Seismic pulse propagation with constant Q and stable probability distributions
Francesco Mainardi; Massimo Tomirotti
2010-08-07T23:59:59.000Z
The one-dimensional propagation of seismic waves with constant Q is shown to be governed by an evolution equation of fractional order in time, which interpolates the heat equation and the wave equation. The fundamental solutions for the Cauchy and Signalling problems are expressed in terms of entire functions (of Wright type) in the similarity variable and their behaviours turn out to be intermediate between those for the limiting cases of a perfectly viscous fluid and a perfectly elastic solid. In view of the small dissipation exhibited by the seismic pulses, the nearly elastic limit is considered. Furthermore, the fundamental solutions for the Cauchy and Signalling problems are shown to be related to stable probability distributions with index of stability determined by the order of the fractional time derivative in the evolution equation.
The type Ia supernovae and the Hubble's constant
Ari Brynjolfsson
2004-07-20T23:59:59.000Z
The Hubble's constant is usually surmised to be a constant; but the experiments show a large spread and conflicting estimates. According to the plasma-redshift theory, the Hubble's constant varies with the plasma densities along the line of sight. It varies then slightly with the direction and the distance to a supernova and a galaxy. The relation between the magnitudes of type Ia supernovae and their observed redshifts results in an Hubble's constant with an average value in intergalactic space of 59.44 km per s per Mpc. The standard deviation from this average value is only 0.6 km per s per Mpc, but the standard deviation in a single measurement is about 8.2 km per s per Mpc. These deviations do not include possible absolute calibration errors. The experiments show that the Hubble's constant varies with the intrinsic redshifts of the Milky Way galaxy and the host galaxies for type Ia supernovae, and that it varies with the galactic latitude. These findings support the plasma-redshift theory and contradict the contemporary big-bang theory. Together with the previously reported absence of time dilation in type Ia supernovae measurements, these findings have profound consequences for the standard cosmological theory.
The Hubble Constant from Type Ia Supernovae in Early-Type Galaxies
Tom Richtler; Georg Drenkhahn
1999-09-07T23:59:59.000Z
Type Ia supernovae (SNe) are the best standard candles available today in spite of an appreciable intrinsic variation of their luminosities at maximum phase, and of probably non-uniform progenitors. For an unbiased use of type Ia SNe as distance indicators it is important to know accurately how the decline rate and colour at maximum phase correlate with the peak brightness. In order to calibrate the Hubble diagram of type Ia SNe, i.e. to derive the Hubble constant, one needs to determine the absolute brightness of nearby type Ia SNe. Globular cluster systems of early type Ia host galaxies provide suitable distance indicators. We discuss how Ia SNe can be calibrated and explain the method of Globular Cluster Luminosity Functions (GCLFs). At present, the distance to the Fornax galaxy cluster is most important for deriving the Hubble constant. Our present data indicate a Hubble constant of H_0=72+-4 km/s/Mpc. As an appendix, we summarise what is known about absolute magnitudes of Ia's in late-type galaxies.
Distribution Function of Dark Matter with Constant Anisotropy
Ding Ma; Ping He
2008-08-01T23:59:59.000Z
N-body simulations of dark matter halos show that the density is cusped near the center of the halo. The density profile behaves as $r^{-\\gamma}$ in the inner parts, where $\\gamma \\simeq 1$ for the NFW model and $\\gamma \\simeq 1.5$ for the Moore's model, but in the outer parts, both models agree with each other in the asymptotic behavior of the density profile. The simulations also show the information about anisotropy parameter $\\beta(r)$ of velocity distribution. $\\beta\\approx 0$ in the inner part and $\\beta\\approx 0.5$ (radially anisotropic) in the outer part of the halo. We provide some distribution functions $F(E,L)$ with the constant anisotropy parameter $\\beta$ for the two spherical models of dark matter halos: a new generalized NFW model and a generalized Moore model. There are two parameters $\\alpha$ and $\\epsilon$ for those two generalized models to determine the asymptotic behavior of the density profile. In this paper, we concentrate on the situation of $\\beta(r)=1/2$ from the viewpoint of the simulation.
Hardy–Sobolev Type Inequalities with Sharp Constants in Carnot ...
2010-06-22T23:59:59.000Z
nonlinear case p = 2. We also obtain a sharp inequality of Hardy–Sobolev type. Keywords Hardy type inequalities·Carnot groups·Carnot–Carathéodory spaces·.
Fine-structure constant constraints on Bekenstein-type models
P. M. M. Leal; C. J. A. P. Martins; L. B. Ventura
2014-07-15T23:59:59.000Z
Astrophysical tests of the stability of dimensionless fundamental couplings, such as the fine-structure constant $\\alpha$, are an area of much increased recent activity, following some indications of possible spacetime variations at the few parts per million level. Here we obtain updated constraints on the Bekenstein-Sandvik-Barrow-Magueijo model, which is arguably the simplest model allowing for $\\alpha$ variations. Recent accurate spectroscopic measurements allow us to improve previous constraints by about an order of magnitude. We briefly comment on the dependence of the results on the data sample, as well as on the improvements expected from future facilities.
Analysis of error in using fractured gas well type curves for constant pressure production
Schkade, David Wayne
1987-01-01T23:59:59.000Z
of normalized time and normalized cumulative production is a large improvement over using a constant evaluation pressure. 0 imens ion less cumulative production type curves are particularly useful in modeling production for economic projections, such as re... of MASTER OF SCIENCE May 1987 Major Subject: Petroleum Engineering ANALYSIS OF ERROR IN USING FRACTURED GAS WELL TYPE CURVES FOR CONSTANT PRESSURE PRDDUCTION A Thesis by DAVID WAYNE SCHKADE Approved as to style and content by: S. A. Ho lditch...
On the distribution of estimators of diffusion constants for Brownian motion
Denis Boyer; David S. Dean
2011-07-26T23:59:59.000Z
We discuss the distribution of various estimators for extracting the diffusion constant of single Brownian trajectories obtained by fitting the squared displacement of the trajectory. The analysis of the problem can be framed in terms of quadratic functionals of Brownian motion that correspond to the Euclidean path integral for simple Harmonic oscillators with time dependent frequencies. Explicit analytical results are given for the distribution of the diffusion constant estimator in a number of cases and our results are confirmed by numerical simulations.
Distribution and Abstract Types in Emerald N. Hutchinson
Black, Andrew P.
Distribution and Abstract Types in Emerald A. Black N. Hutchinson E. Jul H. Levy L. CarterEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-13. NO. 1, JANUARY 1987 65 Distribution and Abstract Types-Emerald is an object-based language for programming distributed subsystems and applications. Its novel features include
Goobar, A.
2008-01-01T23:59:59.000Z
at z = 1. uncertainty for supernovae at z = 1. mR Adding theMass Density .Q Using Type Ia Supernovae A. Goobar and S.Density Q Using Type Ia Supernovae Ariel Goobar l and Saul
Elastic constants determined by nanoindentation for p-type thermoelectric half-Heusler
Gahlawat, S.; Wheeler, L.; White, K. W., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Mechanical Engineering, University of Houston, Houston, Texas 77204 (United States); He, R.; Chen, S.; Ren, Z. F., E-mail: zren@uh.edu, E-mail: kwwhite@uh.edu [Department of Physics and TcSUH, University of Houston, Houston, Texas 77204 (United States)
2014-08-28T23:59:59.000Z
This paper presents a study of the elastic properties of the p-type thermoelectric half-Heusler material, Hf{sub 0.44}Zr{sub 0.44}Ti{sub 0.12}CoSb{sub 0.8}Sn{sub 0.2}, using nanoindentation. Large grain-sized polycrystalline specimens were fabricated for these measurements, providing sufficient indentation targets within single grains. Electron Backscatter Diffraction methods indexed the target grains for the correlation needed for our elastic analysis of individual single crystals for this cubic thermoelectric material. Elastic properties, including the Zener ratio and the Poisson ratio, obtained from the elasticity tensor are also reported.
Dobigeon, Nicolas
truncated on a simplex Nicolas Dobigeon and Jean-Yves Tourneret E-mail: dobigeon@umich.edu TECHNICAL REPORT simplex: S = r 0, r = 1, . . . , R - 1, R-1 r=1 r 1 , (1) Let NS(A, B) denote the truncated multivariate normal distribution defined on the simplex S with mean vector A and covariance matrix B
On P_T-distribution of gluon production rate in constant chromoelectric field
D. G. Pak
2007-02-22T23:59:59.000Z
A complete expression for the p_T-distribution of the gluon production rate in the homogeneous chromoelectric field has been obtained. Our result contains a new additional term proportional to the singular function \\delta(p_T^2). We demonstrate that the presence of this term is consistent with the dual symmetry of QCD effective action and allows to reproduce the known result for the total imaginary part of the effective action after integration over transverse momentum.
Andrzej Krasi?ski
2014-09-10T23:59:59.000Z
The Lema\\^{\\i}tre -- Tolman model with $\\Lambda = 0$ and constant bang time that imitates the luminosity distance -- redshift relation of the $\\Lambda$CDM model using the energy function $E$ alone contains shell crossings. In this paper, the location in spacetime and the consequences of existence of the shell-crossing set (SCS) are investigated. The SCS would come into view of the central observer only at $t \\approx 1064 T$ to the future from now, where $T$ is the present age of the Universe, but would not leave any recognizable trace in her observations. Light rays emitted near to the SCS are blueshifted at the initial points, but the blueshift is finite, and is overcompensated by later-induced redshifts if the observer is sufficiently far. The local blueshifts cause that $z$ along a light ray is not a monotonic function of the comoving radial coordinate $r$. As a consequence, the angular diameter distance $D_A$ and the luminosity distance $D_L$ from the central observer fail to be functions of $z$; the relations $D_A(z)$ and $D_L(z)$ are multiple-valued in a vicinity of the SCS. The following quantities are calculated and displayed: (1) The distribution of mass density on a few characteristic hypersurfaces of constant time; some of them intersect the SCS. (2) The distribution of density along the past light cone of the present central observer. (3) A few light cones intersecting the SCS at characteristic instants. (4) The redshift profiles along several light cones. (5) The extremum-redshift hypersurface. (6) The $D_A(z)$ and $D_L(z)$ relations. (7) The last scattering time and its comparison with the $\\Lambda$CDM last scattering epoch.
Dai, Mi
2015-01-01T23:59:59.000Z
In order to obtain robust cosmological constraints from Type Ia supernova (SN Ia) data, we have applied Markov Chain Monte Carlo (MCMC) to SN Ia lightcurve fitting. We develop a method for sampling the resultant probability density distributions (pdf) of the SN Ia lightcuve parameters in the MCMC likelihood analysis to constrain cosmological parameters. Applying this method to the Joint Lightcurve Analysis (JLA) data set of SNe Ia, we find that sampling the SN Ia lightcurve parameter pdf's leads to cosmological parameters closer to that of a flat Universe with a cosmological constant, compared to the usual practice of using only the best fit values of the SN Ia lightcurve parameters. Our method will be useful in the use of SN Ia data for precision cosmology.
Pota, Himanshu Roy
as a major enabler of the smart grid for the integration of small and medium sized renewable energy based that modeling of loads has a significant impact on the voltage dynamics of the distribution systemAbstract--This paper presents the impact of different types of load models in distribution network
Childers, L.; Liming, L.; Foster, I.; Mathematics and Computer Science; Univ. of Chicago
2008-10-15T23:59:59.000Z
This report summarizes the methodology and results of a user perspectives study conducted by the Community Driven Improvement of Globus Software (CDIGS) project. The purpose of the study was to document the work-related goals and challenges facing today's scientific technology users, to record their perspectives on Globus software and the distributed-computing ecosystem, and to provide recommendations to the Globus community based on the observations. Globus is a set of open source software components intended to provide a framework for collaborative computational science activities. Rather than attempting to characterize all users or potential users of Globus software, our strategy has been to speak in detail with a small group of individuals in the scientific community whose work appears to be the kind that could benefit from Globus software, learn as much as possible about their work goals and the challenges they face, and describe what we found. The result is a set of statements about specific individuals experiences. We do not claim that these are representative of a potential user community, but we do claim to have found commonalities and differences among the interviewees that may be reflected in the user community as a whole. We present these as a series of hypotheses that can be tested by subsequent studies, and we offer recommendations to Globus developers based on the assumption that these hypotheses are representative. Specifically, we conducted interviews with thirty technology users in the scientific community. We included both people who have used Globus software and those who have not. We made a point of including individuals who represent a variety of roles in scientific projects, for example, scientists, software developers, engineers, and infrastructure providers. The following material is included in this report: (1) A summary of the reported work-related goals, significant issues, and points of satisfaction with the use of Globus software; (2) A method for characterizing users according to their technology interactions, and identification of four user types among the interviewees using the method; (3) Four profiles that highlight points of commonality and diversity in each user type; (4) Recommendations for technology developers and future studies; (5) A description of the interview protocol and overall study methodology; (6) An anonymized list of the interviewees; and (7) Interview writeups and summary data. The interview summaries in Section 3 and transcripts in Appendix D illustrate the value of distributed computing software--and Globus in particular--to scientific enterprises. They also document opportunities to make these tools still more useful both to current users and to new communities. We aim our recommendations at developers who intend their software to be used and reused in many applications. (This kind of software is often referred to as 'middleware.') Our two core recommendations are as follows. First, it is essential for middleware developers to understand and explicitly manage the multiple user products in which their software components are used. We must avoid making assumptions about the commonality of these products and, instead, study and account for their diversity. Second, middleware developers should engage in different ways with different kinds of users. Having identified four general user types in Section 4, we provide specific ideas for how to engage them in Section 5.
Changing Pollen Types/Concentrations/ Distribution in the United States
Levetin, Estelle
to global warming, as the distributions of mosquitoes and other arthropod vectors have expanded exponentially from preindustrial levels of approximately 280 ppm [1] to the current average global level by Current Medicine Group LLC The buildup of greenhouse gases in the atmosphere has resulted in global
Richard G. Forbes
2015-02-25T23:59:59.000Z
In the 1940s/50s, Landau and Lifschitz (LL) published in their Quantum Mechanics textbook what is now a well known formula for the rate-constant for the electrostatic field ionization (ESFI) of a hydrogen atom in its ground electronic state. This formula is widely regarded as correct in the low field limit, and has played a significant role in development of ESFI theory. The formula was originally derived and presented in the atomic units system, with the hydrogen ionization energy I_H set equal to (1/2), making it impossible to determine by inspection to what power I_H is raised in its pre-exponential. Knowledge of this power would be useful in the context of near-surface ESFI, where significant image-force-induced shifts in effective ionization energy can occur. Also, large numbers of applied scientists and engineers work with ESFI as a process of technological importance, but cannot nowadays be expected to have familiarity with the Gaussian or atomic units equation systems. In the 1970s, what is now called the International System of Quantities (ISQ), which includes the equation system behind SI units, was internationally adopted as the primary system for university teaching and for communication of scientific equations between theoreticians and applied scientists and engineers. However, 40 years on, no transparent derivation of an ISQ equivalent of the LL formula is easily found in the literature. This tutorial paper presents a detailed ISQ derivation, finds that ionization energy appears in the pre-exponential as I_H to the power (7/2) (not 5/2, as sometimes stated) and defines a universal "tunnelling ionization constant" that appears in the ISQ formula pre-exponential. It is shown how this formula relates to the "attempt frequency" form often used to describe rate-constants for tunnelling processes, and an ISQ expression is given for the motive energy in the related JWKB integral.
Simulation of dose distribution for iridium-192 brachytherapy source type-H01 using MCNPX
Purwaningsih, Anik [Center for development of nuclear informatics, National Nuclear Energy Agency, PUSPIPTEK, Serpong, Banten 15310 (Indonesia)
2014-09-30T23:59:59.000Z
Dosimetric data for a brachytherapy source should be known before it used for clinical treatment. Iridium-192 source type H01 was manufactured by PRR-BATAN aimed to brachytherapy is not yet known its dosimetric data. Radial dose function and anisotropic dose distribution are some primary keys in brachytherapy source. Dose distribution for Iridium-192 source type H01 was obtained from the dose calculation formalism recommended in the AAPM TG-43U1 report using MCNPX 2.6.0 Monte Carlo simulation code. To know the effect of cavity on Iridium-192 type H01 caused by manufacturing process, also calculated on Iridium-192 type H01 if without cavity. The result of calculation of radial dose function and anisotropic dose distribution for Iridium-192 source type H01 were compared with another model of Iridium-192 source.
Mueller, N.P.; Rossi, C.E.; Scherpereel, L.R.
1980-09-16T23:59:59.000Z
This invention provides a method of operating a nuclear reactor having a negative reactivity moderator temperature coefficient with the object of maintaining a uniform and symmetric xenon distribution above and below substantially the center of the core over a substantial axial length of the core during normal reactor operation including load follow. In one embodiment variations in the xenon distribution are controlled by maintaining a substantially symmetric axial power distribution. The axial offset, which is employed as an indication of the axial power distribution, is maintained substantially equal to a target value , which is modified periodically to account for core burnup. A neutron absorbing element within the core coolant, or moderator, is employed to assist control of reactivity changes associated with changes in power, with the full-length control rods mainly employed to adjust variations in the axial power distribution while the part-length rodsremain completely withdrawn from the fuel region of the core. Rapid changes in reactivity are implemented, to accommodate corresponding changes in load, by a controlled reduction of the core coolant temperature. Thus, active core coolant temperature control is employed to control the reactivity of the core during load follow operation and effectively increase the spinning reserve capability of a power plant without altering the axial power distribution.
MESURE DE LA DISTRIBUTION RADIALE DU COURANT DANS UN PLASMA DU TYPE TOKAMAK,
Boyer, Edmond
85 MESURE DE LA DISTRIBUTION RADIALE DU COURANT DANS UN PLASMA DU TYPE TOKAMAK, A L'AIDE D plasma du type Tokamak à l'aide d'un faisceau de lithium neutre. On décrit les différentes parties du analyse. Finalement les résultats expérimentaux obtenus sur un Tokamak sont décrits. Les profils sont
Frank Znidarsic
2000-11-12T23:59:59.000Z
A Bose condensate of electrons may exist in nickel hydrogen and palladium hydrogen systems. The motion constants associated with the gravitational and nuclear forces motion tend toward the electromagnetic in these systems. The change in the motion constants produces unexpected gravitomagnetic and nuclear affects.
Brad K. Gibson; Peter B. Stetson; Wendy L. Freedman; Jeremy R. Mould; Robert C. Kennicutt, Jr.; John P. Huchra; Shoko Sakai; John A. Graham; Caleb I. Fassett; Daniel D. Kelson; Laura Ferrarese; Shaun M. G. Hughes; Garth D. Illingworth; Lucas M. Macri; Barry F. Madore; Kim M. Sebo; Nancy A. Silbermann
1999-08-13T23:59:59.000Z
Cepheid-based distances to seven Type Ia supernovae (SNe)-host galaxies have been derived using the standard HST Key Project on the Extragalactic Distance Scale pipeline. For the first time, this allows for a transparent comparison of data accumulated as part of three different HST projects, the Key Project, the Sandage et al. Type Ia SNe program, and the Tanvir et al. Leo I Group study. Re-analyzing the Tanvir et al. galaxy and six Sandage et al. galaxies we find a mean (weighted) offset in true distance moduli of 0.12+/-0.07 mag -- i.e., 6% in linear distance -- in the sense of reducing the distance scale, or increasing H0. Adopting the reddening-corrected Hubble relations of Suntzeff et al. (1999), tied to a zero point based upon SNe~1990N, 1981B, 1998bu, 1989B, 1972E and 1960F and the photometric calibration of Hill et al. (1998), leads to a Hubble constant of H0=68+/-2(random)+/-5(systematic) km/s/Mpc. Adopting the Kennicutt et al. (1998) Cepheid period-luminosity-metallicity dependency decreases the inferred H0 by 4%. The H0 result from Type Ia SNe is now in good agreement, to within their respective uncertainties, with that from the Tully-Fisher and surface brightness fluctuation relations.
ExSample -- A Library for Sampling Sudakov-Type Distributions
Simon Platzer
2012-03-19T23:59:59.000Z
Sudakov-type distributions are at the heart of generating radiation in parton showers as well as contemporary NLO matching algorithms along the lines of the POWHEG algorithm. In this paper, the C++ library ExSample is introduced, which implements adaptive sampling of Sudakov-type distributions for splitting kernels which are in general only known numerically. Besides the evolution variable, the splitting kernels can depend on an arbitrary number of other degrees of freedom to be sampled, and any number of further parameters which are fixed on an event-by-event basis.
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Kumar, Jitendra; Hoffman, Forrest M.
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Zachary Langford; Forrest Hoffman; Jitendra Kumar
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
Zachary Langford; Forrest Hoffman; Jitendra Kumar
2014-01-01T23:59:59.000Z
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
Kumar, Jitendra; Hoffman, Forrest M.
2014-03-18T23:59:59.000Z
Arctic ecosystems have been observed to be warming faster than the global average and are predicted to experience accelerated changes in climate due to global warming. Arctic vegetation is particularly sensitive to warming conditions and likely to exhibit shifts in species composition, phenology and productivity under changing climate. Mapping and monitoring of changes in vegetation is essential to understand the effect of climate change on the ecosystem functions. Vegetation exhibits unique spectral characteristics which can be harnessed to discriminate plant types and develop quantitative vegetation indices. We have combined high resolution multi-spectral remote sensing from the WorldView 2 satellite with LIDAR-derived digital elevation models to characterize the tundra landscape on the North Slope of Alaska. Classification of landscape using spectral and topographic characteristics yields spatial regions with expectedly similar vegetation characteristics. A field campaign was conducted during peak growing season to collect vegetation harvests from a number of 1m x 1m plots in the study region, which were then analyzed for distribution of vegetation types in the plots. Statistical relationships were developed between spectral and topographic characteristics and vegetation type distributions at the vegetation plots. These derived relationships were employed to statistically upscale the vegetation distributions for the landscape based on spectral characteristics. Vegetation distributions developed are being used to provide Plant Functional Type (PFT) maps for use in the Community Land Model (CLM).
From constant to non-degenerately vanishing magnetic fields in superconductivity
Bernard Helffer; Ayman Kachmar
2015-03-30T23:59:59.000Z
We explore the relationship between two reference functions arising in the analysis of the Ginzburg-Landau functional. The first function describes the distribution of superconductivity in a type II superconductor subjected to a constant magnetic field. The second function describes the distribution of superconductivity in a type II superconductor submitted to a variable magnetic field that vanishes non-degenerately along a smooth curve.
Varying constants quantum cosmology
Katarzyna Leszczynska; Adam Balcerzak; Mariusz P. Dabrowski
2015-01-26T23:59:59.000Z
We discuss minisuperspace models within the framework of varying physical constants theories including $\\Lambda$-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ans\\"atze for the variability of constants: $c(a) = c_0 a^n$ and $G(a)=G_0 a^q$. We find that most of the varying $c$ and $G$ minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe "from nothing" ($a=0)$ to a Friedmann geometry with the scale factor $a_t$ is large for growing $c$ models and is strongly suppressed for diminishing $c$ models. As for $G$ varying, the probability of tunneling is large for $G$ diminishing, while it is small for $G$ increasing. In general, both varying $c$ and $G$ change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
1. Physical constants 101 1. PHYSICAL CONSTANTS
with the Fermi coupling constant) comes from the Particle Data Group. The figures in parentheses after the values of 1 eV/c particle hc/(1 eV) 1.239 841 875(31)Ã?10-6 m 25 Rydberg energy hcR = mee4/2(4 0)2 2 = mec22 accel. gN 9.806 65 m s-2 exact Avogadro constant NA 6.022 141 79(30)Ã?1023 mol-1 50 Boltzmann constant k
1. Physical constants 1 1. PHYSICAL CONSTANTS
of constants (beginning with the Fermi coupling constant) comes from the Particle Data Group. The figures of 1 eV/c particle hc/(1 eV) 1.239 841 930(27)Ã?10-6 m 22 Rydberg energy hcR = mee4/2(40)2 2 = mec22 gravitational accel. gN 9.806 65 m s-2 exact Avogadro constant NA 6.022 141 29(27)Ã?1023 mol-1 44 Boltzmann
A Control Methodology for DFIG Type Wind Turbines Connected to Distribution Networks
Pota, Himanshu Roy
in operating conditions. Index Terms-distributed generation (DG), DFIG, H= norm, linear quadratic Gaussian (LQG (RESs) in them will add a new dynamic event due to the variability and uncertainty inherent in operating due to their high cost. With recent developments in power electronic converters, variable speed
A Type-Based Locality Analysis for a Functional Distributed Language
Moreira, Alvaro F
's viewpoint, the same reference on different machines refers to the same data object in a single logical store, but data is in fact distributed among the machines. A coherent protocol is then responsible for determining for each operation with references...
An Environmental Variation of Constants
Philippe Brax
2014-06-24T23:59:59.000Z
Models of modified gravity, whereby local tests of gravity are evaded thanks to a screening mechanism of the chameleon or Damour-Polyakov types, lead to a spatial variation of the particle masses and the fine structure constant. This is triggered by the environmental dependence of the value of the scalar field whose presence modifies gravity. In dense media, the field settles at a density dependent value while in sparse environments it takes the background cosmological value. We estimate that the maximal deviation of constants from their present values is constrained by local tests of gravity, and must be less than $10^{-6}$.
CMS Collaboration
2014-10-24T23:59:59.000Z
The inclusive jet cross section for proton-proton collisions at a centre-of-mass energy of 7 TeV was measured by the CMS Collaboration at the LHC with data corresponding to an integrated luminosity of 5.0 inverse femtobarns. The measurement covers a phase space up to 2 TeV in jet transverse momentum and 2.5 in absolute jet rapidity. The statistical precision of these data leads to stringent constraints on the parton distribution functions of the proton. The data provide important input for the gluon density at high fractions of the proton momentum and for the strong coupling constant at large energy scales. Using predictions from perturbative quantum chromodynamics at next-to-leading order, complemented with electroweak corrections, the constraining power of these data is investigated and the strong coupling constant at the Z boson mass M[Z] is determined to be alpha[S(M[Z])} = 0.1185 +/- 0.0019 (exp) +0.0060 -0.0037 (theo), which is in agreement with the world average.
Davies, D.K.; Vessell, R.K. [David K. Davies & Associates, Kingwood, TX (United States); Doublet, L.E. [Texas A& M Univ., College Station, TX (United States)] [and others
1997-08-01T23:59:59.000Z
An integrated geological/petrophysical and reservoir engineering study was performed for a large, mature waterflood project (>250 wells, {approximately}80% water cut) at the North Robertson (Clear Fork) Unit, Gaines County, Texas. The primary goal of the study was to develop an integrated reservoir description for {open_quotes}targeted{close_quotes} (economic) 10-acre (4-hectare) infill drilling and future recovery operations in a low permeability, carbonate (dolomite) reservoir. Integration of the results from geological/petrophysical studies and reservoir performance analyses provide a rapid and effective method for developing a comprehensive reservoir description. This reservoir description can be used for reservoir flow simulation, performance prediction, infill targeting, waterflood management, and for optimizing well developments (patterns, completions, and stimulations). The following analyses were performed as part of this study: (1) Geological/petrophysical analyses: (core and well log data) - {open_quotes}Rock typing{close_quotes} based on qualitative and quantitative visualization of pore-scale features. Reservoir layering based on {open_quotes}rock typing {close_quotes} and hydraulic flow units. Development of a {open_quotes}core-log{close_quotes} model to estimate permeability using porosity and other properties derived from well logs. The core-log model is based on {open_quotes}rock types.{close_quotes} (2) Engineering analyses: (production and injection history, well tests) Material balance decline type curve analyses to estimate total reservoir volume, formation flow characteristics (flow capacity, skin factor, and fracture half-length), and indications of well/boundary interference. Estimated ultimate recovery analyses to yield movable oil (or injectable water) volumes, as well as indications of well and boundary interference.
deLaski, A.; Suozzo, M.
% of the electricity that powers the industrial sector flows through dry-type distribution transformers. These transformers are very efficient most convert in excess of 95% of input power to output power. However, because transformers are generally energized 24...
Shankar, Francesco; Haiman, Zoltan
2008-01-01T23:59:59.000Z
We utilize the local velocity dispersion function (VDF) of spheroids, together with their inferred age--distributions, to predict the VDF at higher redshifts (01.3 excluded at the 99% confidence level. A direct match between the characteristic BH mass in the VDF--based and quasar LF--based BH mass functions also yields a mean Eddington ratio of lambda ~ 0.5-1 that is roughly constant within 00.23 for alpha>1.5. abridged
Ortiz, Guillermo P; Boggio, Norberto G; Vorobioff, Juan; Ortiz, Juan J; Gómez, Sergio; Aucar, Gustavo A; Lamagna, Alberto; Boselli, Alfredo
2009-01-01T23:59:59.000Z
Ion Mobility Spectrometry (IMS) is a well-known, sensitive and rapid technique to detect dangerous organic compounds. We propose a system in which a crown type discharge generates a ionic flow that is swept towards an array of collectors by a transverse electric field. The ions are separated as they enter the cell according to their mobility. Thus, the distribution of the charge deposited at the detector assembly constitutes a {\\em fingerprint} for each organic compound. Simulations of our cell and experiments were performed for small amounts of acetone, ethanol and toluene. The dependence on the cell parameters of the current and charge versus time of flight was analyzed. Our simulation reproduces only qualitatively the experimental results. However, a PCA statistical analysis of the results obtained by simulation of the proposed design shows that the fingerprint is useful for a clear identification of such compounds.
Cosmology with Varying Constants
C. J. A. P. Martins
2000-08-18T23:59:59.000Z
I motivate and discuss some recent work on theories with varying constants, and consider some possible observational consequences and tests. Particular emphasis is given to models which can (almost) exactly mimic the predictions of standard inflationary models.
Ghosh, Indranil
2011-01-01T23:59:59.000Z
for a hidden truncated bivariate P (IV ) distributionfor a hidden truncated bivariate P (II) distributionof ? and the large sample distribution of the likelihood ra-
constant | The Ames Laboratory
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile
Correcting Thermal Distribution Problems for a Large University Campus
Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.; Turner, W. D.
2002-01-01T23:59:59.000Z
VFD for pump motors larger than 5 hp. Three Way Constant Speed Systems with Blending Station (Figures 5 and 6) Figures 5 and 6 show three-way valve constant speed system with a blending station. This type of system is more widely used than... by these large campuses. If the thermal distribution efficiency is improved, the overall energy consumption of the system is also improved (Deng et al., 2000). Several options that seem to improve the thermal transmission performance include: VFD systems...
Fisher, Aaron Jay
2007-04-25T23:59:59.000Z
Subject: Geology iii ABSTRACT Predicting Spatial Distribution of Critical Pore Types and Their Influence on Reservoir Quality, Canyon (Pennsylvanian) Reef Reservoir, Diamond M Field, Texas... scale. Ultimately slice maps of reservoir quality at a 10 ft interval for a 150 ft section of the Canyon Reef reservoir were developed. These iv reservoir quality maps will provide a useful tool for the design and implementation of accurate...
Unitaxial constant velocity microactuator
McIntyre, T.J.
1994-06-07T23:59:59.000Z
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment is disclosed. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-nanometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment. 10 figs.
Unitaxial constant velocity microactuator
McIntyre, Timothy J. (Knoxville, TN)
1994-01-01T23:59:59.000Z
A uniaxial drive system or microactuator capable of operating in an ultra-high vacuum environment. The mechanism includes a flexible coupling having a bore therethrough, and two clamp/pusher assemblies mounted in axial ends of the coupling. The clamp/pusher assemblies are energized by voltage-operated piezoelectrics therewithin to operatively engage the shaft and coupling causing the shaft to move along its rotational axis through the bore. The microactuator is capable of repeatably positioning to sub-manometer accuracy while affording a scan range in excess of 5 centimeters. Moreover, the microactuator generates smooth, constant velocity motion profiles while producing a drive thrust of greater than 10 pounds. The system is remotely controlled and piezoelectrically driven, hence minimal thermal loading, vibrational excitation, or outgassing is introduced to the operating environment.
The Cosmological Constant in the Quantum Multiverse
Grant Larsen; Yasunori Nomura; H. L. L. Roberts
2011-12-14T23:59:59.000Z
Recently, a new framework for describing the multiverse has been proposed which is based on the principles of quantum mechanics. The framework allows for well-defined predictions, both regarding global properties of the universe and outcomes of particular experiments, according to a single probability formula. This provides complete unification of the eternally inflating multiverse and many worlds in quantum mechanics. In this paper we elucidate how cosmological parameters can be calculated in this framework, and study the probability distribution for the value of the cosmological constant. We consider both positive and negative values, and find that the observed value is consistent with the calculated distribution at an order of magnitude level. In particular, in contrast to the case of earlier measure proposals, our framework prefers a positive cosmological constant over a negative one. These results depend only moderately on how we model galaxy formation and life evolution therein.
W. -Y. Hwang; K. Matsumoto; H. Imai; J. Kim; H. -W. Lee
2002-10-31T23:59:59.000Z
We discuss long code problems in the Bennett-Brassard 1984 (BB84) quantum key distribution protocol and describe how they can be overcome by concatenation of the protocol. Observing that concatenated modified Lo-Chau protocol finally reduces to the concatenated BB84 protocol, we give the unconditional security of the concatenated BB84 protocol.
On the relationship of gravitational constants in KK reduction
Lu, J X
2000-01-01T23:59:59.000Z
In this short note, we try to clarify a seemly trivial but often confusing question in relating a higher-dimensional physical gravitational constant to its lower-dimensional correspondence in Kaluza-Klein reduction. In particular, we re-derive the low-energy M-theory gravitational constant in terms of type IIA string coupling $g_s$ and constant $\\alpha'$ through the metric relation between the two theories.
Nikolaidis, Efstratios
the upper and lower bounds of the reliability of a system involving such variables. A method for modeling, is formulated and solved in order to estimate the minimum and maximum values of a system's reliability1 Imprecise Reliability Assessment and Decision-Making when the Type of the Probability
Time-Varying Fine-Structure Constant Requires Cosmological Constant
R. W. Kuhne
1999-08-31T23:59:59.000Z
Webb et al. presented preliminary evidence for a time-varying fine-structure constant. We show Teller's formula for this variation to be ruled out within the Einstein-de Sitter universe, however, it is compatible with cosmologies which require a large cosmological constant.
Dimensionality and the Cosmological Constant
Z. C. Wu
2006-05-01T23:59:59.000Z
In the Kaluza-Klein model with a cosmological constant and a flux, the external spacetime and its dimension of the created universe from a $S^s \\times S^{n-s}$ seed instanton can be identified in quantum cosmology. One can also show that in the internal space the effective cosmological constant is most probably zero.
Varying constants, Gravitation and Cosmology
Jean-Philippe Uzan
2010-09-28T23:59:59.000Z
Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.
The Effects of Quantum Entropy on the Bag Constant
Miller, D E; Miller, David E.; Tawfik, Abdel-Nasser
2003-01-01T23:59:59.000Z
The effects of quantum entropy on the bag constant are studied at low temperatures and small chemical potentials. The inclusion of the quantum entropy of the quarks in the equation of state provides the hadronic bag with an additional heat which causes a decrease in the effective latent heat inside the bag. We have considered two types of baryonic bags, $\\Delta$ and $\\Omega^-$. In both cases we have found that the bag constant without the quantum entropy almost does not change with the temperature and the quark chemical potential. The contribution from the quantum entropy to the equation of state clearly decreases the value of the bag constant.
Distinct Cyclin D Genes Show Mitotic Accumulation or Constant Levels of Transcripts in Tobacco
Murray, J.A.H.
Distinct Cyclin D Genes Show Mitotic Accumulation or Constant Levels of Transcripts in Tobacco-type cyclins accumulate peri- odically during the S, G2, and early M phases (A types) or G2 and early M phases
Makhkamov, K.K.; Ingham, D.B.
1999-11-01T23:59:59.000Z
A theoretical study on the air flow and temperature in the heat receiver, affected by free convection, of a Stirling Engine for a Dish/Stirling Engine Power System is presented. The standard {kappa}-{epsilon} turbulence model for the fluid flow has been used and the boundary conditions employed were obtained using a second level mathematical model of the Stirling Engine working cycle. Physical models for the distribution of the solar insolation from the Concentrator on the bottom and side walls of the cavity-type heat receiver have been taken into account. The numerical results show that most of the heat losses in the receiver are due to re-radiation from the cavity and conduction through the walls of the cavity. It is in the region of the boundary of the input window of the heat receiver where there is a sensible reduction in the temperature in the shell of the heat exchangers and this is due to the free convection of the air. Further, the numerical results show that convective heat losses increase with decreasing tilt angle.
Brown, Matt
2013-01-01T23:59:59.000Z
type T y[O]. The operator IsIs is self-applicative, in thatargument t is any of Is[O] or IsIs, and otherwise behavesproof constant introduced by IsIs proves that the type of t
Linak, W.P.
1985-01-01T23:59:59.000Z
Pulverized samples of Utah bituminous, Beulah (North Dakota) low Na lignite, Deulah high Na lignite and Texas (San Miguel) lignite coals were burned at a rate of 2.5 kg/hr in a laboratory furnace under various (overall fuel lean) combustion conditions. Particle size distributions (PSD) and size segregated particle filter samples were taken at various positions within the convection section. Temperature and gas concentrations were measured throughout. The evolution of the submicron PSD within the convection section for the four coals was similar, although the location of the initial particle mode at the convection section inlet varied with coal type. While stage combustion of the Utah bituminous coal had a variable effect on the volume of submicron aerosol produced, staged combustion of two of the three lignites (Beulah low Na and Texas) caused a definite increase in the submicron aerosol volume. Chemical analysis of the size segregated particle samples show the trace elements, As, Pb, Zn, and the major elements, Na and K to be enriched in the submicron aerosol. Auger depth profiles show these small particles to be comprised of a core enriched in Fe, Si, Ca and Mg and surface layers enriched in Na and K. These results point to a mechanism of homogeneous nucleation of low vapor pressure species followed by successive layering of progressively more volatile species. Volatile species are enriched in the submicron aerosol due to the large surface areas provided. Modeling efforts show that while coagulation may be the dominant mechanism to describe the aerosol evolving within the convection section, it cannot be used solely to predict the PSD. Another mechanism, presumably surface area dependent growth (condensation) must be included.
Towards the cosmological constant problem
Eun Kyung Park; Pyung Seong Kwon
2014-12-15T23:59:59.000Z
We apply a new self-tuning mechanism to the well-known Kachru-Kallosh-Linde-Trivedi (KKLT) model to address the cosmological constant problem. In this mechanism the cosmological constant $\\lambda$ contains a supersymmetry breaking term ${\\mathcal E}_{\\rm SB}$ besides the usual scalar potential ${\\mathcal V}_{\\rm scalar}$ of the $N=1$ supergravity, which is distinguished from the usual theories where $\\lambda$ is directly identified with ${\\mathcal V}_{\\rm scalar}$ alone. Also in this mechanism, whether $\\lambda$ vanishes or not is basically determined by the tensor structure of the scalar potential density, not by the zero or nonzero values of the scalar potential itself. As a result of this application we find that the natural scenario for the vanishing $\\lambda$ of the present universe is to take one of the AdS (rather than dS) vacua of KKLT as the background vacuum of our present universe. This AdS vacuum scenario does not suffer from the problematics of the dS vacua of KKLT. The background vacuum is stable both classically and quantum mechanically (no tunneling instabilities), and the value $\\lambda =0$ is also stable against quantum corrections because in this scenario the perturbative corrections of ${\\mathcal V}_{\\rm scalar}$ and quantum fluctuations $\\delta_Q {\\hat I}_{\\rm brane}^{(NS)} + \\delta_Q {\\hat I}_{\\rm brane}^{(R)}$ on the branes are all gauged away by an automatic cancelation between ${\\mathcal V}_{\\rm scalar} + \\delta_Q {\\hat I}_{\\rm brane}^{(NS)} + \\delta_Q {\\hat I}_{\\rm brane}^{(R)}$ and ${\\mathcal E}_{\\rm SB}$.
MINIMAL SURFACES, SURFACES OF CONSTANT MEAN ...
2003-09-25T23:59:59.000Z
constant Ciso(G) > 0 of Theorem 12.1, for any go ? G, R > 0, one has for every ... constant Ciso = Ciso(G) > 0 as in Theorem 12.4, for every X-Caccioppoli set E ...
Constant time algorithms in sparse graph model
Nguyen, Huy Ngoc, Ph. D. Massachusetts Institute of Technology
2010-01-01T23:59:59.000Z
We focus on constant-time algorithms for graph problems in bounded degree model. We introduce several techniques to design constant-time approximation algorithms for problems such as Vertex Cover, Maximum Matching, Maximum ...
Rate constants for charge transfer across semiconductor-liquid interfaces
Fajardo, A.M.; Lewis, N.S. [California Institute of Technology, Pasadena, CA (United States)
1996-11-08T23:59:59.000Z
Interfacial charge-transfer rate constants have been measured for n-type Si electrodes in contact with a series of viologen-based redox couples in methanol through analyses of the behavior of these junctions with respect to their current density versus potential and differential capacitance versus potential properties. The data allow evaluation of the maximum rate constant (and therefore the electronic coupling) for majority carriers in the solid as well as of the dependence of the rate constant on the driving force for transfer of delocalized electrons from the n-Si semiconducting electrode into the localized molecular redox species in the solution phase. The data are in good agreement with existing models of this interfacial electron transfer process and provide insight into the fundamental kinetic events underlying the use of semiconducting photoelectrodes in applications such as solar energy conversion. 23 refs., 3 figs.
Measuring Advances in HVAC Distribution System Design
Franconi, E.
1998-05-01T23:59:59.000Z
Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.
Ferraro, R. J.; Osborne, R.; Stephens, R.
) an increase in loads that use power electronics in some type of power conversion configuration [1][2]. This paper presents applications of the constant-voltage transformer (CVT) for mitigating the effects of electric service voltage sags on industrial...
Berryman, J.G.; Nakagawa, S.
2009-11-20T23:59:59.000Z
Poroelastic analysis has traditionally focused on the relationship between dry or drained constants which are assumed known and the saturated or undrained constants which are assumed unknown. However, there are many applications in this field of study for which the main measurements can only be made on the saturated/undrained system, and then it is uncertain what the eects of the uids were on the system, since the drained constants remain a mystery. The work presented here shows how to deduce drained constants from undrained constants for anisotropic systems having symmetries ranging from isotropic to orthotropic. Laboratory ultrasound data are then inverted for the drained constants in three granular packings: one of glass beads, and two others for distinct types of more or less angular sand grain packings. Experiments were performed under uniaxial stress, which resulted in hexagonal (transversely isotropic) symmetry of the poroelastic response. One important conclusion from the general analysis is that the drained constants are uniquely related to the undrained constants, assuming that porosity, grain bulk modulus, and pore uid bulk modulus are already known. Since the resulting system of equations for all the drained constants is linear, measurement error in undrained constants also propagates linearly into the computed drained constants.
Paris-Sud XI, Université de
converts the optical signal into an electrical one. After, the signal is sent into a low noise amplifier a new generation of optoelec- tronic components designed for 60 GHz applications. I. RADIO OVER FIBRE and distribution of a 3 Gb/s OFDM signal. The first one uses low cost well known components and the second one
Constant voltage electro-slag remelting control
Schlienger, M.E.
1996-10-22T23:59:59.000Z
A system for controlling electrode gap in an electro-slag remelt furnace has a constant regulated voltage and an electrode which is fed into the slag pool at a constant rate. The impedance of the circuit through the slag pool is directly proportional to the gap distance. Because of the constant voltage, the system current changes are inversely proportional to changes in gap. This negative feedback causes the gap to remain stable. 1 fig.
Cosmological Constant and Axions in String Theory
Svrcek, Peter; /Stanford U., Phys. Dept. /SLAC
2006-08-18T23:59:59.000Z
String theory axions appear to be promising candidates for explaining cosmological constant via quintessence. In this paper, we study conditions on the string compactifications under which axion quintessence can happen. For sufficiently large number of axions, cosmological constant can be accounted for as the potential energy of axions that have not yet relaxed to their minima. In compactifications that incorporate unified models of particle physics, the height of the axion potential can naturally fall close to the observed value of cosmological constant.
Vacuum Energy and the Cosmological Constant
A. C. Melissinos
2001-12-19T23:59:59.000Z
We discuss a numerical relation between the cosmological constant and the vacuum energy arising from the Casimir effect in extra dimensions
Kepler Problem in the Constant Curvature Space
G. Pronko
2007-06-04T23:59:59.000Z
We present algebraic derivation of the result of Schr\\"{o}dinger [1] for the spectrum of hydrogen atom in the space with constant curvature.
A natural cosmological constant from chameleons
Horatiu Nastase; Amanda Weltman
2015-04-06T23:59:59.000Z
We present a simple model where the effective cosmological constant appears from chameleon scalar fields. For a Kachru-Kallosh-Linde-Trivedi (KKLT)-inspired form of the potential and a particular chameleon coupling to the local density, patches of approximately constant scalar field potential cluster around regions of matter with density above a certain value, generating the effect of a cosmological constant on large scales. This construction addresses both the cosmological constant problem (why $\\Lambda$ is so small, yet nonzero) and the coincidence problem (why $\\Lambda$ is comparable to the matter density now).
Turner, Ken
) (ISO/IEC 1995a, ISO/IEC 1995b, ISO/IEC 1995c, ISO/IEC 1995d, ISO/IEC 1995e). We argue that the types be found elsewhere. We present a formalisation of these new considerations in the language Z (ISO/IEC 1995f
Fisher, Aaron Jay
2007-04-25T23:59:59.000Z
is a result of selective grain and pore-wall dissolution related to burial diagenesis. Additionally, saddle dolomite is irregularly distributed throughout the reservoir, indicating that late burial diagenesis contributed to the complexity... is a hybrid of depositional and diagenetic processes and no fracture porosity was found to be evident. It is evident that at least two early stages of cementation and dissolution have taken place. Dissolution of reservoir rock is a diagenetic...
Sequential Constant Size Compressors for Reinforcement Learning
Schmidhuber, Juergen
Sequential Constant Size Compressors for Reinforcement Learning Linus GisslÂ´en, Matt Luciw, Vincent with this problem: standard RL techniques using as input the hidden layer output of a Sequential Constant-Size Compressor (SCSC). The SCSC takes the form of a sequential Recurrent Auto-Associative Mem- ory, trained
Vacuum Fluctuations and the Cosmological Constant
Shi Qi
2006-04-29T23:59:59.000Z
The hypothesis is proposed that under the approximation that the quantum equations of motion reduce to the classical ones, the quantum vacuum also reduces to the classical vacuum--the empty space. The vacuum energy of QED is studied under this hypothesis. A possible solution to the cosmological constant problem is provided and a kind of parameterization of the cosmological "constant" is derived.
Newtonian Constant of Gravitation International Consortium
Newtonian Constant of Gravitation International Consortium I. BACKGROUND Recent measurements of the Newtonian constant of gravitation G are in disagreement, with discrepancies that are roughly ten times forces on a laboratory scale. It also raises the question of whether the Newtonian force law
Ji, Haojie; Dhomkar, Siddharth; Roy, Bidisha; Kuskovsky, Igor L. [Department of Physics, Queens College of CUNY, Queens, New York 11367 (United States); The Graduate Center of CUNY, New York, New York 10016 (United States); Shuvayev, Vladimir [Department of Physics, Queens College of CUNY, Queens, New York 11367 (United States); Deligiannakis, Vasilios; Tamargo, Maria C. [The Graduate Center of CUNY, New York, New York 10016 (United States); Department of Chemistry, City College of CUNY, New York, New York 10031 (United States); Ludwig, Jonathan [National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Department of Physics, Florida State University, Tallahassee, Florida 32306 (United States); Smirnov, Dmitry [National High Magnetic Field Laboratory, Tallahassee, Florida 32310 (United States); Wang, Alice [Evans Analytical Group, Sunnyvale, California 94086 (United States)
2014-10-28T23:59:59.000Z
For submonolayer quantum dot (QD) based photonic devices, size and density of QDs are critical parameters, the probing of which requires indirect methods. We report the determination of lateral size distribution of type-II ZnTe/ZnSe stacked submonolayer QDs, based on spectral analysis of the optical signature of Aharanov-Bohm (AB) excitons, complemented by photoluminescence studies, secondary-ion mass spectroscopy, and numerical calculations. Numerical calculations are employed to determine the AB transition magnetic field as a function of the type-II QD radius. The study of four samples grown with different tellurium fluxes shows that the lateral size of QDs increases by just 50%, even though tellurium concentration increases 25-fold. Detailed spectral analysis of the emission of the AB exciton shows that the QD radii take on only certain values due to vertical correlation and the stacked nature of the QDs.
Constants and Pseudo-Constants of Coupled Beam Motion in the PEP-II Rings
Decker, F.J.; Colocho, W.S.; Wang, M.H.; Yan, Y.T.; Yocky, G.; /SLAC
2011-11-01T23:59:59.000Z
Constants of beam motion help as cross checks to analyze beam diagnostics and the modeling procedure. Pseudo-constants, like the betatron mismatch parameter or the coupling parameter det C, are constant till certain elements in the beam line change them. This can be used to visually find the non-desired changes, pinpointing errors compared with the model.
Asymptotically Vanishing Cosmological Constant in the Multiverse
Hikaru Kawai; Takashi Okada
2011-04-21T23:59:59.000Z
We study the problem of the cosmological constant in the context of the multiverse in Lorentzian spacetime, and show that the cosmological constant will vanish in the future. This sort of argument was started from Coleman in 1989, and he argued that the Euclidean wormholes make the multiverse partition a superposition of various values of the cosmological constant $\\Lambda$, which has a sharp peak at $\\Lambda=0$. However, the implication of the Euclidean analysis to our Lorentzian spacetime is unclear. With this motivation, we analyze the quantum state of the multiverse in Lorentzian spacetime by the WKB method, and calculate the density matrix of our universe by tracing out the other universes. Our result predicts vanishing cosmological constant. While Coleman obtained the enhancement at $\\Lambda=0$ through the action itself, in our Lorentzian analysis the similar enhancement arises from the front factor of $e^{iS}$ in the universe wave function, which is in the next leading order in the WKB approximation.
DISTRIBUTED SHORTESTPATH PROTOCOLS TIMEDEPENDENT NETWORKS
Orda, Ariel
DISTRIBUTED SHORTESTPATH PROTOCOLS for TIMEDEPENDENT NETWORKS Ariel Orda Raphael Rom+ Department and the dynamic behavior of networks, since a distributed solution enables constant tracking of changes 32000 October 1992 Revised May 1994, October 1995 ABSTRACT This paper addresses algorithms for networks
The Vacuum and the Cosmological Constant Problem
Gerald E. Marsh
2008-06-20T23:59:59.000Z
It will be argued here that the cosmological constant problem exists because of the way the vacuum is defined in quantum field theory. It has been known for some time that for QFT to be gauge invariant certain terms--such as part of the vacuum polarization tensor--must be eliminated either explicitly or by some form of regularization followed by renormalization. It has recently been shown that lack of gauge invariance is a result of the way the vacuum is defined, and redefining the vacuum so that the theory is gauge invariant may also offer a solution to the cosmological constant problem.
Cosmological constant in scale-invariant theories
Foot, Robert; Kobakhidze, Archil; Volkas, Raymond R. [School of Physics, University of Melbourne, Victoria 3010 (Australia)
2011-10-01T23:59:59.000Z
The incorporation of a small cosmological constant within radiatively broken scale-invariant models is discussed. We show that phenomenologically consistent scale-invariant models can be constructed which allow a small positive cosmological constant, providing certain relation between the particle masses is satisfied. As a result, the mass of the dilaton is generated at two-loop level. Another interesting consequence is that the electroweak symmetry-breaking vacuum in such models is necessarily a metastable ''false'' vacuum which, fortunately, is not expected to decay on cosmological time scales.
FRIB cryogenic distribution system
Ganni, V.; Dixon, K.; Laverdure, N.; Knudsen, P.; Arenius, D. [Thomas Jefferson National Accelerator Facility (JLab), Newport News, VA 23606 (United States); Barrios, M.; Jones, S.; Johnson, M.; Casagrande, F. [Facility for Rare Isotope Beams (FRIB), Michigan State University, East Lansing, MI 48824 (United States)
2014-01-29T23:59:59.000Z
The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.
FRIB cryogenic distribution system
Ganni, Venkatarao [JLAB; Dixon, Kelly D. [JLAB; Laverdure, Nathaniel A. [JLAB; Knudsen, Peter N. [JLAB; Arenius, Dana M. [JLAB; Barrios, Matthew N. [Michigan State; Jones, S. [Michigan State; Johnson, M. [Michigan State; Casagrande, Fabio [Michigan State
2014-01-01T23:59:59.000Z
The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.
Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin Films
Hart, Gus
Optical Constants ofOptical Constants of Uranium Nitride Thin FilmsUranium Nitride Thin FilmsDelta--Beta Scatter Plot at 220 eVBeta Scatter Plot at 220 eV #12;Why Uranium Nitride?Why Uranium Nitride? UraniumUranium, uranium,Bombard target, uranium, with argon ionswith argon ions Uranium atoms leaveUranium atoms leave
Matyushov, Dmitry
Thermodynamics and dynamics of a monoatomic glass former. Constant pressure and constant volume-pressure simulations of the thermodynamic and dynamic properties of the low-temperature liquid and crystalline phases the thermodynamics of the configurational manifold as an ensemble of excitations, each carrying an excitation entropy
Vacuum Fluctuations Cannot Mimic a Cosmological Constant
Robert D. Klauber
2007-11-05T23:59:59.000Z
When the vacuum fluctuation pressure is calculated directly from fundamental principles of quantum field theory, in the same manner as vacuum fluctuation energy density is commonly calculated, one finds it is not equal to the negative of the vacuum fluctuation energy density. Thus, vacuum fluctuations cannot manifest as a cosmological constant of any order.
Surface Tension and the Cosmological Constant
Joseph Samuel; Supurna Sinha
2006-04-18T23:59:59.000Z
The astronomically observed value of the cosmological constant is small but non-zero. This raises two questions together known as the cosmological constant problem a) why is lambda so nearly zero? b) why is lambda not EXACTLY zero? Sorkin has proposed that b) can be naturally explained as a one by square root N fluctuation by invoking discreteness of spacetime at the Planck scale due to quantum gravity. In this paper we shed light on these questions by developing an analogy between the cosmological constant and the surface tension of membranes. The ``cosmological constant problem'' has a natural analogue in the membrane context: the vanishingly small surface tension of fluid membranes provides an example where question a) above arises and is answered. We go on to find a direct analogue of Sorkin's proposal for answering question b) in the membrane context, where the discreteness of spacetime translates into the molecular structure of matter. We propose analogue experiments to probe a small and fluctuating surface tension in fluid membranes. A counterpart of dimensional reduction a la Kaluza-Klein and large extra dimensions also appears in the physics of fluid membranes.
Constant-Pressure Measurement of Steam-
Stanford University
SGP-TR-169 Constant-Pressure Measurement of Steam- Water Relative Permeability Peter A. O by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative
Polynomial Constants are Decidable Markus Muller-Olm1
MÃ¼ller-Olm, Markus
Polynomial Constants are Decidable Markus MÂ¨uller-Olm1 and Helmut Seidl2 1 University of Dortmund variable, are interpreted. Another decidable class of constants are finite constants [19]. This motivated MÂ¨uller-Olm
Infrared Spectroscopy and Optical Constants of Porous Amorphous...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Infrared Spectroscopy and Optical Constants of Porous Amorphous Solid Water. Abstract: Reflection-absorption...
acid dissociation constants: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 333 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
air group constant: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 257 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
approximation multigroup constant: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 482 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
approx constant applicable: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 280 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
acid dissociation constant: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 333 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
abbn-90 constant system: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 332 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
afectan las constantes: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 144 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
averaging thermal constants: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Constants . . . . . . . . . . . . . . . . . . . . . . 20 3.1.1 Flow Graphs Mller-Olm, Markus 431 Cosmological constant, supersymmetry, nonassociativity, and Big Numbers...
High Dielectric Constant Capacitors for Power Electronic Systems...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Dielectric Constant Capacitors for Power Electronic Systems High Dielectric Constant Capacitors for Power Electronic Systems 2009 DOE Hydrogen Program and Vehicle Technologies...
High Dialectric Constant Capacitors for Power Electronic Systems...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
High Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2012 DOE Hydrogen and Fuel Cells Program and...
High-Dialectric-Constant Capacitors for Power Electronic Systems...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
High-Dialectric-Constant Capacitors for Power Electronic Systems High-Dialectric-Constant Capacitors for Power Electronic Systems 2011 DOE Hydrogen and Fuel Cells Program, and...
High Dialectric Constant Capacitors for Power Electronic Systems...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Dialectric Constant Capacitors for Power Electronic Systems High Dialectric Constant Capacitors for Power Electronic Systems 2010 DOE Vehicle Technologies and Hydrogen Programs...
Regular Type III and Type N Approximate Solutions
Philip Downes; Paul MacAllevey; Bogdan Nita; Ivor Robinson
2001-05-18T23:59:59.000Z
New type III and type N approximate solutions which are regular in the linear approximation are shown to exist. For that, we use complex transformations on self-dual Robinson-Trautman metrics rather then the classical approach. The regularity criterion is the boundedness and vanishing at infinity of a scalar obtained by saturating the Bel-Robinson tensor of the first approximation by a time-like vector which is constant with respect to the zeroth approximation.
Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems ?
Ishai, Yuval
Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems ? Omer. Motivated by database search problems such as partial match or nearest neighbor, we present secure distributed between k #21; poly log(s) parties who all know C, we obtain a secure protocol for evaluating C
Cosmological constant and quantum gravitational corrections to the running fine structure constant
David J. Toms
2008-09-23T23:59:59.000Z
The quantum gravitational contribution to the renormalization group behavior of the electric charge in Einstein-Maxwell theory with a cosmological constant is considered. Quantum gravity is shown to lead to a contribution to the running charge not present when the cosmological constant vanishes. This re-opens the possibility, suggested by Robinson and Wilczek, of altering the scaling behaviour of gauge theories at high energies although our result differs. We show the possibility of an ultraviolet fixed point that is linked directly to the cosmological constant.
Variable energy constant current accelerator structure
Anderson, O.A.
1988-07-13T23:59:59.000Z
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90/degree/ intervals with opposing electrodes maintained at the same potential. 12 figs., 3 tabs.
Comment on "Black holes constrain varying constants"
V. V. Flambaum
2002-08-20T23:59:59.000Z
A recent paper [DDL] claims that the increase of the proton electric charge e leads to a (forbidden) decrease of black hole entropy, therefore, possible evidence for variation of $\\alpha=e^2/\\hbar c$ [alpha] must be interpreted as a decrease of the speed of light. We argue that purely theoretical consideration of black holes possibly cannot give any model-independent limitations on variation of fundamental constants.
Light Dragging, the Origin of Hubble's Constant
Walter J. Christensen Jr
2008-10-07T23:59:59.000Z
Recently E. Harrison has argued the Red Shift distance law proposed by Hubble and velocity-distance law developed later on theoretical grounds has no general proof demonstrating the two laws are actually equivalent. It is the purpose of this paper to account for the nebular redshift law of Hubble based on two principles: 1) Spacetime motion and light dragging. 2) An overall spacetime index of refraction based on Hubble's Constant.
Which Fundamental Constants for CMB and BAO?
Rich, James
2015-01-01T23:59:59.000Z
We study the Cosmic Microwave Background using the three-scale framework of Hu et al. to derive the dependence of the CMB temperature anisotropy spectrum on the fundamental constants. We show that, as expected, the observed spectrum depends only on \\emph{dimensionless} combinations of the constants, and we emphasize the points that make this generally true for cosmological observations. Our analysis suggests that the CMB spectrum shape is mostly determined by $\\alpha^2m_e/m_p$ and the proton-CDM-particle mass ratio, $m_p/\\mchi$, with a sub-dominant dependence on $(G\\mchi m_e/\\hbar c)\\alpha^\\beta$ with $\\beta\\sim -7$. The distance to the last-scattering surface depends on $Gm_p\\mchi/\\hbar c$, so published CMB observational limits on time variations of the constants, besides making assumptions about the form of the dark-energy, implicitly assume the time-independence of this quantity. On the other hand, low-redshift $H_0$, BAO and large-scale structure data can be combined with the \\emph{shape} of the CMB spect...
Predicting the Cosmological Constant from the Causal Entropic Principle
Bousso, Raphael; Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-05-01T23:59:59.000Z
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, the principle asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach-weighting by the number of"observers per baryon" -- is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Predicting the Cosmological Constant from the CausalEntropic Principle
Bousso, Raphael; Harnik, Roni; Kribs, Graham D.; Perez, Gilad
2007-02-20T23:59:59.000Z
We compute the expected value of the cosmological constant in our universe from the Causal Entropic Principle. Since observers must obey the laws of thermodynamics and causality, it asserts that physical parameters are most likely to be found in the range of values for which the total entropy production within a causally connected region is maximized. Despite the absence of more explicit anthropic criteria, the resulting probability distribution turns out to be in excellent agreement with observation. In particular, we find that dust heated by stars dominates the entropy production, demonstrating the remarkable power of this thermodynamic selection criterion. The alternative approach--weighting by the number of ''observers per baryon''--is less well-defined, requires problematic assumptions about the nature of observers, and yet prefers values larger than present experimental bounds.
Self-gravitating scalar breathers with negative cosmological constant
Gyula Fodor; Péter Forgács; Philippe Grandclément
2015-07-10T23:59:59.000Z
Breather-type (time-periodic and spatially localized) solutions with spherical symmetry are investigated in a massless scalar field theory coupled to Einstein's gravity with cosmological constant in $d$ spatial dimensions imposing anti de Sitter (AdS) asymptotics on space-time. Using a code constructed with the Kadath library that enables the use of spectral methods, the phase space of breather solutions is explored in detail for $d=3$ and $d=4$. It is found that there are discrete families of solutions indexed by an integer and by their frequency. Using a time evolution code these AdS breathers are found to be stable for up to a critical central density, in analogy to boson stars. Using an analytical perturbative expansion small amplitude breathers are worked out for arbitrary dimensions $d$.
Fine-structure constant constraints on dark energy
Martins, C J A P
2015-01-01T23:59:59.000Z
We use astrophysical and atomic clock tests of the stability of the fine-structure constant $\\alpha$, together with Type Ia supernova and Hubble parameter data, to constrain the simplest class of dynamical dark energy models where the same degree of freedom is assumed to provide both the dark energy and (through a dimensionless coupling, $\\zeta$, to the electromagnetic sector) the $\\alpha$ variation. We show how current data tightly constrains a combination of $\\zeta$ and the dark energy equation of state $w_0$. At the $95\\%$ confidence level and marginalizing over $w_0$ we find $|\\zeta|<5\\times10^{-6}$, with the atomic clock tests dominating the constraints. The forthcoming generation of high-resolution ultra-stable spectrographs will enable significantly tighter constraints.
$f(T)$ Theories and Varying Fine Structure Constant
Wei, Hao; Qi, Hao-Yu
2011-01-01T23:59:59.000Z
In analogy to $f(R)$ theory, recently $f(T)$ theory has been proposed to drive the current accelerated expansion without invoking dark energy. In the literature, the observational constraints on $f(T)$ theories were obtained mainly by using the cosmological data, such as type Ia supernovae (SNIa), baryon acoustic oscillation (BAO), and cosmic microwave background radiation (CMB). In this work, we instead try to constrain $f(T)$ theories with the varying fine structure "constant", $\\alpha\\equiv e^2/\\hbar c$. We find that the constraints on $f(T)$ theories from the observational $\\Delta\\alpha/\\alpha$ data are very severe. In fact, they make $f(T)$ theories almost indistinguishable from $\\Lambda$CDM model.
and Constant Life Diagrams for Several Potential Wind Turbine Blade Laminates Daniel D. Samborsky, Timothy J laminates of current and potential interest for wind turbine blades, representing three types of fibers: E loading relative to an earlier material. Comparisons of the materials show significant improvements under
Low Energy Constants from the zero mode contribution to the pseudo-scalar correlator
S. Shcheredin; W. Bietenholz
2005-08-31T23:59:59.000Z
We apply different types of overlap operators in quenched QCD simulations to compute the zero mode contribution to the pseudo-scalar correlator. In particular we use the conventional Neuberger Dirac operator and the overlap hypercube Dirac operator. Confronting our data with the analytical predictions by Chiral Perturbation Theory we evaluate the pion decay constant and the parameter \\alpha of the quenched chiral Lagrangian.
TASI Lectures on the cosmological constant
Bousso, Raphael; Bousso, Raphael
2007-08-30T23:59:59.000Z
The energy density of the vacuum, Lambda, is at least 60 orders of magnitude smaller than several known contributions to it. Approaches to this problem are tightly constrained by data ranging from elementary observations to precision experiments. Absent overwhelming evidence to the contrary, dark energy can only be interpreted as vacuum energy, so the venerable assumption that Lambda=0 conflicts with observation. The possibility remains that Lambda is fundamentally variable, though constant over large spacetime regions. This can explain the observed value, but only in a theory satisfying a number of restrictive kinematic and dynamical conditions. String theory offers a concrete realization through its landscape of metastable vacua.
A Measurement of Newton's Gravitational Constant
St. Schlamminger; E. Holzschuh; W. Kündig; F. Nolting; R. E. Pixley; J. Schurr; U. Straumann
2006-09-07T23:59:59.000Z
A precision measurement of the gravitational constant $G$ has been made using a beam balance. Special attention has been given to determining the calibration, the effect of a possible nonlinearity of the balance and the zero-point variation of the balance. The equipment, the measurements and the analysis are described in detail. The value obtained for G is 6.674252(109)(54) 10^{-11} m3 kg-1 s-2. The relative statistical and systematic uncertainties of this result are 16.3 10^{-6} and 8.1 10^{-6}, respectively.
Constant Volume During Combustion | Department of Energy
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof"Wave theJuly 30, 2013 Sanyo: Notice ofConstant Volume During Combustion
Is Cosmological Constant Needed in Higgs Inflation?
Feng, Chao-Jun
2014-01-01T23:59:59.000Z
The detection of B-mode shows a very powerful constraint to theoretical inflation models through the measurement of the tensor-to-scalar ratio $r$. Higgs boson is the most likely candidate of the inflaton field. But usually, Higgs inflation models predict a small value of $r$, which is not quite consistent with the recent results from BICEP2. In this paper, we explored whether a cosmological constant energy component is needed to improve the situation. And we found the answer is yes. For the so-called Higgs chaotic inflation model with a quadratic potential, it predicts $r\\approx 0.2$, $n_s\\approx0.96$ with e-folds number $N\\approx 56$, which is large enough to overcome the problems such as the horizon problem in the Big Bang cosmology. The required energy scale of the cosmological constant is roughly $\\Lambda \\sim (10^{14} \\text{GeV})^2 $, which means a mechanism is still needed to solve the fine-tuning problem in the later time evolution of the universe, e.g. by introducing some dark energy component.
Is Cosmological Constant Needed in Higgs Inflation?
Chao-Jun Feng; Xin-Zhou Li
2014-04-15T23:59:59.000Z
The detection of B-mode shows a very powerful constraint to theoretical inflation models through the measurement of the tensor-to-scalar ratio $r$. Higgs boson is the most likely candidate of the inflaton field. But usually, Higgs inflation models predict a small value of $r$, which is not quite consistent with the recent results from BICEP2. In this paper, we explored whether a cosmological constant energy component is needed to improve the situation. And we found the answer is yes. For the so-called Higgs chaotic inflation model with a quadratic potential, it predicts $r\\approx 0.2$, $n_s\\approx0.96$ with e-folds number $N\\approx 56$, which is large enough to overcome the problems such as the horizon problem in the Big Bang cosmology. The required energy scale of the cosmological constant is roughly $\\Lambda \\sim (10^{14} \\text{GeV})^2 $, which means a mechanism is still needed to solve the fine-tuning problem in the later time evolution of the universe, e.g. by introducing some dark energy component.
Superintegrable systems on spaces of constant curvature
Gonera, Cezary, E-mail: cgonera@uni.lodz.pl; Kaszubska, Magdalena
2014-07-15T23:59:59.000Z
Construction and classification of two-dimensional (2D) superintegrable systems (i.e. systems admitting, in addition to two global integrals of motion guaranteeing the Liouville integrability, the third global and independent one) defined on 2D spaces of constant curvature and separable in the so-called geodesic polar coordinates are presented. The method proposed is applicable to any value of curvature including the case of Euclidean plane, sphere and hyperbolic plane. The main result is a generalization of Bertrand’s theorem on 2D spaces of constant curvature and covers most of the known separable and superintegrable models on such spaces (in particular, the so-called Tremblay–Turbiner–Winternitz (TTW) and Post–Winternitz (PW) models which have recently attracted some interest). -- Highlights: •Classifying 2D superintegrable, separable (polar coordinates) systems on S{sup 2}, R{sup 2}, H{sup 2}. •Construction of radial, angular potentials leading to superintegrability. •Generalization of Bertrand’s theorem covering known models, e.g. Higgs, TTW, PW, and Coulomb.
The Problem of the Cosmological Constant
Ostoma, T; Ostoma, Tom; Trushyk, Mike
1999-01-01T23:59:59.000Z
ElectroMagnetic Quantum Gravity (EMQG) is applied to the problem of the Cosmological Constant. EMQG is a quantum gravity theory (ref. 1) in which the virtual particles of the quantum vacuum play a very important role in all gravitational interactions, and also in accelerated motion. According to EMQG theory (and quantum field theory in general), empty space is populated by vast numbers of virtual particles, consisting of virtual fermion and virtual anti-fermion particles, which posses mass, and also virtual boson particles of all the various force particle species. Therefore the problem of the cosmological constant is essentially equivalent to a determination of the mass contributed by all the virtual particles of the vacuum to the overall curvature and dynamics of the entire universe. Our original analysis was based on the assumption of perfect symmetry in the creation and destruction of virtual fermion and virtual anti-fermion particle pairs in the quantum vacuum, which is in accordance with the existing la...
Variable energy constant current accelerator structure
Anderson, Oscar A. (Berkeley, CA)
1990-01-01T23:59:59.000Z
A variable energy, constant current ion beam accelerator structure is disclosed comprising an ion source capable of providing the desired ions, a pre-accelerator for establishing an initial energy level, a matching/pumping module having means for focusing means for maintaining the beam current, and at least one main accelerator module for continuing beam focus, with means capable of variably imparting acceleration to the beam so that a constant beam output current is maintained independent of the variable output energy. In a preferred embodiment, quadrupole electrodes are provided in both the matching/pumping module and the one or more accelerator modules, and are formed using four opposing cylinder electrodes which extend parallel to the beam axis and are spaced around the beam at 90.degree. intervals with opposing electrodes maintained at the same potential. Adjacent cylinder electrodes of the quadrupole structure are maintained at different potentials to thereby reshape the cross section of the charged particle beam to an ellipse in cross section at the mid point along each quadrupole electrode unit in the accelerator modules. The beam is maintained in focus by alternating the major axis of the ellipse along the x and y axis respectively at adjacent quadrupoles. In another embodiment, electrostatic ring electrodes may be utilized instead of the quadrupole electrodes.
Constant-mesh, multiple-shaft transmission
Rea, J.E.; Mills, D.D.; Sewell, J.S.
1992-04-21T23:59:59.000Z
This patent describes a multiple-shaft, constant-mesh transmission adapted to establish selectively a reverse torque delivery path and a forward drive torque delivery path and having a torque input means including a torque input shaft, a mainshaft aligned with the input shaft, a countershaft geared to the input shaft in spaced, parallel relationship with respect to the mainshaft, a torque output shaft joined to the mainshaft; multiple mainshaft gear elements journalled on the main airshaft, multiple cluster gear elements carried by the countershaft in meshing engagement with the mainshaft gear elements, one of the cluster gear elements being rotatably journalled on the countershaft; a reverse idle gear, a reverse gear journalled on the countershaft, the reverse idler gear being in constant mesh with the reverse gear and one of the mainshaft gear elements; first clutch means for connecting selectively the reverse gear and the countershaft; second synchronizer clutch means for connecting selectively the one of the mainshaft gear elements to the mainshaft; and third synchronizer clutch means for selectively connecting another of the mainshaft gear elements to the mainshaft; the first clutch means being a double-acting clutch with a first common axially movable clutch element adapted upon movement in one axial direction to drivably connected the reverse gear to the countershaft and adapted upon movement in the opposite axial direction to connect the one cluster gear element to the countershaft.
randomly and equally likely a point in that interval), the uniform distribution ... Roughly speaking, this means that from any distribution we can create the uniform.
Constant field gradient planar coupled cavity structure
Kang, Y.W.; Kustom, R.L.
1999-07-27T23:59:59.000Z
A cavity structure is disclosed having at least two opposing planar housing members spaced apart to accommodate the passage of a particle beam through the structure between the members. Each of the housing members have a plurality of serially aligned hollows defined therein, and also passages, formed in the members, which interconnect serially adjacent hollows to provide communication between the hollows. The opposing planar housing members are spaced and aligned such that the hollows in one member cooperate with corresponding hollows in the other member to form a plurality of resonant cavities aligned along the particle beam within the cavity structure. To facilitate the obtaining of a constant field gradient within the cavity structure, the passages are configured so as to be incrementally narrower in the direction of travel of the particle beam. In addition, the spacing distance between the opposing housing members is configured to be incrementally smaller in the direction of travel of the beam. 16 figs.
Alberto A. Garcia Diaz
2014-12-17T23:59:59.000Z
Under the hydrodynamic equilibrium Buchdahl's conditions on the behavior of the density and the pressure, for regular fluid static circularly symmetric star in (2 + 1) dimensions in the presence of a cosmological constant, is established that there are no bounds from below on the pressure and also on the mass, except for their positiveness. The metric for a constant density distribution is derived and its matching with the external static solution with a negative cosmological constant is accomplished. Some mistakes of previous works on the topic are pointed out.
Direct Test of the Time-Independence of Fundamental Nuclear Constants Using the Oklo Natural Reactor
Alexander I. Shlyakhter
2003-08-06T23:59:59.000Z
[NOTE: This 1983 preprint is being uploaded to arXiv.org after the death of its author, who supported online distribution of his work. Contact info of the submitter is at http://ilya.cc .] The positions of neutron resonances have been shown to be highly sensitive to the variation of fundamental nuclear constants. The analysis of the measured isotopic shifts in the natural fossil reactor at Oklo gives the following restrictions on the possible rates of the interaction constants variation: strong ~2x10^-19 yr^-1, electromagnetic ~5x10^-18 yr^-1, weak ~10^-12 yr^-1. These limits permit to exclude all the versions of nuclear constants contemporary variation discussed in the literature. URL: http://alexonline.info >. For more recent analyses see hep-ph/9606486, hep-ph/0205206 and astro-ph/0204069 .
A closedform solution for mapping general distributions to minimal PH distributions
A closedform solution for mapping general distributions to minimal PH distributions Takayuki Pittsburgh Digital Greenhouse Grant 011. #12; Abstract Approximating general distributions by phasetype (PH) distributions is a popular technique in queueing analysis, since the Markovian property of PH distributions
A closed-form solution for mapping general distributions to minimal PH distributions
A closed-form solution for mapping general distributions to minimal PH distributions Takayuki Pittsburgh Digital Greenhouse Grant 01-1. #12;Abstract Approximating general distributions by phase-type (PH) distributions is a popular technique in queueing analysis, since the Markovian property of PH distributions
Curvature invariants in type-III spacetimes
V. Pravda
1999-08-17T23:59:59.000Z
The results of paper [1] are generalized for vacuum type-III solutions with, in general, a non-vanishing cosmological constant Lambda. It is shown that all curvature invariants containing derivatives of the Weyl tensor vanish if a type-III spacetime admits a non-expanding and non-twisting null geodesic congruence. A non-vanishing curvature invariant containing first derivatives of the Weyl tensor is found in the case of type-III spacetime with expansion or twist.
The variation of the fine structure constant: testing the dipole model with thermonuclear supernovae
Kraiselburd, Lucila; Negrelli, Carolina; Berro, Enrique García
2014-01-01T23:59:59.000Z
The large-number hypothesis conjectures that fundamental constants may vary. Accordingly, the spacetime variation of fundamental constants has been an active subject of research for decades. Recently, using data obtained with large telescopes a phenomenological model in which the fine structure constant might vary spatially has been proposed. We test whether this hypothetical spatial variation of {\\alpha}, which follows a dipole law, is compatible with the data of distant thermonuclear supernovae. Unlike previous works, in our calculations we consider not only the variation of the luminosity distance when a varying {\\alpha} is adopted, but we also take into account the variation of the peak luminosity of Type Ia supernovae resulting from a variation of {\\alpha}. This is done using an empirical relation for the peak bolometric magnitude of thermonuclear supernovae that correctly reproduces the results of detailed numerical simulations. We find that there is no significant difference between the several phenome...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternativeOperationalAugust AugustInstruments on theAward Types Types of
Observational constraints on holographic dark energy with varying gravitational constant
Lu, Jianbo; Xu, Lixin [Institute of Theoretical Physics, School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian, 116024 (China); Saridakis, Emmanuel N. [College of Mathematics and Physics, Chongqing University of Posts and Telecommunications, Chongqing, 400065 (China); Setare, M.R., E-mail: lvjianbo819@163.com, E-mail: msaridak@phys.uoa.gr, E-mail: rezakord@ipm.ir, E-mail: lxxu@dlut.edu.cn [Department of Science of Bijar, University of Kurdistan, Bijar (Iran, Islamic Republic of)
2010-03-01T23:59:59.000Z
We use observational data from Type Ia Supernovae (SN), Baryon Acoustic Oscillations (BAO), Cosmic Microwave Background (CMB) and observational Hubble data (OHD), and the Markov Chain Monte Carlo (MCMC) method, to constrain the cosmological scenario of holographic dark energy with varying gravitational constant. We consider both flat and non-flat background geometry, and we present the corresponding constraints and contour-plots of the model parameters. We conclude that the scenario is compatible with observations. In 1? we find ?{sub ?0} = 0.72{sup +0.03}{sub ?0.03}, ?{sub k0} = ?0.0013{sup +0.0130}{sub ?0.0040}, c = 0.80{sup +0.19}{sub ?0.14} and ?{sub G}?G'/G = ?0.0025{sup +0.0080}{sub ?0.0050}, while for the present value of the dark energy equation-of-state parameter we obtain w{sub 0} = ?1.04{sup +0.15}{sub ?0.20}.
Initial data sets with ends of cylindrical type: I. The Lichnerowicz equation
Piotr T. Chru?ciel; Rafe Mazzeo
2014-10-07T23:59:59.000Z
We construct large classes of vacuum general relativistic initial data sets, possibly with a cosmological constant Lambda, containing ends of cylindrical type.
Pitman, K M; Corman, A B; Speck, A K
2008-01-01T23:59:59.000Z
Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous d...
The runaway instability of thick discs around black holes. II. Non constant angular momentum discs
Frederic Daigne; Jose A. Font
2003-11-28T23:59:59.000Z
We present results from a comprehensive number of relativistic, time-dependent, axisymmetric simulations of the runaway instability of non-constant angular momentum thick discs around black holes. This second paper extends earlier results where only constant angular momentum discs were considered. All relevant aspects of the theory of stationary thick discs around rotating black holes, necessary to build the initial state in our simulations, are presented in great detail. The angular momentum of the discs is assumed to increase outwards with the radial distance according to a power law. The main simplifying assumptions of our approach are not to include magnetic fields and self-gravity in the discs. Furthermore, the dynamics of the spacetime is accounted for by computing the transfer of mass and angular momentum from the disc to the black hole through the event horizon : the evolution of the central black hole is assumed to follow a sequence of Kerr black holes of increasing mass and spin. In agreement with previous results based on stationary models we find that by allowing the mass and the spin of the black hole to grow, constant angular momentum discs rapidly become unstable on a dynamical timescale. The comparison with the results of paper I shows that the effect of the angular momentum transfer from the torus to the black hole is to make constant angular momentum discs less unstable, increasing the timescale of the instability. However, we find that non-constant angular momentum discs are dramatically stabilized for very small values of the angular momentum slope. Our time-dependent simulations confirm, thus, the predictions of stationary studies concerning the stabilizing effect of non-constant angular momentum distributions.
Experimental determination of the effective strong coupling constant
Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch
2005-09-15T23:59:59.000Z
We extract an effective strong coupling constant from low Q2 data on the Bjorken sum. Using sum rules, we establish its Q2-behavior over the complete Q2-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Evaluation of data and request distribution policies in clustered servers
Khaleel, Adnan
1999-01-01T23:59:59.000Z
. However, the choice of request distribution and data distribution can play an important role in determining overall system performance. Round Robin type distribution schemes achieve ideal load balancing while ignoring server loading whereas locality based...
Evolving Lorentzian wormholes supported by phantom matter with constant state parameters
Cataldo, Mauricio; Labrana, Pedro; Campo, Sergio del; Crisostomo, Juan; Salgado, Patricio [Departamento de Fisica, Facultad de Ciencias, Universidad del Bio-Bio, Avenida Collao 1202, Casilla 5-C, Concepcion (Chile); Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile); Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)
2008-11-15T23:59:59.000Z
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made out of phantom energy. We show that this exotic source can support the existence of evolving wormhole spacetimes. Explicitly, a family of evolving Lorentzian wormholes conformally related to another family of zero-tidal force static wormhole geometries is found in Einstein gravity. Contrary to the standard wormhole approach, where first a convenient geometry is fixed and then the matter distribution is derived, we follow the conventional approach for finding solutions in theoretical cosmology. We derive an analytical evolving wormhole geometry by supposing that the radial tension (which is negative to the radial pressure) and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. At spatial infinity this evolving wormhole, supported by this anisotropic matter, is asymptotically flat, and its slices t=constant are spaces of constant curvature. During its evolution the shape of the wormhole expands with constant velocity, i.e without acceleration or deceleration, since the scale factor has strictly a linear evolution.
ITP Industrial Distributed Energy: Distributed Energy Program...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project...
Enhancement of Compton Scattering by an Effective Coupling Constant
Bernardo Barbiellini; Piero Nicolini
2011-08-08T23:59:59.000Z
A robust thermodynamic argument shows that a small reduction of the effective coupling constant $\\alpha$ of QED greatly enhances the Compton scattering cross section and that the Thomson scattering length is connected to a fundamental scale $\\lambda$. A discussion provides a possible quantum interpretation of this enormous sensitivity to changes in the effective coupling constant $\\alpha$.
The Duffing Oscillator And Linearization Techniques For Its Motion Constants
Rashdan, Mouath
2014-01-16T23:59:59.000Z
constant is known, solving the system is no longer needed to analyze the characteristics of the system. Motion constants are time independent integrals that are hard to find for nonlinear dynamic systems. We chose the Duffing Oscillator as a higher order...
Cosmological model with $?_M$-dependent cosmological constant
V. Majernik
2003-10-21T23:59:59.000Z
The idea here is to set the cosmical constant $\\lambda$ proportional to the scalar of the stress-energy tensor of the ordinary matter. We investigate the evolution of the scale factor in a cosmological model in which the cosmological constant is proportional to the scalar of the stress-energy tensor.
The Duffing Oscillator And Linearization Techniques For Its Motion Constants
Rashdan, Mouath
2014-01-16T23:59:59.000Z
constant is known, solving the system is no longer needed to analyze the characteristics of the system. Motion constants are time independent integrals that are hard to find for nonlinear dynamic systems. We chose the Duffing Oscillator as a higher order...
A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions
Harchol-Balter, Mor
A Closed-Form Solution for Mapping General Distributions to Minimal PH Distributions Takayuki distributions by phase-type (PH) dis- tributions is a popular technique in queueing analysis, since the Marko- vian property of PH distributions often allows analytical tractability. This paper proposes
Evolving Lorentzian wormholes supported by phantom matter and cosmological constant
Cataldo, Mauricio; Campo, Sergio del; Minning, Paul; Salgado, Patricio [Departamento de Fisica, Facultad de Ciencias, Universidad del Bio-Bio, Avenida Collao 1202, Casilla 5-C, Concepcion (Chile); Instituto de Fisica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Avenida Brasil 2950, Valparaiso (Chile); Departamento de Fisica, Facultad de Ciencias Fisicas y Matematicas, Universidad de Concepcion, Casilla 160-C, Concepcion (Chile)
2009-01-15T23:59:59.000Z
In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum {lambda}-Friedmann models with either open or closed or flat topologies.
Production of natural gas from methane hydrate by a constant downhole pressure well
Ahmadi, G. (Clarkson Univ., Potsdam, NY); Ji, C. (Clarkson Univ., Potsdam, NY); Smith, D.H.
2007-07-01T23:59:59.000Z
Natural gas production from the dissociation of methane hydrate in a confined reservoir by a depressurizing downhole well was studied. The case that the well pressure was kept constant was treated, and two different linearization schemes in an axisymmetric configuration were used in the analysis. For different fixed well pressures and reservoir temperatures, approximate self similar solutions were obtained. Distributions of temperature, pressure and gas velocity field across the reservoir were evaluated. The distance of the decomposition front from the well and the natural gas production rate as functions of time were also computed. Time evolutions of the resulting profiles were presented in graphical forms, and their differences with the constant well output results were studied. It was shown that the gas production rate was a sensitive function of well pressure and reservoir temperature. The sensitivity of the results to the linearization scheme used was also studied.
Preston, Scott
the longest, with a mean of about 2:40. Wax Logs and Duraflame have a mean about 10 minutes lower. Hot Logs:15. For all but Wax Logs, the distributions have similar variability each has a standard deviation around 9 minutes. Wax Logs burn more consistently near the mean time the standard deviation is just over 5
Predicting the cosmological constant with the scale-factor cutoff measure
De Simone, Andrea; Guth, Alan H. [Center for Theoretical Physics, Laboratory for Nuclear Science, and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Salem, Michael P.; Vilenkin, Alexander [Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155 (United States)
2008-09-15T23:59:59.000Z
It is well known that anthropic selection from a landscape with a flat prior distribution of cosmological constant {lambda} gives a reasonable fit to observation. However, a realistic model of the multiverse has a physical volume that diverges with time, and the predicted distribution of {lambda} depends on how the spacetime volume is regulated. A very promising method of regulation uses a scale-factor cutoff, which avoids a number of serious problems that arise in other approaches. In particular, the scale-factor cutoff avoids the 'youngness problem' (high probability of living in a much younger universe) and the 'Q and G catastrophes' (high probability for the primordial density contrast Q and gravitational constant G to have extremely large or small values). We apply the scale-factor cutoff measure to the probability distribution of {lambda}, considering both positive and negative values. The results are in good agreement with observation. In particular, the scale-factor cutoff strongly suppresses the probability for values of {lambda} that are more than about 10 times the observed value. We also discuss qualitatively the prediction for the density parameter {omega}, indicating that with this measure there is a possibility of detectable negative curvature.
The rate constant for radiative association of HF: Comparing quantum and classical dynamics
Gustafsson, Magnus, E-mail: magngu@chem.gu.se; Monge-Palacios, M.; Nyman, Gunnar [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)] [Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg (Sweden)
2014-05-14T23:59:59.000Z
Radiative association for the formation of hydrogen fluoride through the A{sup 1}? ? X{sup 1}?{sup +} and X{sup 1}?{sup +} ? X{sup 1}?{sup +} transitions is studied using quantum and classical dynamics. The total thermal rate constant is obtained for temperatures from 10 K to 20 000 K. Agreement between semiclassical and quantum approaches is observed for the A{sup 1}? ? X{sup 1}?{sup +} rate constant above 2000 K. The agreement is explained by the fact that the corresponding cross section is free of resonances for this system. At temperatures below 2000 K we improve the agreement by implementing a simplified semiclassical expression for the rate constant, which includes a quantum corrected pair distribution. The rate coefficient for the X{sup 1}?{sup +} ? X{sup 1}?{sup +} transition is calculated using Breit–Wigner theory and a classical formula for the resonance and direct contributions, respectively. In comparison with quantum calculations the classical formula appears to overestimate the direct contribution to the rate constant by about 12% for this transition. Below about 450 K the resonance contribution is larger than the direct, and above that temperature the opposite holds. The biggest contribution from resonances is at the lowest temperature in the study, 10 K, where it is more than four times larger than the direct. Below 1800 K the radiative association rate constant due to X{sup 1}?{sup +} ? X{sup 1}?{sup +} transitions dominates over A{sup 1}? ? X{sup 1}?{sup +}, while above that temperature the situation is the opposite.
Chen, Yangjun
Distributed DBMS Outline Introduction What is a distributed DBMS Problems Current state-of-affairs Background Distributed DBMS Architecture Distributed Database Design Semantic Data Control Distributed Query Processing Distributed Transaction Management Parallel Database Systems Distributed Object DBMS
Methodology for extracting local constants from petroleum cracking flows
Chang, Shen-Lin (Woodridge, IL); Lottes, Steven A. (Naperville, IL); Zhou, Chenn Q. (Munster, IN)
2000-01-01T23:59:59.000Z
A methodology provides for the extraction of local chemical kinetic model constants for use in a reacting flow computational fluid dynamics (CFD) computer code with chemical kinetic computations to optimize the operating conditions or design of the system, including retrofit design improvements to existing systems. The coupled CFD and kinetic computer code are used in combination with data obtained from a matrix of experimental tests to extract the kinetic constants. Local fluid dynamic effects are implicitly included in the extracted local kinetic constants for each particular application system to which the methodology is applied. The extracted local kinetic model constants work well over a fairly broad range of operating conditions for specific and complex reaction sets in specific and complex reactor systems. While disclosed in terms of use in a Fluid Catalytic Cracking (FCC) riser, the inventive methodology has application in virtually any reaction set to extract constants for any particular application and reaction set formulation. The methodology includes the step of: (1) selecting the test data sets for various conditions; (2) establishing the general trend of the parametric effect on the measured product yields; (3) calculating product yields for the selected test conditions using coupled computational fluid dynamics and chemical kinetics; (4) adjusting the local kinetic constants to match calculated product yields with experimental data; and (5) validating the determined set of local kinetic constants by comparing the calculated results with experimental data from additional test runs at different operating conditions.
User
NORMAL DlSTRlBUTION TABLE. Entries represent the area under the standardized normal distribution from -w to z, Pr(Z
EVALUATION OF CONSTANT CURRENT WELD CONTROL FOR PINCH WELDING
Korinko, P; STANLEY, S; HOWARD, H
2005-10-11T23:59:59.000Z
Modern weld controllers typically use current to control the weld process. SRS uses a legacy voltage control method. This task was undertaken to determine if the improvements in the weld control equipment could be implemented to provide improvements to the process control. The constant current mode of operation will reduce weld variability by about a factor of 4. The constant voltage welds were slightly hotter than the constant current welds of the same nominal current. The control mode did not appear to adversely affect the weld quality, but appropriate current ranges need to be established and a qualification methodology for both welding and shunt calibrations needs to be developed and documented.
Experimental determination of the effective strong coupling constant
Alexandre Deur; Volker Burkert; Jian-Ping Chen; Wolfgang Korsch
2007-07-01T23:59:59.000Z
We extract an effective strong coupling constant from low Q{sup 2} data on the Bjorken sum. Using sum rules, we establish its Q{sup 2}-behavior over the complete Q{sup 2}-range. The result is compared to effective coupling constants extracted from different processes and to calculations based on Schwinger-Dyson equations, hadron spectroscopy or lattice QCD. Although the connection between the experimentally extracted effective coupling constant and the calculations is not clear, the results agree surprisingly well.
Van't Hoff law for temperature dependent Langmuir constants in clathrate hydrate nanocavities
Lakhlifi, Azzedine
2015-01-01T23:59:59.000Z
This work gives a van't Hoff law expression of Langmuir constants of different species for determining their occupancy in the nanocavities of clathrate hydrates. The van't Hoff law's parameters are derived from a fit with Langmuir constants calculated using a pairwise site-site interaction potential to model the anisotropic potential environment in the cavities, as a function of temperature. The parameters can be used for calculating clathrates compositions. Results are given for nineteen gas species trapped in the small and large cavities of structure types I and II [1]. The accuracy of this approach is based on a comparison with available experimental data for ethane and cyclo- propane clathrate hydrates. The numerical method applied in this work, was recently validated from a comparison with the spherical cell method based on analytical considerations [1
V. B. Bezerra; G. L. Klimchitskaya; V. M. Mostepanenko; C. Romero
2014-08-31T23:59:59.000Z
We obtain stronger laboratory constraints on the coupling constants of axion-like particles to nucleons from measurements of the normal and lateral Casimir forces between sinusoidally corrugated surfaces of a sphere and a plate. For this purpose, the normal and lateral additional force arising in the experimental configurations due to two-axion exchange between protons and neutrons are calculated. Our constraints following from measurements of the normal and lateral Casimir forces are stronger than the laboratory constraints reported so far for masses of axion-like particles larger than 11eV and 8eV, respectively. A comparison between various laboratory constraints on the coupling constants of axion-like particles to nucleons obtained from the magnetometer measurements, Eotvos- and Cavendish-type experiments, and from the Casimir effect is performed over the wide range of masses of axion-like particles from 10^{-10}eV to 20eV.
Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor
L. A. Bulavin; S. V. Khrapatiy; V. N. Makhlaichuk
2015-03-13T23:59:59.000Z
Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherland potential.Theoretical values of the dimerization constant for the heavy water vapor at different temperatures are compared to those for normal water.We see the exceeding of the values for the heavy water at all temperatures.This fact is in good agreement with all experimental data that is available.The excess is related to the differences in the character of the heat excitations of the dimers of normal and heavy water,their rotational constants and energy of their vibrational excitations.Significant role is also played by the monomer-dimer and dimer-dimer interactions.
Cosmology models with ?_M-dependent cosmological constant
V. Majernik
2002-01-07T23:59:59.000Z
We investigate the evolution of the scale factor in a cosmological model in which the cosmological constant is given by the scalar arisen by the contraction of the stress-energy tensor.
High Temperature, Large Sample Volume, Constant Flow Magic Angle...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
sample spinning rate of 3.5 kHz, 1 H and 13 C 90-degree pulse width of 8 s, constant flow control at 1.0 atmospheric pressure, and temperature control up to 250 C. This...
CODATA Recommended Values of the Fundamental Physical Constants: 1998*
of recommended values is available on the World Wide Web at physics.nist.gov/ constants. © 1999 American Institute of Physics and American Chemical Society. S0047-2689 00 00301-9 Key words: CODATA, conversion
Estimation of the base flow recession constant under human interference
Thomas, Brian F; Vogel, Richard M; Kroll, Charles N; Famiglietti, James S
2013-01-01T23:59:59.000Z
J. Sci. , 248, 673–696. Szilagyi, J. (1999), On the use ofWater, 37(5), 660–662. Szilagyi, J. , Z. Bribovszki, and P.ow recession constant while Szilagyi et al. [2007], Wang and
arthritis remains constant: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
We show that the only value of n for which the late-time matter energy density to dark energy density ratio (rmrhomrhoLambda) is constant (which could...
53-960606-CLN-01 TO: DISTRIBUTION
Princeton Plasma Physics Laboratory
components which are air cooled (the bus bars, cables, and transformers, etc.), their thermal time constants the NSTX pulse. #12;For power supply components which are water cooled (the thyristors and current sharing53-960606-CLN-01 TO: DISTRIBUTION FROM: C NEUMEYER SUBJECT: ROBICON POWER SUPPLY PULSE CAPABILITY
Hurst, James William
1952-01-01T23:59:59.000Z
in equilibrium with the liquid leaving the plate. The reverse may be tru e, but this is much rarer. In dealing with an actual column of the plate type, consideration must therefore be given to the average plate efficiency. The number of theoretical plates... Thesis J'ames William Hurst January l952 CONT%ITS Sur mary Page I. Introduction. II. Literature Survey 1 e 9 III. Calculational Procedures. . . . . . . . . . . 24 A. Bases of L. ethods. e 24 B. Detailed methods of Calculation IV. Illustrative...
DISTRIBUTED DATABASES INTRODUCTION
Liu, Chengfei
D DISTRIBUTED DATABASES INTRODUCTION The development of network and data communication tech- nology distributed database management. Naturally, the decen- tralized approach reflects the distributed aspects in the definition of a distributed database exist. First, a distributed database is distributed
CODATA recommended values of the fundamental physical constants: 2002
Mohr, Peter J.; Taylor, Barry N. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899-8401 (United States)
2005-01-01T23:59:59.000Z
This paper gives the 2002 self-consistent set of values of the basic constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science and Technology (CODATA) for international use. Further, it describes in detail the adjustment of the values of the subset of constants on which the complete 2002 set of recommended values is based. Two noteworthy additions in the 2002 adjustment are recommended values for the bound-state rms charge radii of the proton and deuteron and tests of the exactness of the Josephson and quantum-Hall-effect relations K{sub J}=2e/h and R{sub K}=h/e{sup 2}, where K{sub J} and R{sub K} are the Josephson and von Klitzing constants, respectively, e is the elementary charge, and h is the Planck constant. The 2002 set replaces the previously recommended 1998 CODATA set. The 2002 adjustment takes into account the data considered in the 1998 adjustment as well as the data that became available between 31 December 1998, the closing date of that adjustment, and 31 December 2002, the closing date of the new adjustment. The differences between the 2002 and 1998 recommended values compared to the uncertainties of the latter are generally not unreasonable. The new CODATA set of recommended values may also be found on the World Wide Web at physics.nist.gov/constants.
Soft-Gluon Production Due to a Gluon Loop in a Constant Chromo-Electric Background Field
Gouranga C. Nayak; Peter van Nieuwenhuizen
2005-05-24T23:59:59.000Z
We obtain an exact result for the soft gluon production and its p_T distribution due to a gluon loop in a constant chromo-electric background field E^a with arbitrary color. Unlike Schwinger's result for e^+e^- pair production in QED which depends only on one gauge invariant quantity, the Electric field E, we find that the p_T distribution of the gluons depend on two gauge invariant quantities, E^aE^a and [d_{abc}E^aE^bE^c]^2.
Gouranga C. Nayak
2005-12-07T23:59:59.000Z
We obtain an exact result for the non-perturbative quark (antiquark) production rate and its p_T distribution from a constant SU(3) chromo-electric field E^a with arbitary color index $a$ by directly evaluating the path integral. Unlike the WKB tunneling result, which depends only on one gauge invariant quantity |E|, the strength of the chromo-electric field, we find that the exact result for the p_T distribution for quark (antiquark) production rate depends on two independent Casimir (gauge) invariants, E^aE^a and [d_{abc}E^aE^bE^c]^2.
Key distributionKey distribution Key distribution, symmetric encryption
Fisher, Michael
COMP 522 Key distributionKey distribution COMP 522 Key distribution, symmetric encryption From in a secure way and must keep the key secure" · Important issue: how to distribute secret keys? COMP 522 Key distribution, manual delivery For two parties A and B: · A key could be created by A and delivered physically
Period doubling, information entropy, and estimates for Feigenbaum's constants
Reginald D. Smith
2013-08-03T23:59:59.000Z
The relationship between period doubling bifurcations and Feigenbaum's constants has been studied for nearly 40 years and this relationship has helped uncover many fundamental aspects of universal scaling across multiple nonlinear dynamical systems. This paper will combine information entropy with symbolic dynamics to demonstrate how period doubling can be defined using these tools alone. In addition, the technique allows us to uncover some unexpected, simple estimates for Feigenbaum's constants which relate them to log 2 and the golden ratio, phi, as well as to each other.
The Equivalence Principle and the Constants of Nature
Thibault Damour
2009-06-17T23:59:59.000Z
We briefly review the various contexts within which one might address the issue of ``why'' the dimensionless constants of Nature have the particular values that they are observed to have. Both the general historical trend, in physics, of replacing a-priori-given, absolute structures by dynamical entities, and anthropic considerations, suggest that coupling ``constants'' have a dynamical nature. This hints at the existence of observable violations of the Equivalence Principle at some level, and motivates the need for improved tests of the Equivalence Principle.
Topological Quantization in Units of the Fine Structure Constant
Maciejko, Joseph; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Qi, Xiao-Liang; /Station Q, UCSB /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC; Drew, H.Dennis; /Maryland U.; Zhang, Shou-Cheng; /Stanford U., Phys. Dept. /Stanford U., Materials Sci. Dept. /SLAC
2011-11-11T23:59:59.000Z
Fundamental topological phenomena in condensed matter physics are associated with a quantized electromagnetic response in units of fundamental constants. Recently, it has been predicted theoretically that the time-reversal invariant topological insulator in three dimensions exhibits a topological magnetoelectric effect quantized in units of the fine structure constant {alpha} = e{sup 2}/{h_bar}c. In this Letter, we propose an optical experiment to directly measure this topological quantization phenomenon, independent of material details. Our proposal also provides a way to measure the half-quantized Hall conductances on the two surfaces of the topological insulator independently of each other.
Discrete canonical analysis of three dimensional gravity with cosmological constant
J. Berra-Montiel; J. E. Rosales-Quintero
2014-06-03T23:59:59.000Z
We discuss the interplay between standard canonical analysis and canonical discretization in three-dimensional gravity with cosmological constant. By using the Hamiltonian analysis, we find that the continuum local symmetries of the theory are given by the on-shell space-time diffeomorphisms, which at the action level, corresponds to the Kalb-Ramond transformations. At the time of discretization, although this symmetry is explicitly broken, we prove that the theory still preserves certain gauge freedom generated by a constant curvature relation in terms of holonomies and the Gauss's law in the lattice approach.
Calculation of the Dimer Equilibrium Constant of Heavy Water Saturated Vapor
Bulavin, L A; Makhlaichuk, V N
2015-01-01T23:59:59.000Z
Water is the most common substance on Earth.The discovery of heavy water and its further study have shown that the change of hydrogen for deuterium leads to the significant differences in their properties.The triple point temperature of heavy water is higher,at the same time the critical temperature is lower.Experimental values of the second virial coefficient of the EOS for the vapor of normal and heavy water differ at all temperatures.This fact can influence the values of the dimerization constant for the heavy water vapor.The equilibrium properties of the dimerization process are described with the methods of chemical thermodynamics.The chemical potentials for monomers (m) and dimers (d)are the functions of their concentrations.The interactions of monomer-dimer and dimer-dimer types are taken into account within the solution of equation for chemical potentials.The obtained expression for the dimerization constant contains the contributions of these types.The averaged potentials are modeled by the Sutherlan...
University of Technology, Sydney
Assignment Types UTS LIBRARY February 2013 Academic Writing Guide Part 2 Assignment Types: This section outlines the basic types of written assignments, providing structural elements and examples. #12;2 II. Assignment Types 1. Essay Writing
Introduction to Dynamic Distributed
Roma "La Sapienza", Università di
Introduction to Dynamic Distributed SystemsSystems #12;Outline Introduction Churn Building Applications in Dynamic Distributed Systems RegistersRegisters Eventual Leader election Connectivity in Dynamic Distributed Systems #12;Dynamic Distributed Systems: Context & Motivations Advent of Complex Distributed
Fundamental constants and cosmic vacuum: the micro and macro connection
Harald Fritzsch; Joan Sola
2015-03-26T23:59:59.000Z
The idea that the vacuum energy density $\\rho_{\\Lambda}$ could be time dependent is a most reasonable one in the expanding Universe; in fact, much more reasonable than just a rigid cosmological constant for the entire cosmic history. Being $\\rho_{\\Lambda}=\\rho_{\\Lambda}(t)$ dynamical, it offers a possibility to tackle the cosmological constant problem in its various facets. Furthermore, for a long time (most prominently since Dirac's first proposal on a time variable gravitational coupling) the possibility that the fundamental "constants" of Nature are slowly drifting with the cosmic expansion has been continuously investigated. In the last two decades, and specially in recent times, mounting experimental evidence attests that this could be the case. In this paper, we consider the possibility that these two groups of facts might be intimately connected, namely that the observed acceleration of the Universe and the possible time variation of the fundamental constants are two manifestations of the same underlying dynamics. We call it: the "micro and macro connection", and on its basis we expect that the cosmological term in Einstein's equations, Newton's coupling and the masses of all the particles in the Universe, both the dark matter particles and the ordinary baryons and leptons, should all drift with the cosmic expansion. Here we discuss specific cosmological models realizing such possibility in a way that preserves the principle of covariance of General Relativity.
A Constant Gain Kalman Filter Approach to track Maneuvering Targets
Naik, Naren
1 A Constant Gain Kalman Filter Approach to track Maneuvering Targets Ashwin Yadav1 , Peeyush domains. One of the most fundamental and widely used approaches to target tracking is the Kalman filter. In presence of unknown noise statistics there are difficulties in the Kalman filter yielding acceptable
Global Representation of the Fine Structure Constant and its Variation
Michael Edmund Tobar
2005-02-06T23:59:59.000Z
The fine structure constant, alpha, is shown to be proportional to the ratio of the quanta of electric and magnetic flux of force of the electron, and provides a new representation, which is global across all unit systems. Consequently, a variation in alpha was shown to manifest due to a differential change in the fraction of the quanta of electric and magnetic flux of force, while a variation in hcross.c was shown to manifest due to the common mode change. The representation is discussed with respect to the running of the fine structure constant at high energies (small distances), and a putative temporal drift. It is shown that the running of the fine structure constant is due to equal components of electric screening (polarization of vacuum) and magnetic anti-screening (magnetization of vacuum), which cause the perceived quanta of electric charge to increase at small distances, while the magnetic flux quanta decreases. This introduces the concept of the bare magnetic flux quanta as well as the bare electric charge. With regards to temporal drift, it is confirmed that it is impossible to determine which fundamental constant is varying if alpha varies.
Quartz resonators thermal modelization using located constants networks
Boyer, Edmond
of quartz resonator. The designed model is tested by comparison of the experimental frequency versus235 Quartz resonators thermal modelization using located constants networks S. Galliou and J. P modelization of quartz resonators is first presented ; next, the method consisting on establishing a located
USEFUL EQUATIONS AND CONSTANTS k = 8.99 X 109
Kioussis, Nicholas
E E Vector Sum electU W Potential Difference: elect 0 0 WU V q q Definition Potential Energy Capacitance: Q C V Definition 0 A C d Parallel Plate, Dielectric: 0C C Dielectric Constant Energy Stored Field: qF E Definition Electric Field: 2 q E k r Magnitude (for point charge) Superposition: 1 2 3 E E
CODATA recommended values of the fundamental physical constants: 2010*
constants and conversion factors of physics and chemistry recommended by the Committee on Data for Science. Theory of hydrogen and deuterium energy levels 1534 a. Dirac eigenvalue 1534 b. Relativistic recoil 1534 c. Nuclear polarizability 1535 d. Self energy 1535 e. Vacuum polarization 1536 f. Two
Constant Sustainable Consumption Rate in Optimal Growth with Exhaustible Resources*
Wan, Frederic Yui-Ming
's criterion of maximum sustainable consumption rate, previously formulated as a minimum-resource-extraction or not the constant unit resource extraction cost vanishes. The related problem of maximizing the terminal capital appetite for the earth's finite stock of nonrenew- able resources, such as fossil fuel and minerals, have
CAPUT DARK ENERGY TOPICS, 2013 1. The Cosmological Constant
Weijgaert, Rien van de
CAPUT DARK ENERGY TOPICS, 2013 1 #12;1. The Cosmological Constant - The acceleration as curvature term in the Einstein field equation and not a form of dark energy. Provide a critical discussion., Rovelli C., 2010 Is dark energy really a mystery ? Nature, 466, 321 (July 2010) - Padmanabhan T., 2003
Temperature and moisture dependence of dielectric constant for silica aerogels
Hrubesh, L.H., LLNL
1997-03-01T23:59:59.000Z
The dielectric constants of silica aerogels are among the lowest measured for any solid material. The silica aerogels also exhibit low thermal expansion and are thermally stable to temperatures exceeding 500{degrees}C. However, due to the open porosity and large surface areas for aerogels, their dielectric constants are strongly affected by moisture and temperature. This paper presents data for the dielectric constants of silica aerogels as a function of moisture content at 25{degrees}C, and as a function of temperature, for temperatures in the range from 25{degrees}C to 450{degrees}C. Dielectric constant data are also given for silica aerogels that are heat treated in dry nitrogen at 500{degrees}C, then cooled to 25{degrees}C for measurements in dry air. All measurements are made on bulk aerogel spheres at 22GHz microwave frequency, using a cavity perturbation method. The results of the dependence found here for bulk materials can be inferred to apply also to thin films of silica aerogels having similar nano-structures and densities.
Dynamical constants of structured photons with parabolic-cylindrical symmetry
B. M. Rodriguez-Lara; R. Jauregui
2009-05-20T23:59:59.000Z
Electromagnetic modes with parabolic-cylindrical symmetry and their dynamical variables are studied both in the classical and quantum realm. As a result, a new dynamical constant for the electromagnetic field is identified and linked to the symmetry operator which supports it.
Theoretical cosmic Type Ia supernova rates
R. Valiante; F. Matteucci; S. Recchi; F. Calura
2009-03-16T23:59:59.000Z
The aim of this work is the computation of the cosmic Type Ia supernova rates at very high redshifts (z>2). We adopt various progenitor models in order to predict the number of explosions in different scenarios for galaxy formation and to check whether it is possible to select the best delay time distribution model, on the basis of the available observations of Type Ia supernovae. We also computed the Type Ia supernova rate in typical elliptical galaxies of different initial luminous masses and the total amount of iron produced by Type Ia supernovae in each case. It emerges that: it is not easy to select the best delay time distribution scenario from the observational data and this is because the cosmic star formation rate dominates over the distribution function of the delay times; the monolithic collapse scenario predicts an increasing trend of the SN Ia rate at high redshifts whereas the predicted rate in the hierarchical scheme drops dramatically at high redshift; for the elliptical galaxies we note that the predicted maximum of the Type Ia supernova rate depends on the initial galactic mass. The maximum occurs earlier (at about 0.3 Gyr) in the most massive ellipticals, as a consequence of downsizing in star formation. We find that different delay time distributions predict different relations between the Type Ia supernova rate per unit mass at the present time and the color of the parent galaxies and that bluer ellipticals present higher supernova Type Ia rates at the present time.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField Campaign:INEA : Papers SubfoldersU.S. RefiningDistributed EnergyUntapped
Low Computation and Low Latency Algorithms for Distributed Sensor Network
Cevher, Volkan
Low Computation and Low Latency Algorithms for Distributed Sensor Network Initialization M. Borkar distribution can be determined in a distributed heterogeneous sensor network with reduced subspace distribution for networks with a variety of sensor types as long as the collective set of measurements from all
Language design for distributed stream processing
Newton, Ryan Rhodes, 1980-
2009-01-01T23:59:59.000Z
Applications that combine live data streams with embedded, parallel, and distributed processing are becoming more commonplace. WaveScript is a domain-specific language that brings high-level, type-safe, garbage-collected ...
Tom Broadhurst; Rychard J. Bouwens
1999-03-08T23:59:59.000Z
The optical-IR images of the Northern and Southern Hubble Deep Fields are used to measure the spectral and density evolution of early-type galaxies. The mean optical SED is found to evolve passively towards a mid F-star dominated spectrum by z ~ 2. We demonstrate with realistic simulations that hotter ellipticals would be readily visible if evolution progressed blueward and brightward at z > 2, following a standard IMF. The colour distributions are best fitted by a `red' IMF, deficient above ~2 M_solar and with a spread of formation in the range 1.5 3 Gyrs independent of its formation redshift. Regarding density evolution, we demonstrate that the sharp decline in numbers claimed at z > 1 results from a selection bias against distant red galaxies in the optical, where the flux is too weak for morphological classification, but is remedied with relatively modest IR exposures revealing a roughly constant space density to z ~ 2. We point out that the lack of high mass star-formation inferred here and the requirement of metals implicates cooling-flows of pre-enriched gas in the creation of the stellar content of spheroidal galaxies. Deep-field X-ray images will be very helpful to examine this possibility.
Types of Costs Types of Cost Estimates
Boisvert, Jeff
· Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408: Mining% accuracy. 2-5% of pre-production capital Types of Cost Estimates #12;3. Definitive Based on definitive-even $ Production Level Fixed Cost Break-even $ Production Level Cost-Revenue Relationships · Capital Costs (or
Constant-Optimized Quantum Circuits for Modular Multiplication and Exponentiation
Igor L. Markov; Mehdi Saeedi
2015-04-02T23:59:59.000Z
Reversible circuits for modular multiplication $Cx$%$M$ with $x
Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant
Yuichi Sekiwa
2006-04-10T23:59:59.000Z
We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.
Asymptotically Flat Wormhole Solutions in a Generic Cosmological Constant Background
Y. Heydarzade; N. Riazi; H. Moradpour
2015-01-09T23:59:59.000Z
There are a number of reasons to study wormholes with generic cosmological constant $\\Lambda$. Recent observations indicate that present accelerating expansion of the universe demands $\\Lambda>0$. On the other hand, some extended theories of gravitation such as supergravity and superstring theories posses vacuum states with $\\Lambdaenergy density and pressure profiles which support such a geometry are obtained. It is shown that for having such a geometry, the wormhole throat $r_0$, the cosmological constant $\\Lambda$ and the equation of state parameter $\\omega$ should satisfy two specific conditions. The possibility of setting different values for the parameters of the model helps us to find exact solutions for the metric functions, mass functions and energy-momentum profiles. At last, the volume integral quantifier, which provides useful information about the total amount of energy condition violating matter is discussed briefly.
Mega-masers, Dark Energy and the Hubble Constant
Lo, Fred K. Y.
2007-10-15T23:59:59.000Z
Powerful water maser emission (water mega-masers) can be found in accretion disks in the nuclei of some galaxies. Besides providing a measure of the mass at the nucleus, such mega-masers can be used to determine the distance to the host galaxy, based on a kinematic model. We will explain the importance of determining the Hubble Constant to high accuracy for constraining the equation of state of Dark Energy and describe the Mega-maser Cosmology Project that has the goal of determining the Hubble Constant to better than 3%. Time permitting, we will also present the scientific capabilities of the current and future NRAO facilities: ALMA, EVLA, VLBA and GBT, for addressing key astrophysical problems
Photon-Axion-Like Particle Coupling Constant and Cosmological Observations
M. Yu. Piotrovich; Yu. N. Gnedin; T. M. Natsvlishvili
2008-05-23T23:59:59.000Z
We estimated the photon-pseudoscalar particle mixing constant from the effect of cosmological alignment and cosmological rotation of polarization plane of distant QSOs. This effect is explained in terms of birefringent phenomenon due to photon-pseudoscalar (axion-like) particle mixing in a cosmic magnetic field. On the contrary, one can estimate the strength of the cosmic magnetic field using the constraints on the photon-axion-like particle coupling constant from the CAST experiment and from SNe Ia dimming effect. In a result, the lower limit on the intergalactic ($z\\approx 1\\div 2$) magnetic field appears at the level of about $4\\times 10^{-10}\\div 10^{-11}$ G.
New process to avoid emissions: Constant pressure in coke ovens
Giertz, J.; Huhn, F. [DMT-Gesellschaft fuer Forschung und Pruefung mbH, Essen (Germany). Inst. for Cokemaking and Fuel Technology; Hofherr, K. [Thyssen Stahl AG, Duisburg (Germany)
1995-12-01T23:59:59.000Z
A chamber pressure regulation (PROven), especially effective in regard to emission control problems of coke ovens is introduced for the first time. Because of the partial vacuum in the collecting main system, it is possible to keep the oven`s raw gas pressure constant on a low level over the full coking time. The individual pressure control for each chamber is assured directly as a function of the oven pressure by an immersion system controlling the flow resistance of the collecting main valve. The latter is a fixed-position design (system name ``FixCup``). By doing away with the interdependence of collecting main pressure and chamber pressure, a parameter seen as a coking constant could not be made variable. This opens a new way to reduce coke oven emissions and simultaneously to prevent the ovens from damage caused by air ingress into the oven.
Sound damping constant for generalized theories of gravity
Brustein, Ram [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Medved, A. J. M. [Physics Department, University of Seoul, Seoul 130-743 (Korea, Republic of)
2009-06-15T23:59:59.000Z
The near-horizon metric for a black brane in anti-de Sitter space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified from its Einstein form for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories, but suggestions are made as to how this restriction might eventually be lifted.
Adams, Amy Lynn
2011-01-01T23:59:59.000Z
This thesis evaluates the constant rate of strain and constant head techniques for measurement of the hydraulic conductivity of fine grained soils. A laboratory program compares hydraulic conductivity measurements made ...
Scaling behavior of discretization errors in renormalization and improvement constants
Bhattacharya, T; Lee, W; Sharpe, S R; Bhattacharya, Tanmoy; Gupta, Rajan; Lee, Weonjong; Sharpe, Stephen R.
2006-01-01T23:59:59.000Z
Non-perturbative results for improvement and renormalization constants needed for on-shell and off-shell O(a) improvement of bilinear operators composed of Wilson fermions are presented. The calculations have been done in the quenched approximation at beta=6.0, 6.2 and 6.4. To quantify residual discretization errors we compare our data with results from other non-perturbative calculations and with one-loop perturbation theory.
Apparatus producing constant cable tension for intermittent demand
Lauritzen, T.
1984-05-23T23:59:59.000Z
This invention relates to apparatus for producing constant tension in cable or the like when it is unreeled and reeled from a drum or spool under conditions of intermittent demand. The invention is particularly applicable to the handling of superconductive cable, but the invention is also applicable to the unreeling and reeling of other strands, such as electrical cable, wire, cord, other cables, fish line, wrapping paper and numerous other materials.
The Stückelberg Holographic Superconductors in Constant External Magnetic Field
Jian-Pin Wu
2010-07-08T23:59:59.000Z
We investigate the St\\"{u}ckelberg holographic superconductor in present of the constant external magnetic field. We observe that a critical value of magnetic field exists as the cases in usual holographic superconductor. Furthermore, we find that the applied magnetic field strongly influence the phase transition of this model and have a jump in the condensate at the critical temperature even for $c_{4}=1$.
Noncommutative field with constant background fields and neutral fermion
Cui-bai Luo; Feng-yao Hou; Zhu-fang Cui; Xiao-jun Liu; Hong-shi Zong
2015-03-02T23:59:59.000Z
Introducing constant background fields into the noncommutative gauge theory, we first obtain a Hermitian fermion Lagrangian which involves a Lorentz violation term, then we generalize it to a new deformed canonical noncommutation relations for fermion field. Massless neutrino oscillation in the deformed canonical noncommutation relations is analyzed. The restriction of the noncommutative coefficients is also discussed. By comparing with the existing experimental data of conventional neutrino oscillations, the order of noncommutative deformed coefficients is given from different ways.
Turbine blade having a constant thickness airfoil skin
Marra, John J
2012-10-23T23:59:59.000Z
A turbine blade is provided for a gas turbine comprising: a support structure comprising a base defining a root of the blade and a framework extending radially outwardly from the base, and an outer skin coupled to the support structure framework. The skin has a generally constant thickness along substantially the entire radial extent thereof. The framework and the skin define an airfoil of the blade.
K. M. Pitman; A. M. Hofmeister; A. B. Corman; A. K. Speck
2008-03-10T23:59:59.000Z
Silicon Carbide (SiC) optical constants are fundamental inputs for radiative transfer models of astrophysical dust environments. However, previously published values contain errors and do not adequately represent the bulk physical properties of the cubic (beta) SiC polytype usually found around carbon stars. We provide new, uncompromised optical constants for beta- and alpha-SiC derived from single-crystal reflectance spectra and investigate quantitatively whether there is any difference between alpha- and beta-SiC that can be seen in infrared spectra and optical functions. Previous optical constants for SiC do not reflect the true bulk properties, and they are only valid for a narrow grain size range. The new optical constants presented here will allow narrow constraints to be placed on the grain size and shape distribution that dominate in astrophysical environments. In addition, our calculated absorption coefficients are much higher than laboratory measurements, which has an impact on the use of previous data to constrain abundances of these dust grains.
Hydrogen Atom and Time Variation of Fine-Structure Constant
Mu-Lin Yan
2009-11-21T23:59:59.000Z
In this paper, we have solved the de Sitter special relativistic ($\\mathcal{SR}_{cR}$-) Dirac equation of hydrogen in the earth-QSO(quasar) framework reference by means of the adiabatic approach. The aspects of geometry effects of de Sitter space-time described by Beltrami metric are explored and taken into account. It is found that the $\\mathcal{SR}_{cR}$-Dirac equation of hydrogen is a time dependent quantum Hamiltonian system. We provide an explicit calculation to justify the adiabatic approach in dealing with this time-dependent system. Since the radius of de Sitter sphere $R$ is cosmologically large, the evolution of the system is very slow so that the adiabatic approximation legitimately works with high accuracy. We conclude that the electromagnetic fine-structure constant, the electron mass and the Planck constant are time variations. This prediction of fine-structure constant is consistent with the presently available observation data. For confirming it further, experiments/observations are required.
On the possibility of variation of the fundamental constants of physics in the static universe
V. Jonauskas
1999-08-09T23:59:59.000Z
A variation of fundamental constants of physics is proposed in a frame of static universe. It is shown when the velocity of light increases (decreases) the Planck's constant increases (decreases) and mass of bodies decreases (increases). This variation of constants leads to the variation of dimensions of bodies and the energy levels of atoms, but a fine structure constant remains unaltered.
Distributed DBMS I Introduction
Chen, Yangjun
Distributed DBMS Outline I Introduction I Background I Distributed DBMS Architecture I Distributed Data server approach Parallel architectures Parallel DBMS techniques Parallel execution models Parallel Database Systems Distributed Object DBMS Database Interoperability Concluding Remarks #12
Distributed Theorem Proving for Distributed Hybrid Systems
Platzer, André
system with a varying number of arbitrarily many cars. 1 Introduction Hybrid systems with joint discrete a multi-agent system, e.g., distributed car control systems. Such systems form distributed hybrid systemsDistributed Theorem Proving for Distributed Hybrid Systems David W. Renshaw, Sarah M. Loos
Broader source: Energy.gov [DOE]
Several commissioning types exist to address the specific needs of equipment and systems across both new and existing buildings. The following commissioning types provide a good overview.
Energy Distribution of Black Plane Solutions
Paul Halpern
2006-03-27T23:59:59.000Z
We use the Einstein energy-momentum complex to calculate the energy distribution of static plane-symmetric solutions of the Einstein-Maxwell equations in 3+1 dimensions with asymptotic anti-de Sitter behavior. This solution is expressed in terms of three parameters: the mass, electric charge and cosmological constant. We compare the energy distribution to that of the Reissner-Nordstrom-anti-de Sitter solution, pointing to qualitative differences between the models. Finally, we examine these results within the context of the Cooperstock hypothesis.
Degravitation, inflation and the cosmological constant as an afterglow
Patil, Subodh P., E-mail: subodh@physik.hu-berlin.de [Humboldt Universitaet zu Berlin, Institut fuer Physik, Newtonstrasse 15, D-12489 Berlin (Germany)
2009-01-15T23:59:59.000Z
In this report, we adopt the phenomenological approach of taking the degravitation paradigm seriously as a consistent modification of gravity in the IR, and investigate its consequences for various cosmological situations. We motivate degravitation - where Netwon's constant is promoted to a scale dependent filter function - as arising from either a small (resonant) mass for the graviton, or as an effect in semi-classical gravity. After addressing how the Bianchi identities are to be satisfied in such a set up, we turn our attention towards the cosmological consequences of degravitation. By considering the example filter function corresponding to a resonantly massive graviton (with a filter scale larger than the present horizon scale), we show that slow roll inflation, hybrid inflation and old inflation remain quantitatively unchanged. We also find that the degravitation mechanism inherits a memory of past energy densities in the present epoch in such a way that is likely significant for present cosmological evolution. For example, if the universe underwent inflation in the past due to it having tunneled out of some false vacuum, we find that degravitation implies a remnant 'afterglow' cosmological constant, whose scale immediately afterwards is parametrically suppressed by the filter scale (L) in Planck units {Lambda} {approx} l{sup 2}{sub pl}/L{sup 2}. We discuss circumstances through which this scenario reasonably yields the presently observed value for {Lambda} {approx} O(10{sup -120}). We also find that in a universe still currently trapped in some false vacuum state, resonance graviton models of degravitation only degravitate initially Planck or GUT scale energy densities down to the presently observed value over timescales comparable to the filter scale. We argue that different functional forms for the filter function will yield similar conclusions. In this way, we argue that although the degravitation models we study have the potential to explain why the cosmological constant is not large in addition to why it is not zero, it does not satisfactorily address the co-incidence problem without additional tuning.
Pressure difference-based sensing of leaks in water distribution networks
Kornmayer, Páll Magnús
2011-01-01T23:59:59.000Z
Human society and civilization rely on the constant availability of fresh water. In regions where a local source of potable water is not available, a transportation and distribution pipe system is employed. When these pipes ...
Determining coal permeabilities through constant pressure production interference testing
Schubarth, Stephen Kurt
1983-01-01T23:59:59.000Z
Kurt Schubarth, B. S. , Texas A&M Un1versity Chairman of Advisory Committee: Dr. Stephen A. Holditch The determination of format1on propert1es 1s important to the success of any underground coal gasification (UCG) project. There are many ways... method of analysis for a mult1ple well test w1th a constant pressure source. The method is then verified by analyzing data generated from a numer1cal reservoir simulator. An analys1s of a hydrology test performed during the 1980 Texas ASM UCG project...
Compatibility of neutron star masses and hyperon coupling constants
H. Huber; M. K. Weigel; F. Weber
1998-11-30T23:59:59.000Z
It is shown that the modern equations of state for neutron star matter based on microscopic calculations of symmetric and asymmetric nuclear matter are compatible with the lower bound on the maximum neutron-star mass for a certain range of hyperon coupling constants, which are constrained by the binding energies of hyperons in symmetric nuclear matter. The hyperons are included by means of the relativistic Hartree-- or Hartree--Fock approximation. The obtained couplings are also in satisfactory agreement with hypernuclei data in the relativistic Hartree scheme. Within the relativistic Hartree--Fock approximation hypernuclei have not been investigated so far.
Confined System with Rashba Coupling in Constant Magnetic Field
Mohammed El Bouziani; Rachid Houca; Ahmed Jellal
2012-04-30T23:59:59.000Z
We study a two dimensional system of electrons with Rashba coupling in the constant magnetic field $B$ and confining potential. We algebraically diagonalize the corresponding Hamiltonian to end up with the solutions of the energy spectrum. In terms of two kinds of operator we construct two symmetries and discuss the filling of the shells with electrons for strong and weak $B$. Subsequently, we show that our system is sharing some common features with quantum optics where the exact operator solutions for the basics Jaynes-Cummings variables are derived from our results. An interesting limit is studied and the corresponding quantum dynamics is recovered.
Photon propagation in noncommutative QED with constant external field
R. Fresneda; D. M. Gitman; A. E. Shabad
2015-01-20T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Photon propagation in noncommutative QED with constant external field
Fresneda, R; Shabad, A E
2015-01-01T23:59:59.000Z
We find dispersion laws for the photon propagating in the presence of mutually orthogonal constant external electric and magnetic fields in the context of the $\\theta $-expanded noncommutative QED. We show that there is no birefringence to the first order in the noncommutativity parameter $% \\theta .$ By analyzing the group velocities of the photon eigenmodes we show that there occurs superluminal propagation for any direction. This phenomenon depends on the mutual orientation of the external electromagnetic fields and the noncommutativity vector. We argue that the propagation of signals with superluminal group velocity violates causality in spite of the fact that the noncommutative theory is not Lorentz-invariant and speculate about possible workarounds.
Original article Effect of concentrate type and distribution method
Boyer, Edmond
in rumen fluid parameters (higher pH and higher proportions of acetic acid for PHM treat- ment fermentation. dairy cow / fat content / concentrate / milk yield Résumé - Effet de la nature et des modalités concentré dans le lot GW qui ont pu limiter les effets de ce traitement sur les fermentations dans le rumen
d Original Contribution MICROBUBBLE TYPE AND DISTRIBUTION DEPENDENCE OF FOCUSED
Konofagou, Elisa E.
microbubbles were measured, and the microbub- bles were diluted to 6 3 108 /mL before injection. Immediately parameters: frequency 5 1.5 MHz, pulse repetition frequency 5 10 Hz, 1000 cycles, in situ peak rarefactional from entering the brain parenchyma, it also impedes the delivery of therapeutic agents $400 Da
Distributed Newton-type algorithms for network resource allocation
Wei, Ermin
2010-01-01T23:59:59.000Z
Most of today's communication networks are large-scale and comprise of agents with local information and heterogeneous preferences, making centralized control and coordination impractical. This motivated much interest in ...
Types of Costs Types of Cost Estimates
Boisvert, Jeff
05-1 · Types of Costs · Types of Cost Estimates · Methods to estimate capital costs MIN E 408-Revenue Relationships · Capital Costs (or first cost or capital investment): Expenditures made to acquire or develop capital assets Three main classes of capital costs: 1. Depreciable Investment: · Investment allocated
Physical Effects of Distributed PV Generation on California's Distribution System
Cohen, Michael A
2015-01-01T23:59:59.000Z
Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...
Silica aerogel: An intrinsically low dielectric constant material
Hrubesh, L.W.
1995-04-01T23:59:59.000Z
Silica aerogels are highly porous solids having unique morphologies in wavelength of visible which both the pores and particles have sizes less than the wavelength of visible light. This fine nanostructure modifies the normal transport mechanisms within aerogels and endows them with a variety of exceptional physical properties. For example, aerogels have the lowest measured thermal conductivity and dielectric constant for any solid material. The intrinsically low dielectric properties of silica aerogels are the direct result of the extremely high achievable porosities, which are controllable over a range from 75% to more than 99.8 %, and which result in measured dielectric constants from 2.0 to less than 1.01. This paper discusses the synthesis of silica aerogels, processing them as thin films, and characterizing their dielectric properties. Existing data and other physical characteristics of bulk aerogels (e.g., thermal stablity, thermal expansion, moisture adsorption, modulus, dielectric strength, etc.), which are useful for evaluating them as potential dielectrics for microelectronics, are also given.
Energy Levels Of Hydrogen-Like Atomsand Fundamental Constants
Valeri V. Dvoeglazov; Rudolf N. Faustov; Yuri N. Tyukhtyaev
1994-03-27T23:59:59.000Z
The present review includes the description of theoretical methods for the investigations of the spectra of hydrogen-like systems. Various versions of the quasipotential approach and the method of the effective Dirac equation are considered. The new methods, which have been developed in the eighties, are described. These are the method for the investigation of the spectra by means of the quasipotential equation with the relativistic reduced mass and the method for a selection of the logarithmic corrections by means of the renormalization group equation. The special attention is given to the construction of a perturbation theory and the selection of graphs, whereof the contributions of different orders of $\\alpha$, the fine structure constant, to the energy of the fine and hyperfine splitting in a positronium, a muonium and a hydrogen atom could be calculated. In the second part of this article the comparison of the experimental results and the theoretical results concerning the wide range of topics is produced. They are the fine and hyperfine splitting in the hydrogenic systems, the Lamb shift and the anomalous magnetic moments of an electron and a muon. Also, the problem of the precision determination of a numerical value of the fine structure constant, connected with the above topics, is discussed.
Determining the Hubble constant using HII regions and HII galaxies
Chavez, Ricardo; Terlevich, Roberto; Plionis, Manolis; Bresolin, Fabio; Basilakos, Spyros; Melnick, Jorge
2012-01-01T23:59:59.000Z
We report the first results of a long term program aiming to provide accurate independent estimates of the Hubble constant (H0) and the Dark Energy equation of state parameter (w) using the L(Hbeta)-velocity dispersion (sigma) distance estimator for Giant HII regions and HII galaxies. We have used VLT and Subaru high dispersion spectroscopic observations of a local sample of HII galaxies, identified in the SDSS DR7 catalogue in order to re-define and improve the L(Hbeta) - sigma distance indicator and to determine the Hubble constant. To this end we used as local calibration or 'anchor' of this correlation, giant HII regions in nearby galaxies which have accurate distance measurements determined via primary indicators. Using our best sample of 89 nearby HII galaxies and 23 Giant HII regions in 9 galaxies we obtain H0 = 73.9+- 2.7 (statistical)+- 2.9 (systematic) km s-1 Mpc-1, in excellent agreement with, and independently confirming, the most recent SNe Ia based results.
Axial-vector coupling constants and chiral-symmetry restoration
Henley, E.M. (Department of Physics FM-15 and Institute for Nuclear Theory HN-12, University of Washington, Seattle, Washington 98195 (United States)); Hwang, W.P. (Department of Physics, National Taiwan University, Taipei, Taiwan 10764 (Taiwan, Province of China)); Kisslinger, L.S. (Department of Physics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213 (United States))
1992-07-01T23:59:59.000Z
The isovector axial-vector coupling constant {ital g}{sub {ital A}} is determined by using the method of QCD sum rules. A sum rule for ({ital g}{sub {ital A}}{minus}1) is obtained, and it is shown that, with standard values of the quark condensates, {ital g}{sub {ital A}}=1.26{plus minus}0.08. It is also shown that the isovector axial-vector coupling ({ital g}{sub {ital A}}{minus}1)=0 in the limit in which chiral symmetry is restored, and the quark condensate vanishes. A sum rule is also obtained for the isoscalar'' axial-vector coupling constant {ital g}{sub {ital A}}{sup {ital S}}, which is found to be 0.13 if the isovector values of susceptibilities are used. On the other hand, {ital g}{sub {ital A}}{sup {ital S}}={minus}0.68 if the quark condensate is set to zero while {ital g}{sub {ital A}}{sup {ital S}}={minus}1.00 if both the quark and gluon condensates vanish in the event of chiral-symmetry restoration. The values of {ital g}{sub {ital A}} and {ital g}{sub {ital A}}{sup {ital S}} allow us to deduce {Delta}{ital u} and {Delta}{ital d} in the proton.
Zero-Branes, Quantum Mechanics and the Cosmological Constant
Andrew Chamblin; Neil D. Lambert
2001-07-25T23:59:59.000Z
We analyse some dynamical issues in a modified type IIA supergravity, recently proposed as an extension of M-theory that admits de Sitter space. In particular we find that this theory has multiple zero-brane solutions. This suggests a microscopic quantum mechanical matrix description which yields a massive deformation of the usual M(atrix) formulation of M-theory and type IIA string theory.
Document management guidelines for distributed project networks
Hameri, A P; Høimyr, Nils-Joar
1999-01-01T23:59:59.000Z
This paper provides the project engineer with guidelines or a checklist on tasks that must be considered, defined and documented before the project can successfully implement a document management system in geographically distributed project environment. Topics ranging from configuration management, approval process, document types, user administration and document naming are covered. The underlying cases of the paper are that of CERN (European Laboratory for Particle Physics) and its latest accelerator project, together with the Nordisk Industrifond -funded Connecting Distributed Competencies (NI#: 98082) project, with a focus on distributed shipbuilding processes. Keywords: distributed project management, product data management, networking, document management, virtual workspaces
Fred Cooper; Gouranga C. Nayak
2006-02-21T23:59:59.000Z
We study the non-perturbative production of gluon pairs from a constant SU(3) chromo-electric background field via the Schwinger mechanism. We fix the covariant background gauge with an arbitrary gauge parameter \\alpha. We determine the transverse momentum distribution of the gluons, as well as the total probability of creating pairs per unit space time volume. We find that the result is independent of the covariant gauge parameter \\alpha used to define arbitrary covariant background gauges. We find that our non-perturbative result is both gauge invariant and gauge parameter \\alpha independent.
An investigation of the rainfall distribution for selected stations in North and Central America
Martin, Lester Alton
1964-01-01T23:59:59.000Z
Status of Knowledge Need for the Study II DATA LIMITATIONS Sampling Errors Observational Errors III ANALYSIS PROCEDURES Monthly Distribution Curves Annual Distribution Curves Mean Rainfall Distribution Curves Curve Fitting IV PRESENTATION..., Queensland Suva, Fiji Islands Cherrapunj i, India 66. 5 117. 1 4. 25. 1 24. 7 26. 5 36. 4 116 108 158 0. 04 in. or more in a day. the mean rainfall distribution curve for a geographical region is so nearly constant. , especially above the 90...
Zhang, WJ "Chris"
) motor and servo-motor. If a system contains two drivers or more, among which some are of the CV motor while the other are the servo-motor, the system has the so-called hybrid driver architecture is stable. A simulation is performed to show verify the proposed controller. The CV motor has the velocity
Lieb-Liniger gas in a constant-force potential
Jukic, D.; Galic, S.; Buljan, H. [Department of Physics, University of Zagreb, Bijenicka c. 32, 10000 Zagreb (Croatia); Pezer, R. [Faculty of Metallurgy, University of Zagreb, Aleja narodnih heroja 3, 44103 Sisak (Croatia)
2010-08-15T23:59:59.000Z
We use Gaudin's Fermi-Bose mapping operator to calculate exact solutions for the Lieb-Liniger model in a linear (constant-force) potential (the constructed exact stationary solutions are referred to as the Lieb-Liniger-Airy wave functions). The ground-state properties of the gas in the wedgelike trapping potential are calculated in the strongly interacting regime by using Girardeau's Fermi-Bose mapping and the pseudopotential approach in the 1/c approximation (c denotes the strength of the interaction). We point out that quantum dynamics of Lieb-Liniger wave packets in the linear potential can be calculated by employing an N-dimensional Fourier transform as in the case of free expansion.
Span Programs for Functions with Constant-Sized 1-certificates
Aleksandrs Belovs
2011-05-20T23:59:59.000Z
Besides the Hidden Subgroup Problem, the second large class of quantum speed-ups is for functions with constant-sized 1-certificates. This includes the OR function, solvable by the Grover algorithm, the distinctness, the triangle and other problems. The usual way to solve them is by quantum walk on the Johnson graph. We propose a solution for the same problems using span programs. The span program is a computational model equivalent to the quantum query algorithm in its strength, and yet very different in its outfit. We prove the power of our approach by designing a quantum algorithm for the triangle problem with query complexity $O(n^{35/27})$ that is better than $O(n^{13/10})$ of the best previously known algorithm by Magniez et al.
Path Integral Confined Dirac Fermions in a Constant Magnetic Field
Abdeldjalil Merdaci; Ahmed Jellal; Lyazid Chetouani
2014-04-17T23:59:59.000Z
We consider Dirac fermion confined in harmonic potential and submitted to a constant magnetic field. The corresponding solutions of the energy spectrum are obtained by using the path integral techniques. For this, we begin by establishing a symmetric global projection, which provides a symmetric form for the Green function. Based on this, we show that it is possible to end up with the propagator of the harmonic oscillator for one charged particle. After some transformations, we derive the normalized wave functions and the eigenvalues in terms of different physical parameters and quantum numbers. By interchanging quantum numbers, we show that our solutions possed interesting properties. The density of current and the non-relativistic limit are analyzed where different conclusions are obtained.
Statistical Inference for Models with Intractable Normalizing Constants
Jin, Ick Hoon
2011-06-27T23:59:59.000Z
be calculated by S1(y) = X 1?i
Constant power speed range extension of surface mounted PM motors
Lawler, Jack Steward (Knoxville, TN); Bailey, John Milton (Knoxville, TN)
2001-01-01T23:59:59.000Z
A circuit and method for controlling a rotating machine (11) in the constant horsepower range above base speed uses an inverter (15) having SCR's (T1-T6) connected in series with the primary commutation switches (Q1-Q6) to control turn off of the primary commutation switches and to protect the primary commutation switches from faults. The primary commutation switches (Q1-Q6) are controlled by a controller (14), to fire in advance or after a time when the back emf equals the applied voltage, and then to turn off after a precise dwell time, such that suitable power is developed at speeds up to at least six times base speed.
Temperature relationship of the elastic constants of vanadium
Belousov, O.K.
1987-09-01T23:59:59.000Z
Information on the elastic constants of vanadium and their temperature relationship is limited and ambiguous. This article gives the values of these characteristics for VEL-2 electron beam remelted vanadium with a purity of about 99.8%. The elastic properties were measured in heating from 20 to 1600/sup 0/C in a vacuum. The relationship of the modulus of elasticity to temperature has two almost linear portions in the 20-300 and 300-1350/sup 0/C ranges and then a more intense reduction in it is observed. The shear modulus drops sharply starting with 800/sup 0/C and decreases to G = 36 kN/mm/sup 2/ at 1600/sup 0/C. Poisson's ratio has values close to 0.3. Its most significant increase starts with 1400/sup 0/C.e
Determination of the electron–phonon coupling constant in tungsten
Daraszewicz, Szymon L.; Duffy, Dorothy M.; Shluger, Alexander L. [Department of Physics and Astronomy, London Centre for Nanotechnology, University College London, Gower Street, WC1E 6BT London (United Kingdom); Giret, Yvelin [Department of Physics and Astronomy, London Centre for Nanotechnology, University College London, Gower Street, WC1E 6BT London (United Kingdom); The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 (Japan); Tanimura, Hiroshi; Tanimura, Katsumi [The Institute of Scientific and Industrial Research (ISIR), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047 (Japan)
2014-07-14T23:59:59.000Z
We used two methods to determine the effective electron-phonon coupling constant (G{sub 0}) in tungsten. Our first principles calculations predict G{sub 0}?=?1.65?×?10{sup 17?}W m{sup ?3} K{sup ?1}. The temporal decay of the femtosecond-resolution optical reflectivity for a (100) surface of bulk W was measured using a pump-probe scheme and analysed using ab initio parameterised two temperature model, which includes both the effects of the electron-phonon coupling and thermal conduction into bulk. This analysis gives G{sub 0}?=?1.4(3)?×?10{sup 17?}W m{sup ?3} K{sup ?1}, in good agreement with the theoretical prediction. The described effective method of calculating and measuring G{sub 0} in bulk materials can be easily extended to other metals.
Scale of gravity and the cosmological constant within a landscape
Graesser, Michael L. [California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Rutgers University, Piscataway, New Jersey 08540 (United States); Salem, Michael P. [California Institute of Technology, Pasadena, California 91125 (United States)
2007-08-15T23:59:59.000Z
It is possible that the scale of gravity, parametrized by the apparent Planck mass, may obtain different values within different universes in an encompassing multiverse. We investigate the range over which the Planck mass may scan while still satisfying anthropic constraints. The window for anthropically allowed values of the Planck mass may have important consequences for landscape predictions. For example, if the likelihood to observe some value of the Planck mass is weighted by the inflationary expansion factors of the universes that contain that value, then it appears extremely unlikely to observe the value of the Planck mass that is measured within our universe. This is another example of the runaway inflation problem discussed in recent literature. We also show that the window for the Planck mass significantly weakens the anthropic constraint on the cosmological constant when both are allowed to vary over a landscape.
Testing the cosmological constant as a candidate for dark energy
Kratochvil, Jan; Linde, Andrei; Linder, Eric V.; Shmakova, Marina
2003-12-03T23:59:59.000Z
It may be difficult to single out the best model of dark energy on the basis of the existing and planned cosmological observations, because many different models can lead to similar observational consequences. However, each particular model can be studied and either found consistent with observations or ruled out. In this paper, we concentrate on the possibility to test and rule out the simplest and by far the most popular of the models of dark energy, the theory described by general relativity with positive vacuum energy (the cosmological constant). We evaluate the conditions under which this model could be ruled out by the future observations made by the Supernova/Acceleration Probe SNAP (both for supernovae and weak lensing) and by the Planck Surveyor cosmic microwave background satellite.
Second Law Analysis of Constant Temperature Diesel Combustion
Druecke, Dr. Ben [University of Wisconsin; Foster, Prof. Dave [University of Wisconsin; Klein, Prof. Sandy [University of Wisconsin; Daw, C Stuart [ORNL; Chakravarthy, Veerathu K [ORNL; Graves, Ronald L [ORNL
2006-01-01T23:59:59.000Z
The results from a second law analysis of a constant temperature diesel combustion process are presented and show that this process is not significantly more reversible than conventional combustion. In addition to quantifying the total availability destruction in combustion, the magnitudes of the combustion irreversibilities attributable to each irreversible subprocess (mixing, oxidation and internal heat transfer) were determined. The primary contributor to combustion irreversibilities is the thermal interaction of reacting and non-reacting species during the oxidation and internal thermal energy transfer subprocesses. Increasing combustion temperature significantly decreases availability destruction by making the oxidation and internal thermal energy transfer processes more reversible. While increasing combustion temperature decreases combustion irreversibility, it also results in an increase in exhaust temperature. A tradeoff exists between large availability destruction at low combustion temperatures and large amounts of availability discarded in the exhaust at high combustion temperatures. The optimum amount of work was found to occur for a combustion temperature of approximately 1600 K.
When did vacuum energy of the Universe become cosmological constant?
V. Burdyuzha
2007-12-29T23:59:59.000Z
A quark-gluon phase transition in the Universe is researched after which vacuum (dark) energy has hardened and become cosmological constant. Before this a vacuum component of the Universe was changing by jumps during phase transitions since vacuum condensates of quantum fields carried a negative contribution in its positive density energy. This quintessence period of the Universe life took place during the first parts of a second when our Universe was losing high symmetry. Using Zel'dovich's formula the modern value of vacuum energy is also calculated. It is shown that a quantum chromodynamical vacuum which is characterized by pseudogoldstone bosons existed definitely when temperature of the Universe was T~150 MeV. Therefore there is a large probability that dark energy is vacuum energy.
Precision Measurement of the Newtonian Gravitational Constant Using Cold Atoms
G. Rosi; F. Sorrentino; L. Cacciapuoti; M. Prevedelli; G. M. Tino
2014-12-26T23:59:59.000Z
About 300 experiments have tried to determine the value of the Newtonian gravitational constant, G, so far, but large discrepancies in the results have made it impossible to know its value precisely. The weakness of the gravitational interaction and the impossibility of shielding the effects of gravity make it very difficult to measure G while keeping systematic effects under control. Most previous experiments performed were based on the torsion pendulum or torsion balance scheme as in the experiment by Cavendish in 1798, and in all cases macroscopic masses were used. Here we report the precise determination of G using laser-cooled atoms and quantum interferometry. We obtain the value G=6.67191(99) x 10^(-11) m^3 kg^(-1) s^(-2) with a relative uncertainty of 150 parts per million (the combined standard uncertainty is given in parentheses). Our value differs by 1.5 combined standard deviations from the current recommended value of the Committee on Data for Science and Technology. A conceptually different experiment such as ours helps to identify the systematic errors that have proved elusive in previous experiments, thus improving the confidence in the value of G. There is no definitive relationship between G and the other fundamental constants, and there is no theoretical prediction for its value, against which to test experimental results. Improving the precision with which we know G has not only a pure metrological interest, but is also important because of the key role that G has in theories of gravitation, cosmology, particle physics and astrophysics and in geophysical models.
Broader source: Energy.gov [DOE]
The following provides greater detail regarding the types of reuse pursued for LM sites. It should be noted that many actual reuses combine several types of the uses listed below.
Simulations Data Simulation Type
Wang, Xiaorui "Ray"
to request different simulations data. The flow chart above demonstrates the different steps and options@ornl.gov) Autotune Drupal 7 CMS Current building energy models (BEMs), using EnergyPlus or other simulations, are unreliable because they have to constantly be calibrated to match actual energy usage data. Currently
Pretzelosity distribution function
H. Avakian; A. V. Efremov; P. Schweitzer; F. Yuan
2008-08-28T23:59:59.000Z
The 'pretzelosity' distribution is discussed. Theoretical properties, model results, and perspectives to access experimental information on this leading twist, transverse momentum dependent parton distribution function are reviewed. Its relation to helicity and transversity distributions is highlighted.
Learning poisson binomial distributions
Daskalakis, Constantinos
We consider a basic problem in unsupervised learning: learning an unknown Poisson Binomial Distribution. A Poisson Binomial Distribution (PBD) over {0,1,...,n} is the distribution of a sum of n independent Bernoulli random ...
Polynomial Constants are Decidable ? Markus Muller-Olm 1 and Helmut Seidl 2
Seidl, Helmut
Polynomial Constants are Decidable ? Markus Muller-Olm 1 and Helmut Seidl 2 1 University are #12;nite constants [19]. This motivated Muller-Olm and Ruthing [16] to study the complexity
Polynomial Constants are Decidable # Markus MullerOlm 1 and Helmut Seidl 2
MÃ¼ller-Olm, Markus
Polynomial Constants are Decidable # Markus MË?ullerÂOlm 1 and Helmut Seidl 2 1 University]. This motivated MË?ullerÂOlm and RË?uthing [16] to study the complexity of constant propagation for classes
Variable Speed Drive (VSD) Applications in Dual-Duct Constant Volume Systems
Joo, I.; Liu, M.; Conger, K.; Wang, G.
2002-01-01T23:59:59.000Z
Models have been developed for static pressure and potential supply fan energy savings by using variable speed drive (VSD) in dual-duct constant volume systems. Experiments have been performed using a full size dual-duct constant volume system...
G. L. Klimchitskaya; V. M. Mostepanenko
2015-04-09T23:59:59.000Z
We obtain improved constraints on the coupling constants of axion-like particles to nucleons from a recently performed Casimir-less experiment. For this purpose, the differential force between a Au-coated sphere and either Au or Si sectors of a rotating disc, arising due to two-axion exchange, is calculated. Over a wide region of axion masses from 1.7 meV to 0.9 eV the obtained constraints are stronger up to a factor of 60 than the previously known ones following from the Cavendish-type experiment and measurements of the effective Casimir pressure.
Klimchitskaya, G L
2015-01-01T23:59:59.000Z
We obtain stronger constraints on the coupling constants of axion-like particles to nucleons from a recently performed Casimir-less experiment. For this purpose, the differential force between a Au-coated sphe\\-re and either Au or Si sectors of a rotating disc, arising due to two-axion exchange, is calculated. Over a wide region of axion masses from 1.7 meV to 0.9 eV the obtained constraints are stronger up to a factor of 60 than the previously known ones following from the Cavendish-type experiment and measurements of the effective Casimir pressure.
About Industrial Distributed Energy
Broader source: Energy.gov [DOE]
The Advanced Manufacturing Office's (AMO's) Industrial Distributed Energy activities build on the success of predecessor DOE programs on distributed energy and combined heat and power (CHP) while...
Stability constants of HBED with various metal ions
Long, Gregory Neal
1990-01-01T23:59:59.000Z
Foundation. vi TABLE OF CONTENTS Page ABSTRACT ACKNOWLEDGEMENTS TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES INTRODUCTION vr v111 Radiopharmaceuticals and NMR Contrast Agents Design of Chelate Ligands Reasons for Equilibrium Measurements... -log [H]'s. 50 52 16. Plot of Fe (III) -HBED spectrophotometric titration. 53 17. Species distribution for Fe(III) and HBED. 18. Proposed structure for HFeL species. 56 64 INTRODUCTION Radiopharmaceuticals and NMR Contrast Agents...
Paris-Sud XI, Université de
New Variation of Constants Formula for Some Partial Functional Differential Equations with Infinite, Morocco ezzinbi@ucam.ac.ma Abstract In this work, we give a new variation of constants formula for some words and phrases: Hille-Yosida operator, integral solutions, variation of constants formula, uniform
A CONSTANT-INVENTORY TACTICAL PLANNING MODEL FOR A JOB SHOP
Graves, Stephen C.
A CONSTANT-INVENTORY TACTICAL PLANNING MODEL FOR A JOB SHOP Stephen C. Graves Massachusetts a constant-inventory tactical planning model for a generic manufacturing system, such as a job shop assume that we can regulate the release of work to the shop to maintain the constant-inventory constraint
The Photometric Properties of Nearby Type Ia Supernovae
Ganeshalingam, Mohan
2012-01-01T23:59:59.000Z
The Rise-Time Distribution of Nearby Type Ia Supernovae 3.1Highlight: The Physics of Supernovae, ed. W. Hillebrandt &1.1 Supernovae . . . . . . . . . . . . . . 1.1.1
De Sitter brane-world, localization of gravity, and the cosmological constant
Neupane, Ishwaree P. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8041 (New Zealand)
2011-04-15T23:59:59.000Z
Cosmological models with a de Sitter 3-brane embedded in a 5-dimensional de Sitter spacetime (dS{sub 5}) give rise to a finite 4D Planck mass similar to that in Randall-Sundrum (RS) brane-world models in anti-de Sitter 5-dimensional spacetime(AdS{sub 5}). Yet, there arise a few important differences as compared to the results with a flat 3-brane or 4D Minkowski spacetime. For example, the mass reduction formula (MRF) M{sub Pl}{sup 2}=M{sub (5)}{sup 3}l{sub AdS} as well as the relationship M{sub Pl}{sup 2}=M{sub Pl(4+n)}{sup n+2}L{sup n} (with L being the average size or the radius of the n extra dimensions) expected in models of product-space (or Kaluza-Klein) compactifications get modified in cosmological backgrounds. In an expanding universe, a physically relevant MRF encodes information upon the 4-dimensional Hubble expansion parameter, in addition to the length and mass parameters L, M{sub Pl}, and M{sub Pl(4+n)}. If a bulk cosmological constant is present in the solution, then the reduction formula is further modified. With these new insights, we show that the localization of a massless 4D graviton as well as the mass hierarchy between M{sub Pl} and M{sub Pl(4+n)} can be explained in cosmological brane-world models. A notable advantage of having a 5D de Sitter bulk is that in this case the zero-mass wave function is normalizable, which is not necessarily the case if the bulk spacetime is anti-de Sitter. In spacetime dimensions D{>=}7, however, the bulk cosmological constant {Lambda}{sub b} can take either sign ({Lambda}{sub b}<0, =0, or >0). The D=6 case is rather inconclusive, in which case {Lambda}{sub b} may be introduced together with 2-form gauge field (or flux). We obtain some interesting classical gravity solutions that compactify higher-dimensional spacetime to produce a Robertson-Walker universe with de Sitter-type expansion plus one extra noncompact direction. We also show that such models can admit both an effective 4-dimensional Newton constant that remains finite and a normalizable zero-mode graviton wave function.
Edgeworth Expansion of the Largest Eigenvalue Distribution Function of GOE
Leonard N. Choup
2008-01-17T23:59:59.000Z
In this paper we focus on the large n probability distribution function of the largest eigenvalue in the Gaussian Orthogonal Ensemble of n by n matrices (GOEn). We prove an Edgeworth type Theorem for the largest eigenvalue probability distribution function of GOEn. The correction terms to the limiting probability distribution are expressed in terms of the same Painleve II functions appearing in the Tracy-Widom distribution. We conclude with a brief discussion of the GSEn case.
NIHAO III: The constant disc gas mass conspiracy
Stinson, G S; Wang, L; Macciò, A V; Herpich, J; Bradford, J D; Quinn, T R; Wadsley, J; Keller, B
2015-01-01T23:59:59.000Z
We show that the cool gas masses of galactic discs reach a steady state that lasts many Gyr after their last major merger in cosmological hydrodynamic simulations. The mass of disc gas, M$_{\\rm gas}$, depends upon a galaxy halo's spin and virial mass, but not upon stellar feedback. Halos with low spin have high star formation efficiency and lower disc gas mass. Similarly, lower stellar feedback leads to more star formation so the gas mass ends up nearly the same irregardless of stellar feedback strength. Even considering spin, the M$_{\\rm gas}$ relation with halo mass, M$_{200}$ only shows a factor of 3 scatter. The M$_{\\rm gas}$--M$_{200}$ relation show a break at M$_{200}$=$2\\times10^{11}$ M$_\\odot$ that corresponds to an observed break in the M$_{\\rm gas}$--M$_\\star$ relation. The constant disc mass stems from a shared halo gas density profile in all the simulated galaxies. In their outer regions, the profiles are isothermal. Where the profile rises above $n=10^{-3}$ cm$^{-3}$, the gas readily cools and th...
Spectroscopic constants and potential energy curves of tungsten carbide
Balasubramanian, K. [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)] [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604 (United States)
2000-05-01T23:59:59.000Z
Spectroscopic constants (R{sub e},{omega}{sub e},T{sub e},{mu}{sub e}) and potential energy curves for 40 low-lying electronic states of the diatomic tungsten carbide (WC) were obtained using the complete active space multiconfiguration self-consistent field followed by the multireference singles+doubles configuration interaction and full first- and second-order configuration interaction calculations that included up to 6.4 mil configurations. Spin-orbit effects were included through the enhanced relativistic configuration interaction method described here for 28 electronic states of WC lying below {approx}20 000 cm-1. The spin-orbit splitting of the ground state of WC was found to be very large (4394 cm-1). The ground and excited electronic states of the W atom were also computed and were found to be in good agreement with the experimental data. The nature of bonding was analyzed through the composition of orbitals, leading configurations, Mulliken populations, and dipole moments. The dissociation energy of WC was computed including spin-orbit and electron correlation effects. The recent photoelectron spectra of WC{sup -} were assigned on the basis of our computed results. (c) 2000 American Institute of Physics.
Introduction to Distributed Systems
Pous, Damien
1 Introduction to Distributed Systems Fabienne Boyer, LIG, fabienne.boyer@inria.fr Sources: Cours d'Olivier Gruber, Sacha Krakowiak, Sara Bouchenak, UJF Fabienne Boyer, Distributed Programming 2 Objectives Study conceptual and practical aspects of distributed systems l Client-server model l Distributed protocols l
Distributed Paging Yair Bartal
Bartal, Yair
. We survey distributed data management problems including distributed paging, file allocation fantastically on an annual basis. This survey deals with distributed data management problems. Such probÂ lems in distributed data management is the deÂ sign of a dynamic allocation of file copies in a network in order
A New Look At Gravitational Coupling Constant And The Dark Energy Problem
Akinto, O F
2015-01-01T23:59:59.000Z
In this paper, we establish that the solution to the dark energy problem is connected to the cutoff Ultraviolet scale manifesting itself as linearly independent infrared sectors of the effective theory of gravity interacting with QCD fields. We work in the combined frameworks of finite temperature-density corrections and effective quantum field theory (as low energy quantum gravity). We strongly suggest that the failure to reproduce the exact observed value of dark energy from the framework of Veneziano ghost theory of QCD is intimately linked to the unverifiable ad hoc assumption that conditions the gravitational coupling constant to be unity C Gravity is equal to 0ne. A close perusal of the Minkowski vacuum structure reveals that C Gravity is not equal to one. We compute the value of C Gravity from the Bose-Einstein distribution function. With this value of C Gravity coupled with the value of vacuum energy estimated from the Veneziano ghost theory of QCD, we reproduce the observed value of row lambda to be ...
Superthermal electron distribution measurements from polarized electron cyclotron emission
Luce, T.C.; Efthimion, P.C.; Fisch, N.J.
1988-06-01T23:59:59.000Z
Measurements of the superthermal electron distribution can be made by observing the polarized electron cyclotron emission. The emission is viewed along a constant magnetic field surface. This simplifies the resonance condition and gives a direct correlation between emission frequency and kinetic energy of the emitting electron. A transformation technique is formulated which determines the anisotropy of the distribution and number density of superthermals at each energy measured. The steady-state distribution during lower hybrid current drive and examples of the superthermal dynamics as the runaway conditions is varied are presented for discharges in the PLT tokamak. 15 refs., 8 figs.
Testable solution of the cosmological constant and coincidence problems
Shaw, Douglas J.; Barrow, John D. [DAMTP, Centre for Mathematical Sciences, Cambridge CB3 0WA (United Kingdom)
2011-02-15T23:59:59.000Z
We present a new solution to the cosmological constant (CC) and coincidence problems in which the observed value of the CC, {Lambda}, is linked to other observable properties of the Universe. This is achieved by promoting the CC from a parameter that must be specified, to a field that can take many possible values. The observed value of {Lambda}{approx_equal}(9.3 Gyrs){sup -2}[{approx_equal}10{sup -120} in Planck units] is determined by a new constraint equation which follows from the application of a causally restricted variation principle. When applied to our visible Universe, the model makes a testable prediction for the dimensionless spatial curvature of {Omega}{sub k0}=-0.0056({zeta}{sub b}/0.5), where {zeta}{sub b}{approx}1/2 is a QCD parameter. Requiring that a classical history exist, our model determines the probability of observing a given {Lambda}. The observed CC value, which we successfully predict, is typical within our model even before the effects of anthropic selection are included. When anthropic selection effects are accounted for, we find that the observed coincidence between t{sub {Lambda}={Lambda}}{sup -1/2} and the age of the Universe, t{sub U}, is a typical occurrence in our model. In contrast to multiverse explanations of the CC problems, our solution is independent of the choice of a prior weighting of different {Lambda} values and does not rely on anthropic selection effects. Our model includes no unnatural small parameters and does not require the introduction of new dynamical scalar fields or modifications to general relativity, and it can be tested by astronomical observations in the near future.
Energy-Momentum Distribution in Weyl Metrics
M. Sharif; Tasnim Fatima
2005-07-16T23:59:59.000Z
In this paper, we evaluate energy and momentum density distributions for the Weyl metric by using the well-known prescriptions of Einstein, Landau-Lifshitz, Papaterou and M$\\ddot{o}$ller. The metric under consideration is the static axisymmetric vacuum solution to the Einstein field equations and one of the field equations represents the Laplace equation. Curzon metric is the special case of this spacetime. We find that the energy density is different for each prescription. However, momentum turns out to be constant in each case.
Energy Distribution in f(R) Gravity
M. Sharif; M. Farasat Shamir
2009-12-18T23:59:59.000Z
The well-known energy problem is discussed in f(R) theory of gravity. We use the generalized Landau-Lifshitz energy-momentum complex in the framework of metric f(R) gravity to evaluate the energy density of plane symmetric solutions for some general f(R) models. In particular, this quantity is found for some popular choices of f(R) models. The constant scalar curvature condition and the stability condition for these models are also discussed. Further, we investigate the energy distribution of cosmic string spacetime.
Wightman function and the Casimir effect for a Robin sphere in a constant curvature space
S. Bellucci; A. A. Saharian; N. A. Saharyan
2014-07-03T23:59:59.000Z
We evaluate the Wightman function, the mean field squared and the vacuum expectation value (VEV) of the energy-momentum tensor for a scalar field with Robin boundary condition on a spherical shell in the background of a constant negative curvature space. For the coefficient in the boundary condition there is a critical value above which the scalar vacuum becomes unstable. In both interior and exterior regions, the VEVs are decomposed into the boundary-free and sphere-induced contributions. For the latter, rapidly convergent integral representations are provided. In the region inside the sphere, the eigenvalues are expressed in terms of the zeros of the combination of the associated Legendre function and its derivative and the decomposition is achieved by making use of the Abel-Plana type summation formula for the series over these zeros. The sphere-induced contribution to the VEV of the field squared is negative for Dirichlet boundary condition and positive for Neumann one. At distances from the sphere larger than the curvature scale of the background space the suppression of the vacuum fluctuations in the gravitational field corresponding to the negative curvature space is stronger compared with the case of the Minkowskian bulk. In particular, the decay of the VEVs with the distance is exponential for both massive and massless fields. The corresponding results are generalized for spaces with spherical bubbles and for cosmological models with negative curvature spaces.
Uniqueness theorems for equations of Keldysh Type
Thomas H. Otway
2010-05-25T23:59:59.000Z
A fundamental result that characterizes elliptic-hyperbolic equations of Tricomi type, the uniqueness of classical solutions to the open Dirichlet problem, is extended to a large class of elliptic-hyperbolic equations of Keldysh type. The result implies the non-existence of classical solutions to the closed Dirichlet problem for this class of equations. A uniqueness theorem is also proven for a mixed Dirichlet-Neumann problem. A generalized uniqueness theorem for the adjoint operator leads to the existence of distribution solutions to the closed Dirichlet problem in a special case.
Your Guide to Diabetes: Type 1 and Type 2
Rau, Don C.
Your Guide to Diabetes: Type 1 and Type 2 National Diabetes Information Clearinghouse #12;#12;Your Guide to Diabetes: Type 1 and Type 2 #12;#12;Contents Learn about Diabetes ............................................................ 1 What is diabetes? .............................................................. 2 What
HI in Low-Luminosity Early-Type Galaxies
Tom Oosterloo; Raffaella Morganti; Elaine Sadler
1998-09-07T23:59:59.000Z
We discuss the properties of the HI in low-luminosity early-type galaxies. The morphology of the HI is more regular than that of the HI in many more-luminous early-type galaxies. The HI is always distributed in a disk and is more centrally concentrated. The central HI surface densities are higher than in luminous early-type galaxies and are high enough for star formation to occur.
Hydraulic conductivity testing of geosynthetic clay liners (GCLs) using the constant volume method
Wang, X.; Benson, C.H.
1999-12-01T23:59:59.000Z
Hydraulic conductivity tests were conducted using open and constant-volume permeation systems on specimens from a geosynthetic clay liner (GCL). Two constant volume (CV) systems were employed: the falling-head constant-volume (FHCV) system and the constant-head constant-volume (CHCV) system. A conventional burette system using pressurized air was employed for the open system (OS) tests. The test results show that hydraulic conductivity tests can be conducted 30 or more times faster with the FHCV and CHCV systems than with an open system. Typically the permeation portion of the FHCV and CHCV tests can be conducted in one-half day. Slightly lower hydraulic conductivities are measured with the CV systems due to the slightly higher effective stress applied during testing with these systems. The CHCV system has several advantages over the FHCV system, including minimizing initial transient behavior, constant applied effective stress during testing, and simpler calculations.
Distributed Power Allocation in Prosumer Thiagarajan Ramachandran,
Egerstedt, Magnus
. In the near future, any agent on the power grid will be able to have generation capacity, storage capacity blackout. Each type of power system, such electric utilities, microgrids and buildings need to addressDistributed Power Allocation in Prosumer Networks Thiagarajan Ramachandran, Zak Costello, Peter
2012-03-14T23:59:59.000Z
Index Terms—Basis pursuit, distributed optimization, sensor networks, augmented ... and image denoising and restoration [1], [2], compression, fitting and ...
Transversity Parton Distribution
Alexei Prokudin
2013-04-01T23:59:59.000Z
Transversity distribution is one of the three fundamental parton distributions that completely describe polarized spin 1/2 nucleon. Its chiral odd nature prevented for many years its experimental exploration, however presently we have obtained great deal of information about this distribution. This includes experimental data from Semi Inclusive Deep Inelastic Scattering, knowledge of scale dependence and phenomenological extractions. I will discuss main features of this distribution and indicate the future improvements of our knowledge.
DTERMINATION DES CONSTANTES SCALAIRES DE L'TAT DE BASE DE SF6
Paris-Sud XI, Université de
L-373 DÉTERMINATION DES CONSTANTES SCALAIRES DE L'ÉTAT DE BASE DE SF6 H. BERGER, A. ABOUMAJD et R'analyse de la bande Raman 03BD2 de SF6, les constantes scalaires de l'état de base ont pu être déterminéesBD2 Raman band the molecular constants of the ground state of SF6 have been determined : B0 = 0
Does the measured value of the Planck constant depend on the energy of measurements?
Massa, Enrico; Jentschel, Michael
2011-01-01T23:59:59.000Z
The measurement of the Avogadro constant opened the way to a comparison of the watt-balance measurements of the Planck constant with the values calculated from the quotients of the Planck constant and the mass of a particle or an atom. Since the energy scales of these measurements span nine energy decades, these data provide insight into the consistency of our understanding of physics.
Innovation flow through social networks: Productivity distribution
T. Di Matteo; T. Aste; M. Gallegati
2004-06-19T23:59:59.000Z
A detailed empirical analysis of the productivity of non financial firms across several countries and years shows that productivity follows a non-Gaussian distribution with power law tails. We demonstrate that these empirical findings can be interpreted as consequence of a mechanism of exchanges in a social network where firms improve their productivity by direct innovation or/and by imitation of other firm's technological and organizational solutions. The type of network-connectivity determines how fast and how efficiently information can diffuse and how quickly innovation will permeate or behaviors will be imitated. From a model for innovation flow through a complex network we obtain that the expectation values of the productivity level are proportional to the connectivity of the network of links between firms. The comparison with the empirical distributions reveals that such a network must be of a scale-free type with a power-law degree distribution in the large connectivity range.
Elastic Constants of Ni-Mn-Ga Magnetic Shape Memory Alloys
Stipcich, M. [Universitat de Barcelona; Manosa, L. [Universitat de Barcelona; Planes, A. [Universitat de Barcelona; Morin, M. [INSA de Lyon; Zarestky, Jerel L [ORNL; Lograsso, Tom [Ames Laboratory; Stassis, C. [Ames Laboratory
2004-01-01T23:59:59.000Z
We have measured the adiabatic second order elastic constants of two Ni-Mn-Ga magnetic shape memory crystals with different martensitic transition temperatures, using ultrasonic methods. The temperature dependence of the elastic constants has been followed across the ferromagnetic transition and down to the martensitic transition temperature. Within experimental errors no noticeable change in any of the elastic constants has been observed at the Curie point. The temperature dependence of the shear elastic constant C' has been found to be very different for the two alloys. Such a different behavior is in agreement with recent theoretical predictions for systems undergoing multi-stage structural transitions.
On the Running of the Cosmological Constant in Quantum General Relativity
B. F. L. Ward
2009-08-12T23:59:59.000Z
We present arguments that show what the running of the cosmological constant means when quantum general relativity is formulated following the prescription developed by Feynman.
Cosmological Constant as Vacuum Energy Density of Quantum Field Theories on Noncommutative Spacetime
Xiao-Jun Wang
2004-12-15T23:59:59.000Z
We propose a new approach to understand hierarchy problem for cosmological constant in terms of considering noncommutative nature of space-time. We calculate that vacuum energy density of the noncommutative quantum field theories in nontrivial background, which admits a smaller cosmological constant by introducing an higher noncommutative scale $\\mu_{NC}\\sim M_p$. The result $\\rho_\\Lambda\\sim 10^{-6}\\Lambda_{SUSY}^8M_p^4/\\mu_{NC}^8$ yields cosmological constant at the order of current observed value for supersymmetry breaking scale at 10TeV. It is the same as Banks' phenomenological formula for cosmological constant.
Integrated Transmission and Distribution Control
Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.
2013-01-16T23:59:59.000Z
Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.
asymmetric mass distribution: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
secondary masses M2 for the 67 exoplanets and very low-mass brown dwarf companions of solar-type stars, known as of April 4, 2001. This distribution is related to the...
Mitroi, F C
2011-01-01T23:59:59.000Z
The aim of this paper is to present some new Fejer-type results for convex functions. Improvements of Young's inequality (the arithmetic-geometric mean inequality) and other applications to special means are pointed as well.
Major, Arkady
Title: Authors: Source: Document Type: Subject Terms: Abstract: Full Text Word Count: ISSN at creating team results. In fact, it's priceless. Managers in Western corporations have received a lifetime
Finite n Largest Eigenvalue Probability Distribution Function of Gaussian Ensembles
Leonard N. Choup
2011-01-27T23:59:59.000Z
In this paper we focus on the finite n probability distribution function of the largest eigenvalue in the classical Gaussian Ensemble of n by n matrices (GEn). We derive the finite n largest eigenvalue probability distribution function for the Gaussian Orthogonal and Symplectic Ensembles and also prove an Edgeworth type Theorem for the largest eigenvalue probability distribution function of Gaussian Symplectic Ensemble. The correction terms to the limiting probability distribution are expressed in terms of the same Painleve II functions appearing in the Tracy-Widom distribution.
Froissart Bound on Inelastic Cross Section Without Unknown Constants
Martin, André
2015-01-01T23:59:59.000Z
Assuming that axiomatic local field theory results hold for hadron scattering, Andr\\'e Martin and S. M. Roy recently obtained absolute bounds on the D-wave below threshold for pion-pion scattering and thereby determined the scale of the logarithm in the Froissart bound on total cross sections in terms of pion mass only. Previously, Martin proved a rigorous upper bound on the inelastic cross-section $\\sigma_{inel}$ which is one-fourth of the corresponding upper bound on $\\sigma_{tot}$, and Wu, Martin,Roy and Singh improved the bound by adding the constraint of a given $\\sigma_{tot}$. Here we use unitarity and analyticity to determine, without any high energy approximation, upper bounds on energy averaged inelastic cross sections in terms of low energy data in the crossed channel. These are Froissart-type bounds without any unknown coefficient or unknown scale factors and can be tested experimentally. Alternatively, their asymptotic forms,together with the Martin-Roy absolute bounds on pion-pion D-waves below t...
book review: Species distribution models for species distribution modellers
Dormann, Carsten F
2012-01-01T23:59:59.000Z
Mapping species distributions: spa? tial inference and news and update book review Species distribution models for species distribution modellers Ecological niches and
Alvina Burgazli; Maxim Eingorn; Alexander Zhuk
2015-03-14T23:59:59.000Z
In this paper, we consider the Universe at the late stage of its evolution and deep inside the cell of uniformity. At these scales, the Universe is filled with inhomogeneously distributed discrete structures (galaxies, groups and clusters of galaxies). Supposing that the Universe contains also the cosmological constant and a perfect fluid with a negative constant equation of state (EoS) parameter $\\omega$ (e.g., quintessence, phantom or frustrated network of topological defects), we investigate scalar perturbations of the FRW metrics due to inhomogeneities. Our analysis shows that, to be compatible with the theory of scalar perturbations, this perfect fluid, first, should be clustered and, second, should have the equation of state parameter $\\omega=-1/3$. In particular, this value corresponds to the frustrated network of cosmic strings. Therefore, the frustrated network of domain walls with $\\omega =-2/3$ is ruled out. A perfect fluid with $\\omega =-1/3$ neither accelerates nor decelerates the Universe. We also obtain the equation for the nonrelativistic gravitational potential created by a system of inhomogeneities. Due to the perfect fluid with $\\omega = -1/3$, the physically reasonable solutions take place for flat, open and closed Universes. This perfect fluid is concentrated around the inhomogeneities and results in screening of the gravitational potential.
Entanglement Distribution in Optical Networks
Alex Ciurana; Vicente Martin; Jesus Martinez-Mateo; Bernhard Schrenk; Momtchil Peev; Andreas Poppe
2014-09-21T23:59:59.000Z
The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the original network design by extending its reach, number of users and capabilities.
Energy-momentum distribution of a general plane symmetric spacetime in metric f(R) gravity
Morteza Yavari
2014-06-13T23:59:59.000Z
In this paper, the exact vacuum solution of a general plane symmetric spacetime is investigated in metric f(R) gravity with the assumption of constant Ricci scalar. For this solution, we have studied the generalized Landau-Lifshitz energy-momentum complex in this theory to determine the energy distribution expressions for some specific f(R) models. Also, we show that these models satisfy the constant curvature condition.
A New Look At Gravitational Coupling Constant And The Dark Energy Problem
O. F. Akinto; Farida Tahir
2015-03-20T23:59:59.000Z
In this paper, we establish that the solution to the dark energy problem is connected to the cutoff Ultraviolet scale manifesting itself as linearly independent infrared sectors of the effective theory of gravity interacting with QCD fields. We work in the combined frameworks of finite temperature-density corrections and effective quantum field theory (as low energy quantum gravity). We strongly suggest that the failure to reproduce the exact observed value of dark energy from the framework of Veneziano ghost theory of QCD is intimately linked to the unverifiable ad hoc assumption that conditions the gravitational coupling constant to be unity C Gravity is equal to 0ne. A close perusal of the Minkowski vacuum structure reveals that C Gravity is not equal to one. We compute the value of C Gravity from the Bose-Einstein distribution function. With this value of C Gravity coupled with the value of vacuum energy estimated from the Veneziano ghost theory of QCD, we reproduce the observed value of row lambda to be row lambda congruent to C Gravity. An important prediction of these combined frameworks (made manifest by the application of standard box-quantization procedure to the UV scale Max Planck states that there are to ten raise to power one hundred and twenty two linearly independent "subuniverses" representing the linearly independent infrared sectors of the effective theory of gravity interacting with QCD fields. A direct consequence of this is that our subuniverse is embedded on a non-trivial manifold M such as a torus group T raise to power ten raise to power one hundred and twenty two with different linear sizes.
Itzhak, D.; Elias, O. (Ben-Gurion Univ., Beer-Sheva (Israel). Dept. of Materials Engineering)
1994-02-01T23:59:59.000Z
Cylindrical tensile specimens of AISI type 304 (UNS S30400) and type 316 (UNS S31600) stainless steels (SS) were tested under constant-load conditions in 55% lithium bromide (LiBr) heavy brines at temperatures of 120 C and 140 C. Elongation and open-circuit potential (OCP) were recorded during the tensile test. Potentiodynamic polarization measurements were conducted, and the failed surface fractures were examined by scanning electron microscopy. The tested SS were subjected to stress corrosion under the test environments. Sensitivity was affected strongly by pH values. In LiBr brine of pH = 11.6, the passivation processes were more effective than in brine of pH = 6 [approximately] 8. Because of effective passivation behavior in brine of pH = 11.6, lower values of [delta]l[sub 0] were measured, indicating lower dislocation relaxation processes and high resistance to stress corrosion cracking.
Resilient Core Networks for Energy Distribution
Kuntze, Nicolai; Rudolph, Carsten; Leivesley, Sally; Manz, David O.; Endicott-Popovsky, Barbara E.
2014-07-28T23:59:59.000Z
Abstract—Substations and their control are crucial for the availability of electricity in today’s energy distribution. Ad- vanced energy grids with Distributed Energy Resources require higher complexity in substations, distributed functionality and communication between devices inside substations and between substations. Also, substations include more and more intelligent devices and ICT based systems. All these devices are connected to other systems by different types of communication links or are situated in uncontrolled environments. Therefore, the risk of ICT based attacks on energy grids is growing. Consequently, security measures to counter these risks need to be an intrinsic part of energy grids. This paper introduces the concept of a Resilient Core Network to interconnected substations. This core network provides essen- tial security features, enables fast detection of attacks and allows for a distributed and autonomous mitigation of ICT based risks.
Constant communication complexity protocols for multiparty accumulative boolean functions
Sudebkumar Prasant Pal; Sima Das; Somesh Kumar
2006-06-13T23:59:59.000Z
Generalizing a boolean function from Cleve and Buhrman \\cite{cb:sqec}, we consider the class of {\\it accumulative boolean functions} of the form $f_B(X_1,X_2,..., X_m)=\\bigoplus_{i=1}^n t_B(x_i^1x_i^2... x_i^m)$, where $X_j=(x^j_1,x^j_2,..., x^j_n), 1\\leq j\\leq m$ and $t_B(x_i^1x_i^2... x_i^m)=1$ for input $m$-tuples $x_i^1x_i^2...x_i^m\\in B\\subseteq A\\subseteq \\{0,1\\}^n$, and 0, if $x_i^1x_i^2...x_i^m\\in A\\setminus B$. Here the set $A$ is the input {\\it promise} set for function $f_B$. The input vectors $X_j, 1\\leq j\\leq m$ are given to the $m\\geq 3$ parties respectively, who communicate cbits in a distributed environment so that one of them (say Alice) comes up with the value of the function. We algebraically characterize entanglement assisted LOCC protocols requiring only $m-1$ cbits of communication for such multipartite boolean functions $f_B$, for certain sets $B\\subseteq \\{0,1\\}^n$, for $m\\geq 3$ parties under appropriate uniform parity promise restrictions on input $m$-tuples $x_i^1x_i^2...x_i^m, 1\\leq i\\leq n$. We also show that these functions can be computed using $2m-3$ cbits in a purely classical deterministic setup. In contrast, for certain $m$-party accumulative boolean functions ($m\\geq 2$), we characterize promise sets of mixed parity for input $m$-tuples so that $m-1$ cbits of communication suffice in computing the functions in the absence of any a priori quantum entanglement. We compactly represent all these protocols and the corresponding input promise restrictions using uniform group theoretic and hamming distance characterizations.
The Parallel BGL: A Generic Library for Distributed Graph Computations
Lumsdaine, Andrew
] and written in a style similar to the C++ Standard Template Library (STL) [38, 46], 1 #12;data types providedThe Parallel BGL: A Generic Library for Distributed Graph Computations Douglas Gregor and Andrew,lums}@osl.iu.edu Abstract This paper presents the Parallel BGL, a generic C++ library for distributed graph computation
ANALYSIS OF ANISOTROPY IN ELASTIC CONSTANTS OF SiCp/2124 Al METAL MATRIX COMPOSITES
Hong, Soon Hyung
ANALYSIS OF ANISOTROPY IN ELASTIC CONSTANTS OF SiCp/2124 Al METAL MATRIX COMPOSITES H.K. Jung* , Y; Metal matrix composite; Elastic constants; Aspect ratio; Anisotropy 1. Introduction Metal matrix composites (MMCs) are becoming attractive materials for advanced aerospace structures because
THE PURIFICATION OF SF6 IN A CONSTANT TEMPERATURE ADSORPTION PROCESS
Boyer, Edmond
1423 THE PURIFICATION OF SF6 IN A CONSTANT TEMPERATURE ADSORPTION PROCESS C. BRASSARD Laboratoire propagation du SF6 dû à son adsorption dans une colonne de charbon actif à une tempéra- ture constante de 2014 20 °C. Abstract. 2014 The Dynamitron and the Tandem SF6 gas, initially contained 11 % and 35 % non
Liu, Yijun
A fast multipole boundary element method for modeling 2-D multiple crack problems with constant 3 April 2014 Accepted 20 May 2014 Keywords: Fast multipole BEM 2-D multi-crack problems Constant elements Crack opening displacements Stress intensity factors a b s t r a c t A fast multipole boundary
Numerical Analysis of Non-constant Discounting with an Application to Renewable Resource Management
Karp, Larry S.
Numerical Analysis of Non-constant Discounting with an Application to Renewable Resource Management illustrate the approach by studying welfare and observational equivalence for a particular renewable resource man- agement problem. Keywords: Non-constant discounting, numerical methods, non-renewable resources
Paris-Sud XI, UniversitÃ© de
'application est faite aux molÃ©cules SF6 et UF6. 4 constantes cubiques de SF6 ont Ã©tÃ© dÃ©terminÃ©es Ã partir des for the centrifugal distortion constants as a function of harmonic frequencies ; application is made to SF6 and UF6. 4
STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS
STATE OF CALIFORNIA CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC Volume Single Zone Unitary Air Conditioner and Heat Pump Systems (Page 1 of 4) Project Name CONSTANT VOLUME SINGLE ZONE UNITARY AIR CONDITIONER AND HEAT PUMP SYSTEMS CEC-MECH-3A (Revised 08
Some Optimizations of Hardware Multiplication by Constant Matrices Nicolas Boullis, Arnaud Tisserand
California at Davis, University of
are achieved. 1 Introduction Important optimizations of the speed, area and power consumption of circuits can of this operation frequency. The problem of the optimization of multiplication by constant has been studiedSome Optimizations of Hardware Multiplication by Constant Matrices Nicolas Boullis, Arnaud
Truong, Thanh N.
of a focusing technique to minimize the number of electronic structure calculations, while still preservingA direct ab inifio dynamics approach for calculating thermal rate constants using variational dynamics, " for calculations of thermal rate constants and related properties from first principles
Direct Test of the Time-Independence of Fundamental Nuclear Constants Using the Oklo
Shlyakhter, Ilya
Direct Test of the Time-Independence of Fundamental Nuclear Constants Using the Oklo Natural Reactor #3; Alexander I. Shlyakhter November 18, 1982 1 Introduction The following eight quantities enter the important natural constants of cosmology and atomic theory are connected by simple mathematical relations
Universal Gravitational Constant EX-9908 Page 1 of 13 Re-Written by Geoffrey R. Clarion
Dai, Pengcheng
Newton was able to deduce his law of universal gravitation. Newton's law of universal gravitation: 2 21 rUniversal Gravitational Constant EX-9908 Page 1 of 13 Re-Written by Geoffrey R. Clarion Universal Gravitational Constant EQUIPMENT 1 Gravitational Torsion Balance AP-8215 1 X-Y Adjustable Diode Laser OS-8526A 1
The Asymptotic Minimax Constant for Sup-Norm Loss in Nonparametric Density Estimation
Nussbaum, Michael
The Asymptotic Minimax Constant for Sup-Norm Loss in Nonparametric Density Estimation ALEXANDER, uniform nor- m risk, white noise RUNNING TITLE: Asymptotic minimax density estimation To whom) an asymptotically minimax exact constant has been found for loss in the uniform norm, for Gaussian nonparametric
THE LIND-LEHMER CONSTANT FOR Zn DILUM DESILVA AND CHRISTOPHER PINNER
Pinner, Christopher
THE LIND-LEHMER CONSTANT FOR Zn p DILUM DESILVA AND CHRISTOPHER PINNER Abstract. We determine the Lind Lehmer constant for groups of the form Zn p . 1. Introduction Let G be a compact abelian group of integral combinations of characters, Lind [6] defines a logarithmic Mahler measure of f over G m(f) = m
DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME
Hart, Gus
DETERMINING OPTICAL CONSTANTS OF URANIUM NITRIDE THIN FILMS IN THE EXTREME ULTRAVIOLET (1.6-35 NM deposition and characterization of reactively-sputtered uranium nitride thin films. I also report optical.1 Application 1 1.2 Optical Constants 2 1.3 Project Focus 7 2 Uranium Nitride Thin Films 8 2.1 Sputtering 8 2
Evolution of the coupling constant in SU(2) lattice gauge theory with two adjoint fermions
Ari J. Hietanen; Kari Rummukainen; Kimmo Tuominen
2009-11-24T23:59:59.000Z
We measure the evolution of the coupling constant using the Schroedinger functional method in the lattice formulation of SU(2) gauge theory with two massless Dirac fermions in the adjoint representation. We observe strong evidence for an infrared fixed point, where the theory becomes conformal. We measure the continuum beta-function and the coupling constant as a function of the energy scale.
Video Description Length Guided Constant Quality Video Coding with Bitrate Constraint
Tomkins, Andrew
Video Description Length Guided Constant Quality Video Coding with Bitrate Constraint Lei Yang propose a new video encoding strategy -- Video description length guided Constant Quality video coding with Bitrate Constraint (V-CQBC), for large scale video transcoding systems of video charing websites
Fake state attack on practically decoy state quantum key distribution
Yong-gang Tan
2012-02-15T23:59:59.000Z
In this paper, security of practically decoy state quantum key distribution under fake state attack is considered. If quantum key distribution is insecure under this type of attack, decoy sources can not also provide it with enough security. Strictly analysis shows that Eve should eavesdrop with the aid of photon-number-resolving instruments. In practical implementation of decoy state quantum key distribution where statistical fluctuation is considered, however, Eve can attack it successfully with threshold detectors.
Controllable giant dielectric constant in AlO{sub x}/TiO{sub y} nanolaminates.
Li, W.; Chen, Z.; Premnath, R. N.; Kabius, B.; Auciello, O. (Center for Nanoscale Materials); ( MSD); (Univ. of Puerto Rico)
2011-01-01T23:59:59.000Z
Dielectric materials exhibiting high dielectric constants play critical roles in a wide range of applications from microchip energy storage embedded capacitors for implantable biomedical devices to energy storage capacitors for a new generation of renewable energy generation/storage systems. Instead of searching for new materials, we demonstrate that giant dielectric constants can be achieved by integrating two simple oxides with low dielectric constants into nanolaminate structures. In addition, the obtained dielectric constant values are highly tunable by manipulating the sub-layer thicknesses of the component oxides to control the number of interfaces and oxygen redistribution. The work reported here opens a new pathway for the design and development of high dielectric constant materials based on the nanolaminate concept.
Berryman, J. G.
2011-02-01T23:59:59.000Z
Methods for computing Hashin-Shtrikman bounds and related self-consistent estimates of elastic constants for polycrystals composed of crystals having orthorhombic symmetry have been known for about three decades. However, these methods are underutilized, perhaps because of some perceived difficulties with implementing the necessary computational procedures. Several simplifications of these techniques are introduced, thereby reducing the overall computational burden, as well as the complications inherent in mapping out the Hashin-Shtrikman bounding curves. The self-consistent estimates of the effective elastic constants are very robust, involving a quickly converging iteration procedure. Once these self-consistent values are known, they may then be used to speed up the computations of the Hashin-Shtrikman bounds themselves. It is shown furthermore that the resulting orthorhombic polycrystal code can be used as well to compute both bounds and self-consistent estimates for polycrystals of higher-symmetry tetragonal, hexagonal, and cubic (but not trigonal) materials. The self-consistent results found this way are shown to be the same as those obtained using the earlier methods, specifically those methods designed specially for each individual symmetry type. But the Hashin-Shtrikman bounds found using the orthorhombic code are either the same or (more typically) tighter than those found previously for these special cases (i.e., tetragonal, hexagonal, and cubic). The improvement in the Hashin-Shtrikman bounds is presumably due to the additional degrees of freedom introduced into the available search space.
Lu, Jianbo; Wu, Yabo; Xu, Lixin
2015-01-01T23:59:59.000Z
Observations indicate that most universal matter are invisible and gravitational constant $G(t)$ maybe depends on the time. The theory of variation of $G$ (VG) is explored in this paper, with naturally resulting to the invisible components in universe. We utilize the observational data: lookback time data, model-independent gamma ray bursts data, growth function of matter linear perturbations, type Ia supernovae data with systematic errors, cosmic microwave background, and baryon acoustic oscillation data from the radial scale measurement and the peak-positions measurement, to restrict the unified model (UM) of dark components in VG theory. Using the best-fit values of parameters with the covariance matrix, constraints on the variation of $G$ are $(\\frac{G}{G_{0}})_{z=3.5}\\simeq 1.0003^{+0.0014}_{-0.0016}$ and $(\\frac{\\dot{G}}{G})_{today}\\simeq 0.7977^{+2.3566}_{-2.3566}\\times 10^{-13} yr^{-1}$ in a flat geometry, the small uncertainties around constants. Limit on equation of state of dark matter is $w_{0dm}=...
Jiang, Xikai [ORNL] [ORNL; Huang, Jingsong [ORNL] [ORNL; Zhao, Hui [University of Nevada, Las Vegas] [University of Nevada, Las Vegas; Sumpter, Bobby G [ORNL] [ORNL; Qiao, Rui [Clemson University] [Clemson University
2014-01-01T23:59:59.000Z
We report detailed simulation results on the formation dynamics of an electrical double layer (EDL) inside an electrochemical cell featuring room-temperature ionic liquids (RTILs) enclosed between two planar electrodes. Under relatively small charging currents, the evolution of cell potential during charging can be suitably predicted by the Landau-Ginzburg-type continuum model proposed recently (M. Z. Bazant, B. D. Storey, and A. A. Kornyshev, Phys. Rev. Lett., 106, 046102, 2011). Under very large charging currents, the cell potential shows pronounced oscillation during the initial stage of charging, a feature not captured by the continuum model. Such oscillation originates from the sequential growth of the ionic space charge layers near the electrode surface, allowing the evolution of EDLs in RTILs with time, an atomistic process difficult to visualize experimentally, to be studied by analyzing the cell potential under constant current charging conditions. While the continuum model cannot predict the potential oscillation under such far-from-equilibrium charging conditions, it can nevertheless qualitatively capture the growth of cell potential during the later stage of charging. Improving the continuum model by introducing frequency-dependent dielectric constant and density-dependent ion diffusion coefficients may help to further extend the applicability of the model. Keywords: ionic
Characterization of nitrogen compound types in hydrotreated Paraho shale oil
Holmes, S.A.; Latham, D.R.
1980-10-01T23:59:59.000Z
Results from the separation and characterization of nitrogen compound types in hydrotreated Paraho shale oil samples were obtained. Two samples of Paraho shale oil were hydrotreated by Chevron Research Company such that one sample contained about 0.05 wt. percent nitrogen and the other sample contained about 0.10 wt. percent nitrogen. A separation method concentrate specific nitrogen compound types was developed. Characterization of the nitrogen types was accomplished by infrared spectroscopy, mass spectrometry, potentiometric titration, and elemental analysis. The distribution of nitrogen compound types in both samples and in the Paraho crude shale oil is compared.
Analysis of Voltage Rise Effect on Distribution Network with Distributed
Pota, Himanshu Roy
Analysis of Voltage Rise Effect on Distribution Network with Distributed Generation M. A. Mahmud.hossain@adfa.edu.au, and H.Pota@adfa.edu.au). Abstract: Connections of distributed generation (DG) in distribution networks are increasing. These connections of distributed generation cause voltage rise in the distribution network
Vlach & Sandhofer, In Press, Child Development Distributing Learning Over Time
Rose, Michael R.
of the spacing effect have focused on memory processes rather than for other types of learning simple and complex concepts. Spaced learning schedules promote several types of learning, strengtheningVlach & Sandhofer, In Press, Child Development Distributing Learning Over Time: The Spacing Effect
Distribution, Morphology, and Synaptic Targets of Corticothalamic Terminals in
Casanova, Christian
Distribution, Morphology, and Synaptic Targets of Corticothalamic Terminals in the Cat Lateral terminals have been identified in higher order nuclei, large (type II) and smaller (type I), which have been into area 17 or PMLS. Results indicate that area 17 injections preferentially labelled large terminals
DIGITAL VISION & PHOTODISC Distributed
Simeone, Osvaldo
of scalability and energy efficiency and offers new opportunities through the interplay with specific distributed, to the advances in telegraphy and, later, wireless transmission. Railroad transportation, geodesy (measurement
Office of Environmental Management (EM)
* Department of Energy Washington, DC 20585 December 20, 2007 MEMORANDUM FOR DISTRIBUTION FROM: MICHAEL W. OWEN
Distribution of Correspondence
Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]
1996-08-30T23:59:59.000Z
Defines correct procedures for distribution of correspondence to the Naval Reactors laboratories. Does not cancel another directive. Expired 8-30-97.
Cooling water distribution system
Orr, Richard (Pittsburgh, PA)
1994-01-01T23:59:59.000Z
A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.
Distributionally Robust Convex Optimization
2013-09-22T23:59:59.000Z
2College of Management and Technology, École Polytechnique Fédérale de Lausanne, ... They also allow us to characterize distributional families in terms of.
Avoiding Distribution System Upgrade Costs Using Distributed Generation
Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.
2004-01-20T23:59:59.000Z
PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.
1 Smart Distribution: Coupled Microgrids
R. H. Lasseter
Abstract-- The distribution system provides major opportunities for smart grid concepts. One way to approach distribution system problems is to rethinking our distribution system to include the integration of high levels of distributed energy resources, using microgrid concepts. Basic objectives
Structure–performance relationships for cantilever-type piezoelectric energy harvesters
Cho, Kyung-Hoon, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu; Park, Hwi-Yeol; Heo, Jin S. [Samsung Advanced Institute of Technology, Samsung Electronics, Yongin 446-712 (Korea, Republic of); Priya, Shashank, E-mail: kh97.cho@samsung.com, E-mail: spriya@vt.edu [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Virginia 24061 (United States)
2014-05-28T23:59:59.000Z
This study provides comprehensive analysis of the structure–performance relationships in cantilever-type piezoelectric energy harvesters. It provides full understanding of the effect of all the practical global control variables on the harvester performance. The control variables considered for the analysis were material parameters, areal and volumetric dimensions, and configuration of the inactive and active layers. Experimentally, the output power density of the harvester was maximum when the shape of the beam was close to a square for a constant bending stiffness and a fixed beam area. Through analytical modeling of the effective stiffness for the piezoelectric bimorph, the conditions for enhancing the bending stiffness within the same beam volume as that of a conventional bimorph were identified. The harvester configuration with beam aspect ratio of 0.86 utilizing distributed inactive layers exhibited an giant output power of 52.5?mW and power density of 28.5?mW?cm{sup ?3} at 30?Hz under 6.9?m?s{sup ?2} excitation. The analysis further indicates that the trend in the output power with varying damping ratio is dissimilar to that of the efficiency. In order to realize best performance, the harvester should be designed with respect to maximizing the magnitude of output power.
Dynamics and length distribution of microtubules under force and confinement
Björn Zelinski; Nina Müller; Jan Kierfeld
2012-12-14T23:59:59.000Z
We investigate the microtubule polymerization dynamics with catastrophe and rescue events for three different confinement scenarios, which mimic typical cellular environments: (i) The microtubule is confined by rigid and fixed walls, (ii) it grows under constant force, and (iii) it grows against an elastic obstacle with a linearly increasing force. We use realistic catastrophe models and analyze the microtubule dynamics, the resulting microtubule length distributions, and force generation by stochastic and mean field calculations; in addition, we perform stochastic simulations. We also investigate the force dynamics if growth parameters are perturbed in dilution experiments. Finally, we show the robustness of our results against changes of catastrophe models and load distribution factors.
Zeigler, John Charles
1984-01-01T23:59:59.000Z
which provides coordinated control of each of the Overcurrent Relays within a substation. The third level consists of an Engineering Computer Facility which provides engineering support and coordinated control of all the Remote Terminal Units... be made locally. Since most distribution substations are unmanned, this requires a special service trip by a meter reading crew. Thus, this information is not immediately available to system operators who must constantly determine the most efficient...
Environment-Dependent Fundamental Physical Constants in the Theory of General Inconstancy
Hidezumi Terazawa
2014-11-03T23:59:59.000Z
A theory of special inconstancy, in which some fundamental physical constants such as the fine-structure and gravitational constants may vary, is proposed in pregeometry. In the special theory of inconstancy, the \\alpha-G relation of \\alpha=3\\pi/[16ln(4\\pi/5GM_W^2)] between the varying fine-structure and gravitaional constants (where M_W is the charged weak boson mass) is derived from the hypothesis that both of these constants are related to the same fundamental length scale in nature. Furthermore, it leads to the prediction of dot{{\\alpha}}/\\alpha=(-0.8\\pm2.5)\\times10^{-14}yr^{-1} from the most precise limit of dot{G}/G=(-0.6\\pm2.0)\\times10^{-12}yr^{-1} by Thorsett, which is not only consistent with the recent observation of dot{{\\alpha}}/\\alpha=(0.5\\pm0.5)\\times10^{-14}yr^{-1} by Webb et al. but also feasible for future experimental tests. Also a theory of general inconstancy, in which any fundamental physical constants may vary, is proposed in "more general relativity", by assuming that the space-time is "environment-dependent". In the general theory of inconstancy, the G-\\Lambda\\ relation between the varying gravitational and cosmological constants is derived from the hypothesis that the space-time metric is a function of \\tau, the "environment-coodinate", in addition to x^{\\mu}, the ordinary space-time coodinates. Furthermore, it leads to the prediction of the varying cosmological constant, which is consistent with the present observations. In addition, the latest observation of spatial variation in the fine-structure constant from VLT/UVES of (1.1\\pm 0.2)\\times 10^{-6}GLyr^{-1} by King et al. is suggested to be taken as a clear evidence for environment-dependent fundamental physical constants
IntrAst2 (Petrovay) The distribution of stars THE SPATIAL DISTRIBUTION OF STARS
Petrovay, Kristóf
generic method: spectral type + lumin. class place on HRD absolute magnitude: Applying it individually) The distribution of stars SURFACE BRIGHTNESS Astronomical unit: 1µ = 1m / " Night sky: 22µ Night sky in city: 18µ Daytime sky: -8µ Solar disk: -13µ Physical unit: I intensity energy/time/area/solid angle [W/m2 /sr
Software distribution using xnetlib
Dongarra, J.J. [Univ. of Tennessee, Knoxville, TN (US). Dept. of Computer Science]|[Oak Ridge National Lab., TN (US); Rowan, T.H. [Oak Ridge National Lab., TN (US); Wade, R.C. [Univ. of Tennessee, Knoxville, TN (US). Dept. of Computer Science
1993-06-01T23:59:59.000Z
Xnetlib is a new tool for software distribution. Whereas its predecessor netlib uses e-mail as the user interface to its large collection of public-domain mathematical software, xnetlib uses an X Window interface and socket-based communication. Xnetlib makes it easy to search through a large distributed collection of software and to retrieve requested software in seconds.
DISTRIBUTION John R. Jones Qualung aspen is the most widely distributed native North American tree aspen (Populus tremula), has a wider range (Weigle and Frothingham 1911). In the humid East, aspen plateaus. Aspen is one of the most common trees in the interior West, where its range (fig.1)coincides
Decay constants of the pion and its excitations on the lattice.
Mastropas, Ekaterina V. [William and Mary College, JLAB; Richards, David G. [JLAB
2014-07-01T23:59:59.000Z
We present a calculation using lattice QCD of the ratios of decay constants of the excited states of the pion, to that of the pion ground state, at three values of the pion mass between 400 and 700 MeV, using an anisotropic clover fermion action with three flavors of quarks. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass. The strong suppression of the decay constant of the second excited state is consistent with its interpretation as a predominantly hybrid state.
Wave functions and decay constants of $B$ and $D$ mesons in the relativistic potential model
Mao-Zhi Yang
2012-01-30T23:59:59.000Z
With the decay constants of $D$ and $D_s$ mesons measured in experiment recently, we revisit the study of the bound states of quark and antiquark in $B$ and $D$ mesons in the relativistic potential model. The relativistic bound state wave equation is solved numerically. The masses, decay constants and wave functions of $B$ and $D$ mesons are obtained. Both the masses and decay constants obtained here can be consistent with the experimental data. The wave functions can be used in the study of $B$ and $D$ meson decays.
Baldassarre, Leonetta; Samarelli, Antonio; Gallacher, Kevin; Paul, Douglas J; Frigerio, Jacopo; Isella, Giovanni; Sakat, Emilie; Finazzi, Marco; Biagioni, Paolo; Ortolani, Michele
2015-01-01T23:59:59.000Z
The n-type Ge-on-Si epitaxial material platform enables a novel paradigm for plasmonics in the mid-infrared, prompting the future development of lab-on-a-chip and subwavelength vibrational spectroscopic sensors. In order to exploit this material, through proper electrodynamic design, it is mandatory to retrieve the dielectric constants of the thin Ge epilayers with high precision due to the difference from bulk Ge crystals. Here we discuss the procedure we have employed to extract the real and imaginary part of the dielectric constants from normal incidence reflectance measurements, by combining the standard multilayer fitting procedure based on the Drude model with Kramers-Kronig transformations of absolute reflectance data in the zero-transmission range of the thin film.
Dust around Type Ia supernovae
Wang, Lifan
2005-01-01T23:59:59.000Z
Dust around Type Ia supernovae Lifan Wang 1,2 LawrenceIa. Subject headings: Supernovae: General, Dust, Extinctionline) bands for Type Ia supernovae. (a), upper panel, shows
Catura, R.C.; Joki, E.G.
1981-11-01T23:59:59.000Z
Observational objectives for the LAMAR and their influence on the instrument design are discussed. It is concluded that the most important design parameter is the angular resolution of the LAMAR modules since it so strongly influences sensitivity, optical identifications, source confusion, spectral resolution for objective gratings and the ability to resolve small extended sources. A high resolution Wolter Type I LAMAR module is described, its hardware status discussed, and the performance of a LAMAR observatory presented. A promising technique for enhancing the reflectivity of Wolter Type I X-ray optics in a selected bandpass at high energy has been investigated and the performance of the LAMAR module, utilizing this method, has been calculated.
Vickers, James
The lifetime T (years) of an electronic component is a continuous random variable with a probability density (see the Section on Reliability in Workbook 46) by f(t) = 1 µ e-t/µ t 0 µ a constant The advantage function given by f(t) = e-t t 0 (i.e. = 1 or µ = 1) Find the lifetime L which a typical component is 60
Rappels: 4) Piles Types abstraits de donnes (Abstract Data Type)
Hamel, Sylvie
Rappels: 4) Piles #12;Types abstraits de données (Abstract Data Type) IFT2015, A2009, Sylvie Hamel Université de Montréal 1Piles Type de données Un ensemble de valeurs Un ensemble d'opérations Structure de Université de Montréal 2Piles #12;Type abstrait de données PILE (§4.2) Garde en mémoire des objets
A constant-mass fuel delivery system for use in underwater autonomous vehicles
Saxton-Fox, Theresa Ann
2012-01-01T23:59:59.000Z
This thesis describes the design and assembly of two constant-mass fuel tanks to be used in autonomous underwater vehicles (AUVs). The fuel tanks are part of a power supply designed to increase AUV endurance without limiting ...
Boris Tatischeff
2011-04-28T23:59:59.000Z
Using the discrete-scale invariance theory, we show that the coupling constants of fundamental forces, the atomic masses and energies, and the elementary particle masses, obey to the fractal properties.
Determination of Henry's law constants of organics in dilute aqueous solutions
Hansen, K.C.; Zhou, Zhou; Yaws, C.L.; Aminabhavi, T.M. (Lamar Univ., Beaumont, TX (United States). Dept. of Chemistry)
1993-10-01T23:59:59.000Z
Accurate knowledge of Henry's law constants, H, or air/water partitioning coefficients are required to predict the behavior of organic compounds in the environment. In particular, when the compounds are relatively volatile and exhibit low solubility in water, air stripping may be a viable method for above-ground treatment. Henry's law constants of 15 volatile organic compounds in dilute aqueous solutions were measured by the procedure of equilibrium partitioning in a closed system. The method is based upon the measurement of the headspace concentration by gas chromatography. The compounds investigated included six halogenated hydrocarbons, four aromatic hydrocarbons, and five alkanes. The measurements were made at three temperatures between 25 and 45 C. The measured Henry's law constants compared well with the literature data of some liquids. The temperature dependence of Henry's law constant was also studied from the van't Hoff relation.
ForPeerReview A Validation Study of Lithium-ion Cell Constant C-Rate
Michalek, Jeremy J.
ForPeerReview A Validation Study of Lithium-ion Cell Constant C-Rate Discharge Simulation and Engineering, Engineering and Public Policy Keywords: Battery Design Studio®, Lithium-ion, Battery Performance
Research on Fuzzy Regulation Strategies in the Constant Air Volume Air Conditioning System
Bai, T.; Zhang, J.; Ning, N.; Tong, K.; Wu, Y.; Wang, H.
2006-01-01T23:59:59.000Z
The energy consumption of the constant air volume (CAV) system largely depends on the regulation strategies. Although some air conditioning systems are equipped with automatic regulation devices, others lack effective regulation strategies. To avoid...
Al-Asaad, Hussain
1 ABSTRACT Microprocessors are becoming increasingly complex and difficult to debug. Researchers are constantly looking for new methods to increase the observability and control- lability of microprocessors to important internal signals without inter- rupting the microprocessor execution. The output
Research on Fuzzy Regulation Strategies in the Constant Air Volume Air Conditioning System
Bai, T.; Zhang, J.; Ning, N.; Tong, K.; Wu, Y.; Wang, H.
2006-01-01T23:59:59.000Z
The energy consumption of the constant air volume (CAV) system largely depends on the regulation strategies. Although some air conditioning systems are equipped with automatic regulation devices, others lack effective ...
Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method
Study of Thermal Properties of Graphene-Based Structures Using the Force Constant Method Hossein, 2012) Abstract The thermal properties of graphene-based materials are theoretically investigated transport is investigated for different structures including graphene, graphene antidot lat- tices
Gasanov, R.G.; Dotdaev, S.Kh.
1987-03-10T23:59:59.000Z
The rate constants of detachment of hydrogen triethylsilane by radicals of rhenium and manganese pentacarbonyls, tungsten cyclopentadienyltricarbonyl, and iron cyclopentadienyldicarbonyl were determined, and the order of the reactivity of the metal carbonyls was hypothesized.
An alternative to constant rate link padding for the prevention of traffic analysis
Graham, Bryan Wayne
2002-01-01T23:59:59.000Z
approach to prevent traffic analysis has always been constant rate link padding. However, the effectiveness of this method when an adversary has access to advanced monitoring equipment and knowledge of statistical analysis has not been addressed...
Optimality gap of constant-order policies decays exponentially in the ...
2014-09-07T23:59:59.000Z
demand, we further compute all expressions appearing in our bound in closed .... positive lead times, sometimes the best constant-order policy outperforms the ..... bounds tight enough to be useful in practice. ...... and consumer responses.
The Gravitational Instability of the Vacuum: Insight into the Cosmological Constant Problem
Alexander, S
2004-07-06T23:59:59.000Z
A mechanism for suppressing the cosmological constant is developed, based on an analogy with a superconducting phaseshift in which free fermions coupled perturbatively to a weak gravitational field are in an unstable false vacuum state. The coupling of the fermions to the gravitational field generates fermion condensates with zero momentum and a phase transition induces a nonperturbative transition to a true vacuum state by producing a positive energy gap {Delta} in the vacuum energy, identified with {radical}{Lambda}, where {Lambda} is the cosmological constant. In the strong coupling limit a large cosmological constant induces a period of inflation in the early universe, followed by a weak coupling limit in which {radical}{Lambda} vanishes exponentially fast as the universe expands due to the dependence of the energy gap on the density of Fermi surface fermions, D({epsilon}), predicting a small cosmological constant in the present universe.
A new scheme for the running coupling constant in gauge theories using Wilson loops
Erek Bilgici; Antonino Flachi; Etsuko Itou; Masafumi Kurachi; C. -J David Lin; Hideo Matsufuru; Hiroshi Ohki; Tetsuya Onogi; Takeshi Yamazaki
2010-01-21T23:59:59.000Z
We propose a new renormalization scheme of the running coupling constant in general gauge theories using the Wilson loops. The renormalized coupling constant is obtained from the Creutz ratio in lattice simulations and the corresponding perturbative coefficient at the leading order. The latter can be calculated by adopting the zeta-function resummation techniques. We perform a benchmark test of our scheme in quenched QCD with the plaquette gauge action. The running of the coupling constant is determined by applying the step-scaling procedure. Using several methods to improve the statistical accuracy, we show that the running coupling constant can be determined in a wide range of energy scales with relatively small number of gauge configurations.
Control Humidity With Single-Duct, Single-Zone, Constant Air Volume System
Chen, H.; Deng, S.; Bruner, H. L.; Claridge, D. E.
2000-01-01T23:59:59.000Z
), which turned this inefficient, humid lecture hall into a comfortable learning environment. This case study also explores other possibilities to solve the humidity control problem with single-duct, single-zone constant air volume systems....
Sack, Jean H. (Jean Hope)
2013-01-01T23:59:59.000Z
The purpose of this thesis was to construct and seal air and containment tanks and other parts for a constant buoyancy power supply for an Autonomous Underwater Vehicle, or AUV. While multiple materials and techniques were ...
CODATA recommended values of the fundamental physical constants: Peter J. Mohr
, People's Republic of China Electronic address: mohr@nist.gov Electronic address: barry.taylor@nist.gov be found on the World Wide Web at physics.nist.gov/constants. CONTENTS Glossary 3 I. Introduction 5 A
AbstractStock-rebuilding time iso pleths relate constant levels of fishing
519 AbstractStock-rebuilding time iso pleths relate constant levels of fishing mortality (F. Iso pleths calculated in previous studies by deterministic models approximate median, rather than mean
Power distribution engineering: Fundamentals and applications
Burke, J.J.
1994-01-01T23:59:59.000Z
Covering virtually all areas of distribution engineering, this thoroughly up-to-date reference examines the unique behavior of utilities and provides the practical knowledge necessary to solve real-world distribution problems. Simplifying seemingly difficult concepts and calculations, Power Distribution Engineering addresses topics typically associated with power quality such as sags, swells, harmonics, electromagnetic fields, and stray voltage; describes different types of system designs and grounding as well as values for voltage, line lengths, and load and fault levels; details the loading, construction, and rating of various transformers; presents methods to maximize the effectiveness of capacitor placement; explains overcurrent and overvoltage protection of distribution systems; evaluates utilities using economic techniques that incorporate ideas such as present worth, carrying charge, cost of losses, operating costs, and customer satisfaction. Furnishing over 425 helpful equations, tables, drawings, and photographs, Power Distribution Engineering is an invaluable resource for electrical and electronics, utility distribution, power systems, control, protection, and relaying engineers, as well as graduate students in these disciplines.
Limits on the integration constant of the dark radiation term in Brane Cosmology
A. S. Al-Rawaf
2005-05-25T23:59:59.000Z
We consider the constraints from primordial Helium abundances on the constant of integration of the dark radiation term of the brane-world generalized Friedmann equation derived from the Randall-Sundrum Single brane model. We found that -- using simple, approximate and semianalytical Method -- that the constant of integration is limited to be between -8.9 and 2.2 which limits the possible contribution from dark radiation term to be approximately between -27% to 7% of the background photon energy density.
Variation of calibration constant of alpha track detectors with respect to altitude
Vasudevan, Latha
1991-01-01T23:59:59.000Z
and earthquake prediction (Fleischer et al. 1980). A number of methods for monitoring radon gas concentrations in air have been developed in recent years. They encompass a variety of experimental techniques with a wide range of sensitivities and time... of the calibration constant is essential for the reliable determination of indoor air concentration and other applications of the Alpha Track Detector (ATD) measurements. The calibration constant was derived from the observed track densities (tracks/cm') for each...
THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF ORDER LESS THAN 892, 371, 480.
Pinner, Christopher
THE LIND-LEHMER CONSTANT FOR CYCLIC GROUPS OF ORDER LESS THAN 892, 371, 480. VINCENT PIGNO AND CHRISTOPHER PINNER Abstract. We determine the Lind Lehmer constant for the cyclic group Zn when n is not a multiple of 892, 371, 480 = 23 Â· 3 Â· 5 Â· 7 Â· 11 Â· 13 Â· 17 Â· 19 Â· 23. 1. Introduction In [4] Lind introduced
Variation of jet quenching from RHIC to LHC and thermal suppression of QCD coupling constant
B. G. Zakharov
2011-05-10T23:59:59.000Z
We perform a joint jet tomographic analysis of the data on the nuclear modification factor $R_{AA}$ from PHENIX at RHIC and ALICE at LHC. The computations are performed accounting for radiative and collisional parton energy loss with running coupling constant. Our results show that the observed slow variation of $R_{AA}$ from RHIC to LHC indicates that the QCD coupling constant is suppressed in the quark-gluon plasma produced at LHC.
Millimet, Scott Alan
1982-01-01T23:59:59.000Z
THE EXPORT RESPONSIVENESS OF THE ARGENTINE GRAIN EXPORT MARKET NG SYSTEM: A CONSTANT MARKET SHARE ANALYSIS A Thesis by SCOTT ALAN MILLIMET Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE May 1982 Ma) or Subject: Agricultural Economics THE EXPORT RESPONSIVENESS OF THE ARGENTINE GRAIN EXPORT MARKETING SYSTEM: A CONSTANT MARKET SHARE ANALYSIS A Thesis by SCOTT ALAN MILLIMET Approved as to style...
Null-plane phenomenology for the pion decay constant and radius
Frederico, T.; Miller, G.A. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))
1992-06-01T23:59:59.000Z
The pion decay constant and the electromagnetic form factor are computed by using quark diagrams and projecting the bound-state wave function on the null plane. We show that the resulting formulas are the same as those of the Hamiltonian front-form scheme. The connection between the radius ({ital r}{sub {pi}}) and the pion decay constant ({ital f}{sub {pi}}) is studied using different models of confinement.
R. F. O'Connell
2010-09-22T23:59:59.000Z
In contrast to classical physics, the language of quantum mechanics involves operators and wave functions (or, more generally, density operators). However, in 1932, Wigner formulated quantum mechanics in terms of a distribution function $W(q,p)$, the marginals of which yield the correct quantum probabilities for $q$ and $p$ separately \\cite{wigner}. Its usefulness stems from the fact that it provides a re-expression of quantum mechanics in terms of classical concepts so that quantum mechanical expectation values are now expressed as averages over phase-space distribution functions. In other words, statistical information is transferred from the density operator to a quasi-classical (distribution) function.
Haberl, J. S.
2001-01-01T23:59:59.000Z
This report contains engineering calculations for four (4) air-side, heating, ventilating and air-conditioning systems (HVAC) systems, including: dual duct constant volume (DDCAV), dual duct variable volume (DDVAV), constant volume with reheat...
Absolute-magnitude distributions of supernovae
Richardson, Dean; Wright, John [Department of Physics, Xavier University of Louisiana, New Orleans, LA 70125 (United States); Jenkins III, Robert L. [Applied Physics Department, Richard Stockton College, Galloway, NJ 08205 (United States); Maddox, Larry, E-mail: drichar7@xula.edu [Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, LA 70402 (United States)
2014-05-01T23:59:59.000Z
The absolute-magnitude distributions of seven supernova (SN) types are presented. The data used here were primarily taken from the Asiago Supernova Catalogue, but were supplemented with additional data. We accounted for both foreground and host-galaxy extinction. A bootstrap method is used to correct the samples for Malmquist bias. Separately, we generate volume-limited samples, restricted to events within 100 Mpc. We find that the superluminous events (M{sub B} < –21) make up only about 0.1% of all SNe in the bias-corrected sample. The subluminous events (M{sub B} > –15) make up about 3%. The normal Ia distribution was the brightest with a mean absolute blue magnitude of –19.25. The IIP distribution was the dimmest at –16.75.
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible forPortsmouth/Paducah Project Office Press ReleasesPost-Closure BenefitsAppointment Types
Edelstein, Elspeth Claire
2012-11-28T23:59:59.000Z
The distribution of adverbs is particularly difficult to account for, given the amount of variation it encompasses. Not only are adverbs typically optional, but any adverb may also appear in several different positions ...
Dabek, Frank (Frank Edward), 1977-
2006-01-01T23:59:59.000Z
DHash is a new system that harnesses the storage and network resources of computers distributed across the Internet by providing a wide-area storage service, DHash. DHash frees applications from re-implementing mechanisms ...
SUPERTHERMAL ELECTRON DISTRIBUTION
Kauffman, R
2007-12-20T23:59:59.000Z
This memo discusses the analysis of the high-energy x-ray distribution from a laser-induced plasma to determine the superthermal electron distribution. The methods of deconvolution outlined in I are similar to formulae derived in the literature not including and including effects due to electron stopping. In II the methods are applied to an x-ray spectrum from an Au disc irradiated by ARGUS.
Equilibrium Distributions and Superconductivity
Ashot Vagharshakyan
2011-06-07T23:59:59.000Z
In this article two models for charges distributions are discussed. On the basis of our consideration we put different points of view for stationary state. We prove that only finite energy model for charges' distribution and well-known variation principle explain some well-known experimental results. A new model for superconductivity was suggested, too. In frame of that model some characteristic experimental results for superconductors is possible to explain.
Quantum dense key distribution
Degiovanni, I.P.; Ruo Berchera, I.; Castelletto, S.; Rastello, M.L.; Bovino, F.A.; Colla, A.M.; Castagnoli, G. [Istituto Elettrotecnico Nazionale G. Ferraris, Strada delle Cacce 91, 10135 Torino (Italy); ELSAG SpA, Via Puccini 2, 16154, Genova (Italy)
2004-03-01T23:59:59.000Z
This paper proposes a protocol for quantum dense key distribution. This protocol embeds the benefits of a quantum dense coding and a quantum key distribution and is able to generate shared secret keys four times more efficiently than the Bennet-Brassard 1984 protocol. We hereinafter prove the security of this scheme against individual eavesdropping attacks, and we present preliminary experimental results, showing its feasibility.
Orsolya Gereben; Laszlo Pusztai
2010-09-29T23:59:59.000Z
The effect of the applied trajectory length on the convergence of the static dielectric constant and the self-diffusion coefficient were examined for the SPC/E water model in the NVT ensemble with different system size at 293 K. Very long simulation times of 6-8 ns were employed in order to track the convergence of these properties. Temperature dependence and isotope effects, via using D$_2$O instead of H$_2$O, were also investigated. A simulation for the polarizable SWM4-DP model was also carried out to compare the effect of different potential models. Radial distribution functions and the neutron weighted structure factor were also calculated; they were found to be insensitive to changing the system size in the range of 216-16000 molecules. On the other hand, the static dielectric constant and the diffusion coefficient are rather sensitive to the applied trajectory length, system size and the method of calculation. These latter properties are therefore not appropriate for assessing, and distinguishing between, potential models of water. It is clearly shown that trajectories shorter than about 6 ns are not sufficient for a sufficiently accurate determination of the dielectric constant of this water model.
Localitysensitive hashing using stable distributions
Localitysensitive hashing using stable distributions 4.1 LSH scheme based sstable distributions. of work appeared earlier in [DIIM04]. 4.1.1 sstable distributions Stable distributions [Zol86] defined limits of normalized sums independent identically distributed variables alternate definition follows
On the Comparison of Fisher Information of the Weibull and GE Distributions
Kundu, Debasis
On the Comparison of Fisher Information of the Weibull and GE Distributions Rameshwar D. Gupta exponen- tial (GE) and Weibull distributions for complete and Type-I censored observations. Fisher is much more than the GE distribution. We compute the total information of the Weibull and GE
Sampling properties of random graphs: The degree distribution Michael P. H. Stumpf*
Fienberg, Stephen E.
the degree distribution of a node in the network is affected by the two types of sampling. Here we derive analysis we will concentrate on the sam- pling properties of the degree distribution of a network distribution, which for scale-free networks takes on a power-law form, Pr k k- 2,911 . Frequently a model
A void distribution model-flashing flow
Riznic, J.; Ishii, M.; Afgan, N.
1987-01-01T23:59:59.000Z
A new model for flashing flow based on wall nucleations is proposed here and the model predictions are compared with some experimental data. In order to calculate the bubble number density, the bubble number transport equation with a distributed source from the wall nucleation sites was used. Thus it was possible to avoid the usual assumption of a constant bubble number density. Comparisons of the model with the data shows that the model based on the nucleation site density correlation appears to be acceptable to describe the vapor generation in the flashing flow. For the limited data examined, the comparisons show rather satisfactory agreement without using a floating parameter to adjust the model. This result indicated that, at least for the experimental conditions considered here, the mechanistic predictions of the flashing phenomenon is possible on the present wall nucleation based model.
Hasinoff, M D; Azuelos, Georges; Bertl, W; Blecher, M; Chen, C Q; Depommier, P; Doyle, B; Von Egidy, T; Gorringe, T P; Gumplinger, P; Henderson, R; Jonkmans, G; Larabee, A J; MacDonald, J A; McDonald, S C; Munro, M H; Poutissou, J M; Poutissou, R; Robertson, B C; Sample, D G; Schott, W; Taylor, G N; Veillette, S; Wright, D H
1992-01-01T23:59:59.000Z
Determination of the semi-leptonic weak interaction pseudoscalar coupling constant , g$_{P}$, using the reaction $\\mu^{-}$p --> $\
Rappels: 4) Piles Types abstraits de donnes (Abstract Data Type)
Hamel, Sylvie
Rappels: 4) Piles Types abstraits de donnÃ©es (Abstract Data Type) IFT2015, A2009, Sylvie Hamel UniversitÃ© de MontrÃ©al 1Piles Type de donnÃ©es Un ensemble de valeurs Un ensemble d'opÃ©rations Structure de UniversitÃ© de MontrÃ©al 2Piles Type abstrait de donnÃ©es PILE (Â§4.2) Garde en mÃ©moire des objets arbitraires
CCured: Type-Safe Retrofitting of Legacy Software
Weimer, Westley
Engineering]: Testing and Debugging; D.2.7 [Software Engineering]: Distribution, Maintenance, and Enhancement, Reliability, Security, Verification Additional Key Words and Phrases: Memory safety, pointer qualifier, a program transformation system that adds type safety guarantees to existing C programs. CCured attempts
Vail, III, William Banning (Bothell, WA)
2000-01-01T23:59:59.000Z
Methods of operation of different types of multiple electrode apparatus vertically disposed in a cased well to measure information related to the resistivity of adjacent geological formations from within the cased well are described. The multiple electrode apparatus has a minimum of two spaced apart voltage measurement electrodes that electrically engage a first portion of the interior of the cased well and that provide at least first voltage information. Current control means are used to control the magnitude of any selected current that flows along a second portion of the interior of the casing to be equal to a predetermined selected constant. The first portion of the interior of the cased well is spaced apart from the second portion of the interior of the cased well. The first voltage information and the predetermined selected constant value of any selected current flowing along the casing are used in part to determine a magnitude related to the formation resistivity adjacent to the first portion of the interior of the cased well. Methods and apparatus having a plurality of voltage measurement electrodes are disclosed that provide voltage related information in the presence of constant currents flowing along the casing which is used to provide formation resistivity.
The analogue cosmological constant in Bose-Einstein condensates: a lesson for quantum gravity
Stefano Finazzi; Stefano Liberati; Lorenzo Sindoni
2012-07-24T23:59:59.000Z
For almost a century, the cosmological constant has been a mysterious object, in relation to both its origin and its very small value. By using a Bose-Einstein condensate analogue model for gravitational dynamics, we address here the cosmological constant issue from an analogue gravity standpoint. Starting from the fundamental equations describing a system of condensed bosons, we highlight the presence of a vacuum source term for the analogue gravitational field, playing the role of a cosmological constant. In this simple system it is possible to compute from scratch the value of this constant, to compare it with other characteristic energy scales and hence address the problem of its magnitude within this framework, suggesting a different path for the solution of this longstanding puzzle. We find that, even though this constant term is related with quantum vacuum effects, it is not immediately related to the ground state energy of the condensate. On the gravity side this result suggests that the interpretation and computation of the cosmological term as a form of renormalized vacuum energy might be misleading, its origin being related to the mechanism that instead produces spacetime from its pregeometric progenitor, shedding a different light on the subject and at the same time suggesting a potentially relevant role of analogue models in the understanding of quantum gravity.
A New Linearization Method of Unbalanced Electrical Distribution Networks
Liu, Guodong [ORNL; Xu, Yan [ORNL; Ceylan, Oguzhan [ORNL; Tomsovic, Kevin [University of Tennessee, Knoxville (UTK)
2014-01-01T23:59:59.000Z
Abstract--- With increasing penetration of distributed generation in the distribution networks (DN), the secure and optimal operation of DN has become an important concern. As DN control and operation strategies are mostly based on the linearized sensitivity coefficients between controlled variables (e.g., node voltages, line currents, power loss) and control variables (e.g., power injections, transformer tap positions), efficient and precise calculation of these sensitivity coefficients, i.e. linearization of DN, is of fundamental importance. In this paper, the derivation of the node voltages and power loss as functions of the nodal power injections and transformers' tap-changers positions is presented, and then solved by a Gauss-Seidel method. Compared to other approaches presented in the literature, the proposed method takes into account different load characteristics (e.g., constant PQ, constant impedance, constant current and any combination of above) of a generic multi-phase unbalanced DN and improves the accuracy of linearization. Numerical simulations on both IEEE 13 and 34 nodes test feeders show the efficiency and accuracy of the proposed method.
NOAA Technical Memorandum OAR PMEL-122 Tidal Datum Distributions in Puget Sound,
NOAA Technical Memorandum OAR PMEL-122 Tidal Datum Distributions in Puget Sound, Washington, Based . . . . . . . . . . . . . . 5 3. Puget Sound Channel Tide Model . . . . . . . . . . . . . . . 6 3.1 Description of the channel . . . . . . . . . . . . . . . . . . . . . . . . . 30 9. Appendix: Tidal harmonic constants in Puget Sound . . . 30 10. References
Web-scale distributed AI search across disconnected and heterogeneous infrastructures
St Andrews, University of
structures [3], [4], and obtaining qualitative models of dynamics systems arising in a wide range, and allowing easy verification of every step of the distribution process. The unique challenges our framework of the constant increase of computing power available to computing users of all levels, the processing of so
Distributed PI-Control with Applications to Power Systems Frequency Control
Johansson, Karl Henrik
Distributed PI-Control with Applications to Power Systems Frequency Control Martin Andreasson12 to frequency control of power transmission systems. Sufficient stability criteria are derived, and it is shown. For systems where constant disturbances or model errors are present, PI-control is a commonly used control
History and Analysis of Distributed Acoustic Sensing (DAS) for Oilfield Applications
Kimbell, Jeremiah
2013-05-15T23:59:59.000Z
The inherent nature of distributed acoustic sensing technology is a direct result of two key components: optical fiber and the speed of light. Because the speed of light is constant and optical fiber is an isolated medium, combining the two creates...
About the Upper Bound of the Chiral Index of Multivariate Distributions
Petitjean, Michel [DSV/iBiTec-S/SB2SM (CNRS URA 2096), CEA Saclay, 91191 Gif-sur-Yvette Cedex (France)
2008-11-06T23:59:59.000Z
A family of distributions in R{sup d} having a chiral index greater or equal to a constant arbitrarily close to 1/2 is exhibited. It is deduced that the upper bound of the chiral index lies in the interval [1/2; 1], for any dimension d.
Generalized nuclear contacts and the nucleon's momentum distributions
Weiss, Ronen; Barnea, Nir
2015-01-01T23:59:59.000Z
The general nuclear contact matrices are defined, taking into consideration all partial waves and finite-range interactions, extending Tan's work for the zero range model. The properties of these matrices are discussed and the relations between the contacts and the one-nucleon and two-nucleon momentum distributions are derived. Using these relations, a new asymptotic connection between the one-nucleon and two-nucleon momentum distributions, describing the two-body short-range correlations in nuclei, is obtained. Using available numerical data, we extract few connections between the different contacts and verify their relations to the momentum distributions. The numerical data also allows us to identify the main nucleon momentum range affected by two-body short-range correlations. Utilizing these relations and the numerical data, we also verify a previous independent prediction connecting between the Levinger constant and the contacts. This work provides an important indication for the relevance of the contact...
Probing Cosmological Isotropy With Type IA Supernovae
Bengaly, C A P; Alcaniz, J S
2015-01-01T23:59:59.000Z
We investigate the validity of the Cosmological Principle by mapping the cosmological parameters $H_0$ and $q_0$ through the celestial sphere. In our analysis, performed in a low-redshift regime to follow a model-independent approach, we use two compilations of type Ia Supernovae (SNe Ia), namely the Union2.1 and the JLA datasets. Firstly, we show that the angular distributions for both SNe Ia datasets are statistically anisotropic at high confidence level ($p$-value $<$ 0.0001), in particular the JLA sample. Then we find that the cosmic expansion and acceleration are mainly of dipolar type, with maximal anisotropic expansion [acceleration] pointing towards $(l,b) \\simeq (326^{\\circ},12^{\\circ})$ [$(l,b) \\simeq (174^{\\circ},27^{\\circ})$], and $(l,b) \\simeq (58^{\\circ},-60^{\\circ})$ [$(l,b) \\simeq (225^{\\circ},51^{\\circ})$] for the Union2.1 and JLA data, respectively. Secondly, we use a geometrical method to test the hypothesis that the non-uniformly distributed SNe Ia events could introduce anisotropic imp...
Mechanism design with approximate types
Zhu, Zeyuan Allen
2012-01-01T23:59:59.000Z
In mechanism design, we replace the strong assumption that each player knows his own payoff type exactly with the more realistic assumption that he knows it only approximately: each player i only knows that his true type ...
Bonnen, C. A.
1960-01-01T23:59:59.000Z
.......... .......-.----------------------. 8 Labor -..-.....-----...------------------------------------------------. 9 Land Tenure .--.----....---....--------------------------------- 9 Number and Size of Farms ....----...----.-._--------- 10 Capital... -------------...-------.---------------------------- 21 Hogs -......-....--------------------------------------------------- 22 Poultry .-.---.-.....--.-..------.---------------------------------- 22 Horses and Mules ---..-....---..--..------------------------ 23 Types of Farming and Type-of-farming...
Type Ia Supernova Progenitors, Environmental Effects, and Cosmic Supernova Rates
Ken'ichi Nomoto; Hideyuki Umeda; Izumi Hachisu; Mariko Kato; Chiaki Kobayashi; Takuji Tsujimoto
1999-07-27T23:59:59.000Z
Relatively uniform light curves and spectral evolution of Type Ia supernovae (SNe Ia) have led to the use of SNe Ia as a ``standard candle'' to determine cosmological parameters, such as the Hubble constant, the density parameter, and the cosmological constant. Whether a statistically significant value of the cosmological constant can be obtained depends on whether the peak luminosities of SNe Ia are sufficiently free from the effects of cosmic and galactic evolutions. Here we first review the single degenerate scenario for the Chandrasekhar mass white dwarf (WD) models of SNe Ia. We identify the progenitor's evolution and population with two channels: (1) the WD+RG (red-giant) and (2) the WD+MS (near main-sequence He-rich star) channels. In these channels, the strong wind from accreting white dwarfs plays a key role, which yields important age and metallicity effects on the evolution. We then address the questions whether the nature of SNe Ia depends systematically on environmental properties such as metallicity and age of the progenitor system and whether significant evolutionary effects exist. We suggest that the variation of the carbon mass fraction $X$(C) in the C+O WD (or the variation of the initial WD mass) causes the diversity of the brightness of SNe Ia. This model can explain the observed dependence of SNe Ia brighness on the galaxy types. Finally, applying the metallicity effect on the evolution of SN Ia progenitors, we make a prediction of the cosmic supernova rate history as a composite of the supernova rates in different types of galaxies.
Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)
2008-06-03T23:59:59.000Z
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Brown, Kenneth Dewayne (Grain Valley, MO); Dunson, David (Kansas City, MO)
2006-08-08T23:59:59.000Z
A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.
Distributed Radio Interferometric Calibration
Yatawatta, Sarod
2015-01-01T23:59:59.000Z
Increasing data volumes delivered by a new generation of radio interferometers require computationally efficient and robust calibration algorithms. In this paper, we propose distributed calibration as a way of improving both computational cost as well as robustness in calibration. We exploit the data parallelism across frequency that is inherent in radio astronomical observations that are recorded as multiple channels at different frequencies. Moreover, we also exploit the smoothness of the variation of calibration parameters across frequency. Data parallelism enables us to distribute the computing load across a network of compute agents. Smoothness in frequency enables us reformulate calibration as a consensus optimization problem. With this formulation, we enable flow of information between compute agents calibrating data at different frequencies, without actually passing the data, and thereby improving robustness. We present simulation results to show the feasibility as well as the advantages of distribute...
Dynamical friction in constant density cores: a failure of the Chandrasekhar formula
J. I. Read; Tobias Goerdt; Ben Moore; A. P. Pontzen; Joachim Stadel; George Lake
2006-10-04T23:59:59.000Z
Using analytic calculations and N-body simulations we show that in constant density (harmonic) cores, sinking satellites undergo an initial phase of very rapid (super-Chandrasekhar) dynamical friction, after which they experience no dynamical friction at all. For density profiles with a central power law profile of log-slope, $-\\alpha$, the infalling satellite heats the background and causes $\\alpha$ to decrease. For $\\alpha < 0.5$ initially, the satellite generates a small central constant density core and stalls as in the $\\alpha = 0$ case. We discuss some astrophysical applications of our results to decaying satellite orbits, galactic bars and mergers of supermassive black hole binaries. In a companion paper we show that a central constant density core can provide a natural solution to the timing problem for Fornax's globular clusters.
Constant-intensity waves and their modulation instability in non-Hermitian potentials
Makris, Konstantinos G; Christodoulides, Demetrios N; Rotter, Stefan
2015-01-01T23:59:59.000Z
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
Constant-intensity waves and their modulation instability in non-Hermitian potentials
Konstantinos G. Makris; Ziad H. Musslimani; Demetrios N. Christodoulides; Stefan Rotter
2015-03-31T23:59:59.000Z
In all of the diverse areas of science where waves play an important role, one of the most fundamental solutions of the corresponding wave equation is a stationary wave with constant intensity. The most familiar example is that of a plane wave propagating in free space. In the presence of any Hermitian potential, a wave's constant intensity is, however, immediately destroyed due to scattering. Here we show that this fundamental restriction is conveniently lifted when working with non-Hermitian potentials. In particular, we present a whole new class of waves that have constant intensity in the presence of linear as well as of nonlinear inhomogeneous media with gain and loss. These solutions allow us to study, for the first time, the fundamental phenomenon of modulation instability in an inhomogeneous environment. Our results pose a new challenge for the experiments on non-Hermitian scattering that have recently been put forward.
Predicting the Reactivity of Hydride Donors in Water: Thermodynamic Constants for Hydrogen
Connelly, Samantha J.; Wiedner, Eric S.; Appel, Aaron M.
2015-01-01T23:59:59.000Z
Chemical reactivity of hydride complexes can be predicted by comparing bond strengths for homolytic and heterolytic cleavage of bonds to hydrogen. To determine these bond strengths, thermodynamic constants for H+, H•, H–, and H2 are essential and need to be used uniformly to enable the prediction of reactivity and equilibria. One of the largest challenges is quantifying the stability of solvated H– in water, which is discussed. Due to discrepancies in the literature for the constants used in water, we propose the use of a set of self-consistent constants with convenient standard states. The work was supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences.
Air distribution effectiveness with stratified air distribution systems
Chen, Qingyan "Yan"
1 Air distribution effectiveness with stratified air distribution systems Kisup Lee* Zheng Jiang, Ph.D Qingyan Chen, Ph.D. Student Member ASHRAE Fellow ASHRAE ABSTRACT Stratified air distribution systems such as Traditional Displacement Ventilation (TDV) and Under- Floor Air Distribution (UFAD
Worst Case Scenario for Large Distribution Networks with Distributed Generation
Pota, Himanshu Roy
Worst Case Scenario for Large Distribution Networks with Distributed Generation M. A. Mahmud) in distri- bution network has significant effects on voltage profile for both customers and distribution on variation of the voltage and the amount of DG that can be connected to the distribution networks. This paper
Marginal evidence for cosmic acceleration from Type Ia supernovae
Nielsen, Jeppe Trøst; Sarkar, Subir
2015-01-01T23:59:59.000Z
The `standard' model of cosmology is founded on the basis that the expansion rate of the universe is accelerating at present --- as was inferred originally from the Hubble diagram of Type Ia supernovae. There exists now a much bigger database of supernovae so we can perform rigorous statistical tests to check whether these `standardisable candles' indeed indicate cosmic acceleration. Taking account of the empirical procedure by which corrections are made to their absolute magnitudes to allow for the varying shape of the light curve and extinction by dust, we find, rather surprisingly, that the data are still quite consistent with a constant rate of expansion.
Bianchi Type-I Universe with Wet Dark Fluid
T. Singh; R. Chaubey
2010-07-08T23:59:59.000Z
The Bianchi type-I universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the universe has been used. It is modeled on the equation of state $p=\\gamma (\\rho -\\rho_\\star)$ which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for power-law and exponential forms both. The cases $\\gamma =1$ and $\\gamma =0$ have been also analysed.
Bianchi Type-I Universe with Wet Dark Fluid
Singh, T
2010-01-01T23:59:59.000Z
The Bianchi type-I universe filled with dark energy from a wet dark fluid has been considered. A new equation of state for the dark energy component of the universe has been used. It is modeled on the equation of state $p=\\gamma (\\rho -\\rho_\\star)$ which can describe a liquid, for example water. The exact solutions to the corresponding field equations are obtained in quadrature form. The solution for constant deceleration parameter have been studied in detail for power-law and exponential forms both. The cases $\\gamma =1$ and $\\gamma =0$ have been also analysed.
Hsu, Cheng-Ting (Ames, IA)
1984-01-01T23:59:59.000Z
A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.
Statistical analysis of the electrical breakdown time delay distributions in krypton
Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M. [Technical Faculty in Bor, University of Belgrade, Vojske Jugoslavije 24, 19210 Bor (Serbia and Montenegro); Faculty of Civil Engineering and Architecture, University of Nis, Beogradska 14, 18000 Nis (Serbia and Montenegro); Faculty of Sciences and Mathematics, University of Nis, P.O. Box 224, 18001 Nis (Serbia and Montenegro); Faculty of Electronic Engineering, University of Nis, P.O. Box 73, 18001 Nis (Serbia and Montenegro)
2006-08-15T23:59:59.000Z
The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6 mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.
Lattice study of the leptonic decay constant of the pion and its excitations
Mastropas, Ekaterina; Richard, David
2014-11-01T23:59:59.000Z
We present a calculation of the decay constant of the pion, and its lowest-lying three excitations, at three values of the pion mass between around 400 and 700 MeV, using anisotropic clover lattices. We use the variational method to determine an optimal interpolating operator for each of the states. We find that the decay constant of the first excitation, and more notably of the second, is suppressed with respect to that of the ground-state pion, but that the suppression shows little dependence on the quark mass.
On the Verdet constant and Faraday rotation for graphene-like materials
Mikkel H. Brynildsen; Horia D. Cornean
2013-02-21T23:59:59.000Z
We present a rigorous and rather self-contained analysis of the Verdet constant in graphene- like materials. We apply the gauge-invariant magnetic perturbation theory to a nearest- neighbour tight-binding model and obtain a relatively simple and exactly computable formula for the Verdet constant, at all temperatures and all frequencies of sufficiently large absolute value. Moreover, for the standard nearest neighbour tight-binding model of graphene we show that the transverse component of the conductivity tensor has an asymptotic Taylor expansion in the external magnetic field where all the coefficients of even powers are zero.
Phase-constant-nonreciprocal composite right/left-handed metamaterials based on coplanar waveguides
Porokhnyuk, Andrey, E-mail: d1821008@edu.kit.ac.jp; Ueda, Tetsuya; Kado, Yuichi [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Itoh, Tatsuo [Department of Electrical Engineering, University of California at Los Angeles, Los Angeles, California 90095 (United States)
2014-05-07T23:59:59.000Z
The purely phase-constant-nonreciprocal composite right-left handed metamaterial structure is proposed based on coplanar waveguides loaded with a ferrite layer. The structure exhibits considerably large nonreciprocity in phase constant which depends on the effective magnetization and whose magnitude can remain in leaky wave region of wavenumbers or can overcome a boundary to slow wave region. The nonreciprocity in amplitude of transmission coefficients, on the other hand, is effectively reduced by using a cavity-backed design to prevent undesired nonreciprocal radiation loss.
New Phantom and non-Phantom Wormhole Solutions with Generic Cosmological Constant
Heydarzade, Y; Moradpour, H
2014-01-01T23:59:59.000Z
There are a number of reasons to study wormholes with generic cosmological constant $\\Lambda$. Recent observations indicate that present accelerating expansion of the universe demands $\\Lambda>0$. On the other hand, some extended theories of gravitation such as supergravity and superstring theories posses vacuum states with $\\Lambdaenergy density and pressure profiles which support such a geometry are obtained. It is shown that for having such a geometry, the wormhole throat $r_0$, the cosmological constant $\\Lambda$ and the equation of state parameter $\\omega$ sh...
Electronic constant current and current pulse signal generator for nuclear instrumentation testing
Brown, Roger A. (Amsterdam, NY)
1994-01-01T23:59:59.000Z
Circuitry for testing the ability of an intermediate range nuclear instrut to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on.
Electronic constant current and current pulse signal generator for nuclear instrumentation testing
Brown, R.A.
1994-04-19T23:59:59.000Z
Circuitry is described for testing the ability of an intermediate range nuclear instrument to detect and measure a constant current and a periodic current pulse. The invention simulates the resistance and capacitance of the signal connection of a nuclear instrument ion chamber detector and interconnecting cable. An LED flasher/oscillator illuminates an LED at a periodic rate established by a timing capacitor and circuitry internal to the flasher/oscillator. When the LED is on, a periodic current pulse is applied to the instrument. When the LED is off, a constant current is applied. An inductor opposes battery current flow when the LED is on. 1 figures.
Is the zero-point energy a source of the cosmological constant?
Yasunori Fujii
2014-03-15T23:59:59.000Z
We discuss how we remove a huge discrepancy between the theory of a cosmological constant, due to the zero-point energies of matter fields, and the observation. The technique of dimensional regularization plays a decisive role. We eventually reach the desired behavior of the vacuum densities falling off like t^{-2}, allowing us to understand how an extremely small result comes about naturally. As a price, however, the zero-point energy vacuum fails to act as a true cosmological constant. Its expected role responsible for the observed accelerating universe is then to be inherited by the gravitational scalar field, dark energy, as we suggest in the scalar-tensor theory.
Determination of foam stability at constant pressure in the Plateau-Biggs borders of the foam
Khristov, K.I.; Exerowa, D.R.; Kurgljakov, P.M.
1981-02-01T23:59:59.000Z
The lifetime of a foam column (or of a part of the column) is a parameter widely used as a characteristic of foam stability. During the destruction process, the pressure in the upper layers of the foam changes (the height H of the foam column decreases) and the lifetime of the different layers of the foam column will be different. Therefore, the lifetime of a foam column at constant pressure in the Plateau-Gibbs borders (constant along the height of the column and with time) is a much more accurate characteristic of foam stability.
Reduction of magnetic damping constant of FeCo films by rare-earth Gd doping
Guo, Xiaobin; Xi, Li, E-mail: xili@lzu.edu.cn; Li, Yue; Han, Xuemeng; Li, Dong; Wang, Zhen; Zuo, Yalu [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China)
2014-08-18T23:59:59.000Z
Magnetic damping constant (?) is one of the key parameters to determine the critical current density of spin-transfer-torque devices and the switching time of magnetization for ultra-high-frequency devices. In this work, Gd doped FeCo films were fabricated to investigate ? based on the ferromagnetic resonance technique. Gd doping not only can efficiently decrease the magnetic inhomogeneity and the extrinsic part of ? but also the Landé g-factor and intrinsic part of ?. The obtained ? was roughly proportional to (g-2){sup 2} and the magnetic anisotropic constant, indicating that the decreased spin-orbit interaction decreases ? by Gd doping.
Optimal steering of a linear stochastic system to a final probability distribution, part II
Yongxin Chen; Tryphon Georgiou; Michele Pavon
2014-10-13T23:59:59.000Z
We consider the problem of minimum energy steering of a linear stochastic system to a final prescribed distribution over a finite horizon and to maintain a stationary distribution over an infinite horizon. We present sufficient conditions for optimality in terms of a system of dynamically coupled Riccati equations in the finite horizon case and algebraic in the stationary case. We then address the question of feasibility for both problems. For the finite-horizon case, provided the system is controllable, we prove that without any restriction on the directionality of the stochastic disturbance it is always possible to steer the state to any arbitrary Gaussian distribution over any specified finite time-interval. For the stationary infinite horizon case, it is not always possible to maintain the state at an arbitrary Gaussian distribution through constant state-feedback. It is shown that covariances of admissible stationary Gaussian distributions are characterized by a certain Lyapunov-like equation. We finally present an alternative to solving the system of coupled Riccati equations, by expressing the optimal controls in the form of solutions to (convex) semi-definite programs for both cases. We conclude with an example to steer the state covariance of the distribution of inertial particles to an admissible stationary Gaussian distribution over a finite interval, to be maintained at that stationary distribution thereafter by constant-gain state-feedback control.
Degree-distribution stability of scale-free networks
Zhenting Hou; Xiangxing Kong; Dinghua Shi; Guanrong Chen
2008-05-09T23:59:59.000Z
Based on the concept and techniques of first-passage probability in Markov chain theory, this letter provides a rigorous proof for the existence of the steady-state degree distribution of the scale-free network generated by the Barabasi-Albert (BA) model, and mathematically re-derives the exact analytic formulas of the distribution. The approach developed here is quite general, applicable to many other scale-free types of complex networks.
Renewable Energy: Distributed Generation Policies and Programs...
Broader source: Energy.gov (indexed) [DOE]
Energy Policies & Programs Renewable Energy: Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation...
Distributed Energy Resources for Carbon Emissions Mitigation
Firestone, Ryan; Marnay, Chris
2008-01-01T23:59:59.000Z
Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions
A dependent nominal type theory
Cheney, James
2012-01-01T23:59:59.000Z
Nominal abstract syntax is an approach to representing names and binding pioneered by Gabbay and Pitts. So far nominal techniques have mostly been studied using classical logic or model theory, not type theory. Nominal extensions to simple, dependent and ML-like polymorphic languages have been studied, but decidability and normalization results have only been established for simple nominal type theories. We present a LF-style dependent type theory extended with name-abstraction types, prove soundness and decidability of beta-eta-equivalence checking, discuss adequacy and canonical forms via an example, and discuss extensions such as dependently-typed recursion and induction principles.
). During the winter, beluga whales occur in offshore waters associated with pack ice. In the spring RANGE Beluga whales are distributed throughout seasonally ice-covered arctic and subarctic waters of the Northern Hemisphere (Gurevich 1980), and are closely associated with open leads and polynyas in ice
MAIL DISTRIBUTION MAIL PRODUCTION
MAIL DISTRIBUTION AND MAIL PRODUCTION OPERATIONS GUIDE November 07 Revised November 07 #12;2 Mail/billing......................................................................................1-5346 Mail Production of the University non-profit permit. 3. All bulk mailings must be coordinated with Mail Production at the earliest
Proceedings Engineering Distributed Objects
Emmerich, Wolfgang
-18, 1999 Edited by Wolfgang Emmerich Volker Gruhn #12;#12;Table of Contents Introduction Wolfgang Emmerich;#12;Engineering Distributed Objects (EDO 99) Introduction Wolfgang Emmerich Dept. of Computer Science University College London London WC1E 6BT United Kingdom w.emmerich@cs.ucl.ac.uk Volker Gruhn Informatik 10 Universit
CONSULTANT REPORT DISTRIBUTED GENERATION
an independent cost analysis to interconnect and integrate increased penetration levels of renewable distributed costs. The Energy Commission considers this study a first step toward the 2012 Integrated Energy Policy Generation Integration Cost Study: Analytical Framework. California Energy Commission. CEC2002013007. i
Dewhurst, Alastair; The ATLAS collaboration
2015-01-01T23:59:59.000Z
The ATLAS experiment accumulated more than 140 PB of data during the first run of the Large Hadron Collider (LHC) at CERN. The analysis of such an amount of data for the distributed physics community is a challenging task. The Distributed Analysis (DA) system of the ATLAS experiment is an established and stable component of the ATLAS distributed computing operations. About half a million user jobs are daily running on DA resources, submitted by more than 1500 ATLAS physicists. The reliability of the DA system during the first run of the LHC and the following shutdown period has been high thanks to the continuous automatic validation of the distributed analysis sites and the user support provided by a dedicated team of expert shifters. During the LHC shutdown, the ATLAS computing model has undergone several changes to improve the analysis workflows, including the re-design of the production system, a new analysis data format and event model, and the development of common reduction and analysis frameworks. We r...
Planet occurrence within 0.25AU of solar-type stars from Kepler
Seager, Sara
We report the distribution of planets as a function of planet radius, orbital period, and stellar effective temperature for orbital periods less than 50 days around solar-type (GK) stars. These results are based on the ...
Birkedal, Lars
Relational Parametricity for References and Recursive Types Lars Birkedal Kristian StÃ¸vring Jacob that copies are not made or distributed for profit or commercial advantage and that copies bear this notice
Distributed Energy Alternatives to Electrical
Pennycook, Steve
Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated Edison.www.gastechnology.org 2 #12;Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Consolidated-Battelle for the Department of Energy Subcontract Number: 4000052360 GTI Project Number: 20441 New York State Energy Research
Constant Proportion Debt Obligations, Zeno's Paradox, and the Spectacular Financial Crisis of 2008
Richards, Donald St. P.
Constant Proportion Debt Obligations, Zeno's Paradox, and the Spectacular Financial Crisis of 2008-going worldwide financial crisis are heightened by the existence of other financial derivatives more arcane than, to the beat of his dying heart, The Devil drum on the darkened pane: "You did it, but was it Art?" Rudyard
Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla
Duong, Timothy Q.
Relaxation Time Constants and Apparent Diffusion Coefficients of Rat Retina at 7 Tesla Govind Nair* and ADC of the rat eyes were measured at 50 3 50 3 800 lm at 7 Tesla. Profiles of T1, T2, T2* and ADC
Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind
Chen, Sheng
Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind-directed (DD) scheme provides a state-of-the-art low-complexity blind equalisation technique for high of the standard CMA blind equaliser, this concurrent CMA and DD blind equaliser achieves a dramatic improvement
van der Veen, Alle-Jan
Combining Blind Equalization with Constant Modulus Properties Alle-Jan van der Veen and Ant, The Netherlands Abstract This paper presents an approach to multi-user blind space- time equalizationexploiting that asks for both a blind equaliza- tion and a blind source separation based on the modulation properties
Rezwanur Rahman; Douglas K. McCarty; Manika Prasad; John A. Scales
2015-02-13T23:59:59.000Z
We implement a technique to characterize electromagnetic properties at frequencies 100 to 165 GHz (3 cm$^{-1}$ to 4.95 cm$^{-1}$) of oriented montmorillionite samples using an open cavity resonator connected to a sub-millimeter wave VNA (Vector Network Analyzer). We measured dielectric constants perpendicular to the bedding plane on oriented Na$^{+}$ and Ca$^{++}$-ion stabilized montmorillionite samples deposited on a glass slide at ambient laboratory conditions (room temperature and room light). The clay layer is much thinner ($\\sim$ 30 $\\mu$m) than the glass substrate ($\\sim$ 2.18 mm). The real part of dielectric constant,$\\epsilon_{re}$, is essentially constant over this frequency range but is larger in Na$^{+}$- than in Ca$^{++}$-ioned clay. The total electrical conductivity (associated with the imaginary part of dielectric constant, $\\epsilon_{im}$) of both samples increases monotonically at lower frequencies ($$ 110 GHz. The dispersion of the samples display a dependence on the ionic strength in the clay interlayers, i.e., $\\zeta$-potential in the Stern layers.
Rubloff, Gary W.
Dependence of exchange coupling interaction on micromagnetic constants in hard/soft magnetic bilayer systems A. J. Zambano,1, * H. Oguchi,1 I. Takeuchi,1 Y. Choi,2,3 J. S. Jiang,2 J. P. Liu,3 S. E December 2006; published 30 April 2007 To elucidate the dependence of exchange coupling behavior of hard/soft
Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems
Shpilka, Amir
Secure Computation of Constant-Depth Circuits with Applications to Database Search Problems Omer. Motivated by database search problems such as partial match or nearest neighbor, we present secure between k poly log(s) parties who all know C, we obtain a secure protocol for evaluating C(x) using O
Using solubility and Henry`s law constant data for ketones in water
Yaws, C.L.; Sheth, S.D.; Han, M. [Lamar Univ., Beaumont, TX (United States)
1998-02-01T23:59:59.000Z
When a chemical spill occurs in water, the extent of chemical contamination is determined by the chemical`s solubility in the water. If contaminated water comes into contact with air, such as in a pond or a storage vessel, the contaminant`s emissions into the air can be determined based upon Henry`s law constant for that particular constituent. A high Henry`s law constant value translates into a greater emissions level. The engineering design and operation of strippers to remove contaminants from water require data for both water solubility and Henry`s law constant. A new correlation developed by researchers at Lamar University provides reliable values down to very, very low concentrations for the solubility of ketones in water. The correlation is based on the boiling point temperature of the ketone and can be used for engineering studies involving health, safety and environmental considerations. Results for water solubility and Henry`s law constant are provided here for a wide variety of ketones. Representative values are about 249,000 parts per million (ppm) per weight (wt) for methyl ethyl ketone (C{sub 4}H{sub 8}O) and 360 ppm/wt for 5-nonanone (C{sub 9}H{sub 18}O).
Fluorocarbon plasma etching and profile evolution of porous low-dielectric-constant silica
Kushner, Mark
of PS, a feature profile model has been integrated with a plasma equipment model. To focus on issuesFluorocarbon plasma etching and profile evolution of porous low-dielectric-constant silica Arvind silicon dioxide PS is one such material. To address scaling issues during fluorocarbon plasma etching
Reid, Scott A.
: Application to ozone formation Mikhail V. Ivanov and Dmitri Babikov Citation: J. Chem. Phys. 136, 184304 (2012 for computing thermal rate constant of recombination: Application to ozone formation Mikhail V. Ivanov of ozone. Comparison of the predicted rate vs. experimental result is presented. © 2012 American Institute
A Constant Gain Kalman Filter Approach to target tracking in Wireless Sensor Networks
Naik, Naren
A Constant Gain Kalman Filter Approach to target tracking in Wireless Sensor Networks Ashwin Yadav1 domains. One of the most fundamen- tal and widely used approaches to target tracking is the Kalman filter. In presence of unknown noise statistics there are difficulties in the Kalman filter yielding good results
ur solid Earth undergoes constant change from motions within its core
McLeod, Dennis
O ur solid Earth undergoes constant change from motions within its core to the surface. Solid Earth is the physical planet we live on, not the oceans or atmosphere. Motions near Earth's cen- ter affect the geodynamo, which generates the Earth's magnetic field. Convection within Earth's mantle drives plate
Rate constants for the homogeneous gas-phase Al/HCl combustion chemistry
Swihart, Mark T.
Rate constants for the homogeneous gas-phase Al/HCl combustion chemistry Mark T. Swiharta Engineering, University at Buffalo (SUNY), Buffalo, NY 14260-4200, USA b Laboratoire de Combustion et Syste Orleans cedex 2, France c Laboratoire de Combustion et Syste`mes ReÂ´actifs (LCSR), CNRS, 1C, av. de la
Schlegel, H. Bernhard
of Chemistry, Wayne State University, Detroit, Michigan 48202, United States *S Supporting Information ABSTRACT, and cellular death.1-9 Among the canonical nucleobases, guanine is well-known to be the most susceptible at a constant pH of 7 (E7). Redox potentials were obtained by chemical oxidation and kinetic rate measurements
Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment
Unger, L.M.; Trubey, D.K.
1981-09-01T23:59:59.000Z
Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed.
Attard, Phil
Calibration of the torsional spring constant and the lateral photodiode response of frictional simultaneously calibrates the photodiode response to the angular deflection of the cantilever. It does not rely and with an independent measurement of the angle calibration. This nondestructive calibration may be performed with any
Physical interpretation of constants in the solutions to the Brans-Dicke equations
Aroonkumar Beesham
1998-02-18T23:59:59.000Z
Using an energy-momentum complex we give a physical interpretation to the constants in the well-known static spherically symmetric asymptotically flat vacuum solution to the Brans-Dicke equations. The positivity of the tensor mass puts a bound on parameters in the solution.
Relating the Newman-Penrose constants to the Geroch-Hansen multipole moments
Thomas Bäckdahl
2009-08-25T23:59:59.000Z
In this paper, we express the Newman--Penrose constants in terms of the Geroch--Hansen multipole moments for stationary spacetimes. These expressions are translation-invariant combinations of the multipole moments up to quadrupole order, which do not normally vanish.
Constant Propagation with Conditional MARK N. WEGMAN and F. KENNETH ZADECK
Cytron, Ron K.
Constant Propagation with Conditional Branches MARK N. WEGMAN and F. KENNETH ZADECK IBM T. J Symposium on Principles of Programming Languages, 1985. Authors' current addresses: Mark N. Wegman, IBM T. J on Programming Languages and Systems, Vol. 13, No. 2, April 1991, Pages 181-210. #12;182 . M. N. Wegman and F. K
Instability of non-constant harmonic maps for the 1 + 2-dimensional equivariant wave map system
Côte, Raphaël
energy har- monic map Q (a stationary solution), and show that when it exists, Q is instable in the energy space. Our result applies in particular to the case of wave maps to the sphere S2Instability of non-constant harmonic maps for the 1 + 2-dimensional equivariant wave map system
Gomberoff, Andres; Henneaux, Marc; Teitelboim, Claudio [Centro de Estudios Cientificos (CECS), Valdivia (Chile); Physique Theorique et Mathematique, Universite Libre de Bruxelles and International Solvay Institutes, ULB Campus Plaine C.P. 231, B-1050 Brussels (Belgium); Centro de Estudios Cientificos (CECS), Valdivia (Chile); Centro de Estudios Cientificos (CECS), Valdivia (Chile)
2005-03-15T23:59:59.000Z
We study the decay of the cosmological constant in two spacetime dimensions through production of pairs. We show that the same nucleation process looks as quantum-mechanical tunneling (instanton) to one Killing observer and as thermal activation (thermalon) to another. Thus, we find another striking example of the deep interplay between gravity, thermodynamics and quantum mechanics which becomes apparent in presence of horizons.
Spring Constants for Hockey Dan Russell and Linda Hunt, Kettering University, Flint, MI
Russell, Daniel A.
. In a three-point bending test, a force F is applied at the midpoint between two supports separated in the blade. The flex rating is given as a number that roughly repre- sents the amount of force in pounds k represents an effective spring constant. The three-point bending test for measuring hockey stick
Mikhail S. Plyushchay
1995-06-26T23:59:59.000Z
The identity of classical motion is established for two physically different models, one of which is the relativistic particle with torsion, whose action contains higher derivatives and which is the effective system for the statistically charged particle interacting with the Chern-Simons U(1) gauge field, and another is the (2+1)-dimensional relativistic charged particle in external constant electromagnetic field.
The structure of reflexive regular splicing languages via Schutzenberger constants \\Lambda
Bonizzoni, Paola
by Paun and Pixton respectively [16, 20]. The computational power of splicing systems has been thoroughlyThe structure of reflexive regular splicing languages via Sch¨utzenberger constants \\Lambda Paola generating) device, called a splicing system. Other variants of this original definition were also proposed
Time Domain Reflectometry Surface Reflections for Dielectric Constant in Highly Conductive Soils
Nowack, Robert L.
.1061/ ASCE 1090-0241 2007 133:12 1597 CE Database subject headings: Dielectric constant; Electrical technology is a reliable, fast, and safe technology for measuring soil volumetric water content Benson significant energy attenuation Topp et al. 1980, 2000; Jones and Or 2004 . This makes it almost impossible
Constraints on the value of the fine structure constant from gravitational thermodynamics
P. C. W. Davies
2007-09-26T23:59:59.000Z
In this paper I show how the second law of thermodynamics, generalized to include event horizon area, places interesting constraints on the value of the fine structure constant. A simple analysis leads to the conclusion that classical Dirac and point-like magnetic monopoles could be used to violate the second law, and that GUT monopoles are inconsistent with minicharged particles.
On the variation of the fine-structure constant in Friedmann Universes
William Q. Sumner
2005-03-07T23:59:59.000Z
The fine-structure constant alpha does not vary as Friedmann Universes evolve, a conclusion based on assessments of quantum mechanics and electrodynamics. alpha = e^2/(4pi epsilon hbar c), where e is the charge of the electron, epsilon is vacuum permittivity, c is the speed of light, and hbar is Planck's constant divided by 2pi. This inquiry was motivated by Schrodinger's (1939) prediction that all quantum wave functions coevolve with Friedmann geometry and a similar prediction by Sumner (1994) for vacuum permittivity. The functional form of variations in quantum wave functions found by Schrodinger is enough to show that alpha does not vary. Electrodynamics also predicts that alpha does not vary. Evolutionary changes in c exactly cancel those in vacuum permittivity and other factors in alpha do not change. Since alpha appears in all first-order perturbation formulas for atomic energy levels, comparisons of the atomic spectra of distant atoms with those in laboratories provide an experimental measure of this prediction. Most experiments find changes in alpha that are either statistically zero or very small. These results and estimates of the Hubble constant and deceleration parameter from precision redshift/magnitude data support a major assumption of this paper that the Friedmann solution to Einstein's theory of general relativity without cosmological constant is an adequate approximation to spacetime geometry and its long term evolution at quantum scales.
Lombardi, John R.
Transition Metal Dimer Internuclear Distances from Measured Force Constants Joseph L. Jules distances, have been extended to the transition metal dimers to test which one gives the most accurate fit's and Guggenheimer's for the transition metal dimers. Although Pauling's rule gives the best results, the remarkable
Locating Faults in a Constant Number of Parallel Testing Rounds (Preliminary Version)
Beigel, Richard
the total number of processors and t denotes the number of faulty processors. Both of these results improve processor (diagnosisÂwithÂrepair) and identifying a single good processor, we present an oblivious constantÂtime algorithm using a fixed 3Âregular inÂ terconnect that tolerates a linear number of faults. This contrasts
Non-chiral fusion rules, structure constants of D_m minimal models
A. Rida; T. Sami
1999-10-07T23:59:59.000Z
We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.
EFFET DE LA DILATATION THERMIQUE SUR LA VALEUR DE LA CONSTANTE DE CURIE DES FERRITES
Boyer, Edmond
EFFET DE LA DILATATION THERMIQUE SUR LA VALEUR DE LA CONSTANTE DE CURIE DES FERRITES Par LOUIS NÃ?EL Sommaire. - L'auteur montre que l'existence de fortes anomalies de dilatation dans les ferrites entraÃ®ne ferrites varie au-dessus de leur point de Curie, en fonction de la tempÃ©rature absolue ~', suivant la loi
Bell, Alexis T.
As ab initio electronic structure calculations become more accurate, inherent sources of error, facilitate reactive flux calculations. As an example we compute the dynamically corrected rate constant on which the reaction occurs. A large number of electronic structure theo- ries are available
Scaling of classical rate constants on scaled potential-energy surfaces Myung Soo Kim,a)
Kim, Myung Soo
or dynamical calculation of a rate constant is to use data from electronic structure calculation. Structure at moderately high levels of electronic structure calculation. © 2001 American Institute of Physics. DOI: 10 state theories and the methods based on classical or quantal dynamics calculation.47 When
Boyer, Edmond
1 Fretting Corrosion Damage of Total Hip Prosthesis: Friction Coefficient and Damage Rate Constant Building, University Park 16802 PA USA 4 Chair Professor Center for Research Excellence in Corrosion hip prosthesis. Fretting corrosion tests were conducted with stainless steel and poly (methyl
Specific gamma-ray dose constants for nuclides important to dosimetry and radiological assessment
Unger, L.M.; Trubey, D.K.
1982-05-01T23:59:59.000Z
Tables of specific gamma-ray dose constants (the unshielded gamma-ray dose equivalent rate at 1 m from a point source) have been computed for approximately 500 nuclides important to dosimetry and radiological assessment. The half life, the mean attenuation coefficient, and thickness for a lead shield providing 95% dose equivalent attenuation are also listed.
Photon emission in a constant magnetic field in 2+1 dimensional space-time
J. T. S. Amaral; S. I. Zlatev
2005-11-01T23:59:59.000Z
We calculate by the proper-time method the amplitude of the two-photon emission by a charged fermion in a constant magnetic field in (2+1)-dimensional space-time. The relevant dynamics reduces to that of a supesymmetric quantum-mechanical system with one bosonic and one fermionic degrees of freedom.
FTIR Emission Spectra, Molecular Constants, and Potential Curve of Ground State GeO
Le Roy, Robert J.
FTIR Emission Spectra, Molecular Constants, and Potential Curve of Ground State GeO Edward G. Lee-resolution FTIR emission spectroscopy measurements for the five common isoto- pomers of GeO are combined9), photoelectron spectroscopy (10), electronic absorption (1113), and emission (14) spectroscopy, and in matrix
Dark energy, QCD axion, BICEP2, and trans-Planckian decay constant
Jihn E. Kim
2014-10-19T23:59:59.000Z
Discrete symmetries allowed in string compactification are the mother of all global symmetries which are broken at some level. We discuss the resulting pseudo-Goldstone bosons, in particular the QCD axion and a temporary cosmological constant, and inflatons. We also comment on some implications of the recent BICEP2 data.
Gell-Mann - Low Function in QED for the arbitrary coupling constant
I. M. Suslov
2006-05-10T23:59:59.000Z
The Gell-Mann -- Low function \\beta(g) in QED (g is the fine structure constant) is reconstructed. At large g, it behaves as \\beta_\\infty g^\\alpha with \\alpha\\approx 1, \\beta_\\infty\\approx 1.
Viscosity and elastic constants of amorphous Si and Ge Ann Witwow@ and Frans Spaepen
Spaepen, Frans A.
Viscosity and elastic constants of amorphous Si and Ge Ann Witwow@ and Frans Spaepen Division expansion. Viscous flow was measured by stress relaxation and was found to be Newtonian. The viscosity of the viscosity of sputter-deposited samples as a function of stress (to establish the Newtonian charac- ter
Can Cosmological Constant be a Forbidden Zone (GAP) in Quantum Vacuum
Vladan Pankovic; Rade Glavatovic; Simo Ciganovic
2008-04-15T23:59:59.000Z
In this work we suggest, without detailed mathematical analysis, a hypothesis on the physical meaning of cosmological constant. It is primarily based on a conceptual analogy with energy characteristics of the crystal lattice structure, i.e. energy zones theory in solid state physics. Namely, according to some theories (holographic principle, emergent gravity etc.) it is supposed that empty space, i.e. quantum vacuum holds a structure like to crystal lattice. It implies a possibility of the existence of totally occupied zones consisting of many levels of the negative energies as well as at least one negative energy forbidden zone, i.e. negative energy gap without any (occupied or empty) level of the negative energy. We suppose that given negative energy forbidden zone in the quantum vacuum represents effectively a positive energy zone without quantum particles that corresponds to cosmological constant. Also we suggest some other (less extravagant) model of the cosmological constant. Here cosmological constant is usually considered as the effect of the quantum vacuum fluctuations where problem of the cut-off can be solved quite simply since here integration over unlimited domain of the quasi-momentums must be changed by integration over one, finite "Brillouin zone".
Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant
Anderson, Michael
Non-trivial, static, geodesically complete, vacuum space-times with a negative solutions of the vacuum Einstein equations with a negative cosmological constant. The new families of this paper is to show that such rigidity is false in this last situation. More precisely, for
Nonholonomic Ricci Flows and Running Cosmological Constant: 3D Taub-NUT Metrics
Sergiu I. Vacaru; Mihai Visinescu
2007-10-11T23:59:59.000Z
The common assertion that the Ricci flows of Einstein spaces with cosmological constant can be modelled by certain classes of nonholonomic frame, metric and linear connection deformations resulting in nonhomogeneous Einstein spaces is examined in the light of the role played by topological three dimensional (3D) Taub-NUT-AdS/dS spacetimes.
Melis, M.; Mignemi, S. [Dipartimento di Matematica, Universita di Cagliari, viale Merello 92, 09123 Cagliari (Italy) and INFN, Sezione di Cagliari (Italy)
2007-01-15T23:59:59.000Z
We study the phase space of the spherically symmetric solutions of the system obtained from the dimensional reduction of the six-dimensional Einstein-Gauss-Bonnet action with a cosmological constant. We show that all the physical solutions have anti-de Sitter asymptotic behavior.
Waves of constant shape and the structure of the \\rotors boundary" in excitable media.
Biktashev, Vadim N.
wave patterns in R 2 , in terms of the kinematic approach. These patterns include rotating waves by Winfree [13]. The kinematic approach of [8] also considered a boundary of existence of spiral waveWaves of constant shape and the structure of the \\rotors boundary" in excitable media. Yu.E. Elkin
Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids
Reid, Scott A.
unique chemical and physical properties, including being air and moisture stable, a high solubility power with supercritical fluid CO2;9-11 (4) electrochemical reactions;12,13 and (5) as a medium for enzymatic reactions.14Determination of Binding Constants of Cyclodextrins in Room-Temperature Ionic Liquids by Near
Table A1 Molar mass, gas constant, and critical-point properties
Kostic, Milivoje M.
of carbon dioxide, CO2 Table A21 Ideal-gas properties of carbon monoxide, CO Table A22 Ideal Properties of the atmosphere at high altitude Table A17 Ideal-gas properties of air Table A18 Ideal-point properties Molar mass, constant, Temperature, Pressure, Volume, Substance Formula M kg/kmol R kJ/kg·K* K MPa
Application of SiO2 aerogel film with low dielectric constant to intermetal dielectrics
Jo, Moon-Ho
Application of SiO2 aerogel film with low dielectric constant to intermetal dielectrics Moon-Ho Jo aerogel film was characterized from its structural and chemical viewpoints. High porosity of material infrared spectroscopy (FT-IR) for their chemical states. The improved electrical properties of SiO2 aerogel
Molenaar, P.; Malta, E.
1986-04-01T23:59:59.000Z
In electrically driven guinea pig left atria, positive inotropic responses to (-)-isoprenaline and the selective beta 1-adrenoceptor agonist RO363 were obtained in the absence and in the presence of the functional antagonists adenosine, carbachol, gallopamil, nifedipine, and Ro 03-7894. Each of the functional antagonists reduced the maximum response to both agonists and produced nonparallel rightward shifts in the cumulative concentration effect curves. For both agonists, dissociation constants (KA) were calculated using the equation described by Furchgott (1966) for irreversible antagonism. For RO363, which is a partial agonist with high agonist activity, the equations outlined for functional interaction by Mackay (1981) were also employed to calculate KA values. The KA values obtained by each method were compared with the dissociation constants (KD) for the two agonists determined from their ability to displace the radioligand (-)-(/sup 125/I)iodocyanopindolol from beta 1-adrenoceptors in guinea pig left atrial membrane preparations. The estimates of KA varied substantially from KD values. The KD values were taken as more accurate estimates of the true values for the dissociation constants because a high degree of correlation exists between pKD and pD2 values for a number of other beta-adrenoceptor agonists that behave as partial agonists and between pKD and pKB values for a number of beta-adrenoceptor antagonists. Thus, it appears that there are serious limitations in the current theory for using functional antagonism as a means of obtaining agonist dissociation constants.
INFRARED SPECTRA AND OPTICAL CONSTANTS OF NITRILE ICES RELEVANT TO TITAN's ATMOSPHERE
Moore, Marla H.; Hudson, Reggie [NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771 (United States); Ferrante, Robert F. [Chemistry Department, US Naval Academy, 572 Holloway Road, Annapolis, MD 21402 (United States); James Moore, W., E-mail: Marla.h.moore@nasa.go [USRA NASA Goddard Space Flight Center, Code 691, Greenbelt, MD 20771 (United States)
2010-11-15T23:59:59.000Z
Spectra and optical constants of nitrile ices known or suspected to be in Titan's atmosphere are presented from 2.0 to 333.3 {mu}m ({approx}5000-30 cm{sup -1}). These results are relevant to the ongoing modeling of Cassini CIRS observations of Titan's winter pole. Ices studied are: HCN, hydrogen cyanide; C{sub 2}N{sub 2}, cyanogen; CH{sub 3}CN, acetonitrile; C{sub 2}H{sub 5}CN, propionitrile; and HC{sub 3}N, cyanoacetylene. For each of these molecules, we also report new cryogenic measurements of the real refractive index, n, determined in both the amorphous and crystalline phases at 670 nm. These new values have been incorporated into our optical constant calculations. Spectra were measured and optical constants were calculated for each nitrile at a variety of temperatures, including, but not limited to, 20, 35, 50, 75, 95, and 110 K, in both the amorphous phase and the crystalline phase. This laboratory effort used a dedicated FTIR spectrometer to record transmission spectra of thin-film ice samples. Laser interference was used to measure film thickness during condensation onto a transparent cold window attached to the tail section of a closed-cycle helium cryostat. Optical constants, real (n) and imaginary (k) refractive indices, were determined using Kramers-Kronig analysis. Our calculation reproduces the complete spectrum, including all interference effects.
What do we know about delistings? A survey of the literature DJAMA Constant, University of Toulousea
Paris-Sud XI, UniversitÃ© de
1 What do we know about delistings? A survey of the literature DJAMA Constant, University, the decision to delist is less studied in the corporate finance literature despite its importance in the life of the firm. This article surveys the recent literature, both theoretical and empirical, regarding delisting
V. P. Neznamov
2015-02-02T23:59:59.000Z
The paper presents the representation of quantum field theory without introduction of infinity bare masses and coupling constants of fermions. Counter-terms, compensating for divergent quantities in self-energy diagrams of fermions and vacuum polarization diagrams at all orders of the perturbation theory, appear in the appropriate Hamiltonians under the special time-dependent unitary transformation.
CODATA recommended values of the fundamental physical constants: Peter J. Mohr,
and may also be found on the World Wide Web at physics.nist.gov/constants. DOI: 10.1103/RevModPhys.80 B. M. Wood, National Research Council, Canada Z. Zhang, National Institute of Metrology, China and Chemical Reference Data. mohr@nist.gov barry.taylor@nist.gov § dnewell@nist.gov REVIEWS OF MODERN PHYSICS
On the asymptotic homotopy type of inductive limit
In this note we exhibit large classes of (projeetionless) stable, nuclear C*- algebras whose asymptotic homotopy type is determined by K-theoretical data.
Zhivov, A.M. [International Air Technologies, Inc., Savoy, IL (United States); Rymkevich, A.A. [St. Petersburg Academy of Refrigeration and Food Technology (Russian Federation). Dept. of Refrigeration Machines and Air-Conditioning Systems
1998-12-31T23:59:59.000Z
Different ventilation strategies to improve indoor air quality and to reduce HVAC system operating costs in a restaurant with nonsmoking and smoking areas and a bar are discussed in this paper. A generic sitting-type restaurant is used for the analysis. Prototype designs for the restaurant chain with more than 200 restaurants in different US climates were analyzed to collect the information on building envelope, dining area size, heat and contaminant sources and loads, occupancy rates, and current design practices. Four constant air volume HVAC systems wit h a constant and variable (demand-based) outdoor airflow rate, with a mixing and displacement air distribution, were compared in five representative US climates: cold (Minneapolis, MN); Maritime (Seattle, WA); moderate (Albuquerque, NM); hot-dry (Phoenix, AZ); and hot-humid (Miami, FL). For all four compared cases and climatic conditions, heating and cooling consumption by the HVAC system throughout the year-round operation was calculated and operation costs were compared. The analysis shows: Displacement air distribution allows for better indoor air quality in the breathing zone at the same outdoor air supply airflow rate due to contaminant stratification along the room height. The increase in outdoor air supply during the peak hours in Miami and Albuquerque results in an increase of both heating and cooling energy consumption. In other climates, the increase in outdoor air supply results in reduced cooling energy consumption. For the Phoenix, Minneapolis, and Seattle locations, the HVAC system operation with a variable outdoor air supply allows for a decrease in cooling consumption up to 50% and, in some cases, eliminates the use of refrigeration machines. The effect of temperature stratification on HVAC system parameters is the same for all locations; displacement ventilation systems result in decreased cooling energy consumption but increased heating consumption.
Jeremy R Mould; John P Huchra; Wendy L Freedman; Robert C Kennicutt Jr; Laura Ferrarese; Holland C Ford; Brad K Gibson; John A Graham; Shaun Hughes; Garth D Illingworth; Daniel D Kelson; Lucas M Macri; Barry F Madore; Shoko Sakai; Kim Sebo; Nancy A Silbermann; Peter B Stetson
1999-09-15T23:59:59.000Z
Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc.
Light Meson Distribution Amplitudes
R. Arthur; P. A. Boyle; D. Brömmel; M. A. Donnellan; J. M. Flynn; A. Jüttner; H. Pedroso de Lima; T. D. Rae; C. T. Sachrajda; B. Samways
2010-11-12T23:59:59.000Z
We calculated the first two moments of the light-cone distribution amplitudes for the pseudoscalar mesons ($\\pi$ and $K$) and the longitudinally polarised vector mesons ($\\rho$, $K^*$ and $\\phi$) as part of the UKQCD and RBC collaborations' $N_f=2+1$ domain-wall fermion phenomenology programme. These quantities were obtained with a good precision and, in particular, the expected effects of $SU(3)$-flavour symmetry breaking were observed. Operators were renormalised non-perturbatively and extrapolations to the physical point were made, guided by leading order chiral perturbation theory. The main results presented are for two volumes, $16^3\\times 32$ and $24^3\\times 64$, with a common lattice spacing. Preliminary results for a lattice with a finer lattice spacing, $32^3\\times64$, are discussed and a first look is taken at the use of twisted boundary conditions to extract distribution amplitudes.
Blackbody Distribution for Wormholes
P. F. González-Díaz
1993-09-13T23:59:59.000Z
By assuming that only (i) bilocal vertex operators which are diagonal with respect to the basis for local field operators, and (ii) the convergent elements with nonzero positive energy of the density matrix representing the quantum state of multiply-connected wormholes, contribute the path integral that describes the effects of wormholes on ordinary matter fields at low energy, it is obtained that the probability measure for multiply connected wormholes with nondegenerate energy spectrum is given in terms of a Planckian probability distribution for the momenta of a quantum field $\\frac{1}{2}\\alpha^ {2}$, where the $\\alpha$'s are the Coleman parameters, rather than a classical gaussian distribution law, and that an observable classical universe can exist if, and only if, such multiply connected wormholes are allowed to occur.
Multipartite secure state distribution
Duer, W.; Briegel, H.-J. [Institut fuer Theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria); Institut fuer Quantenoptik und Quanteninformation der Oesterreichischen, Akademie der Wissenschaften, Innsbruck (Austria); Calsamiglia, J. [Institut fuer Theoretische Physik, Universitaet Innsbruck, Technikerstrasse 25, A-6020 Innsbruck (Austria)
2005-04-01T23:59:59.000Z
We introduce the distribution of a secret multipartite entangled state in a real-world scenario as a quantum primitive. We show that in the presence of noisy quantum channels (and noisy control operations), any state chosen from the set of two-colorable graph states (Calderbank-Shor-Steane codewords) can be created with high fidelity while it remains unknown to all parties. This is accomplished by either blind multipartite entanglement purification, which we introduce in this paper, or by multipartite entanglement purification of enlarged states, which offers advantages over an alternative scheme based on standard channel purification and teleportation. The parties are thus provided with a secret resource of their choice for distributed secure applications.
Role of the doubly stochastic Neyman type-A and Thomas counting distributionsin photon detection
Teich, Malvin C.
psychophysics experiment. A number of more complex contagious distributions arising from multiplicative useful of these "the contagious distribution of Type-A with two parame- ters." Neyman's work. The description contagious implies that each favor- able event increases (or decreases) the probability