption of energy 1991

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the US economy. These estimates are based on data from the 1991 Manufacturing Energy Consumption Survey (MECS). This survey--administered by the Energy End Use and Integrated Statistics Division, Office of Energy Markets and End Use, Energy Information Administration (EIA)--is the most comprehensive source of national-level data on energy-related information for the manufacturing industries.

  9. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RECS data show decreased energy consumption per household RECS 2009 - Release date: June 6, 2012 Total United States energy consumption in homes has remained relatively stable for ...

  10. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    When will energy consumption estimates be available? Energy consumption and expenditures data will be available beginning in spring 2015. CBECS data collection is currently in its ...

  11. ,"Minnesota Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Vehicle Fuel Consumption ... 7:09:42 AM" "Back to Contents","Data 1: Minnesota Natural Gas Vehicle Fuel Consumption ...

  12. Energy Intensity Indicators: Commercial Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commercial Source Energy Consumption Energy Intensity Indicators: Commercial Source Energy Consumption Figure C1 below reports as index numbers over the period 1970 through 2011: ...

  13. Energy Intensity Indicators: Residential Source Energy Consumption...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential Source Energy Consumption Energy Intensity Indicators: Residential Source Energy Consumption Figure R1 below reports as index numbers over the period 1970 through 2011: ...

  14. ,"California Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","California Natural Gas Consumption by End ... AM" "Back to Contents","Data 1: California Natural Gas Consumption by End Use" ...

  15. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Fuel Oil Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot...

  16. ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    2. Fuel Oil Consumption and Expenditure Intensities, 1999" ,"Fuel Oil Consumption",,,"Fuel Oil Expenditures" ,"per Building (gallons)","per Square Foot (gallons)","per Worker...

  17. ,"Virginia Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Vehicle Fuel Consumption ... 12:00:27 PM" "Back to Contents","Data 1: Virginia Natural Gas Vehicle Fuel Consumption ...

  18. ,"West Virginia Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010WV2" "Date","West Virginia Natural Gas Residential Consumption ...

  19. ,"Virginia Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Natural Gas Consumption by End ... 11:05:20 AM" "Back to Contents","Data 1: Virginia Natural Gas Consumption by End Use" ...

  20. ,"West Virginia Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: West Virginia Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035WV2" "Date","West Virginia Natural Gas Industrial Consumption ...

  1. ,"West Virginia Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: West Virginia Natural Gas Total Consumption (MMcf)" ...

  2. ,"New Mexico Natural Gas Total Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Natural Gas Total Consumption ... AM" "Back to Contents","Data 1: New Mexico Natural Gas Total Consumption (MMcf)" ...

  3. ,"Oklahoma Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Natural Gas Consumption by End ... 11:05:14 AM" "Back to Contents","Data 1: Oklahoma Natural Gas Consumption by End Use" ...

  4. ,"Texas Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Natural Gas Consumption by End ... 6:36:11 AM" "Back to Contents","Data 1: Texas Natural Gas Consumption by End Use" ...

  5. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    4A. Fuel Oil Consumption and Expenditure Intensities for All Buildings, 2003 Fuel Oil Consumption Fuel Oil Expenditures per Building (gallons) per Square Foot (gallons) per...

  6. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Fuel Oil Consumption and Expenditures for All Buildings, 2003 All Buildings Using Fuel Oil Fuel Oil Consumption Fuel Oil Expenditures Number of Buildings (thousand)...

  7. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Fuel Oil Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Fuel Oil Consumption (million gallons) Total Floorspace of Buildings Using...

  8. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  9. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3A. Total Electricity Consumption and Expenditures for All Buildings, 2003 All Buildings Using Electricity Electricity Consumption Electricity Expenditures Number of Buildings...

  10. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  11. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  12. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  13. Energy Information Administration - Transportation Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Energy Consumption Transportation Energy Consumption Surveys energy used by vehicles EIA conducts numerous energy-related surveys and other information programs. In general, the...

  14. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Year Constructed for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of...

  15. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    2A. Natural Gas Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  16. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    5A. Natural Gas Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  17. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  18. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0A. Natural Gas Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003 Total Natural Gas Consumption (billion cubic feet) Total Floorspace of...

  19. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  20. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    A. Consumption and Gross Energy Intensity by Climate Zonea for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings (million square feet)...

  1. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Natural Gas Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Natural Gas Consumption (billion cubic feet) Total Floorspace...

  2. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3 Total Electricity Consumption (billion kWh) Total Floorspace of...

  3. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  4. Energy Information Administration - Commercial Energy Consumption...

    Gasoline and Diesel Fuel Update (EIA)

    8A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2 Total Electricity Consumption (billion kWh) Total Floorspace of...

  5. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    5A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003 Total Electricity Consumption (billion kWh) Total Floorspace of Buildings...

  6. Inconsistent Investment and Consumption Problems

    SciTech Connect (OSTI)

    Kronborg, Morten Tolver; Steffensen, Mogens

    2015-06-15

    In a traditional Black–Scholes market we develop a verification theorem for a general class of investment and consumption problems where the standard dynamic programming principle does not hold. The theorem is an extension of the standard Hamilton–Jacobi–Bellman equation in the form of a system of non-linear differential equations. We derive the optimal investment and consumption strategy for a mean-variance investor without pre-commitment endowed with labor income. In the case of constant risk aversion it turns out that the optimal amount of money to invest in stocks is independent of wealth. The optimal consumption strategy is given as a deterministic bang-bang strategy. In order to have a more realistic model we allow the risk aversion to be time and state dependent. Of special interest is the case were the risk aversion is inversely proportional to present wealth plus the financial value of future labor income net of consumption. Using the verification theorem we give a detailed analysis of this problem. It turns out that the optimal amount of money to invest in stocks is given by a linear function of wealth plus the financial value of future labor income net of consumption. The optimal consumption strategy is again given as a deterministic bang-bang strategy. We also calculate, for a general time and state dependent risk aversion function, the optimal investment and consumption strategy for a mean-standard deviation investor without pre-commitment. In that case, it turns out that it is optimal to take no risk at all.

  7. California's 19th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    Chowchilla Biomass Facility Fresno Biomass Facility Madera Biomass Facility SPI Sonora Biomass Facility Utility Companies in California's 19th congressional district Modesto...

  8. Douglas County School District Success Story

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    district in the state, had mounting maintenance needs and failing infrastructure with aging buildings. This was compounded by a budget already stretched to the limit, declining...

  9. Putnam District, Connecticut: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Putnam District, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.9257629, -71.9104934 Show Map Loading map......

  10. California's 47th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in California's 47th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 47th...

  11. California's 40th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    US Recovery Act Smart Grid Projects in California's 40th congressional district City of Anaheim Smart Grid Project Registered Energy Companies in California's 40th...

  12. Massachusetts's 10th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Massachusetts's 10th congressional district AXI LLC BioEnergy International LLC Bluestone Energy Services Ltd Eco Power Solutions Heliotronics...

  13. California's 20th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    California. Registered Energy Companies in California's 20th congressional district BioEnergy Solutions BES Castle Cooke Inc Great Valley Ethanol LLC Mt Poso Cogeneration Pacific...

  14. California's 22nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    22nd congressional district Advanced Conservation Systems Bill Robinson (Train2Build) BioEnergy Solutions BES California Sunrise Alternative Energy Development LLC Castle Cooke Inc...

  15. Pennsylvania's 17th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 17th congressional district Agra Bio Fuels Independence Biofuels Inc Pennsylvania Department of Environmental Protection DEP...

  16. California's 46th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 46th congressional district 808 Investments LLC All Valley Solar Allegro Biodiesel Corporation Altra Inc American Elements Amonix Inc Assured Power and...

  17. Pennsylvania's 14th congressional district: Energy Resources...

    Open Energy Info (EERE)

    district Alcoa BPL Global Enerlogics Networks IBACOS Kurt J Lesker Company PNC Financial Services Plextronics Plextronics Inc Propel IT Inc. Siemens Westinghouse Power...

  18. Central Lincoln People's Utility District - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  19. Truckee Donner Public Utility District - Energy Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  20. Pennsylvania's 9th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 9th congressional district Energex Pellet Fuel Inc Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s9thc...

  1. Pennsylvania's 1st congressional district: Energy Resources ...

    Open Energy Info (EERE)

    in Pennsylvania's 1st congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s1stcongressionaldistrict&oldid198299...

  2. Pennsylvania's 13th congressional district: Energy Resources...

    Open Energy Info (EERE)

    in Pennsylvania's 13th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s13thcongressionaldistrict&oldid198281...

  3. California's 28th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 28th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s28thcongressionaldistrict&oldid181514...

  4. California's 37th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    37th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s37thcongressionaldistrict&oldid181534...

  5. Pennsylvania's 8th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    in Pennsylvania's 8th congressional district PECO Energy Co Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania%27s8thcongressionaldistrict&oldid198313...

  6. California's 26th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 26th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s26thcongressionaldistrict&oldid181511...

  7. California's 35th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 35th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s35thcongressionaldistrict&oldid181530...

  8. California's 33rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 33rd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s33rdcongressionaldistrict&oldid181527...

  9. California's 32nd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 32nd congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s32ndcongressionaldistrict&oldid181525...

  10. California's 31st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 31st congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s31stcongressionaldistrict&oldid181523...

  11. California's 34th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 34th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s34thcongressionaldistrict&oldid181528...

  12. California's 23rd congressional district: Energy Resources |...

    Open Energy Info (EERE)

    23rd congressional district NGEN Partners LLC (Southern California) Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s23rdcongressionaldistrict&oldid181505...

  13. California's 36th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in California's 36th congressional district Angeleno Group Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s36thcongressionaldistrict&oldid181532...

  14. California's 39th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    39th congressional district Angeleno Group Hydrogen Ventures Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s39thcongressionaldistrict&oldid181537...

  15. Turlock Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    @TurlockID Facebook: https:www.facebook.compagesTurlock-Irrigation-District112344728820408 Outage Hotline: 209-883-8301 or (209) 892-4936 (from Patterson) Outage Map:...

  16. Connecticut's 5th congressional district: Energy Resources |...

    Open Energy Info (EERE)

    in Connecticut. Registered Energy Companies in Connecticut's 5th congressional district Efficiency Lighting & Maintenance Inc Electro Energy Inc FuelCell Energy Inc FuelCell...

  17. Connecticut's 1st congressional district: Energy Resources |...

    Open Energy Info (EERE)

    1st congressional district Aztech Engineers Connecticut Light and Power Infinity Fuel Cell and Hydrogen Inc LiquidPiston Inc Nxegen SmartPower United Technologies Corp...

  18. Pennsylvania's 19th congressional district: Energy Resources...

    Open Energy Info (EERE)

    Registered Energy Companies in Pennsylvania's 19th congressional district Carlisle Construction Materials Enginuity Energy, LLC Keystone Biofuels PaceControls LLC Soy Energy...

  19. Nevada Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Nevada Irrigation District Place: California Website: nidwater.com Outage Hotline: (530) 273-6185 References: EIA Form EIA-861 Final Data File for 2010 -...

  20. TWDB Groundwater Conservation Districts website | Open Energy...

    Open Energy Info (EERE)

    TWDB Groundwater Conservation Districts website Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: TWDB Groundwater Conservation...

  1. Empire District Electric- Residential Energy Efficiency Rebate

    Broader source: Energy.gov [DOE]

    The Empire District Electric Company offers rebates for customers who construct highly efficient homes and purchase efficient central air conditioners. Eligible customers include residential...

  2. Pennsylvania's 5th congressional district: Energy Resources ...

    Open Energy Info (EERE)

    Solarity Energy Generation Facilities in Pennsylvania's 5th congressional district Montgomery Biomass Facility Retrieved from "http:en.openei.orgwindex.php?titlePennsylvania...

  3. An analysis of residential energy consumption in a temperate climate

    SciTech Connect (OSTI)

    Clark, Y.Y.; Vincent, W.

    1987-06-01

    Electrical energy consumption data have been recorded for several hundred submetered residential structures in Middle Tennessee. All houses were constructed with a common energy package.'' Specifically, daily cooling usage data have been collected for 130 houses for the 1985 and 1986 cooling seasons, and monthly heating usage data for 186 houses have been recorded by occupant participation over a seven-year period. Cooling data have been analyzed using an SPSSx multiple regression analysis and results are compared to several cooling models. Heating, base, and total energy usage are also analyzed and regression correlation coefficients are determined as a function of several house parameters.

  4. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-01-01

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  5. Projecting household energy consumption within a conditional demand framework

    SciTech Connect (OSTI)

    Teotia, A.; Poyer, D.

    1991-12-31

    Few models attempt to assess and project household energy consumption and expenditure by taking into account differential household choices correlated with such variables as race, ethnicity, income, and geographic location. The Minority Energy Assessment Model (MEAM), developed by Argonne National Laboratory (ANL) for the US Department of Energy (DOE), provides a framework to forecast the energy consumption and expenditure of majority, black, Hispanic, poor, and nonpoor households. Among other variables, household energy demand for each of these population groups in MEAM is affected by housing factors (such as home age, home ownership, home type, type of heating fuel, and installed central air conditioning unit), demographic factors (such as household members and urban/rural location), and climate factors (such as heating degree days and cooling degree days). The welfare implications of the revealed consumption patterns by households are also forecast. The paper provides an overview of the model methodology and its application in projecting household energy consumption under alternative energy scenarios developed by Data Resources, Inc., (DRI).

  6. Minnesota Natural Gas Total Consumption (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    Total Consumption (Million Cubic Feet) Minnesota Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption Minnesota Natural Gas Consumption by End Use ...

  7. California Natural Gas Total Consumption (Million Cubic Feet...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Total Consumption (Million Cubic Feet) California Natural Gas Total Consumption (Million ... Referring Pages: Natural Gas Consumption California Natural Gas Consumption by End Use ...

  8. California Natural Gas Plant Fuel Consumption (Million Cubic...

    Gasoline and Diesel Fuel Update (EIA)

    Fuel Consumption (Million Cubic Feet) California Natural Gas Plant Fuel Consumption ... Referring Pages: Natural Gas Plant Fuel Consumption California Natural Gas Consumption by ...

  9. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Short Report)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This report presents the a brief overview of the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems. A full report of this case study is also available.

  10. Energy Sources and Systems Analysis: 40 South Lincoln Redevelopment District (Full Report)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01

    This report presents the results of a case study to analyze district energy systems for their potential use in a project that involves redeveloping 270 units of existing public housing, along with other nearby sites. When complete, the redevelopment project will encompass more than 900 mixed-income residential units, commercial and retail properties, and open space. The analysis estimated the hourly heating, cooling, domestic hot water, and electric loads required by the community; investigated potential district system technologies to meet those needs; and researched available fuel sources to power such systems.

  11. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A24. Total Inputs of Energy for Heat, Power, and Electricity Generation by Program Sponsorship, Industry Group, Selected Industries, and Type of Energy- Management Program, 1994:...

  12. US ENC WI Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    120 US ENC WI Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US ENC WI Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 2,000 4,000 6,000 8,000 10,000 12,000 US ENC WI Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US ENC WI Expenditures dollars ELECTRICITY ONLY average per household * Wisconsin households use 103 million Btu of energy per home, 15% more than the U.S. average. * Lower electricity and natural gas rates compared to

  13. US WNC MO Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    WNC MO Site Consumption million Btu $0 $500 $1,000 $1,500 $2,000 $2,500 US WNC MO Expenditures dollars ALL ENERGY average per household (excl. transportation) 0 3,000 6,000 9,000 12,000 15,000 US WNC MO Site Consumption kilowatthours $0 $300 $600 $900 $1,200 $1,500 US WNC MO Expenditures dollars ELECTRICITY ONLY average per household * Missouri households consume an average of 100 million Btu per year, 12% more than the U.S. average. * Average household energy costs in Missouri are slightly less

  14. Property:ManagingDistrictOffice | Open Energy Information

    Open Energy Info (EERE)

    ManagingDistrictOffice Jump to: navigation, search Property Name ManagingDistrictOffice Property Type Page Pages using the property "ManagingDistrictOffice" Showing 25 pages using...

  15. Buckeye Water C&D District | Open Energy Information

    Open Energy Info (EERE)

    Buckeye Water C&D District (Redirected from Buckeye Irrigation District) Jump to: navigation, search Name: Buckeye Water C&D District Place: Arizona Phone Number: 623-386-2196...

  16. Playing Hot and Cold: How Can Russian Heat Policy Find Its Way Toward Energy Efficiency?

    SciTech Connect (OSTI)

    Roshchanka, Volha; Evans, Meredydd

    2012-09-15

    The Russian district heating has a large energy-saving potential, and, therefore, need for investments. The scale of needed investments is significant: the government estimates that 70 percent of the district heating infrastructure needs replacement or maintenance, a reflection of decades of under investment. Government budgets will be unable to cover them, and iInvolvingement ofthe private industry will be critical to attracting the necessary investementis necessary. For private parties to invest in district heating facilities across Russia, and not only in pockets of already successful enterprises, regulators have to develop a comprehensive policy that works district heating systems under various conditionscost-reflective tariffs, metering, incentives for efficiency and social support for the neediest (instead of subsidies for all).

  17. Texas's 19th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    district in Texas. Registered Energy Companies in Texas's 19th congressional district Big Daddy s Biodiesel Inc Cratech Inc Horn Wind Lauren Engineers amp Constructors Levelland...

  18. Iowa's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Iowa. Registered Energy Companies in Iowa's 2nd congressional district Big River Resources LLC EnerGenetics International First BTU Iowa Renewable Energy LLC...

  19. Maine's 2nd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Maine. Registered Energy Companies in Maine's 2nd congressional district Evergreen Wind...

  20. BLM California Desert District Office | Open Energy Information

    Open Energy Info (EERE)

    California Desert District Office Jump to: navigation, search Name: California Desert District Office Address: 22835 Calle San Juan De Los Lagos Place: Moreno Valley, CA Zip: 92553...

  1. BLM Central California District Office | Open Energy Information

    Open Energy Info (EERE)

    Central California District Office Jump to: navigation, search Name: BLM Central California District Office Address: 2800 Cottage Way, Suite W-1623 Place: Sacramento, CA Zip: 95825...

  2. Washington Gas Energy Services (District of Columbia) | Open...

    Open Energy Info (EERE)

    Washington Gas Energy Services (District of Columbia) Jump to: navigation, search Name: Washington Gas Energy Services Place: District of Columbia References: EIA Form EIA-861...

  3. Alameda-Contra Costa Transit District (AC Transit) Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Alameda-Contra Costa Transit District (AC Transit) Fuel Cell Transit Buses: Third Evaluation Report This report describes operations at Alameda-Contra Costa Transit district ...

  4. Devonshire Energy, LLC (District of Columbia) | Open Energy Informatio...

    Open Energy Info (EERE)

    Devonshire Energy, LLC (District of Columbia) Jump to: navigation, search Name: Devonshire Energy, LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for...

  5. Louisiana's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Louisiana's 5th congressional district Cleco Power LLC Smart Grid Project Registered Energy Companies in Louisiana's 5th congressional district...

  6. Louisiana's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Projects in Louisiana's 7th congressional district Lafayette Consolidated Government, LA Smart Grid Project Energy Generation Facilities in Louisiana's 7th congressional district...

  7. Arkansas's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Act Smart Grid Projects in Arkansas's 1st congressional district Woodruff Electric Smart Grid Project Utility Companies in Arkansas's 1st congressional district City Water...

  8. Tennessee's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Projects in Tennessee's 9th congressional district Memphis Light, Gas and Water Division Smart Grid Project Registered Energy Companies in Tennessee's 9th congressional district...

  9. Virginia's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 3rd congressional district Enviva...

  10. Virginia's 9th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 9th congressional district Evatran LLC...

  11. Virginia's 7th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Virginia. Registered Energy Companies in Virginia's 7th congressional district Enviva...

  12. Noble Americas Energy Solutions LLC (District of Columbia) |...

    Open Energy Info (EERE)

    District of Columbia) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: District of Columbia References: EIA Form EIA-861 Final Data File for 2010 -...

  13. North Carolina's 6th congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 6th congressional district...

  14. North Carolina's 3rd congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in North Carolina. Registered Energy Companies in North Carolina's 3rd congressional district...

  15. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  16. Washington's 8th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Energy Companies in Washington's 8th congressional district GreenFoot Technologies Prometheus Energy Sunreps Utility Companies in Washington's 8th congressional district Alder...

  17. Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States 224 Energy Information Administration Petroleum Marketing Annual 1997 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and...

  18. Prices by Sales Type, PAD District, and Selected States

    U.S. Energy Information Administration (EIA) Indexed Site

    Type, PAD District, and Selected States 224 Energy Information Administration Petroleum Marketing Annual 1996 Table 39. No. 2 Distillate a Prices by Sales Type, PAD District, and...

  19. Valley Center Municipal Water District | Open Energy Information

    Open Energy Info (EERE)

    Valley Center Municipal Water District Jump to: navigation, search Name: Valley Center Municipal Water District Place: Valley Center, California Zip: 92082 Product: VCMWD is the...

  20. Washington's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    can help OpenEI by expanding it. This page represents a congressional district in Washington. Registered Research Institutions in Washington's 3rd congressional district WSU...

  1. Yuliangwan Hydropower of Hongjiang District Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Yuliangwan Hydropower of Hongjiang District Co Ltd Jump to: navigation, search Name: Yuliangwan Hydropower of Hongjiang District Co Ltd Place: Huaihua, Hunan Province, China Zip:...

  2. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and ...

  3. Workplace Charging Challenge Partner: Township High School District...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Adding EV charging stations to our campuses will advance District 214 as a leader in environmental sustainability," said Ted Birren, the District's director of operations. "Our ...

  4. Texas's 6th congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 6th congressional district Corsicana Chemical Company Demilec...

  5. Project Profile: The Sacramento Municipal Utility District Consumnes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Sacramento Municipal Utility District Consumnes Power Plant Solar Augmentation Project Project Profile: The Sacramento Municipal Utility District Consumnes Power Plant Solar ...

  6. California's 5th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    5th congressional district Sacramento Municipal Utility District Retrieved from "http:en.openei.orgwindex.php?titleCalifornia%27s5thcongressionaldistrict&oldid181571...

  7. Washington's 2nd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Biofuels LLC Energy Generation Facilities in Washington's 2nd congressional district S.P. Everett Biomass Facility Utility Companies in Washington's 2nd congressional district...

  8. Virginia's 1st congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    Virginia's 1st congressional district Delta T Corporation E85 Inc Virginia Biodiesel Refinery Utility Companies in Virginia's 1st congressional district Rappahannock Electric Coop...

  9. US South Coast Air Quality Management District SCAQMD | Open...

    Open Energy Info (EERE)

    South Coast Air Quality Management District SCAQMD Jump to: navigation, search Name: US South Coast Air Quality Management District (SCAQMD) Place: Diamond Bar, California Zip: CA...

  10. Hawaii Conservation District Use Application (DLNR CDUA Form...

    Open Energy Info (EERE)

    Conservation District Use Application (DLNR CDUA Form) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Hawaii Conservation District Use Application (DLNR...

  11. Kings River Conservation District (KRCD) Solar Farm Solar Power...

    Open Energy Info (EERE)

    River Conservation District (KRCD) Solar Farm Solar Power Plant Jump to: navigation, search Name Kings River Conservation District (KRCD) Solar Farm Solar Power Plant Facility...

  12. Texas's 12th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Texas. Registered Energy Companies in Texas's 12th congressional district Aecom Government...

  13. School District Success Story-A Performance Contracting Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    School District Success Story-A Performance Contracting Program School District Success Story-A Performance Contracting Program Provides an overview case study of Douglas County,...

  14. Hess Retail Natural Gas and Elec. Acctg. (District of Columbia...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (District of Columbia) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: District of Columbia References:...

  15. Ground Water Management District Rules | Open Energy Information

    Open Energy Info (EERE)

    Water Management District Rules Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Ground Water Management District Rules Abstract This webpage provides...

  16. Kansas's 3rd congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in Kansas. Registered Energy Companies in Kansas's 3rd congressional district Clean Energy...

  17. Utah's 3rd congressional district: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    district in Utah. Registered Energy Companies in Utah's 3rd congressional district Better Biodiesel Composite Tower Solutions Domestic Energy Partners Evergreen Clean Energy FT...

  18. BLM Color Country District Office | Open Energy Information

    Open Energy Info (EERE)

    Color Country District Office Jump to: navigation, search Name: BLM Color Country District Office Place: Cedar City, Utah ParentHolding Organization: BLM References: BLM Color...

  19. New Hampshire's 2nd congressional district: Energy Resources...

    Open Energy Info (EERE)

    You can help OpenEI by expanding it. This page represents a congressional district in New Hampshire. Registered Energy Companies in New Hampshire's 2nd congressional district...

  20. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,870 1,276...

  1. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 1,602 1,397...

  2. Total Space Heating Water Heating Cook-

    Gasoline and Diesel Fuel Update (EIA)

    Released: September, 2008 Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings ... 2,037...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    90,1024,3251,1511,"Q",106.6,97.3,100.6 "Office ...",305,325,329,175,3012,2989,3782,2425,101.2,108.8,87,72.1 "Public Assembly ...",93,103,109,64,1048,...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9,60,56.7,43.1,31.4,22.1 "1990 to 1999 ...",69,87,51,93,34,1735,1988,1202,3012,1267,40,43.8,42.4,30.9,26.9 "2000 to 2003 ...",23,40,"Q",28,15,693,1086,7...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  6. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  8. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West North Central","South Atlantic","East South Central","West North...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  10. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 2003","1959 or Before","1960 to...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"West North Central","South Atlantic","East South Central","West North...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"New England","Middle Atlantic","East North Central","New England","Middle...

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"1,001 to 10,000 Square Feet","10,001 to 100,000 Square Feet","Over 100,000...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"Zone 1","Zone 2","Zone 3","Zone 4","Zone 5","Zone 1","Zone 2","Zone 3","Zone...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Natural Gas (million square feet)",,,"Natural Gas Energy Intensity (cubic feetsquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btu square foot)" ,"West South Central","Moun- tain","Pacific","West South Central","Moun-...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"1959 or Before","1960 to 1989","1990 to 1999","1959 or Before","1960 to...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    (million square feet)",,,,"Energy Intensity for Sum of Major Fuels (thousand Btusquare foot)" ,"North- east","Mid- west","South","West","North- east","Mid-...

  3. Program listing for heat-pump seasonal-performance model (SPM). [CNHSPM

    SciTech Connect (OSTI)

    Not Available

    1982-06-30

    The computer program CNHSPM is listed which predicts heat pump seasonal energy consumption (including defrost, cyclic degradation, and supplementary heat) using steady state rating point performance and binned weather data. (LEW)

  4. A method for evaluating transport energy consumption in suburban areas

    SciTech Connect (OSTI)

    Marique, Anne-Francoise Reiter, Sigrid

    2012-02-15

    Urban sprawl is a major issue for sustainable development. It represents a significant contribution to energy consumption of a territory especially due to transportation requirements. However, transport energy consumption is rarely taken into account when the sustainability of suburban structures is studied. In this context, the paper presents a method to estimate transport energy consumption in residential suburban areas. The study aimed, on this basis, at highlighting the most efficient strategies needed to promote awareness and to give practical hints on how to reduce transport energy consumption linked to urban sprawl in existing and future suburban neighborhoods. The method uses data collected by using empirical surveys and GIS. An application of this method is presented concerning the comparison of four suburban districts located in Belgium to demonstrate the advantages of the approach. The influence of several parameters, such as distance to work places and services, use of public transport and performance of the vehicles, are then discussed to allow a range of different development situations to be explored. The results of the case studies highlight that traveled distances, and thus a good mix between activities at the living area scale, are of primordial importance for the energy performance, whereas means of transport used is only of little impact. Improving the performance of the vehicles and favoring home-work give also significant energy savings. The method can be used when planning new areas or retrofitting existing ones, as well as promoting more sustainable lifestyles regarding transport habits. - Highlights: Black-Right-Pointing-Pointer The method allows to assess transport energy consumption in suburban areas and highlight the best strategies to reduce it. Black-Right-Pointing-Pointer Home-to-work travels represent the most important part of calculated transport energy consumption. Black-Right-Pointing-Pointer Energy savings can be achieved by reducing distances to travel through a good mix between activities at the local scale. Black-Right-Pointing-Pointer Means of transport used in only of little impact in the studied suburban neighborhoods. Black-Right-Pointing-Pointer Improving the performance of the vehicles and favoring home-work can significant energy savings.

  5. Manufacturing Consumption of Energy 1994

    U.S. Energy Information Administration (EIA) Indexed Site

    A9. Total Inputs of Energy for Heat, Power, and Electricity Generation by Fuel Type, Census Region, and End Use, 1994: Part 1 (Estimates in Btu or Physical Units) See footnotes at...

  6. Manufacturing consumption of energy 1994

    SciTech Connect (OSTI)

    1997-12-01

    This report provides estimates on energy consumption in the manufacturing sector of the U.S. economy based on data from the Manufacturing Energy Consumption Survey. The sample used in this report represented about 250,000 of the largest manufacturing establishments which account for approximately 98 percent of U.S. economic output from manufacturing, and an expected similar proportion of manufacturing energy use. The amount of energy use was collected for all operations of each establishment surveyed. Highlights of the report include profiles for the four major energy-consuming industries (petroleum refining, chemical, paper, and primary metal industries), and an analysis of the effects of changes in the natural gas and electricity markets on the manufacturing sector. Seven appendices are included to provide detailed background information. 10 figs., 51 tabs.

  7. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Gasoline and Diesel Fuel Update (EIA)

    How does EIA estimate energy consumption and end uses in U.S. homes? RECS 2009 - Release date: March 28, 2011 EIA administers the Residential Energy Consumption Survey (RECS) to a ...

  8. ,"New Mexico Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:58:31 AM" "Back to Contents","Data 1: New Mexico Natural Gas Industrial Consumption (MMcf)" "Sourcekey","N3035NM2" "Date","New Mexico Natural Gas Industrial Consumption (MMcf)" ...

  9. ,"New Mexico Natural Gas Residential Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    6:56:45 AM" "Back to Contents","Data 1: New Mexico Natural Gas Residential Consumption (MMcf)" "Sourcekey","N3010NM2" "Date","New Mexico Natural Gas Residential Consumption (MMcf)" ...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    A. Consumption and Gross Energy Intensity by Census Region for Sum of Major Fuels for All Buildings, 2003 Sum of Major Fuel Consumption (trillion Btu) Total Floorspace of Buildings...

  11. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Nebraska Phone Number: 402-367-3081 or 402-367-3082 Website: www.butlerppd.com Facebook: https:www.facebook.compagesButler-Public-Power-District176407425708968 Outage...

  12. Pennsylvania's 12th congressional district: Energy Resources...

    Open Energy Info (EERE)

    th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a...

  13. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  14. Tonopah Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    District Place: Arizona Phone Number: (480) 610-8741 Website: www.krsaline.comtidtid.html Outage Hotline: 480.610.8741 References: EIA Form EIA-861 Final Data File for 2010 -...

  15. The Metropolitan Water District of Southern California

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SW Washington, DC 20585-0121 QERcomments@hq.doe.gov Comments on the Department of Energy's Quadrennial Energy Review: Water-Energy Nexus The Metropolitan Water District of Southern ...

  16. Imperial Irrigation District | Open Energy Information

    Open Energy Info (EERE)

    District Place: California Phone Number: 800-303-7756 Website: www.iid.com Facebook: https:www.facebook.comIIDEnergy Outage Hotline: (800) 303-7756 References: EIA...

  17. Butler Public Power District | Open Energy Information

    Open Energy Info (EERE)

    Butler County Rural P P D) Jump to: navigation, search Name: Butler Public Power District Place: Nebraska Phone Number: 402-367-3081 or 402-367-3082 Website: www.butlerppd.com...

  18. Renewable energy technologies for federal facilities: Geothermal heat pump

    SciTech Connect (OSTI)

    1996-05-01

    This sheet summarizes information on geothermal heat pumps (GHPs), which extracts heat from the ground in the winter and transfers heat to the ground in the summer. More than 200,000 GHPs are operating in US; they can reduce energy consumption and related emissions by 23 to 44% compared to air-source heat pumps. Opportunities for use of GHPs, requirements, and cost are described. Important terms are defined.

  19. State energy data report 1992: Consumption estimates

    SciTech Connect (OSTI)

    Not Available

    1994-05-01

    This is a report of energy consumption by state for the years 1960 to 1992. The report contains summaries of energy consumption for the US and by state, consumption by source, comparisons to other energy use reports, consumption by energy use sector, and describes the estimation methodologies used in the preparation of the report. Some years are not listed specifically although they are included in the summary of data.

  20. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Challenges to Smart Grid Implementation | Department of Energy Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District (The District) an Independent Special District of the State of Florida is appreciative of the opportunity to submit for your consideration the following comments in response to the U.S.

  1. Washington School District Makes the Grade in Energy Efficiency |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Washington School District Makes the Grade in Energy Efficiency Washington School District Makes the Grade in Energy Efficiency September 2, 2015 - 10:01am Addthis As part of the Better Buildings Challenge, Camas School District in Washington not only surpassed its energy efficiency goals, but did so five years early. | Photo courtesy of Camas School District. As part of the Better Buildings Challenge, Camas School District in Washington not only surpassed its energy

  2. Buildings Energy Data Book: 2.1 Residential Sector Energy Consumption

    Buildings Energy Data Book [EERE]

    4 Ownership (1) Owned 54.9 104.5 40.3 78% Rented 77.4 71.7 28.4 22% Public Housing 75.7 62.7 28.7 2% Not Public Housing 77.7 73.0 28.4 19% 100% Note(s): Source(s): 1) Energy consumption per square foot was calculated using estimates of average heated floor space per household. According to the 2005 Residential Energy Consumption Survey (RECS), the average heated floor space per household in the U.S. was 1,618 square feet. Average total floor space, which includes garages, attics and unfinished

  3. Heat collector

    DOE Patents [OSTI]

    Merrigan, Michael A.

    1984-01-01

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  4. Heat collector

    DOE Patents [OSTI]

    Merrigan, M.A.

    1981-06-29

    A heat collector and method suitable for efficiently and cheaply collecting solar and other thermal energy are provided. The collector employs a heat pipe in a gravity-assist mode and is not evacuated. The collector has many advantages, some of which include ease of assembly, reduced structural stresses on the heat pipe enclosure, and a low total materials cost requirement. Natural convective forces drive the collector, which after startup operates entirely passively due in part to differences in molecular weights of gaseous components within the collector.

  5. Household energy consumption and expenditures, 1990

    SciTech Connect (OSTI)

    Not Available

    1993-03-02

    This report, Household Energy Consumption and Expenditures 1990, is based upon data from the 1990 Residential Energy Consumption Survey (RECS). Focusing on energy end-use consumption and expenditures of households, the 1990 RECS is the eighth in a series conducted since 1978 by the Energy Information Administration (EIA). Over 5,000 households were surveyed, providing information on their housing units, housing characteristics, energy consumption and expenditures, stock of energy-consuming appliances, and energy-related behavior. The information provided represents the characteristics and energy consumption of 94 million households nationwide.

  6. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2006-03-07

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  7. Electrical appliance energy consumption control methods and electrical energy consumption systems

    DOE Patents [OSTI]

    Donnelly, Matthew K.; Chassin, David P.; Dagle, Jeffery E.; Kintner-Meyer, Michael; Winiarski, David W.; Pratt, Robert G.; Boberly-Bartis, Anne Marie

    2008-09-02

    Electrical appliance energy consumption control methods and electrical energy consumption systems are described. In one aspect, an electrical appliance energy consumption control method includes providing an electrical appliance coupled with a power distribution system, receiving electrical energy within the appliance from the power distribution system, consuming the received electrical energy using a plurality of loads of the appliance, monitoring electrical energy of the power distribution system, and adjusting an amount of consumption of the received electrical energy via one of the loads of the appliance from an initial level of consumption to an other level of consumption different than the initial level of consumption responsive to the monitoring.

  8. California Natural Gas Lease and Plant Fuel Consumption (Million...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    California Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 ... Natural Gas Lease and Plant Fuel Consumption California Natural Gas Consumption by End Use ...

  9. Texas Natural Gas Industrial Consumption (Million Cubic Feet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consumption (Million Cubic Feet) Texas Natural Gas Industrial Consumption (Million Cubic ... Natural Gas Delivered to Industrial Consumers Texas Natural Gas Consumption by End Use ...

  10. HEAT EXCHANGER

    DOE Patents [OSTI]

    Fox, T.H. III; Richey, T. Jr.; Winders, G.R.

    1962-10-23

    A heat exchanger is designed for use in the transfer of heat between a radioactive fiuid and a non-radioactive fiuid. The exchanger employs a removable section containing the non-hazardous fluid extending into the section designed to contain the radioactive fluid. The removable section is provided with a construction to cancel out thermal stresses. The stationary section is pressurized to prevent leakage of the radioactive fiuid and to maintain a safe, desirable level for this fiuid. (AEC)

  11. Corrosive resistant heat exchanger

    DOE Patents [OSTI]

    Richlen, Scott L.

    1989-01-01

    A corrosive and errosive resistant heat exchanger which recovers heat from a contaminated heat stream. The heat exchanger utilizes a boundary layer of innocuous gas, which is continuously replenished, to protect the heat exchanger surface from the hot contaminated gas. The innocuous gas is conveyed through ducts or perforations in the heat exchanger wall. Heat from the heat stream is transferred by radiation to the heat exchanger wall. Heat is removed from the outer heat exchanger wall by a heat recovery medium.

  12. Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used

    U.S. Energy Information Administration (EIA) Indexed Site

    0. Space-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Space Heating","Space-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane","Othera" "All Buildings ................",4657,4016,1880,2380,377,96,307,94 "Building Floorspace"

  13. Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used

    U.S. Energy Information Administration (EIA) Indexed Site

    5. Water-Heating Energy Sources, Number of Buildings, 1999" ,"Number of Buildings (thousand)" ,"All Buildings","All Buildings with Water Heating","Water-Heating Energy Sources Used (more than one may apply)" ,,,"Electricity","Natural Gas","Fuel Oil","District Heat","Propane" "All Buildings ................",4657,3239,1546,1520,110,62,130 "Building Floorspace" "(Square

  14. Energy consumption in thermomechanical pulping

    SciTech Connect (OSTI)

    Marton, R.; Tsujimoto, N.; Eskelinen, E.

    1981-08-01

    Various components of refining energy were determined experimentally and compared with those calculated on the basis of the dimensions of morphological elements of wood. The experimentally determined fiberization energy of spruce was 6 to 60 times larger than the calculated value and that of birch 3 to 15 times larger. The energy consumed in reducing the Canadian standard freeness of isolated fibers from 500 to 150 ml was found to be approximately 1/3 of the total fiber development energy for both spruce and birch TMP. Chip size affected the refining energy consumption; the total energy dropped by approximately 30% when chip size was reduced from 16 mm to 3 mm in the case of spruce and approximately 40% for birch. 6 refs.

  15. Total Space Heating Water Heating Cook-

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Tables Total Space Heating Water Heating Cook- ing Other Total Space Heating Water Heating Cook- ing Other All Buildings* ... 634 578 46 1 Q 116.4 106.3...

  16. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  17. Household and environmental characteristics related to household energy-consumption change: A human ecological approach

    SciTech Connect (OSTI)

    Guerin, D.A.

    1988-01-01

    This study focused on the family household as an organism and on its interaction with the three environments of the human ecosystem (natural, behavioral, and constructed) as these influence energy consumption and energy-consumption change. A secondary statistical analysis of data from the US Department of Energy Residential Energy Consumption Surveys (RECS) was completed. The 1980 and 1983 RECS were used as the data base. Longitudinal data, including household, environmental, and energy-consumption measures, were available for over 800 households. The households were selected from a national sample of owner-occupied housing units surveyed in both years. Results showed a significant( p = <.05) relationship between the dependent-variable energy-consumption change and the predictor variables heating degree days, addition of insulation, addition of a wood-burning stove, year the housing unit was built, and weighted number of appliances. A significant (p = <.05) relationship was found between the criterion variable energy-consumption change and the discriminating variables of age of the head of the household, cooling degree days, heating degree days, year the housing unit was built, and number of stories in the housing unit.

  18. 2009 Energy Consumption Per Person | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2009 Energy Consumption Per Person 2009 Energy Consumption Per Person 2009 Energy Consumption Per Person Per capita energy consumption across all sectors of the economy. Click on a state for more information.

  19. Final Report. Montpelier District Energy Project

    SciTech Connect (OSTI)

    Baker, Jessie; Motyka, Kurt; Aja, Joe; Garabedian, Harold T.

    2015-03-30

    The City of Montpelier, in collaboration with the State of Vermont, developed a central heat plant fueled with locally harvested wood-chips and a thermal energy distribution system. The project provides renewable energy to heat a complex of state buildings and a mix of commercial, private and municipal buildings in downtown Montpelier. The State of Vermont operates the central heat plant and the system to heat the connected state buildings. The City of Montpelier accepts energy from the central heat plant and operates a thermal utility to heat buildings in downtown Montpelier which elected to take heat from the system.

  20. Residential Energy Consumption Survey (RECS) - Data - U.S. Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    | Previous Housing characteristics Consumption & expenditures Microdata Methodology ... Special tabulations: wood characteristics and consumption Release date: February 21, 2014 ...

  1. Commercial Buildings Energy Consumption Survey (CBECS) - U.S...

    Gasoline and Diesel Fuel Update (EIA)

    Consumption & Efficiency Commercial Buildings Energy Consumption Survey (CBECS) Glossary FAQS Overview Data 2012 2003 1999 1995 1992 Previous Analysis & Projections ...

  2. Table 6a. Total Electricity Consumption per Effective Occupied...

    U.S. Energy Information Administration (EIA) Indexed Site

    a. Total Electricity Consumption per Effective Occupied Square Foot, 1992 Building Characteristics All Buildings Using Electricity (thousand) Total Electricity Consumption...

  3. Household energy consumption and expenditures, 1987

    SciTech Connect (OSTI)

    Not Available

    1989-10-10

    Household Energy Consumption and Expenditures 1987, Part 1: National Data is the second publication in a series from the 1987 Residential Energy Consumption Survey (RECS). It is prepared by the Energy End Use Division (EEUD) of the Office of Energy Markets and End Use (EMEU), Energy Information Administration (EIA). The EIA collects and publishes comprehensive data on energy consumption in occupied housing units in the residential sector through the RECS. 15 figs., 50 tabs.

  4. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This rise has occurred while Federal energy efficiency standards were enacted on every major appliance, overall household energy consumption actually decreased from 10.58 quads to ...

  5. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Gasoline and Diesel Fuel Update (EIA)

    Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use and the Energy Intensity of Manufacturing Activity between 2002 and 2010 MECS 2010 - ...

  6. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    EIA has conducted the Residential Energy Consumption Survey (RECS) since 1978 to provide data on home energy characteristics, end uses of energy, and expenses for the four Census ...

  7. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    As a part of the Residential Energy Consumption Survey (RECS), trained interviewers measure the square footage of each housing unit. RECS square footage data allow comparison of ...

  8. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Release Date: July 12, 2012 | Revised Date: June 19, 2014 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at least four years, beginning with ...

  9. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Gasoline and Diesel Fuel Update (EIA)

    Pick a date range: From: To: Go Commercial Buildings Available formats 2012 Commercial Buildings Energy Consumption Survey: Energy Usage Summary Released: March 18, 2016 EIA has ...

  10. Commercial Buildings Energy Consumption Survey (CBECS) - How...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Energy Usage Information Collected in the 2012 CBECS? CBECS 2012 - Release date: March 18, 2016 The Commercial Buildings Energy Consumption Survey (CBECS) project cycle spans at ...

  11. Manufacturing Energy Consumption Survey (MECS) - Analysis & Projection...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    That increase in supply has in turn lowered the price of natural gas to manufacturers Manufacturing Energy Consumption Data Show Large Reductions in Both Manufacturing Energy Use ...

  12. Residential Energy Consumption Survey (RECS) - Analysis & Projections...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    RECS 2009 - Release date: March 28, 2011 First results from EIA's 2009 Residential Energy Consumption Survey (RECS) The 2009 RECS collected home energy characteristics data from ...

  13. Commercial Buildings Energy Consumption Survey (CBECS) - Analysis...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data collection for the 2012 Commercial Buildings Energy Consumption Survey (CBECS) took place between April and November 2013, collecting data for reference year 2012. The goal of ...

  14. Issues in International Energy Consumption Analysis: Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    This is the U.S. Energy Information Administration's second study to help provide a better understanding of the factors impacting residential energy consumption and intensity in ...

  15. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix I Related EIA Publications on Energy Consumption For information about how to obtain these publi- cations, see the inside cover of this report. Please note that the...

  16. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Appendix A How the Survey Was Conducted Introduction The Commercial Buildings Energy Consumption Survey (CBECS) is conducted by the Energy Information Administration (EIA) on a...

  17. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    Distribution Category UC-950 Commercial Buildings Energy Consumption and Expenditures 1992 April 1995 Energy Information Adminstration Office of Energy Markets and End Use U.S....

  18. Commercial Buildings Energy Consumption and Expenditures 1992

    U.S. Energy Information Administration (EIA) Indexed Site

    in this report were based on monthly billing records submitted by the buildings' energy suppliers. The section, "Annual Consumption and Expenditures" provide a detailed...

  19. ,"Maine Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maine Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  20. ,"North Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  1. ,"South Carolina Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  2. ,"South Dakota Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  3. ,"New York Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New York Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  4. ,"New Jersey Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  5. ,"Rhode Island Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  6. ,"New Hampshire Natural Gas Industrial Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Natural Gas Industrial Consumption (MMcf)",1,"Monthly","102015" ,"Release Date:","12312015" ,"Next...

  7. Chapter 4. Fuel Economy, Consumption and Expenditures

    U.S. Energy Information Administration (EIA) Indexed Site

    national concerns about dependence on foreign oil and the deleterious effect on the environment of fossil fuel combustion, residential vehicle fleet fuel consumption was...

  8. ,"Natural Gas Consumption",,,"Natural Gas Expenditures"

    U.S. Energy Information Administration (EIA) Indexed Site

    Census Division, 1999" ,"Natural Gas Consumption",,,"Natural Gas Expenditures" ,"per Building (thousand cubic feet)","per Square Foot (cubic feet)","per Worker (thousand cubic...

  9. CBECS 1992 - Consumption & Expenditures, Detailed Tables

    U.S. Energy Information Administration (EIA) Indexed Site

    consumption by major fuel, 1992 Divider Line To View andor Print Reports (requires Adobe Acrobat Reader) - Download Adobe Acrobat Reader If you experience any difficulties,...

  10. Energy Information Administration - Commercial Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Consumption Natural Gas Expenditures per Building (thousand cubic feet) per Square Foot (cubic feet) Distribution of Building-Level Intensities (cubic feetsquare foot) 25th...

  11. ,"Washington Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  12. Displacing Natural Gas Consumption and Lowering Emissions

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ADVANCED MANUFACTURING OFFICE Displacing Natural Gas Consumption and Lowering Emissions By ... and chemical sectors account for more than 40% of total industrial natural gas use. ...

  13. ,"Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  14. ,"Texas Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  15. ,"Texas Natural Gas Lease Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Lease Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  16. ,"Texas Natural Gas Plant Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Natural Gas Plant Fuel Consumption (MMcf)",1,"Annual",2014 ,"Release Date:","930...

  17. Energy Preview: Residential Transportation Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    t 7 Energy Preview: Residential Transportation Energy Consumption Survey, Preliminary Estimates, 1991 (See Page 1) This publication and other Energy Information Administration...

  18. Derived Annual Estimates of Manufacturing Energy Consumption...

    U.S. Energy Information Administration (EIA) Indexed Site

    > Derived Annual Estimates - Executive Summary Derived Annual Estimates of Manufacturing Energy Consumption, 1974-1988 Figure showing Derived Estimates Executive Summary This...

  19. Household Vehicles Energy Consumption 1994 - Appendix C

    U.S. Energy Information Administration (EIA) Indexed Site

    discusses several issues relating to the quality of the Residential Transportation Energy Consumption Survey (RTECS) data and to the interpretation of conclusions based on...

  20. PIA - Northeast Home Heating Oil Reserve System (Heating Oil...

    Energy Savers [EERE]

    Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil) PIA - Northeast Home Heating Oil Reserve System (Heating Oil)...