Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Fluid permeability measurement system and method  

DOE Patents (OSTI)

A system for measuring the permeance of a material. The permeability of the material may also be derived. The system provides a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis (Knoxville, TN); Renner, Michael John (Oak Ridge, TN)

2008-02-05T23:59:59.000Z

2

Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir |  

Open Energy Info (EERE)

Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Fluid Stratigraphy and Permeable Zones of the Coso Geothermal Reservoir Details Activities (1) Areas (1) Regions (0) Abstract: A fence-diagram for the Coso geothermal reservoir is developed from Fluid Inclusion Stratigraphy (FIS) analyses. Fluid inclusion gas chemistry in well cuttings collected at 20 ft intervals is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow, fluid processes and reservoir seals. Boiling and condensate zones are distinguished. Permeable zones are indicated by a large change in

3

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal  

Open Energy Info (EERE)

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal System, Wyoming Details Activities (1) Areas (1) Regions (0) Abstract: Cores from two of 13 U.S. Geological Survey research holes at Yellowstone National Park (Y-5 and Y-8) were evaluated to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic examination of the cores were used to evaluate the effects of lithology and hydrothermal alteration on porosity and permeability. The intervals studied in these two core holes span the conductive zone and the upper portion of

4

Impact of relative permeability models on fluid flow behavior for gas condensate reservoirs  

E-Print Network (OSTI)

Accurate assessments of reserves and evaluation of productivity trends for gas condensate systems depend on a basic understanding of phase and fluid flow behavior. In gas condensate reservoirs, the gas flow depends on liquid drop out at pressures below the dewpoint pressure. The liquid initially accumulates as a continuous film along the porous media because of the low interfacial tension. Then, as the volume of condensate increases, the interfacial tension increases and capillary forces become more important. Modeling fluid flow in these systems must consider the dependence of relative permeability on both viscous and capillary forces. This research focuses on the evaluation of several recently proposed relative permeability models and on the quantification of their impact on reservoir fluid flow and well performance. We selected three relative permeability models to compare the results obtained in the modeling of relative permeabilities for a published North Sea gas condensate reservoir. The models employ weighting factors to account for the interpolation between miscible and immiscible flow behavior. The Pusch model evaluated using Fevang's weighting factor gave the best estimation of relative permeability when compared to the published data. Using a sector model, we evaluated the effects at the field scale of the selected gas condensate relative permeability models on well performance under different geological heterogeneity and permeability anisotropy scenarios. The Bette and Pusch models as well as the Danesh model, as implemented in a commercial reservoir simulator, were used to quantify the impact of the relative permeability models on fluid-flow and well performance. The results showed that, if the transition between miscible and immiscible behavior is not considered, the condensate saturation could be overestimated and the condensate production could be underestimated. After twenty years of production, the heterogeneous model using the selected relative permeability models predicted between 7.5 - 13% more condensate recovery than was estimated using an immiscible relative permeability model. Using the same relative permeability models, the anisotropic model forecast between 3 - 10% more condensate recovery than predicted using an immiscible relative permeability model. Results using the anisotropic model showed that vertical communication could affect the liquid distribution in the reservoir.

Zapata Arango, Jose? Francisco

2002-01-01T23:59:59.000Z

5

Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally  

E-Print Network (OSTI)

Permeability of illite-bearing shale: 2. Influence of fluid chemistry on flow and functionally; accepted 14 July 2004; published 14 October 2004. [1] Bedding-parallel permeability of illite-rich shale Geochemistry: Low-temperature geochemistry; KEYWORDS: permeability, shale, fluid chemistry Citation: Kwon, O

Herbert, Bruce

6

Porosity, Permeability, And Fluid Flow In The Yellowstone Geothermal...  

Open Energy Info (EERE)

to characterize lithology, texture, alteration, and the degree and nature of fracturing and veining. Porosity and matrix permeability measurements and petrographic...

7

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

8

Porosity and Permeability Evolution Accompanying Hot fluid Injection into Diatomite, SUPRI TR-123  

Science Conference Proceedings (OSTI)

An experimental study of silica dissolution was performed to probe the evolution of permeability and porosity in siliceous diatomite during hot fluid injection such as water or steam flooding. Two competing mechanisms were identified. Silica solubility in water at elevated temperature causes rock dissolution thereby increasing permeability; however, the rock is mechanically weak leading to compressing of the solid matrix during injection. Permeability and porosity can decrease at the onset of fluid flow. A laboratory flow apparatus was designed and built to examine these processes in diatomite core samples.

Diabira, I.; Castanier, L.M.; Kovscek, A.R.

2001-04-19T23:59:59.000Z

9

Joint Distributions for Interacting Fluid Queues  

Science Conference Proceedings (OSTI)

Motivated by recent traffic control models in ATM systems, we analyse three closely related systems of fluid queues, each consisting of two consecutive reservoirs, in which the first reservoir is fed by a two-state (on and off) Markov source. The first ... Keywords: feedback, fluid queue, joint distribution, stationary distribution, tandem queue, traffic shaper

Dirk P. Kroese; Werner R. W. Scheinhardt

2001-03-01T23:59:59.000Z

10

Breaker concentrations required to improve the permeability of proppant packs damaged by concentrated linear and borate-crosslinked fracturing fluids  

Science Conference Proceedings (OSTI)

This paper reports on the concentrations of an oxidative breaker required to reduce significantly the proppant-pack permeability damage caused by aqueous hydraulic fracturing fluids. Long-term, proppant-pack permeability testing was used to evaluate linear and borate-crosslinked gels. Results indicate that increasing the breaker concentration can reduce proppant-pack permeability damage very effectively.

Brannon, H. (BJ Services (United States)); Pulsinelli, R.J. (Dowell Schlumberger, Tulsa, OK (United States))

1992-11-01T23:59:59.000Z

11

Low permeability filter cake limits damage from high-pH drilling fluids  

Science Conference Proceedings (OSTI)

Changing the particle size distribution in high-pH drilling fluids and perforating underbalanced helped protect sensitive reservoirs from formation damage. In several wells drilled in a carboniferous reservoir system in China, invasion of the high-pH filtrate from the drilling and workover fluids seriously damaged the formation. An in-depth reservoir study determined the cause of the formation damage and led to the development of new field procedures to prevent damage in future wells. Details are described.

Wu, Z.; Hu, Y. [Southwest Petroleum Inst., Nanchong (China)

1997-02-17T23:59:59.000Z

12

Characterization of fracture reservoirs using static and dynamic data: From sonic and 3D seismic to permeability distribution. Annual report, March 1, 1996--February 28, 1997  

SciTech Connect

In low porosity, low permeability zones, natural fractures are the primary source of permeability which affect both production and injection of fluids. The open fractures do not contribute much to porosity, but they provide an increased drainage network to any porosity. They also may connect the borehole to remote zones of better reservoir characteristics. An important approach to characterizing the fracture orientation and fracture permeability of reservoir formations is one based on the effects of such conditions on the propagation of acoustic and seismic waves in the rock. The project is a study directed toward the evaluation of acoustic logging and 3D-seismic measurement techniques as well as fluid flow and transport methods for mapping permeability anisotropy and other petrophysical parameters for the understanding of the reservoir fracture systems and associated fluid dynamics. The principal application of these measurement techniques and methods is to identify and investigate the propagation characteristics of acoustic and seismic waves in the Twin Creek hydrocarbon reservoir owned by Union Pacific Resources (UPR) and to characterize the fracture permeability distribution using production data. This site is located in the overthrust area of Utah and Wyoming. UPR drilled six horizontal wells, and presently UPR has two rigs running with many established drill hole locations. In addition, there are numerous vertical wells that exist in the area as well as 3D seismic surveys. Each horizontal well contains full FMS logs and MWD logs, gamma logs, etc.

Parra, J.O.; Collier, H.A.; Owen, T.E. [and others

1997-06-01T23:59:59.000Z

13

Double-diffusive convection for a non-Newtonian fluid flow past a permeable surface embedded in a porous medium with uniform heat and mass fluxes  

Science Conference Proceedings (OSTI)

The problem of steady, laminar, double-diffusive mixed convective flow of a non-Newtonian power-law fluid past a vertical semi-infinite permeable surface embedded in a porous medium with uniform heat and mass fluxes. A mixed convection parameter for ... Keywords: heat and mass transfer, mixed convection, non-Newtonian fluid, numerical solution, porous media, suction or injection

Ali J. Chamkha

2008-03-01T23:59:59.000Z

14

Method of determining interwell oil field fluid saturation distribution  

DOE Patents (OSTI)

A method of determining the oil and brine saturation distribution in an oil field by taking electrical current and potential measurements among a plurality of open-hole wells geometrically distributed throughout the oil field. Poisson's equation is utilized to develop fluid saturation distributions from the electrical current and potential measurement. Both signal generating equipment and chemical means are used to develop current flow among the several open-hole wells.

Donaldson, Erle C. (Bartlesville, OK); Sutterfield, F. Dexter (Bartlesville, OK)

1981-01-01T23:59:59.000Z

15

Quantifying fluid distribution and phase connectivity with a simple 3D cubic pore network model constrained by NMR and MICP data  

Science Conference Proceedings (OSTI)

A computer algorithm is implemented to construct 3D cubic pore networks that simultaneously honor nuclear magnetic resonance (NMR) and mercury injection capillary pressure (MICP) measurements on core samples. The algorithm uses discretized pore-body ... Keywords: Fluid distribution, Invasion percolation, Mercury injection capillary pressure, Nuclear magnetic resonance, Pore network, Relative permeability, Tight-gas sandstone

Chicheng Xu, Carlos Torres-Verdín

2013-12-01T23:59:59.000Z

16

Selection of drilling fluids for minimizing coalbed damage. Final report, December 1981-February 1983. [Effect on permeability of coal bed near the well  

Science Conference Proceedings (OSTI)

The following conclusions have been drawn from work performed in this project: (1) both of the fluids tested (a KC1/CaCl2 brine and drilling mud filtrate) caused a loss in permeability when flowed through coal; (2) the damage mechanism for brine is undetermined, but the major part of the damage from mud filtrate appears to be related to particulate matter plugging flow channels; (3) a decrease in net confining pressure, caused by drilling overbalanced, can increase the risk of formation damage; and (4) an increase in net confining pressure, caused by drilling underbalanced, can also lead to permeability losses. The three potential formation damage mechanisms have been particulate plugging, clay swelling and/or migration, and relative permeability effects. Laboratory investigations have added a fourth - pressure effects.

Rose, R.E.; Foh, S.E.; Hayden, C.G.; Randolph, P.L.

1983-11-01T23:59:59.000Z

17

Laboratory tests, statistical analysis and correlations for regained permeability and breakthrough time in unconsolidated sands for improved drill-in fluid cleanup practices  

E-Print Network (OSTI)

Empirical models for estimating the breakthrough time and regained permeability for selected nondamaging drill-in fluids (DIF's) give a clear indication of formation damage and proper cleanup treatments for reservoir conditions analyzed in this study. We determined values of breakthrough time and regained permeability for common polymer-carbonate and sized-salt/saturated brine DIF's for a range at reservoir properties including temperature, drill solids content, and percent of acid in the cleanup treatment. We chose these DIF's because they form tight, thin filtercakes that control fluid leakoff and afford more complete wellbore cleanup properties than standard drilling muds, and we chose reservoir properties that could be varied and measured. Beginning with a large database of 101 tests with 8 independent variables such as type of drill-in fluid, temperature, screen type, presence of gravel pack, formation type, type of drill solids, concentration of drill solids, and cleanup treatments, we analyzed the importance of each variable. After that, we identified the independent variables we were taking into account during this research. Those variables were temperature, drill solids content, and concentration of hydrochloric acid in the cleanup treatment. Then we generated a matrix for each set of experiments that allowed us to organize and measure the conditions we were looking for, regained permeability and breakthrough time. In measuring the regained permeability, we used a linear-flow cell apparatus. In measuring the breakthrough time that particular cleaning procedures take to flow across the filter cake, we used a ceramic disc cell apparatus. We used statistical software to select properties, formation, and diagnostics of the models and to develop relationships among the properties of the DIF's. We developed four new empirical models for estimating the breakthrough time and regained permeability in polymer carbonate and sized salt. High correlations resulted with R² values between 0.851 and 0.986 corroborated by close values of adjusted R-square and low P-values give validity to the correlations found. This technique gives a broad overview of the formation damage as well as the proper cleanup treatment for similar conditions presented in the field.

Serrano, Gerardo Enrique

2000-01-01T23:59:59.000Z

18

Hydrothermal alteration in Oregon's Newberry Volcano No. 2: fluid chemistry and secondary-mineral distribution  

SciTech Connect

Newberry 2 was drilled in the caldera floor of Newberry Volcano, Oregon, by the US Geological Survey during 1979-81. The maximum temperature measured was 265C at the bottom of the hole, 932 m below the surface. Rocks recovered fr9om the drill hole are divided into three intervals on the basis of hydrothermal alteration and mineral deposition: (1) 0-290 m consists of unaltered, largely glassy volcanic material, with present temperatures ranging from 20 to 40C; (2) 290-700 m consists of permeable tuff layers, tuff breccia units, and brecciated and fractured rhyodacitic to dacitic lava flows, with temperatures ranging from 40 to 100C; (3) 700-932 m consists of impermeable andesitic to basaltic lava flows that generally show little effect of alteration, interlayered with permeable hydrothermally altered flow breccia, with temperatures gradually increasing from 100 at 700 m to 265C at 932 m. Hydrothermal alteration throughout the system is controlled by rock permeability, temperature, composition of geothermal fluids, and composition and crystallinity of host rocks. Rock alteration consists mainly of replacement of glass by clay minerals and, locally, zeolites, partial replacement of plagioclase phenocrysts by calcite +/- epidote +/- illite, and whole-rock leaching adjacent to fluids channels. Open-space deposition of hydrothermal minerals in fractures, vesicles, and interbreccia pore space is far more abundant than replacement. A cooling shallow convection system in the upper 700 m is indicated by the occurrence of hydrothermal minerals that were deposited in a slightly higher temperature environment than presently exists. Below 700 m, the heat flow is conductive, and fluid flow is controlled by horizontal lava flows. Homogenization temperatures of secondary quartz fluid inclusions were as high as 370C.

Keith, T.E.C.; Mariner, R.H.; Bargar, K.E.; Evans, W.C.; Presser, T.S.

1984-04-01T23:59:59.000Z

19

Stratigraphic controls on fluid distribution: An example from Prudhoe Bay, Alaska  

SciTech Connect

Oil, gas, and water distribution in three drill sites (1 79 wells) studied in the Prudhoe Bay Field is controlled dominantly by sandstone and shale stratigraphy. Detailed reservoir description, encompassing genetic-stratigraphic correlations and three-dimensional reservoir modeling has provided a new look at the locations of remaining reserves in the upper Romeo and Tango intervals of the Ivishak Sandstone. Greater than 22 billion stock tank barrels constitute in-place oil reserves in Prudhoe Bay Field. Production in excess of nine billion barrels, in conjunction with waterflood and tertiary-recovery projects, has created a complex distribution of reservoir fluids. As oil is produced, the gas-cap expands and intersects laterally extensive shales to form gas underruns. Underruns are of great economic concern as they disrupt the NLOC and segregate oil lenses as well as causing high GOR wells. Recovering these oil lenses at low GORs requires precise analysis of in-place fluids, well placement, and completion strategy. Core descriptions and stratigraphic correlations provided the basis for facies interpretations and the deterministic division of the strata into twenty-four reservoir layers (twelve sandstone and shale units). Isochore, fluid-distribution, and NILOC maps were compiled for the reservoir horizons. Stratigraphic, structural, and fluid data integrated within a three-dimensional model resulted in an improved fluid-distribution picture and revealed numerous development opportunities including infill wells, sidetracks, and recompletions.

Burns, B.A.; Knock, D.; Tye, R.S. (ARCO Alaska, Anchorage, AK (United States))

1996-01-01T23:59:59.000Z

20

Preliminary relative permeability estimates of methanehydrate-bearing sand  

Science Conference Proceedings (OSTI)

The relative permeability to fluids in hydrate-bearing sediments is an important parameter for predicting natural gas production from gas hydrate reservoirs. We estimated the relative permeability parameters (van Genuchten alpha and m) in a hydrate-bearing sand by means of inverse modeling, which involved matching water saturation predictions with observations from a controlled waterflood experiment. We used x-ray computed tomography (CT) scanning to determine both the porosity and the hydrate and aqueous phase saturation distributions in the samples. X-ray CT images showed that hydrate and aqueous phase saturations are non-uniform, and that water flow focuses in regions of lower hydrate saturation. The relative permeability parameters were estimated at two locations in each sample. Differences between the estimated parameter sets at the two locations were attributed to heterogeneity in the hydrate saturation. Better estimates of the relative permeability parameters require further refinement of the experimental design, and better description of heterogeneity in the numerical inversions.

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

2006-05-08T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

CHARACTERIZATION OF HETEROGENEITIES AT THE RESERVOIR SCALE: SPATIAL DISTRIBUTION AND INFLUENCE ON FLUID FLOW  

DOE Green Energy (OSTI)

The theory behind how chemically reactive tracers are used to characterize the velocity and temperature distribution in steady flowing systems is reviewed. Kinetic parameters are established as a function of reservoir temperatures and fluid residence times for selecting appropriate reacting systems. Reactive tracer techniques are applied to characterize the temperature distribution in a laminar-flow heat exchanger. Models are developed to predict reactive tracer behavior in fractured geothermal reservoirs of fixed and increasing size.

Michael R. Gross; Kajari Ghosh; Alex K. Manda; Sumanjit Aich

2006-05-08T23:59:59.000Z

22

Subterranean formation permeability contrast correction methods  

SciTech Connect

This patent describes a method of correcting the permeability contrast in a subterranean formation penetrated by a well bore to improve the sweep efficiency of waterflooding operations carried out therein, the formation containing at least one high permeability zone lying adjacent to at least one low permeability zone, which zones are in fluid communication with one another at the boundary therebetween. It comprises isolating the high permeability zone from the low permeability zone; injecting a crosslinkable aqueous polymer solution into the high permeability zone in an amount sufficient to substantially fill some the zone therewith, the crosslinkable aqueous polymer solution being capable of plugging the high permeability zone when crosslinked; isolating the low permeability zone from the high permeability zone; injecting into the low permeability zone an aqueous liquid containing a crosslinking agent which upon contact with the aqueous polymer solution causes the solution to form a crosslinked gel; and displacing the aqueous liquid containing the crosslinking agent through the low permeability zone so that the crosslinking agent contact the aqueous polymer solution and forms a crosslinked gel at least at the boundary between the zones whereby fluid communication between the zones is reduced and subsequently injected flood water is substantially confined to the low permeability zone.

Beardmore, D.H.

1991-12-31T23:59:59.000Z

23

Preliminary relative permeability estimates of methanehydrate-bearing sand  

SciTech Connect

The relative permeability to fluids in hydrate-bearingsediments is an important parameter for predicting natural gas productionfrom gas hydrate reservoirs. We estimated the relative permeabilityparameters (van Genuchten alpha and m) in a hydrate-bearing sand by meansof inverse modeling, which involved matching water saturation predictionswith observations from a controlled waterflood experiment. We used x-raycomputed tomography (CT) scanning to determine both the porosity and thehydrate and aqueous phase saturation distributions in the samples. X-rayCT images showed that hydrate and aqueous phase saturations arenon-uniform, and that water flow focuses in regions of lower hydratesaturation. The relative permeability parameters were estimated at twolocations in each sample. Differences between the estimated parametersets at the two locations were attributed to heterogeneity in the hydratesaturation. Better estimates of the relative permeability parametersrequire further refinement of the experimental design, and betterdescription of heterogeneity in the numerical inversions.

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis,George J.

2006-05-08T23:59:59.000Z

24

Relative Permeability of Fractured Rock  

DOE Green Energy (OSTI)

Contemporary understanding of multiphase flow through fractures is limited. Different studies using synthetic fractures and various fluids have yielded different relative permeability-saturation relations. This study aimed to extend the understanding of multiphase flow by conducting nitrogen-water relative permeability experiments on a naturally-fractured rock from The Geysers geothermal field. The steady-state approach was used. However, steady state was achieved only at the endpoint saturations. Several difficulties were encountered that are attributed to phase interference and changes in fracture aperture and surface roughness, along with fracture propagation/initiation. Absolute permeabilities were determined using nitrogen and water. The permeability values obtained change with the number of load cycles. Determining the absolute permeability of a core is especially important in a fractured rock. The rock may change as asperities are destroyed and fractures propagate or st rain harden as the net stresses vary. Pressure spikes occurred in water a solute permeability experiments. Conceptual models of an elastic fracture network can explain the pressure spike behavior. At the endpoint saturations the water relative permeabilities obtained are much less than the nitrogen gas relative permeabilities. Saturations were determined by weighing and by resistivity calculations. The resistivity-saturation relationship developed for the core gave saturation values that differ by 5% from the value determined by weighing. Further work is required to complete the relative permeability curve. The steady-state experimental approach encountered difficulties due to phase interference and fracture change. Steady state may not be reached until an impractical length of time. Thus, unsteady-state methods should be pursued. In unsteady-state experiments the challenge will be in quantifying rock fracture change in addition to fluid flow changes.

Mark D. Habana

2002-06-30T23:59:59.000Z

25

Imaging Fluid Flow in Geothermal Wells Using Distributed Thermal Perturbation Sensing  

SciTech Connect

The objective of Task 2 is to develop a numerical method for the efficient and accurate analysis of distributed thermal perturbation sensing (DTPS) data for (1) imaging flow profiles and (2) in situ determination of thermal conductivities and heat fluxes. Numerical forward and inverse modeling is employed to: (1) Examine heat and fluid flow processes near a geothermal well under heating and cooling conditions; (2) Demonstrate ability to interpret DTPS thermal profiles with acceptable estimation uncertainty using inverse modeling of synthetic temperature data; and (3) Develop template model and analysis procedure for the inversion of temperature data collected during a thermal perturbation test using fiber-optic distributed temperature sensors. This status report summarizes initial model developments and analyses.

Freifeld, B.; Finsterle, S.

2010-12-10T23:59:59.000Z

26

Proximity functions for modeling fluids and heat flow in reservoirs with stochastic fracture distributions  

DOE Green Energy (OSTI)

Conventional approaches to geothermal reservoir modeling have employed a porous medium approximation, but recently methods have been developed which can take into account the different thermodynamic conditions in rock matrix and fractures. The multiple interacting continua method (MINC) treats the thermal and hydraulic interaction between rock matrix and fractures in terms of a set of geometrical parameters. However, this approach was restricted to idealized fracture distributions with regularly shaped matrix blocks. Fractures in geothermal reservoirs usually occur in nearly parallel sets with a certain scatter in orientation, and a stochastic distribution of spacings and apertures. The MINC-method was extended to realistic fracture systems with stochastic distributions. The interaction between matrix and fractures is parameterized in terms of a proximity function, which represents the volume of matrix rock as a function of distance from the fractures. Monte Carlo techniques were employed to compute proximity functions for a number of two-dimensional systems with regular or stochastic fracture distributions. It is shown how the proximity functions can be used to generate computational grids for modeling fluid and heat flow in fractured reservoirs.

Pruess, K.; Karasaki, K.

1982-10-01T23:59:59.000Z

27

Transient, radial temperature distribution in a porous medium during fluid injection  

DOE Green Energy (OSTI)

Analytical and numerical solutions are presented for the transient, radial temperature distribution in a porous medium which is subjected to a constant-rate injection of an incompressible fluid from a wellbore. The formulation includes energy transfer by conduction and convection, and the Danckwerts boundary condition is applied at the finite-radius wellbore. At late times, the numerical solutions approach a self-similar form which can be described in terms of the incomplete Gamma function. In typical petroleum and geothermal applications, convergence to the asymptotic similarity solutions occurs on a time scale of roughly one hour. The results are generally applicable to a broad range of convection-diffusion phenomena which are best described in radial coordinates.

Dunn, J.C.; Nilson, R.H.

1982-01-01T23:59:59.000Z

28

Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model  

Science Conference Proceedings (OSTI)

Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.

Sugiharto [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia); Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul [Centre for Applications of Isotopes and Radiation Technology-National Nuclear Energy Agency, Jl. Lebak Bulus Raya No. 49, Jakarta 12440 (Indonesia); Abidin, Zainal [Department of Physics, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, Jl. Ganesha 10, Bandung 40132 (Indonesia)

2010-12-23T23:59:59.000Z

29

Structural Settings Of Hydrothermal Outflow- Fracture Permeability  

Open Energy Info (EERE)

Settings Of Hydrothermal Outflow- Fracture Permeability Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structural Settings Of Hydrothermal Outflow- Fracture Permeability Maintained By Fault Propagation And Interaction Details Activities (1) Areas (1) Regions (0) Abstract: Hydrothermal outflow occurs most commonly at the terminations of individual faults and where multiple faults interact. These areas of fault propagation and interaction are sites of elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal flow despite potential clogging of fractures due to mineral precipitation. As

30

Analytical and Numerical Solutions for the Case of a Horizontal Well with a Radial Power-Law Permeability Distribution--Comparison to the Multi-Fracture Horizontal Case  

E-Print Network (OSTI)

In this work, I present the development of analytical solutions in the Laplace domain for a fully-penetrating, horizontal well producing at a constant flow rate or constant wellbore pressure in the center of a composite, cylindrical reservoir system with an impermeable outer boundary. The composite reservoir consists of two regions. The cylindrical region closest to the wellbore is stimulated, and the permeability within this region follows a power-law function of the radial distance from the wellbore. The unstimulated outer region has homogeneous reservoir properties. The current norm for successful stimulation of low permeability reservoir rocks is multi-stage hydraulic fracturing. The process of hydraulic fracturing creates thin, high permeability fractures that propagate deep into the reservoir, increasing the area of the rock matrix that is exposed to this low-resistance flow pathway. The large surface area of the high conductivity fracture is what makes hydraulic fracturing so successful. Unfortunately, hydraulic fracturing is often encumbered by problems such as high capital costs and a need for large volumes of water. Therefore, I investigate a new stimulation concept based upon the alteration of the permeability of a large volume around the producing well assembly from its original regime to that following a power-law function. I evaluate the effectiveness of the new concept by comparing it to conventional multi-stage hydraulic fracturing. The results of this investigation show that the power-law permeability reservoir (PPR) has a performance advantage over the multi-fractured horizontal treatment (MFH) only when the fracture conductivity and fracture half-length are small. Most importantly, the results demonstrate that the PPR can provide respectable flow rates and recovery factors, thus making it a viable stimulation concept for ultra-low permeability reservoirs, especially under conditions that may not be conducive to a conventional MHF treatment.

Broussard, Ryan Sawyer

2013-05-01T23:59:59.000Z

31

Imaging techniques applied to the study of fluids in porous media  

Science Conference Proceedings (OSTI)

Improved imaging techniques were used to study the dynamics of fluid flow and trapping at various scales in porous media. Two-phase and three-phase floods were performed and monitored by computed tomography (CT) scanning and/or nuclear magnetic resonance imaging (NMRI) microscopy. Permeability-porosity correlations obtained from image analysis were combined with porosity distributions from CT scanning to generate spatial permeability distributions within the core which were used in simulations of two-phase floods. Simulation-derived saturation distributions of two-phase processes showed very good agreement with the CT measured values.

Tomutsa, L.; Doughty, D.; Brinkmeyer, A.; Mahmood, S.

1992-06-01T23:59:59.000Z

32

Update and assessment of geothermal economic models, geothermal fluid flow and heat distribution models, and geothermal data bases  

SciTech Connect

Numerical simulation models and data bases that were developed for DOE as part of a number of geothermal programs have been assessed with respect to their overall stage of development and usefulness. This report combines three separate studies that focus attention upon: (1) economic models related to geothermal energy; (2) physical geothermal system models pertaining to thermal energy and the fluid medium; and (3) geothermal energy data bases. Computerized numerical models pertaining to the economics of extracting and utilizing geothermal energy have been summarized and catalogued with respect to their availability, utility and function. The 19 models that are discussed in detail were developed for use by geothermal operators, public utilities, and lending institutions who require a means to estimate the value of a given resource, total project costs, and the sensitivity of these values to specific variables. A number of the models are capable of economically assessing engineering aspects of geothermal projects. Computerized simulations of heat distribution and fluid flow have been assessed and are presented for ten models. Five of the models are identified as wellbore simulators and five are described as reservoir simulators. Each model is described in terms of its operational characteristics, input, output, and other pertinent attributes. Geothermal energy data bases are reviewed with respect to their current usefulness and availability. Summaries of eight data bases are provided in catalogue format, and an overall comparison of the elements of each data base is included.

Kenkeremath, D. (ed.)

1985-05-01T23:59:59.000Z

33

Distribution of fluid phases within the steam zone in steam injection processes  

SciTech Connect

The saturation distribution of steam, water, and oil within the steam zone in a steam injection process at constant injection rates is examined. It is shown theoretically that for typical values of injection parameters the oil saturation in the steam zone rapidly reaches its residual value at steam zone conditions. This result, which corroborates previous experimental evidence, is a consequence of the relatively fast changes in phase saturations compared to the rate of the advance of the steam front. Explicit expressions for the steam saturation distribution are obtained. It is shown that the average steam saturation is a slightly decreasing function of time and approaches a limiting value which is a nearly constant fraction of the steam saturation at the injection point. This result provides theoretical justification for the often made assumption of constant average steam saturation in steam injection calculations.

Yortsos, Y.C.

1982-09-01T23:59:59.000Z

34

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination  

E-Print Network (OSTI)

Hydraulic fracturing is an important method used to enhance the recovery of oil and gas from reservoirs, especially for low permeability formations. The distribution of pressure in fractures and fracture geometry are needed to design conventional and unconventional hydraulic fracturing operations, fracturing during water-flooding of petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal reservoir. Designing a hydraulic fracturing job requires an understanding of fracture growth as a function of treatment parameters. There are various models used to approximately define the development of fracture geometry, which can be broadly classified into 2D and 3D categories. 2D models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-3D model is used in the oil industry due to its simplification of height growth at the wellbore and along the fracture length in multi-layered formations. In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to simulate hydraulic fracture propagation and recession, and the pressure changing history. Two different approaches to fluid leak-off are considered, which are the classical Carter's leak-off theory with a constant leak-off coefficient, and Pressure-dependent leak-off theory. Existence of poroelastic effect in the reservoir is also considered. By examining the impact of leak-off models and poroelastic effects on fracture geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on the fracture geometry and fracturing pressure are described. A short and wide fracture will be created when we use the high viscosity fracturing fluid or the formation has low shear modulus. While, the fracture length, width, fracturing pressure, and the fracture closure time increase as the fluid leak-off coefficient is decreased. In addition, an algorithm is developed for the post-fracture pressure-transient analysis to calculate formation permeability. The impulse fracture pressure transient model is applied to calculate the formation permeability both for the radial flow and linear fracture flow assumption. Results show a good agreement between this study and published work.

Xiang, Jing

2011-12-01T23:59:59.000Z

35

Fluid-Rock Characterization and Interactions in NMR Well Logging  

SciTech Connect

The objective of this report is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. The advances made in the understanding of NMR fluid properties are summarized in a chapter written for an AAPG book on NMR well logging. This includes live oils, viscous oils, natural gas mixtures, and the relation between relaxation time and diffusivity. Oil based drilling fluids can have an adverse effect on NMR well logging if it alters the wettability of the formation. The effect of various surfactants on wettability and surface relaxivity are evaluated for silica sand. The relation between the relaxation time and diffusivity distinguishes the response of brine, oil, and gas in a NMR well log. A new NMR pulse sequence in the presence of a field gradient and a new inversion technique enables the T{sub 2} and diffusivity distributions to be displayed as a two-dimensional map. The objectives of pore morphology and rock characterization are to identify vug connectivity by using X-ray CT scan, and to improve NMR permeability correlation. Improved estimation of permeability from NMR response is possible by using estimated tortuosity as a parameter to interpolate between two existing permeability models.

George J. Hirasaki; Kishore K. Mohanty

2005-09-05T23:59:59.000Z

36

Regulation of endothelial cell shape and monolayer permeability by atrial natriuretic peptide  

SciTech Connect

Atrial natriuretic peptide (ANP), considered to be an important regulator of intravascular fluid volume, binds specifically to receptors on endothelial cells. In this study, the role of ANP-specific binding was investigated by examining the effect of ANP on the morphology and macromolecular permeability of monolayer cultures of bovine aortic endothelial cells. ANP alone had no observable effect on the monolayers. However, incubation of monolayers with ANP antagonized thrombin- or glucose oxidase-induced cell shape changes and intercellular gap formation. ANP pretreatment also opposed the effect of thrombin and glucose oxidase on actin filament distribution as observed by rhodamine-phalloidin staining and digital image analysis of F0actin staining. In addition, ANP reversed cell shape changes and cytoskeletal alterations induced by thrombin treatment but did not reverse alternations induced by glucose oxidase treatment. ANP significantly reduced increases in monolayer permeability to albumin resulting from thrombin or glucose oxidases treatment. Thrombin caused a 2-fold increase in monolayer permeability to {sup 125}I-labeled albumin, which was abolished by 10{sup {minus}8}-10{sup {minus}6}M ANP pretreatment. Glucose oxidase caused similar increases in permeability and was inhibited by ANP at slightly shorter time periods.

Lofton-Day, C.E.

1989-01-01T23:59:59.000Z

37

Modeling of Damage, Permeability Changes and Pressure Responses during Excavation of the TSX Tunnel in Granitic Rock at URL, Canada  

SciTech Connect

This paper presents numerical modeling of excavation-induced damage, permeability changes, and fluid-pressure responses during excavation of the TSX tunnel at the underground research laboratory (URL) in Canada. Four different numerical models were applied, using a wide range of approaches to model damage and permeability changes in the excavation disturbed zone (EDZ) around the tunnel. Using in situ calibration of model parameters the modeling could reproduce observed spatial distribution of damage and permeability changes around the tunnel, as a combination of disturbance induced by stress redistribution around the tunnel and by the drill-and-blast operation. The modeling showed that stress-induced permeability increase above the tunnel is a result of micro and macrofracturing under high deviatoric (shear) stress, whereas permeability increases alongside the tunnel as a result of opening of existing microfractures under decreased mean stress. The remaining observed fracturing and permeability changes around the periphery of the tunnel were attributed to damage from the drill-and-blast operation. Moreover, a reasonably good agreement was achieved between simulated and observed excavation-induced pressure responses around the TSX tunnel for 1 year following its excavation. The simulations showed that these pressure responses are caused by poroelastic effects as a result of increasing or decreasing mean stress, with corresponding contraction or expansion of the pore volume. The simulation results for pressure evolution were consistent with previous studies, indicating that the observed pressure responses could be captured in a Biot model using a relatively low Biot-Willis coefficient, {alpha} {approx} 0.2, a porosity of n {approx} 0.007, and a relatively low permeability of k {approx} 2 x 10{sup -22} m{sup 2}, which is consistent with the very tight, unfractured granite at the site.

Rutqvist, Jonny; Borgesson, Lennart; Chijimatsu, Masakazu; Hernelind, Jan; Jing, Lanru; Kobayashi, Akira; Nguyen, Son

2008-08-01T23:59:59.000Z

38

Flow and permeability structure of the Beowawe, Nevada hydrothermal system  

DOE Green Energy (OSTI)

A review of past geologic, geochemical, hydrological, pressure transient, and reservoir engineering studies of Beowawe suggests a different picture of the reservoir than previously presented. The Beowawe hydrothermal contains buoyant thermal fluid dynamically balanced with overlying cold water, as shown by repeated temperature surveys and well test results. Thermal fluid upwells from the west of the currently developed reservoir at the intersection of the Malpais Fault and an older structural feature associated with mid-Miocene rifting. A tongue of thermal fluid rises to the east up the high permeability Malpais Fault, discharges at the Geysers area, and is in intimate contact with overlying cooler water. The permeability structure is closely related to the structural setting, with the permeability of the shallow hydrothermal system ranging from 500 to 1,000 D-ft, while the deeper system ranges from 200 to 400 D-ft.

Faulder, D.D. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Johnson, S.D.; Benoit, W.R. [Oxbow Power Services, Inc., Reno, NV (United States)

1997-05-01T23:59:59.000Z

39

Evaluating Permeability Enchancement Using Electrical Techniques  

DOE Green Energy (OSTI)

Enhanced Geothermal Systems (EGS) development projects involve the artificial stimulation of relatively impermeable high-temperature underground regions (at depths of 2-4 kilometers or more) to create sufficient permeability to permit underground fluid circulation, so that hot water can be withdrawn from production wells and used to generate electric power. Several major research projects of this general type have been undertaken in the past in New Mexico (Fenton Hill), Europe, Japan and Australia. Recent U.S. activities along these lines focus mainly on stimulating peripheral areas of existing operating hydrothermal fields rather than on fresh 'greenfield' sites, but the long-term objective of the Department of Energy's EGS program is the development of large-scale power projects based on EGS technology (MIT, 2006; NREL, 2008). Usually, stimulation is accomplished by injecting water into a well at high pressure, enhancing permeability by the creation and propagation of fractures in the surrounding rock (a process known as 'hydrofracturing'). Beyond just a motivation, low initial system permeability is also an essential prerequisite to hydrofracturing. If the formation permeability is too high, excessive fluid losses will preclude the buildup of sufficient pressure to fracture rock. In practical situations, the actual result of injection is frequently to re-open pre-existing hydrothermally-mineralized fractures, rather than to create completely new fractures by rupturing intact rock. Pre-existing fractures can often be opened using injection pressures in the range 5-20 MPa. Creation of completely new fractures will usually require pressures that are several times higher. It is preferable to undertake development projects of this type in regions where tectonic conditions are conducive to shear failure, so that when pre-existing fractures are pressurized they will fail by shearing laterally. If this happens, the fracture will often stay open afterwards even if injection subsequently ceases. The principal barrier to EGS utilization for electricity generation is project economics. Costs for geothermal electricity obtained from conventional hydrothermal systems are just marginally competitive. Unless and until the costs of routinely and reliably creating and exploiting artificial subterranean fracture networks that can deliver useful quantities of hot fluid to production wells for long periods of time (years) are reduced to levels comparable to those of a conventional geothermal development project, EGS will be of little interest to the electrical power industry. A significant obstacle to progress in projects of this general type is the difficulty of appraising the properties (geometry, fluid transmissivity, etc.) of the fracture(s) created/re-opened by injection. Sustainability of power production is critically dependent upon reservoir thermal sweep efficiency, which depends in turn on the geometry of the fracture network and its interconnections with the various production and injection wells used to circulate fluid underground. If no permeable connections are created between the wells, fluid flow will be too slow for practical utility. If the connections are too good, however (such as a production/injection well pair connected by a single very permeable fracture), production wellhead temperatures will decline rapidly. Unless the permeable fractures created by hydrofracturing can be accurately mapped, the cost of subsequent trial-and-error drilling to try to establish a suitable fluid circulation system is likely to dominate project economics and render EGS impractical.

John W. Pritchett

2008-09-01T23:59:59.000Z

40

Distributed computational fluid dynamics  

E-Print Network (OSTI)

that arises in these practical turbulent combustion pro- cesses is a strong coupling between turbulence, chemical kinetics and heat release. These interactions are generally three dimensional and time de- pendent, and are not easily accessible to experimental... and at university and national level by very large massively-parallel supercomputers. Therefore, CFD offers a major opportunity for the development and application of Grid technology in engineering and forms the motivation for the present study. A difficulty...

Jenkins, K; Yang, Xiaobo; Hayes, Mark; Cant, Stewart R

2008-06-26T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Permeability reduction of unconsolidated media due to stress-induced silica dissolution  

SciTech Connect

Permeability measurements were made on both glass beads and Ottowa sand under uniform confining stress conditions. Extreme permeability reduction (95%) of the glass beads was observed at temperatures exceeding 150/sup 0/C and confining pressures of 13.8 MPa with distilled water as the flowing fluid. Permeability reduction in the Ottowa sand (40%) was also observed at high temperature and confining pressure. Effluent analysis revealed high concentrations of silica. Subsequent 300 hour experiments with Ottowa sand exhibited a steady decrease in permeability with time. SEM photographs of post experiment cores, indicate that the permeability reduction is mainly due to stress induced silica dissolution at grain contacts.

Udell, K.S.; Lofy, J.D.

1985-03-01T23:59:59.000Z

42

Determination of Coal Permeability Using Pressure Transient Methods  

SciTech Connect

Coalbed methane is a significant natural resource in the Appalachian region. It is believed that coalbed methane production can be enhanced by injection of carbon dioxide into coalbeds. However, the influence of carbon dioxide injection on coal permeability is not yet well understood. Competitive sorption of carbon dioxide and methane gases onto coal is a known process. Laboratory experiments and limited field experience indicate that coal will swell during sorption of a gas and shrink during desorption of a gas. The swelling and shrinkage may change the permeability of the coal. In this study, the permeability of coal was determined by using carbon dioxide as the flowing fluid. Coal samples with different dimensions were prepared for laboratory permeability tests. Carbon dioxide was injected into the coal and the permeability was determined by using pressure transient methods. The confining pressure was variedto cover a wide range of depths. The permeability was also determined as a function of exposure time of carbon dioxide while the confining stress was kept constant. CT scans were taken before and after the introduction of carbon dioxide. Results show that the porosity and permeability of the coal matrix was very low. The paper presents experimental data and theoretical aspects of the flow of carbon dioxide through a coal sample during pressure transient tests. The suitability of the pressure transient methods for determining permeability of coal during carbon dioxide injection is discussed in the paper.

McLendon, T.R.; Siriwardane, H. (West Virginia University, Morgantown, WV); Haljasmaa, I.V.; Bromhal, G.S.; Soong, Y.; Irdi, G.A.

2007-05-01T23:59:59.000Z

43

Enhanced Remedial Amendment Delivery to Subsurface Using Shear Thinning Fluid and Aqueous Foam  

SciTech Connect

A major issue with in situ subsurface remediation is the ability to achieve an even spatial distribution of remedial amendments to the contamination zones in an aquifer or vadose zone. Delivery of amendment to the aquifer using shear thinning fluid and to the vadose zone using aqueous foam has the potential to enhance the amendment distribution into desired locations and improve the remediation. 2-D saturated flow cell experiments were conducted to evaluate the enhanced sweeping, contaminant removal, and amendment persistence achieved by shear thinning fluid delivery. Bio-polymer xanthan gum solution was used as the shear thinning fluid. Unsaturated 1-D column and 2-D flow cell experiments were conducted to evaluate the mitigation of contaminant mobilization, amendment uniform distribution enhancement, and lateral delivery improvement by foam delivery. Surfactant sodium lauryl ether sulfate was used as the foaming agent. It was demonstrated that the shear thinning fluid injection enhanced the fluid sweeping over a heterogeneous system and increased the delivery of remedial amendment into low-permeability zones. The persistence of the amendment distributed into the low-perm zones by the shear thinning fluid was prolonged compared to that of amendment distributed by water injection. Foam delivery of amendment was shown to mitigate the mobilization of highly mobile contaminant from sediments under vadose zone conditions. Foam delivery also achieved more uniform amendment distribution in a heterogeneous unsaturated system, and demonstrated remarkable increasing in lateral distribution of the injected liquid compared to direct liquid injection.

Zhong, Lirong; Szecsody, James E.; Oostrom, Martinus; Truex, Michael J.; Shen, Xin; Li, Xiqing

2011-04-23T23:59:59.000Z

44

Relationship between Coal Reservoir Permeability and Fractal Dimension and Its Significance  

Science Conference Proceedings (OSTI)

Permeability of coal reservoir is one of important parameters for coal bed methane (CBM) development. Because of strong heterogeneity of coal reservoir, ascertaining permeability distribution is critical to productivity prediction of CBM. Based on Darcy's ... Keywords: coalbed methane, coal reservoir, permeability, fractal dimension, correlation degree

Hongyu Guo; Xianbo Su; Daping Xia

2010-10-01T23:59:59.000Z

45

Evaluating water-based drill-in fluids for horizontal completions. Part 1: Results of eight extensive lab tests are presented for use when assessing and selecting these special fluids  

SciTech Connect

The use of horizontal wells to obtain more cost-effective production from unconsolidated sandstones has become very popular. Since these wells employ open hole completions, success often depends on the fluid system used during drilling and completion. A lab study of three drill-in fluid systems was performed to determine the advantages and disadvantages of each. Intent of the study was not to recommend one fluid over another, but to make available the data necessary for picking the optimum fluid for a particular application. Parameters evaluated and discussed in Part 1 include rheology, lubricity, size distribution of bridging particles, API fluid loss, high-temperature fluid loss, filter cake characteristics, SEM analysis of filter cake and static breaker tests. Part 2 will describe return permeability tests. All were evaluated with 9, 10.5 and 14 ppg muds.

Ali, S.A. [Chevron U.S.A. Production Co., New Orleans, LA (United States); Dearing, H.L. [Chevron U.S.A. Production Co., Houston, TX (United States)

1996-10-01T23:59:59.000Z

46

Liquid-permeable electrode. [Patent application  

SciTech Connect

This invention relates to electrodes for use in electrolytic cells and to a method for preparing the electrodes. It specifically relates to fluid-permeable electrodes suitable for use as anodes and cathodes in electrolytic hydrogen generation cells in which it is necessary to continuously remove the products of the electrochemical reaction. The electrode is prepared by mixing about 10 parts by weight of activated charcoal with from 6 to 10 parts by weight of a powdered thermosetting phenolic resin to form a mixture, compacting the mixture in a heated mold of the desired shape to melt the resin and form a green electrode and heating the green electrode to from about 550 to 750/sup 0/C in a nonoxidizing atmosphere for a period of time sufficient to pyrolyze the resin and volatilize from about 40 to 60 weight percent of the resin present in the green compact to form a porous, rigid, liquid-permeable structure.

Folser, G.R

1978-08-30T23:59:59.000Z

47

Permeability prediction and drainage capillary pressure simulation in sandstone reservoirs  

E-Print Network (OSTI)

Knowledge of reservoir porosity, permeability, and capillary pressure is essential to exploration and production of hydrocarbons. Although porosity can be interpreted fairly accurately from well logs, permeability and capillary pressure must be measured from core. Estimating permeability and capillary pressure from well logs would be valuable where cores are unavailable. This study is to correlate permeability with porosity to predict permeability and capillary pressures. Relationships between permeability to porosity can be complicated by diagenetic processes like compaction, cementation, dissolution, and occurrence of clay minerals. These diagenetic alterations can reduce total porosity, and more importantly, reduce effective porosity available for fluid flow. To better predict permeability, effective porosity needs to be estimated. A general equation is proposed to estimate effective porosity. Permeability is predicted from effective porosity by empirical and theoretical equations. A new capillary pressure model is proposed. It is based on previous study, and largely empirical. It is tested with over 200 samples covering a wide range of lithology (clean sandstone, shaly sandstone, and carbonates dominated by intergranular pores). Parameters in this model include: interfacial tension, contact angle, shape factor, porosity, permeability, irreducible water saturation, and displacement pressure. These parameters can be measured from routine core analysis, estimated from well log, and assumed. An empirical equation is proposed to calculate displacement pressure from porosity and permeability. The new capillary-pressure model is applied to evaluate sealing capacity of seals, calculate transition zone thickness and saturation above free water level in reservoirs. Good results are achieved through integration of well log data, production data, core, and geological concepts.

Wu, Tao

2004-12-01T23:59:59.000Z

48

Liquid-permeable electrode  

SciTech Connect

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, G.R.

1980-03-18T23:59:59.000Z

49

Liquid-permeable electrode  

DOE Patents (OSTI)

Electrodes for use in an electrolytic cell, which are liquid-permeable and have low electrical resistance and high internal surface area are provided of a rigid, porous, carbonaceous matrix having activated carbon uniformly embedded throughout. The activated carbon may be catalyzed with platinum for improved electron transfer between electrode and electrolyte. Activated carbon is mixed with a powdered thermosetting phenolic resin and compacted to the desired shape in a heated mold to melt the resin and form the green electrode. The compact is then heated to a pyrolyzing temperature to carbonize and volatilize the resin, forming a rigid, porous structure. The permeable structure and high internal surface area are useful in electrolytic cells where it is necessary to continuously remove the products of the electrochemical reaction.

Folser, George R. (Lower Burrell, PA)

1980-01-01T23:59:59.000Z

50

R fluids  

E-Print Network (OSTI)

A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

R. Caimmi

2007-10-20T23:59:59.000Z

51

Relative permeability through fractures  

DOE Green Energy (OSTI)

The mechanism of two-phase flow through fractures is of importance in understanding many geologic processes. Currently, two-phase flow through fractures is still poorly understood. In this study, nitrogen-water experiments were done on both smooth and rough parallel plates to determine the governing flow mechanism for fractures and the appropriate methodology for data analysis. The experiments were done using a glass plate to allow visualization of flow. Digital video recording allowed instantaneous measurement of pressure, flow rate and saturation. Saturation was computed using image analysis techniques. The experiments showed that gas and liquid phases flow through fractures in nonuniform separate channels. The localized channels change with time as each phase path undergoes continues breaking and reforming due to invasion of the other phase. The stability of the phase paths is dependent on liquid and gas flow rate ratio. This mechanism holds true for over a range of saturation for both smooth and rough fractures. In imbibition for rough-walled fractures, another mechanism similar to wave-like flow in pipes was also observed. The data from the experiments were analyzed using Darcy's law and using the concept of friction factor and equivalent Reynold's number for two-phase flow. For both smooth- and rough-walled fractures a clear relationship between relative permeability and saturation was seen. The calculated relative permeability curves follow Corey-type behavior and can be modeled using Honarpour expressions. The sum of the relative permeabilities is not equal one, indicating phase interference. The equivalent homogeneous single-phase approach did not give satisfactory representation of flow through fractures. The graphs of experimentally derived friction factor with the modified Reynolds number do not reveal a distinctive linear relationship.

Diomampo, Gracel, P.

2001-08-01T23:59:59.000Z

52

Pressure measurements in low permeability formations  

DOE Green Energy (OSTI)

This paper examines the performance requirements and identifies candidate hardware implementations for pressure instrumentation that is needed to provide well test data in low permeability formations. Low permeability values are typically defined to be less than 1 microdarcy and are usually encountered in hard rock formations, such as granite, that are of interest in hot dry rock geothermal, deep exploration drilling, and fluid waste disposal. Groundwater flow in these tight formations has been shown to be dominated by flow-through fractures rather than through the formation's intrinsic permeability. In these cases, we cannot use Darcy's law or the usual dimensionless coefficients to estimate the expected scale factors and dynamic responses necessary to properly select and setup the wellbore pressure instrument. This paper shows that the expected instrument responses can be estimated using some recent work by Wang, Narasimhan, and Witherspoon. This paper further describes the minimum electronic capability that the downhole pressure instrument must have in order to provide the required measurement resolution, dynamic range, and transient response. Three specific hardware implementations are presented based on the following transducers: a quartz resonator, a capacitance gauge, and a resistance strain gauge.

Veneruso, A.F.; McConnell, T.D.

1980-01-01T23:59:59.000Z

53

Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis  

SciTech Connect

The elucidation of the relationship between pore scale structure and fluid flow in porous media is a fundamental problem of long standing interest. Incomplete characterization of medium properties continues to be a limiting factor in accurate field scale simulations. The accomplishments of this grant have kept us at the forefront in investigating the applicability of X-ray computed microtomography (XCMT) as a tool for contributing to the understanding of this relationship. Specific accomplishments have been achieved in four areas: - development of numerical algorithms (largely in the field of computational geometry) to provide automated recognition of and measurements on features of interest in the pore space. These algorithms have been embodied in a software package, 3DMA-Rock. - application of these algorithms to extensive studies of the pore space of sandstones. - application of these algorithms to studies of fluid (oil/water) partitioning in the pore space of Berea sandstone and polyethylene models. - technology transfer.

W. Brent Lindquist

2005-01-21T23:59:59.000Z

54

Virtual Rapid Chloride Permeability Test  

Science Conference Proceedings (OSTI)

... final temperature can be manually copied to the final temperature in the test conditions box ... Type of software: Virtual testing of chloride permeability. ...

2013-06-11T23:59:59.000Z

55

System and method for measuring permeability of materials  

DOE Patents (OSTI)

Systems and methods are provided for measuring the permeance of a material. The permeability of the material may also be derived. Systems typically provide a liquid or high concentration fluid bath on one side of a material test sample, and a gas flow across the opposing side of the material test sample. The mass flow rate of permeated fluid as a fraction of the combined mass flow rate of gas and permeated fluid is used to calculate the permeance of the material. The material test sample may be a sheet, a tube, or a solid shape. Operational test conditions may be varied, including concentration of the fluid, temperature of the fluid, strain profile of the material test sample, and differential pressure across the material test sample.

Hallman, Jr., Russell Louis; Renner, Michael John

2013-07-09T23:59:59.000Z

56

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

57

Analysis of Fault Permeability Using Mapping and Flow Modeling, Hickory Sandstone Aquifer, Central Texas  

Science Conference Proceedings (OSTI)

Reservoir compartments, typical targets for infill well locations, are commonly created by faults that may reduce permeability. A narrow fault may consist of a complex assemblage of deformation elements that result in spatially variable and anisotropic permeabilities. We report on the permeability structure of a km-scale fault sampled through drilling a faulted siliciclastic aquifer in central Texas. Probe and whole-core permeabilities, serial CAT scans, and textural and structural data from the selected core samples are used to understand permeability structure of fault zones and develop predictive models of fault zone permeability. Using numerical flow simulation, it is possible to predict permeability anisotropy associated with faults and evaluate the effect of individual deformation elements in the overall permeability tensor. We found relationships between the permeability of the host rock and those of the highly deformed (HD) fault-elements according to the fault throw. The lateral continuity and predictable permeability of the HD fault elements enhance capability for estimating the effects of subseismic faulting on fluid flow in low-shale reservoirs.

Nieto Camargo, Jorge E., E-mail: jorge.nietocamargo@aramco.com; Jensen, Jerry L., E-mail: jjensen@ucalgary.ca [University of Calgary, Department of Chemical and Petroleum Engineering (Canada)

2012-09-15T23:59:59.000Z

58

Fracture Permeability Evolution in Desert Peak Quartz Monzonite  

SciTech Connect

Fracture flow experiments are being conducted on quartz monzonite core from the Desert Peak East EGS site, Churchill County, Nevada. The flow experiments are conducted at temperatures of 167-169 C and 5.5 MPa confining pressure through artificial fractures. Two injection fluids, a saline solution and a silica-bearing solution, have been used to date. Flow rates are typically 0.02 mL/min, but other rates have been used. The fracture surfaces are characterized with a contact profilometer. The profilometry data demonstrate that it is possible to fabricate statistically similar fracture surfaces and enable us to map aperture variations, which we use in numerical simulations. Effluent samples are collected for chemical analysis. The fluid pressure gradient is measured across the specimen and effective hydraulic apertures are calculated. The experiments show a reduction in permeability over time for both injection fluids, but a more rapid loss of permeability was observed for the silica-bearing solution. The calculated hydraulic aperture is observed to decrease by 17% for the saline solution and 75% for the silica-bearing fluid, respectively. Electrical resistivity measurements, which are sensitive to the ionic content of the pore fluid, provide additional evidence of fluid-rock interactions.

Carlson, S R; Roberts, J J; Detwiler, R L; Viani, B E; Roberts, S K

2005-05-10T23:59:59.000Z

59

Goa, India Permeability of Charnokite Rock at High Temperatures  

E-Print Network (OSTI)

ABSTRACT: Permeability at high temperature is a very important parameter to be considered for designing underground high level nuclear waste repository (HLW) in rock mass. The surrounding rock mass is exposed to heat radiated by HLW when it is buried underground and development or extension of micro-cracks takes place in the host rock due to rise in temperature. Keeping this in view, the permeability study was conducted for Charnokite rock at high temperatures in the range from room temperature, 30 to 200 o C. The cylindrical rock samples of 36mm diameter and 150mm in length were used as per the required size for the equipment permeameter, TEMCO, USA. Total thirty rock samples were tested at various temperatures using nitrogen gas as fluid. The permeability tests were conducted at confining pressure of around 4MPa in order to simulate the horizontal in situ stress conditions in Charnokite rock at the depth of 400m for construction of HLW repository. 1

R. D. Dwivedi; R. K. Goel; A. Swarup; V. V. R. Prasad; R. K. Bajpai; P. K. Narayan; V. Arumugam

2008-01-01T23:59:59.000Z

60

Gas permeability of carbon aerogels  

SciTech Connect

Carbon aerogels are synthesized via the aqueous polycondensation of resorcinol with formaldehyde, followed by supercritical drying and subsequent pyrolysis at 1050 [degree]C. As a result of their interconnected porosity, ultrafine cell/pore size, and high surface area, carbon aerogels have many potential applications such as supercapacitors, battery electrodes, catalyst supports, and gas filters. The performance of carbon aerogels in the latter two applications depends on the permeability or gas flow conductance in these materials. By measuring the pressure differential across a thin specimen and the nitrogen gas flow rate in the viscous regime, the permeability of carbon aerogels was calculated from equations based upon Darcy's law. Our measurements show that carbon aerogels have permeabilities on the order of 10[sup [minus]12] to 10[sup [minus]10] cm[sup 2] over the density range from 0.05--0.44 g/cm[sup 3]. Like many other aerogel properties, the permeability of carbon aerogels follows a power law relationship with density, reflecting differences in the average mesopore size. Comparing the results from this study with the permeability of silica aerogels reported by other workers, we found that the permeability of aerogels is governed by a simple universal flow equation. This paper discusses the relationship between permeability, pore size, and density in carbon aerogels.

Kong, F.; LeMay, J.D.; Hulsey, S.S.; Alviso, C.T.; Pekala, R.W. (Chemistry and Materials Science Department, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States))

1993-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Computational Fluid Dynamics Modeling of The Dalles Project: Effects of Spill Flow Distribution Between the Washington Shore and the Tailrace Spillwall  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers-Portland District (CENWP) has ongoing work to improve the survival of juvenile salmonids (smolt) migrating past The Dalles Dam. As part of that effort, a spillwall was constructed to improve juvenile egress through the tailrace downstream of the stilling basin. The spillwall was designed to improve smolt survival by decreasing smolt retention time in the spillway tailrace and the exposure to predators on the spillway shelf. The spillwall guides spillway flows, and hence smolt, more quickly into the thalweg. In this study, an existing computational fluid dynamics (CFD) model was modified and used to characterize tailrace hydraulics between the new spillwall and the Washington shore for six different total river flows. The effect of spillway flow distribution was simulated for three spill patterns at the lowest total river flow. The commercial CFD solver, STAR-CD version 4.1, was used to solve the unsteady Reynolds-averaged Navier-Stokes equations together with the k-epsilon turbulence model. Free surface motion was simulated using the volume-of-fluid (VOF) technique. The model results were used in two ways. First, results graphics were provided to CENWP and regional fisheries agency representatives for use and comparison to the same flow conditions at a reduced-scale physical model. The CFD results were very similar in flow pattern to that produced by the reduced-scale physical model but these graphics provided a quantitative view of velocity distribution. During the physical model work, an additional spill pattern was tested. Subsequently, that spill pattern was also simulated in the numerical model. The CFD streamlines showed that the hydraulic conditions were likely to be beneficial to fish egress at the higher total river flows (120 kcfs and greater, uniform flow distribution). At the lowest flow case, 90 kcfs, it was necessary to use a non-uniform distribution. Of the three distributions tested, splitting the flow evenly between Bay 7 and Bay 8 had hydraulics deemed most beneficial for egress by CENWP fisheries biologists and regional fishery agency representatives. The numerical and physical model results were very similar, building confidence in both hydraulic tools.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

62

Geothermal Permeability Enhancement - Final Report  

Science Conference Proceedings (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

63

Constant-pressure measurement of steam-water relative permeability  

DOE Green Energy (OSTI)

A series of steady-state experiments have established relative permeability curves for two-phase flow of water in a porous medium. These experiments have minimized uncertainty in pressure, heat loss, and saturation. By attempting to maintain a constant pressure gradient, the experiments have provided a baseline from which to determine the effect of temperature on relative permeability. The use of a flexible heater with an automatic control system made it possible to assume negligible phase change for the mobile fluid. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. Mobile steam mass fraction was established by separate steam and water inlets or by correlating with previous results. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954) for the simultaneous flow of nitrogen and water. Close agreement between the curves by Satik (1998), Mahiya (1999), and this study establishes the reliability of the experimental method and instrumentation adopted in these experiments, though some differences may bear further investigation. In particular, the steam phase relative permeability appears to vary much more linearly with saturation than does the water phase relative permeability.

O'Connor, Peter A.

2001-06-01T23:59:59.000Z

64

Effects of confining pressure, pore pressure and temperature on absolute permeability. SUPRI TR-27  

SciTech Connect

This study investigates absolute permeability of consolidated sandstone and unconsolidated sand cores to distilled water as a function of the confining pressure on the core, the pore pressure of the flowing fluid and the temperature of the system. Since permeability measurements are usually made in the laboratory under conditions very different from those in the reservoir, it is important to know the effect of various parameters on the measured value of permeability. All studies on the effect of confining pressure on absolute permeability have found that when the confining pressure is increased, the permeability is reduced. The studies on the effect of temperature have shown much less consistency. This work contradicts the past Stanford studies by finding no effect of temperature on the absolute permeability of unconsolidated sand or sandstones to distilled water. The probable causes of the past errors are discussed. It has been found that inaccurate measurement of temperature at ambient conditions and non-equilibrium of temperature in the core can lead to a fictitious permeability reduction with temperature increase. The results of this study on the effect of confining pressure and pore pressure support the theory that as confining pressure is increased or pore pressure decreased, the permeability is reduced. The effects of confining pressure and pore pressure changes on absolute permeability are given explicitly so that measurements made under one set of confining pressure/pore pressure conditions in the laboratory can be extrapolated to conditions more representative of the reservoir.

Gobran, B.D.; Ramey, H.J. Jr.; Brigham, W.E.

1981-10-01T23:59:59.000Z

65

Crosswell Seismic Amplitude-Versus-Offset for Detailed Imaging of Facies and Fluid Distribution within Carbonate Oil Reservoirs  

Science Conference Proceedings (OSTI)

Crosswell seismic surveys were conducted at two fields in northern Michigan. One of these, Springdale, included two monitor wells that are located external to the reef, and the other, Coldspring, employed two production wells within the reef. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. The resulting seismic images provide the best views of pinnacle Niagaran reefs obtained to date. The tops of the reservoirs can be clearly distinguished, and their lateral extent or dipping edges can be observed along the profile. Reflecting events internal to the reef are evident; some of them are fairly continuous across the reef and others are discontinuous. Inversion of the seismic data indicates which events represent zones of higher porosity and which are lower porosity or even anhydrite plugged. The full stacked image includes angles that are beyond critical for many of the interfaces, and some reflections are visible only for a small range of angles, presumably near their critical angle. Stacking these angles in provides an opportunity for these events to be seen on the stacked image, where otherwise they would have been unrecognized. For inversion, however, the complexity associated with phase changes beyond critical can lead to poor results, and elastic inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Strong apparent attenuation of signals occurs when seismic ray paths pass through the upper part of the Springdale reservoir; this may be due to intrinsic attenuation and/or scattering of events due to the locally strongly varying gas saturation and extremely low fluid pressures. Signal-to-noise limitations become evident far from the source well in the Coldspring study, probably because the raw data were strongly affected by tube-wave noise generated by flow through the perforation of the receiver well. The seismic images obtained, and interpretations of them, as assisted by Amplitude-versus-Angle studies and accompanying inversion, provide additional insight into the internal geometry of these two reefs and provide data that should be useful for reservoir management.

Wayne Pennington; Mohamed Ibrahim; Roger Turpening; Sean Trisch; Josh Richardson; Carol Asiala; Walid Mabrouk

2008-09-30T23:59:59.000Z

66

SRM -? Fluids  

Science Conference Proceedings (OSTI)

... These reference fluid formulations characterize the behavior of broad ranges of chemically similar fluids; in this way data on propane, for example ...

2012-10-01T23:59:59.000Z

67

POROSITY AND PERMEABILITY EVOLUTION ACCOMPANYING HOT FLUID INJECTION  

E-Print Network (OSTI)

. Additionally, funding was provided by the SUPRI-A Industrial Affiliates and the President's Fund of Stanford to the setup used by Koh et al. (1996), but it allows for measurement of porosity by CT scanning. A Blue-M oven to the oven set- point temperature. System pressure is elevated by a back-pressure regulator and injection

68

Distribution:  

Office of Legacy Management (LM)

JAN26 19% JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive and possess the special nuclear material designated below; to use such special nuclear mat&ial for the purpose(s) and at the place(s) designated below; and to transfer such material to per&s authorized to receive it in accordance with the regula,tions in said Part.

69

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at Monticello, Utah Gamma Survey of a Permeable Reactive Barrier at...

70

Modeling the coupling between free and forced convection in a vertical permeable slot: implications for the heat  

E-Print Network (OSTI)

the injection and production wells. Increasing the permeability in a zone with a high geothermal gradient the economic lifetime of a EGS, and particularly the fluid flow between production and injection wells, before of the stimulated volume located between the injection and production wells, the rate of fluid injection

Paris-Sud XI, Université de

71

Analysis of thermally induced permeability enhancement in geothermal injection wells  

DOE Green Energy (OSTI)

Reinjection of spent geothermal brine is a common means of disposing of geothermal effluents and maintaining reservoir pressures. Contrary to the predictions of two-fluid models (two-viscosity) of nonisothermal injection, an increase of injectivity, with continued injection, is often observed. Injectivity enhancement and thermally-affected pressure transients are particularly apparent in short-term injection tests at the Los Azufres Geothermal Field, Mexico. During an injection test, it is not uncommon to observe that after an initial pressure increase, the pressure decreases with time. As this typically occurs far below the pressure at which hydraulic fracturing is expected, some other mechanism for increasing the near-bore permeability must explain the observed behavior. This paper focuses on calculating the magnitude of the nearbore permeability changes observed in several nonisothermal injection tests conducted at the Los Azufres Geothermal Field.

Benson, S.M.; Daggett, J.S.; Iglesias, E.; Arellano, V.; Ortiz-Ramirez, J.

1987-02-01T23:59:59.000Z

72

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal  

NLE Websites -- All DOE Office Websites (Extended Search)

Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Correlating Spatial Heterogeneities in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference Room 137-226 Presented by Darius Morris, Stanford Synchrotron Radiation Lightsource Fluid catalytic cracking (FCC) is a refining process for converting large and/or heavy molecules of oil feedstock into smaller and lighter hydrocarbons such as gasoline. During the cracking process, metal contaminants from the oil feedstock deactivate and restrict access into the catalyst particle, thus reducing the yield of gasoline byproducts. Full-field transmission X-ray microscopy (TXM) has been used to determine the 3D composition and structure of an equilibrated (spent) FCC particle in

73

Spontaneous Imbibition in Low Permeability Medium, SUPRI TR-114  

Science Conference Proceedings (OSTI)

A systematic experimental investigation of capillary pressure characteristics and fluid flow in diatomite was begun. Using an X-ray CT scanner and a specially constructed imbibition cell, we study spontaneous water imbibition processes in diatomite and, for reference, Berea sandstone and chalk. The mass of water imbibed as a function of time is also measured. Imbibition is restricted to concurrent flow. Despite a marked difference in rock properties such as permeability and porosity, we find similar trends in saturation profiles and weight gain versus time functions. Imbibition in diatomote is relatively rapid when initial water saturation is low due to large capillary forces. Using a non-linear regression analysis together with the experimental data, the capillary pressure and water relative permeability curves are determined for the diatomite in the water-air system. The results given for displacement profiles by numerical simulation match the experimental results.

Kovscek, Anthony R.; Schembre, Josephina

1999-08-09T23:59:59.000Z

74

Inexpensive, Environmentally Friendly and High Permeable Lignin ...  

home \\ technologies \\ lignin based ion exchangers. Technologies: Ready-to-Sign Licenses: Software: Patents: Inexpensive, Environmentally Friendly and High Permeable ...

75

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, J.R.

1980-05-02T23:59:59.000Z

76

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion. 3 figs.

Fincke, J.R.

1982-05-04T23:59:59.000Z

77

Hydrostatic bearings for a turbine fluid flow metering device  

DOE Patents (OSTI)

A rotor assembly fluid metering device has been improved by development of a hydrostatic bearing fluid system which provides bearing fluid at a common pressure to rotor assembly bearing surfaces. The bearing fluid distribution system produces a uniform film of fluid between bearing surfaces and allows rapid replacement of bearing fluid between bearing surfaces, thereby minimizing bearing wear and corrosion.

Fincke, James R. (Rigby, ID)

1982-01-01T23:59:59.000Z

78

Controlled differential pressure system for an enhanced fluid blending apparatus  

DOE Patents (OSTI)

A system and method for producing a controlled blend of two or more fluids. Thermally-induced permeation through a permeable tube is used to mix a first fluid from outside the tube with a second fluid flowing through the tube. Mixture ratios may be controlled by adjusting the temperature of the first fluid or by adjusting the pressure drop through the permeable tube. The combination of a back pressure control valve and a differential regulator is used to control the output pressure of the blended fluid. The combination of the back pressure control valve and differential regulator provides superior flow control of the second dry gas. A valve manifold system may be used to mix multiple fluids, and to adjust the volume of blended fluid produced, and to further modify the mixture ratio.

Hallman, Jr., Russell Louis (Knoxville, TN)

2009-02-24T23:59:59.000Z

79

Novel additives to retard permeable flow  

Science Conference Proceedings (OSTI)

Low concentrations of surfactant and cosolute in water, can selectively retard permeable flow in high permeability rocks compared to low permeability ones. This represents a way forward for more efficient areal sweep efficiency when water flooding a reservoir during improved oil recovery. (author)

Golombok, Michael [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Department of Mechanical Engineering, Technische Universiteit Eindhoven, 5600 MB Eindhoven (Netherlands); Crane, Carel; Ineke, Erik; Welling, Marco [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Harris, Jon [Shell Exploration and Production, Kessler Park 1, 2288 GS Rijswijk (Netherlands); Shell UK Ltd., North Anderson Drive, Aberdeen, AB15 6BL (United Kingdom)

2008-09-15T23:59:59.000Z

80

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION  

E-Print Network (OSTI)

STEAM-WATER RELATIVE PERMEABILITY A DISSERTATION SUBMITTED TO THE DEPARTMENT OF PETROLEUM Laboratory. iv #12;ABSTRACT Steam-water relative permeability curves are required for mathematical models of two-phase geothermal reservoirs. In this study, drainage steam- water relative permeabilities were

Stanford University

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Transient gas or liquid flow along a preexisting or hydraulically-induced fracture in a permeable medium  

DOE Green Energy (OSTI)

Similarity solutions are derived for the trasient two-dimensional flow of a gas or liquid along an isolated fracture in a permeable medium. The driving pressure at the fracture inlet is constant, and the confining stress is uniform. Two different cases are considered, pre-existing fractures with uniform aperture as well as hydraulic fractures with a variable aperture proportional to the local overpressure (fluid pressure less confining stress). The evolution of the pressure distribution is described by a set of four asymptotic solutions, each having a self-similar form. At early times the flow in the fracture is turbulent, and Darcian seepage losses into the porous surroundings are negligible. At late times the flow in the fracture is laminar, and seepage losses become a dominant consideration. At intermediate times there are two alternative asymptotes, depending upon physical parameters. The mathematical model also describe the flow along a fracture which is fulled with high-permeability porous material as well as the flow in an assemblage of porous blocks. 19 refs., 10 figs.

Nilson, R.H.; Morrison, F.A. Jr.

1985-05-01T23:59:59.000Z

82

Hydraulic Permeability of Resorcinol-Formaldehyde Resin  

SciTech Connect

An ion exchange process using spherical resorcinol-formaldehyde (RF) resin is the baseline process for removing cesium from the dissolved salt solution in the high-level waste tanks at the Hanford Site, using large scale columns as part of the Waste Treatment Plant (WTP). The RF resin is also being evaluated for use in the proposed small column ion exchange (SCIX) system, which is an alternative treatment option at Hanford and at the Savannah River Site (SRS). A recirculating test loop with a small ion exchange column was used to measure the effect of oxygen uptake and radiation exposure on the permeability of a packed bed of the RF resin. The lab-scale column was designed to be prototypic of the proposed Hanford columns at the WTP. Although the test equipment was designed to model the Hanford ion exchange columns, the data on changes in the hydraulic permeability of the resin will also be valuable for determining potential pressure drops through the proposed SCIX system. The superficial fluid velocity in the lab-scale test (3.4-5.7 cm/s) was much higher than is planned for the full-scale Hanford columns to generate the maximum pressure drop expected in those columns (9.7 psig). The frictional drag from this high velocity produced forces on the resin in the lab-scale tests that matched the design basis of the full-scale Hanford column. Any changes in the resin caused by the radiation exposure and oxygen uptake were monitored by measuring the pressure drop through the lab-scale column and the physical properties of the resin. Three hydraulic test runs were completed, the first using fresh RF resin at 25 C, the second using irradiated resin at 25 C, and the third using irradiated resin at 45 C. A Hanford AP-101 simulant solution was recirculated through a test column containing 500 mL of Na-form RF resin. Known amounts of oxygen were introduced into the primary recirculation loop by saturating measured volumes of the simulant solution with oxygen and reintroducing the oxygenated simulant into the feed tank. The dissolved oxygen (DO) concentration of the recirculating simulant was monitored, and the amount of oxygen that reacted with the resin was determined from the change in the DO concentration of the recirculating simulant solution. Prior to hydraulic testing the resin for runs 2 and 3 was covered with the simulant solution and irradiated in a spent fuel element at the Oak Ridge National Laboratory High Flux Isotope Reactor (HFIR). Both batches of resin were irradiated to a total gamma dose of 177 Mrad, but the resin for run 2 reached a maximum temperature during irradiation of 51 C, while the resin for run 3 reached a temperature of 38 C. The different temperatures were the result of the operating status of HFIR at the time of the irradiation and were not part of the test plan; however, the results clearly show the impact of the higher-temperature exposure during irradiation. The flow rate and pressure drop data from the test loop runs show that irradiating the RF resin reduces both the void fraction and the permeability of the resin bed. The mechanism for the reduction in permeability is not clear because irradiation increases the particle size of the resin beads and makes them deform less under pressure. Microscopic examination of the resin beads shows that they are all smooth regular spheres and that irradiation or oxygen uptake did not change the shape of the beads. The resin reacts rapidly with DO in the simulant solution, and the reaction with oxygen reduces the permeability of a bed of new resin by about 10% but has less impact on the permeability of irradiated resin. Irradiation increases the toughness of the resin beads, probably by initiating cross-linking reactions in them. Oxygen uptake reduces the crush strength of both new and irradiated resin; however, the pressures that caused the beads to crush are much higher than would be expected during the operation of an ion exchange column. There was no visible evidence of broken beads in any of the resin samples taken from the test loop. Reaction with oxygen red

Taylor, Paul Allen [ORNL

2010-01-01T23:59:59.000Z

83

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

84

Inexpensive, Environmentally Friendly and Highly Permeable ...  

For more than 10 years, a partnership between Kazakh and US researchers has led to the synthesis and testing of highly permeable ion-exchangers.

85

Rejuvenating Permeable Reactive Barriers by Chemical Flushing  

Energy.gov (U.S. Department of Energy (DOE))

Final Report:Rejuvenating Permeable Reactive Barriers by Chemical Flushing,U.S. Environmental Protection Agency, Region 8 Support.August 2004

86

Correlating Spatial Heterogeneities in Porosity and Permeability...  

NLE Websites -- All DOE Office Websites (Extended Search)

in Porosity and Permeability with Metal Poisoning within an Individual Catalyst Particle using X-ray Microscopy Wednesday, August 21, 2013 - 1:30pm SLAC, Conference...

87

Magma energy and geothermal permeability enhancement programs  

DOE Green Energy (OSTI)

Accomplishments during FY85 and project plans for FY86 are described for the Magma Energy Extraction and Permeability Enhancement programs. (ACR)

Dunn, J.C.

1985-01-01T23:59:59.000Z

88

Alleviation of effective permeability reduction of gas-condensate due to condensate buildup near wellbore  

E-Print Network (OSTI)

When the reservoir pressure is decreased below dew point pressure of the gas near the wellbore, gas-condensate wells start to decrease production because condensate is separated from the gas around the wellbore causing a decrease in gas relative permeability. This effect is more dramatic if the permeability of the reservoir is low. The idea proposed for reducing this problem is to eliminate the irreducible water saturation near the wellbore to leave more space for the gas to flow and therefore increase the productivity of the well. In this research a simulation study was performed to determine the range of permeabilities where the cylinder of condensate will seriously affect the wellÂ?s productivity, and the distance the removal of water around the wellbore has to be extended in order to have acceleration of production and an increase in the final reserves. A compositional-radial reservoir was simulated with one well in the center of 109 grids. Three gas-condensate fluids with different heptanes plus compositions ( 4, 8 and 11 mole %), and two irreducible water saturations were used. The fitting of the Equation of State (EOS) was performed using the method proposed by Aguilar and McCain. Several simulations were performed with several permeabilities to determine the permeabilities for which the productivity is not affected by the presence of the cylinder of condensate. At constant permeability, various radii of a region of zero initial water saturation around the wellbore were simulated and comparisons of the effects of removal of irreducible water on productivity were made. Reservoirs with permeabilities lower than 100 mD showed a reduction in the ultimate reserves due to the cylinder of condensate. The optimal radius of water removal depends on the fluid composition and the irreducible water saturation of the reservoir. The expected increase in reserves due to water removal varies from 10 to 80 % for gas production and from 4 to 30% for condensate production.

Carballo Salas, Jose Gilberto

2004-12-01T23:59:59.000Z

89

Cutting Fluids  

Science Conference Proceedings (OSTI)

Table 6   Cutting fluids for aluminum...Table 6 Cutting fluids for aluminum Type of lubricant Principal ingredients Viscosity range Application; maintenance Relative effectiveness Necessary precautions Mineral oils (fatty-additive type preferred) Mineral oil, lard, or neats-foot oil; oleic acid

90

Absolute permeability as a function of confining pressure, pore pressure, and temperature  

SciTech Connect

This is an investigation of the absolute permeability of unconsolidated sand and consolidated sandstone cores to distilled water as a function of the temperature of the system, confining pressure on the core, and the pore pressure of the flowing fluid. The effects of flow rate and throughput are also discussed. In contrast to some previous investigations, no effect of temperature on permeability was found beyond experimental errors and effects caused by volumetric throughput. The probable causes of differing results in previous studies are also presented.

Gobran, B.D.; Brigham, W.E.; Ramey, H.J. Jr.

1987-03-01T23:59:59.000Z

91

Detection of contamination of municipal water distribution systems  

DOE Patents (OSTI)

A system for the detection of contaminates of a fluid in a conduit. The conduit is part of a fluid distribution system. A chemical or biological sensor array is connected to the conduit. The sensor array produces an acoustic signal burst in the fluid upon detection of contaminates in the fluid. A supervisory control system connected to the fluid and operatively connected to the fluid distribution system signals the fluid distribution system upon detection of contaminates in the fluid.

Cooper, John F. (Oakland, CA)

2012-01-17T23:59:59.000Z

92

Mechanical and transport properties of rocks at high temperatures and pressures. Task II. Fracture permeability of crystalline rocks as a function of temperature, pressure, and hydrothermal alteration. Final report  

DOE Green Energy (OSTI)

Pore-fluid chemical interactions on both short and long time scales can significantly change the permeability of a rock. Measurement of the permeability variations requires adaption and modification on standard measurement systems, with special attention given to pore-fluid flow rates and metal corrosion of system components. In this report, system requirements and capabilities are reviewed, analyzed, and recommendations made. Special attention is given to the choice of corrosion resistant metals, fluid-flow systems, back-pressure systems, jacketing materials, and flow-rate measurement. On the basis of this study, an economical, highly flexible, permeability system was designed and built. The system allows measurement of permeability over the darcy to nanodarcy range, using geologically meaningful, chemically reactive, pore fluids under constant volume flow rates as small as 0.2 ml/day at temperatures in excess of 300C, fluid pressures to 20 MPa, and confining pressures to 100 MPa. 7 refs., 3 figs., 1 tab.

Johnson, B.

1985-11-01T23:59:59.000Z

93

Fluid flow analysis in a rough fracture (type II) using complex networks and lattice Boltzmann method  

E-Print Network (OSTI)

Complexity of fluid flow in a rough fracture is induced by the complex configurations of opening areas between the fracture planes. In this study, we model fluid flow in an evolvable real rock joint structure, which under certain normal load is sheared. In an experimental study, information regarding about apertures of the rock joint during consecutive 20 mm displacements and fluid flow (permeability) in different pressure heads have been recorded by a scanner laser. Our aim in this study is to simulate the fluid flow in the mentioned complex geometries using the lattice Boltzmann method (LBM), while the characteristics of the aperture field will be compared with the modeled fluid flow permeability To characterize the aperture, we use a new concept in the graph theory, namely: complex networks and motif analysis of the corresponding networks. In this approach, the similar aperture profile along the fluid flow direction is mapped in to a network space. The modeled permeability using the LBM shows good correlat...

Ghaffari, H; Sharifzadeh, M; Young, R P

2011-01-01T23:59:59.000Z

94

HYDRAULIC FLUIDS  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about hydraulic fluids. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to hydraulic fluids occurs mainly in the workplace. Drinking certain types of hydraulic fluids can cause death in humans, and swallowing or inhaling certain types of hydraulic fluids has caused nerve damage in animals. Contact with some types of hydraulic fluids can irritate your skin or eyes. These substances have been found in at least 10 of the 1,428 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are hydraulic fluids? (Pronounced ?????ô????????????) Hydraulic fluids are a large group of liquids made of many kinds of chemicals. They are used in automobile automatic

unknown authors

1997-01-01T23:59:59.000Z

95

Effect of Dead Algae on Soil Permeability  

SciTech Connect

Since existing basins support heavy growths of unicellular green algae which may be killed by temperature variation or by inadvertent pH changes in waste and then deposited on the basin floor, information on the effects of dead algae on soil permeability was needed. This study was designed to show the effects of successive algal kills on the permeability of laboratory soil columns.

Harvey, R.S.

2003-02-21T23:59:59.000Z

96

Permeable Reactive Barriers | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barriers Permeable Reactive Barrier Field Projects Durango, Colorado DOE installed a PRB in October 1995 to treat ground water from a uranium mill tailings disposal site at Durango, Colorado Read more Cañon City, Colorado ESL personnel conduct tests and help evaluate performance at other PRB sites, such as Cotter Corporation's Cañon City site in Colorado. Read more Monticello, Utah Installation of a PRB hydraulically downgradient of the Monticello, Utah, millsite was completed June 30, 1999, as an Interim Remedial Action. Read more A permeable reactive barrier (PRB) is a zone of reactive material placed underground to intercept and react with a contaminant plume in ground water. Typically, PRBs are emplaced by replacing soils with reactive

97

Hydrology and geochemistry of the uranium mill tailings pile at Riverton, Wyoming. Part II. History matching. [Mathematical simulation of the observed fluid potentials within the tailings, and the observed distribution of various chemical species within and around the mill tailings  

SciTech Connect

In Part I of this series of two reports the observed fluid potential and geochemical characteristics in and around the inactive uranium mill tailings pile at Riverton, Wyoming were presented. The prupose of the present work is to attempt to simulate field observations using mathematical models. The results of the studies have not only helped identify the physicochemical mechanisms govering contaminant migration around the inactive mill tailings pile in Riverton, but also have indicated the feasibility of quantifying these mechanisms with the help of newly developed mathematical models. Much work needs to be done to validate and benchmark these models. The history-matching effort on hand involves the mathematical simulation of the observed fluid potentials within the tailings, and the observed distribution of various chemical species within and around the inactive uranium mill tailings. The simulation problem involves consideration of transient fluid flow and transient, reactive chemical transport in a variably saturated ground water system with time-dependent boundary conditions. 15 refs., 30 figs., 3 tabs.

Narasimhan, T.N.; White, A.F.; Tokunaga, T.

1985-02-01T23:59:59.000Z

98

Temperature effects on oil-water relative permeabilities for unconsolidated sands  

SciTech Connect

This study presents an experimental investigation of temperature effects on relative permeabilities of oil- water systems in unconsolidated sands. The fluids used in this study were refined mineral oil and distilled water. A rate sensitivity study was done on residual oil saturation and oil and water relative permeabilities. The temperature sensitivity study of relative permeabilities was conducted in 2 parts. The first was to investigate changes in residual oil saturation with temperature where the cores were 100% saturated with oil at the start of the waterflood. The second part continued the floods for a longer time until the water-cut was virtually 100%. Under these conditions, little change in residual oil saturation was observed with temperature. A study on viscous instabilities also was performed. This verified the existence of viscous fingers during waterflooding. It also was observed that tubing volume after the core could cause fingering, resulting in lower apparent breakthrough oil recoveries.

Sufi, A.H.

1983-03-01T23:59:59.000Z

99

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical

100

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Liquid CO2 Displacement of Water in a Dual-Permeability Pore Network Micromodel  

Science Conference Proceedings (OSTI)

Permeability contrasts exist in multilayer geological formations under consideration for carbon sequestration. To improve our understanding of heterogeneous pore-scale displacements, liquid CO2 (LCO2) - water displacement was evaluated in a pore network micromodel with two distinct permeability zones. Due to the low viscosity ratio (logM = -1.1), unstable displacement occurred at all injection rates over two orders of magnitude. LCO2 displaced water only in the high permeability zone at low injection rates with the mechanism shifting from capillary fingering to viscous fingering with increasing flow rate. At high injection rates, LCO2 displaced water in the low permeability zone with capillary fingering as the dominant mechanism. LCO2 saturation (SLCO2) as a function of injection rate was quantified using fluorescent microscopy. In all experiments, more than 50% of LCO2 resided in the active flowpaths, and this fraction increased as displacement transitioned from capillary to viscous fingering. A continuum-scale two-phase flow model with independently determined fluid and hydraulic parameters was used to predict SLCO2 in the dual-permeability field. Agreement with the micromodel experiments was obtained for low injection rates. However, the numerical model does not account for the unstable viscous fingering processes observed experimentally at higher rates and hence overestimated SLCO2.

Zhang, Changyong; Oostrom, Martinus; Grate, Jay W.; Wietsma, Thomas W.; Warner, Marvin G.

2011-09-01T23:59:59.000Z

102

Simultaneous measurement of rock permeability and effective porosity using laser-polarized noble gas NMR  

E-Print Network (OSTI)

gas NMR R. Wang,1,2 R. W. Mair,1,2, * M. S. Rosen,1 D. G. Cory,2 and R. L. Walsworth1 1 Harvard-dimensional NMR imaging of the penetrating flow of laser-polarized xenon gas. The permeability result agrees well. This NMR technique may have applications to the characterization of fluid flow in a wide variety of porous

Walsworth, Ronald L.

103

The evaluation of waterfrac technology in low-permeability gas sands in the East Texas basin  

E-Print Network (OSTI)

The petroleum engineering literature clearly shows that large proppant volumes and concentrations are required to effectively stimulate low-permeability gas sands. To pump large proppant concentrations, one must use a viscous fluid. However, many operators believe that low-viscosity, low-proppant concentration fracture stimulation treatments known as ??waterfracs?? produce comparable stimulation results in low-permeability gas sands and are preferred because they are less expensive than gelled fracture treatments. This study evaluates fracture stimulation technology in tight gas sands by using case histories found in the petroleum engineering literature and by using a comparison of the performance of wells stimulated with different treatment sizes in the Cotton Valley sands of the East Texas basin. This study shows that large proppant volumes and viscous fluids are necessary to optimally stimulate tight gas sand reservoirs. When large proppant volumes and viscous fluids are not successful in stimulating tight sands, it is typically because the fracture fluids have not been optimal for the reservoir conditions. This study shows that waterfracs do produce comparable results to conventional large treatments in the Cotton Valley sands of the East Texas basin, but we believe it is because the conventional treatments have not been optimized. This is most likely because the fluids used in conventional treatments are not appropriate or have not been used appropriately for Cotton Valley conditions.

Tschirhart, Nicholas Ray

2005-08-01T23:59:59.000Z

104

Fluid transport properties of rock fractures at high pressure and temperature. Progress report, July 1, 1976--June 30, 1977  

DOE Green Energy (OSTI)

Initial stages of a study on the fluid transport properties of rock at high pressure and temperature are reported. Emphasis is placed on the mechanical hydraulic interactions, in an attempt to clarify the process of fracture closure and its influence on fracture permeability. To determine the fluid transport properties of a fracture, the effect of surface roughness, geometry, and filling on fracture permeability was investigated. Permeability of these fractures was measured at various effective normal stresses at room temperature. The law of effective stress appears valid for fractures without filling but permeability of filled fractures is more sensitive to confining pressure than pore pressure. Permeability of smooth surfaces varied 5 to 0.5 darcys over a range of effective stresses from 0 to 3000 bars. Filled fractures were an order of magnitude more permeable.

Engelder, T.; Scholz, C.

1977-03-01T23:59:59.000Z

105

Improved techniques for fluid diversion in oil recovery. Final report  

Science Conference Proceedings (OSTI)

This three-year project had two technical objectives. The first objective was to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes were compared, including those using gels, foams, emulsions, particulates, and microorganisms. The ultimate goals of these comparisons were to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments were performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project was to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. A capacity to reduce water permeability much more than oil or gas permeability is critical to the success of gel treatments in production wells if zones cannot be isolated during gel placement. Topics covered in this report include (1) determination of gel properties in fractures, (2) investigation of schemes to optimize gel placement in fractured systems, (3) an investigation of why some polymers and gels can reduce water permeability more than oil permeability, (4) consideration of whether microorganisms and particulates can exhibit placement properties that are superior to those of gels, and (5) examination of when foams may show placement properties that are superior to those of gels.

Seright, R.

1996-01-01T23:59:59.000Z

106

Final Report Phase II: Performance Evaluation of Permeable Reactive  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Report Phase II: Performance Evaluation of Permeable Reactive Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

107

Phase II: Performance Evaluation of Permeable Reactive Barriers and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Phase II: Performance Evaluation of Permeable Reactive Barriers and Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing U. S. Environmental Protection Agency Region 8 Support January 2004 Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing More Documents & Publications Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Rejuvenating Permeable Reactive Barriers by Chemical Flushing

108

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hydraulic Conductivity of the Monticello Permeable Reactive Barrier Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update Hydraulic Conductivity of the Monticello Permeable Reactive Barrier November 2005 Update More Documents & Publications Variation in Hydraulic Conductivity Over Time at the Monticello Permeable Reactive Barrier Ground-Water Table and Chemical Changes in an Alluvial Aquifer During Sustained Pumping at the Monticello, Utah, Zero-Valent Iron Treatment Cells Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

109

Fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

110

Evaluation of the relationship between fracture conductivity, fracture fluid production, and effective fracture length  

E-Print Network (OSTI)

Low-permeability gas wells often produce less than predicted after a fracture treatment. One of the reasons for this is that fracture lengths calculated after stimulation are often less than designed lengths. While actual fracture lengths may be shorter due to fracture growth out of zone, improper proppant settling, or proppant flowback, short calculated fracture lengths can also result from incorrect analysis techniques. It is known that fracturing fluid that remains in the fracture and formation after a hydraulic fracture treatment can decrease the productivity of a gas well by reducing the relative permeability to gas in the region invaded by this fluid. However, the relationships between fracture fluid cleanup, effective fracture length, and well productivity are not fully understood. In this work I used reservoir simulation to determine the relationship between fracture conductivity, fracture fluid production, effective fracture length, and well productivity. I simulated water saturation and pressure profiles around a propped fracture, tracked gas production along the length of the propped fracture, and quantified the effective fracture length (i.e., the fracture length under single-phase flow conditions that gives similar performance as for multiphase flow conditions), the "cleanup" fracture length (i.e., the fracture length corresponding to 90% cumulative gas flow rate into the fracture), and the "apparent" fracture length (i.e., the fracture length where the ratio of multiphase to single-phase gas entry rate profiles is unity). This study shows that the proppant pack is generally cleaned up and the cleanup lengths are close to designed lengths in relatively short times. Although gas is entering along entire fracture, fracturing fluid remains in the formation near the fracture. The water saturation distribution affects the gas entry rate profile, which determines the effective fracture length. Subtle changes in the gas rate entry profile can result in significant changes in effective fracture length. The results I derived from this work are consistent with prior work, namely that greater fracture conductivity results in more effective well cleanup and longer effective fracture lengths versus time. This study provides better explanation of mechanisms that affect fracturing fluid cleanup, effective fracture length, and well productivity than previous work.

Lolon, Elyezer P.

2004-12-01T23:59:59.000Z

111

Fracturing fluid high-temperature breaker for improving well performance  

Science Conference Proceedings (OSTI)

Oxidative breakers are currently being used in fracturing treatments to reduce polymeric gel damage in high-temperature reservoirs. Dissolved high-temperature oxidative breakers are very reactive at high temperatures (275 to 350 F), typically requiring less than 0.25 lbm/1,000 gal of fluid. Recent introduction of a new nonpersulfate oxidative high-temperature encapsulated breaker (HTEB) provides controlled degradation of the fracturing fluid polymers. Laboratory tests show viscosity reduction and delayed release of active oxidizer breaker. HTEB conductivity data show a two-fold increase in retained permeability at 300 F in a borate-crosslinked fluid system.

McConnell, B.

1994-05-01T23:59:59.000Z

112

Properly designed underbalanced drilling fluids can limit formation damage  

Science Conference Proceedings (OSTI)

Drilling fluids for underbalanced operations require careful design and testing to ensure they do not damage sensitive formations. In addition to hole cleaning and lubrication functions, these fluids may be needed as kill fluids during emergencies. PanCanadian Petroleum Ltd. used a systematic approach in developing and field testing a nondamaging drilling fluid. It was for use in underbalanced operations in the Glauconitic sandstone in the Westerose gas field in Alberta. A lab study was initiated to develop and test a non-damaging water-based drilling fluid for the horizontal well pilot project. The need to develop an inexpensive, nondamaging drilling fluid was previously identified during underbalanced drilling operations in the Weyburn field in southeastern Saskatchewan. A non-damaging fluid is required for hole cleaning, for lubrication of the mud motor, and for use as a kill fluid during emergencies. In addition, a nondamaging fluid is required when drilling with a conventional rig because pressure surges during connections and trips may result in the well being exposed to short periods of near balanced or overbalanced conditions. Without the protection of a filter cake, the drilling fluid will leak off into the formation, causing damage. The amount of damage is related to the rate of leak off and depth of invasion, which are directly proportional to the permeability to the fluid.

Churcher, P.L.; Yurkiw, F.J. [PanCanadian Petroleum Ltd., Calgary, Alberta (Canada); Bietz, R.F.; Bennion, D.B. [Hycal Energy Research Ltd., Calgary, Alberta (Canada)

1996-04-29T23:59:59.000Z

113

Structural Settings Of Hydrothermal Outflow- Fracture Permeability...  

Open Energy Info (EERE)

elevated stress termed breakdown regions. Here, stress concentrations cause active fracturing and continual re-opening of fluid-flow conduits, permitting long-lived hydrothermal...

114

Encapsulated breaker for aqueous polymeric fluids  

Science Conference Proceedings (OSTI)

Persulfates are commonly used as breakers for aqueous fluids viscosified with guar or cellulose derivatives. These breakers are necessary to minimize permeability damage to proppant packs at temperatures where there is little thermal degradation of the polymers. Unfortunately, dissolved persulfates are much too reactive, even at moderate temperatures (140 to 200{degrees} F), to be used at concentrations sufficient to degrade concentrated, high-molecular-weight polymers thoroughly. Technology described in this paper was used to produce a delayed breaker. The breaker is prepared by encapsulating ammonium persulfate (APS) with a water-resistant coating. The coating shields the fluid from the breaker so that high breaker concentrations can be added to the fluid without causing the premature loss of fluid properties, such as viscosity or fluid-loss control. Critical factors in the design of encapsulated breakers (such as coating barrier properties, release mechanisms, and reactive chemical properties) are discussed. The effects of encapsulated breaker on fluid rheology were compared for several encapsulated persulfates.

Gulbis, J.; King, M.T.; Hawkins, G.W.; Brannon, H.D. (Dowell Schlumberger (US))

1992-02-01T23:59:59.000Z

115

Toward More Accurate Wave-Permeable Boundary Conditions  

Science Conference Proceedings (OSTI)

This paper investigates several fundamental aspects of wave-permeable, or “radiation,” lateral boundary conditions. Orlanski (1976) proposed that approximate wave-permeable boundary conditions could be constructed by advecting disturbances out of ...

Dale R. Durran; Ming-Jen Yang; Donald N. Slinn; Randy G. Brown

1993-02-01T23:59:59.000Z

116

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet)  

SciTech Connect

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

Not Available

2013-10-01T23:59:59.000Z

117

Determination of permeability of granitic rocks in GT-2 from hydraulic fracturing data  

DOE Green Energy (OSTI)

The Los Alamos Scientific Laboratory is currently conducting a study to determine the feasibility to extract geothermal energy from dry hot rock. The investigated concept calls for the creation of a hydraulic fracture in hot, impermeable rock. Heat will be exchanged subsequently at the fracture surface between the rock and a circulating fluid. The successful creation of hydraulic fractures in the granitic section of exploratory holes GT-1 and GT-2 yielded sufficient data to calculate the average permeability of the rock next to a fracture by means of the mathematical model. The calculated permeabilities were found to be in the microdarcy range and proved the granitic rock penetrated by GT-1 and GT-2 to be sufficiently impermeable to test the above concept. (auth)

Delisle, G.

1975-11-01T23:59:59.000Z

118

Predicting the Permeability of Pervious Concretes from Planar ...  

Science Conference Proceedings (OSTI)

... Permeability predictions for sand- clogged Portland cement pervious concrete pavement systems,” Journal of Environmental Management 81, 42 ...

2009-05-26T23:59:59.000Z

119

Improving Baked Anode Density and Air Permeability Through ...  

Science Conference Proceedings (OSTI)

Presentation Title, Improving Baked Anode Density and Air Permeability Through Process Optimization and Coke Blending. Author(s), Bienvenu Ndjom, ...

120

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS  

E-Print Network (OSTI)

EXPERIMENTAL DETERMINATION OF STEAM WATER RELATIVE PERMEABILITY RELATIONS A REPORT SUBMITTED;Abstract A set of relative permeability relations for simultaneous ow of steam and water in porous media with saturation and pressure measurements. These relations show that the relative permeability for steam phase

Stanford University

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Performance Assessment and Recommendations for Rejuvenation of a Permeable  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment and Recommendations for Rejuvenation of a Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium

122

Discrete element modeling of rock deformation, fracture network development and permeability evolution under hydraulic stimulation  

SciTech Connect

Key challenges associated with the EGS reservoir development include the ability to reliably predict hydraulic fracturing and the deformation of natural fractures as well as estimating permeability evolution of the fracture network with time. We have developed a physics-based rock deformation and fracture propagation simulator by coupling a discrete element model (DEM) for fracturing with a network flow model. In DEM model, solid rock is represented by a network of discrete elements (often referred as particles) connected by various types of mechanical bonds such as springs, elastic beams or bonds that have more complex properties (such as stress-dependent elastic constants). Fracturing is represented explicitly as broken bonds (microcracks), which form and coalesce into macroscopic fractures when external and internal load is applied. The natural fractures are represented by a series of connected line segments. Mechanical bonds that intersect with such line segments are removed from the DEM model. A network flow model using conjugate lattice to the DEM network is developed and coupled with the DEM. The fluid pressure gradient exerts forces on individual elements of the DEM network, which therefore deforms the mechanical bonds and breaks them if the deformation reaches a prescribed threshold value. Such deformation/fracturing in turn changes the permeability of the flow network, which again changes the evolution of fluid pressure, intimately coupling the two processes. The intimate coupling between fracturing/deformation of fracture networks and fluid flow makes the meso-scale DEM- network flow simulations necessary in order to accurately evaluate the permeability evolution, as these methods have substantial advantages over conventional continuum mechanical models of elastic rock deformation. The challenges that must be overcome to simulate EGS reservoir stimulation, preliminary results, progress to date and near future research directions and opportunities will be discussed. Methodology for coupling the DEM model with continuum flow and heat transport models will also be discussed.

Shouchun Deng; Robert Podgorney; Hai Huang

2011-02-01T23:59:59.000Z

123

Dual Permeability Modeling of Flow in a Fractured Geothermal Reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element simulation of the smaller fractures. the second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 {micro}m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model.

Miller, John D.; Allman, David W.

1986-01-21T23:59:59.000Z

124

Dual permeability modeling of flow in a fractured geothermal reservoir  

DOE Green Energy (OSTI)

A three dimensional fracture system synthesis and flow simulation has been developed to correlate drawdown characteristics measured in a geothermal well and to provide the basis for an analysis of tracer tests. A new dual permeability approach was developed which incorporates simulations at two levels to better represent a discrete fracture system within computer limitations. The first incorporates a discrete simulation of the largest fractures in the system plus distributed or representative element stimulation of the smaller fractures. The second determines the representative element properties by discrete simulation of the smaller fractures. The fracture system was synthesized from acoustic televiewer data on the orientation and separation of three distinct fracture sets, together with additional data from the literature. Lognormal and exponential distributions of fracture spacing and radius were studied with the exponential distribution providing more reasonable results. Hydraulic apertures were estimated as a function of distance from the model boundary to a constant head boundary. Mean values of 6.7, 101 and 46 ..mu..m were chosen as the most representative values for the three fracture sets. Recommendations are given for the additional fracture characterization needed to reduce the uncertainties in the model. 20 refs., 6 figs.

Miller, J.D.; Allman, D.W.

1986-01-01T23:59:59.000Z

125

Hydraulic fracturing of a moderate permeability reservoir, Kuparuk River Unit  

SciTech Connect

Sixty-five percent of the proven reserves in one of the United States' largest oil fields, the Kuparuk River Unit, are contained in the lower of two producing horizons. This zone, commonly referred to as the ''A'' sand, has a permeability of between 30 and 100 md. Unfortunately this interval is easily damaged during drilling and completion operations. Low initial flow efficiencies have been confirmed by numerous pressure transient tests. A program of hydraulic fracturing was initiated in March 1984 to overcome near wellbore damage and provide stimulation to more efficiently tap ''A'' sand reserves. More than 300 fracture stimulations have been completed to date in the arctic setting of the Kuparuk River Unit. These jobs have used a variety of fluids, proppants, and pumping schedules. The current hydraulic fracture design was evolved by continual interpretation of field results and related data from these previous stimulations. Success of the overall program has been impressive. Average post-fracture flow efficiency has been in excess of 100%. Post-fracture rate increase has averaged approximately 300%, accounting for a total rate increase of over 125,000 BOPD (19,900 m/sup 3//d). Based on these results, fracturing will continue to play an important part in future field development. This paper is the first review of the Kuparuk River Unit fracture program. It provides a case history of the development of a standard fracture design. In addition, the findings of this study would be applicable to reservoirs elsewhere with similar characteristics.

Niemeyer, B.L.; Reinart, M.R.

1986-01-01T23:59:59.000Z

126

ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING  

Science Conference Proceedings (OSTI)

This report summarizes the work carried out during the period of September 29, 2000 to January 15, 2004 under DOE Research Contract No. DE-FC26-00BC15308. High temperatures and reactive fluids in sedimentary basins dictate that interplay and feedback between mechanical and geochemical processes significantly influence evolving rock and fracture properties. Not only does diagenetic mineralization fill in once open fractures either partially or completely, it modifies the rock mechanics properties that can control the mechanical aperture of natural fractures. In this study, we have evolved an integrated methodology of fractured reservoir characterization and we have demonstrated how it can be incorporated into fluid flow simulation. The research encompassed a wide range of work from geological characterization methods to rock mechanics analysis to reservoir simulation. With regard to the characterization of mineral infilling of natural fractures, the strong interplay between diagenetic and mechanical processes is documented and shown to be of vital importance to the behavior of many types of fractured reservoirs. Although most recent literature emphasizes Earth stress orientation, cementation in fractures is likely a critically important control on porosity, fluid flow attributes, and even sensitivity to effective stress changes. The diagenetic processes of dissolution and partial cementation are key controls on the creation and distribution of open natural fractures within hydrocarbon reservoirs. The continuity of fracture-porosity is fundamental to how fractures conduct fluids. In this study, we have made a number of important discoveries regarding fundamental properties of fractures, in particular related to the prevalence of kinematically significant structures (crack-seal texture) within otherwise porous, opening-mode fractures, and the presence of an aperture size threshold below which fractures are completely filled and above which porosity is preserved. These observations can be linked to models of quartz cementation. Significant progress has been made as well in theoretical fracture mechanics and geomechanical modeling, allowing prediction of spatial distributions of fractures that mimic patterns observed in nature. Geomechanical modeling shows the spatial arrangement of opening mode fractures (joints and veins) is controlled by the subcritical fracture index of the material. In particular, we have been able to identify mechanisms that control the clustering of fractures in slightly deformed rocks. Fracture mechanics testing of a wide range of clastic rocks shows that the subcritical index is sensitive to diagenetic factors. We show geomechanical simulations of fracture aperture development can be linked to diagenetic models, modifying fracture porosity as fractures grow, and affect the dynamics of fracture propagation. Fluid flow simulation of representative fracture pattern realizations shows how integrated modeling can give new insight into permeability assessment in the subsurface. Using realistic, geomechanically generated fracture patterns, we propose a methodology for permeability estimation in nonpercolating networks.

Jon E. Olson; Larry W. Lake; Steve E. Laubach

2004-11-01T23:59:59.000Z

127

Modeling of coulpled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2  

Science Conference Proceedings (OSTI)

The interaction between mechanical deformation and fluid flow in fault zones gives rise to a host of coupled hydromechanical processes fundamental to fault instability, induced seismicity, and associated fluid migration. In this paper, we discuss these coupled processes in general and describe three modeling approaches that have been considered to analyze fluid flow and stress coupling in fault-instability processes. First, fault hydromechanical models were tested to investigate fault behavior using different mechanical modeling approaches, including slip interface and finite-thickness elements with isotropic or anisotropic elasto-plastic constitutive models. The results of this investigation showed that fault hydromechanical behavior can be appropriately represented with the least complex alternative, using a finite-thickness element and isotropic plasticity. We utilized this pragmatic approach coupled with a strain-permeability model to study hydromechanical effects on fault instability during deep underground injection of CO{sub 2}. We demonstrated how such a modeling approach can be applied to determine the likelihood of fault reactivation and to estimate the associated loss of CO{sub 2} from the injection zone. It is shown that shear-enhanced permeability initiated where the fault intersects the injection zone plays an important role in propagating fault instability and permeability enhancement through the overlying caprock.

Cappa, F.; Rutqvist, J.

2010-06-01T23:59:59.000Z

128

Evaluation of two-phase relative permeability and capillary pressure relations for unstable displacements in a pore network  

Science Conference Proceedings (OSTI)

A series of displacement experiments was conducted using five wetting-nonwetting immiscible fluid pairs in a homogenous and uniform pore network. The micromodel was initially saturated with either polyethylene glycol 200 (PEG) or water as a wetting fluid, which was subsequently displaced by a nonwetting fluid (dodecane, hexadecane, or mineral oil) at different flow rates. The experiments were designed to allow determinations of nonwetting fluid relative permeabilities ( ), fluid saturations ( ), and capillary pressure heads ( ). In the displacements, nonwetting fluid saturations increased with increasing flow rates for all five fluid pairs, and viscous fingering, capillary fingering, and stable displacement were observed. Viscous fingering occurred when PEG was displaced by either dodecane or hexadecane. For the water displacements, capillary fingers were observed at low capillary numbers. Due to unstable fingering phenomena, values for the PEG displacements were smaller than for the water displacements. A fitting exercise using the Brooks-Corey (1964) relationship showed that the fitted entry pressure heads are reasonably close to the computed entry pressure head. The fitted pore geometry factor, ?? values for the displacements are considerably lower than what is expected for displacements in homogeneous, highly uniform, porous systems, demonstrating the impact of unstable displacement on the apparent value of ?. It was shown that a continuum-based multiphase model could be used to predict the average behavior for wetting fluid drainage in a pore network as long as independently fitted - and - relations are used. The use of a coupled approach through the Brooks-Corey pore geometry factor underpredicts observed values.

Dehoff, Karl J.; Oostrom, Martinus; Zhang, Changyong; Grate, Jay W.

2012-10-29T23:59:59.000Z

129

Two-Phase Flow in Porous Media: Scaling of Steady-State Effective Permeability  

E-Print Network (OSTI)

A recent experiment has considered the effective permeability of two-phase flow of air and a water-glycerol solution under steady-state conditions in a two-dimensional model porous medium, and found a power law dependence with respect to capillary number. Running simulations on a two-dimensional network model a similar power law is found, for high viscosity contrast as in the experiment and also for viscosity matched fluids. Two states are found, one with stagnant clusters and one without. For the stagnant cluster state, a power law exponent 0.50 is found for viscosity matched fluids and 0.54 for large viscosity contrast. When there are no stagnant clusters the exponent depends on saturation and varies within the range of 0.67 - 0.80.

Morten Grøva

2012-01-23T23:59:59.000Z

130

Gas permeability measurements for film envelope materials  

DOE Patents (OSTI)

Method and apparatus for measuring the permeability of polymer film materials such as used in super-insulation powder-filled evacuated panels (PEPs) reduce the time required for testing from several years to weeks or months. The method involves substitution of a solid non-outgassing body having a free volume of between 0% and 25% of its total volume for the usual powder in the PEP to control the free volume of the "body-filled panel". Pressure versus time data for the test piece permit extrapolation to obtain long term performance of the candidate materials.

Ludtka, Gerard M. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Watkin, David C. (Clinton, TN); Walton, David G. (Knoxville, TN)

1998-01-01T23:59:59.000Z

131

Fracture Permeability Evolution in Rock from the Desert Peak EGS Site  

DOE Green Energy (OSTI)

Fluid flow experiments are being conducted on core specimens of quartz monzonite retrieved from depths of about 1 km at the Desert Peak East EGS site in Churchill County, Nevada. Our immediate goal is to observe permeability evolution in fractures at pressure and temperature conditions appropriate to the Desert Peak geothermal site. Longer term, we aim to evaluate mechanisms that control the evolution of fracture permeability. In the experiments saline water is flowed through an artificial fracture at a constant rate of 0.02 ml/min over a period of several weeks. The constant flow tests are interrupted at selected times for shorter tests in which flow is either stopped or varied between 0 and 2.0 ml/min. The experiments to date were conducted at a confining pressure of 5.5 MPa, pore pressures of 1.38 MPa or 2.07 MPa and temperatures of 167- 169 C. Measurements include differential pressure and electrical resistance across the specimen. The short-term variable flow rate experiments allow us to calculate the effective hydraulic aperture of the fracture at various times during the experiment. Changes in electrical resistivity provide indirect evidence of ongoing mineral dissolution and precipitation processes that are expected to change fracture permeability over time. The early experiments have shown that electrical resistivity rises during flow and falls during intervals in which flow is stopped.

Carlson, S R; Roberts, J J; Detwiler, R L; Burton, E A; Robertson-Tait, A; Morris, C; Kasameyer, P

2004-04-08T23:59:59.000Z

132

Evaluation and Application of the Constant Flow Technique in Testing Low-Permeability Geo-Materials  

SciTech Connect

Safety assessment of facilities involved in geological disposal of hazardous waste, including radioactive nuclear waste, is generally performed through mass transport simulations combined with uncertainty and sensitivity analyses. Transport of contaminants, such as radionuclides, through an engineered and/or natural barrier system is mainly controlled by advection, dispersion, sorption, and chain decay. Ideally, waste disposal facilities should be constructed in the geological environments where groundwater is not existent, or groundwater is static, or its flow is extremely slow. Potential fluid flow, however, may be induced by thermal convection and/or gas generation, and thus accurate evaluation of hydraulic properties, specifically the permeability and specific storage, along with diffusive transport properties of engineered and natural barrier materials, is of fundamental importance for safety assessment. The engineered and natural barrier materials for isolating hazardous wastes are hydraulically tight, and special techniques are generally required to obtain both rapid and accurate determination of their hydraulic properties. In this paper, the constant flow technique is introduced and evaluated. The capability of this technique in testing low-permeability geo-materials are illustrated through practical applications to a bentonite-sand mixture and rock samples having low permeabilities. (authors)

Nakajima, H.; Takeda, M.; Zhang, M. [National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Deep Geological Environments, Tsukuba, Ibaraki (Japan)

2007-07-01T23:59:59.000Z

133

Calculation of density and permeability of compacted crushed salt within an engineered shaft sealing system  

SciTech Connect

Crushed salt from the host Salado Formation is proposed as a sealing material in one component of a multicomponent seal system design for the shafts of the Waste Isolation Pilot Plant (WIPP), a mined geological repository for storage and disposal of transuranic radioactive wastes located near Carlsbad, New Mexico. The crushed salt will be compacted and placed at a density approaching 90% of the intact density of the host Salado salt. Creep closure of the shaft will further compact the crushed salt over time, thereby reducing the crushed-salt permeability from the initial state and creating an effective long-term seal. A structural model and a fluid flow model have been developed to provide an estimate of crushed-salt reconsolidation rate as a function of depth, time, and pore pressure. Model results are obtained in terms of crushed-salt permeability as a function of time and depth within the salt column. Model results indicate that average salt column permeability will be reduced to 3.3 {times} 10{sup {minus}20} m{sup 2} in about 100 years, which provides for an acceptable long-term seal component.

Loken, M. [RE/SPEC Inc., Rapid City, SD (United States); Statham, W. [Intera Inc., Austin, TX (United States)

1997-07-01T23:59:59.000Z

134

Remediation of DNAPLs in Low Permeability Soils. Innovative Technology Summary Report  

Science Conference Proceedings (OSTI)

Dense, non-aqueous phase liquid (DNAPL) compounds like trichloroethene (TCE) and perchloroethene (PCE) are prevalent at U. S. Department of Energy (DOE), other government, and industrial sites. Their widespread presence in low permeability media (LPM) poses severe challenges for assessment of their behavior and implementation of effective remediation technologies. Most remedial methods that involve fluid flow perform poorly in LPM. Hydraulic fracturing can improve the performance of remediation methods such as vapor extraction, free-product recovery, soil flushing, steam stripping, bioremediation, bioventing, and air sparging in LPM by enhancing formation permeability through the creation of fractures filled with high-permeability materials, such as sand. Hydraulic fracturing can improve the performance of other remediation methods such as oxidation, reductive dechlorination, and bioaugmentation by enhancing delivery of reactive agents to the subsurface. Hydraulic fractures are typically created using a 2-in. steel casing and a drive point pushed into the subsurface by a pneumatic hammer. Hydraulic fracturing has been widely used for more than 50 years to stimulate the yield of wells recovering oil from rock at great depth and has recently been shown to stimulate the yield of wells recovering contaminated liquids and vapors from LPM at shallow depths. Hydraulic fracturing is an enabling technology for improving the performance of some remedial methods and is a key element in the implementation of other methods. This document contains information on the above-mentioned technology, including description, applicability, cost, and performance data.

None

2000-09-01T23:59:59.000Z

135

A study of relative permeability for steam-water flow in porous media  

SciTech Connect

We report on continuing experimental and numerical efforts to obtain steam-water relative permeability functions and to assess effect of heat transfer and phase change. To achieve these, two sets of steady-state flow experiments were conducted: one with nitrogen and water and another with steam and water. During these experiments, a mixture of nitrogen-water (or steam-water) was injected into a Berea sandstone core. At the onset of steady state conditions, three-dimensional saturation distributions were obtained by using a high resolution X-ray computer tomography scanner. By identifying a length of the core over which a flat saturation profile exists and measuring the pressure gradient associated with this length, we calculated relative permeabilities for nitrogen-water flow experiments. The relative permeability relations obtained in this case were in good agreement with those reported by other investigators. Another attempt was also made to conduct a steam-water flow experiment under adiabatic conditions. This experiment was completed with partial success due to the difficulties encountered during the experiment. The results of this experiment showed that a flat saturation profile actually developed over a substantial length of the core even at a comparatively modest injection rate (6 grams per minute) with low steam quality (4% by mass). The completion of this set of experiments should yield steam-water relative permeability relations in the near future.

Ambusso, Willis; Satik, Cengiz; Horne, Roland

1996-01-24T23:59:59.000Z

136

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

137

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

DeRoos, Bradley G. (41 James St., Sequim, WA 98382); Downing, Jr., John P. (260 Kala Heights Dr., Port Townsand, WA 98368); Neal, Michael P. (921 Amberly Pl., Columbus, OH 43220)

1995-01-01T23:59:59.000Z

138

Water Injection into a Low-Permeability Rock - 1: Hydrofracture Growth  

Science Conference Proceedings (OSTI)

In this paper, we model water injection through a growing vertical hydrofracture penetrating a low-permeability reservoir. The results are useful in oilfield waterflood applications and in liquid waste disposal through reinjection. Using Duhamel's principle, we extend the Gordeyev and Entov (1997) self-similar 2D solution of pressure diffusion from a growing fracture to the case of variable injection pressure. The flow of water injected into a low-permeability rock is almost perpendicular to the fracture for a time sufficiently long to be of practical interest. We revisit Carter's model of 1D fluid injection (Howard and Fast, 1957) and extend it to the case of variable injection pressure. We express the cumulative injection through the injection pressure and effective fracture area. Maintaining fluid injection above a reasonable minimal value leads inevitably to fracture growth regardless of the injector design and the injection policy. The average rate of fracture growth can be predicted from early injection. A smart injection controller that can prevent rapid fracture growth is needed.

Patzek, Tad W.; Silin, Dmitriy B.

1999-07-27T23:59:59.000Z

139

Correlation of hydrothermal sericite composition with permeability and  

Open Energy Info (EERE)

Correlation of hydrothermal sericite composition with permeability and Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Correlation of hydrothermal sericite composition with permeability and temperature, Coso Hot Springs geothermal field, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: Petrographic and geochemical analyses of cuttings from six wells in the Coso Hot Springs geothermal field show a systematic variation in the occurrence, texture, and composition of sericite that can be correlated with high permeability production zones and temperature. The wells studied intersect rhyolitic dikes and sills in the fractured granitic and dioritic

140

Measurements of gas permeability on crushed gas shale.  

E-Print Network (OSTI)

??In the last decade, more attention has been given to unconventional gas reservoirs, including tight gas shales. Accurate description of gas transport and permeability measurements… (more)

Guarnieri, R.V.

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Permeability-Porosity Relationship for Surface Deposition  

DOE Green Energy (OSTI)

The changes to porosity and permeability resulting from surface deposition and early dissolution in an initial rhombohedral array of uniform spheres are calculated. Very rapid decreases of permeability result from early deposition, with 48% reduction predicted in permeability from 8% reduction in porosity. After deposition has caused about a 1% increase in the radii of the spherical array, relative permeability reductions vary approximately as the square of relative changes in porosity. These theoretical results are matched with experimental data of Ioti et al. and shown to be satisfactory in some cases, but for others, a more complex model of the porous medium is needed.

Weir, G.J.; White, S.P.

1995-01-01T23:59:59.000Z

142

Combined permeable pavement and ground source heat pump systems.  

E-Print Network (OSTI)

??The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in… (more)

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

143

TEST DEVICE FOR MEASURING PERMEABILITY OF A BARRIER ...  

A test device for measuring permeability of a barrier material. An exemplary device comprises a test card having a thin-film conductor-pattern formed ...

144

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN...  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference...

145

Effect of matrix shrinkage on permeability of coalbed methane reservoirs .  

E-Print Network (OSTI)

??The dynamic nature of coalbed methane reservoir permeability makes the continuous modeling of the flow process difficult. Knowledge of conventional reservoir modeling is of little… (more)

Tandon, Rohit, 1966-

1991-01-01T23:59:59.000Z

146

Gas flow behavior in extremely low permeability rock  

Science Conference Proceedings (OSTI)

This paper presents a numerical model and modeling study of gas flow through extremely low permeability unconventional reservoirs. In contrast to conventional reservoirs

Yu-Shu Wu; Cong Wang

2012-01-01T23:59:59.000Z

147

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada...  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

148

Preliminary relative permeability estimates of methane hydrate-bearing sand  

E-Print Network (OSTI)

water flow-through test (waterflood) was performed while thefrom a controlled waterflood experiment. We used x-rayand permeability. In the waterflood technique, however, only

Seol, Yongkoo; Kneafsey, Timothy J.; Tomutsa, Liviu; Moridis, George J.

2006-01-01T23:59:59.000Z

149

Flow of mantle fluids through the ductile lower crust: Heliumisotope trends  

DOE Green Energy (OSTI)

Heat and mass are injected into the shallow crust when mantle fluids are able to flow through the ductile lower crust. Minimum 3He/4He ratios in surface fluids from the northern Basin and Range province, western North America increase systematically from low, crustal values in the east to high, mantle values in the west, a regional trend that correlates with the rates of active crustal deformation. The highest ratios occur where the extension and shear strain rates are greatest. The correspondence of helium isotope ratios and active trans-tensional deformation indicates a deformation enhanced permeability and that mantle fluids can penetrate the ductile lithosphere in regions even where there is no significant magmatism. Superimposed on the regional trend are local, high-{sup 3}He/{sup 4}He anomalies signifying hidden magmatic activity and/or deep fluid production with locally enhanced permeability, identifying zones with high resource potential, particularly for geothermal energy development.

Kennedy, B. Mack; van Soest, Matthijs C.

2007-10-07T23:59:59.000Z

150

Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River basins, Wyoming. First quarterly technical progress report, September 15, 1993--December 14, 1993  

SciTech Connect

This multidisciplinary study is designed to provide improvements in advanced reservoir characterization techniques. This goal is to be accomplished through: (1) an examination of the spatial variation and anisotropy of relative permeability in the Tensleep Sandstone reservoirs of Wyoming; (2) the placement of that variation and anisotropy into paleogeographic, depositional, and diagenetic frameworks; (3) the development of pore-system imagery techniques for the calculation of relative permeability; and (4) reservoir simulations testing the impact of relative permeability anisotropy and spatial variation on Tensleep Sandstone reservoir enhanced oil recovery. Concurrent efforts are aimed at understanding the spatial and dynamic alteration in sandstone reservoirs that is caused by rock-fluid interaction during CO{sub 2} enhanced oil recovery processes. The work focuses on quantifying the interrelationship of fluid-rock interaction with lithologic characterization in terms of changes in relative permeability, wettability, and pore structure, and with fluid characterization in terms of changes in chemical composition and fluid properties. This work will establish new criteria for the susceptibility of Tensleep Sandstone reservoirs to formation alteration that results in a change in relative permeability and wellbore scale damage. This task will be accomplished by flow experiments using core material; examination of regional trends in water chemistry; examination of local water chemistry trends on the scale of a field; and chemical modeling of the reservoir and experimental systems in order to scale-up the experiments to reservoir conditions.

Dunn, T.L.

1993-12-14T23:59:59.000Z

151

Enhanced Remedial Amendment Delivery through Fluid Viscosity Modifications: Experiments and numerical simulations  

SciTech Connect

Abstract Heterogeneity is often encountered in subsurface contamination characterization and remediation. Low-permeability zones are typically bypassed when remedial fluids are injected into subsurface heterogeneous aquifer systems. Therefore, contaminants in the bypassed areas may not be contacted by the amendments in the remedial fluid, which may significantly prolong the remediation operations. Laboratory experiments and numerical studies have been conducted to develop the Mobility-Controlled Flood (MCF) technology for subsurface remediation and to demonstrate the capability of this technology in enhancing the remedial amendments delivery to the lower permeability zones in heterogeneous systems. Xanthan gum, a bio-polymer, was used to modify the viscosity of the amendment-containing remedial solutions. Sodium mono-phosphate and surfactant were the remedial amendment used in this work. The enhanced delivery of the amendments was demonstrated in two-dimensional (2-D) flow cell experiments, packed with heterogeneous systems. The impact of polymer concentration, fluid injection rate, and permeability contract in the heterogeneous systems has been studied. The Subsurface Transport over Multiple Phases (STOMP) simulator was modified to include polymer-induced shear thinning effects. Shear rates of polymer solutions were computed from pore-water velocities using a relationship proposed in the literature. Viscosity data were subsequently obtained from empirical viscosity-shear rate relationships derived from laboratory data. The experimental and simulation results clearly show that the MCF technology is capable of enhancing the delivery of remedial amendments to subsurface lower permeability zones. The enhanced delivery significantly improved the NAPL removal from these zones and the sweeping efficiency on a heterogeneous system was remarkably increased when a polymer fluid was applied. MCF technology is also able to stabilize the fluid displacing front when there is a density difference between the fluids. The modified STOMP simulator was able to predict the experimental observed fluid displacing behavior. The simulator may be used to predict the subsurface remediation performance when a shear thinning fluid is used to remediate a heterogeneous system.

Zhong, Lirong; Oostrom, Martinus; Wietsma, Thomas W.; Covert, Matthew A.

2008-07-29T23:59:59.000Z

152

Thermal depletion of a geothermal reservoir with both fracture and pore permeability  

DOE Green Energy (OSTI)

A method for estimating the useful lifetime of a reservoir in porous rock where the injection and production wells intersect a fracture system is presented. Equations were derived for the pore-fluid and fracture-fluid temperatures averaged over large regions of the geothermal field. Problems such as incomplete areal sweep and interfingering of cool and hot fluids are ignored. Approximate equations relating average temperatures to the heat flowing from rock to fluid were developed, and their use is justified by comparing the results with solutions of the exact equations. The equations for the temperature decline can be solved quickly. In the model, fractures are characterized by three parameters: aperture w, permeability k/sub fr/, and spacings between fractures D. For certain values of these parameters, cool reinjected fluid in fractures may reach the production wells long before all the warm pore fluid has been tapped, shortening the useful lifetime of the field. The traditional (and important) problems of reservoir engineering, flow rate determination, drawdown, sweep patterns, etc. were ignored. Thus the results are most useful in providing a correction factor which can be applied to lifetime estimates obtained from a detailed simulation of a field assuming porous rock. That correction factor is plotted for clean fractures (k/sub fr/ = w/sup 2//12) as a function of w and D for several lifetime ranges. Small-scale fractures seen in cores from the Salton Sea Geothermal Field are too closely spaced to reduce lifetime estimates. However, large-scale fault systems exist within that field, and they are attractive drilling targets because they produce large flow rates. If large scale faults communicate between injection and production wells, they may reduce the useful lifetime of those wells.

Kasameyer, P.W.; Schroeder, R.C.

1976-08-10T23:59:59.000Z

153

Environmentally safe fluid extractor  

DOE Patents (OSTI)

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

154

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

155

Modeling shear failure and permeability enhancement due to coupled Thermal-Hydrological-Mechanical processes in Enhanced Geothermal Reservoirs  

Science Conference Proceedings (OSTI)

The connectivity and accessible surface area of flowing fractures, whether natural or man-made, is possibly the single most important factor, after temperature, which determines the feasibility of an Enhanced Geothermal System (EGS). Rock deformation and in-situ stress changes induced by injected fluids can lead to shear failure on preexisting fractures which can generate microseismic events, and also enhance the permeability and accessible surface area of the geothermal formation. Hence, the ability to accurately model the coupled thermal-hydrologic-mechanical (THM) processes in fractured geological formations is critical in effective EGS reservoir development and management strategies. The locations of the microseismic events can serve as indicators of the zones of enhanced permeability, thus providing vital information for verification of the coupled THM models. We will describe a general purpose computational code, FEHM, developed for this purpose, that models coupled THM processes during multiphase fluid flow and transport in fractured porous media. The code incorporates several models of fracture aperture and stress behavior combined with permeability relationships. We provide field scale examples of applications to geothermal systems to demonstrate the utility of the method.

Kelkar, Sharad [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

156

Fluid Suspensions & Emulsions  

Science Conference Proceedings (OSTI)

Fluid Suspensions & Emulsions. Summary: Our primary interest is protein ... protein solutions? 1. Health & Safety. There is ongoing ...

2013-09-29T23:59:59.000Z

157

Flow of a viscous liquid between moving permeable surfaces  

Science Conference Proceedings (OSTI)

Plane motion of a viscous incompressible liquid between rotating coaxial permeable vertical cylinders of infinite length and flow between moving horizontal permeable planes are considered. Exact solutions are obtained for the Navier-Stokes equation in the case of a constant volume flow rate of a liquid in the direction normal to the surface. The boundary layer and mainstream flows are investigated.

Volk, A.M. [Belarussian Technological Institute, Minsk (Belarus)

1994-02-01T23:59:59.000Z

158

Hydrogen-permeable composite metal membrane and uses thereof  

DOE Patents (OSTI)

Various hydrogen production and hydrogen sulfide decomposition processes are disclosed that utilize composite metal membranes that contain an intermetallic diffusion barrier separating a hydrogen-permeable base metal and a hydrogen-permeable coating metal. The barrier is a thermally stable inorganic proton conductor.

Edlund, David J. (Bend, OR); Friesen, Dwayne T. (Bend, OR)

1993-06-08T23:59:59.000Z

159

EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY  

E-Print Network (OSTI)

EXPERIMENTAL MEASUREMENT OF STEAM-WATER RELATIVE PERMEABILITY A REPORT SUBMITTED TO THE DEPARTMENT calculations. X-ray computer tomography (CT) aided by measuring in-situ steam saturation more directly. The measured steam-water relative permeability curves assume a shape similar to those obtained by Corey (1954

Stanford University

160

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Reservoir-Scale Fracture Permeability in the Dixie Valley, Nevada, Geothermal Field Abstract Borehole televiewer, temperature, and flowmeter datarecorded in six wells penetrating a geothermalreservoir associated with the Stillwater fault zone inDixie Valley, Nevada, were used to investigate therelationship between reservoir permeability and thecontemporary in situ stress field. Data from wellsdrilled into productive and nonproductive segments ofthe Stillwater fault zone indicate that permeability inall wells is dominated by a relatively small number offractures striking parallel to the local trend of

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fluid Resistance Analysis of Sand Control Slotted Liner with Compound Cavity Based on Fluent  

Science Conference Proceedings (OSTI)

Slotted liners have been used for many years to provide sand control in many oil industry applications. They are commonly applied in reservoirs that produce high-viscosity oil from horizontal wells with unconsolidated, high-permeability sands. However, ... Keywords: slotted liner, newly-designed slot, Fluid resistance

Hang Li; Yonghong Liu; Jianmin Ma; Xinfang Wei

2010-03-01T23:59:59.000Z

162

Sandstone cementation and fluids in hydrocarbon basins R.S. Haszeldinea,*, C.I. Macaulaya  

E-Print Network (OSTI)

of Geology and Geophysics, University of Edinburgh Edinburgh, EH9 3JW, UK b Isotope Geology Unit, SUERC, East-specific and difficult to model in general terms. Combining techniques from petrography, isotopic and ion microprobe; North Sea; permeability; porosity; aquifer; isotope 1. Fluid motion or stasis in basins Two main goals

Haszeldine, Stuart

163

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Morteza Mohseni

2008-07-22T23:59:59.000Z

164

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Mohseni, Morteza

2008-01-01T23:59:59.000Z

165

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

166

IMPACT OF CAPILLARY AND BOND NUMBERS ON RELATIVE PERMEABILITY  

SciTech Connect

Recovery and recovery rate of oil, gas and condensates depend crucially on their relative permeability. Relative permeability in turn depends on the pore structure, wettability and flooding conditions, which can be represented by a set of dimensionless groups including capillary and bond numbers. The effect of flooding conditions on drainage relative permeabilities is not well understood and is the overall goal of this project. This project has three specific objectives: to improve the centrifuge relative permeability method, to measure capillary and bond number effects experimentally, and to develop a pore network model for multiphase flows. A centrifuge has been built that can accommodate high pressure core holders and x-ray saturation monitoring. The centrifuge core holders can operate at a pore pressure of 6.9 MPa (1000 psi) and an overburden pressure of 17 MPa (2500 psi). The effect of capillary number on residual saturation and relative permeability in drainage flow has been measured. A pore network model has been developed to study the effect of capillary numbers and viscosity ratio on drainage relative permeability. Capillary and Reynolds number dependence of gas-condensate flow has been studied during well testing. A method has been developed to estimate relative permeability parameters from gas-condensate well test data.

Kishore K. Mohanty

2002-09-30T23:59:59.000Z

167

Heat Transfer in Complex Fluids  

SciTech Connect

Amongst the most important constitutive relations in Mechanics, when characterizing the behavior of complex materials, one can identify the stress tensor T, the heat flux vector q (related to heat conduction) and the radiant heating (related to the radiation term in the energy equation). Of course, the expression 'complex materials' is not new. In fact, at least since the publication of the paper by Rivlin & Ericksen (1955), who discussed fluids of complexity (Truesdell & Noll, 1992), to the recently published books (Deshpande et al., 2010), the term complex fluids refers in general to fluid-like materials whose response, namely the stress tensor, is 'non-linear' in some fashion. This non-linearity can manifest itself in variety of forms such as memory effects, yield stress, creep or relaxation, normal-stress differences, etc. The emphasis in this chapter, while focusing on the constitutive modeling of complex fluids, is on granular materials (such as coal) and non-linear fluids (such as coal-slurries). One of the main areas of interest in energy related processes, such as power plants, atomization, alternative fuels, etc., is the use of slurries, specifically coal-water or coal-oil slurries, as the primary fuel. Some studies indicate that the viscosity of coal-water mixtures depends not only on the volume fraction of solids, and the mean size and the size distribution of the coal, but also on the shear rate, since the slurry behaves as shear-rate dependent fluid. There are also studies which indicate that preheating the fuel results in better performance, and as a result of such heating, the viscosity changes. Constitutive modeling of these non-linear fluids, commonly referred to as non-Newtonian fluids, has received much attention. Most of the naturally occurring and synthetic fluids are non-linear fluids, for example, polymer melts, suspensions, blood, coal-water slurries, drilling fluids, mud, etc. It should be noted that sometimes these fluids show Newtonian (linear) behavior for a given range of parameters or geometries; there are many empirical or semi-empirical constitutive equations suggested for these fluids. There have also been many non-linear constitutive relations which have been derived based on the techniques of continuum mechanics. The non-linearities oftentimes appear due to higher gradient terms or time derivatives. When thermal and or chemical effects are also important, the (coupled) momentum and energy equations can give rise to a variety of interesting problems, such as instability, for example the phenomenon of double-diffusive convection in a fluid layer. In Conclusion, we have studied the flow of a compressible (density gradient type) non-linear fluid down an inclined plane, subject to radiation boundary condition. The heat transfer is also considered where a source term, similar to the Arrhenius type reaction, is included. The non-dimensional forms of the equations are solved numerically and the competing effects of conduction, dissipation, heat generation and radiation are discussed. It is observed that the velocity increases rapidly in the region near the inclined surface and is slower in the region near the free surface. Since R{sub 7} is a measure of the heat generation due to chemical reaction, when the reaction is frozen (R{sub 7}=0.0) the temperature distributions would depend only on R{sub 1}, and R{sub 2}, representing the effects of the pressure force developed in the material due to the distribution, R{sub 3} and R{sub 4} viscous dissipation, R{sub 5} the normal stress coefficient, R{sub 6} the measure of the emissivity of the particles to the thermal conductivity, etc. When the flow is not frozen (RP{sub 7} > 0) the temperature inside the flow domain is much higher than those at the inclined and free surfaces. As a result, heat is transferred away from the flow toward both the inclined surface and the free surface with a rate that increases as R{sub 7} increases. For a given temperature, an increase in {zeta} implies that the activation energy is smaller and thus, the reaction ra

Mehrdad Massoudi

2012-01-01T23:59:59.000Z

168

Modeling of fluid and heat flow in fractured geothermal reservoirs  

DOE Green Energy (OSTI)

In most geothermal reservoirs large-scale permeability is dominated by fractures, while most of the heat and fluid reserves are stored in the rock matrix. Early-time fluid production comes mostly from the readily accessible fracture volume, while reservoir behavior at later time depends upon the ease with which fluid and heat can be transferred from the rock matrix to the fractures. Methods for modeling flow in fractured porous media must be able to deal with this matrix-fracture exchange, the so-called interporosity flow. This paper reviews recent work at Lawrence Berkeley Laboratory on numerical modeling of nonisothermal multiphase flow in fractured porous media. We also give a brief summary of simulation applications to problems in geothermal production and reinjection. 29 refs., 1 fig.

Pruess, K.

1988-08-01T23:59:59.000Z

169

Microwave fluid flow meter  

DOE Patents (OSTI)

A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

Billeter, Thomas R. (Richland, WA); Philipp, Lee D. (Richland, WA); Schemmel, Richard R. (Lynchburg, VA)

1976-01-01T23:59:59.000Z

170

Complex Fluids Group  

Science Conference Proceedings (OSTI)

... applications in energy, sustainability, electronics and medicine. As these materials are typically in the fluid state during their production or end-use ...

2013-05-14T23:59:59.000Z

171

Working/Functional Fluids  

Science Conference Proceedings (OSTI)

... power cycle except that it uses an organic working fluid instead of water to allow operation at lower temperatures, including geothermal or solar ...

2012-10-05T23:59:59.000Z

172

THE PERMEABILITY OF HYDROGEN THROUGH THIN-FILM SUPPORTED MEMBRANES...  

NLE Websites -- All DOE Office Websites (Extended Search)

Abstract for Session - 3 Hydrogen from Coal The Influence of Copper Concentration on the Permeability of Pd-Cu Alloy Membranes Bryan D. Morreale 1 , Bret H. Howard US Department of...

173

Hydrogen permeable protective coating for a catalytic surface  

DOE Patents (OSTI)

A protective coating for a surface comprising a layer permeable to hydrogen, said coating being deposited on a catalyst layer; wherein the catalytic activity of the catalyst layer is preserved.

Liu, Ping (Irvine, CA); Tracy, C. Edwin (Golen, CO); Pitts, J. Roland (Lakewood, CO); Lee, Se-Hee (Lakewood, CO)

2007-06-19T23:59:59.000Z

174

Exploration criteria for low permeability geothermal resources. Final report. [Coso KGRA  

DOE Green Energy (OSTI)

Low permeability geothermal systems related to high temperature plutons in the upper crust were analyzed in order to ascertain those characteristics of these systems which could be detected by surface and shallow subsurface exploration methods. Analyses were designed to integrate data and concepts from the literature, which relate to the transport processes, together with computer simulation of idealized systems. The systems were analyzed by systematically varying input parameters in order to understand their effect on the variables which might be measured in an exploration-assessment program. The methods were applied to a prospective system in its early stages of evaluation. Data from the Coso system were used. The study represents a first-order approximation to transport processes in geothermal systems, which consist of high temperature intrusions, host rock, and fluids. Included in an appendix are operations procedures for interactive graphics programs developed during the study. (MHR)

Norton, D.

1977-10-01T23:59:59.000Z

175

Permeability decrease in argillaceous sandstone; experiments and modelling  

Science Conference Proceedings (OSTI)

Core flooding experiments on argillaceous sandstone are carried out showing that for high injection flow rates permeability reduction occurs. The decrease of permeability is a consequence of the migration of insitu particles. Two models are used to simulate the observed phenomena. The so-called network model is able to give insight in the physics behind the particle migration. The other model based on mass balance and constitutive laws is used for quantitative and qualitative comparison with the experiments.

Egberts, Paul; van Soest, Lennard; Vernoux, Jean-Francois

1996-01-24T23:59:59.000Z

176

A NOVEL MATHEMATICAL TOOL FOR CHARACTERIZING PETROLEUM FLUID RHEOLOGY WITHIN POROUS MEDIA  

E-Print Network (OSTI)

of fluid velocity and injection steam velocity on temperature distribution. Jiang and Lu [4] investigated and pressure distribution in a petroleum reservoir during thermal operations. The rate equation distributions, using the modified Darcy's law, in which fluid memory is introduced as a continuous function

Hossain, M. Enamul

177

Effect of cyclic formation-pressure changes on permeability  

SciTech Connect

Unconsolidated sandpacks of various mesh sizes and consolidated Berea sandstone cores were subjected to repeated pressurization/depressurization cycles under constant confining pressure, after which their absolute and relative permeabilities were measured during the relaxation periods. The permeabilities of the sandpacks decreased as a result of the pressurization, and the reduction in permeability increased as the magnitude and duration of the applied net core pressure increased. The permeabilities continued to decrease with successive pressurization/depressurization cycles, albeit at a decreasing rate. After a finite number of cycles, no further reduction was observed. The number of cycles needed for stabilization was inversely proportional to the duration of the pressurization cycles and was found to be lower for fine sand than for coarser sand. Some recovery in permeability was achieved after the cores were allowed to relax; however, the cores were permanently damaged. Two models are proposed for explaining the mechanisms of permeability reduction under the present test conditions for both unconsolidated sand and consolidated cores.

Aggour, M.A.; Malik, S.A.; Harari, Z.Y.

1989-02-01T23:59:59.000Z

178

Supercritical Fluid Extraction  

E-Print Network (OSTI)

In supercritical fluid extraction, many options are available for achieving and controlling the desired selectivity, which is extremely sensitive to variations in pressure, temperature, and choice of solvent. The ability of supercritical fluids to vaporize relatively nonvolatile compounds at moderate temperatures can reduce the energy requirements compared to distillation and liquid extraction.

Johnston, K. P.; Flarsheim, W. M.

1984-01-01T23:59:59.000Z

179

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

180

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah  

Energy.gov (U.S. Department of Energy (DOE))

Third (March 2006) Coring and Analysis of Zero-Valent Iron Permeable Reactive Barrier, Monticello, Utah

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fracture Propagation and Permeability Change under Poro-thermoelastic Loads & Silica Reactivity in Enhanced Geothermal Systems  

SciTech Connect

Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Therefore, knowledge of the conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fractures are created in the reservoir using hydraulic fracturing. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result, it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have developed advanced poro-thermo-chemo-mechanical fracture models for rock fracture research in support of EGS design. The fracture propagation models are based on a regular displacement discontinuity formulation. The fracture propagation studies include modeling interaction of induced fractures. In addition to the fracture propagation studies, two-dimensional solution algorithms have been developed and used to estimate the impact of pro-thermo-chemical processes on fracture permeability and reservoir pressure. Fracture permeability variation is studied using a coupled thermo-chemical model with quartz reaction kinetics. The model is applied to study quartz precipitation/dissolution, as well as the variation in fracture aperture and pressure. Also, a three-dimensional model of injection/extraction has been developed to consider the impact poro- and thermoelastic stresses on fracture slip and injection pressure. These investigations shed light on the processes involved in the observed phenomenon of injection pressure variation (e.g., in Coso), and allow the assessment of the potential of thermal and chemical stimulation strategies.

Ahmad Ghassemi

2009-10-01T23:59:59.000Z

182

Effects of Port Geometries on Fluid Flow Patterns in Slab Moulds  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

183

Study on Fluid Flow in a Twelve-strand Tundish under the Operation ...  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

184

A unified mathematical framework and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic bodies  

Science Conference Proceedings (OSTI)

Many problems of interest in biological fluid mechanics involve interactions between fluids and solids that require the coupled solution of momentum equations for both the fluid and the solid. In this work, we develop a mathematical framework and an ... Keywords: Adaptive mesh refinement, Distributed Lagrange multipliers, Fluid-structure interaction, Free swimming, Immersed boundary method, Incompressible Navier-Stokes equations

Amneet Pal Singh Bhalla, Rahul Bale, Boyce E. Griffith, Neelesh A. Patankar

2013-10-01T23:59:59.000Z

185

A fluid pressure and deformation analysis for geological sequestration of carbon dioxide  

SciTech Connect

We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcy's law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Green's function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain HR

2012-06-07T23:59:59.000Z

186

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

187

Fluid Models of Many-server Queues with Abandonment  

E-Print Network (OSTI)

We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed.

Zhang, Jiheng

2009-01-01T23:59:59.000Z

188

Supercritical fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

1994-01-01T23:59:59.000Z

189

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

190

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

191

Fluid Flow Within Fractured Porous Media  

Science Conference Proceedings (OSTI)

Fractures provide preferential flow paths to subterranean fluid flows. In reservoir scale modeling of geologic flows fractures must be approximated by fairly simple formulations. Often this is accomplished by assuming fractures are parallel plates subjected to an applied pressure gradient. This is known as the cubic law. An induced fracture in Berea sandstone has been digitized to perform numerical flow simulations. A commercially available computational fluid dynamics software package has been used to solve the flow through this model. Single phase flows have been compared to experimental works in the literature to evaluate the accuracy with which this model can be applied. Common methods of fracture geometry classification are also calculated and compared to experimentally obtained values. Flow through regions of the fracture where the upper and lower fracture walls meet (zero aperture) are shown to induce a strong channeling effect on the flow. This model is expanded to include a domain of surrounding porous media through which the flow can travel. The inclusion of a realistic permeability in this media shows that the regions of small and zero apertures contribute to the greatest pressure losses over the fracture length and flow through the porous media is most prevalent in these regions. The flow through the fracture is shown to be the largest contributor to the net flow through the media. From this work, a novel flow relationship is proposed for flow through fractured media.

Crandall, D.M.; Ahmadi, G. (Clarkson Univ., Potsdam, NY); Smith, D.H.; Bromhal, G.S.

2006-10-01T23:59:59.000Z

192

Application of Cutting Fluids  

Science Conference Proceedings (OSTI)

...is transferred to the drill by a rotating gland and is forced directly into the cutting zone. The fluid flowing from the hole assists in chip removal. Oil-hole drills have become very popular in

193

Basic fluid system trainer  

DOE Patents (OSTI)

This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

1991-04-30T23:59:59.000Z

194

Basic fluid system trainer  

DOE Patents (OSTI)

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

195

Phoresis in fluids  

E-Print Network (OSTI)

This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

Brenner, Howard

196

Water injection into a Low-Permeability Rock - 2: Control Model  

Science Conference Proceedings (OSTI)

In Part 1, we have demonstrated the inevitable growth of the fluid injection hydrofractures in low-permeability rocks. Thus, a smart controller that manages fluid injection in the presence of hydrofracture extension is highly desirable. Such a controller will be an essential part of automated waterflood project surveillance and control. Here we design an optimal injection controller using methods of optimal control theory. The controller inputs are the history of the injection pressure and the cumulative injection, along with the fracture size. The output parameter is the injection pressure and the control objective is the injection rate. We demonstrate that the optimal injection pressure depends not only on the instantaneous measurements, but it is determined by the whole history of the injection and of the fracture area growth. We show the controller robustness when the inputs are delayed and noisy and when the fracture undergoes abrupt extensions. Finally, we propose a procedure that allows estimation of the hydrofracture size at no additional cost.

Silin, Dmitriy B.; Patzek, Tad W.

1999-06-01T23:59:59.000Z

197

Characteristics of Basin and Range Geothermal Systems with Fluid  

Open Energy Info (EERE)

Characteristics of Basin and Range Geothermal Systems with Fluid Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Characteristics of Basin and Range Geothermal Systems with Fluid Temperatures of 150°C to 200°C Abstract Six geothermal reservoirs with fluid temperatures over 200°C and ten geothermal systems with measured fluid temperatures of 150-200°C have been discovered in the northern Basin and Range Province of the USA. A comparison of these high and moderate temperature systems shows considerable overlap in geographical distribution, geology, and physical properties. Our ability to distinguish between moderate and high temperature systems using fluid chemistry has been limited by often

198

Partitioned solution to fluid-structure interaction problem in application to free-surface flows  

E-Print Network (OSTI)

distribution). Fluid material properties are the dynamic viscosity µ and the density . To write a unique Computational fluid Dynamic programs solve the fluid equations on a fixed (Eulerian) grid. The classical and structure sub-problems. Contrary to explicit algorithms which generate spurious energy at the in- terface

Paris-Sud XI, Université de

199

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL  

Open Energy Info (EERE)

IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IMPROVED METHODS FOR MAPPING PERMEABILITY AND HEAT SOURCES IN GEOTHERMAL AREAS USING MICROEARTHQUAKE DATA Details Activities (1) Areas (1) Regions (0) Abstract: Geothermal microearthquakes, and the seismic waves they generate, provide a rich source of information about physical processes associated with Enhanced Geothermal Systems (EGS) experiments and other geothermal operations. With support from the Dept. of Energy, we are developing several software packages to enhance the utility of microearthquake data in geothermal operations and EGS experiments. Two of these are: 1. Enhanced

200

On relative permeability of rough-walled fractures  

DOE Green Energy (OSTI)

This paper presents a conceptual and numerical model of multiphase flow in fractures. The void space of real rough-walled rock fractures is conceptualized as a two-dimensional heterogeneous porous medium, characterized by aperture as a function of position in the fracture plane. Portions of a fracture are occupied by wetting and non-wetting phase, respectively, according to local capillary pressure and accessibility criteria. Phase occupancy and permeability are derived by assuming a parallel-plate approximation for suitably small subregions in the fracture plane. Wetting and non-wetting phase relative permeabilities are calculated by numerically simulating single phase flows separately in the wetted and non-wetted pore spaces. Illustrative examples indicate that relative permeabilities depend sensitively on the nature and range of spatial correlation between apertures. 30 refs., 7 figs., 1 tab.

Pruess, K.; Tsang, Y.W.

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Interfacial-Area-Based Relative Permeability Function  

SciTech Connect

CH2M Hill Plateau Remediation Company (CHPRC) requested the services of the Pacific Northwest National Laboratory (PNNL) to provide technical support for the Remediation Decision Support (RDS) activity within the Soil & Groundwater Remediation Project. A portion of the support provided in FY2009, was to extend the soil unsaturated hydraulic conductivity using an alternative approach. This alternative approach incorporates the Brooks and Corey (1964), van Genuchten (1980), and a modified van Genuchten water-retention models into the interfacial-area-based relative permeability model presented by Embid (1997). The general performance of the incorporated models is shown using typical hydraulic parameters. The relative permeability models for the wetting phase were further examined using data from literature. Results indicate that the interfacial-area-based model can describe the relative permeability of the wetting phase reasonably well.

Zhang, Z. F.; Khaleel, Raziuddin

2009-09-25T23:59:59.000Z

202

MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS  

E-Print Network (OSTI)

Interfacial tension at fluid-fluid interfaces is a reflection of the excess energy associated with unsaturated in parts per million concentration (27). DYNAMIC INTERFACIAL TENSION MEASUREMENTS In fluid-fluid systems, detergency, foam or froth generation, and stability (3). In these pro- cesses, dynamic interfacial tensions

Loh, Watson

203

Hydrogen Permeability and Integrity of Hydrogen Delivery Pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

Permeability and Permeability and Integrity of Hydrogen Delivery Pipelines Z. Feng*, L.M. Anovitz*, J.G. Blencoe*, S. Babu*, and P. S. Korinko** * Oak Ridge National Laboratory * Savannah River National Laboratory August 30, 2005 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Partners and Collaborators * Oak Ridge National Laboratory - Project lead * Savannah River National Laboratory - Low H 2 pressure permeation test * Edison Welding Institute - Pipeline materials * Lincoln Electric Company - Welding electrode and weld materials for pipelines * Trans Canada - Commercial welding of pipelines and industry expectations * DOE Pipeline Working Group and Tech Team activities - FRP Hydrogen Pipelines - Materials Solutions for Hydrogen Delivery in Pipelines - Natural Gas Pipelines for Hydrogen Use

204

EIA - AEO2010 -Importance of low-permeability natural gas reservoirs  

Gasoline and Diesel Fuel Update (EIA)

Importance of low-permeability natural gas reservoirs Importance of low-permeability natural gas reservoirs Annual Energy Outlook 2010 with Projections to 2035 Importance of low-permeability natural gas reservoirs Introduction Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40 percent of natural gas production and about 35 percent of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in “darcies.”)

205

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

206

Lecture notes Ideal fluid mechanics  

E-Print Network (OSTI)

involves energy loss--such fluids are known as viscous fluids--we will not consider them here. Some fluids of the basic equations underlying the dynamics of ideal fluids is based on three basic principles (see Chorin. Conservation of energy, energy is neither created nor destroyed. In turn these principles generate the: 1

Malham, Simon J.A.

207

Importance of Low Permeability Natural Gas Reservoirs (released in AEO2010)  

Reports and Publications (EIA)

Production from low-permeability reservoirs, including shale gas and tight gas, has become a major source of domestic natural gas supply. In 2008, low-permeability reservoirs accounted for about 40 percent of natural gas production and about 35 percent of natural gas consumption in the United States. Permeability is a measure of the rate at which liquids and gases can move through rock. Low-permeability natural gas reservoirs encompass the shale, sandstone, and carbonate formations whose natural permeability is roughly 0.1 millidarcies or below. (Permeability is measured in darcies.)

Information Center

2010-05-11T23:59:59.000Z

208

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

209

Frequency-dependent processing and interpretation (FDPI) of seismic data for identifying, imaging and monitoring fluid-saturated underground reservoirs  

DOE Patents (OSTI)

A method for identifying, imaging and monitoring dry or fluid-saturated underground reservoirs using seismic waves reflected from target porous or fractured layers is set forth. Seismic imaging the porous or fractured layer occurs by low pass filtering of the windowed reflections from the target porous or fractured layers leaving frequencies below low-most corner (or full width at half maximum) of a recorded frequency spectra. Additionally, the ratio of image amplitudes is shown to be approximately proportional to reservoir permeability, viscosity of fluid, and the fluid saturation of the porous or fractured layers.

Goloshubin, Gennady M. (Sugar Land, TX); Korneev, Valeri A. (Lafayette, CA)

2005-09-06T23:59:59.000Z

210

Simulation of fracture fluid cleanup and its effect on long-term recovery in tight gas reservoirs  

E-Print Network (OSTI)

In the coming decades, the world will require additional supplies of natural gas to meet the demand for energy. Tight gas reservoirs can be defined as reservoirs where the formation permeability is so low (flowback procedures, production strategy, and reservoir conditions. Residual polymer in the fracture can reduce the effective fracture permeability and porosity, reduce the effective fracture half-length, and limit the well productivity. Our ability to mathematically model the fundamental physical processes governing fluid recovery in hydraulic fractures in the past has been limited. In this research, fracture fluid damage mechanisms have been investigated, and mathematical models and computer codes have been developed to better characterize the cleanup process. The codes have been linked to a 3D, 3-phase simulator to model and quantify the fracture fluid cleanup process and its effect on long-term gas production performances. Then, a comprehensive systematic simulation study has been carried out by varying formation permeability, reservoir pressure, fracture length, fracture conductivity, yield stress, and pressure drawdown. On the basis of simulation results and analyses, new ways to improve fracture fluid cleanup have been provided. This new progress help engineers better understand fracture fluid cleanup, improve fracture treatment design, and increase gas recovery from tight sand reservoirs, which can be extremely important as more tight gas reservoirs are developed around the world.

Wang, Yilin

2008-12-01T23:59:59.000Z

211

Fluid-structure interaction for a pressure driven flow  

Science Conference Proceedings (OSTI)

In this article we discuss the application of a Lagrange multiplier based fictitious domain method for the simulation of the motion of two rigid flaps in an unsteady flow generated by pressure gradients. The distributed Lagrange multiplier technique ... Keywords: Distributed Lagrange multiplier method, Fluid-structure interaction, Marchuk-Yanenko splitting scheme, Pulse pressure

Arati Nanda Pati

2008-01-01T23:59:59.000Z

212

Mathematical Modeling of Burden Distribution in a Blast Furnace  

Science Conference Proceedings (OSTI)

Analysis of Residence Time Distribution (RTD) of Fluid Flows in a Four Strand Delta-shaped Tundish Operating Under Isothermal and Non-isothermal ...

213

Enhancing permeability in oil shale and applications to tar sands  

SciTech Connect

Explosive fracturing and rubblization are used to enhance oil shale permeability. Blasting strategy and results are discussed, in particular the Geokinetics blasting. The field data desired are listed. Comments are offered on the extension of the blasting techniques to tar sands. (DLC)

Schamaun, J.T.

1980-01-01T23:59:59.000Z

214

Effect of Removal of Inclusion Particles on Hydrogen Permeability of ...  

Science Conference Proceedings (OSTI)

The separation of hydrogen gas from other gas species can be carried out by using hydrogen permeable film. ... in order to improve the hydrogen permeation efficiency and to save the cost. It was found that the production of thinner Pt-Gd film is hard when ... Models for Target-peen Interaction Under shot Peening process.

215

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

E-Print Network (OSTI)

Hydrogen permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland

216

Universal fluid droplet ejector  

DOE Patents (OSTI)

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

1999-08-24T23:59:59.000Z

217

Tritium Permeability of Incoloy 800H and Inconel 617  

DOE Green Energy (OSTI)

Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950 C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm) - three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

Philip Winston; Pattrick Calderoni; Paul Humrickhouse

2011-09-01T23:59:59.000Z

218

Tritium Permeability of Incoloy 800H and Inconel 617  

Science Conference Proceedings (OSTI)

Design of the Next Generation Nuclear Plant (NGNP) reactor and its high-temperature components requires information regarding the permeation of fission generated tritium and hydrogen product through candidate heat exchanger alloys. Release of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system represent safety basis and product contamination issues. Of the three potential candidates for high-temperature components of the NGNP reactor design, only permeability for Incoloy 800H has been well documented. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. To support engineering design of the NGNP reactor components, the tritium permeability of Inconel 617 and Incoloy 800H was determined using a measurement system designed and fabricated at Idaho National Laboratory. The tritium permeability of Incoloy 800H and Inconel 617, was measured in the temperature range 650 to 950°C and at primary concentrations of 1.5 to 6 parts per million volume tritium in helium. (partial pressures of 10-6 atm)—three orders of magnitude lower partial pressures than used in the hydrogen permeation testing. The measured tritium permeability of Incoloy 800H and Inconel 617 deviated substantially from the values measured for hydrogen. This may be due to instrument offset, system absorption, presence of competing quantities of hydrogen, surface oxides, or other phenomena. Due to the challenge of determining the chemical composition of a mixture with such a low hydrogen isotope concentration, no categorical explanation of this offset has been developed.

Philip Winston; Pattrick Calderoni; Paul Humrickhouse

2012-07-01T23:59:59.000Z

219

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO  

Open Energy Info (EERE)

IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE AND FLUID FLOW ANALYSIS-EAST FLANK OF THE COSO GEOTHERMAL FIELD Details Activities (1) Areas (1) Regions (0) Abstract: High rock temperatures, a high degree of fracturing, high tectonic stresses, and low permeability are the combination of qualities that define an ideal candidate-Enhanced Geothermal System (EGS) reservoir. The Coso Geothermal Field is an area where fluid temperatures exceeding 300°C have been measured at depths less than 10,000 feet and the reservoir is both highly fractured and tectonically stressed. Some of the wells within this portion of the reservoir are relatively impermeable,

220

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso  

Open Energy Info (EERE)

Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Controls on Fault-Hosted Fluid Flow: Preliminary Results from the Coso Geothermal Field, CA Details Activities (1) Areas (1) Regions (0) Abstract: cap rock, permeability, fault, fracture, clay, Coso Author(s): Davatzes, N.C.; Hickman, S.H. Published: Geothermal Resource Council Transactions 2005, 1/1/2005 Document Number: Unavailable DOI: Unavailable Conceptual Model At Coso Geothermal Area (2005-2007) Coso Geothermal Area Retrieved from "http://en.openei.org/w/index.php?title=Controls_on_Fault-Hosted_Fluid_Flow:_Preliminary_Results_from_the_Coso_Geothermal_Field,_CA&oldid=473359"

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternatives for Mending a Permeable Reactive Barrier at a Former Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Phase II: Performance Evaluation of Permeable Reactive Barriers and

222

Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Alternatives for Mending a Permeable Reactive Barrier at a Former Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah Alternatives for Mending a Permeable Reactive Barrier at a Former Uranium Milling Site: Monticello, Utah More Documents & Publications Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation's Cañon City, Colorado, Uranium Mill Final Report Phase II: Performance Evaluation of Permeable Reactive

223

Acoustic sand detector for fluid flowstreams  

DOE Patents (OSTI)

The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

1993-01-01T23:59:59.000Z

224

Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface  

E-Print Network (OSTI)

SGP-TR-177 Liquid-Gas Relative Permeabilities in Fractures: Effects of Flow Structures, Phase) the liquid-gas relative permeabilities in fractures can be modeled by characterizing the flow structures permeabilities in both smooth and rough fractures. For the theoretical analysis of liquid-vapor relative

Stanford University

225

Functional networks as a new data mining predictive paradigm to predict permeability in a carbonate reservoir  

Science Conference Proceedings (OSTI)

Permeability prediction has been a challenge to reservoir engineers due to the lack of tools that measure it directly. The most reliable data of permeability obtained from laboratory measurements on cores do not provide a continuous profile along the ... Keywords: Carbonate reservoir, Data mining, Feedforward neural networks, Functional networks, Fuzzy logic, Minimum description length, Permeability, Porosity, Statistical regression

Emad A. El-Sebakhy; Ognian Asparouhov; Abdul-Azeez Abdulraheem; Abdul-Aziz Al-Majed; Donghui Wu; Kris Latinski; Iputu Raharja

2012-09-01T23:59:59.000Z

226

MEASUREMENTS OF RELATIVE PERMEABILITY FOR STEAM-WATER FLOW IN POROUS MEDIA  

E-Print Network (OSTI)

MEASUREMENTS OF RELATIVE PERMEABILITY FOR STEAM-WATER FLOW IN POROUS MEDIA A REPORT SUBMITTED experimental efforts towards obtaining relative permeability for steam-water flow in a homogeneous porous computer tomography (CT) scanner. Steam fractional flow, crucial in evaluating relative permeabilities

Stanford University

227

Structural controls, alteration, permeability and thermal regime of Dixie Valley from new-generation MT/galvanic array profiling  

DOE Green Energy (OSTI)

State-of-the-art MT array measurements in contiguous bipole deployments across the Dixie Valley thermal area have been integrated with regional MT transect data and other evidence to address several basic geothermal goals. These include 1), resolve a fundamental structural ambiguity at the Dixie Valley thermal area (single rangefront fault versus shallower, stepped pediment; 2), delineate fault zones which have experienced fluid flux as indicated by low resistivity; 3), infer ultimate heat and fluid sources for the thermal area; and 4), from a generic technique standpoint, investigate the capability of well-sampled electrical data for resolving subsurface structure. Three dense lines cross the Senator Fumaroles area, the Cottonwood Creek and main producing area, and the low-permeability region through the section 10-15 area, and have stand-alone MT soundings appended at one or both ends for local background control. Regularized 2-D inversion implies that shallow pediment basement rocks extend for a considerable distance (1-2 km) southeastward from the topographic scarp of the Stillwater Range under all three dense profiles, but especially for the Senator Fumaroles line. This result is similar to gravity interpretations in the area, but with the intrinsic depth resolution possible from EM wave propagation. Low resistivity zones flank the interpreted main offsetting fault especially toward the north end of the field which may be due to alteration from geothermal fluid outflow and upflow. The appended MT soundings help to substantiate a deep, subvertical conductor intersecting the base of Dixie Valley from the middle crust, which appears to be a hydrothermal conduit feeding from deep crustal magmatic underplating. This may supply at least part of the high temperature fluids and explain enhanced He-3 levels in those fluids.

Philip E. Wannamaker

2007-11-30T23:59:59.000Z

228

Field Demonstration Of Permeable Reactive Barriers To Remove  

E-Print Network (OSTI)

fracturing ("hydrofracking" or "fracking") now allow the extraction of vast shale gas reserves previously and contamination from fracking-fluid chemicals. Extraction of gas from shale formations may also pro- duce a mixture of fracking fluids and natural geologic formation water flowing back out of the well

229

Hydrogen permeability and Integrity of hydrogen transfer pipelines  

NLE Websites -- All DOE Office Websites (Extended Search)

permeability and Integrity permeability and Integrity of hydrogen transfer pipelines Team: Sudarsanam Suresh Babu, Z. Feng, M. L. Santella and S. A. David (Oak Ridge National Laboratory, M&C Division - Steels, Welding & Computational Mechanics) J. G. Blencoe and Larry. M. Anovitz (Oak Ridge National Laboratory, Chemical Sciences Division - High Pressure Permeation Testing) P. S. Korinko (Savannah River National Laboratory - Low Pressure Permeation Testing) Hydrogen Pipeline R&D, Project Review Meeting Oak Ridge National Laboratory, Oak Ridge, TN 37831-6096 January 2005 Acknowledgements Bill Bruce of Edison Welding Institute, Columbus, Ohio (After-service pipeline materials) Ms. M. A. Quintana of Lincoln Electric Company, Cleveland, Ohio (Fe-C-Al-Mn steel welds) David Hursley

230

Porosity and permeability of Eastern Devonian gas shale  

SciTech Connect

High-precision core analysis has been performed on eight Devonian gas shale samples from the Appalachian basin. Seven of the core samples consist of the Upper Devonian Age Huron member of the Ohio shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eight core sample consists of Middle Devonian Age Marcellus shale obtained from a well in Morgantown, WV. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the work has identified a number of geological factors that influence gas production from organic-rich shales. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron shale samples effectively limits the gas porosity of this formation to less than 0.2%, and gas permeability of the rock matrix is commonly less than 0.1 ..mu..d at reservoir stress. The Marcellus shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10%, and a surprisingly high permeability of 20 ..mu..d. Gas permeability of the Marcellus was highly stress-dependent, however; doubling the net confining stress reduced the permeability by nearly 70%. The conclusion reached from this study is that the gas productivity potential of Devonian shale in the Appalachian basin is influenced by a wide range of geologic factors. Organic content, thermal maturity, natural fracture spacing, and stratigraphic relationships between gray and black shales all affect gas content and mobility. Understanding these factors can improve the exploration and development of Devonian shale gas.

Soeder, D.J.

1988-03-01T23:59:59.000Z

231

Experimental Properties of Fluids Group  

Science Conference Proceedings (OSTI)

The Experimental Properties of Fluids Group, Physical and Chemical Properties Division of the Chemical Science and Technology Laboratory, NIST.

2000-07-24T23:59:59.000Z

232

Supercritical fluid reverse micelle systems  

DOE Patents (OSTI)

of 1 ) United States Patent 5,158,704 Fulton ,   et al. October 27, 1992 Supercritical fluid reverse micelle systems

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1992-01-01T23:59:59.000Z

233

ADVANCED TECHNOLOGY FOR PREDICTING THE FLUID FLOW ATTRIBUTES OF NATURALLY FRACTURED RESERVOIRS FROM QUANTITATIVE GEOLOGIC DATA AND MODELING  

Science Conference Proceedings (OSTI)

This report summarizes the work carried out during the period of September 29, 2000 to September 28, 2001 under DOE Research Contract No. DE-FC26-00BC15308. Our goal is to establish an integrated methodology of fractured reservoir characterization and show how that can be incorporated into fluid flow simulation. We have made progress in the characterization of mineral infilling of natural fractures. The main advancement in this regard was to recognize the strong interplay between diagenetic and mechanical processes. We accomplished several firsts in documenting and quantifying these processes, including documenting the range of emergent threshold in several formations and quantifying the internal structures of crack-seal bridges in fractures. These results will be the basis for an appreciation of fracture opening and filling rates that go well beyond our original goals. Looking at geochemical modeling of fracture infilling, our theoretical analysis addressed the problem of calcite precipitation in a fracture. We have built a model for the deposition of calcite within a fracture. The diagenetic processes of dissolution and partial cementation are key controls on the creation and distribution of natural fractures within hydrocarbon reservoirs. Even with extensive data collection, fracture permeability still creates uncertainty in reservoir description and the prediction of well performance. Data on the timing and stages of diagenetic events can provide explanation as to why, when and where natural fractures will be open and permeable. We have been pursuing the fracture mechanics testing of a wide range of rocks, particularly sandstone using a key rock property test that has hitherto not been widely applied to sedimentary rocks. A major accomplishment in this first year has been to identify sample suites available in the core repository at the University of Texas that represent a wide range of diagenetic alteration and to begin to test these samples. The basis for the fluid flow simulations to be carried out in this part of the project is the adequate spatial characterization of fracture networks. Our initial focus has been on the tendency of fracture sets to cluster into highly fracture zones that are often widely separated. Our preliminary modeling work shows the extent of this clustering to be controlled by the subcritical fracture index of the material. With continued progress, we move toward an integrated fracture characterization methodology that will ultimately be applied through detailed reservoir simulation.

Jon E. Olson; Larry W. Lake; Steve E. Laubach

2003-04-01T23:59:59.000Z

234

Review of potential subsurface permeable barrier emplacement and monitoring technologies  

SciTech Connect

This report focuses on subsurface permeable barrier technologies potentially applicable to existing waste disposal sites. This report describes candidate subsurface permeable barriers, methods for emplacing these barriers, and methods used to monitor the barrier performance. Two types of subsurface barrier systems are described: those that apply to contamination.in the unsaturated zone, and those that apply to groundwater and to mobile contamination near the groundwater table. These barriers may be emplaced either horizontally or vertically depending on waste and site characteristics. Materials for creating permeable subsurface barriers are emplaced using one of three basic methods: injection, in situ mechanical mixing, or excavation-insertion. Injection is the emplacement of dissolved reagents or colloidal suspensions into the soil at elevated pressures. In situ mechanical mixing is the physical blending of the soil and the barrier material underground. Excavation-insertion is the removal of a soil volume and adding barrier materials to the space created. Major vertical barrier emplacement technologies include trenching-backfilling; slurry trenching; and vertical drilling and injection, including boring (earth augering), cable tool drilling, rotary drilling, sonic drilling, jetting methods, injection-mixing in drilled holes, and deep soil mixing. Major horizontal barrier emplacement technologies include horizontal drilling, microtunneling, compaction boring, horizontal emplacement, longwall mining, hydraulic fracturing, and jetting methods.

Riggsbee, W.H.; Treat, R.L.; Stansfield, H.J.; Schwarz, R.M. [Ebasco Environmental, Richland, WA (United States); Cantrell, K.J. [Pacific Northwest Lab., Richland, WA (United States); Phillips, S.J. [Westinghouse Hanford Co., Richland, WA (United States)

1994-02-01T23:59:59.000Z

235

Effects of temperature on the absolute permeability of consolidated sandstone  

DOE Green Energy (OSTI)

The effect of temperature on absolute permeability has been a point of disagreement in the petroleum literature for many years. Recent work at Stanford University has shown no dependence on temperature of the absolute permeability to water of unconsolidated sand cores. The objective of this report is to extend the investigation to consolidated sandstone by following similar experimental procedures and observing whether any temperature effects exist. Fontainebleau sandstone was chosen as the core sample because of its low porosity and relatively clay-free composition. These characteristics allow the nature of consolidated sandstone permeability to be studied, while minimizing the effects of extraneous factors. Such factors, often present in Berea and Boise sandstones, include interstitital clay swelling in the presence of distilled water. Properties of sandstone differ from those of unconsolidated sand. Consequently, the effects of throughput water volume and flow rate, in addition to temperature, are studied. Mechanical difficulties with parts of the experimental apparatus have prevented the development of a satisfactory conclusion based on results obtained thus far. Recommendations are provided for necessary modifications before further experiments are performed. When these changes are implemented, a final run can be made to complete the analysis. 19 references, 10 figures.

McKay, W.I.; Brigham, W.E.

1984-04-01T23:59:59.000Z

236

Production of MHD fluid  

SciTech Connect

A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

Lacey, James J. (Library, PA); Kurtzrock, Roy C. (Bethel Park, PA); Bienstock, Daniel (Pittsburgh, PA)

1976-08-24T23:59:59.000Z

237

Interpretation of brine-permeability tests of the Salado Formation at the Waste Isolation Pilot Plant site: First interim report  

Science Conference Proceedings (OSTI)

Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.

Beauheim, R.L. (Sandia National Labs., Albuquerque, NM (United States)); Saulnier, G.J. Jr.; Avis, J.D. (INTERA, Inc., Austin, TX (United States))

1991-08-01T23:59:59.000Z

238

Fracture Permeability and in Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir  

DOE Green Energy (OSTI)

We have collected and analyzed fracture and fluid flow data from wells both within and outside the producing geothermal reservoir at Dixie Valley. Data from wellbore imaging and flow tests in wells outside the producing field that are not sufficiently hydraulically connected to the reservoir to be of commercial value provide both the necessary control group of fracture populations and an opportunity to test the concepts proposed in this study on a regional, whole-reservoir scale. Results of our analysis indicate that fracture zones with high measured permeabilities within the producing segment of the fault are parallel to the local trend of the Stillwater fault and are optimally oriented and critically stressed for frictional failure in the overall east-southeast extensional stress regime measured at the site. In contrast, in the non-producing (i.e., relatively impermeable:) well 66-21 the higher ratio of S{sub hmin} to S{sub v} acts to decrease the shear stress available to drive fault slip. Thus, although many of the fractures at this site (like the Stillwater fault itself) are optimally oriented for normal faulting they are not critically stressed for frictional failure. Although some of the fractures observed in the non-producing well 45-14 are critically stressed for frictional failure, the Stillwater fault zone itself is frictionally stable. Thus, the high horizontal differential stress (i.e., S{sub Hmax}-S{sub hmin}) together with the severe misorientation of the Stillwater fault zone for normal faulting at this location appear to dominate the overall potential for fluid flow.

M. D. Zoback

1999-03-08T23:59:59.000Z

239

Computational Fluid (introduction)  

E-Print Network (OSTI)

. Construction Flow vectors and pressure distribution on an offshore oil rig Flow around cooling towers Wing-Body Interaction Hypersonic Launch Vehicle Aerodynamics Engine Cooling Polymerization reactor

240

Downhole Fluid Analyzer Development  

SciTech Connect

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Nek5000: Computational Fluid Dynamics Code | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nek5000: Computational Fluid Dynamics Code Nek5000: Computational Fluid Dynamics Code Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution between within each plate along with the more slowly varying, global distribution. The figure is significant since UNIC allows researchers to capture both of these effects simultaneously. Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution

242

Performance of a Permeable Reactive Barrier Using Granular Zero-Valent  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Performance of a Permeable Reactive Barrier Using Granular Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site Performance of a Permeable Reactive Barrier Using Granular Zero-Valent Iron: FY 2004 Annual Report Durango, Colorado, Disposal Site More Documents & Publications Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing Final Report Phase II: Performance Evaluation of Permeable Reactive Barriers and Potential for Rejuvenation by Chemical Flushing

243

The effects of viscous forces on three-phase relative permeability  

Science Conference Proceedings (OSTI)

The overall objective of Three-Phase Relative Permeability Project (BE9) is to develop guidelines for improving the accuracy of three-phase relative permeability determinations. This report summarizes previous studies and explains the progress made at NIPER on studying the effect of variations in viscous forces on three-phase relative permeabilities by changing the viscosity of both wetting and nonwetting phases. Significant changes were observed due to viscosity variations. An increase in oil viscosity reduced the relative permeability to gas; an increase in brine/(wetting-phase) viscosity reduced the relative permeability to brine. A slight increase in gas relative permeability was also observed. These observations suggest that the viscosities of both oil and water influence three-phase permeability data. During this study, data scatter was sometimes encountered which was comparable to that of published results. The causes of this scatter are outlined in this report and remedial attempts are discussed. 20 refs., 16 figs., 5 tabs.

Maloney, D.R.; Mahmood, S.M.; Honarpour, M.M.

1989-04-01T23:59:59.000Z

244

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

245

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

246

Combined seismic and hydraulic method of modeling flow in fractured low permeability rocks  

DOE Green Energy (OSTI)

Modeling flow of ground water in hard rocks where a network of fractures provides the dominant flow paths is a major problem. This paper summarizes a program of investigations currently underway in this laboratory to characterize the geometry of fractured rocks and develop methods of handling flow in such systems. Numerical models have been developed to investigate flow behavior in two- and three-dimensional fracture networks. The results demonstrate the insights that can be gained from modeling studies of fractured rocks. A key problem is gathering the necessary data on fracture geometry. Investigations have been started to determine how vertical seismic profiling (VSP) might be improved and applied to this problem. A VSP experiment in The Geysers geothermal field in northern California, where fracture orientation is known, produced shear wave splitting and velocity anisotropy in agreement with theory. The results suggest the potential application of 3-component, multi-source VSP data in determining fracture orientation and average spacing. We believe a combination of seismic and hydraulic methods can greatly enhance an understanding of fluid flow and transport in low permeability rock systems where fractures provide the dominant paths. 40 refs, 16 figs., 4 tabs.

Witherspoon, P.A.; Long, J.C.S.; Majer, E.L.; Myer, L.R.

1987-06-01T23:59:59.000Z

247

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

248

Shearing expansion-free spherical anisotropic fluid evolution  

Science Conference Proceedings (OSTI)

Spherically symmetric expansion-free distributions are systematically studied. The entire set of field equations and junction conditions are presented for a general distribution of dissipative anisotropic fluid (principal stresses unequal), and the expansion-free condition is integrated. In order to understand the physical meaning of expansion-free motion, two different definitions for the radial velocity of a fluid element are discussed. It is shown that the appearance of a cavity is inevitable in the expansion-free evolution. The nondissipative case is considered in detail, and the Skripkin model is recovered.

Herrera, L. [Escuela de Fisica, Facultad de Ciencias, Universidad Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of); Santos, N. O. [School of Mathematical Sciences, Queen Mary, University of London, London E1 4NS (United Kingdom); Laboratorio Nacional de Computacao Cientifica, 25651-070 Petropolis RJ (Brazil); Wang Anzhong [GCAP-CASPER, Department of Physics, Baylor University, Waco, Texas 76798-7316 (United States); Department of Theoretical Physics, State University of Rio de Janeiro, RJ (Brazil)

2008-10-15T23:59:59.000Z

249

Acoustic concentration of particles in fluid flow  

DOE Patents (OSTI)

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

250

It's The Fluids SEG Honorary Lecture  

E-Print Network (OSTI)

T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

251

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid  

Open Energy Info (EERE)

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Details Activities (4) Areas (4) Regions (0) Abstract: A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. Analyses are in progress on inclusions from the Salton Sea, Valles Caldera, Geysers, and Coso geothermal systems. Author(s): Mckibben, M. A.

252

Stable isotope investigation of fluids and water-rock interaction in the Roosevelt Hot Springs thermal area, Utah  

DOE Green Energy (OSTI)

Carbon-hydrogen-oxygen isotope compositions have been measured in regional cold waters, geothermal fluids, and hydrothermally altered rocks from the Roosevelt Hot Springs geothermal area. These data have been used, in conjunction with other geological and geochemical data from this geothermal system, to place some limits on the origin of geothermal fluids and reservoir carbon, the fluid recharge area, physical-chemical environment of hydrothermal alteration, and relative permeability of the geothermal system. The similarity of hydrogen isotope compositions of local meteoric water and geothermal reservoir fluid indicate that the geothermal fluids are virtually entirely of surface derivation. An isotopically reasonable source area would be the Mineral Mountains directly to the east of the Roosevelt system. Hydrothermal calcite appears to be in isotopic equilibrium with the deep reservoir fluid. The deltaC/sup 13/ values of deep calcites and T- pH-f0/sub 2/ conditions of the reservoir defined by measured temperature, fluid chemistry, and alteration mineralogy fix the delta/sup 13/C value of the geothermal system to -5 to -6.5% (PDB). These values do not unambiguously define any one source or process, however. There is a relatively small increase in /sup 18/O of geothermal fluids relative to their cold surface water precursors and significant /sup 18/O depletion accompanying hydrothermal alteration of the granitic host rock. These isotopic shifts indicate a high ratio of geothermal fluid to altered rock for the geothermal system, implying relatively rapid (geologically) recirculation rates and significant permeability of the geothermal system.

Bowman, J.R.

1979-01-01T23:59:59.000Z

253

Oxygen-permeable ceramic membranes for gas separation  

DOE Green Energy (OSTI)

Mixed-conducting oxides have a wide range of applications, including fuel cells, gas separation systems, sensors, and electrocatalytic equipment. Dense ceramic membranes made of mixed-conducting oxides are particularly attractive for gas separation and methane conversion processes. Membranes made of Sr-Fe-Co oxide, which exhibits high combined electronic and oxygen ionic conductivities, can be used to selectively transport oxygen during the partial oxidation of methane to synthesis gas (syngas, i.e., CO + H{sub 2}). The authors have fabricated tubular Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes and tested them (some for more than 1,000 h) in a methane conversion reactor that was operating at 850--950 C. An oxygen permeation flux of {approx} 10 scc/cm{sup 2} {center_dot} min was obtained at 900 C in a tubular membrane with a wall thickness of 0.75 mm. Using a gas-tight electrochemical cell, the authors have also measured the steady-state oxygen permeability of flat Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes as a function of temperature and oxygen partial pressure(pO{sub 2}). Steady-state oxygen permeability increases with increasing temperature and with the difference in pO{sub 2} on the two sides of the membrane. At 900 C, an oxygen permeability of {approx} 2.5 scc/cm{sup 2} {center_dot} min was obtained in a 2.9-mm-thick membrane. This value agrees with that obtained in methane conversion reactor experiments. Current-voltage (I-V) characteristics determined in the gas-tight cell indicate that bulk effect, rather than surface exchange effect, is the main limiting factor for oxygen permeation of {approx} 1-mm-thick Sr{sub 2}Fe{sub 2}CoO{sub 6+{delta}} membranes at elevated temperatures (> 650 C).

Balachandran, U.; Ma, B.; Maiya, P.S.; Dusek, J.T.; Mieville, R.L.; Picciolo, J.J.

1998-02-01T23:59:59.000Z

254

Characterization of Filter Cake Buildup and Cleanup under Dynamic Fluid Loss Conditions  

E-Print Network (OSTI)

Hydraulic fracturing is a popular stimulation method in tight gas and shale gas reservoirs that uses a viscous fluid to fracture the reservoir rock and uniformly transport proppant to create a highly conductive path that is kept open by the proppant after fracturing. This method is used to improve the productivity of the otherwise low permeability reservoirs. Hydraulic fracturing, though in general beneficial, is a complex process that has a number of challenges in fracturing design and execution. This research focuses on studying the damage caused by the fracturing fluid (gel) to the fracture and the conditions to remove the damage. Guar gum and its derivatives have been the most commonly used polymers to increase the viscosity of fracturing fluids. The fracturing fluid gets dehydrated under pressure leaving behind a highly concentrated unbroken residue called filter cake which causes permeability impairment in the proppant pack, resulting in low fracture conductivity and decreased effective fracture length. This study seeks to characterize filter cakes. By measuring its thickness and with the leak off volume, the concentration and yield stress of the filter cake can be estimated. The thickness of the filter cake was measured with a precise laser profilometer. Correlations are proposed to estimate filter cake properties (thickness, concentration and yield stress) based on pumping conditions (pump rate, time and net pressure) and rock properties. With these properties known, a required flow back rate of the reservoir fluid can be estimated to clean up the filter cake modeled as a non-newtonian fluid exhibiting a yield stress. Typical field conditions were referenced and scaled down in the lab to closely represent the field conditions. Recommendations are provided on gel damage based on the observation of the study.

Yango, Takwe

2011-08-01T23:59:59.000Z

255

Ultrasonic fluid quality sensor system  

SciTech Connect

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-10-08T23:59:59.000Z

256

Ultrasonic Fluid Quality Sensor System  

DOE Patents (OSTI)

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2003-10-21T23:59:59.000Z

257

The temperature dependence of lipid membrane permeability, its quantized nature, and the influence of anesthetics  

E-Print Network (OSTI)

We investigate the permeability of lipid membranes for fluorescence dyes and ions. We find that permeability reaches a maximum close to the chain melting transition of the membranes. Close to transitions, fluctuations in area and compressibility are high, leading to an increased likelihood of spontaneous lipid pore formation. Fluorescence Correlation Spectroscopy (FCS) reveals the permeability for rhodamine dyes across 100 nm vesicles. Using FCS, we find that the permeability of vesicle membranes for fluorescence dyes is within error proportional to the excess heat capacity. To estimate defect size we measure the conductance of solvent-free planar lipid bilayer. Microscopically, we show that permeation events appear as quantized current events. Further, we demonstrate that anesthetics lead to a change in membrane permeability that can be predicted from their effect on heat capacity profiles. Depending on temperature, the permeability can be enhanced or reduced. We demonstrate that anesthetics decrease channel...

Blicher, Andreas; Fidorra, Matthias; Winterhalter, Mathias; Heimburg, Thomas

2008-01-01T23:59:59.000Z

258

MOLTEN SALT HEAT TRANSFER FLUID  

thermal energy storage tanks Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point

259

Reinjection of fluids into a producing geopressured reservoir. Topical report  

DOE Green Energy (OSTI)

A reservoir simulator (MUSHRM) was employed to examine the effects of reinjecting the processed brine on the longterm performance of a representative geopressured reservoir. These calculations indicate that reinjection can be used to substantially increase methane and brine production. The results suggest that power requirements for reinjection pumps can be met by either burning approximately two-thirds of the produced methane (This may in some cases negate the benefits of reinjection as far as methane production is concerned.), or by using the heat of the produced brine (320/sup 0/F) to generate electric power. Assuming that electric power produced from hot brine is used to reinject the processed fluids, it appears that reinjection is a viable production strategy for increasing methane recovery from some geopressured systems. The attractiveness of reinjection to recover methane increases with increasing formation permeability, and decreasing formation compressibility.

Not Available

1979-10-01T23:59:59.000Z

260

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Variational formulations for resting irreversible fluids with heat flow  

Science Conference Proceedings (OSTI)

Nonequilibrium statistical mechanics helps to estimate corrections to the entropy and energy of the fluid with heat flux in terms of the nonequilibrium distribution function, f. This leads to the coefficients of wave model of heat: relaxation ... Keywords: conservation laws, entropy, grad solution, variational calculus, wave equations

Stanislaw Sieniutycz; Piotr Kuran

2008-09-01T23:59:59.000Z

262

A New Coal-Permeability Model: Internal Swelling Stress and Fracture–Matrix Interaction  

E-Print Network (OSTI)

L. : Adsorption-induced coal swelling and stress:acid gas sequestration into coal seams. J Geophys. Res. (fracturing on permeability of coal. Min. Sci. Technol. 3,

Liu, Hui-Hai; Rutqvist, Jonny

2010-01-01T23:59:59.000Z

263

Measuring the permeability of Eleana argillite from area 17, Nevada Test Site, using the transient method  

SciTech Connect

Using the transient method, we determine the permeability of high-quartz Eleana argillite from the Nevada Test Site as a function of effective pressure. By comparing calculated and observed pressure decay in the upstream reservoir, we have determined the permeability of intact and fractured specimens at effective pressures ranging from 1.0 to 24.0 MPa. Over this pressure range, Eleana argillite has a low permeability (10{sup -16} to 10{sup -19} cm{sup 2}) when intact and a higher permeability (10{sup -12} to 10{sup -17} cm{sup 2}) with one induced through-going fracture.

Lin, W.

1978-12-11T23:59:59.000Z

264

Influence of coal quality factors on seam permeability associated with coalbed methane production.  

E-Print Network (OSTI)

??Cleats are natural fractures in coal that serve as permeability avenues for darcy flow of gas and water to the well bore during production. Theoretically,… (more)

Wang, Xingjin

2007-01-01T23:59:59.000Z

265

A study into the permeability and compressibility of Australian bagasse pulp.  

E-Print Network (OSTI)

??This is an experimental study into the permeability and compressibility properties of bagasse pulp pads. Three experimental rigs were custom-built for this project. The experimental… (more)

Rainey, Thomas James

2009-01-01T23:59:59.000Z

266

Fluid flow modeling of resin transfer molding for composite material wind turbine blade structures.  

SciTech Connect

Resin transfer molding (RTM) is a closed mold process for making composite materials. It has the potential to produce parts more cost effectively than hand lay-up or other methods. However, fluid flow tends to be unpredictable and parts the size of a wind turbine blade are difficult to engineer without some predictive method for resin flow. There were five goals of this study. The first was to determine permeabilities for three fabrics commonly used for RTM over a useful range of fiber volume fractions. Next, relations to estimate permeabilities in mixed fabric lay-ups were evaluated. Flow in blade substructures was analyzed and compared to predictions. Flow in a full-scale blade was predicted and substructure results were used to validate the accuracy of a full-scale blade prediction.

Cairns, Douglas S. (Montana State University, Bozeman, MT); Rossel, Scott M. (Montana State University, Bozeman, MT)

2004-06-01T23:59:59.000Z

267

J . Fluid Mech. (1990),vol. 213, pp. 54S571 Printed in Great Britain  

E-Print Network (OSTI)

the modified dynamics, (1.4) %l-+5*Vq = 0, at #12;Stable states of inviscid fluids 551 also conserves q on all particles. If the 8 can be chosen at each moment in such a way that the total energy of the fluid must a smoothly distributed, randomly generated vorticity field. 4.1. Energy minimization :Kelvin's sponge Kelvin

Vallis, Geoff

268

Transdisciplinary Fluid Integration Research Center  

E-Print Network (OSTI)

Environment Reality-Coupled Computation Energy Dynamics Integrated Visual Informatics Super-Real-Time Medical of Fluid Science, Tohoku University, in April 2003. The next generation transdisciplinary research Research focus is to advance utilization of Computer Fluid Dynamics (CFD) for solving engineering problems

Obayashi, Shigeru

269

Fracturing fluids -- then and now  

Science Conference Proceedings (OSTI)

Fracturing fluid provides the means by which the hydraulic fracturing process can take place. All applications of well stimulation by fracturing must include selection of fracturing fluid in the initial phases of fracture design and treatment planning. Fracturing fluid has two important purposes: (1) to provide sufficient viscosity to suspend and transport proppant deep into the created fracture system and (2) to decompose, or break, chemically to a low viscosity to allow flowback of a major part of the fluid to the surface for fracture cleanup after the treatment is completed. Because of the importance of its rheological properties and behavior in the fracture under reservoir conditions during (and immediately after) the treatment, service company research laboratories have spent millions of dollars on R and D of fracturing fluids.

Jennings, A.R. Jr. [Enhanced Well Stimulation Inc., Plano, TX (United States)

1996-07-01T23:59:59.000Z

270

Multiscale framework for predicting the coupling between deformation and fluid diffusion in porous rocks  

SciTech Connect

In this project, a predictive multiscale framework will be developed to simulate the strong coupling between solid deformations and fluid diffusion in porous rocks. We intend to improve macroscale modeling by incorporating fundamental physical modeling at the microscale in a computationally efficient way. This is an essential step toward further developments in multiphysics modeling, linking hydraulic, thermal, chemical, and geomechanical processes. This research will focus on areas where severe deformations are observed, such as deformation bands, where classical phenomenology breaks down. Multiscale geometric complexities and key geomechanical and hydraulic attributes of deformation bands (e.g., grain sliding and crushing, and pore collapse, causing interstitial fluid expulsion under saturated conditions), can significantly affect the constitutive response of the skeleton and the intrinsic permeability. Discrete mechanics (DEM) and the lattice Boltzmann method (LBM) will be used to probe the microstructure---under the current state---to extract the evolution of macroscopic constitutive parameters and the permeability tensor. These evolving macroscopic constitutive parameters are then directly used in continuum scale predictions using the finite element method (FEM) accounting for the coupled solid deformation and fluid diffusion. A particularly valuable aspect of this research is the thorough quantitative verification and validation program at different scales. The multiscale homogenization framework will be validated using X-ray computed tomography and 3D digital image correlation in situ at the Advanced Photon Source in Argonne National Laboratories. Also, the hierarchical computations at the specimen level will be validated using the aforementioned techniques in samples of sandstone undergoing deformation bands.

Josà © E. Andrade; John W. Rudnicki

2012-12-14T23:59:59.000Z

271

Static spherically symmetric perfect fluid solutions in $f(R)$ theories of gravity  

E-Print Network (OSTI)

Static spherically symmetric perfect fluid solutions are studied in metric $f(R)$ theories of gravity. We show that pressure and density do not uniquely determine $f(R)$ ie. given a matter distribution and an equation state, one cannot determine the functional form of $f(R)$. However, we also show that matching the outside Schwarzschild-de Sitter-metric to the metric inside the mass distribution leads to additional constraints that severely limit the allowed fluid configurations.

T. Multamaki; I. Vilja

2006-12-29T23:59:59.000Z

272

Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT  

NLE Websites -- All DOE Office Websites (Extended Search)

Irrigating with Treated Oil and Gas Product Irrigating with Treated Oil and Gas Product Water on Crop Biomass and Soil Permeability FINAL TECHNICAL REPORT Prepared By Terry Brown, Jeffrey Morris, Patrick Richards and Joel Mason Western Research Institute October 1, 2008 to September 1, 2010 DOE Award Number: DE-NT0005681 Report Issued December, 2010 Western Research Institute 365 N 9 th Street Laramie WY 82072 ii DOE DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,

273

Natural convection in a vertical enclosure with internal permeable screen  

SciTech Connect

This paper documents the thermal insulation effect of a screen installed inside a vertical rectangular enclosure (e.g., double-glazed window). The screen is a venetian blind system made out of horizontal strips that can be rotated. The focus is on the closed position, where the strips almost touch. The effect of this permeable screen on the temperature field, the flow field, and the overall heat transfer rate is determined numerically. The study shows that there exists a ceiling (critical) conductance for the air leakage through the screen, above which the screen does not cause a significant drop in the overall heat transfer rate. A numerical example shows how this critical conductance can be used to calculate the critical spacing that can be tolerated between two consecutive strips in the screen.

Zhang, Z.; Bejan, A.; Lage, J.L. (Duke Univ., Durham, NC (USA))

1991-05-01T23:59:59.000Z

274

Effective Permeability Change in Wellbore Cement with Carbon Dioxide Reaction  

Science Conference Proceedings (OSTI)

Portland cement, a common sealing material for wellbores for geological carbon sequestration was reacted with CO{sub 2} in supercritical, gaseous, and aqueous phases at various pressure and temperature conditions to simulate cement-CO{sub 2} reaction along the wellbore from carbon injection depth to the near-surface. Hydrated Portland cement columns (14 mm diameter x 90 mm length; water-to-cement ratio = 0.33) including additives such as steel coupons and Wallula basalt fragments were reacted with CO{sub 2} in the wet supercritical (the top half) and dissolved (the bottom half) phases under carbon sequestration condition with high pressure (10 MPa) and temperature (50 C) for 5 months, while small-sized hydrated Portland cement columns (7 mm diameter x 20 mm length; water-to-cement ratio = 0.38) were reacted with CO{sub 2} in dissolved phase at high pressure (10 MPa) and temperature (50 C) for 1 month or with wet CO{sub 2} in gaseous phase at low pressure (0.2 MPa) and temperature (20 C) for 3 months. XMT images reveal that the cement reacted with CO{sub 2} saturated groundwater had degradation depth of {approx}1 mm for 1 month and {approx}3.5 mm for 5 month, whereas the degradation was minor with cement exposure to supercritical CO{sub 2}. SEM-EDS analysis showed that the carbonated cement was comprised of three distinct zones; the innermost less degraded zone with Ca atom % > C atom %, the inner degraded zone with Ca atom % {approx} C atom % due to precipitation of calcite, the outer degraded zone with C atom % > Ca atom % due to dissolution of calcite and C-S-H, as well as adsorption of carbon to cement matrix. The outer degraded zone of carbonated cement was porous and fractured because of dissolution-dominated reaction by carbonic acid exposure, which resulted in the increase in BJH pore volume and BET surface area. In contrast, cement-wet CO{sub 2}(g) reaction at low P (0.2 MPa)-T (20 C) conditions for 1 to 3 months was dominated by precipitation of micron-sized calcite on the outside surface of cement, which resulted in the decrease in BJH pore volume and BET surface area. Cement carbonation and pore structure change are significantly dependent on pressure and temperature conditions as well as the phase of CO{sub 2}, which controls the balance between precipitation and dissolution in cement matrix. Geochemical modeling result suggests that ratio of solid (cement)-to-solution (carbonated water) has a significant effect on cement carbonation, thus the cement-CO{sub 2} reaction experiment needs to be conducted under realistic conditions representing the in-situ wellbore environment of carbon sequestration field site. Total porosity and air permeability for a duplicate cement column with water-to-cement ratio of 0.38 measured after oven-drying by Core Laboratories using Boyle's Law technique and steady-state method were 31% and 0.576 mD. A novel method to measure the effective liquid permeability of a cement column using X-ray micro-tomography images after injection of pressurized KI (potassium iodide) is under development by PNNL. Preliminary results indicate the permeability of a cement column with water-to-cement ratio of 0.38 is 4-8 mD. PNNL will apply the method to understand the effective permeability change of Portland cement by CO{sub 2}(g) reaction under a variety of pressure and temperature conditions to develop a more reliable well-bore leakage risk model.

Um, Wooyong; Jung, Hun Bok; Martin, Paul F.; McGrail, B. Peter

2011-11-01T23:59:59.000Z

275

In-situ remediation of naturally occurring radioactive materials with high-permeability hydraulic fracturing  

E-Print Network (OSTI)

This thesis addresses the problem of removal of Naturally Occurring Radioactive Materials, NORM, and describes an effective alternative to the current treatment method for their removal. High-pen-meability fracturing, recently established in the petroleum industry, is the recommended technique. NORM are found throughout subterranean formations. Whenever fluids from petroleum or water reservoirs are produced NORM are present in varying quantities. NORM can only be sensed with radiation detectors. However, they have proven carcinogens, and the US Environmental Protection Agency has set a limit on the maximum contaminated level of any stream. Until now, the preferred method of treatment was to remove NORM from contaminated waters with specially designed filters, which in turn create a new problem. The same filters that are used to treat the water themselves become highly radioactive with a considerable disposal problem. In the petroleum industry, NORM become concentrated in the scale that is deposited inside the well or surface pipes. When scale is removed, it can be so radioactive that it can only be stored in toxic sites. Additionally, as water is produced along with oil, so are NORM. Until now, for the Gulf of Mexico at least, produced water has been released into the ocean, but the Environmental Protection Agency (EPA) is threatening to change this. In the North Sea the regulations are already stricter. There is then a compelling motivation to remove NORM before they are produced, and thus, eliminate the disposal problem. A high-permeability fracture design is presented which modifies existing petroleum practices by introducing within the proppant pack highly selective radionuclide sorbents. These sorbents, at calculated concentrations, can remove NORM readily for several years from typical flow rates containing typical NORM concentrations.

Demarchos, Andronikos Stavros

1998-01-01T23:59:59.000Z

276

Effects of phase transformation of steam-water relative permeabilities  

DOE Green Energy (OSTI)

A combined theoretical and experimental study of steam-water relative permeabilities (RPs) was carried out. First, an experimental study of two-phase concurrent flow of steam and water was conducted and a set of RP curves was obtained. These curves were compared with semi-empirical and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase RPs were in good agreement, RPs for the steam phase were considerably higher than the non-wetting phase RPs in two-component systems. This enhancement of steam RP is attributed to phase transformation effects at the pore level in flow channels. The effects of phase transformation were studied theoretically. This study indicates that there are two separate mechanisms by which phase transformation affects RP curves: (1) Phase transformation is converging-diverging flow channels can cause an enhancement of steam phase RP. In a channel dominated by steam a fraction of the flowing steam condenses upstream from the constriction, depositing its latent heat of condensation. This heat is conducted through the solid grains around the pore throat, and evaporation takes place downstream from it. Therefore, for a given bulk flow quality; a smaller fraction of steam actually flows through the throat segments. This pore-level effect manifests itself as relative permeability enhancement on a macroscopic level; and (2) phase transformation along the interface of a stagnant phase and the phase flowing around it controls the irreducible phase saturation. Therefore, the irreducible phase saturation in steam-water flow will depend, among other factors, on the boundary conditions of the flow.

Verma, A.K.

1986-03-01T23:59:59.000Z

277

Porosity and permeability of eastern Devonian gas shale  

Science Conference Proceedings (OSTI)

High-precision core analysis has been performed on eight samples of Devonian gas shale from the Appalachian Basin. Seven of the core samples consist of the Upper Devonian age Huron Member of the Ohio Shale, six of which came from wells in the Ohio River valley, and the seventh from a well in east-central Kentucky. The eighth core sample consists of Middle Devonian age Marcellus Shale obtained from a well in Morgantown, West Virginia. The core analysis was originally intended to supply accurate input data for Devonian shale numerical reservoir simulation. Unexpectedly, the results have also shown that there are a number of previously unknown factors which influence or control gas production from organic-rich shales of the Appalachian Basin. The presence of petroleum as a mobile liquid phase in the pores of all seven Huron Shale samples effectively limits the gas porosity of this formation to less than 0.2%, and permeability of the rock matrix to gas is less than 0.1 microdarcy at reservoir stress. The Marcellus Shale core, on the other hand, was free of a mobile liquid phase and had a measured gas porosity of approximately 10% under stress with a fairly strong ''adsorption'' component. Permeability to gas (K/sub infinity/ was highly stress-dependent, ranging from about 20 microdarcies at a net stress of 3000 psi down to about 5 microdarcies at a net stress of 6000 psi. The conclusion reached from this study is that Devonian shale in the Appalachian Basin is a considerably more complex natural gas resource than previously thought. Production potential varies widely with geographic location and stratigraphy, just as it does with other gas and oil resources. 15 refs., 8 figs., 3 tabs.

Soeder, D.J.

1986-01-01T23:59:59.000Z

278

Equitable distribution  

Science Conference Proceedings (OSTI)

The problem of distributing available resources occurs in a great variety of networks, each with peculiarities of its own. Coal from mines has to be distributed to central dumps and to small yards. Ice cream must be distributed only to refrigerated stores ...

John A. Gosden

1963-05-01T23:59:59.000Z

279

Fluid flow monitoring device  

DOE Patents (OSTI)

This invention consists of a flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, M.D.; Sweeney, C.E.

1991-03-05T23:59:59.000Z

280

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

282

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to be decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank. 4 figs.

Houck, E.D.

1994-10-11T23:59:59.000Z

283

Tracing Geothermal Fluids  

DOE Green Energy (OSTI)

Geothermal water must be injected back into the reservoir after it has been used for power production. Injection is critical in maximizing the power production and lifetime of the reservoir. To use injectate effectively the direction and velocity of the injected water must be known or inferred. This information can be obtained by using chemical tracers to track the subsurface flow paths of the injected fluid. Tracers are chemical compounds that are added to the water as it is injected back into the reservoir. The hot production water is monitored for the presence of this tracer using the most sensitive analytic methods that are economically feasible. The amount and concentration pattern of the tracer revealed by this monitoring can be used to evaluate how effective the injection strategy is. However, the tracers must have properties that suite the environment that they will be used in. This requires careful consideration and testing of the tracer properties. In previous and parallel investigations we have developed tracers that are suitable from tracing liquid water. In this investigation, we developed tracers that can be used for steam and mixed water/steam environments. This work will improve the efficiency of injection management in geothermal fields, lowering the cost of energy production and increasing the power output of these systems.

Michael C. Adams; Greg Nash

2004-03-01T23:59:59.000Z

284

Pumping test and fluid sampling report, Mansfield No. 1 well, Palo Duro Basin: Report of the Geologic Project Manager, Permian Basin  

SciTech Connect

This report describes pumping test and fluid sampling activities performed at the Mansfield No. 1 well in Oldham County about 10 miles north of Vega, Texas. The well site was selected by TBEG and is located along the northern margin of the Palo Duro Basin in an area of active dissolution with the Permian salt sections. The objectives of the pumping test and fluid sampling program were to collect data to determine the hydrologic characteristics (formation pressure and permeability) of deep water bearing formations, and to obtain formation fluid samples for analyses (gas and fluid chemistry) in order to evaluate fluid migration and age relationships in the Permian Basin. 4 refs., 8 figs., 2 tabs.

Not Available

1983-07-01T23:59:59.000Z

285

Particle sorter comprising a fluid displacer in a closed-loop fluid circuit  

SciTech Connect

Disclosed herein are methods and devices utilizing a fluid displacer in a closed-loop fluid circuit.

Perroud, Thomas D. (San Jose, CA); Patel, Kamlesh D. (Dublin, CA); Renzi, Ronald F. (Tracy, CA)

2012-04-24T23:59:59.000Z

286

On saturation-strip model of a permeable crack in a piezoelectric ceramic  

E-Print Network (OSTI)

, h0, in the analysis of electrical and mechanical fields in the vicinity of a permeable crack tip under both mechanical as well electrical loads. Both local and global energy release rates. This permeable saturation crack model reveals that there exists a possible leaky mode for electrical field, which

Li, Shaofan

287

The Effect of Temperature on the Absolute Permeability to Distilled Water of Unconsolidated Sand Cores  

SciTech Connect

The work presented herein is a study of the effect of temperature on the absolute permeability to distilled water of unconsolidated sandstones at one confining pressure. The absolute permeability to distilled water of Ottawa silica sand was not dependent on the temperature level.

Sageev, A.; Gobran, B.D.; Brigham, W.E.; Ramey, H.J. Jr.

1980-12-16T23:59:59.000Z

288

How Permeability Depends on Stress and Pore Pressure in Coalbeds: A New Model  

E-Print Network (OSTI)

, permeability is sensitive to changes in stress or pore pressure (i.e., changes in effective stress). This paper presents a new theoretical model for calculating pore volume (PV) compressibility and permeability in coals changes as pressure is decreased (i.e., draw- down). PV compressibility is derived in this theory from

289

SURFACE-ALTERED ZEOLITES AS PERMEABLE BARRIERS FOR IN SITU TREATMENT OF CONTAMINATED GROUNDWATER  

Science Conference Proceedings (OSTI)

The overall objective of this effort is to develop and test a zeolite-based permeable barrier system for containing and remediating contaminated groundwater. The projected product is an engineered and tested permeable barrier system that can be adopted by the commercial sector.

Robert S. Bowman; Zhaohui Li; Stephen J. Roy; Todd Burt; Timothy L. Johnson; Richard L. Johnson

1999-08-30T23:59:59.000Z

290

Fractal characterization of seepage-pores of coals from China: An investigation on permeability of coals  

Science Conference Proceedings (OSTI)

To better understand the characteristics of seepage-pores (pore radius larger than 100 nanometers) and their influence on the permeability of coals, we have conducted fractal analyses for 34 fresh coal samples (mean maximum vitrinite reflectance R"o","m"a"x ... Keywords: Coal rank, Coalbed methane (CBM), Fractal characterization, Mercury porosimetry, Permeability

Yanbin Yao; Dameng Liu; Dazhen Tang; Shuheng Tang; Wenhui Huang; Zhihua Liu; Yao Che

2009-06-01T23:59:59.000Z

291

Mapping permeability over the surface of the Earth Tom Gleeson,1  

E-Print Network (OSTI)

, surface water and climate [York et al., 2002; Liang and Xie, 2003; Yeh and Eltahir, 2005; Fan et al., 2007 poorly quantified component in the analysis of regional scale water fluxes. Permeability is difficult picture of near surface permeability and will be of particular value for evaluating global water resources

Jellinek, Mark

292

Evolving neural network using real coded genetic algorithm for permeability estimation of the reservoir  

Science Conference Proceedings (OSTI)

In this work we investigate how artificial neural network (ANN) evolution with genetic algorithm (GA) improves the reliability and predictability of artificial neural network. This strategy is applied to predict permeability of Mansuri Bangestan reservoir ... Keywords: Back propagation, Genetic algorithm, Neural network, Permeability, Reservoir, Well log data

Rasoul Irani; Reza Nasimi

2011-08-01T23:59:59.000Z

293

CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS  

E-Print Network (OSTI)

c c c i i c I CALCULATION AND USE OF STEAM/WATER RELATIVE PERMEABILITIES IN GEOTHERMAL RESERVOIRS to calculate the steam/water relative permeabilities in geothermal reservoirs was developed and applied. . . . . . . . . . . . . . . . . . . . . . . 1 PRZVIOUS PIETHODS OF CALCLXATING STEAM/TtJATER RELATIVE PERPlEX3ILITIES IN GEOTHE?XAL XZSERVOIFG

Stanford University

294

Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression  

Science Conference Proceedings (OSTI)

This paper presents a new approach, based on evolutionary polynomial regression (EPR), for prediction of permeability (K), maximum dry density (MDD), and optimum moisture content (OMC) as functions of some physical properties of soil. EPR is a data-driven ... Keywords: Data mining, Evolutionary computing, Maximum dry density, Optimum moisture content, Permeability

A. Ahangar-Asr; A. Faramarzi; N. Mottaghifard; A. A. Javadi

2011-11-01T23:59:59.000Z

295

Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading  

E-Print Network (OSTI)

Permeability of illite-bearing shale: 1. Anisotropy and effects of clay content and loading-rich shale recovered from the Wilcox formation and saturated with 1 M NaCl solution varies from 3 Ã? 10Ã?22 transport; KEYWORDS: permeability, shale, connected pore space Citation: Kwon, O., A. K. Kronenberg, A. F

Herbert, Bruce

296

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

297

Enhancement of steam phase relative permeability due to phase transformation effects in porous media  

SciTech Connect

An experimental study of two-phase concurrent flow of steam and water was conducted and a set of relative permeability curves was obtained. These curves were compared with semi-empirical results and experimental results obtained by other investigators for two-phase, two-component flow (oil/gas; gas/water; gas/oil). It was found that while the wetting phase relative permeabilities were in good agreement, the relative permeability for the steam phase was considerably higher than the relative permeabilities of non-wetting phase (oil/water and non-condensing gas in gas/oil or gas/water) in two-component systems. This enhancement of steam relative permeability is attributed to phase transformation effects at the pore level in flow channels.

Verma, A.; Pruess, K.

1986-01-01T23:59:59.000Z

298

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada,  

Open Energy Info (EERE)

Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Fracture Permeability and In Situ Stress in the Dixie Valley, Nevada, Geothermal Reservoir Abstract Borehole televiewer, temperature and flowmeter logs and hydraulic fracturing stress measurements conducted in six wells penetrating a geothermal reservoir associated with the Stillwater fault zone in Dixie Valley, Nevada, were used to investigate the relationship between reservoir permeability and the contemporary in situ stress field. Data from wells drilled into productive and nonproductive segments of the Stillwater fault zone indicate that permeability in all wells is dominated by a relatively

299

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

Rüdiger Franke; et al.

2009-01-01T23:59:59.000Z

300

Isotopic Analysis- Fluid | Open Energy Information  

Open Energy Info (EERE)

Isotopic Analysis- Fluid Isotopic Analysis- Fluid Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Isotopic Analysis- Fluid Details Activities (61) Areas (32) Regions (6) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Water rock interaction Stratigraphic/Structural: Hydrological: Origin of hydrothermal fluids; Mixing of hydrothermal fluids Thermal: Isotopic ratios can be used to characterize and locate subsurface thermal anomalies. Dictionary.png Isotopic Analysis- Fluid: Isotopes are atoms of the same element that have different numbers of neutrons. An isotopic analysis looks at a particular isotopic element(s) in

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Downhole Fluid Sampling | Open Energy Information  

Open Energy Info (EERE)

Downhole Fluid Sampling Downhole Fluid Sampling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Fluid Sampling Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Well Testing Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Water composition and source of fluids. Gas composition and source of fluids. Thermal: Water temperature. Distinguish magmatic/mantle heat inputs. Can be used to estimate reservoir fluid temperatures. Dictionary.png Downhole Fluid Sampling: Downhole fluid sampling is done to characterize the chemical, thermal, or hydrological properties of a surface or subsurface aqueous system. Downhole

302

Intelligent Fluid Infrastructure for Embedded Networking  

E-Print Network (OSTI)

mobile element into the networking infrastructure.Our fluid infrastructure design saves significant energy inIntelligent Fluid Infrastructure for Embedded Networks Aman

Kansal, Aman; Somasundara, Arun; Jea, David C; Srivastava, Mani B; Estrin, D

2004-01-01T23:59:59.000Z

303

Intelligent Fluid Infrastructure for Embedded Networks  

E-Print Network (OSTI)

Intelligent Fluid Infrastructure for Embedded Networks Amanto develop a fluid infrastructure: mobile components arebuilt into the system infrastructure for enabling specific

Aman Kansal; Arun Somasundara; David Jea; Mani Srivastava; Deborah Estrin

2004-01-01T23:59:59.000Z

304

Fluid Imaging | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Fluid Imaging Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Fluid Imaging 2 Geothermal ARRA Funded Projects for Fluid Imaging Geothermal Lab Call Projects for Fluid Imaging Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":14,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

305

Nonlinear Fluid Dynamics from Gravity  

E-Print Network (OSTI)

Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.

Sayantani Bhattacharyya; Veronika E Hubeny; Shiraz Minwalla; Mukund Rangamani

2007-12-14T23:59:59.000Z

306

Visually simulating realistic fluid motion  

E-Print Network (OSTI)

In this thesis we investigate various methods for visually simulating fluid flow. The focus is on implementing effective fluid simulation within an interactive animation system. Two implementations have been developed based on derivations and simplifications of the Navier-Stokes' equations. The first implementation is the most accurate and follows the physics of fluid dynamics more closely. However, the high computation times incurred by this implementation make it inappropriate as an interactive method. The second approach is not as accurate as the first one, however it incurs lower computation times. This second method is only able to model a subset of the total fluid behavior. The second method has been integrated into an interactive modeling and animation environment. Several examples are included.

Naithani, Priyanka

2002-01-01T23:59:59.000Z

307

Deferring trust in fluid replication  

Science Conference Proceedings (OSTI)

Mobile nodes rely on external services to provide safety, sharing, and additional resources. Unfortunately, as mobile nodes move through the networking infrastructure, the costs of accessing servers change. Fluid replication allows mobile clients to ...

Brian D. Noble; Ben Fleis; Landon P. Cox

2000-09-01T23:59:59.000Z

308

Bio-inspired fluid locomotion  

E-Print Network (OSTI)

We have developed several novel methods of locomotion at low Reynolds number, for both Newtonian and non-Newtonian fluids: Robosnails 1 and 2, which operate on a lubrication layer, and the three-link swimmer which moves ...

Chan, Brian, 1980-

2009-01-01T23:59:59.000Z

309

A new method for determining fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a popular method for increasing the productivity of oil and gas wells, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction a fracture has propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells. Determining the locations and orientations of permeable fractures is also important in studies of potential toxic waste repositories where it is critical to understand fluid flow paths. We have developed a method for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. By applying a pattern recognition technique to the locations of events from one hydraulic fracturing operation we find planes in the data along which we presume that the fluid has traveled. The planes determined using our method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

310

Determination of the effect of formation water on fracture-fluid cleanup  

SciTech Connect

Understanding hydraulic-fracture cleanup is essential for improving well stimulation. Residual gel damages fracture conductivity, shortens effective fracture half-length, and limits well productivity. The drive to develop fluids, additives, and procedures that minimize this damage continues to be a dominant theme in fracture-fluid-development programs. Fracture cleanup is a complex problem, and many parameters (e.g., fluid system, job design, flowback procedure, and reservoir conditions) can influence polymer and fluid recovery efficiencies. Often, specific products and methods that work well in one reservoir have little effect in another. Systematic analysis of fluid and polymer returns after a treatment is completed is the only way to quantify fracture cleanup. This is referred to as flowback analysis. This paper discusses a flowback-analysis field study on large hydraulic-fracturing treatments in the Taylor zone of the Cotton Valley formation in east Texas. This is a low-permeability (approximately 0.01 md) tight gas formation. It is a heterogeneous zone with layers of productive sandstone interspersed with relatively impermeable layers of shale. A typical well in this field initially produces approximately 0.75 to 1.3 MMcf/D gas and 35 to 40 bbl of water/MMcf of gas. The returns from 10 wells in this field were analyzed thoroughly.

NONE

1998-03-01T23:59:59.000Z

311

Measurements of the bulk and interfacial velocity profiles in oscillating Newtonian and Maxwellian fluids  

E-Print Network (OSTI)

We present the dynamic velocity profiles of a Newtonian fluid (glycerol) and a viscoelastic Maxwell fluid (CPyCl/NaSal in water) driven by an oscillating pressure gradient in a vertical cylindrical pipe. The frequency range explored has been chosen to include the first three resonance peaks of the dynamic permeability of the viscoelastic fluid / pipe system. Three different optical measurement techniques have been employed. Laser Doppler Anemometry has been used to measure the magnitude of the velocity at the centre of the liquid column. Particle Image Velocimetry and Optical Deflectometry are used to determine the velocity profiles at the bulk of the liquid column and at the liquid--air interface respectively. The velocity measurements in the bulk are in good agreement with the theoretical predictions of a linear theory. The results, however, show dramatic differences in the dynamic behaviour of Newtonian and viscoelastic fluids, and demonstrate the importance of resonance phenomena in viscoelastic fluid flows, biofluids in particular, in confined geometries.

M. Torralba; J. R. Castrejon-Pita; A. A. Castrejon-Pita; G. Huelsz; J. A. del Rio; J. Ortin

2005-05-10T23:59:59.000Z

312

Distribution Workshop  

Energy.gov (U.S. Department of Energy (DOE))

On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

313

Final Report- Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support  

Energy.gov (U.S. Department of Energy (DOE))

Final Report - Rejuvenating Permeable Reactive Barriers by Chemical Flushing, U.S. Environmental Protection Agency Region 8 Support

314

Shielded fluid stream injector for particle bed reactor  

DOE Patents (OSTI)

A shielded fluid-stream injector assembly is provided for particle bed reactors. The assembly includes a perforated pipe injector disposed across the particle bed region of the reactor and an inverted V-shaped shield placed over the pipe, overlapping it to prevent descending particles from coming into direct contact with the pipe. The pipe and shield are fixedly secured at one end to the reactor wall and slidably secured at the other end to compensate for thermal expansion. An axially extending housing aligned with the pipe and outside the reactor and an inline reamer are provided for removing deposits from the inside of the pipe. The assembly enables fluid streams to be injected and distributed uniformly into the particle bed with minimized clogging of injector ports. The same design may also be used for extraction of fluid streams from particle bed reactors.

Notestein, J.E.

1991-12-31T23:59:59.000Z

315

High-permeability fracturing: The evolution of a technology  

SciTech Connect

Since its introduction almost 50 years ago, hydraulic fracturing has been the prime engineering tool for improving well productivity either by bypassing near-wellbore damage or by actually stimulating performance. Historically (and in many instances erroneously), the emphasis for propped fracturing was on fracture length, culminating in massive treatments for tight-gas sands with several million pounds of proppant and design lengths in excess of 1,500 ft. More recently, the importance of fracture conductivity has become appreciated. This paper uses field examples to trace the history, development, and application of TSO fracturing to high-permeability formations, including fracturing to increase PI, as well as applications aimed at improving completions in unconsolidated sands. Potential applications of fracturing to bypass the need for sand control are explored. Finally, the use of fracturing as a reservoir-management tool is examined through use of a propped fracture to alter the vertical flow profile of a well to maximize reserves. This particular use of fracturing leads to cases where careful design of both fracture length and conductivity is required; i.e., too much conductivity is as damaging to reservoir management as too little.

Smith, M.B.; Hannah, R.R.

1996-07-01T23:59:59.000Z

316

Creating permeable fracture networks for EGS: Engineered systems versus nature  

DOE Green Energy (OSTI)

The United States Department of Energy has set long-term national goals for the development of geothermal energy that are significantly accelerated compared to historical development of the resource. To achieve these goals, it is crucial to evaluate the performance of previous and existing efforts to create enhanced geothermal systems (EGS). Two recently developed EGS sites are evaluated from the standpoint of geomechanics. These sites have been established in significantly different tectonic regimes: 1. compressional Cooper Basin (Australia), and 2. extensional Soultz-sous-Fôrets (France). Mohr-Coulomb analyses of the stimulation procedures employed at these sites, coupled with borehole observations, indicate that pre-existing fractures play a significant role in the generation of permeability networks. While pre-existing fabric can be exploited to produce successful results for geothermal energy development, such fracture networks may not be omnipresent. For mostly undeformed reservoirs, it may be necessary to create new fractures using processes that merge existing technologies or use concepts borrowed from natural hydrofracture examples (e.g. dyke swarms).

Stephen L Karner

2005-10-01T23:59:59.000Z

317

Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water  

DOE R&D Accomplishments (OSTI)

The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.

Poston, S. W.

1991-00-00T23:59:59.000Z

318

Noise modeling from high-permeability shields using Kirchhoff equations  

SciTech Connect

Progress in the development of high-sensitivity magnetic-field measurements has stimulated interest in understanding magnetic noise of conductive materials, especially of magnetic shields (DC or rf) based on high-permeability materials and/or high-conductivity materials. For example, SQUIDs and atomic magnetometers have been used in many experiments with mu-metal shields, and additionally SQUID systems frequently have rf shielding based on thin conductive materials. Typical existing approaches to modeling noise only work with simple shield and sensor geometries while common experimental setups today consist of multiple sensor systems arbitrary shapes and complex shield geometries. With complex sensor arrays used in, for example, MEG and Ultra Low Field MRI studies the knowledge of the noise correlation between sensors is as important as the knowledge of the noise itself. This is crucial for incorporating efficient noise cancelation schemes for the system. We developed an approach that allows us to calculate the Johnson noise for any geometrically shaped shield and multiple sensor systems. The approach uses a fraction of the processing power of other approaches and with a multiple sensor system our approach not only calculates the noise for each sensor but it also calculates the noise correlation matrix between sensors. Here we will show the algorithm and examples where it can be implemented.

Sandin, Henrik J [Los Alamos National Laboratory; Volegov, Petr L [Los Alamos National Laboratory; Espy, Michelle A [Los Alamos National Laboratory; Matlashov, Andrei N [Los Alamos National Laboratory; Savukov, Igor M [Los Alamos National Laboratory; Schultz, Larry J [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

319

Hydrogen Permeability of Mulitphase V-Ti-Ni Metallic Membranes  

DOE Green Energy (OSTI)

Development of advanced hydrogen separation membranes in support of hydrogen production processes such as coal gasification and as front end gas purifiers for fuel cell based system is paramount to the successful implementation of a national hydrogen economy. Current generation metallic hydrogen separation membranes are based on Pd-alloys. Although the technology has proven successful, at issue is the high cost of palladium. Evaluation of non-noble metal based dense metallic separation membranes is currently receiving national and international attention. The focal point of the reported work was to evaluate a Group 5A-Ta, Nb, V-based alloy with respect to microstructural features and hydrogen permeability. Electrochemical hydrogen permeation testing of the V-Ti-Ni alloy is reported herein and compared to pure Pd measurements recorded as part of this same study. The V-Ti-Ni was demonstrated to have a steady state hydrogen permeation rate an order of magnitude higher than the pure Pd material in testing conducted at 22 C.

Adams, T. M.; Mickalonis, J.

2005-10-18T23:59:59.000Z

320

Using toughreact to model reactive fluid flow and geochemical transport in hydrothermal systems  

DOE Green Energy (OSTI)

The interaction between hydrothermal fluids and the rocks through which they migrate alters the earlier formed primary minerals and leads to the formation of secondary minerals, resulting in changes in the physical and chemical properties of the system. We have developed a comprehensive numerical simulator, TOUGHREACT, which considers nonisothermal multi-component chemical transport in both liquid and gas phases. A variety of subsurface thermo-physical-chemical processes is considered under a wide range of conditions of pressure, temperature, water saturation, and ionic strength. The code can be applied to problems in fundamental analysis of the hydrothermal systems and in the exploration of geothermal reservoirs including chemical evolution, mineral alteration, mineral scaling, changes of porosity and permeability, and mineral recovery from geothermal fluids.

Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

2003-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Fluid Diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes  

Science Conference Proceedings (OSTI)

This report describes progress made during the second year of the three-year project, Fluid diversion and Sweep Improvement with Chemical Gels in Oil Recovery Processes.'' The objectives of this project are to identify the mechanisms by which gel treatments divert fluids in reservoirs and to establish where and how gel treatments are best applied. Several different types of gelants are being examined. This research is directed at gel applications in water injection wells, in production wells, and in high-pressure gasfloods. The work examines how the flow properties of gels and gelling agents are influenced by permeability, lithology, and wettability. Other goals include determining the proper placement of gelants, the stability of in-place gels, and the types of gels required for the various oil recovery processes and for different scales of reservoir heterogeneity. 93 refs., 39 figs., 43 tabs.

Seright, R.S.; Martin, F.D.

1991-11-01T23:59:59.000Z

322

Flow of power-law fluids in self-affine fracture channels  

E-Print Network (OSTI)

The two-dimensional pressure driven flow of non-Newtonian power-law fluids in self-affine fracture channels at finite Reynolds number is calculated. The channels have constant mean aperture and two values $\\zeta$=0.5 and 0.8 of the Hurst exponent are considered. The calculation is based on the lattice-Boltzmann method, using a novel method to obtain a power-law variation in viscosity, and the behavior of shear-thinning, Newtonian and shear-thickening liquids is compared. Local aspects of the flow fields, such as maximum velocity and pressure fluctuations, were studied, and the non-Newtonian fluids were compared to the (previously-studied) Newtonian case. The permeability results may be collapsed into a master curve of friction factor vs. Reynolds number using a scaling similar to that employed for porous media flow, and exhibits a transition from a linear regime to a more rapid variation at Re increases.

Yiguang Yan; Joel Koplik

2007-11-29T23:59:59.000Z

323

Anisotropy and spatial variation of relative permeability and lithologic character of Tensleep Sandstone reservoirs in the Bighorn and Wind River Basins, Wyoming. Annual report, October 1, 1994-- September 30, 1995  

SciTech Connect

This research is to provide improved strategies for enhanced oil recovery from the Tensleep Sandstone oil reservoirs in the Bighorn and Wind River basins, Wyoming. Because of the great range of API gravities of the oils produced from these reservoirs, the proposed study concentrates on understanding the spatial variation and anisotropy of relative permeability within the Tensleep Sandstone. This research will associate those spatial distributions and anisotropies with the depositional subfacies and zones of diagenetic alteration found within the sandstone. The associations of the above with pore geometry will link relative permeability with the dimensions of lithofacies and authigenic mineral facies. Hence, the study is to provide criteria for scaling this parameter on a range of scales, from the laboratory to the basin-wide scale of subfacies distribution. Effects of depositional processes and burial diagenesis will be investigated. Image analysis of pore systems will be done to produce algorithms for estimating relative permeability from petrographic analyses of core and well cuttings. In addition, these studies are being coupled with geochemical modeling and coreflood experiments to investigate the potential for wellbore scaling and formation damage anticipated during EOR, eg., CO{sub 2} flooding. This will provide a regional basis for EOR strategies for the largest potential target reservoir in Wyoming; results will have application to all eolian reservoirs through correlations of relative permeability variation and anisotropy with eolian depositional lithofacies.

Dunn, T.L.

1996-03-01T23:59:59.000Z

324

Pitch-catch only ultrasonic fluid densitometer  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses a material wedge and pitch-catch only ultrasonic transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

Greenwood, Margaret S. (Richland, WA); Harris, Robert V. (Pasco, WA)

1999-01-01T23:59:59.000Z

325

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

SciTech Connect

Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

Garcia, Julio Enrique

2003-12-18T23:59:59.000Z

326

Longitudinal permeability of collisional plasmas under arbitrary degree of degeneration of electron gas  

E-Print Network (OSTI)

Electric conductivity and dielectric permeability of the non-degenerate electronic gas for the collisional plasmas under arbitrary degree of degeneration of electron gas is found. The kinetic equation of Wigner - Vlasov - Boltzmann with collision integral in relaxation form BGK (Bhatnagar, Gross and Krook) in coordinate space is used. Dielectric permeability with using of the relaxation equation in the momentum space has been received by Mermin. Comparison with Mermin's formula has been realized. It is shown, that in the limit when Planck's constant tends to zero expression for dielectric permeability passes in the classical.

A. V. Latyshev; A. A. Yushkanov

2010-03-04T23:59:59.000Z

327

Stress- and Chemistry-Mediated Permeability Enhancement/Degradation in Stimulated Critically-Stressed Fractures  

DOE Green Energy (OSTI)

This work has investigated the interactions between stress and chemistry in controlling the evolution of permeability in stimulated fractured reservoirs through an integrated program of experimentation and modeling. Flow-through experiments on natural and artificial fractures in Coso diorite have examined the evolution of permeability under paths of mean and deviatoric stresses, including the role of dissolution and precipitation. Models accommodating these behaviors have examined the importance of incorporating the complex couplings between stress and chemistry in examining the evolution of permeability in EGS reservoirs. This document reports the findings of experiment [1,2] and analysis [3,4], in four sequential chapters.

Derek Elsworth; Abraham S. Grader; Chris Marone; Phillip Halleck; Peter Rose; Igor Faoro; Joshua Taron; André Niemeijer; Hideaki Yasuhara

2009-03-30T23:59:59.000Z

328

Formation damage studies of lubricants used with drill-in fluids systems on horizontal open-hole wells  

E-Print Network (OSTI)

Tests were conducted to evaluate the effect of lubricants in formation damage. Two types of lubricants were tested along with two types of drill-in fluids. The DIF's tested included a sized-calcium carbonate (SCC) and a sized-salt (SS). Also a set of variables including drill solids content (2%-6%), hydrochloric acid concentration (2%-10%), and temperature (110°F-160°F) were changed during the testing procedure. A matrix design was used to determine the behavior in regain permeability and break through time depending on the different variables in the testing, and two devices were used to measure responses, Conoco cell and ceramic disc cell respectively. Results have shown that regain permeability and break through time responses are not affected in a greater degree when lubricants (Idlube or Mil-Lube) are added to the DIF systems (SS and SCC). When comparing results between lubricants, Idlube gives a higher regain permeability percentage and faster break through time at higher concentrations than Mil-Lube in both DIF systems. Overall, sized calcium carbonate seems to be a better DIF system than Sized salt for these types of experiments, being much more efficient in reducing break through times than in increasing regain permeability.

Gutierrez, Fernando A

2000-01-01T23:59:59.000Z

329

Fluid Metrology Calibration Services - Gas, Water, or Liquid ...  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Gas, Water, Natural Gas, or Liquid Hydrocarbon Flows Special Tests. Fluid Metrology ...

2013-01-25T23:59:59.000Z

330

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

Science Conference Proceedings (OSTI)

The primary goal of this project was to develop and validate new classes of cost-effective low-permeability ceramic and refractory components for handling molten aluminum in both melting and casting environments. Three approaches were employed with partial to full success to achieve this goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; and (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions. The results of the research work and the field tests performed utilizing these three approaches are listed below: (1) It was demonstrated that high-density IR heating could be a tool for altering and sealing the surface porosity of fused silica. However, the process was not very cost-effective. (2) A low-cost glaze composition having a coefficient of thermal expansion (CTE) similar to that of a DFS tube was identified and was successfully tested for its integrity and adherence to DFS. Although the glaze acted as a barrier between the molten aluminum and the DFS, persistent porosity and crazing within the glaze affected its performance during the reactivity tests, thus acting as an obstacle in scaling up production of this glaze. (3) Pyrotek's XL glaze showed great success in improving the life of the DFS tubes. Pyrotek has reported an increasing market demand for the XL-coated DFS tubes, which exhibit useful lifetimes three times better than those of uncoated tubes. (4) A computer model to optimize particle size distribution for reduced permeability was developed and successfully applied to casting formulations. Silica riser tubes produced using these new formulations have been tested in a commercial aluminum casting facility and have been reported to increase the life of the DFS tubes by 700%. (5) If all the DFS riser tubes used in LPD casting of aluminum automotive components are replaced with the better, longer-lasting castable riser tubes, the potential national energy savings is estimated to be 206 billion Btu/year.

Dale E. Brown (Pyrotek); Puja B. Kadolkar (ORNL)

2005-12-15T23:59:59.000Z

331

Fracturing fluid characterization: State-of-the-art facility and advanced technology  

Science Conference Proceedings (OSTI)

The petroleum industry has used hydraulic fracturing technique to stimulate low and high permeability oil and gas reservoirs to enhance their potential recoveries. Nevertheless, the design and implementation of a scientifically and economically sound fracturing job, due to the lack of knowledge of theological behavior of hydraulic fracturing fluids under field conditions, remains a challenge. Furthermore, as often the case, the current level of technical knowledge with research institutes, service companies, and operators does not translate to field applications. One of the principal reasons for this technology gap, is the lack of understanding of the theological behavior of hydraulic fracturing fluids under field conditions, which primarily relates to the limitations in scaling down the field conditions to the laboratory. The Fracturing Fluid Characterization Facility (FFCF) project was therefore, proposed with the intent of providing the industry with a better understanding of the behavior of these fracturing fluids and their proppant transport characteristics under downhole fracture condition. At the FFCF, a fully operational High Pressure Simulator (HPS), as seen in Figure 1, constitutes a vertical, variable width, parallel plate flow apparatus and is capable of operating at elevated temperatures (up to 2500F) and pressures (up to 1200 psi). The HPS simulates, to the maximum degree practical, all conditions experienced by a fracturing fluid from its formulation on the surface, its flow down the wellbore, through perforations, its injection into the fracture, and its leakage into the rock formation (Figure 1). Together with the onsite auxiliary equipment (Figure 2), such as Mixing and Pumping System, Pre-conditioning System, Data Acquisition System, and Rheology Measuring System (Figure 2), the HPS is the most advanced fracture simulator available to conduct research, mimicking field conditions, in the following areas: Rheology Characterization of Fracturing Fluids, Proppant Transport Simulations, Proppant Transport Measurements, Perforation Pressure Loss, Coiled Tubing Friction Loss, Dynamic Fluid Loss, and Heat Transfer Characterizations of Polymer Solutions.

Shah, S., Asadi, M.,

1997-10-01T23:59:59.000Z

332

Fluid-Rock Characterization and Interactions in NMR Well Logging  

DOE Green Energy (OSTI)

The objective of this project is to characterize the fluid properties and fluid-rock interactions that are needed for formation evaluation by NMR well logging. This is the first annual progress report submitted to the DOE. It reports on the work completed during the reporting period even if it may have started before this period. This project is a partnership between Professor George J. Hirasaki at Rice University and Professor Kishore Mohanty at University of Houston. In addition to the DOE, this project is supported by a consortium of oil companies and service companies. The fluid properties characterization has emphasized the departure of live oils from correlations based on dead oils. Also, asphaltic components can result in a difference between the T1 and T2 relaxation time distributions as well as reduce the hydrogen index. The fluid rock characterizations that are reported here are the effects of wettability and internal magnetic field gradients. A pore reconstruction method ha s been developed to recreate three-dimensional porous media from two-dimensional images that reproduce some of their key statistical properties. A Monte Carlo simulation technique has been developed to calculate the magnetization decay in fluid saturated porous media given their pore structure.

Hirasaki, George J.; Mohanty, Kishore, K.

2001-07-13T23:59:59.000Z

333

Ultracentrifuge for separating fluid mixtures  

DOE Patents (OSTI)

1. A centrifuge for the separation of fluid mixtures having light and heavy fractions comprising a cylindrical rotor, disc type end-plugs closing the ends of the rotor, means for mounting said rotor for rotation about its cylindrical axis, a housing member enclosing the rotor, a vacuum chamber in said housing about the central portion of the rotor, a collection chamber at each end of the housing, the innermost side of which is substantially formed by the outer face of the end-plug, means for preventing flow of the fluid from the collection chambers to said vacuum chamber, at least one of said end-plugs having a plurality of holes therethrough communicating between the collection chamber adjacent thereto and the inside of the rotor to induce countercurrent flow of the fluid in the centrifuge, means for feeding fluid to be processed into the centrifuge, means communicating with the collection chambers to extract the light and heavy separated fractions of the fluid, and means for rotating the rotor.

Lowry, Ralph A. (Charlottesville, VA)

1976-01-01T23:59:59.000Z

334

DEVELOPMENT OF NEW DRILLING FLUIDS  

SciTech Connect

The goal of the project has been to develop new types of drill-in fluids (DIFs) and completion fluids (CFs) for use in natural gas reservoirs. Phase 1 of the project was a 24-month study to develop the concept of advanced type of fluids usable in well completions. Phase 1 tested this concept and created a kinetic mathematical model to accurately track the fluid's behavior under downhole conditions. Phase 2 includes tests of the new materials and practices. Work includes the preparation of new materials and the deployment of the new fluids and new practices to the field. The project addresses the special problem of formation damage issues related to the use of CFs and DIFs in open hole horizontal well completions. The concept of a ''removable filtercake'' has, as its basis, a mechanism to initiate or trigger the removal process. Our approach to developing such a mechanism is to identify the components of the filtercake and measure the change in the characteristics of these components when certain cleanup (filtercake removal) techniques are employed.

David B. Burnett

2003-08-01T23:59:59.000Z

335

Combustion Simulations [Heat Transfer and Fluid Mechanics] - Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Combustion Simulations Combustion Simulations Capabilities Engineering Computation and Design Engineering and Structural Mechanics Systems/Component Design, Engineering and Drafting Heat Transfer and Fluid Mechanics Overview Thermal Hydraulic Optimization of Nuclear Systems Underhood Thermal Management Combustion Simulations Advanced Model and Methodology Development Multi-physics Reactor Performance and Safety Simulations Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Heat Transfer and Fluid Mechanics Bookmark and Share Combustion Simulations Density Distribution of Spray in Near-Injector Region Density Distribution of Spray in Near-Injector Region. Click on image to view larger image. Development of computer models based on Front-Tracking and

336

Fluid dynamics of bacterial turbulence  

E-Print Network (OSTI)

Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subtilis and compare them with a minimal fourth-order vector-field theory for incompressible bacterial dynamics. Velocimetry of bacteria and surrounding fluid, determined by imaging cells and tracking colloidal tracers, yields consistent results for velocity statistics and correlations over two orders of magnitude in kinetic energy, revealing a decrease of fluid memory with increasing swimming activity and linear scaling between energy and enstrophy. The best-fit model parameters allow for quantitative agreement with experimental data.

Jörn Dunkel; Sebastian Heidenreich; Knut Drescher; Henricus H. Wensink; Markus Bär; Raymond E. Goldstein

2013-02-21T23:59:59.000Z

337

Unclassified Distribution  

NLE Websites -- All DOE Office Websites (Extended Search)

63 1 Unclassified Distribution UNIVERSITY :OF CALIFORNU Radiation Lab oratory Contract No, W-7405-eng-48 THE DETECTION OF U T I F I C I B L L Y PRODUCED WOTOMESONS WITH COUNTERS *...

338

Automatic hydraulic fracturing design for low permeability reservoirs using artificial intelligence  

Science Conference Proceedings (OSTI)

The hydraulic fracturing technique is one of the major developments in petroleum engineering in the last two decades. Today, nearly all the wells completed in low permeability gas reservoirs require a hydraulic fracturing treatment in order to produce ...

Andrei Sergiu Popa / Shahab Mohaghegh

2004-01-01T23:59:59.000Z

339

Transport and seismoelectric properties of porous permeable rock : numerical modeling and laboratory measurements  

E-Print Network (OSTI)

The objective of this thesis is to better understand the transport and seismoelectric (SE) properties of porous permeable rock. Accurate information of rock transport properties, together with pore geometry, can aid us to ...

Zhan, Xin, Ph. D. Massachusetts Institute of Technology

2010-01-01T23:59:59.000Z

340

Permeability-thickness determination from transient production response at the southeast geysers  

DOE Green Energy (OSTI)

The Fetkovich production decline curve analysis method was extended for application to vapor-dominated geothermal reservoirs for the purpose of estimating the permeability-thickness product (kh) from the transient production response. The analytic dimensionless terms for pressure, production rate, decline rate, and decline time were derived for saturated steam using the real gas potential and customary geothermal production units of pounds-mass per hour. The derived terms were numerically validating using ``Geysers-line`` reservoir properties at initial water saturation of 0 and at permeabilities of 1, 10, and 100 mD. The production data for 48 wells in the Southeast Geysers were analyzed and the permeability-thickness products determined from the transient production response using the Fetkovich production decline type curve. The kh results were in very good agreement with the published range at the Southeast Geysers and show regions of high permeability-thickness.

Faulder, D.D.

1996-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Gas Permeability of Fractured Sandstone/Coal Samples under Variable Confining Pressure  

E-Print Network (OSTI)

of Fractured Sandstone/Coal Samples Smeulders, D.M.J. ,stress on permeability of coal. Int. J. Rock Mech. Min. Sci.of Fractured Sandstone/Coal Samples under Variable Con?ning

Liu, Weiqun; Li, Yushou; Wang, Bo

2010-01-01T23:59:59.000Z

342

LARGE SCALE PERMEABILITY TEST OF THE GRANITE IN THE STRIPA MINE AND THERMAL CONDUCTIVITY TEST  

E-Print Network (OSTI)

No.2 LARGE SCALE PERMEABILITY TEST OF THE GRANITE' IN THEMINE AND, THERMAL CONDUCTIVITY TEST Lars Lundstrom and HakanSUMMARY REPORT Background TEST SITE Layout of test places

Lundstrom, L.

2011-01-01T23:59:59.000Z

343

Fracturing controlled primary migration of hydrocarbon fluids during heating of organic-rich shales  

E-Print Network (OSTI)

Time-resolved three-dimensional in situ high resolution synchrotron x-ray tomographic imaging was used to investigate the effects of slowly heating organic-rich Green River Shale from 60\\deg; to 400\\deg;C, in air without confinement, to better understand primary migration of hydrocarbon fluids in very low permeability source rock. Cracks nucleate in the interior of the sample at a temperature around 350\\deg;C. As the temperature increases, they grow and coalesce along lamination planes to form bigger cracks. This process is accompanied by a release of light hydrocarbons generated by decomposition of the initially immature organic matter, as determined by thermogravimetry and gas chromatography. These results provide the first 4D monitoring of an invasion percolation-like fracturing process in organic-rich shales. This process increases the permeability of the sample and provides pathways for fluid expulsion - an effect that might also be relevant for primary migration under natural conditions. We propose a 2D...

Kobchenko, Maya; Renard, Francois; Dysthe, Dag Kristian; Malthe-Sorenssen, Anders; Mazzini, Adriano; Scheibert, Julien; Jamtveit, Bjorn; Meakin, Paul

2011-01-01T23:59:59.000Z

344

Special Distribution  

Office of Legacy Management (LM)

Special Distribution Special Distribution Issued: December 1977 ',, Radiological Survey and Decontamination of the Former Main Technical Area (TA-1) at Los Alamos, New Mexico Compiled by A. John Ahlquist Alan K. Stoker Linda K. Trocki c laboratory of, the University of California LOS ALAMOS, NEW MEXICO 87545 An Alfirmdve Action/Equal Opportunity Employer ..-_- .-- .--.-. c T -,--... _ _._-r..l __,.. - .-,_.. ..- _._ -- .--. " . . _ . - . c- - . . . _ -. . _ . - . - . _ - - n - _ _~ ~_. __ _ ~~_ --..&e+ L.';; CONTENTS ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._____ 1 EXECUTIVE SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .._... _._ 2 I. BACKGROUND .............................................. 15

345

Wellbottom fluid implosion treatment system  

DOE Patents (OSTI)

A system for inducing implosion shock forces on perforation traversing earth formations with fluid pressure where an implosion tool is selected relative to a shut in well pressure and a tubing pressure to have a large and small area piston relationship in a well tool so that at a predetermined tubing pressure the pistons move a sufficient distance to open an implosion valve which permits a sudden release of well fluid pressure into the tubing string and produces an implosion force on the perforations. A pressure gauge on the well tool records tubing pressure and well pressure as a function of time.

Brieger, Emmet F. (HC 67 Box 58, Nogal, NM 88341)

2001-01-01T23:59:59.000Z

346

Holographic plasma and anyonic fluids  

E-Print Network (OSTI)

We use alternative quantisation of the $D3/D5$ system to explore properties of a strongly coupled charged plasma and strongly coupled anyonic fluids. The $S$-transform of the $D3/D5$ system is used as a model for charged matter interacting with a U(1) gauge field in the large coupling regime, and we compute the dispersion relationship of the propagating electromagnetic modes as the density and temperature are changed. A more general $SL(2,\\mathbb{Z})$ transformation gives a strongly interacting anyonic fluid, and we study its transport properties as we change the statistics of the anyons and the background magnetic field.

Daniel K. Brattan; Gilad Lifschytz

2013-10-09T23:59:59.000Z

347

Third invitational well-testing symposium: well testing in low permeability environments  

DOE Green Energy (OSTI)

The testing of low permeability rocks is common to waste disposal, fossil energy resource development, underground excavation, and geothermal energy development. This document includes twenty-six papers and abstracts, divided into the following sessions: opening session, case histories and related phenomena, well test design in low permeability formations, analysis and interpretation of well test data, and instrumentation for well tests. Separate abstracts were prepared for 15 of the 16 papers; the remaining paper has been previously abstracted. (DLC)

Doe, T.W.; Schwarz, W.J. (eds.)

1981-03-01T23:59:59.000Z

348

Hydrogen Permeability of Incoloy 800H, Inconel 617, and Haynes 230 Alloys  

DOE Green Energy (OSTI)

A potential issue in the design of the NGNP reactor and high-temperature components is the permeation of fission generated tritium and hydrogen product from downstream hydrogen generation through high-temperature components. Such permeation can result in the loss of fission-generated tritium to the environment and the potential contamination of the helium coolant by permeation of product hydrogen into the coolant system. The issue will be addressed in the engineering design phase, and requires knowledge of permeation characteristics of the candidate alloys. Of three potential candidates for high-temperature components of the NGNP reactor design, the hydrogen permeability has been documented well only for Incoloy 800H, but at relatively high partial pressures of hydrogen. Hydrogen permeability data have been published for Inconel 617, but only in two literature reports and for partial pressures of hydrogen greater than one atmosphere, far higher than anticipated in the NGNP reactor. The hydrogen permeability of Haynes 230 has not been published. To support engineering design of the NGNP reactor components, the hydrogen permeability of Inconel 617 and Haynes 230 were determined using a measurement system designed and fabricated at the Idaho National Laboratory. The performance of the system was validated using Incoloy 800H as reference material, for which the permeability has been published in several journal articles. The permeability of Incoloy 800H, Inconel 617 and Haynes 230 was measured in the temperature range 650 to 950 °C and at hydrogen partial pressures of 10-3 and 10-2 atm, substantially lower pressures than used in the published reports. The measured hydrogen permeability of Incoloy 800H and Inconel 617 were in good agreement with published values obtained at higher partial pressures of hydrogen. The hydrogen permeability of Inconel 617 and Haynes 230 were similar, about 50% greater than for Incoloy 800H and with similar temperature dependence.

Pattrick Calderoni

2010-07-01T23:59:59.000Z

349

Experimental permeability studies at elevated temperature and pressure of granitic rocks  

DOE Green Energy (OSTI)

Permeability of quartz monzonite from the Los Alamos hot-dry-rock geothermal well GT-2 was experimentally measured as a function of pressure and temperature. Permeability of the GT-2 rocks from depths of 8580 ft and 9522 ft behaves like Westerly granite for changes in effective confining pressure. However, permeability of these rocks behaves much differently with increasing temperature. As temperature is increased, the permeability of Westerly granite passes through a slight minimum and then increases exponentially above 100/sup 0/C. Upon cooling the permeability shows a permanent increase of up to four times its original value. The permeability of GT-2-9522', on the other hand, drops off exponentially with increasing temperature, reaching a minimum near 140/sup 0/C; above 150/sup 0/C, permeability rises slowly. These changes in permeability with temperature are postulated to be caused by differential thermal expansion (DTE), a phenomena related to the anisotropic and inhomogeneous coefficients of thermal expansion of the mineral grains in the rock. Scanning electron photomicrographs of unheated and heated samples of Westerly and GT-2 rocks support the DTE hypothesis. Differences in the behavior of these rocks with temperature are believed to be due to the respective temperature and pressure environments in which they became equilibrated, since both GT-2 rocks had existed at moderately high temperatures and pressures for some time. Temperature disequilibrium of the GT-2 rocks in their present in situ environments is believed to have caused the differences in the behavior between the two samples and may provide a method for determining the pre-intrusion geothermal gradient of the Jemez area. Flow channels were observed in GT-2 samples using radioactive tracer techniques. Several radioactive isotopes were tried in these experiments, including /sup 22/Na, /sup 63/Ni, and /sup 35/S.

Potter, J.M.

1978-05-01T23:59:59.000Z

350

Measurement and Modeling of Sorption-Induced Strain and Permeability Changes in Coal  

SciTech Connect

Strain caused by the adsorption of gases was measured in samples of subbituminous coal from the Powder River basin of Wyoming, U.S.A., and high-volatile bituminous coal from the Uinta-Piceance basin of Utah, U.S.A. using a newly developed strain measurement apparatus. The apparatus can be used to measure strain on multiple small coal samples based on the optical detection of the longitudinal strain. The swelling and shrinkage (strain) in the coal samples resulting from the adsorption of carbon dioxide, nitrogen, methane, helium, and a mixture of gases was measured. Sorption-induced strain processes were shown to be reversible and easily modeled with a Langmuir-type equation. Extended Langmuir theory was applied to satisfactorily model strain caused by the adsorption of gas mixtures using the pure gas Langmuir strain constants. The amount of time required to obtain accurate strain data was greatly reduced compared to other strain measurement methods. Sorption-induced changes in permeability were also measured as a function of pres-sure. Cleat compressibility was found to be variable, not constant. Calculated variable cleat-compressibility constants were found to correlate well with previously published data for other coals. During permeability tests, sorption-induced matrix shrinkage was clearly demonstrated by higher permeability values at lower pore pressures while holding overburden pressure constant. Measured permeability data were modeled using three dif-ferent permeability models from the open literature that take into account sorption-induced matrix strain. All three models poorly matched the measured permeability data because they overestimated the impact of measured sorption-induced strain on permeabil-ity. However, by applying an experimentally derived expression to the measured strain data that accounts for the confining overburden pressure, pore pressure, coal type, and gas type, the permeability models were significantly improved.

Eric P. Robertson

2005-10-01T23:59:59.000Z

351

User's Guide for Hysteretic Capillary Pressure and Relative Permeability Functions in iTOUGH2  

SciTech Connect

The precursor of TOUGH2, TOUGH, was originally developed with non-hysteretic characteristic curves. Hysteretic capillary pressure functions were implemented in TOUGH in the late 1980s by Niemi and Bodvarsson (1988), and hysteretic capillary pressure and relative permeability functions were added to iTOUGH2 about ten years later by Finsterle et al. (1998). Recently, modifications were made to the iTOUGH2 hysteretic formulation to make it more robust and efficient (Doughty, 2007). Code development is still underway, with the ultimate goal being a hysteretic module that fits into the standard TOUGH2 (Pruess et al., 1991) framework. This document provides a user's guide for the most recent version of the hysteretic code, which runs within iTOUGH2 (Finsterle, 1999a,b,c). The current code differs only slightly from what was presented in Doughty (2007), hence that document provides the basic information on the processes being modeled and how they are conceptualized. This document focuses on a description of the user-specified parameters required to run hysteretic iTOUGH2. In the few instances where the conceptualization differs from that of Doughty (2007), the features described here are the current ones. Sample problems presented in this user's guide use the equation-of-state module ECO2N (Pruess, 2005). The components present in ECO2N are H{sub 2}O, NaCl, and CO{sub 2}. Two fluid phases and one solid phase are considered: an aqueous phase, which primarily consists of liquid H2O and may contain dissolved NaCl and CO{sub 2}; a supercritical phase which primarily consists of CO{sub 2}, but also includes a small amount of gaseous H{sub 2}O; and a solid phase consisting of precipitated NaCl. Details of the ECO2N formulation may be found in Pruess (2005). The aqueous phase is the wetting phase and is denoted ''liquid'', whereas the supercritical phase is the non-wetting phase and is denoted ''gas''. The hysteretic formalism may be applied to other iTOUGH2 equation-of-state modules, as long as the liquid phase is the wetting phase and the gas phase is the non-wetting phase.

Doughty, C.A.

2009-08-01T23:59:59.000Z

352

Simulation of fluid-rock interactions in a geothermal basin. Final report. [QUAGMR (quasi-active geothermal reservoir)  

DOE Green Energy (OSTI)

General balance laws and constitutive relations are developed for convective hydrothermal geothermal reservoirs. A fully interacting rock-fluid system is considered; typical rock-fluid interactions involve momentum and energy transfer and the dependence of rock porosity and permeability upon the fluid and rock stresses. The mathematical model also includes multiphase (water/steam) effects. A simple analytical model is employed to study heat transfer into/or from a fluid moving in a porous medium. Numerical results show that for fluid velocities typical of geothermal systems (Reynolds number much less than 10), the fluid and the solid may be assumed to be in local thermal equilibrium. Mathematical formalism of Anderson and Jackson is utilized to derive a continuum species transport equation for flow in porous media; this method allows one to delineate, in a rigorous manner, the convective and diffusive mechanisms in the continuum representation of species transport. An existing computer program (QUAGMR) is applied to study upwelling of hot water from depth along a fault; the numerical results can be used to explain local temperature inversions occasionally observed in bore hole measurements.

Garg, S.K.; Blake, T.R.; Brownell, D.H. Jr.; Nayfeh, A.H.; Pritchett, J.W.

1975-09-01T23:59:59.000Z

353

Hollow cylinder dynamic pressurization and radial flow through permeability tests for cementitous materials  

E-Print Network (OSTI)

Saturated permeability is likely a good method for characterizing the susceptibility of portland cement concrete to various forms of degradation; although no widely accepted test exists to measure this property. The hollow cylinder dynamic pressurization test is a potential solution for measuring concrete permeability. The hollow cylinder dynamic pressurization (HDP) test is compared with the radial flow through (RFT) test and the solid cylinder dynamic pressurization (SDP) test to assess the accuracy and reliability of the HDP test. The three test methods, mentioned above, were used to measure the permeability of Vycor glass and portland cement paste and the results of the HDP test were compared with the results from the SDP and RFT tests. When the HDP and RFT test results were compared, the measured difference between the mean values of the two tests was 40% for Vycor glass and 47% for cement paste. When the HDP and SDP tests results were compared, the measured difference with Vycor glass was 53%. The cement paste permeability values could not be compared in the same manner since they were tested at various ages to show the time dependency of permeability in cement paste. The results suggest good correlation between the HDP test and both the SDP and RFT tests. Furthermore, good repeatability was shown with low coefficients of variation in all test permutations. Both of these factors suggest that the new HDP test is a valid tool for measuring the permeability of concrete materials.

Jones, Christopher Andrew

2008-08-01T23:59:59.000Z

354

Producing Light Oil from a Frozen Reservoir: Reservoir and Fluid Characterization of Umiat Field, National Petroleum Reserve, Alaska  

Science Conference Proceedings (OSTI)

Umiat oil field is a light oil in a shallow, frozen reservoir in the Brooks Range foothills of northern Alaska with estimated oil-in-place of over 1 billion barrels. Umiat field was discovered in the 1940’s but was never considered viable because it is shallow, in the permafrost, and far from any transportation infrastructure. The advent of modern drilling and production techniques has made Umiat and similar fields in northern Alaska attractive exploration and production targets. Since 2008 UAF has been working with Renaissance Alaska Inc. and, more recently, Linc Energy, to develop a more robust reservoir model that can be combined with rock and fluid property data to simulate potential production techniques. This work will be used to by Linc Energy as they prepare to drill up to 5 horizontal wells during the 2012-2013 drilling season. This new work identified three potential reservoir horizons within the Cretaceous Nanushuk Formation: the Upper and Lower Grandstand sands, and the overlying Ninuluk sand, with the Lower Grandstand considered the primary target. Seals are provided by thick interlayered shales. Reserve estimates for the Lower Grandstand alone range from 739 million barrels to 2437 million barrels, with an average of 1527 million bbls. Reservoir simulations predict that cold gas injection from a wagon-wheel pattern of multilateral injectors and producers located on 5 drill sites on the crest of the structure will yield 12-15% recovery, with actual recovery depending upon the injection pressure used, the actual Kv/Kh encountered, and other geologic factors. Key to understanding the flow behavior of the Umiat reservoir is determining the permeability structure of the sands. Sandstones of the Cretaceous Nanushuk Formation consist of mixed shoreface and deltaic sandstones and mudstones. A core-based study of the sedimentary facies of these sands combined with outcrop observations identified six distinct facies associations with distinctive permeability trends. The Lower Grandstand sand consists of two coarsening-upward shoreface sands sequences while the Upper Grandstand consists of a single coarsening-upward shoreface sand. Each of the shoreface sands shows a distinctive permeability profile with high horizontal permeability at the top getting progressively poorer towards the base of the sand. In contrast, deltaic sandstones in the overlying Ninuluk are more permeable at the base of the sands, with decreasing permeability towards the sand top. These trends impart a strong permeability anisotropy to the reservoir and are being incorporated into the reservoir model. These observations also suggest that horizontal wells should target the upper part of the major sands. Natural fractures may superimpose another permeability pattern on the Umiat reservoir that need to be accounted for in both the simulation and in drilling. Examination of legacy core from Umiat field indicate that fractures are present in the subsurface, but don't provide information on their orientation and density. Nearby surface exposures of folds in similar stratigraphy indicate there are at least three possible fracture sets: an early, N/S striking set that may predate folding and two sets possibly related to folding: an EW striking set of extension fractures that are parallel to the fold axes and a set of conjugate shear fractures oriented NE and NW. Analysis of fracture spacing suggests that these natural fractures are fairly widely spaced (25-59 cm depending upon the fracture set), but could provide improved reservoir permeability in horizontal legs drilled perpendicular to the open fracture set. The phase behavior of the Umiat fluid needed to be well understood in order for the reservoir simulation to be accurate. However, only a small amount of Umiat oil was available; this oil was collected in the 1940’s and was severely weathered. The composition of this ‘dead’ Umiat fluid was characterized by gas chromatography. This analysis was then compared to theoretical Umiat composition derived using the Pedersen method with original Umiat

Hanks, Catherine

2012-12-31T23:59:59.000Z

355

The feasibility of recovering medium to heavy oil using geopressured- geothermal fluids  

DOE Green Energy (OSTI)

The feasibility, economics and environmental concerns of producing more domestic oil using thermal enhanced oil recovery (TEOR) are reviewed and the unique nature of geopressured-geothermal (GPGT) fluids for thermal recovery are outlined. Current methods of TEOR are briefly discussed and it is noted that these methods are presently under scrutiny by both federal and state air quality agencies; and moreover, they often involve costly operational and mechanical problems associated with heating water on the surface for injection into the target reservoir. The characteristics of the GPGT resources as seen through previous Department of Energy (DOE) studies from sites in Louisiana and Texas are discussed. These studies indicate sufficient quantities of GPGT fluids can be produced to sustain a TEOR project. The Alworth Field in the south Texas Mirando Trend is proposed as a TEOR pilot site. The target reservoirs for injection of the GPGT fluids are the Jackson and Yegua sandstones of the upper Eocene Epoch. The reservoirs contain an estimated 4 MMbbls of heavy oil in place (OIP) (18.6{degree}API) of which it is estimated that at least 1 MMbbls could be recovered by TEOR. The problems associated with using the GPGT fluids for TEOR include those normally associated with hot water flooding but in addition the reaction of the brine from the geopressured-geothermal reservoir with the target reservoir is uncertain. Under the elevated temperatures associated with GPGT TEOR, actual increased porosity and permeability are possible. 120 refs., 40 figs., 13 tabs.

Negus-de Wys, J.; Kimmell, C.E.; Hart, G.F.; Plum, M.M.

1991-09-01T23:59:59.000Z

356

Candidate Well Selection for the Test of Degradable Biopolymer as Fracturing Fluid  

E-Print Network (OSTI)

Hydraulic fracturing is a well-established technology of generating highly conductive flow path inside the rock by injecting massive amount of fracturing fluid and proppant with sufficient pressure to break the formation apart. But as the concern for environment and health effects of hydraulic fracturing becomes intense, many efforts are made to replace the conventional fracturing fluid with more environment-friendly materials. The degradable biopolymer is one of the novel materials that is injected in the form of solid pellets containing proppant, degrades in the presence of water to form a viscous gel fluid, leaving no gel residue or harmful material. This work develops a methodology and computer program to determine the best candidate wells for the field test of degradable biopolymer as fracturing fluid. The unique properties of degradable biopolymer is captured in the selection of decision criteria such as bottomhole temperature and treatment volume as well as traditional hydraulic fracturing candidate well selection criteria such as formation permeability, productivity index.

Hwang, Yun Suk

2011-12-01T23:59:59.000Z

357

Directed flow fluid rinse trough  

SciTech Connect

Novel rinse troughs accomplish thorough uniform rinsing. The tanks are suitable for one or more essentially planar items having substantially the same shape. The troughs ensure that each surface is rinsed uniformly. The new troughs also require less rinse fluid to accomplish a thorough rinse than prior art troughs.

Kempka, Steven N. (9504 Lona La., Albuquerque, NM 87111); Walters, Robert N. (11872 LaGrange St., Boise, ID 83709)

1996-01-01T23:59:59.000Z

358

SOLAR WIND ION AND ELECTRON DISTRIBUTION  

E-Print Network (OSTI)

SOLAR WIND ION AND ELECTRON DISTRIBUTION FUNCTIONS AND THE TRANSITION FROM FLUID TO KINETIC 2010 #12;Overview The solar wind as a laboratory to understand plasma dynamics As a function of beta/NASA) The corona is not in hydrostatic equilibrium and a supersonic solar wind is generated. The solar wind

359

Improved techniques for fluid diversion in oil recovery. Second annual report, October 1, 1993--September 30, 1994  

SciTech Connect

This project is directed at reducing water production and increasing oil recovery efficiency. Today, the cost of water disposal is typically between $0.25 and $0.50 per bbl. Therefore, there is a tremendous economic incentive to reduce water production if that can be accomplished without sacrificing hydrocarbon production. Environmental considerations also provide a significant incentive to reduce water production during oilfield operations. This three-year project has two technical objectives. The first objective is to compare the effectiveness of gels in fluid diversion (water shutoff) with those of other types of processes. Several different types of fluid-diversion processes are being compared, including those using gels, foams, emulsions, and particulates. The ultimate goals of these comparisons are to (1) establish which of these processes are most effective in a given application and (2) determine whether aspects of one process can be combined with those of other processes to improve performance. Analyses and experiments are being performed to verify which materials are the most effective in entering and blocking high-permeability zones. The second objective of the project is to identify the mechanisms by which materials (particularly gels) selectively reduce permeability to water more than to oil. Topics covered in this report include (1) comparisons of the use of gels, foams, emulsions, and particulates as blocking agents; (2) propagation of aluminum-citrate-HPAM gels through porous rock; (3) gel properties in fractured systems; (4) gel placement in unfractured anisotropic flow systems; and (5) an investigation of why some gels can reduce water permeability more than oil permeability.

Seright, R.S.

1995-03-01T23:59:59.000Z

360

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived  

Open Energy Info (EERE)

Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Stress and Fluid-Flow Interaction for the Coso Geothermal Field Derived from 3D Numerical Models Details Activities (1) Areas (1) Regions (0) Abstract: The efficiency of geothermal energy production at the Coso Geothermal Field in eastern California is reliant on the knowledge of fluid flow directions associated with fracture networks. We use finite element analysis to establish the 3D state of stress within the tectonic setting of the Coso Range. The mean and differential stress distributions are used to infer fluid flow vectors and second order fracture likelihood and orientation. The results show that the Coso Range and adjacent areas are

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

TURBULENT EXCHANGE OF MOMENTUM, MASS, AND HEAT BETWEEN FLUID STREAMS AND PIPE WALL  

SciTech Connect

S>A new correlation is presented to describe mass and heat transfer to a fluid in a fully developed turbulent flow in a pipe. The correlation differs from earlier empirical relations in that it is based on a theoretical continuous eddy-viscosity distribution from the wall to the center of the pipe. Transfer rates calculated from the new correlation are in excellent agree ment with experimental data on mass and heat transfer to fluid streams. (auth)

Wasan, D.T.; Wilke, C.R.

1963-03-01T23:59:59.000Z

362

Radiation Effects on the Cytoskeleton of Endothelial Cells and Endothelial Monolayer Permeability  

Science Conference Proceedings (OSTI)

Purpose: To investigate the effects of radiation on the endothelial cytoskeleton and endothelial monolayer permeability and to evaluate associated signaling pathways, which could reveal potential mechanisms of known vascular effects of radiation. Methods and Materials: Cultured endothelial cells were X-ray irradiated, and actin filaments, microtubules, intermediate filaments, and vascular endothelial (VE)-cadherin junctions were examined by immunofluorescence. Permeability was determined by the passage of fluorescent dextran through cell monolayers. Signal transduction pathways were analyzed using RhoA, Rho kinase, and stress-activated protein kinase-p38 (SAPK2/p38) inhibitors by guanosine triphosphate-RhoA activation assay and transfection with RhoAT19N. The levels of junction protein expression and phosphorylation of myosin light chain and SAPK2/p38 were assessed by Western blotting. The radiation effects on cell death were verified by clonogenic assays. Results: Radiation induced rapid and persistent actin stress fiber formation and redistribution of VE-cadherin junctions in microvascular, but not umbilical vein endothelial cells, and microtubules and intermediate filaments remained unaffected. Radiation also caused a rapid and persistent increase in microvascular permeability. RhoA-guanosine triphosphatase and Rho kinase were activated by radiation and caused phosphorylation of downstream myosin light chain and the observed cytoskeletal and permeability changes. SAPK2/p38 was activated by radiation but did not influence either the cytoskeleton or permeability. Conclusion: This study is the first to show rapid activation of the RhoA/Rho kinase by radiation in endothelial cells and has demonstrated a link between this pathway and cytoskeletal remodeling and permeability. The results also suggest that the RhoA pathway might be a useful target for modulating the permeability and other effects of radiation for therapeutic gain.

Gabrys, Dorota [Department of Radiation Oncology, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Gliwice Branch, Gliwice (Poland); Greco, Olga [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom); Patel, Gaurang; Prise, Kevin M. [Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, Northern Ireland (United Kingdom); Tozer, Gillian M. [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom); Kanthou, Chryso [Cancer Research UK Tumour Microcirculation Group, Academic Unit of Surgical Oncology, University of Sheffield, School of Medicine and Biomedical Sciences, Sheffield (United Kingdom)], E-mail: C.Kanthou@sheffield.ac.uk

2007-12-01T23:59:59.000Z

363

CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES  

SciTech Connect

This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

WITTEKIND WD

2007-10-03T23:59:59.000Z

364

Environmentally Acceptable Transformer Fluids: An Update  

Science Conference Proceedings (OSTI)

This report offers information about the physical, dielectric, chemical, and environmental properties of transformer fluids and their operational impacts. Companies can use this information to choose environmentally acceptable green fluids.

2010-07-14T23:59:59.000Z

365

Fluid sampling system for a nuclear reactor  

DOE Patents (OSTI)

A system of extracting fluid samples, either liquid or gas, from the interior of a nuclear reactor containment utilizes a jet pump. To extract the sample fluid, a nonradioactive motive fluid is forced through the inlet and discharge ports of a jet pump located outside the containment, creating a suction that draws the sample fluid from the containment through a sample conduit connected to the pump suction port. The mixture of motive fluid and sample fluid is discharged through a return conduit to the interior of the containment. The jet pump and means for removing a portion of the sample fluid from the sample conduit can be located in a shielded sample grab station located next to the containment. A non-nuclear grade active pump can be located outside the grab sampling station and the containment to pump the nonradioactive motive fluid through the jet pump. 1 fig.

Lau, L.K.; Alper, N.I.

1994-11-22T23:59:59.000Z

366

Graphene Compositions And Drilling Fluids Derived Therefrom ...  

Drilling fluids comprising graphenes and nanoplatelet additives and methods for production thereof are disclosed. Graphene includes graphite oxide, graphene oxide ...

367

SUBSIDENCE DUE TO GEOTHERMAL FLUID WITHDRAWAL  

E-Print Network (OSTI)

drilling activity completely ceased. Of these, 65 bores account for about 95 percent of the total fluid

Narasimhan, T.N.

2013-01-01T23:59:59.000Z

368

Fluid Metrology Calibration Services - Water Flow  

Science Conference Proceedings (OSTI)

Fluid Metrology Calibration Services - Water Flow. Water Flow Calibrations 18020C. ... NIST provides calibration services for water flow meters. ...

2011-10-03T23:59:59.000Z

369

Attrition Resistant Catalyst Materials for Fluid Bed ...  

Biomass and Biofuels Attrition Resistant Catalyst Materials for Fluid Bed Applications National Renewable Energy Laboratory. Contact NREL About This ...

370

Ultrasonic fluid densitometer for process control  

DOE Patents (OSTI)

The present invention is an ultrasonic fluid densitometer that uses at least one pair of transducers for transmitting and receiving ultrasonic signals internally reflected within a material wedge. A temperature sensor is provided to monitor the temperature of the wedge material. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface and comparing a transducer voltage and wedge material temperature to a tabulation as a function of density.

Greenwood, Margaret S. (Richland, WA)

2000-01-01T23:59:59.000Z

371

Helium measurements of pore-fluids obtained from SAFOD drillcore  

E-Print Network (OSTI)

ionized water (DI) as drilling fluid. This procedure avoidsbeen contaminated with drilling fluids during recovery ofscheduled drilling phases to enable fluid-only sampling.

Ali, S.

2010-01-01T23:59:59.000Z

372

Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose  

DOE Patents (OSTI)

Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

Hall, Mark N. (Richland, WA)

1996-01-01T23:59:59.000Z

373

Circulating Fluid-Bed Technology for Advanced Power Systems  

Science Conference Proceedings (OSTI)

Circulating fluid bed technology offers the advantages of a plug flow, yet well-mixed, and high throughput reactor for power plant applications. The ability to effectively scale these systems in size, geometry, and operating conditions is limited because of the extensive deviation from ideal dilute gas-solids flow behavior (Monazam et al., 2001; Li, 1994). Two fluid computations show promise of accurately simulating the hydrodynamics in the riser circulating fluid bed; however, validation tests for large vessels with materials of interest to the power industry are lacking (Guenther et al., 2002). There is little available data in reactors large enough so that geometry (i.e. entrance, exit, and wall) effects do not dominate the hydrodynamics, yet with sufficiently large particle sizes to allow sufficiently large grid sizes to allow accurate and timely hydrodynamic simulations. To meet this need experimental tests were undertaken with relatively large particles of narrow size distribution in a large enough unit to reduce the contributions of wall effects and light enough to avoid geometry effects. While computational fluid dynamic calculations are capable of generating detailed velocity and density profiles, it is believed that the validation and model development begins with the ability to simulate the global flow regime transitions. The purpose of this research is to generate well-defined test data for model validation and to identify and measure critical parameters needed for these simulations.

Shadle, Lawrence J.; Ludlow, J. Christopher; Mei, Joseph S. (U.S. DOE National Energy Technology Laboratory); Guenther, Christopher (Fluent, Inc.)

2001-11-06T23:59:59.000Z

374

Wavelet Turbulence for Fluid Simulation Theodore Kim  

E-Print Network (OSTI)

in the running time. We instead propose an algorithm that generates small-scale fluid de- tail procedurally. We of the key results of Kolmogorov the- ory is that the energy spectrum of a turbulent fluid approaches a five spectra [Perrier et al. 1995], and the sub- stitution is common in fluid dynamics [Farge et al. 1996

California at Santa Barbara, University of

375

Two Fluid Shear-Free Composites  

E-Print Network (OSTI)

Shear-free composite fluids are constructed from two Letelier rotated unaligned perfect fluids. The component fluid parameters necessary to construct a shear-free composite are investigated. A metric in the Stephani-Barnes solution family and a simple stationary metric are discussed.

J. P. Krisch; E. N. Glass

2013-07-03T23:59:59.000Z

376

IMPACT OF CURING TEMPERATURE ON THE SATURATED LIQUID PERMEABILITY OF SALTSTONE  

SciTech Connect

This report focuses on the impact of curing temperature on the performance properties of simulated Saltstone mixes. The key performance property of interest is saturated liquid permeability (measured as hydraulic conductivity), an input to the Performance Assessment (PA) modeling for the Saltstone Disposal Facility (SDF). Therefore, the current study was performed to measure the dependence of saturated hydraulic conductivity on curing temperature of Saltstone mixes, to correlate these results with measurements of Young's moduli on the same samples and to compare the Scanning Electron Microscopy (SEM) images of the microstructure at each curing temperature in an effort to associate this significant changes in permeability with changes in microstructure. This work demonstrated that the saturated liquid permeability of Saltstone mixes depends significantly on the curing temperature. As the curing temperature increases, the hydraulic conductivity can increase over three orders of magnitude from roughly 10{sup -9} cm/sec to 10{sup -6} cm/sec over the temperature range of 20 C to 80 C. Although an increased aluminate concentration (at 0.22 M) in the ARP/MCU waste stream improves (decreases) saturated permeability for samples cured at lower temperatures, the permeabilities for samples cured at 60 C to 80 C are the same as the permeabilities measured for an equivalent mix but with lower aluminate concentration. Furthermore, it was demonstrated that the unsaturated flow apparatus (UFA) system can be used to measure hydraulic conductivity of Saltstone samples. The permeability results obtained using the UFA centrifuge system were equivalent within experimental error to the conventional permeameter results (the falling head method) obtained at MACTEC. In particular the UFA technique is best suited for the range of hydraulic conductivities between 10{sup -10} cm/sec to 10{sup -6} cm/sec. Measurements of dynamic Young's moduli (E) for these mixes revealed a correlation between E and hydraulic conductivity. Therefore, it is possible to use E values to estimate the values of hydraulic conductivity. Measurement of Young's modulus is much easier than the measurement of permeability of Saltstone mixes and facilitates the measurement of the time dependence hydraulic conductivity. The results presented in this report show that changes in permeability as a function of curing temperature appear to be related to microstructural changes in the cured Saltstone mixes. Backscattered electron microscopy images revealed significant differences between the samples cured at different temperatures.

Williams, F.; Harbour, J.

2011-02-14T23:59:59.000Z

377

Two-phase flow visualization and relative permeability measurement in transparent replicas of rough-walled rock fractures  

DOE Green Energy (OSTI)

Understanding and quantifying multi-phase flow in fractures is important for mathematical and numerical simulation of geothermal reservoirs, nuclear waste repositories, and petroleum reservoirs. While the cubic law for single-phase flow has been well established for parallel-plate fractures theoretically and experimentally, no reliable measurements of multi-phase flow in fractures have been reported. This work reports the design and fabrication of an apparatus for visualization of two-phase flow and for measurement of gas-liquid relative permeability in realistic rough-walled rock fractures. A transparent replica of a natural rock fracture from a core specimen is fabricated by molding and casting in clear epoxy. Simultaneous flow of gas and liquid with control of capillary pressure at inlet and outlet is achieved with the Hassler sandwich'' design: liquid is injected to the fracture through a porous block, while gas is injected directly to the edge of the fracture through channels in the porous block. A similar arrangement maintains capillary separation of the two phases at the outlet. Pressure drops in each phase across the fracture, and capillary pressures at the inlet and outlet, are controlled by means of pumps and needle valves, and are measured by differential and absolute pressure transducers. The clear epoxy cast of the natural fracture preserves the geometry of the fracture and permits visual observation of phase distributions. The fracture aperture distribution can be estimated by filling the fracture with a dyed liquid, and making pointwise measurements of the intensity of transmitted light.

Persoff, P.; Pruess, K.; Myer, L.

1991-01-01T23:59:59.000Z

378

Experimental determination of the relationship between permeability and microfracture-induced damage in bedded salt  

SciTech Connect

The development of deep underground structures (e.g., shafts, mines, storage and disposal caverns) significantly alters the stress state in the rock near the structure or opening. The effect of such an opening is to concentrate the far-field stress near the free surface. For soft rock such as salt, the concentrating effect of the opening induces deviatoric stresses in the salt that may be large enough to initiate microcracks which then propagate with time. The volume of rock susceptible to damage by microfracturing is often referred to as the disturbed rock zone and, by its nature, is expected to exhibit high permeability relative to that of the native, far-field rock. This paper presents laboratory data that characterize microfracture-induced damage and the effect this damage has on permeability for bedded salt from the Waste Isolation Pilot Plant located in southeastern New Mexico. Damage is induced in the salt through a series of tertiary creep experiments and quantified in terms of dilatant volumetric strain. The permeability of damaged specimens is then measured using nitrogen gas as the permeant. The range in damage investigated included dilatant volumetric strains from less than 0.03 percent to nearly 4.0 percent. Permeability values corresponding to these damage levels ranged from 1 {times} 10{sup {minus}18} m{sup 2} to 1 {times} 10{sup {minus}12} m{sup 2}. Two simple models were fitted to the data for use in predicting permeability from dilatant volumetric strain.

Pfeifle, T.W. [RE/SPEC Inc., Rapid City, SD (United States); Brodsky, N.S.; Munson, D.E. [Sandia National Labs., Albuquerque, NM (United States)

1998-03-01T23:59:59.000Z

379

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics  

E-Print Network (OSTI)

Fall 2011 ME 542 Advanced Fluid Mechanics ENG ME 542 Advanced Fluid Mechanics Instructor: M. S. Howe EMA 218 mshowe@bu.edu This course is intended to consolidate your knowledge of fluid mechanics specialized courses on fluid mechanics, acoustics and aeroacoustics. Outline syllabus: Equations of motion

380

DISTRIBUTION CATEGORY  

Office of Scientific and Technical Information (OSTI)

DISTRIBUTION CATEGORY DISTRIBUTION CATEGORY uc-11 I A W E N C E LIVERMORE IABORATORY University of Cahfmia/Livermore, California/94550 UCRL-52658 CALCULATION OF CHEMICAL EQUILIBRIUM BETWEEN AQUEOUS SOLUTION AND MINERALS: THE EQ3/6 - - SOFTWARE PACKAGE T. J. Wolery MS. date: February 1, 1979 . . - . . - . Tho rcpon rn prepared as an account of work sponsored by the United Stater Government. Seither Lhc Urutcd Stater nor the Umted Stater Department of Energy, nor any of their employees. nor any of their E O ~ ~ ~ B C I O I S . rubcontracton. o r their employees. makes any warranr)., exprcs or !mplwd. or assumes any legal liability or respanability io: the ~ c c u o c y . complctencn or uvfulneu of any miormarlon. apparatcr. product or p r o m s dtwlorcd. or r c p r e v n u that its UP would not infringe privately owned r

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Heat transfer in porous media with fluid phase changes  

DOE Green Energy (OSTI)

A one-dimensional experimental apparatus was built to study the heat pipe phenomenon. Basically, it consists of a 25 cm long, 2.5 cm I.D. Lexane tube packed with Ottawa sand. The two ends of the tube were subjected to different tempratures, i.e., one above the boiling temperature and the other below. The tube was well insulated so that a uniform one-dimensional heat flux could pass through the sand pack. Presence of the heat pipe phenomenon was confirmed by the temperature and saturation profiles of the sand pack at the final steady state condition. A one-dimensional steady state theory to describe the experiment has been developed which shows the functional dependence of the heat pipe phenomenon on liquid saturation gradient, capillary pressure, permeability, fluid viscosity, latent heat, heat flux and gravity. Influence of the heat pipe phenomenon on wellbore heat losses was studied by use of a two-phase two-dimensional cylindrical coordinate computer model.

Su, H.J.

1981-06-01T23:59:59.000Z

382

Workshop on momentum distributions: Summary  

SciTech Connect

This has been an extraordinary Workshop touching many branches of physics. The Workshop has treated momentum distributions in fluid and solid condensed matter, in nuclei, and in electronic systems. Both theoretical and experimental concepts and methods have been considered in all these branches. A variety of specific illustrations and applications in physical systems have been presented. One finds that some common unifying themes emerge. One finds, also, that some examples are available to illustrate where one branch is more mature than others and to contrast where expectations for future progress may be most encouraged. 6 refs., 2 figs.

Simmons, R.O.

1988-01-01T23:59:59.000Z

383

Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Cañon City, Colorado, Uranium Mill  

Energy.gov (U.S. Department of Energy (DOE))

Performance Assessment and Recommendations for Rejuvenation of a Permeable Reactive Barrier: Cotter Corporation’s Canon City, Colorado, Uranium Mill (April 2005)

384

In situ permeability modification using gelled polymer systems. Annual report, April 11, 1997--April 10, 1998  

Science Conference Proceedings (OSTI)

Results from a research program on the application of gelled polymer technology for in situ permeability modification are presented in this report. The objective of this technology when used with displacement processes such as waterflooding is to reduce the permeability in fractures and/or high permeability matrix zones to improve volumetric sweep efficiency of the displacement process. In production wells, the objective is to reduce water influx. The research program focused on five areas: Gel treatment in fractured systems; Gel treatment in carbonate rocks; In-depth placement of gels; Gel systems for application in carbon dioxide flooding; and Gel treatment in production wells. The research program is primarily an experimental program directed toward improving the understanding of gelled polymer systems and how these systems can be used to increase oil recovery from petroleum reservoirs. A summary of progress for research conducted in the second 12 month period of a 28 month program is described.

Green, D.W.; Willhite, G.P.; McCool, C.S.; Heppert, J.A.; Vossoughi, S.; Michnick, M.J.

1998-09-01T23:59:59.000Z

385

The change in permeability spectra due to ion irradiation in the Co-based amorphous ribbon  

SciTech Connect

The Ar ion has been irradiated by an ion implanter with energy of 50, 70, and 100 keV and an ion dosage was set to 1.0x10{sup 17} ion/cm{sup 2} at a beam flux of 3.7 {mu}A/cm{sup 2}. The ion irradiation decreased the initial permeability and increased the relaxation frequency, and the behavior of permeability spectra due to ion irradiation was explained with damped harmonic model of domain wall on the general basis of magnetization mechanism. The ion irradiation gives rise to a significant change on the restoring force of domain wall but minor effect on the spin rotation. The enhancement in the permeability of the amorphous ribbon upon ion irradiation leads to a parallel improvement of giant magneto impedance response of the material, which is of practical use for sensing applications.

Park, D. G.; Song, H.; Cheong, Y. M. [Korea Atomic Energy Research Institute, Yuseong, P.O. Box 105, Daejeon 305-600 (Korea, Republic of); Park, C. Y. [Department of Physics, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, C. G. [Department of Materials Engineering, Chungnam National University, Daejeon 305-764 (Korea, Republic of)

2009-04-01T23:59:59.000Z

386

Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

Fluid Inclusion Analysis Fluid Inclusion Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Fluid Inclusion Analysis Details Activities (20) Areas (11) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Fluid Lab Analysis Parent Exploration Technique: Fluid Lab Analysis Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Fluid composition at a point in time and space Thermal: The minimum temperature of fluid inclusion formation Cost Information Low-End Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample Median Estimate (USD): 17.571,757 centUSD 0.0176 kUSD 1.757e-5 MUSD 1.757e-8 TUSD / sample High-End Estimate (USD): 26.782,678 centUSD

387

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

tion driven heat transfer for distributed pipe flows: Thepipe wall, is described by a lumped approach based on a heatpipe flow model still needs to add the source terms Qb_flow and Wb_flow for heat and

Franke, Rudiger

2010-01-01T23:59:59.000Z

388

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

389

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Supply and Disposition by State, 1996 Table State Estimated Proved Reserves (dry) Marketed Production Total Consumption Alabama................................................................... 3.02 2.69 1.48 Alaska ...................................................................... 5.58 2.43 2.04 Arizona..................................................................... NA 0 0.55 Arkansas.................................................................. 0.88 1.12 1.23 California.................................................................. 1.25 1.45 8.23 Colorado .................................................................. 4.63 2.90 1.40 Connecticut.............................................................. 0 0 0.58 D.C...........................................................................

390

Absolute permeability as a function of confining pressure, pore pressure and temperature  

SciTech Connect

This work is an investigation of the absolute permeability of unconsolidated sand and consolidated sandstone cores to distilled water as a function of the temperature of the system, confining pressure on the core and the pore pressure of the flowing liquid. The results of this study indicate that temperatures is not an important variable that needs to be reproduced in the laboratory. Confining pressure and pore pressure affect permeability in a predictable manner. This allows measurements at a lower pressure level to be extrapolated to higher pressure conditions. 21 refs.

Gobran, B.D.; Brigham, W.E.; Ramey, H.J. Jr.

1981-01-01T23:59:59.000Z

391

Evalution of low permeability gas-bearing formations in Rio Blanco county, Colorado  

SciTech Connect

The stimulation of low permeability sandstone reservoirs utilizing nuclear explosives for increased gas production in Rio Blanco County, Colorado, has been and is continuing to be investigated. Since these low permeability reservoirs will require a rather extensive testing program over a long period of time to ascertain the actual gas productivity, special emphasis has been placed on the evaluation of core and well log data. Based upon actual field examples, this evaluation study discusses the geology, lithologic variations, and the effect of several rock parameters on the analysis and interpretation of the well log data and core analysis. (13 refs.)

Boardman, C.R.; Hammack, G.W.; Fertl, W.H.; Atkinson, C.H.

1972-01-01T23:59:59.000Z

392

L-FVM for Unsteady Seepage Flow in Low Permeability Coalbed  

SciTech Connect

The significant feature of coalbed in China is the low permeability. A new unsteady seepage flow model isdeveloped for the low permeability coalbed by considering the startup pressure gradient and methane desorption effect.Since the complexity of the problem, a new method which we call it ''L-FVM'' is developed, based on comparing the normal numerical calculation methods and comprehension research on FVM. The results show that L-FVM has the same precission but higher calculating velocity than normal FVM. This result is very important for monitoring the area pressure drawdown in coalbed methane engineering

Liu, Y. W.; Su, Z. L. [Key Laboratory of Environment Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190 (China); Niu, C. C.; Cai, Q.; Li, H. S. [Beijing Technology and Business University, Beijing 100048 (China); Zhao, P. H.; Zhou, X. H.; Lu, Q. [Coalbed Methane Ltd. Company, Petrochina, Beijing 100028 (China)

2011-09-28T23:59:59.000Z

393

Observation and analysis of a pronounced permeability and porosity scale-effect in unsaturated fractured tuff  

SciTech Connect

Over 270 single-hole (Guzman et d., 1996) and 44 cross-hole pneumatic injection tests (Illman et al., 1998; Illman, 1999) have been conducted at the Apache Leap Research Site (ALRS) near Superior, Arizona. They have shown that the pneumatic pressure behavior of fractured tuff at the site is amenable to analysis by methods which treat the rock as a continuum on scales ranging from meters to tens of meters, and that this continuum is representative primarily of interconnected fractures. Both the single-hole and cross-hole test results are free of skin effect. Single-Role tests have yielded estimates of air permeability at various locations throughout the tested rock volume, on a nonind support scale of about 1 m. The corresponding log permeability data exhibit. spatial behavior characteristic of a random fractal and yield a kriged estimate (Fig. 1) of how these 1-m scale log permeabilities vary in three-dimemional space (Chen et al., 2000). Cross-hole tests have been analyzed by means of a thee-dimensional inverse model (Vesselinov et al., 2000) in two ways: (a) by interpreting pressure 1n:ccirds from individual borehole monitoring intervals, one at a time, while treating the rock as if it was spatially uniform; and (b) by using the inverse model to interpret pressure records from multiple tests and borehole monitoring intervals simultaneously, while treating the rock as a random fractal characterized by a power variogram. The first approach has yielded equivalent air permeabilities and air-filled porosities for a rock volume characterized by a length-scale of several tens of meters. Comparable results have been obtained by means of type-curves (Illman and Neuman, 2001). The second approach mounts to three-tlimensional pneumatic tomography, or stochastic imaging, of the rock. It has yielded a high-resolution geostatistical estimate of how air permeability and air-filled porosity, defined over grid blocks having a length-scale of 1 m, vary throughout the modeled rock volume (Fig.2). These tomographic images are compwable to those obtained by the kriging of 1-rn scale log permeability data from single-hole tests (Fig. 1). The results reveal a highly pronounced scale effect in permeability and porosity at the ALRS. We analyze the scaling of permeability at the site on ihe basis of a recent theory, which is consistent with our representation of the rack as a random fractal.

Illman, W. A. (Walter A.); Hyun, Y. (Yunjung); Neuman, S. P.; Di Federico, V. (Vittorio); Tartakovsky, D. M. (Daniel M.); Vesselinov, V. V. (Velimir V.)

2001-01-01T23:59:59.000Z

394

Chemical Signatures of and Precursors to Fractures Using Fluid Inclusion Stratigraphy  

Science Conference Proceedings (OSTI)

Enhanced Geothermal Systems (EGS) are designed to recover heat from the subsurface by mechanically creating fractures in subsurface rocks. Open or recently closed fractures would be more susceptible to enhancing the permeability of the system. Identifying dense fracture areas as well as large open fractures from small fracture systems will assist in fracture stimulation site selection. Geothermal systems are constantly generating fractures (Moore, Morrow et al. 1987), and fluids and gases passing through rocks in these systems leave small fluid and gas samples trapped in healed microfractures. These fluid inclusions are faithful records of pore fluid chemistry. Fluid inclusions trapped in minerals as the fractures heal are characteristic of the fluids that formed them, and this signature can be seen in fluid inclusion gas analysis. This report presents the results of the project to determine fracture locations by the chemical signatures from gas analysis of fluid inclusions. With this project we hope to test our assumptions that gas chemistry can distinguish if the fractures are open and bearing production fluids or represent prior active fractures and whether there are chemical signs of open fracture systems in the wall rock above the fracture. Fluid Inclusion Stratigraphy (FIS) is a method developed for the geothermal industry which applies the mass quantification of fluid inclusion gas data from drill cuttings and applying known gas ratios and compositions to determine depth profiles of fluid barriers in a modern geothermal system (Dilley, 2009; Dilley et al., 2005; Norman et al., 2005). Identifying key gas signatures associated with fractures for isolating geothermal fluid production is the latest advancement in the application of FIS to geothermal systems (Dilley and Norman, 2005; Dilley and Norman, 2007). Our hypothesis is that peaks in FIS data are related to location of fractures. Previous work (DOE Grant DE-FG36-06GO16057) has indicated differences in the chemical signature of fluid inclusions between open and closed fractures as well as differences in the chemical signature of open fractures between geothermal systems. Our hypothesis is that open fracture systems can be identified by their FIS chemical signature; that there are differences based on the mineral assemblages and geology of the system; and that there are chemical precursors in the wall rock above open, large fractures. Specific goals for this project are: (1) To build on the preliminary results which indicate that there are differences in the FIS signatures between open and closed fractures by identifying which chemical species indicate open fractures in both active geothermal systems and in hot, dry rock; (2) To evaluate the FIS signatures based on the geology of the fields; (3) To evaluate the FIS signatures based on the mineral assemblages in the fracture; and (4) To determine if there are specific chemical signatures in the wall rock above open, large fractures. This method promises to lower the cost of geothermal energy production in several ways. Knowledge of productive fractures in the boreholes will allow engineers to optimize well production. This information can aid in well testing decisions, well completion strategies, and in resource calculations. It will assist in determining the areas for future fracture enhancement. This will develop into one of the techniques in the 'tool bag' for creating and managing Enhanced Geothermal Systems.

Lorie M. Dilley

2011-03-30T23:59:59.000Z

395

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Kronberg, James W. (Aiken, SC)

1995-01-01T23:59:59.000Z

396

A new method for determining dominant fluid flow paths during hydraulic fracturing  

DOE Green Energy (OSTI)

Although hydraulic fracturing is a method that has been applied for many years to increase fracture permeability of reservoirs, there is no direct way other than drilling additional boreholes to determine where the injected fluid has gone and thus what direction fractures have propagated. Information about fluid flow paths is important for designing subsequent fracturing operations for nearby wells or for choosing a trajectory for a second well to drill through the fracture system, and thus create a hot dry rock geothermal energy reservoir. A method has been developed for determining the orientations and locations of fractures along which fluid flows during hydraulic fracturing. The method is based on accurate determination of the locations of microseismic events, or microearthquakes, that accompany the hydraulic injection. The method has been applied to data collected during a massive hydraulic fracturing experiment carried out as part of the hot dry rock project. Planes with five different orientations were found in the data. The planes determined using the method intersect the injection borehole and a second, nearby borehole, in regions where other data indicate that fractures are present.

Fehler, M.

1987-01-01T23:59:59.000Z

397

Transport in shales and the design of improved water-based shale drilling fluids  

Science Conference Proceedings (OSTI)

Transport of water and ions in shales and its impact on shale stability were studied to facilitate the improvement of water-based muds as shale drilling fluids. Transport parameters associated with flows driven by gradients in pressure and chemical potential were quantified in key laboratory and full-scale experiments. The experimental results show that the low-permeability matrices of intact, clay-rich shales can act as imperfect or leaky membranes that will sustain osmotic flow of water. Moreover, the ability of shales to act as osmotic membranes is shown to provide a powerful new means for stabilizing these rocks when exposed to water-based drilling fluids. Guidelines are presented for effective exploitation of shale membrane action and induced osmotic flows through optimized water-based drilling fluid formulation. In addition, special attention is given to induced electro-osmotic water flow in shales driven by electric potential gradients, which may provide an exciting, new, environmentally benign means for stabilizing shale formations.

Oort, E. van; Hale, A.H.; Mody, F.K.; Roy, S.

1996-09-01T23:59:59.000Z

398

Fluid limits of many-server queues with reneging  

E-Print Network (OSTI)

This work considers a many-server queueing system in which impatient customers with i.i.d., generally distributed service times and i.i.d., generally distributed patience times enter service in the order of arrival and abandon the queue if the time before possible entry into service exceeds the patience time. The dynamics of the system is represented in terms of a pair of measure-valued processes, one that keeps track of the waiting times of the customers in queue and the other that keeps track of the amounts of time each customer being served has been in service. Under mild assumptions, essentially only requiring that the service and reneging distributions have densities, as both the arrival rate and the number of servers go to infinity, a law of large numbers (or fluid) limit is established for this pair of processes. The limit is shown to be the unique solution of a coupled pair of deterministic integral equations that admits an explicit representation. In addition, a fluid limit for the virtual waiting ti...

Kang, Weining; 10.1214/10-AAP683

2010-01-01T23:59:59.000Z

399

Apparatus for unloading pressurized fluid  

DOE Patents (OSTI)

An apparatus is described for unloading fluid, preferably pressurized gas, from containers in a controlled manner that protects the immediate area from exposure to the container contents. The device consists of an unloading housing, which is enclosed within at least one protective structure, for receiving the dispensed contents of the steel container, and a laser light source, located external to the protective structure, for opening the steel container instantaneously. The neck or stem of the fluid container is placed within the sealed interior environment of the unloading housing. The laser light passes through both the protective structure and the unloading housing to instantaneously pierce a small hole within the stem of the container. Both the protective structure and the unloading housing are specially designed to allow laser light passage without compromising the light's energy level. Also, the unloading housing allows controlled flow of the gas once it has been dispensed from the container. The external light source permits remote operation of the unloading device. 2 figures.

Rehberger, K.M.

1994-01-04T23:59:59.000Z

400

Distribution Category:  

Office of Legacy Management (LM)

- - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist Radiological Survey Group Health Physics Section Occupational Health and Safety Division April 1984 Work Performed under Budget Activity DOE KN-03-60-40 and ANL 73706 iii PREFACE AND EXECUTIVE SUMMARY This is one in a series of reports resulting from a program initiated

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Percent Distribution  

Gasoline and Diesel Fuel Update (EIA)

. . Percent Distribution of Natural Gas Delivered to Consumers by State, 1996 Table State Residential Commercial Industrial Vehicle Fuel Electric Utilities Alabama..................................... 1.08 0.92 2.27 0.08 0.23 Alaska ........................................ 0.31 0.87 0.85 - 1.16 Arizona....................................... 0.53 0.92 0.30 3.91 0.70 Arkansas.................................... 0.88 0.98 1.59 0.11 1.24 California.................................... 9.03 7.44 7.82 43.11 11.64 Colorado .................................... 2.12 2.18 0.94 0.58 0.20 Connecticut................................ 0.84 1.26 0.37 1.08 0.38 D.C............................................. 0.33 0.52 - 0.21 - Delaware.................................... 0.19 0.21 0.16 0.04 0.86 Florida........................................

402

Parton distributions.  

E-Print Network (OSTI)

-section for the virtual photon-proton interaction can be written in the factorized form ?(ep ? eX) = ? i CDISi (x, ?s(Q2))? fi(x,Q2) where Q2 is the photon virtuality, x = Q22m? , the mo- mentum fraction of parton (?=energy transfer in the lab frame), and the fi(x,Q2... distribution comes from inclusive jet measure- ments by D0 and CDF at Tevatron. They mea- 0 50 100 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 Dc 2 k Valence quarks Figure 6. ??2 against the isospin violating parameter ?. sure d?/dET d? for central rapidity CDF...

Thorne, Robert S

403

Controlling the fluid-fluid mixing-demixing phase transition with electric fields  

E-Print Network (OSTI)

We review recent theoretical advances on controlling the fluid-fluid phase transition with electric fields. Using a mean-field approach, we compare the effects of uniform versus non-uniform electric fields, and show how non-uniform fields are better at altering the phase diagram. Focusing on non-uniform fields, we then discuss the behavior of the fluid concentration profile and the parameters (temperature, fluid concentration, etc.) that control the location of the fluid-fluid interface from both equilibrium and dynamic perspectives.

Jennifer Galanis; Sela Samin; Yoav Tsori

2012-12-06T23:59:59.000Z

404

Use of X-Ray Computed Microtomography to Understand Why Gels Reduce Permeability to Water More Than That to Oil  

E-Print Network (OSTI)

That to Oil R. S. Seright * , New Mexico Petroleum Recovery Research Center J. Liang, Idaho National was used to investigate why gels reduce permeability to water more than that to oil in strongly water 80 to 90 times more than that to oil. In Berea, the gel caused disproportionate permeability

New York at Stoney Brook, State University of

405

Development of Cost-Effective Low-Permeability Ceramic and Refractory Components for Aluminum Melting and Casting  

DOE Green Energy (OSTI)

A recent review by the U.S. Advanced Ceramics Association, the Aluminum Association, and the U.S. Department of Energy's Office of Industrial Technologies (DOE/OIT) described the status of advanced ceramics for aluminum processing, including monolithics, composites, and coatings. The report observed that monolithic ceramics (particularly oxides) have attractive properties such as resistance to heat, corrosion, thermal shock, abrasion, and erosion [1]. However, even after the developments of the past 25 years, there are two key barriers to commercialization: reliability and cost-effectiveness. Industry research is therefore focused on eliminating these barriers. Ceramic coatings have likewise undergone significant development and a variety of processes have been demonstrated for applying coatings to substrates. Some processes, such as thermal barrier coatings for gas turbine engines, exhibit sufficient reliability and service life for routine commercial use. Worldwide, aluminum melting and molten metal handling consumes about 506,000 tons of refractory materials annually. Refractory compositions for handling molten aluminum are generally based on dense fused cast silica or mullite. The microstructural texture is extremely important because an interlocking mass of coarser grains must be bonded together by smaller grains in order to achieve adequate strength. At the same time, well-distributed microscopic pores and cracks are needed to deflect cracks and prevent spalling and thermal shock damage [2]. The focus of this project was to develop and validate new classes of cost-effective, low-permeability ceramic and refractory components for handling molten aluminum in both smelting and casting environments. The primary goal was to develop improved coatings and functionally graded materials that will possess superior combinations of properties, including resistance to thermal shock, erosion, corrosion, and wetting. When these materials are successfully deployed in aluminum smelting and casting operations, their superior performance and durability will give end users marked improvements in uptime, defect reduction, scrap/rework costs, and overall energy savings resulting from higher productivity and yield. The implementation of results of this program will result in energy savings of 30 trillion Btu/year by 2020. For this Industrial Materials for the Future (IMF) project, riser tube used in the low-pressure die (LPD) casting of aluminum was selected as the refractory component for improvement. In this LPD process, a pressurized system is used to transport aluminum metal through refractory tubes (riser tubes) into wheel molds. It is important for the tubes to remain airtight because otherwise, the pressurized system will fail. Generally, defects such as porosity in the tube or cracks generated by reaction of the tube material with molten aluminum lead to tube failure, making the tube incapable of maintaining the pressure difference required for normal casting operation. Therefore, the primary objective of the project was to develop a riser tube that is not only resistant to thermal shock, erosion, corrosion, and wetting, but is also less permeable, so as to achieve longer service life. Currently, the dense-fused silica (DFS) riser tube supplied by Pyrotek lasts for only 7 days before undergoing failure. The following approach was employed to achieve the goal: (1) Develop materials and methods for sealing surface porosity in thermal-shock-resistant ceramic refractories; (2) Develop new ceramic coatings for extreme service in molten aluminum operations, with particular emphasis on coatings based on highly stable oxide phases; (3) Develop new monolithic refractories designed for lower-permeability applications using controlled porosity gradients and particle size distributions; (4) Optimize refractory formulations to minimize wetting by molten aluminum, and characterize erosion, corrosion, and spallation rates under realistic service conditions; and (5) Scale up the processing methods to full-sized components and perform field testi

Kadolkar, Puja [ORNL; Ott, Ronald D [ORNL

2006-02-01T23:59:59.000Z

406

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an  

Open Energy Info (EERE)

In situ stress, fracture, and fluid flow analysis in Well 38C-9: an In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: In situ stress, fracture, and fluid flow analysis in Well 38C-9: an enhanced geothermal system in the Coso geothermal field Abstract Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

407

IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED  

Open Energy Info (EERE)

FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Details Activities (2) Areas (1) Regions (0) Abstract: Geoscientists from the Coso Operating Company, EGI-Utah, GeoMechanics International, and the U.S. Geological Survey are cooperating in a multi-year study to develop an Enhanced Geothermal System (EGS) in the Coso Geothermal Field. Key to the creation of an EGS is an understanding of the relationship among natural fracture distribution, fluid flow, and the ambient tectonic stresses that exist within the resource in order to design

408

Annual Logging Symposium, June 22-26, 2013 FAST ESTIMATION OF PERMEABILITY FROM FORMATION-TESTER  

E-Print Network (OSTI)

permeability (or mobility) from transient measurements of pressure and fractional flow. We develop a new method was prepared for presentation at the SPWLA 54th Annual Logging Symposium held in New Orleans, Louisiana, June mobility because more streamlines track flow into probes from large-mobility layers. In the presence of 5

Torres-Verdín, Carlos

409

Effect of temperature on oil/water relative permeabilities of unconsolidated and consolidated sands  

SciTech Connect

Over the last 20 years, a number of studies have reported temperature effects on two-phase relative permeabilities in porous media. However, some of the reported results have been contradictory. Also, observed effects have not been explained in terms of fundamental properties known to govern two-phase flow. The purpose of this study was to attempt to isolate the fundamental properties affecting two-phase relative permeabilities at elevated temperature. Laboratory dynamic displacement relative permeability measurements were made on unconsolidated and consolidated sand cores, using water and a refined white mineral oil. Experiments were run on 2 in. (51 mm) diameter, 20 in. (510 mm) long cores from room temperature to 300/sup 0/F (149/sup 0/C). Unlike the results of previous researchers, essentially no changes with temperatures were observed in either residual saturations or relative permeability relationships. It was concluded that previous results may have been affected by viscous instabilities, capillary end-effects, and/or difficulties in maintaining material balances.

Miller, M.A.; Ramey, H.J.

1983-10-01T23:59:59.000Z

410

Evidence of Pressure Dependent Permeability in Long-Term Shale Gas Production and Pressure Transient Responses  

E-Print Network (OSTI)

The current state of shale gas reservoir dynamics demands understanding long-term production, and existing models that address important parameters like fracture half-length, permeability, and stimulated shale volume assume constant permeability. Petroleum geologists suggest that observed steep declining rates may involve pressure-dependent permeability (PDP). This study accounts for PDP in three potential shale media: the shale matrix, the existing natural fractures, and the created hydraulic fractures. Sensitivity studies comparing expected long-term rate and pressure production behavior with and without PDP show that these two are distinct when presented as a sequence of coupled build-up rate-normalized pressure (BU-RNP) and its logarithmic derivative, making PDP a recognizable trend. Pressure and rate field data demonstrate evidence of PDP only in Horn River and Haynesville but not in Fayetteville shale. While the presence of PDP did not seem to impact the long term recovery forecast, it is possible to determine whether the observed behavior relates to change in hydraulic fracture conductivity or to change in fracture network permeability. As well, it provides insight on whether apparent fracture networks relate to an existing natural fracture network in the shale or to a fracture network induced during hydraulic fracturing.

Vera Rosales, Fabian 1986-

2012-12-01T23:59:59.000Z

411

Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading  

Science Conference Proceedings (OSTI)

A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs.

Girrens, S.P.; Farrar, C.R.

1991-07-01T23:59:59.000Z

412

The Study of Permeability Change of Fractal Under Fracturing Basing on Damage Theory  

Science Conference Proceedings (OSTI)

In order to research the evolution of permeability and damage of fractal rock under hydraulic fracturing, a new damage variable that describing relative reduction of pore amounts as radius is bigger than r any fracturing stage is defined. Assuming the ... Keywords: damagey, fracta, permeabilit

Zhao Wanchun; Ai Chi

2010-08-01T23:59:59.000Z

413

A PERMEABLE ACTIVE AMENDMENT CONCRETE (PAAC) FOR CONTAMINANT REMEDIATION AND EROSION CONTROL  

Science Conference Proceedings (OSTI)

The final project report for SEED SERDP ER - 2134 describes the development of permeable active amendment concrete (PAAC), which was evaluated through four tasks: 1) development of PAAC; 2) assessment of PAAC for contaminant removal; 3) evaluation of promising PAAC formulations for potential environmental impacts; and 4) assessment of the hydraulic, physical, and structural properties of PAAC. Conventional permeable concrete (often referred to as pervious concrete) is concrete with high porosity as a result of an extensive and interconnected void content. It is made from carefully controlled amounts of water and cementitious materials used to create a paste that forms a coating around aggregate particles. The mixture has a substantial void content (e.g., 15% - 25%) that results in a highly permeable structure that drains quickly. In PAAC, the aggregate material is partly replaced by chemically-active amendments that precipitate or adsorb contaminants in water that flows through the concrete interstices. PAAC combines the relatively high structural strength, ample void space, and water permeability of pervious concrete with the contaminant sequestration ability of chemically-active amendments to produce a new material with superior durability and ability to control contaminant mobility. The high surface area provided by the concrete interstices in PAAC provides significant opportunity for contaminants to react with the amendments incorporated into the concrete matrix. PAAC has the potential to immobilize a large variety of organic and inorganic contaminants by incorporating different active sequestering agents including phosphate materials (rock phosphate), organoclays, zeolite, and lime individually or in combinations.

Knox, A.; Paller, M.; Dixon, K.

2012-06-29T23:59:59.000Z

414

In-situ permeability measurements with direct push techniques: Phase II topical report  

SciTech Connect

This effort designed, fabricated, and field tested the engineering prototype of the Cone Permeameter{trademark} system. The integrated system includes the instrumented penetrometer probe, air and water pumps, flowrate controls, flow sensors, and a laptop-controlled data system. All of the equipment is portable and can be transported as luggage on airlines. The data system acquired and displays the process measurements (pressures, flows, and downhole temperature) in real time and calculates the resulting permeability. The measurement probe is a 2 inch diameter CPT rod section, incorporating a screened injection zone near the lower end of the rod and multiple sensitive absolute pressure sensors embedded in the probe at varying distances from the injection zone. Laboratory tests in a large test cell demonstrated the system's ability to measure nominally 1 Darcy permeability soil (30 to 40 Darcy material had been successfully measured in the Phase 1 effort). These tests also provided a shakedown of the system and identified minor instrument problems, which were resolved. Supplemental numerical modeling was conducted to evaluate the effects of layered permeability (heterogeneity) and anisotropy on the measurement system's performance. The general results of the analysis were that the Cone Permeameter could measure accurately, in heterogeneous media, the volume represented by the sample port radii if the outer pressure ports were used. Anisotropic permeability, while readily analyzed numerically, is more complicated to resolve with the simple analytical approach of the 1-D model, and will need further work to quantify. This phase culminated in field demonstrations at the DOE Savannah River Site. Saturated hydraulic conductivity measurements were completed at the D-Area Coal Pile Runoff Basin, and air permeability measurements were conducted at the M Area Integrated Demonstration Site and the 321 M area. The saturated hydraulic conductivity measurements were the most successful and compared well to relevant existing data. Air permeability measurements were more problematic, primarily due to clay covering pressure measuring ports and preventing pressure communication with the sensors. Very little discreet air permeability data existed for the sites.

Lowry, W.; Mason, N.; Chipman, V.; Kisiel, K.; Stockton, J.

1999-03-01T23:59:59.000Z

415

Valve for controlling flow of cryogenic fluid  

DOE Patents (OSTI)

A valve is provided for accurately controlling the flow of cryogenic fluids such as liquid nitrogen. The valve comprises a combination of disc and needle valves affixed to a valve stem in such a manner that the disc and needle are free to rotate about the stem, but are constrained in lateral and vertical movements. This arrangement provides accurate and precise fluid flow control and positive fluid isolation.

Knapp, P.A.

1995-12-31T23:59:59.000Z

416

Permeability enhancement due to cold water injection: A Case Study at the Los Azufres Geothermal Field, Mexico  

DOE Green Energy (OSTI)

Pressure transient buildup and falloff data from 3 wells at the Los Azufres geothermal field have been evaluated to determine the extent to which cold water infection increases the permeability of the near-bore reservoir formation. Simultaneous analysis of the buildup and falloff data provides estimates of the permeability-thickness of the reservoir, the skin factor of the well, and the degree of permeability enhancement in the region behind the thermal front. Estimates of permeability enhancement range from a factor of 4 to 9, for a temperature change of about 150{degree}C. The permeability enhancement is attributed to thermally induced contraction and stress-cracking of the formation. 9 refs., 18 figs.

Benson, S.M.; Daggett, J.; Ortiz, J.; Iglesias, E. (Lawrence Berkeley Lab., CA (USA); Comision Federal de Electricidad, Morelia (Mexico); Instituto de Investigaciones Electricas, Cuernavaca (Mexico))

1989-04-01T23:59:59.000Z

417

Method for diverting a gaseous sand-consolidating fluid  

SciTech Connect

An unconsolidated gas-producing sand in which the permeability is layered and the productivity can be impaired by liquid blocking can be consolidated by wetting the rock surfaces with a limited amount of water, injecting a smoke which selectively reduces the permeability of the most permeable layers by depositing on their faces unconsolidated masses of substantially inert solid particles and injecting a gaseous silicon polyhalide to convert a significant proportion of the rock surface-wettingwater to a grain bonding silica gel.

Davies, D. R.; Richardson, E. A.

1980-12-30T23:59:59.000Z

418

Definition: Fluid Inclusion Analysis | Open Energy Information  

Open Energy Info (EERE)

or liquid) and occasionally mineral crystals, that are considered to represent the chemical and physical properties of a hydrothermal fluid at a single point in time and...

419

Non-invasive Ultrasonic Fluid Processing Technology ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Non-invasive Ultrasonic Fluid Processing Technology. Battelle Number(s): ...

420

Shale Gas Development Challenges: Fracture Fluids | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Centers Field Sites Power Marketing Administration Other Agencies You are here Home Shale Gas Development Challenges: Fracture Fluids Shale Gas Development Challenges: Fracture...

Note: This page contains sample records for the topic "distribution permeability fluid" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Universal Fluid Droplet Ejector - Energy Innovation Portal  

... deposition and cell-sorting applications Description A fluid ejector capable of producing micron sized droplets on demand is ... 5,943,075 (USA) ...

422

Universal fluid droplet ejector - Energy Innovation Portal  

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap ...

423

Fluid Submersible Sensing Device - Energy Innovation Portal  

The present invention relates to a fluid submersible sensing device and, more particularly, to such a device having sensing structure provided within ...

424

MODELING SUBSIDENCE DUE TO GEOTHERMAL FLUID PRODUCTION  

E-Print Network (OSTI)

compaction, computers, geothermal energy, pore-waternot MODELING SUBSIDENCE DUE T GEOTHERMAL FLUID PRODUCTION Opromise f o r developing geothermal energy i n the United

Lippmann, M.J.

2011-01-01T23:59:59.000Z

425

Theory and Modeling of Fluids Group Homepage  

Science Conference Proceedings (OSTI)

... Modeling of Fluids Group is working in consort with the University of Colorado and the Division's Cryogenics Group on a DARPA funded project to ...

2013-07-23T23:59:59.000Z

426

Evaluation of Fluid Transport Properties of Coal Bed Methane Reservoirs.  

E-Print Network (OSTI)

??Determination of petro-physical properties of coal bed methane (CBM) reservoirs is essential in evaluating a potential prospect for commercial exploitation. In particular, permeability is the… (more)

Alexis, Dennis Arun

2013-01-01T23:59:59.000Z

427

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater. 11 figs.

Kronberg, J.W.

1995-07-11T23:59:59.000Z

428

Immersible solar heater for fluids  

DOE Patents (OSTI)

An immersible solar heater is described comprising a light-absorbing panel attached to a frame for absorbing heat energy from the light and transferring the absorbed heat energy directly to the fluid in which the heater is immersed. The heater can be used to heat a swimming pool, for example, and is held in position and at a preselected angle by a system of floats, weights and tethers so that the panel can operate efficiently. A skid can be used in one embodiment to prevent lateral movement of the heater along the bottom of the pool. Alternative embodiments include different arrangements of the weights, floats and tethers and methods for making the heater.

Hazen, T.C.; Fliermans, C.B.

1994-01-01T23:59:59.000Z

429

Two-phase fluid density measurement with a two-beam radiation densitometer  

SciTech Connect

A densitometer consisting of two beams of radiation passing through a pipe is very useful for measuring the average density and the density distribution of inhomogeneous two-phase fluids in the pipe. The general technique is illustrated by an example. (auth)

Lassahn, G.D.

1975-01-01T23:59:59.000Z

430

The Fluid Nature of Quark-Gluon Plasma  

E-Print Network (OSTI)

Collisions of heavy nuclei at very high energies offer the exciting possibility of experimentally exploring the phase transformation from hadronic to partonic degrees of freedom which is predicted to occur at several times normal nuclear density and/or for temperatures in excess of $\\sim 170$ MeV. Such a state, often referred to as a quark-gluon plasma, is thought to have been the dominant form of matter in the universe in the first few microseconds after the Big Bang. Data from the first five years of heavy ion collisions of Brookhaven National Laboratory's Relativistic Heavy Ion Collider (RHIC) clearly demonstrate that these very high temperatures and densities have been achieved. While there are strong suggestions of the role of quark degrees of freedom in determining the final-state distributions of the produced matter, there is also compelling evidence that the matter does {\\em not} behave as a quasi-ideal state of free quarks and gluons. Rather, its behavior is that of a dense fluid with very low kinematic viscosity exhibiting strong hydrodynamic flow and nearly complete absorption of high momentum probes. The current status of the RHIC experimental studies is presented, with a special emphasis on the fluid properties of the created matter, which may in fact be the most perfect fluid ever studied in the laboratory.

W. A. Zajc

2008-02-25T23:59:59.000Z

431

A Universe with a Ghost Dark Energy and van der Waals fluid interacting with a Fluid  

E-Print Network (OSTI)

We consider a model of a Universe with Ghost Dark Energy and van der Waals fluid interacting with a fluid which was born as a result of interaction between original fluid and some other fluid existing in Universe. We suppose that Ghost Dark energy has its contribution to the model by an interaction term $Q$ and we suppose that $Q=3Hb(\\rho_{\\small{tot}}-\\rho_{GDe})$.

Martiros Khurshudyan

2013-01-26T23:59:59.000Z

432

Moisture Durability of Vapor Permeable Insulating Sheathing (Fact Sheet), Building America Case Study: Technology Solutions for New and Existing Homes, Building Technologies Office (BTO)  

Energy.gov (U.S. Department of Energy (DOE))

In this project, Building America team Building Science Corporation researched some of the ramifications of using exterior, vapor permeable insulation on retrofit walls with vapor permeable cavity insulation. Retrofit strategies are a key factor in reducing exterior building stock consumption.

433

EIA - Coal Distribution  

U.S. Energy Information Administration (EIA) Indexed Site

Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal...