National Library of Energy BETA

Sample records for distribution system simulation

  1. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect (OSTI)

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  2. GridLab Power Distribution System Simulation | Open Energy Information

    Open Energy Info (EERE)

    Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation...

  3. Distributed Sensors Simulator

    Energy Science and Technology Software Center (OSTI)

    2003-08-30

    The Distributed Sensors Simulator (DSS) is an infrastructure that allows the user to debug and test software for distributed sensor networks without the commitment inherent in using hardware. The flexibility of DSS allows developers and researchers to investigate topological, phenomenological, networking, robustness, and scaling issues; explore arbitrary algorithms for DSNs; and is particularly useful as a proof-of-concept tool. The user provides data on node location and specifications, defines event phenomena, and plugs in the application(s)more » to run. DSS in turn provides the virtual environmental embedding — but exposed to the user like no true embedding could ever be.« less

  4. Simulating the Daylight Performance of Complex Fenestration Systems Using Bidirectional Scattering Distribution Functions within Radiance

    SciTech Connect (OSTI)

    Ward, Gregory; Mistrick, Ph.D., Richard; Lee, Eleanor; McNeil, Andrew; Jonsson, Ph.D., Jacob

    2011-01-21

    We describe two methods which rely on bidirectional scattering distribution functions (BSDFs) to model the daylighting performance of complex fenestration systems (CFS), enabling greater flexibility and accuracy in evaluating arbitrary assemblies of glazing, shading, and other optically-complex coplanar window systems. Two tools within Radiance enable a) efficient annual performance evaluations of CFS, and b) accurate renderings of CFS despite the loss of spatial resolution associated with low-resolution BSDF datasets for inhomogeneous systems. Validation, accuracy, and limitations of the methods are discussed.

  5. Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

    SciTech Connect (OSTI)

    Palmintier, Bryan

    2015-07-28

    This presentation discusses the next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources, and also discusses future directions for transmission and distribution.

  6. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  7. Main Injector power distribution system

    SciTech Connect (OSTI)

    Cezary Jach and Daniel Wolff

    2002-06-03

    The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

  8. Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001

    Broader source: Energy.gov [DOE]

    results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

  9. FRIB cryogenic distribution system

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Knudsen, Peter N.; Arenius, Dana M.; Barrios, Matthew N.; Jones, S.; Johnson, M.; Casagrande, Fabio

    2014-01-01

    The Michigan State University Facility for Rare Isotope Beams (MSU-FRIB) helium distribution system has been revised to include bayonet/warm valve type disconnects between each cryomodule and the transfer line distribution system, similar to the Thomas Jefferson National Accelerator Facility (JLab) and the Spallation Neutron Source (SNS) cryogenic distribution systems. The heat loads at various temperature levels and some of the features in the design of the distribution system are outlined. The present status, the plans for fabrication, and the procurement approach for the helium distribution system are also included.

  10. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov [DOE]

    This presentation is from a Building America webinar conducted on November 8, 2011, by the Alliance for Residential Building Innovation (ARBI) about ductless hydronic distribution systems.

  11. PV distribution system

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    distribution system - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & ...

  12. Smart distribution systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  13. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  14. Distributed generation systems model

    SciTech Connect (OSTI)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  15. simulate the dynamic distribution of lithium in the electrode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulate the dynamic distribution of lithium in the electrode - Sandia Energy Energy ... simulate the dynamic distribution of lithium in the electrode HomeTag:simulate the ...

  16. Distribution System Voltage Regulation by Distributed Energy Resources

    SciTech Connect (OSTI)

    Ceylan, Oguzhan; Liu, Guodong; Xu, Yan; Tomsovic, Kevin

    2014-01-01

    This paper proposes a control method to regulate voltages in 3 phase unbalanced electrical distribution systems. A constrained optimization problem to minimize voltage deviations and maximize distributed energy resource (DER) active power output is solved by harmony search algorithm. IEEE 13 Bus Distribution Test System was modified to test three different cases: a) only voltage regulator controlled system b) only DER controlled system and c) both voltage regulator and DER controlled system. The simulation results show that systems with both voltage regulators and DER control provide better voltage profile.

  17. Distributed Optimization System

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2004-11-30

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  18. Transportation Anslysis Simulation System

    Energy Science and Technology Software Center (OSTI)

    2004-08-23

    account for individual traveler response to the dynamic transportation environment. In contrast, TRANSIMS provides disaggregated information that more explicitly represents the complex nature of humans interacting with the transportation system. It first generates a synthetic population that represents individuals and their households in the metropolitan region in a statistically valid way. The demographic makeup and spatial distribution of this synthetic population is derived from census data so that it matches that of the region’s real population. From survey data, a model is built of household and individual activities that may occur at home, in the workplace, school or shopping centers, for example. Trip plans including departure times, travel modes, and specific routes are created for each individual to get to his or her daily activities. TRANSIMS then simulates the movement of millions of individuals, following their trip plans throughout the transportation network, including their use of vehicles such as cars or buses, on a second-by-second basis. The virtual travel in TRANSIMS mimics the traveling and driving behavior of real people in the metropolitan region. The interactions of individual vehicles produce realistic traffic dynamics from which analysts can judge to performance of the transportation sysime and estimate vehicle emissions. Los Alamos, in cooperation with the Department of Transportation, Federal HIghway Administration and the local Metropolitan Planning Offices, has done TRANSIMS micro-simulations of auto traffic patterns in these two urban areas and completed associated scenario-based studies.« less

  19. Distributed road assessment system

    DOE Patents [OSTI]

    Beer, N. Reginald; Paglieroni, David W

    2014-03-25

    A system that detects damage on or below the surface of a paved structure or pavement is provided. A distributed road assessment system includes road assessment pods and a road assessment server. Each road assessment pod includes a ground-penetrating radar antenna array and a detection system that detects road damage from the return signals as the vehicle on which the pod is mounted travels down a road. Each road assessment pod transmits to the road assessment server occurrence information describing each occurrence of road damage that is newly detected on a current scan of a road. The road assessment server maintains a road damage database of occurrence information describing the previously detected occurrences of road damage. After the road assessment server receives occurrence information for newly detected occurrences of road damage for a portion of a road, the road assessment server determines which newly detected occurrences correspond to which previously detected occurrences of road damage.

  20. Loading relativistic Maxwell distributions in particle simulations

    SciTech Connect (OSTI)

    Zenitani, Seiji

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ?50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  1. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, D.

    1997-03-18

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system. 6 figs.

  2. Quality monitored distributed voting system

    DOE Patents [OSTI]

    Skogmo, David

    1997-01-01

    A quality monitoring system can detect certain system faults and fraud attempts in a distributed voting system. The system uses decoy voters to cast predetermined check ballots. Absent check ballots can indicate system faults. Altered check ballots can indicate attempts at counterfeiting votes. The system can also cast check ballots at predetermined times to provide another check on the distributed voting system.

  3. Measuring Advances in HVAC Distribution System Design

    SciTech Connect (OSTI)

    Franconi, E.

    1998-05-01

    Substantial commercial building energy savings have been achieved by improving the performance of the HV AC distribution system. The energy savings result from distribution system design improvements, advanced control capabilities, and use of variable-speed motors. Yet, much of the commercial building stock remains equipped with inefficient systems. Contributing to this is the absence of a definition for distribution system efficiency as well as the analysis methods for quantifying performance. This research investigates the application of performance indices to assess design advancements in commercial building thermal distribution systems. The index definitions are based on a first and second law of thermodynamics analysis of the system. The second law or availability analysis enables the determination of the true efficiency of the system. Availability analysis is a convenient way to make system efficiency comparisons since performance is evaluated relative to an ideal process. A TRNSYS simulation model is developed to analyze the performance of two distribution system types, a constant air volume system and a variable air volume system, that serve one floor of a large office building. Performance indices are calculated using the simulation results to compare the performance of the two systems types in several locations. Changes in index values are compared to changes in plant energy, costs, and carbon emissions to explore the ability of the indices to estimate these quantities.

  4. Electricity Distribution System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... the Electricity Transmission System (available online). ... or implied, or assumes any legal responsibility for the ... Workforce development and operator training are needed for ...

  5. Simulating neural systems with Xyce.

    SciTech Connect (OSTI)

    Schiek, Richard Louis; Thornquist, Heidi K.; Mei, Ting; Warrender, Christina E.; Aimone, James Bradley; Teeter, Corinne; Duda, Alex M.

    2012-12-01

    Sandia's parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

  6. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  7. EGR Distribution in Engine Cylinders Using Advanced Virtual Simulation

    SciTech Connect (OSTI)

    Fan, Xuetong

    2000-08-20

    Exhaust Gas Recirculation (EGR) is a well-known technology for reduction of NOx in diesel engines. With the demand for extremely low engine out NOx emissions, it is important to have a consistently balanced EGR flow to individual engine cylinders. Otherwise, the variation in the cylinders' NOx contribution to the overall engine emissions will produce unacceptable variability. This presentation will demonstrate the effective use of advanced virtual simulation in the development of a balanced EGR distribution in engine cylinders. An initial design is analyzed reflecting the variance in the EGR distribution, quantitatively and visually. Iterative virtual lab tests result in an optimized system.

  8. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heat & Cool Home Heating Systems Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of iStockphoto...

  9. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. ...

  10. Enhanced distributed energy resource system

    DOE Patents [OSTI]

    Atcitty, Stanley; Clark, Nancy H.; Boyes, John D.; Ranade, Satishkumar J.

    2007-07-03

    A power transmission system including a direct current power source electrically connected to a conversion device for converting direct current into alternating current, a conversion device connected to a power distribution system through a junction, an energy storage device capable of producing direct current connected to a converter, where the converter, such as an insulated gate bipolar transistor, converts direct current from an energy storage device into alternating current and supplies the current to the junction and subsequently to the power distribution system. A microprocessor controller, connected to a sampling and feedback module and the converter, determines when the current load is higher than a set threshold value, requiring triggering of the converter to supply supplemental current to the power transmission system.

  11. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  12. Distributed Energy Systems Corp | Open Energy Information

    Open Energy Info (EERE)

    Distributed Energy Systems Corp Jump to: navigation, search Name: Distributed Energy Systems Corp Place: Wallingford, Connecticut Zip: CT 06492 Product: The former holding company...

  13. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Webinar: Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team...

  14. Distributed optimization system and method

    DOE Patents [OSTI]

    Hurtado, John E.; Dohrmann, Clark R.; Robinett, III, Rush D.

    2003-06-10

    A search system and method for controlling multiple agents to optimize an objective using distributed sensing and cooperative control. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace. The objective can be: chemical sources, temperature sources, radiation sources, light sources, evaders, trespassers, explosive sources, time dependent sources, time independent sources, function surfaces, maximization points, minimization points, and optimal control of a system such as a communication system, an economy, a crane, and a multi-processor computer.

  15. World-wide distribution automation systems

    SciTech Connect (OSTI)

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  16. Communication Simulations for Power System Applications

    SciTech Connect (OSTI)

    Fuller, Jason C.; Ciraci, Selim; Daily, Jeffrey A.; Fisher, Andrew R.; Hauer, Matthew L.

    2013-05-29

    New smart grid technologies and concepts, such as dynamic pricing, demand response, dynamic state estimation, and wide area monitoring, protection, and control, are expected to require considerable communication resources. As the cost of retrofit can be high, future power grids will require the integration of high-speed, secure connections with legacy communication systems, while still providing adequate system control and security. While considerable work has been performed to create co-simulators for the power domain with load models and market operations, limited work has been performed in integrating communications directly into a power domain solver. The simulation of communication and power systems will become more important as the two systems become more inter-related. This paper will discuss ongoing work at Pacific Northwest National Laboratory to create a flexible, high-speed power and communication system co-simulator for smart grid applications. The framework for the software will be described, including architecture considerations for modular, high performance computing and large-scale scalability (serialization, load balancing, partitioning, cross-platform support, etc.). The current simulator supports the ns-3 (telecommunications) and GridLAB-D (distribution systems) simulators. Ongoing and future work will be described, including planned future expansions for a traditional transmission solver. A test case using the co-simulator, utilizing a transactive demand response system created for the Olympic Peninsula and AEP gridSMART demonstrations, requiring two-way communication between distributed and centralized market devices, will be used to demonstrate the value and intended purpose of the co-simulation environment.

  17. Analysis Model for Domestic Hot Water Distribution Systems: Preprint

    SciTech Connect (OSTI)

    Maguire, J.; Krarti, M.; Fang, X.

    2011-11-01

    A thermal model was developed to estimate the energy losses from prototypical domestic hot water (DHW) distribution systems for homes. The developed model, using the TRNSYS simulation software, allows researchers and designers to better evaluate the performance of hot water distribution systems in homes. Modeling results were compared with past experimental study results and showed good agreement.

  18. NREL: Energy Systems Integration Facility - Fuel Distribution...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Distribution Buses The Energy Systems Integration Facility's integrated fuel distribution buses provide natural gas, hydrogen, and diesel for fueling applications. Standard, ...

  19. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange Multiplier Technique (Conference) | SciTech Connect Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Citation Details In-Document Search Title: Mesoscale Simulations of Particulate Flows with Parallel Distributed Lagrange Multiplier Technique Fluid particulate flows are common phenomena in nature and industry. Modeling of such flows at micro and macro levels as well establishing relationships between these approaches are needed to

  20. Mesoscale simulations of particulate flows with parallel distributed

    Office of Scientific and Technical Information (OSTI)

    Lagrange multiplier technique (Journal Article) | SciTech Connect Journal Article: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Citation Details In-Document Search Title: Mesoscale simulations of particulate flows with parallel distributed Lagrange multiplier technique Authors: Kanarska, Y ; Lomov, I ; Antoun, T Publication Date: 2010-09-10 OSTI Identifier: 1120915 Report Number(s): LLNL-JRNL-455392 DOE Contract Number: W-7405-ENG-48

  1. Analysis and control of distributed cooperative systems.

    SciTech Connect (OSTI)

    Feddema, John Todd; Parker, Eric Paul; Wagner, John S.; Schoenwald, David Alan

    2004-09-01

    As part of DARPA Information Processing Technology Office (IPTO) Software for Distributed Robotics (SDR) Program, Sandia National Laboratories has developed analysis and control software for coordinating tens to thousands of autonomous cooperative robotic agents (primarily unmanned ground vehicles) performing military operations such as reconnaissance, surveillance and target acquisition; countermine and explosive ordnance disposal; force protection and physical security; and logistics support. Due to the nature of these applications, the control techniques must be distributed, and they must not rely on high bandwidth communication between agents. At the same time, a single soldier must easily direct these large-scale systems. Finally, the control techniques must be provably convergent so as not to cause undo harm to civilians. In this project, provably convergent, moderate communication bandwidth, distributed control algorithms have been developed that can be regulated by a single soldier. We have simulated in great detail the control of low numbers of vehicles (up to 20) navigating throughout a building, and we have simulated in lesser detail the control of larger numbers of vehicles (up to 1000) trying to locate several targets in a large outdoor facility. Finally, we have experimentally validated the resulting control algorithms on smaller numbers of autonomous vehicles.

  2. Simulating Complex Window Systems using BSDF Data

    SciTech Connect (OSTI)

    Konstantoglou, Maria; Jonsson, Jacob; Lee, Eleanor

    2009-06-22

    Nowadays, virtual models are commonly used to evaluate the performance of conventional window systems. Complex fenestration systems can be difficult to simulate accurately not only because of their geometry but also because of their optical properties that scatter light in an unpredictable manner. Bi-directional Scattering Distribution Functions (BSDF) have recently been developed based on a mixture of measurements and modelling to characterize the optics of such systems. This paper describes the workflow needed to create then use these BSDF datasets in the Radiance lighting simulation software. Limited comparisons are made between visualizations produced using the standard ray-tracing method, the BSDF method, and that taken in a full-scale outdoor mockup.

  3. Fenestration systems as luminaries of varying candlepower distribution

    SciTech Connect (OSTI)

    Papamichael, K.

    1990-10-01

    Simulation of the performance of electric lighting systems has been successfully handled using computers, since electric lighting systems have a constant luminous output with respect to intensity and spatial distribution, usually referred to as candlepower distribution, which can be measured and used conveniently. This paper describes an approach of treating fenestration systems as luminaries of varying candlepower distribution, so that the determination of their luminous performance becomes consistent with that of electric lighting systems. The transmitted distribution through fenestration systems due to radiation from the sun, sky and ground is determined from their bidirectional transmittance and the luminance distribution of the sources of radiation. The approach is demonstrated using the experimentally determined bidirectional transmittance of a diffusive sample under the uniform, overcast and clear sky luminance distributions. 6 refs., 14 figs.

  4. Distributed Energy Systems Integration Group (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Factsheet developed to describe the activites of the Distributed Energy Systems Integration Group within NREL's Electricity, Resources, and Buildings Systems Integration center.

  5. Heat Distribution Systems | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems. That...

  6. Heat Distribution Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Cool » Home Heating Systems » Heat Distribution Systems Heat Distribution Systems Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Radiators are used in steam and hot water heating. | Photo courtesy of ©iStockphoto/Jot Heat is distributed through your home in a variety of ways. Forced-air systems use ducts that can also be used for central air conditioning and heat pump systems. Radiant heating systems also have unique heat distribution systems.

  7. Low jitter RF distribution system

    DOE Patents [OSTI]

    Wilcox, Russell; Doolittle, Lawrence; Huang, Gang

    2012-09-18

    A timing signal distribution system includes an optical frequency stabilized laser signal amplitude modulated at an rf frequency. A transmitter box transmits a first portion of the laser signal and receive a modified optical signal, and outputs a second portion of the laser signal and a portion of the modified optical signal. A first optical fiber carries the first laser signal portion and the modified optical signal, and a second optical fiber carries the second portion of the laser signal and the returned modified optical signal. A receiver box receives the first laser signal portion, shifts the frequency of the first laser signal portion outputs the modified optical signal, and outputs an electrical signal on the basis of the laser signal. A detector at the end of the second optical fiber outputs a signal based on the modified optical signal. An optical delay sensing circuit outputs a data signal based on the detected modified optical signal. An rf phase detect and correct signal circuit outputs a signal corresponding to a phase stabilized rf signal based on the data signal and the frequency received from the receiver box.

  8. Tool - Transportation System Simulation (POLARIS) | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and includes traffic flow simulation, activity based demand simulation, model building and analysis geographic information system (GIS) tools, and tools for result analysis. ...

  9. Bus.py: A GridLAB-D Communication Interface for Smart Distribution Grid Simulations

    SciTech Connect (OSTI)

    Hansen, Timothy M.; Palmintier, Bryan; Suryanarayanan, Siddharth; Maciejewski, Anthony A.; Siegel, Howard Jay

    2015-07-03

    As more Smart Grid technologies (e.g., distributed photovoltaic, spatially distributed electric vehicle charging) are integrated into distribution grids, static distribution simulations are no longer sufficient for performing modeling and analysis. GridLAB-D is an agent-based distribution system simulation environment that allows fine-grained end-user models, including geospatial and network topology detail. A problem exists in that, without outside intervention, once the GridLAB-D simulation begins execution, it will run to completion without allowing the real-time interaction of Smart Grid controls, such as home energy management systems and aggregator control. We address this lack of runtime interaction by designing a flexible communication interface, Bus.py (pronounced bus-dot-pie), that uses Python to pass messages between one or more GridLAB-D instances and a Smart Grid simulator. This work describes the design and implementation of Bus.py, discusses its usefulness in terms of some Smart Grid scenarios, and provides an example of an aggregator-based residential demand response system interacting with GridLAB-D through Bus.py. The small scale example demonstrates the validity of the interface and shows that an aggregator using said interface is able to control residential loads in GridLAB-D during runtime to cause a reduction in the peak load on the distribution system in (a) peak reduction and (b) time-of-use pricing cases.

  10. Building America Webinar: Ductless Hydronic Distribution Systems |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Ductless Hydronic Distribution Systems Building America Webinar: Ductless Hydronic Distribution Systems This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution systems in new homes and deep retrofits. webinar_arbi_20111108.wmv (14.32 MB) More Documents & Publications Building America Webinar: National Residential Efficiency Measures Database

  11. Parallelization and automatic data distribution for nuclear reactor simulations

    SciTech Connect (OSTI)

    Liebrock, L.M.

    1997-07-01

    Detailed attempts at realistic nuclear reactor simulations currently take many times real time to execute on high performance workstations. Even the fastest sequential machine can not run these simulations fast enough to ensure that the best corrective measure is used during a nuclear accident to prevent a minor malfunction from becoming a major catastrophe. Since sequential computers have nearly reached the speed of light barrier, these simulations will have to be run in parallel to make significant improvements in speed. In physical reactor plants, parallelism abounds. Fluids flow, controls change, and reactions occur in parallel with only adjacent components directly affecting each other. These do not occur in the sequentialized manner, with global instantaneous effects, that is often used in simulators. Development of parallel algorithms that more closely approximate the real-world operation of a reactor may, in addition to speeding up the simulations, actually improve the accuracy and reliability of the predictions generated. Three types of parallel architecture (shared memory machines, distributed memory multicomputers, and distributed networks) are briefly reviewed as targets for parallelization of nuclear reactor simulation. Various parallelization models (loop-based model, shared memory model, functional model, data parallel model, and a combined functional and data parallel model) are discussed along with their advantages and disadvantages for nuclear reactor simulation. A variety of tools are introduced for each of the models. Emphasis is placed on the data parallel model as the primary focus for two-phase flow simulation. Tools to support data parallel programming for multiple component applications and special parallelization considerations are also discussed.

  12. Implementation of Parallel Dynamic Simulation on Shared-Memory vs. Distributed-Memory Environments

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Chen, Yousu; Wu, Di; Diao, Ruisheng; Huang, Zhenyu

    2015-12-09

    Power system dynamic simulation computes the system response to a sequence of large disturbance, such as sudden changes in generation or load, or a network short circuit followed by protective branch switching operation. It consists of a large set of differential and algebraic equations, which is computational intensive and challenging to solve using single-processor based dynamic simulation solution. High-performance computing (HPC) based parallel computing is a very promising technology to speed up the computation and facilitate the simulation process. This paper presents two different parallel implementations of power grid dynamic simulation using Open Multi-processing (OpenMP) on shared-memory platform, and Message Passing Interface (MPI) on distributed-memory clusters, respectively. The difference of the parallel simulation algorithms and architectures of the two HPC technologies are illustrated, and their performances for running parallel dynamic simulation are compared and demonstrated.

  13. Simulation and sequential dynamical systems

    SciTech Connect (OSTI)

    Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    Computer simulations have a generic structure. Motivated by this the authors present a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {yields} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper), which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes.

  14. Energy Efficiency of Distributed Environmental Control Systems

    SciTech Connect (OSTI)

    Khalifa, H. Ezzat; Isik, Can; Dannenhoffer, John F. III

    2011-02-23

    In this report, we present an analytical evaluation of the potential of occupant-regulated distributed environmental control systems (DECS) to enhance individual occupant thermal comfort in an office building with no increase, and possibly even a decrease in annual energy consumption. To this end we developed and applied several analytical models that allowed us to optimize comfort and energy consumption in partitioned office buildings equipped with either conventional central HVAC systems or occupant-regulated DECS. Our approach involved the following interrelated components: 1. Development of a simplified lumped-parameter thermal circuit model to compute the annual energy consumption. This was necessitated by the need to perform tens of thousands of optimization calculations involving different US climatic regions, and different occupant thermal preferences of a population of ~50 office occupants. Yearly transient simulations using TRNSYS, a time-dependent building energy modeling program, were run to determine the robustness of the simplified approach against time-dependent simulations. The simplified model predicts yearly energy consumption within approximately 0.6% of an equivalent transient simulation. Simulations of building energy usage were run for a wide variety of climatic regions and control scenarios, including traditional “one-size-fits-all” (OSFA) control; providing a uniform temperature to the entire building, and occupant-selected “have-it-your-way” (HIYW) control with a thermostat at each workstation. The thermal model shows that, un-optimized, DECS would lead to an increase in building energy consumption between 3-16% compared to the conventional approach depending on the climate regional and personal preferences of building occupants. Variations in building shape had little impact in the relative energy usage. 2. Development of a gradient-based optimization method to minimize energy consumption of DECS while keeping each occupant

  15. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect (OSTI)

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  16. Lighting system with heat distribution face plate

    DOE Patents [OSTI]

    Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

    2013-09-10

    Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

  17. Hybrid solar lighting distribution systems and components

    DOE Patents [OSTI]

    Muhs, Jeffrey D.; Earl, Dennis D.; Beshears, David L.; Maxey, Lonnie C.; Jordan, John K.; Lind, Randall F.

    2011-07-05

    A hybrid solar lighting distribution system and components having at least one hybrid solar concentrator, at least one fiber receiver, at least one hybrid luminaire, and a light distribution system operably connected to each hybrid solar concentrator and each hybrid luminaire. A controller operates all components.

  18. Physics Detector Simulation Facility Phase II system software description

    SciTech Connect (OSTI)

    Scipioni, B.; Allen, J.; Chang, C.; Huang, J.; Liu, J.; Mestad, S.; Pan, J.; Marquez, M.; Estep, P.

    1993-05-01

    This paper presents the Physics Detector Simulation Facility (PDSF) Phase II system software. A key element in the design of a distributed computing environment for the PDSF has been the separation and distribution of the major functions. The facility has been designed to support batch and interactive processing, and to incorporate the file and tape storage systems. By distributing these functions, it is often possible to provide higher throughput and resource availability. Similarly, the design is intended to exploit event-level parallelism in an open distributed environment.

  19. Differences Between Distributed and Parallel Systems

    SciTech Connect (OSTI)

    Brightwell, R.; Maccabe, A.B.; Rissen, R.

    1998-10-01

    Distributed systems have been studied for twenty years and are now coming into wider use as fast networks and powerful workstations become more readily available. In many respects a massively parallel computer resembles a network of workstations and it is tempting to port a distributed operating system to such a machine. However, there are significant differences between these two environments and a parallel operating system is needed to get the best performance out of a massively parallel system. This report characterizes the differences between distributed systems, networks of workstations, and massively parallel systems and analyzes the impact of these differences on operating system design. In the second part of the report, we introduce Puma, an operating system specifically developed for massively parallel systems. We describe Puma portals, the basic building blocks for message passing paradigms implemented on top of Puma, and show how the differences observed in the first part of the report have influenced the design and implementation of Puma.

  20. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect (OSTI)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  1. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    SciTech Connect (OSTI)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  2. Thermal Simulation of Advanced Powertrain Systems

    Broader source: Energy.gov [DOE]

    Under this project, the Volvo complete vehicle model was modified to include engine and exhaust system thermal outputs and cooling system to enable WHR simulations from a system perspective.

  3. System-of-Systems Approach for Integrated Energy Systems Modeling and Simulation: Preprint

    SciTech Connect (OSTI)

    Mittal, Saurabh; Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Krishnamurthy, Dheepak; Jones, Wesley

    2015-08-21

    Today’s electricity grid is the most complex system ever built—and the future grid is likely to be even more complex because it will incorporate distributed energy resources (DERs) such as wind, solar, and various other sources of generation and energy storage. The complexity is further augmented by the possible evolution to new retail market structures that provide incentives to owners of DERs to support the grid. To understand and test new retail market structures and technologies such as DERs, demand-response equipment, and energy management systems while providing reliable electricity to all customers, an Integrated Energy System Model (IESM) is being developed at NREL. The IESM is composed of a power flow simulator (GridLAB-D), home energy management systems implemented using GAMS/Pyomo, a market layer, and hardware-in-the-loop simulation (testing appliances such as HVAC, dishwasher, etc.). The IESM is a system-of-systems (SoS) simulator wherein the constituent systems are brought together in a virtual testbed. We will describe an SoS approach for developing a distributed simulation environment. We will elaborate on the methodology and the control mechanisms used in the co-simulation illustrated by a case study.

  4. Method for simulating discontinuous physical systems

    DOE Patents [OSTI]

    Baty, Roy S.; Vaughn, Mark R.

    2001-01-01

    The mathematical foundations of conventional numerical simulation of physical systems provide no consistent description of the behavior of such systems when subjected to discontinuous physical influences. As a result, the numerical simulation of such problems requires ad hoc encoding of specific experimental results in order to address the behavior of such discontinuous physical systems. In the present invention, these foundations are replaced by a new combination of generalized function theory and nonstandard analysis. The result is a class of new approaches to the numerical simulation of physical systems which allows the accurate and well-behaved simulation of discontinuous and other difficult physical systems, as well as simpler physical systems. Applications of this new class of numerical simulation techniques to process control, robotics, and apparatus design are outlined.

  5. Real-time distributed multimedia systems

    SciTech Connect (OSTI)

    Rahurkar, S.S.; Bourbakis, N.G.

    1996-12-31

    This paper presents a survey on distributed multimedia systems and discusses real-time issues. In particular, different subsystems are reviewed that impact on multimedia networking, the networking for multimedia, the networked multimedia systems, and the leading edge research and developments efforts and issues in networking.

  6. Parallel Implementation of Power System Dynamic Simulation

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Huang, Zhenyu; Diao, Ruisheng; Wu, Di; Chen, Yousu

    2013-07-21

    Dynamic simulation of power system transient stability is important for planning, monitoring, operation, and control of electrical power systems. However, modeling the system dynamics and network involves the computationally intensive time-domain solution of numerous differential and algebraic equations (DAE). This results in a transient stability implementation that may not maintain the real-time constraints of an online security assessment. This paper presents a parallel implementation of the dynamic simulation on a high-performance computing (HPC) platform using parallel simulation algorithms and computation architectures. It enables the simulation to run even faster than real time, enabling the look-ahead capability of upcoming stability problems in the power grid.

  7. Energy optimization of water distribution system

    SciTech Connect (OSTI)

    Not Available

    1993-02-01

    In order to analyze pump operating scenarios for the system with the computer model, information on existing pumping equipment and the distribution system was collected. The information includes the following: component description and design criteria for line booster stations, booster stations with reservoirs, and high lift pumps at the water treatment plants; daily operations data for 1988; annual reports from fiscal year 1987/1988 to fiscal year 1991/1992; and a 1985 calibrated KYPIPE computer model of DWSD`s water distribution system which included input data for the maximum hour and average day demands on the system for that year. This information has been used to produce the inventory database of the system and will be used to develop the computer program to analyze the system.

  8. System Simulations of Hybrid Electric Vehicles with Focus on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid ...

  9. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  10. Transportation System Simulation | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation System Simulation Transportation System Simulation Today's transportation systems are becoming more and more complex, with integration of communication technologies, vehicle automation and innovative mobility solutions. The advent of connected and autonomous vehicles (CAVs) will see no shortage of new technologies aimed at transforming transportation. While some will likely succeed and others fail, to truly understand their potential and their impacts on the larger transportation

  11. Distributed Object Oriented Geographic Information System

    Energy Science and Technology Software Center (OSTI)

    1997-02-01

    This interactive, object-oriented, distributed Geographic Information System (GIS) uses the World Wibe Web (WWW) as application medium and distribution mechanism. The software provides distributed access to multiple geo-spatial databases and presents them as if they came from a single coherent database. DOOGIS distributed access comes not only in the form of multiple geo-spatial servers but can break down a single logical server into the constituent physical servers actually storing the data. The program provides formore » dynamic protocol resolution and content handling allowing unknown objects from a particular server to download their handling code. Security and access privileges are negotiated dynamically with each server contacted and each access attempt.« less

  12. Evaluating Domestic Hot Water Distribution System Options with Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, E.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. Transient System Simulation Tool (TRNSYS) is a full distribution system developed that has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. In this study, the Building America team built upon previous analysis modeling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall, 124 different TRNSYS models were simulated. The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  13. Distributed Frequency Control of Prosumer-Based Electric Energy Systems

    SciTech Connect (OSTI)

    Nazari, MH; Costello, Z; Feizollahi, MJ; Grijalva, S; Egerstedt, M

    2014-11-01

    In this paper, we propose a distributed frequency regulation framework for prosumer-based electric energy systems, where a prosumer (producer-consumer) is defined as an intelligent agentwhich can produce, consume, and/or store electricity. Despite the frequency regulators being distributed, stability can be ensured while avoiding inter-area oscillations using a limited control effort. To achieve this, a fully distributed one-step model-predictive control protocol is proposed and analyzed, whereby each prosumer communicates solely with its neighbors in the network. The efficacy of the proposed frequency regulation framework is shown through simulations on two real-world electric energy systems of different scale and complexity. We show that prosumers can indeed bring frequency and power deviations to their desired values after small perturbations.

  14. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL

  15. Harmonic analysis of electrical distribution systems

    SciTech Connect (OSTI)

    1996-03-01

    This report presents data pertaining to research on harmonics of electric power distribution systems. Harmonic data is presented on RMS and average measurements for determination of harmonics in buildings; fluorescent ballast; variable frequency drive; georator geosine harmonic data; uninterruptible power supply; delta-wye transformer; westinghouse suresine; liebert datawave; and active injection mode filter data.

  16. An advanced power distribution automation model system

    SciTech Connect (OSTI)

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  17. Measuring the Resilience of Energy Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report provides a review of existing resilience metrics for electric, oil, and natural gas distribution systems. The report summarizes the concepts addressed by measures of resilience, describes a framework for organizing alternative metrics used to measure resilience of energy distribution systems, and reviews the state of metrics for resilience of such systems. The framework organized resilience metrics into five categories – system inputs, capacities, capabilities, performance and outcomes – and existing metrics were evaluated within the context of this framework. The report finds more metrics for the electricity system than for oil and gas and that the literature pays greater attention to metrics at the facility level. Also, there were many performance measures identified at the system and regional level and these metrics were determined to be relatively well developed. In comparison, outcome measures were identified at the system, regional and national levels, but they were judged to be relatively less well developed. To improve resilience metrics, the report recommends standardizing data on inputs and capacities at the facility and system levels; developing measures of capabilities at the system and regional levels; and improving understanding of how capabilities and performance translate to regional and national outcomes.

  18. Pressure Regain Strategies for Existing Air Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pressure Regain Strategies for Existing Air Distribution Systems Pressure Regain Strategies for Existing Air Distribution Systems This presentation was delivered at the U.S. ...

  19. Physical Modeling of Scaled Water Distribution System Networks...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Physical Modeling of Scaled Water Distribution System Networks. Citation Details In-Document Search Title: Physical Modeling of Scaled Water Distribution System ...

  20. Eliminate Excessive In-Plant Distribution System Voltage Drops

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Excessive In-Plant Distribution System Voltage Drops Studies indicate that in-plant electrical distribution system losses-due to voltage unbalance, over- and undervoltage, low ...

  1. Laser spark distribution and ignition system

    DOE Patents [OSTI]

    Woodruff, Steven; McIntyre, Dustin L.

    2008-09-02

    A laser spark distribution and ignition system that reduces the high power optical requirements for use in a laser ignition and distribution system allowing for the use of optical fibers for delivering the low peak energy pumping pulses to a laser amplifier or laser oscillator. An optical distributor distributes and delivers optical pumping energy from an optical pumping source to multiple combustion chambers incorporating laser oscillators or laser amplifiers for inducing a laser spark within a combustion chamber. The optical distributor preferably includes a single rotating mirror or lens which deflects the optical pumping energy from the axis of rotation and into a plurality of distinct optical fibers each connected to a respective laser media or amplifier coupled to an associated combustion chamber. The laser spark generators preferably produce a high peak power laser spark, from a single low power pulse. The laser spark distribution and ignition system has application in natural gas fueled reciprocating engines, turbine combustors, explosives and laser induced breakdown spectroscopy diagnostic sensors.

  2. Distributed parallel messaging for multiprocessor systems

    DOE Patents [OSTI]

    Chen, Dong; Heidelberger, Philip; Salapura, Valentina; Senger, Robert M; Steinmacher-Burrow, Burhard; Sugawara, Yutaka

    2013-06-04

    A method and apparatus for distributed parallel messaging in a parallel computing system. The apparatus includes, at each node of a multiprocessor network, multiple injection messaging engine units and reception messaging engine units, each implementing a DMA engine and each supporting both multiple packet injection into and multiple reception from a network, in parallel. The reception side of the messaging unit (MU) includes a switch interface enabling writing of data of a packet received from the network to the memory system. The transmission side of the messaging unit, includes switch interface for reading from the memory system when injecting packets into the network.

  3. Generic solar photovoltaic system dynamic simulation model specification.

    SciTech Connect (OSTI)

    Ellis, Abraham; Behnke, Michael Robert; Elliott, Ryan Thomas

    2013-10-01

    This document is intended to serve as a specification for generic solar photovoltaic (PV) system positive-sequence dynamic models to be implemented by software developers and approved by the WECC MVWG for use in bulk system dynamic simulations in accordance with NERC MOD standards. Two specific dynamic models are included in the scope of this document. The first, a Central Station PV System model, is intended to capture the most important dynamic characteristics of large scale (> 10 MW) PV systems with a central Point of Interconnection (POI) at the transmission level. The second, a Distributed PV System model, is intended to represent an aggregation of smaller, distribution-connected systems that comprise a portion of a composite load that might be modeled at a transmission load bus.

  4. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  5. FRIB Cryogenic Distribution System and Status

    SciTech Connect (OSTI)

    Ganni, Venkatarao; Dixon, Kelly D.; Laverdure, Nathaniel A.; Yang, Shuo; Nellis, Timothy; Jones, S.; Casagrande, Fabio

    2015-12-01

    The MSU-FRIB cryogenic distribution system supports the 2 K primary, 4 K primary, and 35 - 55 K shield operation of more than 70 loads in the accelerator and the experimental areas. It is based on JLab and SNS experience with bayonet-type disconnects between the loads and the distribution system for phased commissioning and maintenance. The linac transfer line, which features three separate transfer line segments for additional independence during phased commissioning at 4 K and 2 K, connects the folded arrangement of 49 cryomodules and 4 superconducting dipole magnets and a fourth transfer line supports the separator area cryo loads. The pressure reliefs for the transfer line process lines, located in the refrigeration room outside the tunnel/accelerator area, are piped to be vented outdoors. The transfer line designs integrate supply and return flow paths into a combined vacuum space. The main linac distribution segments are produced in a small number of standard configurations; a prototype of one such configuration has been fabricated at Jefferson Lab and has been installed at MSU to support testing of a prototype FRIB cryomodule.

  6. Mesoscale Simulations of Particulate Flows with Parallel Distributed

    Office of Scientific and Technical Information (OSTI)

    Distributed Lagrange Multiplier Technique Kanarska, Y 71 CLASSICAL AND QUANTUMM MECHANICS, GENERAL PHYSICS; ACCURACY; CONVERGENCE; FLUID FLOW; IMPLEMENTATION; MODIFICATIONS;...

  7. Overview of Vehicle and Systems Simulation and Testing | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    vtpn03vssslezak2012o.pdf More Documents & Publications Vehicle & Systems Simulation & Testing Overview of Vehicle and Systems Simulation and Testing Vehicle Technologies...

  8. Modeling of Diesel Exhaust Systems: A methodology to better simulate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Modeling of Diesel Exhaust Systems: A methodology to better simulate soot reactivity Discussed ...

  9. Property:Distributed Generation System Enclosure | Open Energy...

    Open Energy Info (EERE)

    + Outdoor + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Dedicated Shelter + Distributed Generation StudySUNY Buffalo + Outdoor +...

  10. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  11. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect (OSTI)

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  12. Hot Water Distribution System Model Enhancements

    SciTech Connect (OSTI)

    Hoeschele, M.; Weitzel, E.

    2012-11-01

    This project involves enhancement of the HWSIM distribution system model to more accurately model pipe heat transfer. Recent laboratory testing efforts have indicated that the modeling of radiant heat transfer effects is needed to accurately characterize piping heat loss. An analytical methodology for integrating radiant heat transfer was implemented with HWSIM. Laboratory test data collected in another project was then used to validate the model for a variety of uninsulated and insulated pipe cases (copper, PEX, and CPVC). Results appear favorable, with typical deviations from lab results less than 8%.

  13. Mesoscale Simulations of Particulate Flows with Parallel Distributed...

    Office of Scientific and Technical Information (OSTI)

    Visit OSTI to utilize additional information resources in energy science and technology. A ... We propose a computational technique based on the direct numerical simulation of the ...

  14. Distributed fiber optic moisture intrusion sensing system

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2003-06-24

    Method and system for monitoring and identifying moisture intrusion in soil such as is contained in landfills housing radioactive and/or hazardous waste. The invention utilizes the principle that moist or wet soil has a higher thermal conductance than dry soil. The invention employs optical time delay reflectometry in connection with a distributed temperature sensing system together with heating means in order to identify discrete areas within a volume of soil wherein temperature is lower. According to the invention an optical element and, optionally, a heating element may be included in a cable or other similar structure and arranged in a serpentine fashion within a volume of soil to achieve efficient temperature detection across a large area or three dimensional volume of soil. Remediation, moisture countermeasures, or other responsive action may then be coordinated based on the assumption that cooler regions within a soil volume may signal moisture intrusion where those regions are located.

  15. Electric System Intra-hour Operation Simulator

    Energy Science and Technology Software Center (OSTI)

    2014-03-07

    ESIOS is a software program developed at Pacific Northwest National Laboratory (PNNL) that performs intra-hour dispatch and automatic generation control (AGC) simulations for electric power system frequency regulation and load/variable generation following. The program dispatches generation resources at minute interval to meet control performance requirements, while incorporating stochastic models of forecast errors and variability with generation, load, interchange and market behaviors. The simulator also contains an operator model that mimics manual actions to adjust resourcemore » dispatch and maintain system reserves. Besides simulating generation fleet intra-hour dispatch, ESIOS can also be used as a test platform for the design and verification of energy storage, demand response, and other technologies helping to accommodate variable generation.« less

  16. LHC RF System Time-Domain Simulation

    SciTech Connect (OSTI)

    Mastorides, T.; Rivetta, C.

    2010-09-14

    Non-linear time-domain simulations have been developed for the Positron-Electron Project (PEP-II) and the Large Hadron Collider (LHC). These simulations capture the dynamic behavior of the RF station-beam interaction and are structured to reproduce the technical characteristics of the system (noise contributions, non-linear elements, and more). As such, they provide useful results and insight for the development and design of future LLRF feedback systems. They are also a valuable tool for the study of diverse longitudinal beam dynamics effects such as coupled-bunch impedance driven instabilities and single bunch longitudinal emittance growth. Results from these studies and related measurements from PEP-II and LHC have been presented in multiple places. This report presents an example of the time-domain simulation implementation for the LHC.

  17. NREL: Electric Infrastructure Systems Research - Distributed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Integration Research Printable Version Distributed Energy Resources Test Facility Virtual Tour The Distributed Energy Resources Test Facility (DERTF), located at the ...

  18. A simulation of data acquisition system for SSC experiments

    SciTech Connect (OSTI)

    Watase, Y.; Ikeda, H.

    1989-04-01

    A simulation on some parts of the data acquisition system was performed using a general purpose simulation language GPSS. Several results of the simulation are discussed for the data acquisition system for the SSC experiment.

  19. The Astrophysics Simulation Collaboratory portal: A framework foreffective distributed research

    SciTech Connect (OSTI)

    Bondarescu, Ruxandra; Allen, Gabrielle; Daues, Gregory; Kelly,Ian; Russell, Michael; Seidel, Edward; Shalf, John; Tobias, Malcolm

    2003-03-03

    We describe the motivation, architecture, and implementation of the Astrophysics Simulation Collaboratory (ASC) portal. The ASC project provides a web-based problem solving framework for the astrophysics community that harnesses the capabilities of emerging computational grids.

  20. PROJECT PROFILE: Visualization and Analytics of Distribution Systems with

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Penetration of Distributed Energy Resources (SuNLaMP) | Department of Energy Visualization and Analytics of Distribution Systems with Deep Penetration of Distributed Energy Resources (SuNLaMP) PROJECT PROFILE: Visualization and Analytics of Distribution Systems with Deep Penetration of Distributed Energy Resources (SuNLaMP) Funding Program: SuNLaMP SunShot Subprogram: Systems Integration Location: SLAC National Accelerator Laboratory, Menlo Park, CA SunShot Award Amount: $4,000,000

  1. Clock distribution system for digital computers

    DOE Patents [OSTI]

    Wyman, Robert H.; Loomis, Jr., Herschel H.

    1981-01-01

    Apparatus for eliminating, in each clock distribution amplifier of a clock distribution system, sequential pulse catch-up error due to one pulse "overtaking" a prior clock pulse. The apparatus includes timing means to produce a periodic electromagnetic signal with a fundamental frequency having a fundamental frequency component V'.sub.01 (t); an array of N signal characteristic detector means, with detector means No. 1 receiving the timing means signal and producing a change-of-state signal V.sub.1 (t) in response to receipt of a signal above a predetermined threshold; N substantially identical filter means, one filter means being operatively associated with each detector means, for receiving the change-of-state signal V.sub.n (t) and producing a modified change-of-state signal V'.sub.n (t) (n=1, . . . , N) having a fundamental frequency component that is substantially proportional to V'.sub.01 (t-.theta..sub.n (t) with a cumulative phase shift .theta..sub.n (t) having a time derivative that may be made uniformly and arbitrarily small; and with the detector means n+1 (1.ltoreq.n

  2. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31

    focus towards what to observe rather than how to observe in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using sensor teams, system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  3. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  4. NREL: Distributed Grid Integration - Energy System Basics Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development ...

  5. Secondary Network Distribution Systems Background and Issues Related to the Interconnection of Distributed Resources

    SciTech Connect (OSTI)

    Behnke, M.; Erdman, W.; Horgan, S.; Dawson, D.; Feero, W.; Soudi, F.; Smith, D.; Whitaker, C.; Kroposki, B.

    2005-07-01

    This document addresses the technical considerations associated with the interconnection of distributed resources (DR) with secondary network distribution systems. It provides an overview of the characteristics of distribution systems and interconnection requirements and identifies unique issues specific to network interconnections. It also identifies the network-specific interconnection issues for which test protocols should be developed. Recommended criteria and requirements for the interconnection of DR with network distribution systems are presented.

  6. Alarm Management System for the D/3 Distributed Control System

    Energy Science and Technology Software Center (OSTI)

    1997-03-19

    As industrial processes continue to grow in size and complexity, the Distrubuted Control Systems that automate and monitor these processes expand in a like manner. This increase in control system complexity has resulted in ever increasing numbers of alarms presented to the operator. The challenge for today's control system designer is to find innovative ways to present alarm information to the operator such that despite the large number of alarms, the operator is able tomore » quickly assess the status of the plant and immediately respond to the most critical alarms in a timely manner. This software package, designed and developed for the Savannah River Site Replacement High Level Waste Evaporator/Waste Removal Distributed Control System installed on the H-Area Tank Farm, provides an alarm system which utilizes the annunciator (SKID) panel as a means of statusing the plant and providing single keystroke access to the display on which an alarm resides.« less

  7. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  8. Characterizing and Improving Distributed Intrusion Detection Systems.

    SciTech Connect (OSTI)

    Hurd, Steven A.; Proebstel, Elliot P.

    2007-11-01

    Due to ever-increasing quantities of information traversing networks, network administrators are developing greater reliance upon statistically sampled packet information as the source for their intrusion detection systems (IDS). Our research is aimed at understanding IDS performance when statistical packet sampling is used. Using the Snort IDS and a variety of data sets, we compared IDS results when an entire data set is used to the results when a statistically sampled subset of the data set is used. Generally speaking, IDS performance with statistically sampled information was shown to drop considerably even under fairly high sampling rates (such as 1:5). Characterizing and Improving Distributed Intrusion Detection Systems4AcknowledgementsThe authors wish to extend our gratitude to Matt Bishop and Chen-Nee Chuah of UC Davis for their guidance and support on this work. Our thanks are also extended to Jianning Mai of UC Davis and Tao Ye of Sprint Advanced Technology Labs for their generous assistance.We would also like to acknowledge our dataset sources, CRAWDAD and CAIDA, without which this work would not have been possible. Support for OC48 data collection is provided by DARPA, NSF, DHS, Cisco and CAIDA members.

  9. HSI Prototypes for Human Systems Simulation Laboratory

    SciTech Connect (OSTI)

    Jokstad, Håkon; McDonald, Rob

    2015-09-01

    This report describes in detail the design and features of three Human System Interface (HSI) prototypes developed by the Institutt for Energiteknikk (IFE) in support of the U.S. Department of Energy’s Light Water Reactor Sustainability Program under Contract 128420 through Idaho National Laboratory (INL). The prototypes are implemented for the Generic Pressurized Water Reactor simulator and installed in the Human Systems Simulation Laboratory at INL. The three prototypes are: 1) Power Ramp display 2) RCS Heat-up and Cool-down display 3) Estimated time to limit display The power ramp display and the RCS heat-up/cool-down display are designed to provide good visual indications to the operators on how well they are performing their task compared to their target ramp/heat-up/cool-down rate. The estimated time to limit display is designed to help operators restore levels or pressures before automatic or required manual actions are activated.

  10. Control and regulation of modern distribution system, ForskEL...

    Open Energy Info (EERE)

    system, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Control and regulation of modern distribution system, ForskEL Country Denmark Coordinates...

  11. and Control of Power Systems Using Distributed Synchrophasors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be offered through the Electrical & Computer Engineering ... program focused on distribution systems, substation ... of Synchrophasors in transmission-level power systems, and ...

  12. Distributed Generation Systems Inc DISGEN | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc DISGEN Jump to: navigation, search Name: Distributed Generation Systems Inc (DISGEN) Place: Lakewood, Colorado Zip: 80228 Sector: Wind energy Product: Developer of...

  13. Detection of contamination of municipal water distribution systems

    DOE Patents [OSTI]

    Cooper, John F.

    2012-01-17

    A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

  14. Detailed End Use Load Modeling for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.

    2010-04-09

    The field of distribution system analysis has made significant advances in the past ten years. It is now standard practice when performing a power flow simulation to use an algorithm that is capable of unbalanced per-phase analysis. Recent work has also focused on examining the need for time-series simulations instead of examining a single time period, i.e., peak loading. One area that still requires a significant amount of work is the proper modeling of end use loads. Currently it is common practice to use a simple load model consisting of a combination of constant power, constant impedance, and constant current elements. While this simple form of end use load modeling is sufficient for a single point in time, the exact model values are difficult to determine and it is inadequate for some time-series simulations. This paper will examine how to improve simple time invariant load models as well as develop multi-state time variant models.

  15. Power electronics system modeling and simulation (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    Title: Power electronics system modeling and simulation This paper introduces control system design based softwares, SIMNON and MATLABSIMULINK, for power electronics system ...

  16. Evaluating Domestic Hot Water Distribution System Options With Validated Analysis Models

    SciTech Connect (OSTI)

    Weitzel, E.; Hoeschele, M.

    2014-09-01

    A developing body of work is forming that collects data on domestic hot water consumption, water use behaviors, and energy efficiency of various distribution systems. A full distribution system developed in TRNSYS has been validated using field monitoring data and then exercised in a number of climates to understand climate impact on performance. This study builds upon previous analysis modelling work to evaluate differing distribution systems and the sensitivities of water heating energy and water use efficiency to variations of climate, load, distribution type, insulation and compact plumbing practices. Overall 124 different TRNSYS models were simulated. Of the configurations evaluated, distribution losses account for 13-29% of the total water heating energy use and water use efficiency ranges from 11-22%. The base case, an uninsulated trunk and branch system sees the most improvement in energy consumption by insulating and locating the water heater central to all fixtures. Demand recirculation systems are not projected to provide significant energy savings and in some cases increase energy consumption. Water use is most efficient with demand recirculation systems, followed by the insulated trunk and branch system with a central water heater. Compact plumbing practices and insulation have the most impact on energy consumption (2-6% for insulation and 3-4% per 10 gallons of enclosed volume reduced). The results of this work are useful in informing future development of water heating best practices guides as well as more accurate (and simulation time efficient) distribution models for annual whole house simulation programs.

  17. NREL: Electric Infrastructure Systems Research - Distributed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    project, which uses electricity from wind turbines and solar panels to produce hydrogen. ... Electricity Integration Research Home Distributed Grid Integration Transmission Grid ...

  18. Building America Webinar: Ductless Hydronic Distribution Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This webinar was presented by research team Alliance for Residential Building Innovation (ARBI), and reviewed findings from a feasibility study of ductless hydronic distribution ...

  19. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  20. Reinvestigation of the charge density distribution in arc discharge fusion system

    SciTech Connect (OSTI)

    Sheng, Lin Horng; Yee, Lee Kim; Nan, Phua Yeong; Thung, Yong Yun; Khok, Yong Thian; Rahman, Faidz Abd

    2015-04-24

    A continual arc discharge system has been setup and the light intensity of arc discharge has been profiled. The mathematical model of local energy density distribution in arc discharge fusion has been simulated which is in good qualitative agreement with light intensity profile of arc discharge in the experiments. Eventually, the local energy density distribution of arc discharge system is able to be precisely manipulated to act as heat source in the fabrication of fused fiber devices.

  1. November 18 PSERC Webinar: Quantifying and Mitigating the Impacts of PV in Distribution Systems

    Broader source: Energy.gov [DOE]

    The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting a simulation-based investigation of PV impacts on distribution systems and discussing a new approach for volt-VAR optimization with reactive power capabilities of PV inverters.

  2. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  3. Improving the efficiency of residential air-distribution systems in California, Phase 1

    SciTech Connect (OSTI)

    Modera, M.; Dickerhoff, D.; Jansky, R.; Smith, B.

    1992-06-01

    This report describes the results of the first phase of a multiyear research project. The project`s goal is to investigate ways to improve the efficiency of air-distribution systems in detached, single-family residences in California. First-year efforts included: A survey of heating, ventilating, and air conditioning (HVAC) contractors in California. A 31-house field study of distribution-system performance based on diagnostic measurements. Development of an integrated air-flow and thermal-simulation tool for investigating residential air-distribution system performance. Highlights of the field results include the following: Building envelopes for houses built after 1979 appear to be approximately 30% tighter. Duct-system tightness showed no apparent improvement in post-1979 houses. Distribution-fan operation added an average of 0.45 air changes per hour (ACH) to the average measured rate of 0.24 ACH. The simulation tool developed is based on DOE-2 for the thermal simulations and on MOVECOMP, an air-flow network simulation model, for the duct/house leakage and flow interactions. The first complete set of simulations performed (for a ranch house in Sacramento) indicated that the overall heating-season efficiency of the duct systems was approximately 65% to 70% and that the overall cooling-season efficiency was between 60% and 75%. The wide range in cooling-season efficiency reflects the difference between systems with attic return ducts and those with crawl-space return ducts, the former being less efficient. The simulations also indicated that the building envelope`s UA-value, a measurement of thermoconductivity, did not have a significant impact on the overall efficiency of the air-distribution system.

  4. Tool - Vehicle System Simulation (Autonomie) | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool - Vehicle System Simulation (Autonomie) Tool - Vehicle System Simulation (Autonomie) Autonomie s a most powerful and robust system simulation tool for vehicle energy consumption and performance analysis. Developed in collaboration with General Motors, Autonomie is a MATLAB©-based software environment and framework for automotive control-system design, simulation, and analysis. Its application covers energy consumption, performance analysis throughout the entire vehicle development process

  5. Hybrid Power System Simulation Model | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenthybrid-power-system-simulation-model, Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  6. SimFS: A Large Scale Parallel File System Simulator

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    The software provides both framework and tools to simulate a large-scale parallel file system such as Lustre.

  7. Epidemilogical Simulation System, Version 2.4

    Energy Science and Technology Software Center (OSTI)

    2004-01-30

    EpiSims uses a detailed simulation of disease spread to evaluate demographically and geographically targeted biological threat reduction strategies. Abstract: EpiSims simulates the spread of disease and analyzes the consequences of intervention strategies in a large urban area at the level of individuals. The simulation combines models of three dynamical systems: urban social networks, disease transmission, and within-host progression of a disease. Validated population mobility and activity generation technology provides the social network models, Disease modelsmore » are based on fusion of expert opinion and available data. EpiSims provides a previously unavailable detailed representation of the course of an outbreak in urban area. A letter of August 16, 2002 from the Office of Homeland Security states: "Ability of EpiSims to provide comprehensive data on daily activity patterns of individuals makes it far superior to traditional SIR models — clearly had an impact on pre-attack smallpox vaccination policy." EpiSims leverages a unique Los Alamos National Laboratory resource — the population mobility and activity data developed by TRANSIMS (Transportation Analysis and SiMulation System) — to create epidemiological analyses at an unprecedented level of detail. We create models of microscopic (individual-level) physical and biological processes from which, through simulation, emerge the macroscopic (urban regional level) quantities that are the inputs to alternative models. For example, the contact patterns of individuals in different demographic groups determine the overall mixing rates those groups. The characteristics of a person-to-person transmission together with their contact patterns determine the reproductive numbers — how many people will be infected on average by each case. Mixing rates and reproductive numbers are the basic parameters of other epidemiological models. Because interventions — and people’s reactions to them — are ultimately applied

  8. Elimination of direct current distribution systems from new generating stations

    SciTech Connect (OSTI)

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  9. Voices of Experience | Advanced Distribution Management Systems_brochure.indd

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Insights into Advanced Distribution Management Systems VOICES of Experience February, 2015 Prepared for the U.S. Department of Energy by the National Renewable Energy Laboratory under contract No. DE-AC36-08G028308, Subtask SG10.1011 in conjunction with Energetics Incorporated under contract No. GS-10F-0103J, Subtask J3806.0002. INSIGHTS INTO ADVANCED DISTRIBUTION MANAGEMENT SYSTEMS | DOE 3 Voices of Experience | Advanced Distribution Management Systems When people think of the electric power

  10. Integration of HVAC System Design with Simplified Duct Distribution -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Building America Top Innovation | Department of Energy Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation Integration of HVAC System Design with Simplified Duct Distribution - Building America Top Innovation This photo shows framed walls and HVAC distribution systems. This Top Innovation profile describes work by Building America research team IBACOS who field tested simplified duct designs in hundreds of homes, confirming the performance of

  11. On sequential dynamical systems and simulation

    SciTech Connect (OSTI)

    Barrett, C.L.; Mortveit, H.S.; Reidys, C.M.

    1999-06-01

    The generic structure of computer simulations motivates a new class of discrete dynamical systems that captures this structure in a mathematically precise way. This class of systems consists of (1) a loopfree graph {Upsilon} with vertex set {l_brace}1,2,{hor_ellipsis},n{r_brace} where each vertex has a binary state, (2) a vertex labeled set of functions (F{sub i,{Upsilon}}:F{sub 2}{sup n} {r_arrow} F{sub 2}{sup n}){sub i} and (3) a permutation {pi} {element_of} S{sub n}. The function F{sub i,{Upsilon}} updates the state of vertex i as a function of the states of vertex i and its {Upsilon}-neighbors and leaves the states of all other vertices fixed. The permutation {pi} represents the update ordering, i.e., the order in which the functions F{sub i,{Upsilon}} are applied. By composing the functions F{sub i,{Upsilon}} in the order given by {pi} one obtains the dynamical system (equation given in paper) which the authors refer to as a sequential dynamical system, or SDS for short. The authors will present bounds for the number of functionally different systems and for the number of nonisomorphic digraphs {Gamma}[F{sub {Upsilon}},{pi}] that can be obtained by varying the update order and applications of these to specific graphs and graph classes. This will be done using both combinatorial/algebraic techniques and probabilistic techniques. Finally the authors give results on dynamical system properties for some special systems.

  12. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For operational management to support the distribution system, the utility's consumers (e.g., homeowners) need to be provided financial incentives. Historically, demand-response ...

  13. Distribution System planning for Smart Grids, ForskEL (Smart...

    Open Energy Info (EERE)

    Name Distribution System planning for Smart Grids, ForskEL Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  14. Laser Spark Distribution and Ignition System - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Laser Spark Distribution and Ignition System A method ... Contact NETL About This Technology Publications: PDF Document Publication Laser Spark ...

  15. Energy Efficient HVAC System for Distributed Cooling/Heating...

    Broader source: Energy.gov (indexed) [DOE]

    on Thermal Comfort Modeling Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Improving Energy Efficiency by Developing Components for ...

  16. Best Management Practice #3: Distribution System Audits, Leak...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaks in distribution systems are caused by a number of factors, including pipe corrosion, ... Cathodic protection controls corrosion of metal surfaces by supplying an electrical ...

  17. Simulated response of the atmosphere-ocean system to deforestation...

    Office of Scientific and Technical Information (OSTI)

    the atmosphere-ocean system to deforestation in the Indonesian Archipelago Citation Details In-Document Search Title: Simulated response of the atmosphere-ocean system to ...

  18. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Systems Simulation and Testing R&D Annual Progress Report ... FY 2013 annual report focuses on the following areas: ... Technologies Office: 2015 Vehicle Systems Annual ...

  19. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  20. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  1. Vehicle Technologies Office: 2011 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. ...

  2. Simulation Model of Mobile Detection Systems

    SciTech Connect (OSTI)

    Edmunds, T; Faissol, D; Yao, Y

    2009-01-27

    In this paper, we consider a mobile source that we attempt to detect with man-portable, vehicle-mounted or boat-mounted radiation detectors. The source is assumed to transit an area populated with these mobile detectors, and the objective is to detect the source before it reaches a perimeter. We describe a simulation model developed to estimate the probability that one of the mobile detectors will come in to close proximity of the moving source and detect it. We illustrate with a maritime simulation example. Our simulation takes place in a 10 km by 5 km rectangular bay patrolled by boats equipped with 2-inch x 4-inch x 16-inch NaI detectors. Boats to be inspected enter the bay and randomly proceed to one of seven harbors on the shore. A source-bearing boat enters the mouth of the bay and proceeds to a pier on the opposite side. We wish to determine the probability that the source is detected and its range from target when detected. Patrol boats select the nearest in-bound boat for inspection and initiate an intercept course. Once within an operational range for the detection system, a detection algorithm is started. If the patrol boat confirms the source is not present, it selects the next nearest boat for inspection. Each run of the simulation ends either when a patrol successfully detects a source or when the source reaches its target. Several statistical detection algorithms have been implemented in the simulation model. First, a simple k-sigma algorithm, which alarms with the counts in a time window exceeds the mean background plus k times the standard deviation of background, is available to the user. The time window used is optimized with respect to the signal-to-background ratio for that range and relative speed. Second, a sequential probability ratio test [Wald 1947] is available, and configured in this simulation with a target false positive probability of 0.001 and false negative probability of 0.1. This test is utilized when the mobile detector maintains

  3. Electrical power systems for distributed generation

    SciTech Connect (OSTI)

    Robertson, T.A.; Huval, S.J.

    1996-12-31

    {open_quotes}Distributed Generation{close_quotes} has become the {open_quotes}buzz{close_quotes} word of an electric utility industry facing deregulation. Many industrial facilities utilize equipment in distributed installations to serve the needs of a thermal host through the capture of exhaust energy in a heat recovery steam generator. The electrical power generated is then sold as a {open_quotes}side benefit{close_quotes} to the cost-effective supply of high quality thermal energy. Distributed generation is desirable for many different reasons, each with unique characteristics of the product. Many years of experience in the distributed generation market has helped Stewart & Stevenson to define a range of product features that are crucial to most any application. The following paper will highlight a few of these applications. The paper will also examine the range of products currently available and in development. Finally, we will survey the additional services offered by Stewart & Stevenson to meet the needs of a rapidly changing power generation industry.

  4. Bulk and Surface Molecular Orientation Distribution in Injection-molded Liquid Crystalline Polymers: Experiment and Simulation

    SciTech Connect (OSTI)

    Fang, J.; Burghardt, W; Bubeck, R; Burgard, S; Fischer, D

    2010-01-01

    Bulk and surface distributions of molecular orientation in injection-molded plaques of thermotropic liquid crystalline polymers (TLCPs) have been studied using a combination of techniques, coordinated with process simulations using the Larson-Doi 'polydomain' model. Wide-angle X-ray scattering was used to map out the bulk orientation distribution. Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) and Near-Edge X-ray Absorption Fine Structure (NEXAFS) were utilized to probe the molecular orientation states to within about {approx}5 {micro}m and {approx}2 nm, respectively, of the sample surface. These noninvasive, surface-sensitive techniques yield reasonable self-consistency, providing complementary validation of the robustness of these methods. An analogy between Larson-Doi and fiber orientation models has allowed the first simulations of TLCP injection molding. The simulations capture many fine details in the bulk orientation distribution across the sample plaque. Direct simulation of surface orientation at the level probed by FTIR-ATR and NEXAFS was not possible due to the limited spatial resolution of the simulations. However, simulation results extracted from the shear-dominant skin region are found to provide a qualitatively accurate indicator of surface orientation. Finally, simulations capture the relation between bulk and surface orientation states across the different regions of the sample plaque.

  5. FIPA agent based network distributed control system

    SciTech Connect (OSTI)

    D. Abbott; V. Gyurjyan; G. Heyes; E. Jastrzembski; C. Timmer; E. Wolin

    2003-03-01

    A control system with the capabilities to combine heterogeneous control systems or processes into a uniform homogeneous environment is discussed. This dynamically extensible system is an example of the software system at the agent level of abstraction. This level of abstraction considers agents as atomic entities that communicate to implement the functionality of the control system. Agents' engineering aspects are addressed by adopting the domain independent software standard, formulated by FIPA. Jade core Java classes are used as a FIPA specification implementation. A special, lightweight, XML RDFS based, control oriented, ontology markup language is developed to standardize the description of the arbitrary control system data processor. Control processes, described in this language, are integrated into the global system at runtime, without actual programming. Fault tolerance and recovery issues are also addressed.

  6. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  7. Battery management system with distributed wireless sensors

    DOE Patents [OSTI]

    Farmer, Joseph C.; Bandhauer, Todd M.

    2016-02-23

    A system for monitoring parameters of an energy storage system having a multiplicity of individual energy storage cells. A radio frequency identification and sensor unit is connected to each of the individual energy storage cells. The radio frequency identification and sensor unit operates to sense the parameter of each individual energy storage cell and provides radio frequency transmission of the parameters of each individual energy storage cell. A management system monitors the radio frequency transmissions from the radio frequency identification and sensor units for monitoring the parameters of the energy storage system.

  8. Enhancing Complex System Performance Using Discrete-Event Simulation

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E

    2010-01-01

    In this paper, we utilize discrete-event simulation (DES) merged with human factors analysis to provide the venue within which the separation and deconfliction of the system/human operating principles can occur. A concrete example is presented to illustrate the performance enhancement gains for an aviation cargo flow and security inspection system achieved through the development and use of a process DES. The overall performance of the system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, and total number of pallets waiting for inspection in the queue. These metrics are performance indicators of the system's ability to service current needs and respond to additional requests. We studied and analyzed different scenarios by changing various model parameters such as the number of pieces per pallet ratio, number of inspectors and cargo handling personnel, number of forklifts, number and types of detection systems, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures identified effective ways to meet inspection requirements while maintaining or reducing overall operational cost and eliminating any shipping delays associated with any proposed changes in inspection requirements. With this understanding effective operational strategies can be developed to optimally use personnel while still maintaining plant efficiency, reducing process interruptions, and holding or reducing costs.

  9. Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2010 Vehicle and Systems Simulation and Testing R&D Annual Progress Report 2010 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2010_vsst_report.pdf (25.23 MB)

  10. Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2012 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2012 annual report focusing on five main areas: modeling and simulation, component and systems evaluation, laboratory and field vehicle evaluation, codes and standards development, and heavy vehicle systems optimization. 2012_vsst_report.pdf (32.4

  11. Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing R&D Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing R&D Annual Progress Report Vehicle Technologies Office: 2013 Vehicle and Systems Simulation and Testing R&D Annual Progress Report FY 2013 annual report focuses on the following areas: vehicle modeling and simulation, component and systems evaluations, laboratory and field evaluations, codes and standards, industry projects, and vehicle systems optimization. 2013_vsst_report.pdf

  12. Distributed sensor coordination for advanced energy systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2015-03-12

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectives and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor

  13. Explosive simulants for testing explosive detection systems

    DOE Patents [OSTI]

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  14. Extensions to Dynamic System Simulation of Fissile Solution Systems

    SciTech Connect (OSTI)

    Klein, Steven Karl; Bernardin, John David; Kimpland, Robert Herbert; Spernjak, Dusan

    2015-08-24

    Previous reports have documented the results of applying dynamic system simulation (DSS) techniques to model a variety of fissile solution systems. The SUPO (Super Power) aqueous homogeneous reactor (AHR) was chosen as the benchmark for comparison of model results to experimental data for steadystate operation.1 Subsequently, DSS was applied to additional AHR to verify results obtained for SUPO and extend modeling to prompt critical excursions, ramp reactivity insertions of various magnitudes and rate, and boiling operations in SILENE and KEWB (Kinetic Experiment Water Boiler).2 Additional models for pressurized cores (HRE: Homogeneous Reactor Experiment), annular core geometries, and accelerator-driven subcritical systems (ADAHR) were developed and results reported.3 The focus of each of these models is core dynamics; neutron kinetics, thermal hydraulics, radiolytic gas generation and transport are coupled to examine the time-based evolution of these systems from start-up through transition to steady-state. A common characteristic of these models is the assumption that (a) core cooling system inlet temperature and flow and (b) plenum gas inlet pressure and flow are held constant; no external (to core) component operations that may result in dynamic change to these parameters are considered. This report discusses extension of models to include explicit reference to cooling structures and radiolytic gas handling. The accelerator-driven subcritical generic system model described in References 3 and 4 is used as a basis for this extension.

  15. Residential hot water distribution systems: Roundtablesession

    SciTech Connect (OSTI)

    Lutz, James D.; Klein, Gary; Springer, David; Howard, Bion D.

    2002-08-01

    Residential building practice currently ignores the lossesof energy and water caused by the poor design of hot water systems. Theselosses include: combustion and standby losses from water heaters, thewaste of water (and energy) while waiting for hot water to get to thepoint of use; the wasted heat as water cools down in the distributionsystem after a draw; heat losses from recirculation systems and thediscarded warmth of waste water as it runs down the drain. Severaltechnologies are available that save energy (and water) by reducing theselosses or by passively recovering heat from wastewater streams and othersources. Energy savings from some individual technologies are reported tobe as much as 30 percent. Savings calculations of prototype systemsincluding bundles of technologies have been reported above 50 percent.This roundtable session will describe the current practices, summarizethe results of past and ongoing studies, discuss ways to think about hotwater system efficiency, and point to areas of future study. We will alsorecommend further steps to reduce unnecessary losses from hot waterdistribution systems.

  16. A Global System for Transportation Simulation and Visualization in Emergency Evacuation Scenarios

    SciTech Connect (OSTI)

    Lu, Wei; Liu, Cheng; Thomas, Neil; Bhaduri, Budhendra L; Han, Lee

    2015-01-01

    Simulation-based studies are frequently used for evacuation planning and decision making processes. Given the transportation systems complexity and data availability, most evacuation simulation models focus on certain geographic areas. With routine improvement of OpenStreetMap road networks and LandScanTM global population distribution data, we present WWEE, a uniform system for world-wide emergency evacuation simulations. WWEE uses unified data structure for simulation inputs. It also integrates a super-node trip distribution model as the default simulation parameter to improve the system computational performance. Two levels of visualization tools are implemented for evacuation performance analysis, including link-based macroscopic visualization and vehicle-based microscopic visualization. For left-hand and right-hand traffic patterns in different countries, the authors propose a mirror technique to experiment with both scenarios without significantly changing traffic simulation models. Ten cities in US, Europe, Middle East, and Asia are modeled for demonstration. With default traffic simulation models for fast and easy-to-use evacuation estimation and visualization, WWEE also retains the capability of interactive operation for users to adopt customized traffic simulation models. For the first time, WWEE provides a unified platform for global evacuation researchers to estimate and visualize their strategies performance of transportation systems under evacuation scenarios.

  17. Integrated Distribution Management System for Alabama Principal Investigator

    SciTech Connect (OSTI)

    Schatz, Joe

    2013-03-31

    Southern Company Services, under contract with the Department of Energy, along with Alabama Power, Alstom Grid (formerly AREVA T&D) and others moved the work product developed in the first phase of the Integrated Distribution Management System (IDMS) from “Proof of Concept” to true deployment through the activity described in this Final Report. This Project – Integrated Distribution Management Systems in Alabama – advanced earlier developed proof of concept activities into actual implementation and furthermore completed additional requirements to fully realize the benefits of an IDMS. These tasks include development and implementation of a Distribution System based Model that enables data access and enterprise application integration.

  18. Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    & Testing | Department of Energy Vehicle & Systems Simulation & Testing Vehicle Technologies Office Merit Review 2014: Vehicle & Systems Simulation & Testing Presentation given by U.S. Department of Energy at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting providing an overview of the Vehicle & Systems Simulation & Testing Program. vsst_overview_amr_2014_061114.pdf (3.12 MB) More Documents

  19. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Testing Annual Progress Report | Department of Energy Vehicle and Systems Simulation and Testing Annual Progress Report Vehicle Technologies Office: 2014 Vehicle and Systems Simulation and Testing Annual Progress Report The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many cutting-edge automotive technologies under development. Research focuses on addressing critical

  20. System Simulations of Hybrid Electric Vehicles with Focus on Emissions |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy System Simulations of Hybrid Electric Vehicles with Focus on Emissions System Simulations of Hybrid Electric Vehicles with Focus on Emissions Comparative simulations of hybrid electric vehicles with gasoline and diesel engines will be conducted with focus on emissions control. deer10_gao.pdf (6.28 MB) More Documents & Publications PHEV Engine and Aftertreatment Model Development Advanced PHEV Engine Systems and Emissions Control Modeling and Analysis PHEV Engine and

  1. A Runtime Verification Framework for Control System Simulation

    SciTech Connect (OSTI)

    Ciraci, Selim; Fuller, Jason C.; Daily, Jeffrey A.; Makhmalbaf, Atefe; Callahan, Charles D.

    2014-08-02

    n a standard workflow for the validation of a control system, the control system is implemented as an extension to a simulator. Such simulators are complex software systems, and engineers may unknowingly violate constraints a simulator places on extensions. As such, errors may be introduced in the implementation of either the control system or the simulator leading to invalid simulation results. This paper presents a novel runtime verification approach for verifying control system implementations within simulators. The major contribution of the approach is the two-tier specification process. In the first tier, engineers model constraints using a domain-specific language tailored to modeling a controllers response to changes in its input. The language is high-level and effectively hides the implementation details of the simulator, allowing engineers to specify design-level constraints independent of low-level simulator interfaces. In the second tier, simulator developers provide mapping rules for mapping design-level constraints to the implementation of the simulator. Using the rules, an automated tool transforms the design-level specifications into simulator-specific runtime verification specifications and generates monitoring code which is injected into the implementation of the simulator. During simulation, these monitors observe the input and output variables of the control system and report changes to the verifier. The verifier checks whether these changes follow the constraints of the control system. We describe application of this approach to the verification of the constraints of an HVAC control system implemented with the power grid simulator GridLAB-D.

  2. Rule based decision support system for single-line fault detection in a delta-delta connected distribution system

    SciTech Connect (OSTI)

    Momoh, J.A.; Dias, L.G.; Thor, T. . Dept. of Electrical Engineering); Laird, D. )

    1994-05-01

    Single-line fault detection, faulted feeder identification, fault type classification, fault location and fault impedance estimation, continue to pose a problem to delta-delta connected distribution systems such as the Los Angeles Department of Water and Power (LADWP) which has over 1,500 feeder circuits at the 4.8kV voltage level. This paper describes a rule based decision support (RBDS) system application to single-line fault detection in a delta-delta connected distribution system. The RBDS system is built from knowledge acquired through exhaustive simulation based on non-arcing type fault situations. It is primarily designed to detect the presence of a fault, identify the faulted feeder, the faulted phase and classify the fault type. It is also designed to gauge the proximity of the fault to the substation and to assess the fault impedance. A fault in the distribution system, upon identification, triggers an alarm with explanatory facility leading to the fault. The RBDS system was tested with different sets of simulated data and proved successful in most cases. Additional tests will be done using field data made available by LADWP. The RBDS system module is a prototype integrated fault detection scheme to be installed in a LADWP distribution substation.

  3. A distributed timing system for sychronizing control and data correlation

    SciTech Connect (OSTI)

    Stettler, M.; Thout, M.; Dalesio, L.R.; Cole, R.; Fite, C.; Slentz, G.; Warren, D.

    1992-09-01

    Synchronization is necessary in experimental physics machines to provide positive control over related events. The Ground Test Accelerator (GTA) timing system provides this function through a distributed control system, known as the Experimental Physics and Industrial Control System (EPICS). The EPICS timing system was designed to take advantage of a distributed architecture, and provides time stamping for synchronous data correlation as well as event control. The system has been successfully demonstrated on over a dozen controller nodes for operation and data analysis. The design of the hardware, software, and operational results are discussed.

  4. Garbage collection for functional languages in a distributed system

    SciTech Connect (OSTI)

    Eckart, J.D.

    1987-01-01

    Garbage collection is a helpful facility provided by many applicative languages such as Prolog, SISAL, FP, and Lisp. While these, and other, languages provide easy recognition of actions that may be executed in parallel, the garbage-collection algorithms used for single-machine environments become significantly more inefficient in multi-machine environments. Thus, in order to make effective use of these languages, more-efficient algorithms for collecting inter-machine structures is needed. Reference marking is the algorithm developed to meet these needs. It takes advantage of the semantics of applicative languages allowing each parallel action to be responsible for collecting any discarded structures it was responsible for creating. Simulation results comparing the performance of reference marking with other distributed garbage-collection algorithms are given. A variety of problem types and sizes are examined to determine the effects of particular styles of computation on each of the garbage-collection algorithms. The results gathered demonstrate the usefulness of the reference-marking algorithm in both uni- and multi-machine systems.

  5. Development of a model colloidal system for rheology simulation...

    Office of Scientific and Technical Information (OSTI)

    This chapter describes the choice of the model particle system, methods for synthesis and ... SIMULATION; SOLVENTS; SYNTHESIS Colloids-Mathematical models.; Rheology-Measurement. ...

  6. Evaluation of System Level Modeling and Simulation Tools in Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Level Modeling and Simulation Tools in Support of Savannah River Site Liquid Waste Process ... Facility Technology Readiness Assessment Report EIS-0082: Record of Decision

  7. Vehicle Technologies Office: 2014 Vehicle and Systems Simulation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Vehicle and Systems Simulation and Testing research and development (R&D) subprogram within the DOE Vehicle Technologies Office (VTO) provides support and guidance for many ...

  8. Dynamic System Simulation of the KRUSTY Experiment (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Dynamic System Simulation of the KRUSTY Experiment Citation Details ... Have feedback or suggestions for a way to improve these results? Save Share this ...

  9. Large-Eddy Simulation for Green Energy and Propulsion Systems...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Large-Eddy Simulation for Green Energy and Propulsion Systems PI Name: Umesh Paliath PI Email: paliath@ge.com Institution: General Electric Allocation Program: INCITE Allocation ...

  10. A View on Future Building System Modeling and Simulation

    SciTech Connect (OSTI)

    Wetter, Michael

    2011-04-01

    This chapter presents what a future environment for building system modeling and simulation may look like. As buildings continue to require increased performance and better comfort, their energy and control systems are becoming more integrated and complex. We therefore focus in this chapter on the modeling, simulation and analysis of building energy and control systems. Such systems can be classified as heterogeneous systems because they involve multiple domains, such as thermodynamics, fluid dynamics, heat and mass transfer, electrical systems, control systems and communication systems. Also, they typically involve multiple temporal and spatial scales, and their evolution can be described by coupled differential equations, discrete equations and events. Modeling and simulating such systems requires a higher level of abstraction and modularisation to manage the increased complexity compared to what is used in today's building simulation programs. Therefore, the trend towards more integrated building systems is likely to be a driving force for changing the status quo of today's building simulation programs. Thischapter discusses evolving modeling requirements and outlines a path toward a future environment for modeling and simulation of heterogeneous building systems.A range of topics that would require many additional pages of discussion has been omitted. Examples include computational fluid dynamics for air and particle flow in and around buildings, people movement, daylight simulation, uncertainty propagation and optimisation methods for building design and controls. For different discussions and perspectives on the future of building modeling and simulation, we refer to Sahlin (2000), Augenbroe (2001) and Malkawi and Augenbroe (2004).

  11. Simulation of e-cloud driven instability and its attenuation using a simulated feedback system in the CERN SPS

    SciTech Connect (OSTI)

    Vay, J.-L.; Furman, M. A.

    2010-12-13

    Electron clouds have been shown to trigger fast growing instabilities on proton beams circulating in the SPS, and a feedback system to control the single-bunch instabilities is under active development. We present the latest improvements to the WARP-POSINST simulation framework and feedback model, and its application to the self-consistent simulations of two consecutive bunches interacting with an electron cloud in the SPS. Simulations using an idealized feedback system exhibit adequate mitigation of the instability providing that the cutoff of the feedback bandwidth is at or above 450 MHz. Artifacts from numerical noise of the injected distribution of electrons in the modeling of portions of bunch trains are discussed, and benchmarking of WARP against POSINST and HEADTAIL are presented.

  12. Defining and enabling resiliency of electric distribution systems with multiple microgrids

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chanda, Sayonsom; Srivastava, Anurag K.

    2016-05-02

    This paper presents a method for quantifying and enabling the resiliency of a power distribution system (PDS) using analytical hierarchical process and percolation theory. Using this metric, quantitative analysis can be done to analyze the impact of possible control decisions to pro-actively enable the resilient operation of distribution system with multiple microgrids and other resources. Developed resiliency metric can also be used in short term distribution system planning. The benefits of being able to quantify resiliency can help distribution system planning engineers and operators to justify control actions, compare different reconfiguration algorithms, develop proactive control actions to avert power systemmore » outage due to impending catastrophic weather situations or other adverse events. Validation of the proposed method is done using modified CERTS microgrids and a modified industrial distribution system. Furthermore, simulation results show topological and composite metric considering power system characteristics to quantify the resiliency of a distribution system with the proposed methodology, and improvements in resiliency using two-stage reconfiguration algorithm and multiple microgrids.« less

  13. Data transmission system with distributed microprocessors

    DOE Patents [OSTI]

    Nambu, Shigeo

    1985-01-01

    A data transmission system having a common request line and a special request line in addition to a transmission line. The special request line has priority over the common request line. A plurality of node stations are multi-drop connected to the transmission line. Among the node stations, a supervising station is connected to the special request line and takes precedence over other slave stations to become a master station. The master station collects data from the slave stations. The station connected to the common request line can assign a master control function to any station requesting to be assigned the master control function within a short period of time. Each station has an auto response control circuit. The master station automatically collects data by the auto response controlling circuit independently of the microprocessors of the slave stations.

  14. System-wide power management control via clock distribution network

    DOE Patents [OSTI]

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  15. Impact of SolarSmart Subdivisions on SMUD's Distribution System

    SciTech Connect (OSTI)

    McNutt, P.; Hambrick, J.; Keesee, M.; Brown, D.

    2009-07-01

    This study analyzes the distribution impacts of high penetrations of grid-integrated renewable energy systems, specifically photovoltaic (PV) equipped SolarSmart Homes found in the Anatolia III Residential Community.

  16. Simulation of water flow in terrestrial systems

    Energy Science and Technology Software Center (OSTI)

    2008-12-18

    ParFlow is a parallel, variabley saturated groundwater flow code that is especially suitable for large scale problem. ParFlow simulates the three-dimensional saturated and variably saturated subsurface flow in heterogeneous porous media in three spatial dimensions. ParFlow's developemt and appkication has been on-ging for more than 10 uear. ParFlow has recently been extended to coupled surface-subsurface flow to enabel the simulation of hillslope runoff and channel routing in a truly integrated fashion. ParFlow simulates the three-dimensionalmore » varably saturated subsurface flow in strongly heterogeneous porous media in three spatial dimension.« less

  17. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  18. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  19. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  20. A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2

    SciTech Connect (OSTI)

    Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

    2012-11-11

    Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: What could happen to the power grid if .... We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

  1. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    5 Typical Commercial Building Thermal Energy Distribution Design Load Intensities (Watts per SF) Distribution System Fans Other Central System Supply Fans Cooling Tower Fan Central System Return Fans Air-Cooled Chiller Condenser Fan 0.6 Terminal Box Fans 0.5 Exhaust Fans (2) Fan-Coil Unit Fans (1) Condenser Fans 0.6 Packaged or Split System Indoor Blower 0.6 Pumps Chilled Water Pump Condenser Water Pump Heating Water Pump Note(s): Source(s): 0.1 - 0.2 0.1 - 0.2 1) Unducted units are lower than

  2. Design, construction and evaluation of a simulated geothermal flow system

    SciTech Connect (OSTI)

    Mackanic, J.C.

    1980-07-28

    A system was designed and built to simulate the flow from a geothermal well. The simulated flow will be used to power a Lysholm engine, the performance of which will then be evaluated for different simulated geothermal flows. Two main subjects are covered: 1) the design, construction and evaluation of the behavior of the system that simulates the geothermal flow; included in that topic is a discussion of the probable behavior of the Lysholm engine when it is put into operation, and 2) the investigation of the use of dynamic modeling techniques to determine whether they can provide a suitable means for predicting the behavior of the system.

  3. Porter-Thomas distribution in unstable many-body systems

    SciTech Connect (OSTI)

    Volya, Alexander

    2011-04-15

    We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.

  4. Model and particle-in-cell simulation of ion energy distribution in collisionless sheath

    SciTech Connect (OSTI)

    Zhou, Zhuwen; Kong, Bo; Luo, Yuee; Chen, Deliang; Wang, Yuansheng

    2015-06-15

    In this paper, we propose a self-consistent theoretical model, which is described by the ion energy distributions (IEDs) in collisionless sheaths, and the analytical results for different combined dc/radio frequency (rf) capacitive coupled plasma discharge cases, including sheath voltage errors analysis, are compared with the results of numerical simulations using a one-dimensional plane-parallel particle-in-cell (PIC) simulation. The IEDs in collisionless sheaths are performed on combination of dc/rf voltage sources electrodes discharge using argon as the process gas. The incident ions on the grounded electrode are separated, according to their different radio frequencies, and dc voltages on a separated electrode, the IEDs, and widths of energy in sheath and the plasma sheath thickness are discussed. The IEDs, the IED widths, and sheath voltages by the theoretical model are investigated and show good agreement with PIC simulations.

  5. Function allocation in distributed safeguards and security systems

    SciTech Connect (OSTI)

    Barlich, G.L. )

    1991-01-01

    Computerized distributed systems are being used to collect and manage data for activities such as nuclear materials accounting, process control, laboratory coordination, and security. Poor choices made in allocating functions to individual processors can make a system unusable by burdening machines with excessive network retrievals and updates. During system design phases, data allocation algorithms based on operation frequencies, field sizes, security information, and reliability requirements can be applied in sensitivity studies to mathematically ensure processor efficiency. The Los Alamos Network Design System (NDS) implements such an allocation algorithm. The authors analyzed a large, existing distributed system to test the cost functions and to compare actual network problems with NDS results. Several common configurations were also designed and studied using the software. From these studies, some basic principles for allocating functions emerged. In this paper recommendations for function allocation in generic systems and related design options are discussed.

  6. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect (OSTI)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  7. Diagnosing delivery problems in the White House Information Distribution System

    SciTech Connect (OSTI)

    Nahabedian, M.; Shrobe, H.

    1996-12-31

    As part of a collaboration with the White House Office of Media Affairs, members of the MIT Artificial Intelligence Laboratory designed a system, called COMLINK, which distributes a daily stream of documents released by the Office of Media Affairs. Approximately 4000 direct subscribers receive information from this service but more than 100,000 people receive the information through redistribution channels. The information is distributed via Email and the World Wide Web. In such a large scale distribution scheme, there is a constant problem of subscriptions becoming invalid because the user`s Email account has terminated. This causes a backwash of hundreds of {open_quotes}bounced mail{close_quotes} messages per day which must be processed by the operators of the COMLINK system. To manage this annoying but necessary task, an expert system named BMES was developed to diagnose the failures of information delivery.

  8. Reactor Subsystem Simulation for Nuclear Hybrid Energy Systems

    SciTech Connect (OSTI)

    Shannon Bragg-Sitton; J. Michael Doster; Alan Rominger

    2012-09-01

    Preliminary system models have been developed by Idaho National Laboratory researchers and are currently being enhanced to assess integrated system performance given multiple sources (e.g., nuclear + wind) and multiple applications (i.e., electricity + process heat). Initial efforts to integrate a Fortran-based simulation of a small modular reactor (SMR) with the balance of plant model have been completed in FY12. This initial effort takes advantage of an existing SMR model developed at North Carolina State University to provide initial integrated system simulation for a relatively low cost. The SMR subsystem simulation details are discussed in this report.

  9. Simulation of diurnal thermal energy storage systems: Preliminary results

    SciTech Connect (OSTI)

    Katipamula, S.; Somasundaram, S.; Williams, H.R.

    1994-12-01

    This report describes the results of a simulation of thermal energy storage (TES) integrated with a simple-cycle gas turbine cogeneration system. Integrating TES with cogeneration can serve the electrical and thermal loads independently while firing all fuel in the gas turbine. The detailed engineering and economic feasibility of diurnal TES systems integrated with cogeneration systems has been described in two previous PNL reports. The objective of this study was to lay the ground work for optimization of the TES system designs using a simulation tool called TRNSYS (TRaNsient SYstem Simulation). TRNSYS is a transient simulation program with a sequential-modular structure developed at the Solar Energy Laboratory, University of Wisconsin-Madison. The two TES systems selected for the base-case simulations were: (1) a one-tank storage model to represent the oil/rock TES system, and (2) a two-tank storage model to represent the molten nitrate salt TES system. Results of the study clearly indicate that an engineering optimization of the TES system using TRNSYS is possible. The one-tank stratified oil/rock storage model described here is a good starting point for parametric studies of a TES system. Further developments to the TRNSYS library of available models (economizer, evaporator, gas turbine, etc.) are recommended so that the phase-change processes is accurately treated.

  10. A computer simulation of an induction heating system

    SciTech Connect (OSTI)

    Egan, L.R. ); Furlani, E.P. )

    1991-09-01

    In this paper a method is presented for the design and analysis of induction heating systems. The method entails the simulation of system performance using an equivalent circuit approach. Equivalent circuit models are obtained for the three pats of an induction heating system: the power source, the impedance matching circuit, and the load. These model are combined in a system model which is analyzed using the Advanced Continuous Simulation Language (ACSL). This approach is applied to an existing system, and the predicted performance is in close agreement with measured data.

  11. Distributed Hierarchical Control of Multi-Area Power Systems with Improved Primary Frequency Regulation

    SciTech Connect (OSTI)

    Lian, Jianming; Marinovici, Laurentiu D.; Kalsi, Karanjit; Du, Pengwei; Elizondo, Marcelo A.

    2012-12-12

    The conventional distributed hierarchical control architecture for multi-area power systems is revisited. In this paper, a new distributed hierarchical control architecture is proposed. In the proposed architecture, pilot generators are selected in each area to be equipped with decentralized robust control as a supplementary to the conventional droop speed control. With the improved primary frequency control, the system frequency can be restored to the nominal value without the help of secondary frequency control, which reduces the burden of the automatic generation control for frequency restoration. Moreover, the low frequency inter-area electromechanical oscillations can also be effectively damped. The effectiveness of the proposed distributed hierarchical control architecture is validated through detailed simulations.

  12. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  13. THE DISTRIBUTION OF SATELLITES AROUND CENTRAL GALAXIES IN A COSMOLOGICAL HYDRODYNAMICAL SIMULATION

    SciTech Connect (OSTI)

    Dong, X. C.; Lin, W. P.; Wang, Yang Ocean; Kang, X.; Dutton, Aaron A.; Macci, Andrea V. E-mail: kangxi@pmo.ac.cn

    2014-08-20

    Observations have shown that the spatial distribution of satellite galaxies is not random, but rather is aligned with the major axes of central galaxies (CGs). The strength of the alignment is dependent on the properties of both the satellites and centrals. Theoretical studies using dissipationless N-body simulations are limited by their inability to directly predict the shape of CGs. Using hydrodynamical simulations including gas cooling, star formation, and feedback, we carry out a study of galaxy alignment and its dependence on the galaxy properties predicted directly from the simulations. We found that the observed alignment signal is well produced, as is the color dependence: red satellites and red centrals both show stronger alignments than their blue counterparts. The reason for the stronger alignment of red satellites is that most of them stay in the inner region of the dark matter halo where the shape of the CG better traces the dark matter distribution. The dependence of alignment on the color of CGs arises from the halo mass dependence, since the alignment between the shape of the central stellar component and the inner halo increases with halo mass. We also find that the alignment of satellites is most strongly dependent on their metallicity, suggesting that the metallicity of satellites, rather than color, is a better tracer of galaxy alignment on small scales. This could be tested in future observational studies.

  14. Eliminate Excessive In-Plant Distribution System Voltage Drops

    Broader source: Energy.gov [DOE]

    Studies indicate that in-plant electrical distribution system losses—due to voltage unbalance, over- and undervoltage, low power factor, undersized conductors, leakage to ground, and poor connections—can account for less than 1% to more than 4% of total plant electrical energy consumption.

  15. Automated Energy Distribution and Reliability System Status Report

    SciTech Connect (OSTI)

    Buche, D. L.; Perry, S.

    2007-10-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  16. Automated Energy Distribution and Reliability System (AEDR): Final Report

    SciTech Connect (OSTI)

    Buche, D. L.

    2008-07-01

    This report describes Northern Indiana Public Service Co. project efforts to develop an automated energy distribution and reliability system. The purpose of this project was to implement a database-driven GIS solution that would manage all of the company's gas, electric, and landbase objects.

  17. Dynamic System Simulation of the KRUSTY Experiment (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Technical Report: Dynamic System Simulation of the KRUSTY Experiment Citation Details In-Document Search Title: Dynamic System Simulation of the KRUSTY Experiment The proposed KRUSTY experiment is a demonstration of a reactor operating at power. The planned experimental configuration includes a highly enriched uranium (HEU) reflected core, cooled by multiple heat pipes leading to Stirling engines for primary heat rejection. Operating power is expected to be approximately four

  18. Commercial thermal distribution systems, Final report for CIEE/CEC

    SciTech Connect (OSTI)

    Xu, Tengfang; Bechu, Olivier; Carrie, Remi; Dickerhoff, Darryl; Fisk, William; Franconi, Ellen; Kristiansen, Oyvind; Levinson, Ronnen; McWilliams, Jennifer; Wang, Duo; Modera, Mark; Webster, Tom; Ring, Erik; Zhang, Qiang; Huizenga, Charlie; Bauman, Fred; Arens, Ed

    1999-12-01

    According to the California Energy Commission (CEC 1998a), California commercial buildings account for 35% of statewide electricity consumption, and 16% of statewide gas consumption. Space conditioning accounts for roughly 16,000 GWh of electricity and 800 million therms of natural gas annually, and the vast majority of this space conditioning energy passes through thermal distribution systems in these buildings. In addition, 8600 GWh per year is consumed by fans and pumps in commercial buildings, most of which is used to move the thermal energy through these systems. Research work at Lawrence Berkeley National Laboratory (LBNL) has been ongoing over the past five years to investigate the energy efficiency of these thermal distribution systems, and to explore possibilities for improving that energy efficiency. Based upon that work, annual savings estimates of 1 kWh/ft{sup 2} for light commercial buildings, and 1-2 kWh/ft{sup 2} in large commercial buildings have been developed for the particular aspects of thermal distribution system performance being addressed by this project. Those savings estimates, combined with a distribution of the building stock based upon an extensive stock characterization study (Modera et al. 1999a), and technical penetration estimates, translate into statewide saving potentials of 2000 GWh/year and 75 million thermal/year, as well as an electricity peak reduction potential of 0.7 GW. The overall goal of this research program is to provide new technology and application knowledge that will allow the design, construction, and energy services industries to reduce the energy waste associated with thermal distribution systems in California commercial buildings. The specific goals of the LBNL efforts over the past year were: (1) to advance the state of knowledge about system performance and energy losses in commercial-building thermal distribution systems; (2) to evaluate the potential of reducing thermal losses through duct sealing, duct

  19. Design of a REDD-compliant Benefit Distribution System for Viet...

    Open Energy Info (EERE)

    Benefit Distribution System for Viet Nam Jump to: navigation, search Name Design of a REDD-compliant Benefit Distribution System for Viet Nam AgencyCompany...

  20. Low-Cost Hydrogen-from-Ethanol: A Distributed Production System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Low-Cost Hydrogen-from-Ethanol: A Distributed Production System (Presentation) Presented at the 2007 ...

  1. Electromagnetic Simulation of the Near-Field Distribution around a Wind Farm

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Shang-Te; Ling, Hao

    2013-01-01

    An efficienmore » t approach to compute the near-field distribution around and within a wind farm under plane wave excitation is proposed. To make the problem computationally tractable, several simplifying assumptions are made based on the geometry problem. By comparing the approximations against full-wave simulations at 500 MHz, it is shown that the assumptions do not introduce significant errors into the resulting near-field distribution. The near fields around a 3 × 3 wind farm are computed using the developed methodology at 150 MHz, 500 MHz, and 3 GHz. Both the multipath interference patterns and the forward shadows are predicted by the proposed method.« less

  2. Distribution of potentials in narrow slits simulating the electrochemical situation in the voids of corrosion cracks

    SciTech Connect (OSTI)

    Pokhmurskii, V.I.; Lychkovskii, E.I.; Filatov, V.M.; Gnyp, I.P.

    1988-01-01

    For an experimental determination of the influence of the form and dimensions of a slit and the electrical conductivity of the corrosive medium on the distribution in it of an electric field, an instrument was built making it possible to simulate the electrochemical processes in a crack tip, including in the presence of external polarization. By controlling the voltage it was possible to change the parameters of external cathodic protection of the slit defect. The measuring electrode, of the same material as the working plates of the slit, moves along the slit and records the voltage distribution in the solution (distilled water, reactor boron-control water, and 3% NaCl solution), which is recorded by an oscillograph. The slit and the electrode were prepared from a single strip of Armco iron. In the conclusion of the experiments the plates were replaced with nickel and the slit was filled with a sulfate-chloride nickel plating solution. Results are analyzed.

  3. Method for distributed agent-based non-expert simulation of manufacturing process behavior

    DOE Patents [OSTI]

    Ivezic, Nenad; Potok, Thomas E.

    2004-11-30

    A method for distributed agent based non-expert simulation of manufacturing process behavior on a single-processor computer comprises the steps of: object modeling a manufacturing technique having a plurality of processes; associating a distributed agent with each the process; and, programming each the agent to respond to discrete events corresponding to the manufacturing technique, wherein each discrete event triggers a programmed response. The method can further comprise the step of transmitting the discrete events to each agent in a message loop. In addition, the programming step comprises the step of conditioning each agent to respond to a discrete event selected from the group consisting of a clock tick message, a resources received message, and a request for output production message.

  4. A Distributed Electrochemistry Modeling Tool for Simulating SOFC Performance and Degradation

    SciTech Connect (OSTI)

    Recknagle, Kurtis P.; Ryan, Emily M.; Khaleel, Mohammad A.

    2011-10-13

    This report presents a distributed electrochemistry (DEC) model capable of investigating the electrochemistry and local conditions with the SOFC MEA based on the local microstructure and multi-physics. The DEC model can calculate the global current-voltage (I-V) performance of the cell as determined by the spatially varying local conditions through the thickness of the electrodes and electrolyte. The simulation tool is able to investigate the electrochemical performance based on characteristics of the electrode microstructure, such as particle size, pore size, electrolyte and electrode phase volume fractions, and triple-phase-boundary length. It can also investigate performance as affected by fuel and oxidant gas flow distributions and other environmental/experimental conditions such as temperature and fuel gas composition. The long-term objective for the DEC modeling tool is to investigate factors that cause electrode degradation and the decay of SOFC performance which decrease longevity.

  5. INVESTIGATING THE RELIABILITY OF CORONAL EMISSION MEASURE DISTRIBUTION DIAGNOSTICS USING THREE-DIMENSIONAL RADIATIVE MAGNETOHYDRODYNAMIC SIMULATIONS

    SciTech Connect (OSTI)

    Testa, Paola [Smithsonian Astrophysical Observatory, 60 Garden Street, MS 58, Cambridge, MA 02138 (United States); De Pontieu, Bart; Martinez-Sykora, Juan [Lockheed Martin Solar and Astrophysics Laboratory, Org. A021S, Building 252, 3251 Hanover Street, Palo Alto, CA 94304 (United States); Hansteen, Viggo; Carlsson, Mats, E-mail: ptesta@cfa.harvard.edu [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029, Blindern, NO-0315 Oslo (Norway)

    2012-10-10

    Determining the temperature distribution of coronal plasmas can provide stringent constraints on coronal heating. Current observations with the Extreme ultraviolet Imaging Spectrograph (EIS) on board Hinode and the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory provide diagnostics of the emission measure distribution (EMD) of the coronal plasma. Here we test the reliability of temperature diagnostics using three-dimensional radiative MHD simulations. We produce synthetic observables from the models and apply the Monte Carlo Markov chain EMD diagnostic. By comparing the derived EMDs with the 'true' distributions from the model, we assess the limitations of the diagnostics as a function of the plasma parameters and the signal-to-noise ratio of the data. We find that EMDs derived from EIS synthetic data reproduce some general characteristics of the true distributions, but usually show differences from the true EMDs that are much larger than the estimated uncertainties suggest, especially when structures with significantly different density overlap along the line of sight. When using AIA synthetic data the derived EMDs reproduce the true EMDs much less accurately, especially for broad EMDs. The differences between the two instruments are due to the: (1) smaller number of constraints provided by AIA data and (2) broad temperature response function of the AIA channels which provide looser constraints to the temperature distribution. Our results suggest that EMDs derived from current observatories may often show significant discrepancies from the true EMDs, rendering their interpretation fraught with uncertainty. These inherent limitations to the method should be carefully considered when using these distributions to constrain coronal heating.

  6. Performance Monitoring of Residential Hot Water Distribution Systems

    SciTech Connect (OSTI)

    Liao, Anna; Lanzisera, Steven; Lutz, Jim; Fitting, Christian; Kloss, Margarita; Stiles, Christopher

    2014-08-11

    Current water distribution systems are designed such that users need to run the water for some time to achieve the desired temperature, wasting energy and water in the process. We developed a wireless sensor network for large-scale, long time-series monitoring of residential water end use. Our system consists of flow meters connected to wireless motes transmitting data to a central manager mote, which in turn posts data to our server via the internet. This project also demonstrates a reliable and flexible data collection system that could be configured for various other forms of end use metering in buildings. The purpose of this study was to determine water and energy use and waste in hot water distribution systems in California residences. We installed meters at every end use point and the water heater in 20 homes and collected 1s flow and temperature data over an 8 month period. For a typical shower and dishwasher events, approximately half the energy is wasted. This relatively low efficiency highlights the importance of further examining the energy and water waste in hot water distribution systems.

  7. The Fermilab CMTF cryogenic distribution remote control system

    SciTech Connect (OSTI)

    Pei, L.; Theilacker, J.; Klebaner, A.; Martinez, A.; Bossert, R.

    2014-01-29

    The Cryomodule Test Facility (CMTF) is able to provide the necessary test bed for measuring the performance of Superconducting Radio Frequency (SRF) cavities in a cryomodule (CM). The CMTF have seven 300 KW screw compressors, two liquid helium refrigerators, and two Cryomodule Test Stands (CMTS). CMTS1 is designed for 1.3 GHz cryomodule operating in a pulsed mode (PM) and CMTS2 is for cryomodule operating in Half-Wave (HW) and Continuous Wave (CW) mode. Based on the design requirement, each subsystem has to be far away from each other and be placed in distant locations. Therefore choosing Siemens Process Control System 7-400, DL205 PLC, Synoptic and Fermilab ACNET are the ideal choices for CMTF cryogenic distribution real-time remote control system. This paper presents a method which has been successfully used by many Fermilab distribution cryogenic real-time remote control systems.

  8. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  9. Simulation models of subsea umbilicals, flowlines and fire pump systems

    SciTech Connect (OSTI)

    Bratland, O.

    1995-12-01

    This paper discusses mathematical models suited for simulating transient and stationary flow in umbilicals, flowlines and fire pump systems. Most emphasis is put on subsea systems. Measurements are compared with simulations and good agreement has been achieved. The results show that the dynamics and response time in a hydraulic subsea control system can be influenced by parameters like umbilical elastic properties, umbilical visco-elastic properties, transition between laminar and turbulent flow, and some frequency-dependant propagation mechanisms. The paper discusses typical problems in different flow systems. It is also shown how the relevant umbilical properties can be determined by simple measurements on a short test section of the umbilical. In fire pump systems, cavitation is typically the main transient problem. In long oil and gas pipelines, the friction dominates and an accurate representation of the friction is the best contribution to relevant simulation results.

  10. Three-Phase Unbalanced Transient Dynamics and Powerflow for Modeling Distribution Systems With Synchronous Machines

    SciTech Connect (OSTI)

    Elizondo, Marcelo A.; Tuffner, Francis K.; Schneider, Kevin P.

    2016-01-01

    Unlike transmission systems, distribution feeders in North America operate under unbalanced conditions at all times, and generally have a single strong voltage source. When a distribution feeder is connected to a strong substation source, the system is dynamically very stable, even for large transients. However if a distribution feeder, or part of the feeder, is separated from the substation and begins to operate as an islanded microgrid, transient dynamics become more of an issue. To assess the impact of transient dynamics at the distribution level, it is not appropriate to use traditional transmission solvers, which generally assume transposed lines and balanced loads. Full electromagnetic solvers capture a high level of detail, but it is difficult to model large systems because of the required detail. This paper proposes an electromechanical transient model of synchronous machine for distribution-level modeling and microgrids. This approach includes not only the machine model, but also its interface with an unbalanced network solver, and a powerflow method to solve unbalanced conditions without a strong reference bus. The presented method is validated against a full electromagnetic transient simulation.

  11. Fisher Pierce products for improving distribution system reliability

    SciTech Connect (OSTI)

    1994-12-31

    The challenges facing the electric power utility today in the 1990s has changed significantly from those of even 10 years ago. The proliferation of automation and the personnel computer have heightened the requirements and demands put on the electric distribution system. Today`s customers, fighting to compete in a world market, demand quality, uninterrupted power service. Privatization and the concept of unregulated competition require utilities to streamline to minimize system support costs and optimize power delivery efficiency. Fisher Pierce, serving the electric utility industry for over 50 years, offers a line of products to assist utilities in meeting these challenges. The Fisher Pierce Family of products provide tools for the electric utility to exceed customer service demands. A full line of fault indicating devices are offered to expedite system power restoration both locally and in conjunction with SCADA systems. Fisher Pierce is the largest supplier of roadway lighting controls, manufacturing on a 6 million dollar automated line assuring the highest quality in the world. The distribution system capacitor control line offers intelligent local or radio linked switching control to maintain system voltage and Var levels for quality and cost efficient power delivery under varying customer loads. Additional products, designed to authenticate revenue metering calibration and verify on sight metering service wiring, help optimize the profitability of the utility assuring continuous system service improvements for their customers.

  12. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline

  13. Parallel Breadth-First Search on Distributed Memory Systems

    SciTech Connect (OSTI)

    Computational Research Division; Buluc, Aydin; Madduri, Kamesh

    2011-04-15

    Data-intensive, graph-based computations are pervasive in several scientific applications, and are known to to be quite challenging to implement on distributed memory systems. In this work, we explore the design space of parallel algorithms for Breadth-First Search (BFS), a key subroutine in several graph algorithms. We present two highly-tuned par- allel approaches for BFS on large parallel systems: a level-synchronous strategy that relies on a simple vertex-based partitioning of the graph, and a two-dimensional sparse matrix- partitioning-based approach that mitigates parallel commu- nication overhead. For both approaches, we also present hybrid versions with intra-node multithreading. Our novel hybrid two-dimensional algorithm reduces communication times by up to a factor of 3.5, relative to a common vertex based approach. Our experimental study identifies execu- tion regimes in which these approaches will be competitive, and we demonstrate extremely high performance on lead- ing distributed-memory parallel systems. For instance, for a 40,000-core parallel execution on Hopper, an AMD Magny- Cours based system, we achieve a BFS performance rate of 17.8 billion edge visits per second on an undirected graph of 4.3 billion vertices and 68.7 billion edges with skewed degree distribution.

  14. Physical Modeling of Scaled Water Distribution System Networks.

    SciTech Connect (OSTI)

    O'Hern, Timothy J.; Hammond, Glenn Edward; Orear, Leslie ,; van Bloemen Waanders, Bart G.; Paul Molina; Ross Johnson

    2005-10-01

    Threats to water distribution systems include release of contaminants and Denial of Service (DoS) attacks. A better understanding, and validated computational models, of the flow in water distribution systems would enable determination of sensor placement in real water distribution networks, allow source identification, and guide mitigation/minimization efforts. Validation data are needed to evaluate numerical models of network operations. Some data can be acquired in real-world tests, but these are limited by 1) unknown demand, 2) lack of repeatability, 3) too many sources of uncertainty (demand, friction factors, etc.), and 4) expense. In addition, real-world tests have limited numbers of network access points. A scale-model water distribution system was fabricated, and validation data were acquired over a range of flow (demand) conditions. Standard operating variables included system layout, demand at various nodes in the system, and pressure drop across various pipe sections. In addition, the location of contaminant (salt or dye) introduction was varied. Measurements of pressure, flowrate, and concentration at a large number of points, and overall visualization of dye transport through the flow network were completed. Scale-up issues that that were incorporated in the experiment design include Reynolds number, pressure drop across nodes, and pipe friction and roughness. The scale was chosen to be 20:1, so the 10 inch main was modeled with a 0.5 inch pipe in the physical model. Controlled validation tracer tests were run to provide validation to flow and transport models, especially of the degree of mixing at pipe junctions. Results of the pipe mixing experiments showed large deviations from predicted behavior and these have a large impact on standard network operations models.3

  15. Nexus: a modular workflow management system for quantum simulation codes

    SciTech Connect (OSTI)

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantum chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.

  16. Nexus: a modular workflow management system for quantum simulation codes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Krogel, Jaron T.

    2015-08-24

    The management of simulation workflows is a significant task for the individual computational researcher. Automation of the required tasks involved in simulation work can decrease the overall time to solution and reduce sources of human error. A new simulation workflow management system, Nexus, is presented to address these issues. Nexus is capable of automated job management on workstations and resources at several major supercomputing centers. Its modular design allows many quantum simulation codes to be supported within the same framework. Current support includes quantum Monte Carlo calculations with QMCPACK, density functional theory calculations with Quantum Espresso or VASP, and quantummore » chemical calculations with GAMESS. Users can compose workflows through a transparent, text-based interface, resembling the input file of a typical simulation code. A usage example is provided to illustrate the process.« less

  17. Simulating the Dynamic Coupling of Market and Physical System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Roop, Joseph M.; Guttromson, Ross T.; Huang, Zhenyu

    2004-06-01

    Abstract-As energy trading products cover shorter time periods and demand response programs move toward real-time pricing, financial market-based activity impacts ever more directly the physical operation of the system. To begin to understand the complex interactions between the market-driven operation signals, the engineered controlled schemes, and the laws of physics, new system modeling and simulation techniques must be explored. This discussion describes requirements for new simulation tools to address such market transaction control interactions and an approach to capture the dynamic coupling between energy markets and the physical operation of the power system appropriate for dispatcher reaction time frames.

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  19. Method for adding nodes to a quantum key distribution system

    DOE Patents [OSTI]

    Grice, Warren P

    2015-02-24

    An improved quantum key distribution (QKD) system and method are provided. The system and method introduce new clients at intermediate points along a quantum channel, where any two clients can establish a secret key without the need for a secret meeting between the clients. The new clients perform operations on photons as they pass through nodes in the quantum channel, and participate in a non-secret protocol that is amended to include the new clients. The system and method significantly increase the number of clients that can be supported by a conventional QKD system, with only a modest increase in cost. The system and method are compatible with a variety of QKD schemes, including polarization, time-bin, continuous variable and entanglement QKD.

  20. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect (OSTI)

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  1. Compiling software for a hierarchical distributed processing system

    SciTech Connect (OSTI)

    Archer, Charles J; Blocksome, Michael A; Ratterman, Joseph D; Smith, Brian E

    2013-12-31

    Compiling software for a hierarchical distributed processing system including providing to one or more compiling nodes software to be compiled, wherein at least a portion of the software to be compiled is to be executed by one or more nodes; compiling, by the compiling node, the software; maintaining, by the compiling node, any compiled software to be executed on the compiling node; selecting, by the compiling node, one or more nodes in a next tier of the hierarchy of the distributed processing system in dependence upon whether any compiled software is for the selected node or the selected node's descendents; sending to the selected node only the compiled software to be executed by the selected node or selected node's descendent.

  2. Feasibility Study: Ductless Hydronic Distribution Systems with Fan Coil Delivery

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; Backman, C.

    2012-07-01

    The primary objectives of this study are to estimate potential energy savings relative to conventional ducted air distribution, and to identify equipment requirements, costs, and barriers with a focus on ductless hydronic delivery systems that utilize water-to-air terminal units in each zone. Results indicate that annual heating and cooling energy use can be reduced by up to 27% assuming replacement of the conventional 13 SEER heat pump and coil with a similarly rated air-to-water heat pump.

  3. High Frequency Mechanical Pyroshock Simulations for Payload Systems

    SciTech Connect (OSTI)

    BATEMAN,VESTA I.; BROWN,FREDERICK A.; CAP,JEROME S.; NUSSER,MICHAEL A.

    1999-12-15

    Sandia National Laboratories (SNL) designs mechanical systems with components that must survive high frequency shock environments including pyrotechnic shock. These environments have not been simulated very well in the past at the payload system level because of weight limitations of traditional pyroshock mechanical simulations using resonant beams and plates. A new concept utilizing tuned resonators attached to the payload system and driven with the impact of an airgun projectile allow these simulations to be performed in the laboratory with high precision and repeatability without the use of explosives. A tuned resonator has been designed and constructed for a particular payload system. Comparison of laboratory responses with measurements made at the component locations during actual pyrotechnic events show excellent agreement for a bandwidth of DC to 4 kHz. The bases of comparison are shock spectra. This simple concept applies the mechanical pyroshock simulation simultaneously to all components with the correct boundary conditions in the payload system and is a considerable improvement over previous experimental techniques and simulations.

  4. Final Technical Report "Multiscale Simulation Algorithms for Biochemical Systems"

    SciTech Connect (OSTI)

    Petzold, Linda R.

    2012-10-25

    Biochemical systems are inherently multiscale and stochastic. In microscopic systems formed by living cells, the small numbers of reactant molecules can result in dynamical behavior that is discrete and stochastic rather than continuous and deterministic. An analysis tool that respects these dynamical characteristics is the stochastic simulation algorithm (SSA, Gillespie, 1976), a numerical simulation procedure that is essentially exact for chemical systems that are spatially homogeneous or well stirred. Despite recent improvements, as a procedure that simulates every reaction event, the SSA is necessarily inefficient for most realistic problems. There are two main reasons for this, both arising from the multiscale nature of the underlying problem: (1) stiffness, i.e. the presence of multiple timescales, the fastest of which are stable; and (2) the need to include in the simulation both species that are present in relatively small quantities and should be modeled by a discrete stochastic process, and species that are present in larger quantities and are more efficiently modeled by a deterministic differential equation (or at some scale in between). This project has focused on the development of fast and adaptive algorithms, and the fun- damental theory upon which they must be based, for the multiscale simulation of biochemical systems. Areas addressed by this project include: (1) Theoretical and practical foundations for ac- celerated discrete stochastic simulation (tau-leaping); (2) Dealing with stiffness (fast reactions) in an efficient and well-justified manner in discrete stochastic simulation; (3) Development of adaptive multiscale algorithms for spatially homogeneous discrete stochastic simulation; (4) Development of high-performance SSA algorithms.

  5. Development of Models to Simulate Tracer Behavior in Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Williams, Mark D.; Vermeul, Vincent R.; Reimus, P. W.; Newell, D.; Watson, Tom B.

    2010-06-01

    A recent report found that power and heat produced from engineered (or enhanced) geothermal systems (EGSs) could have a major impact on the United States while incurring minimal environmental impacts. EGS resources differ from high-grade hydrothermal resources in that they lack sufficient temperature distributions, permeability/porosity, fluid saturation, or recharge of reservoir fluids. Therefore, quantitative characterization of temperature distributions and the surface area available for heat transfer in EGS is necessary for commercial development of geothermal energy. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate this characterization. Modeling capabilities are being developed as part of this project to support laboratory and field testing to characterize engineered geothermal systems in single- and multi-well tests using tracers. The objective of this report is to describe the simulation plan and the status of model development for simulating tracer tests for characterizing EGS.

  6. Multi-State Load Models for Distribution System Analysis

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Fuller, Jason C.; Chassin, David P.

    2011-11-01

    Recent work in the field of distribution system analysis has shown that the traditional method of peak load analysis is not adequate for the analysis of emerging distribution system technologies. Voltage optimization, demand response, electric vehicle charging, and energy storage are examples of technologies with characteristics having daily, seasonal, and/or annual variations. In addition to the seasonal variations, emerging technologies such as demand response and plug in electric vehicle charging have the potential to send control signals to the end use loads which will affect how they consume energy. In order to support time-series analysis over different time frames and to incorporate potential control signal inputs it is necessary to develop detailed end use load models which accurately represent the load under various conditions, and not just during the peak load period. This paper will build on previous work on detail end use load modeling in order to outline the method of general multi-state load models for distribution system analysis.

  7. Effect of Component Failures on Economics of Distributed Photovoltaic Systems

    SciTech Connect (OSTI)

    Lubin, Barry T.

    2012-02-02

    both. Some societal benefits associated with financial benefits to the utility of having a distributed generation capacity that is not fossil-fuel based have been included into the economic models. Also included and quantified in the models are several benefits to society more generally: job creation and some estimates of benefits from avoiding greenhouse emissions. PV system failures result in a lowering of the economic values of a grid-connected system, but this turned out to be a surprisingly small effect on the overall economics. The most significant benefit noted resulted from including the societal benefits accrued to the utility. This provided a marked increase in the valuations of the array and made the overall value proposition a financially attractive one, in that net present values exceeded installation costs. These results indicate that the Department of Energy and state regulatory bodies should consider focusing on societal benefits that create economic value for the utility, confirm these quantitative values, and work to have them accepted by the utilities and reflected in the rate structures for power obtained from grid-connected arrays. Understanding and applying the economic benefits evident in this work can significantly improve the business case for grid-connected PV installations. This work also indicates that the societal benefits to the population are real and defensible, but not nearly as easy to justify in a business case as are the benefits that accrue directly to the utility.

  8. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    1 Market Share of Major HVAC Equipment Manufacturers ($2009 Million) Air-Handling Units 1032 Cooling Towers 533 Pumps 333 Central System Terminal Boxes 192 Classroom Unit Ventilator 160 Fan Coil Units 123 Source(s): Total Market Size BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table 4-1, p. 4-4; and EIA, Annual Energy Review 2010, Oct. 2011, Appendix D, p. 353 for price

  9. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    2 U.S. Commercial Buildings Conditioned Floorspace, Building Type and System Type (Million SF) Total Education Food Sales Food Service Health Care Lodging Mercantile and Service Office Public Buildings Warehouse/Storage Total Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment, and Ventilation, Oct. 1999, Table A2-12, p. B2-1. 3,988 4,771 19,767 5,287 2,822 3,352 12,065 48,064 119 1,482 0 0 102

  10. Analysis of Aurora's Performance Simulation Engine for Three Systems

    SciTech Connect (OSTI)

    Freeman, Janine; Simon, Joseph

    2015-07-07

    Aurora Solar Inc. is building a cloud-based optimization platform to automate the design, engineering, and permit generation process of solar photovoltaic (PV) installations. They requested that the National Renewable Energy Laboratory (NREL) validate the performance of the PV system performance simulation engine of Aurora Solar’s solar design platform, Aurora. In previous work, NREL performed a validation of multiple other PV modeling tools 1, so this study builds upon that work by examining all of the same fixed-tilt systems with available module datasheets that NREL selected and used in the aforementioned study. Aurora Solar set up these three operating PV systems in their modeling platform using NREL-provided system specifications and concurrent weather data. NREL then verified the setup of these systems, ran the simulations, and compared the Aurora-predicted performance data to measured performance data for those three systems, as well as to performance data predicted by other PV modeling tools.

  11. Understanding and Improving CRM and GCM Simulations of Cloud Systems with ARM Observations

    SciTech Connect (OSTI)

    Wu, Xiaoqing

    2014-02-25

    The works supported by this ASR project lay the solid foundation for improving the parameterization of convection and clouds in the NCAR CCSM and the climate simulations. We have made a significant use of CRM simulations and ARM observations to produce thermodynamically and dynamically consistent multi-year cloud and radiative properties; improve the GCM simulations of convection, clouds and radiative heating rate and fluxes using the ARM observations and CRM simulations; and understand the seasonal and annual variation of cloud systems and their impacts on climate mean state and variability. We conducted multi-year simulations over the ARM SGP site using the CRM with multi-year ARM forcing data. The statistics of cloud and radiative properties from the long-term CRM simulations were compared and validated with the ARM measurements and value added products (VAP). We evaluated the multi-year climate simulations produced by the GCM with the modified convection scheme. We used multi-year ARM observations and CRM simulations to validate and further improve the trigger condition and revised closure assumption in NCAR GCM simulations that demonstrate the improvement of climate mean state and variability. We combined the improved convection scheme with the mosaic treatment of subgrid cloud distributions in the radiation scheme of the GCM. The mosaic treatment of cloud distributions has been implemented in the GCM with the original convection scheme and enables the use of more realistic cloud amounts as well as cloud water contents in producing net radiative fluxes closer to observations. A physics-based latent heat (LH) retrieval algorithm was developed by parameterizing the physical linkages of observed hydrometeor profiles of cloud and precipitation to the major processes related to the phase change of atmospheric water.

  12. Interactive long-term simulation for power system restoration planning

    SciTech Connect (OSTI)

    Fountas, N.A.; Hatziargyriou, N.D. [National Technical Univ., Athens (Greece)] [National Technical Univ., Athens (Greece); Orfanogiannis, C.; Tasoulis, A. [Public Power Corp., Athens (Greece)] [Public Power Corp., Athens (Greece)

    1997-02-01

    The problem of restoring a power system following a complete blackout is complex and multi-faceted. Many control actions have to be performed on time, while constraints such as power balance and system stability have to be carefully respected. In this paper, the application of long-term dynamic analysis in studying frequency and voltage responses due to load and generation mismatches in isolated systems or during extension of the existing system in the restoration phase is presented. Simulation results covering the main steps of the Hellenic power system restoration process following a recent total blackout are presented and discussed.

  13. Dynamic simulation of the Hanford tank waste remediation system

    SciTech Connect (OSTI)

    Harmsen, R.W., Westinghouse Hanford

    1996-05-03

    Cleaning up and disposing of approximately 50 years of nuclear waste is the main mission at the U.S. Department of Energy`s Hanford Nuclear Reservation, located in the southeastern part of the state of Washington. A major element of the total cleanup effort involves retrieving, processing, and disposing of radioactive and hazardous waste stored in 177 underground storage tanks. This effort, referred to as the Tank Waste Remediation System (TWRS), is expected to cost billions of dollars and take approximately 25 years to complete. Several computer simulations of this project are being created, focusing on both programmatic and detailed engineering issues. This paper describes one such simulation activity, using the ithink(TM)computer simulation software. The ithink(TM) simulation includes a representation of the complete TWRS cleanup system, from retrieval of waste through intermediate processing and final vitrification of waste for disposal. Major issues addressed to date by the simulation effort include the need for new underground storage tanks to support TWRS activities, and the estimated design capacities for various processing facilities that are required to support legally mandated program commitment dates. This paper discusses how the simulation was used to investigate these questions.

  14. Explicit simulation of a midlatitude Mesoscale Convective System

    SciTech Connect (OSTI)

    Alexander, G.D.; Cotton, W.R.

    1996-04-01

    We have explicitly simulated the mesoscale convective system (MCS) observed on 23-24 June 1985 during PRE-STORM, the Preliminary Regional Experiment for the Stormscale Operational and Research and Meterology Program. Stensrud and Maddox (1988), Johnson and Bartels (1992), and Bernstein and Johnson (1994) are among the researchers who have investigated various aspects of this MCS event. We have performed this MCS simulation (and a similar one of a tropical MCS; Alexander and Cotton 1994) in the spirit of the Global Energy and Water Cycle Experiment Cloud Systems Study (GCSS), in which cloud-resolving models are used to assist in the formulation and testing of cloud parameterization schemes for larger-scale models. In this paper, we describe (1) the nature of our 23-24 June MCS dimulation and (2) our efforts to date in using our explicit MCS simulations to assist in the development of a GCM parameterization for mesoscale flow branches. The paper is organized as follows. First, we discuss the synoptic situation surrounding the 23-24 June PRE-STORM MCS followed by a discussion of the model setup and results of our simulation. We then discuss the use of our MCS simulation. We then discuss the use of our MCS simulations in developing a GCM parameterization for mesoscale flow branches and summarize our results.

  15. Targeting Atmospheric Simulation Algorithms for Large Distributed Memory GPU Accelerated Computers

    SciTech Connect (OSTI)

    Norman, Matthew R

    2013-01-01

    Computing platforms are increasingly moving to accelerated architectures, and here we deal particularly with GPUs. In [15], a method was developed for atmospheric simulation to improve efficiency on large distributed memory machines by reducing communication demand and increasing the time step. Here, we improve upon this method to further target GPU accelerated platforms by reducing GPU memory accesses, removing a synchronization point, and better clustering computations. The modification ran over two times faster in some cases even though more computations were required, demonstrating the merit of improving memory handling on the GPU. Furthermore, we discover that the modification also has a near 100% hit rate in fast on-chip L1 cache and discuss the reasons for this. In concluding, we remark on further potential improvements to GPU efficiency.

  16. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    3 Thermal Distribution Design Load and Electricity Intensities, by Building Activity Education 0.5 1.3 Food Sales 1.1 6.4 Food Service 1.5 6.4 Health Care 1.5 5.6 Lodging 0.5 1.9 Mercantile and Service 0.9 2.7 Office 1.3 3.3 Public Assembly 1.2 3.0 Warehouse 0.4 1.8 All Buildings 1.0 2.8 Source(s): Design Load Intensity End Use Intensity (W/SF) (kWh/SF) BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II: Thermal Distribution, Auxiliary Equipment,

  17. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  18. A flexible system for the simulation of turbocharged diesel engines and turbocharging systems

    SciTech Connect (OSTI)

    Bulaty, T.; Codan, E.; Skopil, M.

    1996-12-31

    A fully flexible simulation system enables substitution of the conventional tests performed on turbocharged diesel engines. The supercharging systems can be calculated either by filling and emptying or by the differential method for 1-D unsteady flow during steady-state or transient operation. During sophisticated simulations, some conservation problems were observed. Their theoretical explanation and a practical solution are presented.

  19. Panel 2, Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modeling the Financial and System Benefits of Energy Storage Applications in Distribution Systems Patrick Balducci, Senior Economist, Pacific NW National Laboratory Hydrogen Energy Storage for Grid and Transportation Services Workshop Sacramento, California May 14, 2014 Valuation challenges 2 Source: Lamontagne, C. 2014. Survey of Models and Tools for the Stationary Energy Storage Industry. Presentation at Infocast Storage Week. Santa Clara, CA. Transmission and Distribution planning Models lack

  20. Geostatistical Simulation of Hydrofacies Heterogeneity of the West Thessaly Aquifer Systems in Greece

    SciTech Connect (OSTI)

    Modis, K. Sideri, D.

    2013-06-15

    Integrating geological properties, such as relative positions and proportions of different hydrofacies, is of highest importance in order to render realistic geological patterns. Sequential indicator simulation (SIS) and Plurigaussian simulation (PS) are alternative methods for conceptual and deterministic modeling for the characterization of hydrofacies distribution. In this work, we studied the spatial differentiation of hydrofacies in the alluvial aquifer system of West Thessaly basin in Greece. For this, we applied both SIS and PS techniques to an extensive set of borehole data from that basin. Histograms of model versus experimental hydrofacies proportions and indicative cross sections were plotted in order to validate the results. The PS technique was shown to be more effective in reproducing the spatial characteristics of the different hydrofacies and their distribution across the study area. In addition, the permeability differentiations reflected in the PS model are in accordance to known heterogeneities of the aquifer capacity.

  1. Aerogel-Based Insulation for Industrial Steam Distribution Systems

    SciTech Connect (OSTI)

    John Williams

    2011-03-30

    Thermal losses in industrial steam distribution systems account for 977 trillion Btu/year in the US, more than 1% of total domestic energy consumption. Aspen Aerogels worked with Department of Energy’s Industrial Technologies Program to specify, develop, scale-up, demonstrate, and deliver Pyrogel XT®, an aerogel-based pipe insulation, to market to reduce energy losses in industrial steam systems. The product developed has become Aspen’s best selling flexible aerogel blanket insulation and has led to over 60 new jobs. Additionally, this product has delivered more than ~0.7 TBTU of domestic energy savings to date, and could produce annual energy savings of 149 TBTU by 2030. Pyrogel XT’s commercial success has been driven by it’s 2-4X better thermal performance, improved durability, greater resistance to corrosion under insulation (CUI), and faster installation times than incumbent insulation materials.

  2. Buildings Energy Data Book: 5.5 Thermal Distribution Systems

    Buildings Energy Data Book [EERE]

    4 Thermal Distribution Equipment Design Load and Electricity Intensities, by System Type Central VAV Central CAV Packaged CAV Central VAV Central CAV Packaged CAV Condenser Fan 0.3 0.2 Cooling Tower Fan 0.2 0.1 0.2 0.0 Condenser Water Pump 0.2 0.3 0.3 0.0 Chilled Water Pump 0.2 0.1 0.2 0.0 Supply & Return Fans 0.7 0.5 0.6 1.2 1.9 1.9 Chiller/Compressor 1.9 1.8 3.3 1.7 2.3 4.0 Source(s): BTS/A.D. Little, Energy Consumption Characteristics of Commercial Building HVAC Systems, Volume II:

  3. Big Data Visual Analytics for Exploratory Earth System Simulation Analysis

    SciTech Connect (OSTI)

    Steed, Chad A.; Ricciuto, Daniel M.; Shipman, Galen M.; Smith, Brian E.; Thornton, Peter E.; Wang, Dali; Shi, Xiaoying; Williams, Dean N.

    2013-12-01

    Rapid increases in high performance computing are feeding the development of larger and more complex data sets in climate research, which sets the stage for so-called big data analysis challenges. However, conventional climate analysis techniques are inadequate in dealing with the complexities of today s data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to transform data into insight, thereby improving critical comprehension of earth system processes. In addition to providing an overview of EDEN, we describe real-world studies using both point ensembles and global Community Land Model Version 4 (CLM4) simulations.

  4. Distributed Energy Resources Test Facility | Energy Systems Integratio...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Resources Test Facility At the Distributed Energy Resources Test Facility (DERTF), researchers use state-of-the-art laboratories and outdoor test beds to ...

  5. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    SciTech Connect (OSTI)

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed for labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.

  6. Global distribution and surface activity of macromolecules in offline simulations of marine organic chemistry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ogunro, Oluwaseun O.; Burrows, Susannah M.; Elliott, Scott; Frossard, Amanda A.; Hoffman, Forrest M.; Letscher, Robert T.; Moore, J. Keith; Russell, Lynn M.; Wang, Shanlin; Wingenter, Oliver W.

    2015-10-13

    Here, organic macromolecules constitute high percentage components of remote sea spray. They enter the atmosphere through adsorption onto bubbles followed by bursting at the ocean surface, and go on to influence the chemistry of the fine mode aerosol. We present a global estimate of mixed-layer organic macromolecular distributions, driven by offline marine systems model output. The approach permits estimation of oceanic concentrations and bubble film surface coverages for several classes of organic compound. Mixed layer levels are computed from the output of a global ocean biogeochemistry model by relating the macromolecules to standard biogeochemical tracers. Steady state is assumed formore » labile forms, and for longer-lived components we rely on ratios to existing transported variables. Adsorption is then represented through conventional Langmuir isotherms, with equilibria deduced from laboratory analogs. Open water concentrations locally exceed one micromolar carbon for the total of protein, polysaccharide and refractory heteropolycondensate. The shorter-lived lipids remain confined to regions of strong biological activity. Results are evaluated against available measurements for all compound types, and agreement is generally quite reasonable. Global distributions are further estimated for both fractional coverage of bubble films at the air-water interface and the two-dimensional concentration excess. Overall, we show that macromolecular mapping provides a novel tool for the comprehension of oceanic surfactant distributions. Results may prove useful in planning field experiments and assessing the potential response of surface chemical behaviors to global change.« less

  7. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reduction of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.

  8. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    SciTech Connect (OSTI)

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energys Light Water Reactor

  9. Distribution System Voltage Performance Analysis for High-Penetration Photovoltaics

    SciTech Connect (OSTI)

    Liu, E.; Bebic, J.

    2008-02-01

    This report examines the performance of commonly used distribution voltage regulation methods under reverse power flow.

  10. A New Model to Simulate Energy Performance of VRF Systems

    SciTech Connect (OSTI)

    Hong, Tianzhen; Pang, Xiufeng; Schetrit, Oren; Wang, Liping; Kasahara, Shinichi; Yura, Yoshinori; Hinokuma, Ryohei

    2014-03-30

    This paper presents a new model to simulate energy performance of variable refrigerant flow (VRF) systems in heat pump operation mode (either cooling or heating is provided but not simultaneously). The main improvement of the new model is the introduction of the evaporating and condensing temperature in the indoor and outdoor unit capacity modifier functions. The independent variables in the capacity modifier functions of the existing VRF model in EnergyPlus are mainly room wet-bulb temperature and outdoor dry-bulb temperature in cooling mode and room dry-bulb temperature and outdoor wet-bulb temperature in heating mode. The new approach allows compliance with different specifications of each indoor unit so that the modeling accuracy is improved. The new VRF model was implemented in a custom version of EnergyPlus 7.2. This paper first describes the algorithm for the new VRF model, which is then used to simulate the energy performance of a VRF system in a Prototype House in California that complies with the requirements of Title 24 ? the California Building Energy Efficiency Standards. The VRF system performance is then compared with three other types of HVAC systems: the Title 24-2005 Baseline system, the traditional High Efficiency system, and the EnergyStar Heat Pump system in three typical California climates: Sunnyvale, Pasadena and Fresno. Calculated energy savings from the VRF systems are significant. The HVAC site energy savings range from 51 to 85percent, while the TDV (Time Dependent Valuation) energy savings range from 31 to 66percent compared to the Title 24 Baseline Systems across the three climates. The largest energy savings are in Fresno climate followed by Sunnyvale and Pasadena. The paper discusses various characteristics of the VRF systems contributing to the energy savings. It should be noted that these savings are calculated using the Title 24 prototype House D under standard operating conditions. Actual performance of the VRF systems for real