National Library of Energy BETA

Sample records for distributed wind policy

  1. Distributed Wind Policy Comparison Tool

    Broader source: Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  2. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  3. Distributed Wind Policy Comparison Tool Guidebook

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets.

  4. Distributed Wind Policy Comparison Tool Website | Open Energy...

    Open Energy Info (EERE)

    TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.comdwpolicytool...

  5. Distributed Wind Policy Comparison Tool | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentdistributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in...

  6. Final Technical Report Power through Policy: "Best Practices" for Cost-Effective Distributed Wind

    SciTech Connect (OSTI)

    Rhoads-Weaver, Heather; Gagne, Matthew; Sahl, Kurt; Orrell, Alice; Banks, Jennifer

    2012-02-28

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The project's final products include the Distributed Wind Policy Comparison Tool, found at www.windpolicytool.org, and its accompanying documentation: Distributed Wind Policy Comparison Tool Guidebook: User Instructions, Assumptions, and Case Studies. With only two initial user inputs required, the Policy Tool allows users to adjust and test a wide range of policy-related variables through a user-friendly dashboard interface with slider bars. The Policy Tool is populated with a variety of financial variables, including turbine costs, electricity rates, policies, and financial incentives; economic variables including discount and escalation rates; as well as technical variables that impact electricity production, such as turbine power curves and wind speed. The Policy Tool allows users to change many of the variables, including the policies, to gauge the expected impacts that various policy combinations could have on the cost of energy (COE), net present value (NPV), internal rate of return (IRR), and the simple payback of distributed wind projects ranging in size from 2.4 kilowatts (kW) to 100 kW. The project conducted case studies to demonstrate how the Policy Tool can provide insights into 'what if' scenarios and also allow the current status of incentives to be examined or defended when necessary. The ranking of distributed wind state policy and economic environments summarized in the attached report, based on the Policy Tool's default COE results, highlights favorable market opportunities for distributed wind growth as well as market conditions ripe for improvement. Best practices for distributed wind state policies are identified through an evaluation of their effect on improving the bottom line of project investments. The case studies and state rankings were based on incentives, power curves, and turbine pricing as of 2010, and may not match the current results from the Policy Tool. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE's '20% Wind Energy by 2030' report and helping to meet COE targets. In providing a simple and easy-to-use policy comparison tool that estimates financial performance, the Policy Tool and guidebook are expected to enhance market expansion by the small wind industry by increasing and refining the understanding of distributed wind costs, policy best practices, and key market opportunities in all 50 states. This comprehensive overview and customized software to quickly calculate and compare policy scenarios represent a fundamental step in allowing policymakers to see how their decisions impact the bottom line for distributed wind consumers, while estimating the relative advantages of different options available in their policy toolboxes. Interested stakeholders have suggested numerous ways to enhance and expand the initial effort to develop an even more user-friendly Policy Tool and guidebook, including the enhancement and expansion of the current tool, and conducting further analysis. The report and the project's Guidebook include further details on possible next steps. NREL Report No. BK-5500-53127; DOE/GO-102011-3453.

  7. Distributed Wind Ordinances: Slides

    Wind Powering America (EERE)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  8. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  9. Distributed Wind 2015

    Broader source: Energy.gov [DOE]

    Distributed Wind 2015 is committed to the advancement of both distributed and community wind energy. This two day event includes a Business Conference with sessions focused on advancing the...

  10. Distributed Wind Energy Workshop

    Broader source: Energy.gov [DOE]

    Join instructor Brent Summerville for a fun and interactive workshop at Appalachian State University's Small Wind Research and Demonstration Site. Learn about a variety of distributed wind energy...

  11. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  12. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles about Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. October 1,...

  13. EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Helping Policymakers Evaluate Distributed Wind Options EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut

  14. 2014 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orell, A.; Foster, N.

    2015-08-01

    The cover of the 2014 Distributed Wind Market Report.According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment across 24 states. In 2014, America's distributed wind energy industry supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers' sales.

  15. Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution Citation Details In-Document Search Title: Spatial and Temporal Patterns of Global Onshore Wind Speed Distribution Wind power, a renewable energy source, can play an important role in electrical energy generation. Information regarding wind energy potential is important both for energy related modeling and for decision-making in the policy community. While wind speed datasets with high

  16. Distributed Wind | Open Energy Information

    Open Energy Info (EERE)

    facility's anaerobic digesters. Photo from Kathryn Craddock, NREL 16710 Distributed wind energy systems provide clean, renewable power for on-site use and help relieve...

  17. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, A. C.

    2014-08-15

    This report describes the status of the U.S. distributed wind industry in 2013; its trends, performance, market drivers and future outlook.

  18. 2013 Distributed Wind Market Report

    Broader source: Energy.gov [DOE]

    This report describes the status of the U.S. distributed wind market in 2013; its trends, performance, market drivers and future outlook.

  19. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  20. NREL: Wind Research - Small and Distributed Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small and Distributed Wind Turbine Research A distributed wind farm in Wisconsin at sunset. Photo by Todd Spink The objectives of NREL's small and distributed wind research is to increase consumer confidence in and the number of certified small wind turbines on the market through certification testing, to improve performance, and to reduce installed costs so that wind can compete in the retail electric market with other forms of distributed generation. Distributed wind applications include

  1. Assistance to States on Policies Related to Wind Energy Issues

    SciTech Connect (OSTI)

    Brown, Matthew, H; Decesaro, Jennifer; DOE Project Officer - Keith Bennett

    2005-07-15

    This final report summarizes work carried out under agreement with the US Department of Energy, related to wind energy policy issues. This project has involved a combination of outreach and publications on wind energy, with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of wind energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of meetings designed specifically for state legislators and legislative staff, responses to information requests on wind energy, and publications. The publications addressed: renewable energy portfolio standards, wind energy transmission, wind energy siting, case studies of wind energy policy, avian issues, economic development, and other related issues. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about wind information for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to wind energy in the states.

  2. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  3. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Helping Policymakers Evaluate Distributed Wind Options Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options...

  4. Fact Sheet: 2012 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Alice Orrell, Bret Barker

    2013-04-06

    This fact sheet summarizes findings from the forthcoming 2012 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2012 data.

  5. Articles about Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Articles about Distributed Wind Below are stories about distributed wind featured by the U.S. Department of Energy (DOE) Wind Program. February 26, 2016 A Pika Energy wind turbine is the newest addition to the Department of Energy's headquarters lobby in Washington, D.C. | Photo by Mike Mueller, The Hannon Group Wind Turbine Showcased in Energy Department Headquarters The Energy Department supported wind turbine innovation with Pika Energy-developing a process that cut the cost

  6. ASYMMETRIC SOLAR WIND ELECTRON DISTRIBUTIONS

    SciTech Connect (OSTI)

    Yoon, Peter H.; Kim, Sunjung; Lee, Junggi; Lee, Junhyun; Park, Jongsun; Park, Kyungsun; Seough, Jungjoon [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Hong, Jinhy [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2012-08-20

    The present paper provides a possible explanation for the solar wind electron velocity distribution functions possessing asymmetric energetic tails. By numerically solving the electrostatic weak turbulence equations that involve nonlinear interactions among electrons, Langmuir waves, and ion-sound waves, it is shown that different ratios of ion-to-electron temperatures lead to the generation of varying degrees of asymmetric tails. The present finding may be applicable to observations in the solar wind near 1 AU and in other regions of the heliosphere and interplanetary space.

  7. How Distributed Wind Works | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    How Distributed Wind Works How Distributed Wind Works Your browser does not support iframes. Distributed wind energy systems are commonly installed on, but are not limited to, residential, agricultural, commercial, industrial, and community sites, and can range in size from a 5-kilowatt turbine at a home to a multi-megawatt (MW) turbine at a manufacturing facility. Distributed wind systems are connected on the customer side of the meter to meet the onsite load or directly to distribution or

  8. ARM - Data Sharing and Distribution Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DocumentationData Sharing and Distribution Policy Policies, Plans, Descriptions Data Documentation Home Data Sharing and Distribution Policy Data Management and Documentation Plan ...

  9. DWEA July Webinar: Financing Distributed Wind

    Broader source: Energy.gov [DOE]

    Join the Distributed Wind Energy Association (DWEA) for a webinar on financing distributed wind. Presenters are Chris Diaz, Seminole Financial Services LLC, and Russell Tencer, founder and CEO of...

  10. Distributed Wind Policy Comparison Tool

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    North Carolina Solar Center. The authors would like to thank the many individuals and organizations that assisted us by providing data, thoughtful comments, and support. A...

  11. 2014 Distributed Wind Market Report

    Energy Savers [EERE]

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  12. 2014 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 2014 Distributed Wind Market Report PACIFIC NORTHWEST NATIONAL LABORATORY operated by BATTELLE for the UNITED STATES DEPARTMENT OF ENERGY under Contract DE-AC05-76RL01830 Printed in the United States of America Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831-0062; ph: (865) 576-8401 fax: (865) 576-5728 email: reports@adonis.osti.gov Available to the public from the National Technical Information Service 5301 Shawnee

  13. Solar/Wind Access Policy | Open Energy Information

    Open Energy Info (EERE)

    SolarWind Access Policy < Solar Jump to: navigation, search Solar and wind access laws are designed to establish a right to install and operate a solar or wind energy system at a...

  14. Fact Sheet: 2013 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: 2013 Distributed Wind Market Report Fact Sheet: 2013 Distributed Wind Market Report This fact sheet summarizes findings from the forthcoming 2013 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2013 data. PDF icon Fact Sheet: 2013 DISTRIBUTED WIND MARKET REPORT More Documents & Publications 2013 Distributed Wind Market Report 2014 Distributed Wind Market Report 2012 Market Report on U.S. Wind Technologies in Distributed Applications

  15. 2013 Distributed Wind Market Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Keyser, and Suzanne Tegen (National Renewable Energy Laboratory); Charles Newcomb (Endurance ... Harvest the Wind Network; Home Energy USA; Kestrel Wind Turbines; Kingspan; ...

  16. Energy Department Announces Distributed Wind Competitiveness Improvement

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Awards | Department of Energy Distributed Wind Competitiveness Improvement Project Awards Energy Department Announces Distributed Wind Competitiveness Improvement Project Awards July 24, 2014 - 3:23pm Addthis The Energy Department and the Department's National Renewable Energy Laboratory today announced funding for projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy

  17. Distributed Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Energy Association Jump to: navigation, search Name: Distributed Wind Energy Association Address: PO Box 1861 Place: Flagstaff, AZ Zip: 86002 Phone Number: 928-255-0214 Website:...

  18. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Integration Group (UVIG) and IEEE JEDI Model Version W1.09.03e 6 | Wind and ... on SWCC board * Support UVIG and IEEE in distributed generation-related ...

  19. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  20. 2014 Distributed Wind Market Report Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report Fact Sheet 2014 Distributed Wind Market Report Fact Sheet 2014-Distributed-Wind-Market-Report-Fact-Sheet_05122015_Page_1.jpg PDF icon 2014 Distributed Wind Market Report Fact Sheet More Documents & Publications 2014 Distributed Wind Market Report Fact Sheet: 2013 Distributed Wind

  1. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  2. 2013 Distributed Wind Market Report Data | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    File 2013 Distributed Wind Market Report Data Tables.xlsx More Documents & Publications Office of Legacy Management the First Decade 2003-2013 2013 Distributed Wind Market Report ...

  3. Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentdistributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  4. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  5. Request for Information for Distributed Wind Energy Systems

    Broader source: Energy.gov [DOE]

    The Energy Department’s Wind Program is seeking feedback from the wind industry, academia, research laboratories, government agencies, and other stakeholders regarding the Energy Department’s new perspective on Distributed Wind R&D.

  6. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report 2014 Distributed Wind Market Report The cover of the 2014 Distributed Wind Market Report. According to the 2014 Distributed Wind Market Report, distributed wind reached a cumulative capacity of almost 1 GW (906 MW) in the United States in 2014, reflecting nearly 74,000 wind turbines deployed across all 50 states, Puerto Rico, and the U.S. Virgin Islands. In total, 63.6 MW of new distributed wind capacity was added in 2014, representing nearly 1,700 units and $170 million in investment

  7. Updated Web Tool Focuses on Bottom Line for Distributed Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines January 10, 2013 - 2:43pm Addthis This...

  8. Updated Web Tool Focuses on Bottom Line for Distributed Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines Updated Web Tool Focuses on Bottom Line for Distributed Wind Turbines January 10, 2013 - 2:43pm Addthis This ...

  9. PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reports Distributed Wind Installations Down, Exports Up in 2013 PNNL Reports Distributed Wind Installations Down, Exports Up in 2013 March 31, 2014 - 11:14am Addthis According to the second annual Market Report on Wind Technologies in Distributed Applications soon to be published by DOE's Pacific Northwest National Laboratory, U.S. wind turbines in distributed applications reached a cumulative installed capacity of 842 MW at the end of 2013, reflecting nearly 72,000

  10. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  11. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  12. ASYMMETRIC ELECTRON DISTRIBUTIONS IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Rha, Kicheol; Ryu, Chang-Mo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)] [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Yoon, Peter H. [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)] [Institute for Physical Science and Technology, University of Maryland, College Park, MD 20742 (United States)

    2013-09-20

    A plausible mechanism responsible for producing asymmetric electron velocity distribution functions in the solar wind is investigated by means of one-dimensional electrostatic particle-in-cell (PIC) simulation. A recent paper suggests that the variation in the ion-to-electron temperature ratio influences the nonlinear wave-particle dynamics such that it results in the formation of asymmetric distributions. The present PIC code simulation largely confirms this finding, but quantitative differences between the weak turbulence formalism and the present PIC simulation are also found, suggesting the limitation of the analytical method. The inter-relationship between the asymmetric electron distribution and the ion-to-electron temperature ratio may be a new useful concept for the observation.

  13. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  14. Northwest Distributed/Community Wind Workgroup Meeting- Seattle

    Broader source: Energy.gov [DOE]

    As part of the DOE's Northwest Wind Resource and Action Center, Northwest SEED will facilitate a workgroup meeting for stakeholders involved in the distributed and community wind sector in the...

  15. Distributed Wind Case Study: Cross Island Farms, Wellesley Island...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York www.nrel.gov Baker and Belding installed a 10-kW Bergey Excel wind turbine in August 2011. Photo from ...

  16. Distributed Wind Turbines | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Image: Nathan Broaddus, Cultivate Photography Multimedia Design 9 of 11 A sailboat features a 160 W wind turbine. Image: Ken Portolese, Primus Wind Power 10 of 11 Several ...

  17. United States Wind Energy Growth and Policy Framework: Preprint

    SciTech Connect (OSTI)

    Calvert, S. D.; Hock, S. M.

    2001-07-01

    Wind is the fastest growing source for electricity in the United States. During 2001, U.S. wind power plant installations are expected to increase by 1,850 megawatts (MW), resulting in a total installed capacity of about 4,400 MW. The market expansion is supported by a variety of Federal and state incentives in the form of production tax credits, renewable energy production incentives, renewable energy portfolio standards, and others. New mechanisms include green power offerings, green tags, and government power purchases. Deregulation of the electric power industry is continuing. In some cases this is allowing higher electricity rates that may increase the rate of wind plant development. Power shortages, natural gas price increases, and enforcement of clean air laws are increasingly important wind market drivers in some regions. Continuing research and technology development has reduced wind energy costs dramatically to less than $0.04/kWh for large projects at sites with ave rage wind speeds higher than 7.0 m/s, making wind the least-cost option in some power markets. The recently published National Energy Policy contains recommendations to increase wind energy development and improve the power transmission system.

  18. Intertribal Council on Utility Policy--Wind Energy Planning and Policy Project

    Energy Savers [EERE]

    TEP 2004 INTERTRIBAL Council On Utility Policy COUP Tribes Building Sustainable Homeland Economies P.O. Box 25, Rosebud, SD 57570 Pat Spears, President - Lower Brule Reservation, SD Terry Fredericks, Vice President - Ft. Berthold Reservation, ND Bob Gough, Secretary - Rosebud Reservation, SD Sam Allen, Treasurer - Flandreau Santee Reservation, SD Rpwgough@aol.com www.EnergyIndependenceDay.org INTERTRIBAL Council On Utility Policy Intertribal Wind Planning and Policy Project (IWPP) Intertribal

  19. Wind Power Forecasting Error Distributions over Multiple Timescales: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-03-01

    In this paper, we examine the shape of the persistence model error distribution for ten different wind plants in the ERCOT system over multiple timescales. Comparisons are made between the experimental distribution shape and that of the normal distribution.

  20. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  1. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial ... of subjects, from adopting the latest energy efficiency and renewable energy ...

  2. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jennifer Jenkins of the Distributed Wind Energy Association will provide an ... energy and energy-cost savings, maintenance savings, greenhouse gas reductions, net ...

  3. Deployment Barriers to Distributed Wind Energy. Workshop Report

    SciTech Connect (OSTI)

    Ahlgrimm, Jim; Hartman, Liz; Barker, Bret; Fry, Chris; Meissner, John; Forsyth, Trudy; Baring-Gould, Ian; Newcomb, Charles

    2010-10-28

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  4. Deployment Barriers to Distributed Wind Energy: Workshop Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado. PDF icon ...

  5. WINDExchange Webinar: Small and Distributed Wind Turbine Update

    Broader source: Energy.gov [DOE]

    Save the date for this free webinar presenting an overview of recent news and updates pertaining to small and distributed wind turbines.

  6. WINDExchange Webinar: Energy Department's Distributed Wind Industry...

    Broader source: Energy.gov (indexed) [DOE]

    00PM to 4:00PM EDT When people think of wind power, they usually picture large wind projects with long rows of turbines that send energy to distant end-users, but that image...

  7. Energy Department Announces Distributed Wind Competitiveness...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    projects led by Pika Energy, Northern Power Systems, Endurance Wind Power, and Urban Green Energy that will help drive down the cost of small and medium-sized wind energy systems. ...

  8. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications Office spreadsheet icon 2012_distributed_wind_technologies_data.xls More Documents & Publications 2014 Distributed Wind Market Report 2013 Distributed Wind Market Report Data 2012 Market Report on U.S. Wind Technologies in Distributed Applications

  9. New DOE Report Reveals Significant Growth in Distributed Wind | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy DOE Report Reveals Significant Growth in Distributed Wind New DOE Report Reveals Significant Growth in Distributed Wind August 1, 2013 - 2:25pm Addthis This is an excerpt from the Second Quarter 2013 edition of the Wind Program R&D Newsletter. Washington, D.C.-This August, the U.S. Department of Energy (DOE) released the first annual market report on wind technologies used in distributed applications compiled through a collaborative effort by DOE's Pacific Northwest National

  10. U.S. Distributed Wind Sector Finds Support from NREL

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-02-02

    Small and mid-sized wind turbine manufacturers in the United States have led the international distributed wind market in installed capacity for decades. Continued reductions in the cost of distributed wind systems are essential to successfully compete with currently economical photovoltaic systems. Annual capacity additions in 2013 were particularly low. In an effort to reduce the levelized cost of energy (LCOE) of distributed wind systems manufactured in the United States, the U.S. Department of Energy (DOE) has provided funding through the National Renewable Energy Laboratory (NREL) to support several projects.

  11. NREL Distributes Wind Competitiveness Improvement Project Round Four

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Funding - News Releases | NREL NREL Distributes Wind Competitiveness Improvement Project Round Four Funding May 13, 2016 The Energy Department's (DOE) National Renewable Energy Laboratory (NREL) is awarding four subcontracts under the fourth round of funding through DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help manufacturers of small and mid-size wind turbines improve their turbine design and manufacturing processes while reducing costs and improving

  12. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010

  13. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  14. Large Distributed Solar and Wind Grant Program

    Broader source: Energy.gov [DOE]

    The Illinois Department of Commerce and Economic Opportunity (DCEO) is offering grants for community-scale solar and wind projects located in Illinois.

  15. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  16. How Do Distributed Wind Energy Systems Work? (Text Version) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy How Do Distributed Wind Energy Systems Work? (Text Version) How Do Distributed Wind Energy Systems Work? (Text Version) Below is the text version for the How Do Distributed Wind Energy Systems Work? animation. The animation shows a city powered by wind power. It includes a utility-scale wind farm, connected by transmission lines to a city with homes, farms, and a school. The animation explains how wind can be used at all of these interconnected locations. Distributed Wind Distributed

  17. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  18. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  19. Northwest Distributed/Community Wind Workgroup Meeting- MT

    Broader source: Energy.gov [DOE]

    The Northwest Wind Resource and Action Center, which is partially funded by the U.S. Department of Energy, will facilitate a workgroup meeting for stakeholders involved in the distributed and...

  20. Small Wind Guidebook/Web Resources | Open Energy Information

    Open Energy Info (EERE)

    and policies that promote renewable energy and energy efficiency. Distributed Wind Energy Association DWEA provides info about distributed and community wind, including a...

  1. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  2. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  3. Integrating wind turbines into the Orcas Island distribution system

    SciTech Connect (OSTI)

    Zaininger, H.W.

    1998-09-01

    This research effort consists of two years of wind data collection and analysis to investigate the possibility of strategically locating a megawatt (MW) scale wind farm near the end of an Orcas Power and light Company (OPALCO) 25-kilovolt (kV) distribution circuit to defer the need to upgrade the line to 69 kV. The results of this study support the results of previous work in which another year of wind data and collection was performed. Both this study and the previous study show that adding a MW-scale wind farm at the Mt. Constitution site is a feasible alternative to upgrading the OPALCO 25-kV distribution circuit to 69 kV.

  4. Policies to Support Wind Power Deployment: Key Considerations and Good Practices

    SciTech Connect (OSTI)

    Cox, Sadie; Tegen, Suzanne; Baring-Gould, Ian; Oteri, Frank A.; Esterly, Sean; Forsyth, Trudy; Baranowski, Ruth

    2015-05-19

    Policies have played an important role in scaling up wind deployment and increasing its economic viability while also supporting country-specific economic, social, and environmental development goals. Although wind power has become cost-competitive in several contexts, challenges to wind power deployment remain. Within the context of country-specific goals and challenges, policymakers are seeking

  5. Distributed Renewable Energy Finance and Policy Toolkit | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Renewable Energy Finance and Policy Toolkit AgencyCompany Organization: Clean Energy States Alliance...

  6. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  7. Technical Progress Report, Phase II Inventory of Wind Green Pricing report Fact Sheets Liability Insurance for Small Wind Energy Systems Zoning Issues for Small Wind Systems Small Wind System Slideshow Small Wind State by State Information Wind Power and Electric transmission Policy: Constructs, Constraints and Critical Path

    SciTech Connect (OSTI)

    Swisher, Randall Holt, Edward Wooley, David

    2002-05-08

    Status report on Green power Factsheets and product database. Small wind turbines as a distributed power

  8. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke ...

  9. DOE Announces Webinars on the Distributed Wind Power Market, Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Retrofits Financial Analysis Tool, and More | Department of Energy Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced

  10. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012_distributed_wind_technologies_market_report.pdf More Documents & Publications

  11. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications The 2012 Market Report on U.S. Wind Technologies in Distributed Applications is an annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012

  12. Distributed Wind Market Report: Small Turbines Lead to Big Growth in Exports

    Broader source: Energy.gov [DOE]

    Read more about how wind technology was deployed in distributed applications throughout the United States and abroad.

  13. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  14. Policy Building Blocks: Helping Policymakers Determine Policy Staging for the Development of Distributed PV Markets: Preprint

    SciTech Connect (OSTI)

    Doris, E.

    2012-04-01

    There is a growing body of qualitative and a limited body of quantitative literature supporting the common assertion that policy drives development of clean energy resources. Recent work in this area indicates that the impact of policy depends on policy type, length of time in place, and economic and social contexts of implementation. This work aims to inform policymakers about the impact of different policy types and to assist in the staging of those policies to maximize individual policy effectiveness and development of the market. To do so, this paper provides a framework for policy development to support the market for distributed photovoltaic systems. Next steps include mathematical validation of the framework and development of specific policy pathways given state economic and resource contexts.

  15. Top 10 Things You Didn't Know About Distributed Wind Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Wind Power Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two mid-sized

  16. Policies and Market Factors Driving Wind Power Development in the United States

    SciTech Connect (OSTI)

    Bird, L.; Parsons, B.; Gagliano, T.; Brown, M.; Wiser, R.; Bolinger, M.

    2003-07-01

    In the United States, there has been substantial recent growth in wind energy generating capacity, with growth averaging 24% annually during the past five years. With this growth, an increasing number of states are experiencing investment in wind energy. Wind installations currently exist in about half of all U.S. states. This paper explores the policies and market factors that have been driving utility-scale wind energy development in the United States, particularly in the states that have achieved a substantial amount of wind energy investment in recent years. Although there are federal policies and overarching market issues that are encouraging investment nationally, much of the recent activity has resulted from state-level policies or localized market drivers. In this paper, we identify the key policies, incentives, regulations, and markets affecting development, and draw lessons from the experience of leading states that may be transferable to other states or regions. We provide detailed discussions of the drivers for wind development in a dozen leading states-California, Colorado, Iowa, Kansas, Minnesota, New York, Oregon, Pennsylvania, Texas, Washington, West Virginia, and Wyoming.

  17. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    SciTech Connect (OSTI)

    Phadke, Amol; Bharvirkar, Ranjit; Khangura, Jagmeet

    2011-09-15

    We assess developable on-shore wind potential in India at three different hub-heights and under two sensitivity scenarios – one with no farmland included, the other with all farmland included. Under the “no farmland included” case, the total wind potential in India ranges from 748 GW at 80m hub-height to 976 GW at 120m hub-height. Under the “all farmland included” case, the potential with a minimum capacity factor of 20 percent ranges from 984 GW to 1,549 GW. High quality wind energy sites, at 80m hub-height with a minimum capacity factor of 25 percent, have a potential between 253 GW (no farmland included) and 306 GW (all farmland included). Our estimates are more than 15 times the current official estimate of wind energy potential in India (estimated at 50m hub height) and are about one tenth of the official estimate of the wind energy potential in the US.

  18. NREL: Distributed Grid Integration - Wind2Battery Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind2Battery Project photo of the Wind2Battery site near Luverne, Minnesota. Wind2Battery site near Luverne, Minnesota. Courtesy of Xcel Energy NREL is working with Xcel Energy to ...

  19. Using Solar Business Models to Expand the Distributed Wind Market (Presentation)

    SciTech Connect (OSTI)

    Savage, S.

    2013-05-01

    This presentation to attendees at Wind Powering America's All-States Summit in Chicago describes business models that were responsible for rapid growth in the solar industry and that may be applicable to the distributed wind industry as well.

  20. Installer Issues: Integrating Distributed Wind into Local Communities (Presentation)

    SciTech Connect (OSTI)

    Green, J.

    2006-06-01

    A presentation for the WindPower 2006 Conference in Pittsburgh, PA, regarding the issues facing installer of small wind electric systems.

  1. Distributed Wind Market Report: Small Turbines Lead to Big Growth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Image: Nathan Broaddus, Cultivate Photography Multimedia Design 9 of 11 A sailboat features a 160 W wind turbine. Image: Ken Portolese, Primus Wind Power 10 of 11 Several ...

  2. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  3. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION

    Office of Scientific and Technical Information (OSTI)

    FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA (Journal Article) | SciTech Connect THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA Citation Details In-Document Search Title: THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a

  4. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect (OSTI)

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  5. Overcoming Technical and Market Barriers for Distributed Wind Applications: Reaching the Mainstream; Preprint

    SciTech Connect (OSTI)

    Rhoads-Weaver, H.; Forsyth, T.

    2006-07-01

    This paper describes how the distributed wind industry must overcome hurdles including system costs and interconnection and installation restrictions to reach its mainstream market potential.

  6. Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010

    Broader source: Energy.gov [DOE]

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  7. Deployment Barriers to Distributed Wind Energy: Workshop Report -- October 28, 2010

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This report presents key findings from the Department of Energy's Deployment Barriers to Distributed Wind Technology Workshop, held October 28, 2010 in Denver, Colorado.

  8. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Market Report on U.S. Wind Technologies in Distributed Applications Office spreadsheet icon 2012distributedwindtechnologiesdata.xls More Documents & Publications 2014 ...

  9. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Energy Savers [EERE]

    by households, schools, farms, industrial facilities and municipalities, distributed wind doesn't only refer to small-scale turbines; it includes any size turbine or array of...

  10. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  11. Deployment Barriers to Distributed Wind Energy: Workshop Report...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    prepared by the U.S. Department of Energy Wind and Water Power Program, and was led by ... Cover photo: A Southwest Windpower Skystream wind turbine installed at the U.S. Botanic ...

  12. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The CIP aims to help U.S. manufacturers of small and mid-sized wind turbines with rotor ... Upgrades; Turbine Certification (for wind turbines with rotor swept areas less than 200 ...

  13. WINDExchange Webinar: Energy Department's Distributed Wind Industry Update

    Broader source: Energy.gov [DOE]

    When people think of wind power, they usually picture large wind projects with long rows of turbines that send energy to distant end-users, but that image doesn't convey the whole story....

  14. DOE 2012 Market Report on U.S. Wind Technologies for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy 2012 Market Report on U.S. Wind Technologies for Distributed Applications DOE 2012 Market Report on U.S. Wind Technologies for Distributed Applications April 1, 2013 - 1:10pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) will soon release its annual 2012 Market Report on U.S. Wind Technologies in Distributed Applications. This report offers clear data-based market

  15. EERE Success Story-Helping Policymakers Evaluate Distributed...

    Broader source: Energy.gov (indexed) [DOE]

    to generate their own clean electricity and cut their energy bills, while preventing greenhouse gas emissions. ... a Web-based Distributed Wind Policy Comparison Tool (Policy Tool). ...

  16. 2014 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    supported a growing domestic industrial base as exports from United States-based small wind turbine manufacturers accounted for nearly 80% of United States-based manufacturers'...

  17. Fault Detection and Load Distribution for the Wind Farm Challenge

    SciTech Connect (OSTI)

    Borchehrsen, Anders B.; Larsen, Jesper A.; Stoustrup, Jakob

    2014-08-24

    In this paper a fault detection system and a fault tolerant controller for a wind farm model. The wind farm model used is the one proposed as a public challenge. In the model three types of faults are introduced to a wind farm consisting of nine turbines. A fault detection system designed, by taking advantage of the fact that within a wind farm several wind turbines will be operating under all most identical conditions. The turbines are then grouped, and then turbines within each group are used to generate residuals for turbines in the group. The generated residuals are then evaluated using dynamical cumulative sum. The designed fault detection system is cable of detecting all three fault types occurring in the model. But there is room for improving the fault detection in some areas. To take advantage of the fault detection system a fault tolerant controller for the wind farm has been designed. The fault tolerant controller is a dispatch controller which is estimating the possible power at each individual turbine and then setting the reference accordingly. The fault tolerant controller has been compared to a reference controller. And the comparison shows that the fault tolerant controller performance better in all measures. The fault detection and a fault tolerant controller has been designed, and based on the simulated results the overall performance of the wind farm is improved on all measures. Thereby this is a step towards improving the overall performance of current and future wind farms.

  18. Zoning for Distributed Wind Power - Breaking Down Barriers: Preprint

    SciTech Connect (OSTI)

    Green, J.; Sagrillo, M.

    2005-08-01

    Zoning regulations for the use of small wind turbines vary from state to state and from one local jurisdiction to the next. This paper examines the zoning experiences of small wind turbine owners, options for local actions, and examples of state and federal limited preemption of local zoning authority as a means of promoting the implementation of new technologies.

  19. Lessons Learned from the U.S. Photovoltaic Industry and Implications for Development of Distributed Small Wind: Preprint

    SciTech Connect (OSTI)

    Forsyth, T.; Tombari, C.; Nelson, M.

    2006-06-01

    Report examining market development issues in the solar photovoltaic (PV) industry, including Federal policy infrastructure and incentives, state and local policy infrastructure, and business support,as they relate to the small wind industry.

  20. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  1. Implementing Distribution Control with a Concentration of Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... not exceeding consumer load; * The weather, consumer load data, and availability of wind assets ... 113.240.248.18 External 7824 0 7824 China Telecom Brute Force 121.96.56.11 ...

  2. Distributed Wind Resource Assessment Workshop | Open Energy Informatio...

    Open Energy Info (EERE)

    Wind Resource Assessment Workshop Jump to: navigation, search Contents 1 Introduction 1.1 Workshop Purpose 1.2 Workshop Goals 1.3 Workshop Objective 2 Panel Session 1:...

  3. Counting Jobs and Economic Impacts from Distributed Wind in the United States (Poster)

    SciTech Connect (OSTI)

    Tegen, S.

    2014-05-01

    This conference poster describes the distributed wind Jobs and Economic Development Imapcts (JEDI) model. The goal of this work is to provide a model that estimates jobs and other economic effects associated with the domestic distributed wind industry. The distributed wind JEDI model is a free input-output model that estimates employment and other impacts resulting from an investment in distributed wind installations. Default inputs are from installers and industry experts and are based on existing projects. User input can be minimal (use defaults) or very detailed for more precise results. JEDI can help evaluate potential scenarios, current or future; inform stakeholders and decision-makers; assist businesses in evaluating economic development impacts and estimating jobs; assist government organizations with planning and evaluating and developing communities.

  4. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  5. Impact of Distribution-Connected Large-Scale Wind Turbines on Transmission System Stability during Large Disturbances: Preprint

    SciTech Connect (OSTI)

    Zhang, Y.; Allen, A.; Hodge, B. M.

    2014-02-01

    This work examines the dynamic impacts of distributed utility-scale wind power during contingency events on both the distribution system and the transmission system. It is the first step toward investigating high penetrations of distribution-connected wind power's impact on both distribution and transmission stability.

  6. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  7. Analysis of the Technical and Economic Potential for Mid-Scale Distributed Wind: December 2007 - October 31, 2008

    SciTech Connect (OSTI)

    Kwartin, R.; Wolfrum, A.; Granfield, K.; Kagel, A.; Appleton, A.

    2008-12-01

    This report examines the status, restrainers, drivers, and estimated development potential of mid-scale (10 kW - 5000 kW) distributed wind energy projects.

  8. Control Strategies for Distributed Energy Resources to Maximize the Use of Wind Power in Rural Microgrids

    SciTech Connect (OSTI)

    Lu, Shuai; Elizondo, Marcelo A.; Samaan, Nader A.; Kalsi, Karanjit; Mayhorn, Ebony T.; Diao, Ruisheng; Jin, Chunlian; Zhang, Yu

    2011-10-10

    The focus of this paper is to design control strategies for distributed energy resources (DERs) to maximize the use of wind power in a rural microgrid. In such a system, it may be economical to harness wind power to reduce the consumption of fossil fuels for electricity production. In this work, we develop control strategies for DERs, including diesel generators, energy storage and demand response, to achieve high penetration of wind energy in a rural microgrid. Combinations of centralized (direct control) and decentralized (autonomous response) control strategies are investigated. Detailed dynamic models for a rural microgrid are built to conduct simulations. The system response to large disturbances and frequency regulation are tested. It is shown that optimal control coordination of DERs can be achieved to maintain system frequency while maximizing wind power usage and reducing the wear and tear on fossil fueled generators.

  9. Distributed Solar PV for Electricity System Resiliency: Policy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    other technologies, such as energy storage and auxiliary generation. Strengthening policy and regulatory support ... of Energy, San Diego Gas and Electric, the California ...

  10. Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are in .pdf format) After Hours Access Policy Booking and Login Policy Cleanroom Policy Equipment Use Policy Two-Person Rule Cleanroom Chemical List Experimental Hall Policy...

  11. Arkansas/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Arkansas Wind Resources Arkansas Energy Office: Wind AWEA State Wind Energy Statistics: Arkansas Southeastern Wind Coalition...

  12. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  13. U.S. Virgin Islands Wind Resources Update 2014 Roberts, J. O...

    Office of Scientific and Technical Information (OSTI)

    Virgin Islands Wind Resources Update 2014 Roberts, J. O.; Warren, A. 17 WIND ENERGY; 29 ENERGY PLANNING, POLICY AND ECONOMY; 24 POWER TRANSMISSION AND DISTRIBUTION U.S. VIRGIN...

  14. Projected Impact of Federal Policies on U.S. Wind Market Potential...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WinDS to calculate transmission distances, as well as the benefits of dispersed wind farms supplying power to a demand region. 1 Short, Walter; et al., May 2003, "Modeling the...

  15. DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Contracts, and More | Department of Energy Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can

  16. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  17. Long-Term Probability Distribution of Wind Turbine Planetary Bearing Loads (Poster)

    SciTech Connect (OSTI)

    Jiang, Z.; Xing, Y.; Guo, Y.; Dong, W.; Moan, T.; Gao, Z.

    2013-04-01

    Among the various causes of bearing damage and failure, metal fatigue of the rolling contact surface is the dominant failure mechanism. The fatigue life is associated with the load conditions under which wind turbines operate in the field. Therefore, it is important to understand the long-term distribution of the bearing loads under various environmental conditions. The National Renewable Energy Laboratory's 750-kW Gearbox Reliability Collaborative wind turbine is studied in this work. A decoupled analysis using several computer codes is carried out. The global aero-elastic simulations are performed using HAWC2. The time series of the drivetrain loads and motions from the global dynamic analysis are fed to a drivetrain model in SIMPACK. The time-varying internal pressure distribution along the raceway is obtained analytically. A series of probability distribution functions are then used to fit the long-term statistical distribution at different locations along raceways. The long-term distribution of the bearing raceway loads are estimated under different environmental conditions. Finally, the bearing fatigue lives are calculated.

  18. The Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Wind on Bulk Power System Operations in ISO-NE 13 th Wind Integration Workshop Carlo Brancucci Martinez-Anido, Bri-Mathias Hodge, and David Palchak (NREL); and Jari Miettinen (VTT) Berlin, Germany November 11, 2014 NREL/PR-5D00-63083 2 Motivation and Scope * Wind integration is hindered in the U.S. power system o The best wind resources are far from the main load centers o There are difficult regulatory and legal hurdles and substantial investments are required to develop new

  19. Strategic Sequencing for State Distributed PV Policies: Program Overviews (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    report finds that through strategic policy implementation, governments can successfully support renewable energy even in times when funding is limited. p r o g r a m o v e r v i e w s Strategic Sequencing for State Distributed PV Policies New analysis report aims to help state officials and policymakers expand markets for solar technologies and ultimately reduce the cost of installed solar nationwide In recent years, state and local policymakers have shown increasing interest in developing

  20. Distributed Solar Photovoltaics for Electric Vehicle Charging: Regulatory and Policy Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01

    Increasing demand for electric vehicle (EV) charging provides an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear information for policy makers, utilities and potential adopters. This paper introduces the pros and cons of EV charging during the day versus at night, summarizes the benefits and grid implications of combining solar and EV charging technologies, and offers some regulatory and policy options available to policy makers and regulators wanting to incentivize solar EV charging.

  1. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  2. Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy Wind Energy Below are resources for Tribes on wind energy technologies. 2012 Market Report on Wind Technologies in Distributed Applications Includes a breakdown of ...

  3. Variability of Load and Net Load in Case of Large Scale Distributed Wind Power

    SciTech Connect (OSTI)

    Holttinen, H.; Kiviluoma, J.; Estanqueiro, A.; Gomez-Lazaro, E.; Rawn, B.; Dobschinski, J.; Meibom, P.; Lannoye, E.; Aigner, T.; Wan, Y. H.; Milligan, M.

    2011-01-01

    Large scale wind power production and its variability is one of the major inputs to wind integration studies. This paper analyses measured data from large scale wind power production. Comparisons of variability are made across several variables: time scale (10-60 minute ramp rates), number of wind farms, and simulated vs. modeled data. Ramp rates for Wind power production, Load (total system load) and Net load (load minus wind power production) demonstrate how wind power increases the net load variability. Wind power will also change the timing of daily ramps.

  4. ON QUIET-TIME SOLAR WIND ELECTRON DISTRIBUTIONS IN DYNAMICAL EQUILIBRIUM WITH LANGMUIR TURBULENCE

    SciTech Connect (OSTI)

    Zaheer, S.; Yoon, P. H.

    2013-10-01

    A recent series of papers put forth a self-consistent theory of an asymptotically steady-state electron distribution function and Langmuir turbulence intensity. The theory was developed in terms of the ? distribution which features Maxwellian low-energy electrons and a non-Maxwellian energetic power-law tail component. The present paper discusses a generalized ? distribution that features a Davydov-Druyvesteyn type of core component and an energetic power-law tail component. The physical motivation for such a generalization is so that the model may reflect the influence of low-energy electrons interacting with low-frequency kinetic Alfvnic turbulence as well as with high-frequency Langmuir turbulence. It is shown that such a solution and the accompanying Langmuir wave spectrum rigorously satisfy the balance requirement between the spontaneous and induced emission processes in both the particle and wave kinetic equations, and approximately satisfy the similar balance requirement between the spontaneous and induced scattering processes, which are nonlinear. In spite of the low velocity modification of the electron distribution function, it is shown that the resulting asymptotic velocity power-law index ?, where f{sub e} ? v {sup ?} is close to the average index observed during the quiet-time solar wind condition, i.e., ? ? O(6.5) whereas ?{sub average} ? 6.69, according to observation.

  5. DOE 2012 Market Report on U.S. Wind Technologies for Distributed...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proximity to End Use: Wind turbines installed at or near the point of end use for the ... grid Point of Grid Interconnection: Wind turbines connected on the customer side of the ...

  6. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION FUNCTION: CONNECTION TO NANOFLARES IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Che, H.; Goldstein, M. L.

    2014-11-10

    The formation of the observed core-halo feature in the solar wind electron velocity distribution function is a long-time puzzle. In this Letter, based on the current knowledge of nanoflares, we show that the nanoflare-accelerated electron beams are likely to trigger a strong electron two-stream instability that generates kinetic Alfvn wave and whistler wave turbulence, as we demonstrated in a previous paper. We further show that the core-halo feature produced during the origin of kinetic turbulence is likely to originate in the inner corona and can be preserved as the solar wind escapes to space along open field lines. We formulate a set of equations to describe the heating processes observed in the simulation and show that the core-halo temperature ratio of the solar wind is insensitive to the initial conditions in the corona and is related to the core-halo density ratio of the solar wind and to the quasi-saturation property of the two-stream instability at the time when the exponential decay ends. This relation can be extended to the more general core-halo-strahl feature in the solar wind. The temperature ratio between the core and hot components is nearly independent of the heliospheric distance to the Sun. We show that the core-halo relative drift previously reported is a relic of the fully saturated two-stream instability. Our theoretical results are consistent with the observations while new tests for this model are provided.

  7. Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Economic development & impacts Federal, state, & local policies Markets Wind Energy Technologies The U.S. Department of Energy defines the scale of wind turbine...

  8. policy

    National Nuclear Security Administration (NNSA)

    eld-field-page-name">

    Page Name:
    policysystem

    The NNSA's Policy...

  9. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  10. THE ORIGIN OF NON-MAXWELLIAN SOLAR WIND ELECTRON VELOCITY DISTRIBUTION...

    Office of Scientific and Technical Information (OSTI)

    CORONA The formation of the observed core-halo feature in the solar wind electron ... We further show that the core-halo feature produced during the origin of kinetic ...

  11. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York

    SciTech Connect (OSTI)

    2012-04-30

    Installing a small wind turbine can sometimes be challenging due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  12. Distributed Wind Case Study: Cross Island Farms, Wellesley Island, New York (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Installing a small wind turbine can sometimes be difficult due to economics, zoning issues, public perception, and other barriers. Persistence and innovation, however, can result in a successful installation. Dani Baker and David Belding own Cross Island Farms, a 102-acre certified organic farm on Wellesley Island in northern New York. In 2009, they took their interest in renewable energy to the next level by researching the logistics of a small wind installation on their land to make their farm even more sustainable. Their renewable energy system consists of one 10-kilowatt Bergey Excel wind turbine, a solar array, and a propane-powered generator. This case study describes funding for the project and the installation process.

  13. Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Job Logs & Statistics Application Performance Training & Tutorials Software Policies Acknowledge NERSC Allocation Eligibility Allocation Management Computer Security Computer Use Data Management Passwords Queue Scheduling Usage Charges System Outages Service Levels User Surveys NERSC Users Group User Announcements Help Staff Blogs Request Repository Mailing List Operations for: Passwords & Off-Hours Status 1-800-66-NERSC, option 1 or 510-486-6821 Account Support

  14. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  15. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 4 -- May 2008

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  16. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 1 -- January 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  17. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 2 -- December 2006

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  18. New England Wind Forum: A Wind Powering America Project Volume 1, Issue 3 -- October 2007

    SciTech Connect (OSTI)

    2009-02-26

    Newsletter featuring the latest developments throughout New England in wind power policy, project development, and markets.

  19. POLICY

    Energy Savers [EERE]

    November 13, 2013 POLICY  Successful execution of this research and development (R&D) program will materially contribute to U.S. supply of oil and gas both today and beyond the 10 year R&D horizon. It is the consensus of this Committee that the resource potential impacted by this technology program is significant and of major importance to the Nation. There is a critical need for a sustainable and consistent approach to the technology challenges facing unconventional resource

  20. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ADVANCED INVERTER FUNCTIONS TO SUPPORT HIGH LEVELS OF DISTRIBUTED SOLAR POLICY AND REGULATORY CONSIDERATIONS The use of advanced inverters in the design of solar photovoltaic (PV) systems can address some of the challenges to the integration of high levels of distributed solar generation on the electricity system. Although the term "advanced inverters" seems to imply a special type of inverter, some of the inverters currently deployed with PV systems can already provide advanced

  1. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  2. Utah/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    info@distributedwind.org Distributed Wind Energy Association Utah Wind Resources Utah Office of Energy Development: Wind Energy Information AWEA State Wind Energy Statistics: Utah...

  3. Indiana/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Indiana Wind Resources Indiana Office of Energy Development Purdue Extension: Wind Energy AWEA State Wind Energy Statistics:...

  4. Controlling Wind Turbines for Secondary Frequency Regulation: An Analysis of AGC Capabilities Under New Performance Based Compensation Policy: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Pao, L. Y.; Fleming, P.; Ela, E.

    2015-02-01

    As wind energy becomes a larger portion of the world's energy portfolio there has been an increased interest for wind turbines to control their active power output to provide ancillary services which support grid reliability. One of these ancillary services is the provision of frequency regulation, also referred to as secondary frequency control or automatic generation control (AGC), which is often procured through markets which recently adopted performance-based compensation. A wind turbine with a control system developed to provide active power ancillary services can be used to provide frequency regulation services. Simulations have been performed to determine the AGC tracking performance at various power schedule set-points, participation levels, and wind conditions. The performance metrics used in this study are based on those used by several system operators in the US. Another metric that is analyzed is the damage equivalent loads (DELs) on turbine structural components, though the impacts on the turbine electrical components are not considered. The results of these single-turbine simulations show that high performance scores can be achieved when there is sufficient wind resource available. The capability of a wind turbine to rapidly and accurately follow power commands allows for high performance even when tracking rapidly changing AGC signals. As the turbine de-rates to meet decreased power schedule set-points there is a reduction in the DELs, and the participation in frequency regulation has a negligible impact on these loads.

  5. Atlantic Wind Solar Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Atlantic Wind & Solar Inc. Place: Coconut Groove, Florida Zip: 33133 Sector: Solar, Wind energy Product: Florida-based installer of distributed wind and solar systems...

  6. WINDExchange: Wind for Homeowners, Farmers, and Businesses

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind for Homeowners, Farmers, and Businesses A Small Wind Guidebook is available for homeowners, ranchers, and small businesses in each state to decide if wind energy will work for them and to help answer the following questions. Is wind energy practical for me? What size wind turbine do I need? What are the basic parts of a small wind

  7. AWEA State Wind Energy Forum--Montana

    Broader source: Energy.gov [DOE]

    The American Wind Energy Association will host this forum for a broad array of Montana wind stakeholders, including landowners, county officials, rural bankers, agricultural producers, policy...

  8. 2013 Wind Technologies Market Report Presentation | Department...

    Broader source: Energy.gov (indexed) [DOE]

    & Publications 2012 Wind Technologies Market Report Presentation 2013 Wind Technologies Market Report Economic Environment 0 Anirban Basu, Chairman & CEO, Sage Policy Group, Inc....

  9. Searchlight Wind Energy Project FEIS Appendix C

    Office of Environmental Management (EM)

    C Page | C 19B Appendix C: BLM Wind Energy Development Program Policies and BMPs A-1 ATTACHMENT A BLM WIND ENERGY DEVELOPMENT PROGRAM POLICIES AND BEST MANAGEMENT PRACTICES (BMPS) ...

  10. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  11. funding and policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    funding and policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ...

  12. European Wind Atlas: Offshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-offshore,http:c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  13. European Wind Atlas: Onshore | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-onshore,http:cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  14. European Wind Atlas: France | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontenteuropean-wind-atlas-france,http:cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This...

  15. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an introduction to distributed wind projects and a brief overview of topics to consider when developing a distributed wind energy ordinance. Distributed Wind Ordinances Photo from Byers and Renier Construction, NREL 18820 Distributed Wind Ordinances The U.S. Department of Energy defines distributed wind projects as: (a) The use of wind turbines, on- or off-grid, at homes, farms and ranches, businesses, public and industrial facilities, or other sites to offset all or a portion of the local

  16. Advanced Inverter Functions to Support High Levels of Distributed Solar: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    This paper explains how advanced inverter functions (sometimes called 'smart inverters') contribute to the integration of high levels of solar PV generation onto the electrical grid and covers the contributions of advanced functions to maintaining grid stability. Policy and regulatory considerations associated with the deployment of advanced inverter functions are also introduced.

  17. WINDExchange: Wind Energy Market Sectors

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Wind Energy Market Sectors U.S. power plants generate electricity for homes, factories, and businesses from a variety of resources, including coal, hydro, natural gas, nuclear, petroleum, and (non-hydro) renewable resources such as wind and solar energy. This power generation mix varies significantly across the country depending on

  18. Kansas Wind Energy Consortium

    SciTech Connect (OSTI)

    Gruenbacher, Don

    2015-12-31

    This project addresses both fundamental and applied research problems that will help with problems defined by the DOE “20% Wind by 2030 Report”. In particular, this work focuses on increasing the capacity of small or community wind generation capabilities that would be operated in a distributed generation approach. A consortium (KWEC – Kansas Wind Energy Consortium) of researchers from Kansas State University and Wichita State University aims to dramatically increase the penetration of wind energy via distributed wind power generation. We believe distributed generation through wind power will play a critical role in the ability to reach and extend the renewable energy production targets set by the Department of Energy. KWEC aims to find technical and economic solutions to enable widespread implementation of distributed renewable energy resources that would apply to wind.

  19. Renaissance for wind power

    SciTech Connect (OSTI)

    Flavin, C.

    1981-10-01

    Wind research and development during the 1970s and recent studies showing wind to be a feasible source of both electrical and mechanical power are behind the rapid expansion of wind energy. Improved technology should make wind energy economical in most countries having sufficient wind and appropriate needs. A form of solar energy, winds form a large pattern of global air circulation because the earth's rotation causes differences in pressure and oceans cause differences in temperature. New development in the ancient art of windmill making date to the 1973 oil embargo, but wind availability must be determined at local sites to determine feasibility. Whether design features of the new technology and the concept of large wind farms will be incorporated in national energy policies will depend on changing attitudes, acceptance by utilities, and the speed with which new information is developed and disseminated. 44 references, 6 figures. (DCK)

  20. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... UK, Germany, Greece, China, Japan, Korea, Mexico, and ... certification body; development of national and regional ... third-party verified power perfor- mance, acoustic ...

  1. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  2. Wind Energy 101.

    SciTech Connect (OSTI)

    Karlson, Benjamin; Orwig, Kirsten

    2010-12-01

    This presentation on wind energy discusses: (1) current industry status; (2) turbine technologies; (3) assessment and siting; and (4) grid integration. There are no fundamental technical barriers to the integration of 20% wind energy into the nation's electrical system, but there needs to be a continuing evolution of transmission planning and system operation policy and market development for this to be most economically achieved.

  3. Wind Resource Atlas of Oaxaca | Open Energy Information

    Open Energy Info (EERE)

    characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas...

  4. Hawaii/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Hawaii Wind Resources Hawaii State Energy Office AWEA State Wind Energy Statistics: Hawaii Islanded Grid Resource Center References ...

  5. Colorado/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Colorado Wind Resources Colorado Energy Office AWEA State Wind Energy Statistics: Colorado Colorado Center for Renewable Energy...

  6. Nebraska/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    Distributed Wind Energy Association Nebraska Wind Resources Nebraska Energy Office AWEA State Wind Energy Statistics: Nebraska References "U.S. Census Bureau. 2010...

  7. Offshore Wind Market and Economic Analysis Report 2013

    Broader source: Energy.gov [DOE]

    Analysis of the U.S. wind market, including analysis of developments in wind technology, changes in policy, and effect on economic impact, regional development, and job creation.

  8. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Winds Wind Farm Jump to: navigation, search Name West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. WINDExchange: What Is Wind Power?

    Wind Powering America (EERE)

    What Is Wind Power? A three-bladed wind turbine with the internal components visible. Six turbines in a row are electrically connected to the power grid. Wind Power Animation This aerial view of a wind turbine plant shows how a group of wind turbines can make electricity for the utility grid. The electricity is sent through transmission and distribution lines to homes, businesses, schools, and so on. View the wind turbine animation to see how a wind turbine works or take a look inside. Wind

  10. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  11. Modeling the National Potential for Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Short, W.; Sullivan, P.

    2007-06-01

    The Wind Deployment System (WinDS) model was created to assess the potential penetration of offshore wind in the United States under different technology development, cost, and policy scenarios.

  12. Canadian Wind Energy Atlas Potential Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentcanadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance...

  13. Solar and Wind Energy Resource Assessment Programme's Renewable...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentsolar-and-wind-energy-resource-assess Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The...

  14. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Prairie Winds Wind Farm Facility Prairie Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  15. Microfabrication Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Polcies Booking Login Policy Cleanroom Policy Equipment Use Policy 2 Person Rule Experimental Hall Policy After Hours Policy...

  16. WINDExchange Wind Energy Benefits Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WINDExchange Wind Energy Benefits Fact Sheet WINDExchange Wind Energy Benefits Fact Sheet Learn more about wind energy! This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and pervasive deployment. PDF icon WINDExchange Wind Energy Benefits Fact Sheet More Documents & Publications Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) 2014 Distributed Wind Market Report

  17. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report 2012 Wind Technologies Market Report The 2012 Wind Technologies Market Report is a comprehensive analyses of the U.S. distributed wind energy market ever published, this report provides a detailed overview of developments and trends in the U.S. wind power market, focusing on 2012. PDF icon 2012 Wind Technologies Market Report More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014 Wind Technologies Market

  18. 2012 Wind Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Wind Report 2012 Wind Report Watch as our clean energy experts answer your questions about the U.S. wind industry -- one of the largest and fastest growing wind markets in the world. Related Links Top 10 Things You Didn't Know About Distributed Wind Power Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Learn about key facts related to wind turbines used in distributed

  19. Dovetail Solar and Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind energy Product: Consulting; Engineeringarchitecturaldesign;Installation; Maintenance and repair; Retail product sales and distribution;Trainining and education Phone...

  20. Wind Simulation

    Energy Science and Technology Software Center (OSTI)

    2008-12-31

    The Software consists of a spreadsheet written in Microsoft Excel that provides an hourly simulation of a wind energy system, which includes a calculation of wind turbine output as a power-curve fit of wind speed.

  1. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencyWind Energy Wind EnergyTara Camacho-Lopez2016-04-18T19:53:27+00:00 Conducting applied research to increase the viability of wind ...

  2. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  3. Cherokee Wind

    Energy Savers [EERE]

    Cherokee Wind Presenter: Carol Wyatt Cherokee Nation Businesses, Inc. DOE Tribal Energy ... E W S Tribal Land Chilocco Property Cherokee Wind Accomplishments: * Feasibility Study ...

  4. wind turbines

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  5. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  6. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  7. Offshore Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  8. Small Wind Guidebook/Case Studies | Open Energy Information

    Open Energy Info (EERE)

    search Case Studies The Small Wind Guidebook's collection of distributed wind turbine case studies is intended to reflect project-specific details for a variety of...

  9. Generation of Simulated Wind Data using an Intelligent Algorithm...

    Office of Scientific and Technical Information (OSTI)

    Office Country of Publication: United States Language: English Subject: 17 WIND ENERGY; 24 POWER TRANSMISSION AND DISTRIBUTION Wind Energy Word Cloud More Like This Full ...

  10. Small Wind Guidebook/Podcasts | Open Energy Information

    Open Energy Info (EERE)

    Wind to the Home, Farm, or Business Forsyth, T., National Renewable Energy Laboratory Learning the Basics of Distributed Wind Forsyth, T., National Renewable Energy Laboratory Want...

  11. Small Wind Guidebook/Webinars | Open Energy Information

    Open Energy Info (EERE)

    < Small Wind Guidebook Jump to: navigation, search Webinars 2015 Energy Department's Distributed Wind Industry Update: A WINDExchange Webinar 2014 National and International Small...

  12. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  13. WIPP Privacy Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WIPP Privacy Policy and Disclaimers NOTICE: The Waste Isolation Pilot Plant (WIPP) Internet Server is provided as a service of the Department of Energy (DOE) for distribution of...

  14. Letter from the Wind Program Director: Fall 2014 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of the next "big" things in wind energy, we are also working to expand the role of smaller, distributed wind systems as an integral part of the country's wind energy framework. ...

  15. New England Wind Forum: A Wind Powering America Project, Volume 1, Issue 4 -- May 2008 (Newsletter)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2008-05-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education, and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 4 features an interview with Brian Fairbank, president and CEO of Jiminy Peak Mountain Resort.

  16. Wind energy and power system operations: a review of wind integration studies to date

    SciTech Connect (OSTI)

    Cesaro, Jennifer de; Porter, Kevin; Milligan, Michael

    2009-12-15

    Wind integration will not be accomplished successfully by doing ''more of the same.'' It will require significant changes in grid planning and operations, continued technical evolution in the design and operation of wind turbines, further adoption and implementation of wind forecasting in the control room, and incorporation of market and policy initiatives to encourage more flexible generation. (author)

  17. Sixth North American Offshore Wind Development and Finance Summit

    Broader source: Energy.gov [DOE]

    Join leading offshore wind developers, Federal and State policy-makers, U.S. and European banks and investors and other key stakeholders at the 6th North American Offshore Wind Development &...

  18. Cisco Wind Energy Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Wind Easements

    Broader source: Energy.gov [DOE]

    The statutes authorizing the creation of wind easements include several provisions to protect property owners. For example, a wind easement may not make the property owner liable for any property...

  20. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  1. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Using a small model, Todd Griffith explains the new 50MW concept to Gen. Frank Klotz (left); Klotz examines the features of a typical wind turbine blade structure in a ...

  2. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power As the accompanying map of New Mexico shows, the best wind power generation potential near WIPP is along the Delaware Mountain ridge line of the southern Guadalupe Mountains, about 50-60 miles southwest. The numeric grid values indicate wind potential, with a range from 1 (poor) to 7 (superb). Just inside Texas in the southern Guadalupe Mountains, the Delaware Mountain Wind Power Facility in Culbertson County, Texas currently generates over 30 MW, and could be expanded to a 250 MW

  3. 2013 Distributed Wind Market Report

    Energy Savers [EERE]

    2013 DOE Building Technologies Office Program Review 2013 DOE Building Technologies Office Program Review The 2013 Department of Energy (DOE) Building Technologies Office Program Review was held April 2-4, 2013 in Washington, DC. This inaugural review encompassed active work done by the Building Technologies Office (BTO), with a total of 59 individual activities reviewed. Sixty independent experts assessed the progress and contributions of each project toward BTO's mission and goals, and these

  4. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  5. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, Charles J. (Rexford, NY); Rhudy, Ralph G. (Scotia, NY); Bushman, Ralph E. (Lathem, NY)

    1997-01-01

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of .sqroot.3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency.

  6. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  7. Property Tax Exemption for Wind, Solar, and Geothermal Energy Producers

    Broader source: Energy.gov [DOE]

    Under these policies, commercial wind, solar, and geothermal energy producers, excluding those regulated by the Idaho Public Utilities Commission, are exempt from paying taxes on real estate,...

  8. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - ... CO2 Geothermal Natural Gas Safety, Security & Resilience of the ...

  9. Spain Installed Wind Capacity Website | Open Energy Information

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentspain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an...

  10. 2011 Grants for Offshore Wind Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Web Policies Home Social Media Article Guidance History Offices 2011 Grants for Offshore Wind Power View All Maps Addthis Careers & Internships Contact Us link to facebook link to...

  11. New DOE Reports Assess Offshore Wind Market and Supply Chain...

    Broader source: Energy.gov (indexed) [DOE]

    subsystems of offshore wind projects Federal, state, and local policymakers and economic development agencies, to assist in identifying policies and investment strategies with the ...

  12. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  13. Wind Farm Recommendation Report

    SciTech Connect (OSTI)

    John Reisenauer

    2011-05-01

    On April 21, 2011, an Idaho National Laboratory (INL) Land Use Committee meeting was convened to develop a wind farm recommendation for the Executive Council and a list of proposed actions for proceeding with the recommendation. In terms of land use, the INL Land Use Committee unanimously agrees that Site 6 is the preferred location of the alternatives presented for an INL wind farm. However, further studies and resolution to questions raised (stated in this report) by the INL Land Use Committee are needed for the preferred location. Studies include, but are not limited to, wind viability (6 months), bats (2 years), and the visual impact of the wind farm. In addition, cultural resource surveys and consultation (1 month) and the National Environmental Policy Act process (9 to 12 months) need to be completed. Furthermore, there is no documented evidence of developers expressing interest in constructing a small wind farm on INL, nor a specific list of expectations or concessions for which a developer might expect INL to cover the cost. To date, INL assumes the National Environmental Policy Act activities will be paid for by the Department of Energy and INL (the environmental assessment has only received partial funding). However, other concessions also may be expected by developers such as roads, fencing, power line installation, tie-ins to substations, annual maintenance, snow removal, access control, down-time, and remediation. These types of concessions have not been documented, as a request, from a developer and INL has not identified the short and long-term cost liabilities for such concessions should a developer expect INL to cover these costs. INL has not identified a go-no-go funding level or the priority this Wind Farm Project might have with respect to other nuclear-related projects, should the wind farm remain an unfunded mandate. The Land Use Committee recommends Legal be consulted to determine what, if any, liabilities exist with the Wind Farm Project and INLs rights and responsibilities in regards to access to the wind farm once constructed. An expression of interest is expected to go out soon to developers. However, with the potential of 2 years of study remaining for Site 6, the expectation of obtaining meaningful interest from developers should be questioned.

  14. Wind Energy Ordinance Fact Sheet

    SciTech Connect (OSTI)

    F. Oteri

    2010-09-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  15. Wind Energy Ordinances (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Due to increasing energy demands in the United States and more installed wind projects, rural communities and local governments with limited or no experience with wind energy now have the opportunity to become involved in this industry. Communities with good wind resources may be approached by entities with plans to develop the resource. Although these opportunities can create new revenue in the form of construction jobs and land lease payments, they also create a new responsibility on the part of local governments to create ordinances to regulate wind turbine installations. Ordinances are laws, often found within municipal codes that provide various degrees of control to local governments. These laws cover issues such as zoning, traffic, consumer protection, and building codes. Wind energy ordinances reflect local needs and wants regarding wind turbines within county or city lines and aid the development of safe facilities that will be embraced by the community. Since 2008 when the National Renewable Energy Laboratory released a report on existing wind energy ordinances, many more ordinances have been established throughout the United States, and this trend is likely to continue in the near future as the wind energy industry grows. This fact sheet provides an overview of elements found in typical wind energy ordinances to educate state and local government officials, as well as policy makers.

  16. 2014 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Daghouth, Naim; Hoen, Ben; Mills, Andrew; Hamachi LaCommare, Kristina; Millstein, Dev; Hansen, Dana; Porter, Kevin; Widiss, Rebecca; Buckley, Michael; Oteri, Frank; Smith, Aaron; Tegen, Suzanne

    2015-08-06

    Wind power capacity additions in the United States rebounded in 2014, and continued growth through 2016 is anticipated. Recent and projected near-term growth is supported by the industry’s primary federal incentive—the production tax credit (PTC)—which is available for projects that began construction by the end of 2014. Wind additions are also being driven by recent improvements in the cost and performance of wind power technologies, which have resulted in the lowest power sales prices ever seen in the U.S. wind sector. Growing corporate demand for wind energy and state-level policies play important roles as well. Expectations for continued technological advancements and cost reductions may further boost future growth. At the same time, the prospects for growth beyond 2016 are uncertain. The PTC has expired, and its renewal remains in question. Continued low natural gas prices, modest electricity demand growth, and limited near-term demand from state renewables portfolio standards (RPS) have also put a damper on growth expectations. These trends, in combination with increasingly global supply chains, have limited the growth of domestic manufacturing of wind equipment. What they mean for wind power additions through the end of the decade and beyond will be dictated in part by future natural gas prices, fossil plant retirements, and policy decisions.

  17. Deriving daylight frequency distribution curves from solar radiation data to be used to implement energy saving policies in Palermo, Italy

    SciTech Connect (OSTI)

    Fanchiotti, A.; Cristofalo, S. di

    1999-07-01

    The paper presents proposed guidelines for developing a simplified tool to be used for assessing the compliance of proposed projects with city regulations, with reference to the daylighting aspects. First, the algorithms proposed for calculating the internal illuminance in a point, based on the assumption of perfectly diffusing glazings, are discussed. The result is a light transmission factor, which is a function of the position of the point and of the geometrical and physical characteristics of the room. Then, the daylight input data to be used for such calculations are presented. In order to provide designers with easy to handle data, this information is presented as frequency curves, showing the illuminance cumulative frequency distribution for a year relative to eight fundamental vertical orientations. There are different curves depending on the building type. These curves are obtained by considering only the data relative to hours and days consistent with the profile of use typical of that type of building.

  18. AWEA State Wind Energy Forum- Michigan

    Broader source: Energy.gov [DOE]

    Michigan has 988 MW of installed wind capacity, representing close to $2B in investment; and officials are considering plans and a policy framework for additional capacity in the near future....

  19. State Policy Options for Renewable Energy | Department of Energy

    Energy Savers [EERE]

    Policy Options for Renewable Energy State Policy Options for Renewable Energy Matthew H. Brown Energy Program Director National Conference of State Legislatures. September 2003 PDF icon State Policy Options for Renewable Energy More Documents & Publications The RENEWABLES PORTFOLIO STANDARD RENEWABLES PORTFOLIO STANDARD 2013 Wind Technologies Market Report 2014 Wind Technologies Market Report

  20. Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industry Soars to New Heights Wind Industry Soars to New Heights August 5, 2013 - 8:13am Addthis Watch the video to learn more about the new records reached by the U.S. industry as found in the 2012 Wind Technologies Market Report. | Video by Matty Greene, Energy Department. Matty Greene Matty Greene Former Videographer Wind capacity additions in the United States reached record levels in 2012, as detailed in the 2012 Wind Technologies Market Report. In a video narrated by Jose Zayas, Director

  1. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  2. NREL: Wind Research - Wind Career Map Shows Wind Industry Career...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Career Map Shows Wind Industry Career Opportunities, Paths A screenshot of the wind career map showing the various points on a chart that show different careers in the wind...

  3. IDGWP Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Iowa Distributed Wind Generation Project Energy Purchaser Cedar Falls Location Algona IA Coordinates 43.0699663, -94.233019 Show Map Loading map... "minzoom":false,"mapping...

  4. Wind Power Partners '94 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name Wind Power Partners '94 Wind Farm Facility Wind Power Partners '94 Sector Wind energy Facility Type Commercial Scale Wind Facility...

  5. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wethersfield Wind Power Wind Farm Jump to: navigation, search Name Wethersfield Wind Power Wind Farm Facility Wethersfield Wind Power Sector Wind energy Facility Type Commercial...

  6. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Abbey School Wind Turbine Wind Farm Jump to: navigation, search Name Portsmouth Abbey School Wind Turbine Wind Farm Facility Portsmouth Abbey School Wind Turbine Sector Wind energy...

  7. Harbec Plastic Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Harbec Plastic Wind Turbine Wind Farm Jump to: navigation, search Name Harbec Plastic Wind Turbine Wind Farm Facility Harbec Plastic Wind Turbine Sector Wind energy Facility Type...

  8. Stetson Wind Expansion Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale...

  9. State Fair Wind Energy Education Center Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Fair Wind Energy Education Center Wind Farm Jump to: navigation, search Name State Fair Wind Energy Education Center Wind Farm Facility Wind Energy Education Center Sector Wind...

  10. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the ...

  11. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m ...

  12. NREL: Wind Research - International Wind Resource Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    International Wind Resource Maps NREL is helping to develop high-resolution projections of wind resources worldwide. This allows for more accurate siting of wind turbines and has ...

  13. Office of Indian Energy Policy and Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Indian Energy Policy and Programs Seneca Nation of Indians Breaks Ground on Community-Scale Wind Turbine Seneca Nation of Indians Breaks Ground on Community-Scale Wind ...

  14. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  15. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Danielson Wind Facility Danielson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  16. Kawailoa Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Kawailoa Wind Facility Kawailoa Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  17. Palouse Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Palouse Wind Facility Palouse Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  18. Harbor Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Harbor Wind Facility Harbor Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Harbor Wind LLC...

  19. Kahuku Wind | Open Energy Information

    Open Energy Info (EERE)

    Kahuku Wind Jump to: navigation, search Name Kahuku Wind Facility Kahuku Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  20. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    Wiota Wind Jump to: navigation, search Name Wiota Wind Facility Wiota Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Wiota Wind Energy LLC...

  1. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    Bravo Wind Jump to: navigation, search Name Bravo Wind Facility Bravo Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer Bravo Wind LLC...

  2. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    Auwahi Wind Jump to: navigation, search Name Auwahi Wind Facility Auwahi Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner BP Wind Energy...

  3. Traer Wind | Open Energy Information

    Open Energy Info (EERE)

    Traer Wind Jump to: navigation, search Name Traer Wind Facility Traer Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Norsemen Wind Energy LLC...

  4. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Sheffield Wind Facility Sheffield Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  5. Rollins Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rollins Wind Facility Rollins Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  6. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Wyoming Wind Power Project (Foote Creek Rim I and II) Thumbnail image of wind...

  7. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  8. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  9. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  10. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directions, and flight altitudes of nocturnal migrating species. Our work focused on the design and development of custom built marine radar that used t-bar and parabolic dish antennas. The marine radar used in the project was Furuno (XANK250) which was coupled with a XIR3000B digitizing card from Russell Technologies for collection of the radar data. The radar data was processed by open source radR processing software using different computational techniques and methods. Additional data from thermal IR imaging cameras were collected to detect heat emitted from objects and provide information on movements of birds and bats, data which we used for different animal flight behavior analysis. Lastly, the data from the acoustic recorders were used to provide the number of bird calls for assessing patterns and peak passage rates during migration. The development of the geospatial database included collection of different data sources that are used to support offshore wind turbine development. Many different data sets were collected and organized using initial version of web-based repository software tools that can accommodate distribution of rectified pertinent data sets such as the lake depth, lake bottom engineering parameters, extent of ice, navigation pathways, wind speed, important bird habitats, fish efforts and other layers that are relevant for supporting robust offshore wind turbine developments. Additional geospatial products developed during the project included few different prototypes for offshore wind farm suitability which can involve different stakeholders and participants for solving complex planning problems and building consensus. Some of the prototypes include spatial decision support system (SDSS) for collaborative decision making, a web-based Participatory Geographic Information System (PGIS) framework for evaluating importance of different decision alternatives using different evaluation criteria, and an Android application for collection of field data using mobile and tablet devices . In summary, the simulations of two- and three-blade wind turbines suggested that two-bladed machines could produce comparable annual energy as the three-blade wind turbines but have a lighter tower top weight, which leads to lower cost of energy. In addition, the two-blade rotor configuration potentially costs 20% less than a three blade configuration that produces the same power at the same site. The cost model analysis predicted a potential cost savings of approximately 15% for offshore two-blade wind turbines. The foundation design for a wind turbine in Lake Erie is likely to be driven by ice loads based on the currently available ice data and ice mechanics models. Hence, for Lake Eire, the cost savings will be somewhat smaller than the other lakes in the Great Lakes. Considering the size of cranes and vessels currently available in the Great Lakes, the cost optimal wind turbine size should be 3 MW, not larger. The surveillance data from different monitoring systems suggested that bird and bat passage rates per hour were comparable during heavy migrations in both spring and fall seasons while passage rates were significantly correlated to wind directions and wind speeds. The altitude of migration was higher during heavy migrations and higher over water relative to over land. Notable portions of migration on some spring nights occurred parallel the shoreline, often moving perpendicular to southern winds. The birds approaching the Western basin have a higher propensity to cross than birds approaching the Central basin of Lake Erie and as such offshore turbine development might be a better option further east towards Cleveland than in the Western basin. The high stopover density was more strongly associated with migration volume the following night rather than the preceding night. The processed mean scalar wind speeds with temporal resolutions as fine as 10-minute intervals near turbine height showed that August is the month with the weakest winds while December is the month, which typically has the strongest winds. The ice data suggests that shallow western basin of Lake Erie has higher ice cover duration many times exceeding 90 days during some winters.

  11. Mid-Atlantic Regional Wind Energy Institute

    SciTech Connect (OSTI)

    Courtney Lane

    2011-12-20

    As the Department of Energy stated in its 20% Wind Energy by 2030 report, there will need to be enhanced outreach efforts on a national, state, regional, and local level to communicate wind development opportunities, benefits and challenges to a diverse set of stakeholders. To help address this need, PennFuture was awarded funding to create the Mid-Atlantic Regional Wind Energy Institute to provide general education and outreach on wind energy development across Maryland, Virginia, Delaware, Pennsylvania and West Virginia. Over the course of the two-year grant period, PennFuture used its expertise on wind energy policy and development in Pennsylvania and expanded it to other states in the Mid-Atlantic region. PennFuture accomplished this through reaching out and establishing connections with policy makers, local environmental groups, health and economic development organizations, and educational institutions and wind energy developers throughout the Mid-Atlantic region. PennFuture conducted two regional wind educational forums that brought together wind industry representatives and public interest organizations from across the region to discuss and address wind development in the Mid-Atlantic region. PennFuture developed the agenda and speakers in collaboration with experts on the ground in each state to help determine the critical issue to wind energy in each location. The sessions focused on topics ranging from the basics of wind development; model ordinance and tax issues; anti-wind arguments and counter points; wildlife issues and coalition building. In addition to in-person events, PennFuture held three webinars on (1) Generating Jobs with Wind Energy; (2) Reviving American Manufacturing with Wind Power; and (3) Wind and Transmission. PennFuture also created a web page for the institute (http://www.midatlanticwind.org) that contains an online database of fact sheets, research reports, sample advocacy letters, top anti-wind claims and information on how to address them, wind and wildlife materials and sample model ordinances. Video and presentations from each in-person meeting and webinar recordings are also available on the site. At the end of the two-year period, PennFuture has accomplished its goal of giving a unified voice and presence to wind energy advocates in the Mid-Atlantic region. We educated a broad range of stakeholders on the benefits of wind energy and gave them the tools to help make a difference in their states. We grew a database of over 500 contacts and hope to continue the discussion and work around the importance of wind energy in the region.

  12. Milford Wind Corridor Phase I (Clipper) Wind Farm | Open Energy...

    Open Energy Info (EERE)

    Clipper) Wind Farm Jump to: navigation, search Name Milford Wind Corridor Phase I (Clipper) Wind Farm Facility Milford Wind Corridor Phase I (Clipper) Sector Wind energy Facility...

  13. Main Coast Winds - Final Scientific Report

    SciTech Connect (OSTI)

    Jason Huckaby; Harley Lee

    2006-03-15

    The Maine Coast Wind Project was developed to investigate the cost-effectiveness of small, distributed wind systems on coastal sites in Maine. The restructuring of Maine's electric grid to support net metering allowed for the installation of small wind installations across the state (up to 100kW). The study performed adds insight to the difficulties of developing cost-effective distributed systems in coastal environments. The technical hurdles encountered with the chosen wind turbine, combined with the lower than expected wind speeds, did not provide a cost-effective return to make a distributed wind program economically feasible. While the turbine was accepted within the community, the low availability has been a negative.

  14. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  15. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind LLC Wind Farm Jump to: navigation, search Name Metro Wind LLC Wind Farm Facility Metro Wind LLC Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  16. JD Wind 6 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 6 Wind Farm Jump to: navigation, search Name JD Wind 6 Wind Farm Facility JD Wind 6 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  17. JD Wind 7 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    JD Wind 7 Wind Farm Jump to: navigation, search Name JD Wind 7 Wind Farm Facility JD Wind 7 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  18. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Garnet Wind Facility Garnet Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Azusa Light & Water...

  19. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Lime Wind Facility Lime Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Joseph Millworks Inc...

  20. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Fairhaven Wind Facility Fairhaven Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy Palmer...

  1. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Scituate Wind Facility Scituate Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Solaya Energy ...

  2. Pacific Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Pacific Wind Facility Pacific Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner enXco Developer...

  3. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Galactic Wind Facility Galactic Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Epic Systems...

  4. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Rockland Wind Facility Rockland Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Ridgeline...

  5. Greenfield Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Greenfield Wind Facility Greenfield Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Greenfield Wind Power...

  6. Willmar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Willmar Wind Facility Willmar Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Willmar...

  7. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  9. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C.

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  10. Wind Energy Career Development Program

    SciTech Connect (OSTI)

    Gwen Andersen

    2012-03-29

    Saint Francis University has developed curriculum in engineering and in business that is meeting the needs of students and employers (Task 1) as well as integrating wind energy throughout the curriculum. Through a variety of approaches, the University engaged in public outreach and education that reached over 2,000 people annually (Task 2). We have demonstrated, through the success of these programs, that students are eager to prepare for emerging jobs in alternative energy, that employers are willing to assist in developing employees who understand the broader business and policy context of the industry, and that people want to learn about wind energy.

  11. EA-1903: Kansas State University Zond Wind Energy Project, Manhattan, Kansas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of a proposal to use Congressional Directed funds to develop the Great Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region.

  12. Examining the Variability of Wind Power Output in the Regulation Time Frame: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Shedd, S.; Florita, A.

    2012-08-01

    This work examines the distribution of changes in wind power for different time scales in the regulation time frame as well as the correlation of changes in power output for individual wind turbines in a wind plant.

  13. Energy Department Announces Partnership with DWEA to Support Wind for Schools Program

    Broader source: Energy.gov [DOE]

    The Wind Program announced that the Distributed Wind Energy Association (DWEA) has been selected as a partner to support the long-term sustainability of the Wind for Schools program.

  14. Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision Wind Vision Wind Vision Introduction U.S. Wind Power Impacts Roadmap Download Wind Vision: A New Era for Wind Power in the United States The Wind Vision report updates ...

  15. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Wind Resource Characteristics A graphic showing the location of National Wind Technology Center and its wind power class 2. Click on the image to view a larger version. ...

  16. Federal Wind Energy Assistance through NREL (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01

    NREL assists with wind resource assessment and development activities initiated by federal agencies to facilitate distributed renewable energy projects at federal agency sites. This brief outlines the process for requesting NREL assistance with federal wind energy projects.

  17. NREL: Wind Research - Offshore Wind Turbine Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore Wind Turbine Research Photo of a European offshore wind farm. Photo by Siemens For more than eight years, NREL has worked with the U.S. Department of Energy (DOE) to become an international leader in offshore wind energy research. NREL's offshore wind turbine research capabilities focus on critical areas that reflect the long-term needs of the industry and DOE. National Wind Technology Center (NWTC) researchers are perpetually exploring new wind and water power concepts, materials, and

  18. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced

  19. Wind Integration National Dataset (WIND) Toolkit

    Broader source: Energy.gov [DOE]

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  20. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Videos The National Wind Technology Center (NWTC) is pleased to offer video presentations of its world-class capabilities, facilities, research areas, and personnel. As ...

  1. Security Policy

    Broader source: Energy.gov [DOE]

    The Office of Security Policy analyzes, develops and interprets safeguards and security policy governing national security functions and the protection of related critical assets entrusted to the...

  2. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  3. Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  4. Network Policies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acceptable Use Policy About ESnet Our Mission The Network ESnet History Governance & Policies ESnet Policy Board ESCC Acceptable Use Policy Data Privacy Policy Facility Data Policy Career Opportunities ESnet Staff & Org Chart Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607 (Globally) Report Network Problems: trouble@es.net Provide Web Site Feedback: info@es.net ESnet Acceptable Use Policy The

  5. JD Wind 1 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name JD Wind 1 Wind Farm Facility JD Wind 1 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWSJohn...

  6. North Dakota Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name North Dakota Wind II Wind Farm Facility North Dakota Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  7. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Venture Wind II Wind Farm Facility Venture Wind II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. MinWind I & II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    I & II Wind Farm Jump to: navigation, search Name MinWind I & II Wind Farm Facility MinWind I & II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  9. JD Wind 5 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    5 Wind Farm Jump to: navigation, search Name JD Wind 5 Wind Farm Facility JD Wind 5 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  10. JD Wind 4 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John...

  11. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cow Branch Wind Energy Center Wind Farm Jump to: navigation, search Name Cow Branch Wind Energy Center Wind Farm Facility Cow Branch Wind Energy Center Sector Wind energy Facility...

  12. Wind Program Newsletter: Second Quarter 2011 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Wind Program Newsletter: Second Quarter 2011 DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential In the News Current R&D Funding Opportunities Recent Publications DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential The winds of change are blowing for renewable energy policy, and some of the strongest gusts are coming from offshore. The Great Lakes and coastal waters of the United States have a vast wind energy resource, but there wasn't an official

  13. AWEA State Wind Energy Forum-Virginia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    State Wind Energy Forum-Virginia AWEA State Wind Energy Forum-Virginia June 22, 2016 8:30AM to 5:30PM EDT Harrisonburg, VA The American Wind Energy Association (AWEA) is hosting the AWEA State Wind Energy Forum-Virginia in collaboration with partners and colleagues in the state. You'll learn about the benefits and challenges of Virginia's potential for land-based and offshore wind industry from state policy, industry, government, and other thought leaders, as well as experts on national,

  14. Wind Power: How Much, How Soon, and At What Cost?

    SciTech Connect (OSTI)

    Wiser, Ryan H; Hand, Maureen

    2010-01-01

    The global wind power market has been growing at a phenomenal pace, driven by favorable policies towards renewable energy and the improving economics of wind projects. On a going forward basis, utility-scale wind power offers the potential for significant reductions in the carbon footprint of the electricity sector. Specifically, the global wind resource is vast and, though accessing this potential is not costless or lacking in barriers, wind power can be developed at scale in the near to medium term at what promises to be an acceptable cost.

  15. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    Wind energy (Redirected from Wind power) Jump to: navigation, search Wind energy is a form of solar energy.1 Wind energy (or wind power) describes the process by which wind is...

  16. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    GL Wind Jump to: navigation, search Name GL Wind Facility GL Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner GL Wind Developer Juhl...

  17. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  18. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November ...

  19. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Shell Wind EnergyMitsui Developer Cielo Wind PowerOrion Energy Energy Purchaser Green...

  20. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  1. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project DOE Offers Conditional Commitment to Cape Wind Offshore Wind Generation Project September 11, 2014 - ...

  2. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in ...

  3. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its ...

  4. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    First Wind (Formerly UPC Wind) Address: 1001 S.W. Fifth Avenue Place: Portland, Oregon Zip: 97204 Region: Pacific Northwest Area Sector: Wind energy Product: Wind power developer...

  5. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind ...

  6. Is the Danish wind energy model replicable for other countries?

    SciTech Connect (OSTI)

    Sovacool, Benjamin K.; Lindboe, Hans H.; Odgaard, Ole

    2008-03-15

    Though aspects of the Danish wind energy model are unique, policymakers might do well to imitate such aspects as a strong political commitment, consistent policy mechanisms, and an incremental, ''hands-on'' approach to R and D. (author)

  7. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Lynn Sparling; Bruce C. Buckheit; Daniel LoBue; and Richard P. Bowers

    2012-06-29

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  8. Mid-Atlantic Wind - Overcoming the Challenges

    SciTech Connect (OSTI)

    Daniel F. Ancona III; Kathryn E. George; Richard P. Bowers; Dr. Lynn Sparling; Bruce Buckheit; Daniel LoBue

    2012-05-31

    This study, supported by the US Department of Energy, Wind Powering America Program, Maryland Department of Natural Resources and Chesapeake Bay Foundation, analyzed barriers to wind energy development in the Mid-Atlantic region along with options for overcoming or mitigating them. The Mid-Atlantic States including Delaware, Maryland, North Carolina and Virginia, have excellent wind energy potential and growing demand for electricity, but only two utility-scale projects have been installed to date. Reasons for this apathetic development of wind resources were analyzed and quantified for four markets. Specific applications are: 1) Appalachian mountain ridgeline sites, 2) on coastal plains and peninsulas, 3) at shallow water sites in Delaware and Chesapeake Bays, Albemarle and Pamlico Sounds, and 4) at deeper water sites off the Atlantic coast. Each market has distinctly different opportunities and barriers. The primary barriers to wind development described in this report can be grouped into four categories; state policy and regulatory issues, wind resource technical uncertainty, economic viability, and public interest in environmental issues. The properties of these typologies are not mutually independent and do interact. The report concluded that there are no insurmountable barriers to land-based wind energy projects and they could be economically viable today. Likewise potential sites in sheltered shallow waters in regional bay and sounds have been largely overlooked but could be viable currently. Offshore ocean-based applications face higher costs and technical and wind resource uncertainties. The ongoing research and development program, revision of state incentive policies, additional wind measurement efforts, transmission system expansion, environmental baseline studies and outreach to private developers and stakeholders are needed to reduce barriers to wind energy development.

  9. National Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: National Wind Place: Minneapolis, Minnesota Zip: 55402 Sector: Wind energy Product: Wind project developer in the upper Midwest and Plains...

  10. Horn Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Horn Wind Place: Windthorst, Texas Zip: 76389 Sector: Wind energy Product: Texas-based company that develops community-based industrial wind...

  11. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Jasper Wind Place: Athens, Greece Sector: Solar, Wind energy Product: Athens-based wind and solar project developer. Coordinates: 37.97615,...

  12. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name: Solar Wind Place: Krasnodar, Romania Zip: 350000 Sector: Solar, Wind energy Product: Russia-based PV product manufacturer. Solar Wind...

  13. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    Name: Royal Wind Place: Denver, Colorado Sector: Wind energy Product: Vertical Wind Turbines Year Founded: 2008 Website: www.RoyalWindTurbines.com Coordinates: 39.7391536,...

  14. Coriolis Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Logo: Coriolis Wind Name: Coriolis Wind Place: Great Falls, Virginia Zip: 22066 Product: Mid-Scale Wind Turbine Year Founded: 2007 Website:...

  15. 2014 Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Wind Market Report 2014 Wind Market Report 1 of 8 2 of 8 3 of 8 4 of 8 5 of 8 6 of 8 7 of 8 8 of 8 Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry In 2014, U.S. turbines in distributed applications reached a cumulative installed capacity of more than 906 megawatts, enough to power more than 168,000 average American homes. | Photo courtesy of Aegis Renewable Energy; Waitsfield, Vermont. Reports show wind energy industry continued impressive growth in 2014,

  16. Orange County- Small Wind Energy Systems

    Broader source: Energy.gov [DOE]

    In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non...

  17. 2014 Wind Market Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    8 5 of 8 6 of 8 7 of 8 8 of 8 Energy Department Reports Highlight Trends of Growing U.S. Wind Energy Industry In 2014, U.S. turbines in distributed applications reached a...

  18. Small Wind Guidebook/Publications | Open Energy Information

    Open Energy Info (EERE)

    search Contents 1 Reports 2 Fact Sheets 3 Periodicals 4 Books Reports Distributed Wind Energy Association; National Association of Counties. County Strategies for...

  19. What Is a Small Community Wind Project? | Open Energy Information

    Open Energy Info (EERE)

    energy costs. References "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" Retrieved from "http:en.openei.orgw...

  20. Community Wind Handbook/Understand Your Energy Use and Costs...

    Open Energy Info (EERE)

    "U.S. Department of Energy. 2012 Market Report on Wind Technologies in Distributed Applications" "Energy Information Administration. How much electricity does an...

  1. Final Scientific Report - Wind Powering America State Outreach Project

    SciTech Connect (OSTI)

    Sinclair, Mark; Margolis, Anne

    2012-02-01

    The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

  2. WINDExchange: Siting Wind Turbines

    Wind Powering America (EERE)

    Deployment Activities Printable Version Bookmark and Share Regional Resource Centers Economic Development Siting Resources & Tools Siting Wind Turbines This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists,

  3. Senator Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senate Rejects Test Ban Treaty Senate Rejects Test Ban Treaty Washington, DC The Senate votes 48-51 to reject the Comprehensive Test Ban Treaty Energy Is Important to U.S. Policy

    Bingaman Tells Sandia Wind Turbine Blade Workshop That Renewable Energy Is Important to U.S. Policy - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind

  4. An Exploration of Wind Energy & Wind Turbines

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This unit, which includes both a pre and post test on wind power engages students by allowing them to explore connections between wind energy and other forms of energy. Students learn about and examine the overall design of a wind turbine and then move forward with an assessment of the energy output as factors involving wind speed, direction and blade design are altered. Students are directed to work in teams to design, test and analyze components of a wind turbine such as blade length, blade shape, height of turbine, etc Student worksheets are included to facilitate the design and analysis process. Learning Goals: Below are the learning targets for the wind energy unit.

  5. EERE Success Story-Expanding Educational Opportunities for the Wind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Workforce | Department of Energy Expanding Educational Opportunities for the Wind Energy Workforce EERE Success Story-Expanding Educational Opportunities for the Wind Energy Workforce April 11, 2013 - 12:00am Addthis The University of Wisconsin-Madison (UW-Madison) is supporting wind energy workforce development and training for the civil design and construction sector. Funding from EERE has enabled curriculum development for the university's Energy and Policy Graduate Certificate and

  6. Solar and Wind Technologies for Hydrogen Production Report to Congress

    SciTech Connect (OSTI)

    None, None

    2005-12-01

    DOE's Solar and Wind Technologies for Hydrogen Production Report to Congress summarizes the technology roadmaps for solar- and wind-based hydrogen production. Published in December 2005, it fulfills the requirement under section 812 of the Energy Policy Act of 2005.

  7. Wind Energy Resource Assessment of the Caribbean and Central America

    SciTech Connect (OSTI)

    DL Elliott; CI Aspliden; GL Gower; CG Holladay, MN Schwartz

    1987-04-01

    A wind energy resource assessment of the Caribbean and Central America has identified many areas with good to outstanding wind resource potential for wind turbine applications. Annual average wind resource maps and summary tables have been developed for 35 island/country areas throughout the Caribbean and Central America region. The wind resource maps highlight the locations of major resource areas and provide estimates of the wind energy resource potential for typical well-exposed sites in these areas. The average energy in the wind flowing in the layer near the ground is expressed as a wind power class: the greater the average wind energy, the higher the wind power class. The summary tables that are included with each of the 35 island/country wind energy maps provide information on the frequency distribution of the wind speeds (expressed as estimates of the Weibull shape factor, k) and seasonal variations in the wind resource for the major wind resource areas identified on the maps. A new wind power class legend has been developed for relating the wind power classes to values of mean wind power density, mean wind speed, and Weibull k. Guidelines are presented on how to adjust these values to various heights above ground for different roughness and terrain characteristics. Information evaluated in preparing the assessment included existing meteorological data from airports and other weather stations, and from ships and buoys in offshore and coastal areas. In addition, new data from recent measurement sites established for wind energy siting studies were obtained for a few areas of the Caribbean. Other types of information evaluated in the assessment were climatological data and maps on winds aloft, surface pressure, air flow, and topography. The various data were screened and evaluated for their usefulness in preparing the wind resource assessment. Much of the surface data from airports and other land-based weather stations were determined to be from sheltered sites and were thus not very useful in assessing the wind resource at locations that are well exposed to the winds. Ship data were determined to be the most useful for estimating the large-scale wind flow and assessing the spatial distribution of the wind resource throughout the region. Techniques were developed for analyzing and correcting ship wind data and extrapolating these data to coastal and inland areas by considering terrain influences on the large-scale wind flow. In areas where extrapolation of ship wind data was not entirely feasible, such as interior areas of Central America, other techniques were developed for estimating the wind flow and distribution of the wind resource. Through the application of the various innovative techniques developed for assessing the wind resource throughout the Caribbean and Central America region, many areas with potentially good to outstanding wind resource were identified that had not been previously recognized. In areas where existing site data were available from exposed locations, the measured wind resource was compared with the estimated wind resource that was derived using the assessment techniques. In most cases, there was good agreement between the measured wind resource and the estimated wind resource. This assessment project supported activities being pursued by the U.S. Committee for Renewable Energy Commerce and Trade (CORECT), the U.S. government's interagency program to assist in overseas marketing and promote renewable energy exports. An overall goal of the program is to improve U.S. competitiveness in the world renewable energy market. The Caribbean and Central America assessment, which is the first of several possible follow-on international wind energy resource assessments, provides valuable information needed by the U.S. wind energy industry to identify suitable wind resource areas and concentrate their efforts on these areas.

  8. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing

  9. Wildcat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wildcat Ridge Wind Farm Facility Wildcat Ridge Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Midwest Wind Energy Developer Midwest Wind...

  10. Radial Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    search Name Radial Wind Farm Facility Radial Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner Radial Wind Developer Radial Wind Location...

  11. Crow Lake Wind | Open Energy Information

    Open Energy Info (EERE)

    Wind Jump to: navigation, search Name Crow Lake Wind Facility Crow Lake Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Prairie Winds...

  12. Combined Experiment Phase 1. [Horizontal axis wind turbines: wind tunnel testing versus field testing

    SciTech Connect (OSTI)

    Butterfield, C.P.; Musial, W.P.; Simms, D.A.

    1992-10-01

    How does wind tunnel airfoil data differ from the airfoil performance on an operating horizontal axis wind turbine (HAWT) The National Renewable Energy laboratory has been conducting a comprehensive test program focused on answering this question and understanding the basic fluid mechanics of rotating HAWT stall aerodynamics. The basic approach was to instrument a wind rotor, using an airfoil that was well documented by wind tunnel tests, and measure operating pressure distributions on the rotating blade. Based an the integrated values of the pressure data, airfoil performance coefficients were obtained, and comparisons were made between the rotating data and the wind tunnel data. Care was taken to the aerodynamic and geometric differences between the rotating and the wind tunnel models. This is the first of two reports describing the Combined Experiment Program and its results. This Phase I report covers background information such as test setup and instrumentation. It also includes wind tunnel test results and roughness testing.

  13. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July, 2008 the North Carolina Wind Working Group, a coalition of state government, non-profit and wind industry organizations, published a model wind ordinance to provide guidance for...

  14. Wind Vision Presentation

    Broader source: Energy.gov [DOE]

    Wind Program Director Jose Zayas kicked off the development process for the program's new wind vision during his speech at the American Wind Energy Association's WINDPOWER Conference in Chicago in...

  15. Solar and Wind Easements

    Broader source: Energy.gov [DOE]

    In April 2011, the provisions related to wind easements were repealed by House Bill 295 (2011) and replaced with more extensive wind easements provisions.  This legislation defines wind energy ri...

  16. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  17. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  18. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  19. Three DOE Reports Analyze U.S. Wind Energy Growth | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Reports Analyze U.S. Wind Energy Growth Three DOE Reports Analyze U.S. Wind Energy Growth September 11, 2014 - 3:40pm Addthis DOE recently released three reports that provide a detailed analysis of the markets for utility-scale land-based technologies, offshore wind technologies, and distributed wind technologies: the Offshore Wind Market and Economic Analysis, produced by Navigant Consulting, Inc.; the 2013 Wind Technologies Market Report, produced by the Lawrence Berkeley National

  20. NREL: Wind Research - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The National Wind Technology Center at NREL provides a number of wind news sources to help you stay up-to-date with its activities, research, and new developments. NREL Wind News See NREL's most recent wind-related news and announcements. @NWTC Newsletter @NWTC is a bi-annual newsletter that contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Printable Version Wind Research Home Research &

  1. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Photo of a large wind turbine blade sticking out of the structural testing laboratory; it is perpendicular to a building at the National Wind Technology Center. A multimegawatt wind turbine blade extends outside of the structural testing facility at the NWTC. PIX #19010 Testing capabilities at the National Wind Technology Center (NWTC) support the installation and testing of wind turbines that range in size from 400 watts to 5.0 megawatts. Engineers provide wind industry manufacturers,

  2. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and offshore, to advance technology innovations, create job opportunities and boost economic growth. Moving forward, the U.S. wind industry remains a critical part of the Energy Department's all-of-the-above energy strategy to cut carbon pollution, diversify our

  3. Wind Energy Integration: Slides

    Wind Powering America (EERE)

    information about integrating wind energy into the electricity grid. Wind Energy Integration Photo by Dennis Schroeder, NREL 25907 Wind energy currently contributes significant power to energy portfolios around the world. *U.S. Department of Energy. (August 2015). 2014 Wind Technologies Market Report. Wind Energy Integration In 2014, Denmark led the way with wind power supplying roughly 39% of the country's electricity demand. Ireland, Portugal, and Spain provided more than 20% of their

  4. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224, -92.888816 Show Map Loading map... "minzoom":false,"mappings...

  5. Small Wind Conference 2015

    Broader source: Energy.gov [DOE]

    The Small Wind Conference brings together small wind installers, site assessors, manufacturers, dealers and distributors, supply chain stakeholders, educators, public benefits program managers, and...

  6. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  7. Requirements for Wind Development

    Broader source: Energy.gov [DOE]

    In 2015 Oklahoma amended the Oklahoma Wind Energy Development Act. The amendments added new financial security requirements, setback requirements, and notification requirements for wind energy...

  8. Articles about Wind Siting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy.gov Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse http:energy.goveerewindarticlesmodel-examines-cumulative-impacts-wind-ener...

  9. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources Publications Advanced Search Browse by Topic Mail Requests Help Energy Basics Wind Energy FAQs Small Wind Systems FAQs Multimedia Related Links Feature featured...

  10. Wind energy bibliography

    SciTech Connect (OSTI)

    1995-05-01

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  11. Sandia Energy Wind News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wake-Imaging System Successfully Deployed at Scaled Wind Farm Technology Facility http:energy.sandia.govsandia-wake-imaging-system-successfully-deployed-at-scaled-wind-fa...

  12. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  13. Scale Models & Wind Turbines

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Turbines * Readings about Cape Wind and other offshore and onshore siting debates for wind farms * Student Worksheet * A number of scale model items: Ken, Barbie or other dolls...

  14. Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    and fastest growing wind markets in the world. To stay competitive in this sector, the Energy Department invests in wind research and development projects, both on land and...

  15. Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Laboratory PV Regional Test Centers Scaled Wind Farm Technology Facility Climate & Earth ...

  16. Cherokee Chilocco Wind

    Energy Savers [EERE]

    DOE Tribal Energy Program November 15, 2011 Cherokee Chilocco Wind North Central Oklahoma ... E W S Tribal Land Chilocco Property Cherokee Wind Accomplishments: * Feasibility study * ...

  17. Winnebago Tribe - Wind Assessment

    Energy Savers [EERE]

    Winnebago Tribe of Nebraska Wind Energy Feasibility Project Update November 18, 2008 ... Nebraska 2008 All Rights Reserved DOE Wind Project: Purpose * To initiate a study to ...

  18. Environmental Wind Projects

    Broader source: Energy.gov [DOE]

    This report covers the Wind and Water Power Technologies Office’s environmental wind projects from fiscal years 2006 to 2015.

  19. Innovative Study Helps Offshore Wind Developers Protect Wildlife |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Study Helps Offshore Wind Developers Protect Wildlife Innovative Study Helps Offshore Wind Developers Protect Wildlife October 27, 2015 - 9:33am Addthis Innovative Study Helps Offshore Wind Developers Protect Wildlife Jocelyn Brown-Saracino Jocelyn Brown-Saracino Environmental Research Manager, Wind and Water Power Technologies Office Thanks to a first-of-its-kind in-depth study of wildlife distribution and movements, the nation's Eastern Seaboard is better prepared than

  20. Hawaii Utility Integration Initiatives to Enable Wind (Wind HUI) Final Technical Report

    SciTech Connect (OSTI)

    Dora Nakafuji; Lisa Dangelmaier; Chris Reynolds

    2012-07-15

    To advance the state and nation toward clean energy, Hawaii is pursuing an aggressive Renewable Portfolio Standard (RPS), 40% renewable generation and 30% energy efficiency and transportation initiatives by 2030. Additionally, with support from federal, state and industry leadership, the Hawaii Clean Energy Initiative (HCEI) is focused on reducing Hawaii's carbon footprint and global warming impacts. To keep pace with the policy momentum and changing industry technologies, the Hawaiian Electric Companies are proactively pursuing a number of potential system upgrade initiatives to better manage variable resources like wind, solar and demand-side and distributed generation alternatives (i.e. DSM, DG). As variable technologies will continue to play a significant role in powering the future grid, practical strategies for utility integration are needed. Hawaiian utilities are already contending with some of the highest penetrations of renewables in the nation in both large-scale and distributed technologies. With island grids supporting a diverse renewable generation portfolio at penetration levels surpassing 40%, the Hawaiian utilities experiences can offer unique perspective on practical integration strategies. Efforts pursued in this industry and federal collaborative project tackled challenging issues facing the electric power industry around the world. Based on interactions with a number of western utilities and building on decades of national and international renewable integration experiences, three priority initiatives were targeted by Hawaiian utilities to accelerate integration and management of variable renewables for the islands. The three initiatives included: Initiative 1: Enabling reliable, real-time wind forecasting for operations by improving short-term wind forecasting and ramp event modeling capabilities with local site, field monitoring; Initiative 2: Improving operators situational awareness to variable resources via real-time grid condition monitoring using PMU devices and enhanced grid analysis tools; and Initiative 3: Identifying grid automation and smart technology architecture retrofit/improvement opportunities following a systematic review approach, inclusive of increasing renewables and variable distributed generation. Each of the initiative was conducted in partnership with industry technology and equipment providers to facilitate utility deployment experiences inform decision making, assess supporting infrastructure cost considerations, showcase state of the technology, address integration hurdles with viable workarounds. For each initiative, a multi-phased approach was followed that included 1) investigative planning and review of existing state-of-the-art, 2) hands on deployment experiences and 3) process implementation considerations. Each phase of the approach allowed for mid-course corrections, process review and change to any equipment/devices to be used by the utilities. To help the island grids transform legacy infrastructure, the Wind HUI provided more systematic approaches and exposure with vendor/manufacturers, hand-on review and experience with the equipment not only from the initial planning stages but through to deployment and assessment of field performance of some of the new, remote sensing and high-resolution grid monitoring technologies. HELCO became one of the first utilities in the nation to install and operate a high resolution (WindNet) network of remote sensing devices such as radiometers and SODARs to enable a short-term ramp event forecasting capability. This utility-industry and federal government partnership produced new information on wind energy forecasting including new data additions to the NOAA MADIS database; addressed remote sensing technology performance and O&M (operations and maintenance) challenges; assessed legacy equipment compatibility issues and technology solutions; evaluated cyber-security concerns; and engaged in community outreach opportunities that will help guide Hawaii and the nation toward more reliable adoption of clean energy resources. Results from these efforts are helping to inform Hawaiian utilities continue to Transform infrastructure, Incorporate renewable considerations and priorities into new processes/procedures, and Demonstrate the technical effectiveness and feasibility of new technologies to shape our pathways forward. Lessons learned and experience captured as part of this effort will hopefully provide practical guidance for others embarking on major legacy infrastructure transformations and renewable integration projects.

  1. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    II Wind Farm Jump to: navigation, search Name Hull Wind II Wind Farm Facility Hull II Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Hull...

  2. Wind Vision: Continuing the Success of Wind Energy | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Vision: Continuing the Success of Wind Energy Wind Vision: Continuing the Success of Wind Energy April 2, 2015 - 10:35am Addthis The Wind Vision Report describes potential ...

  3. Wind Vision: Updating the DOE 20% Wind Energy by 2030 Report (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2014-04-01

    The 20% Wind Energy by 2030 report was developed as part of the Advanced Energy Initiative. Published in 2008, the report was largely based on information collected and analyzed in 2006. Much has changed since then, including shifts in technology, markets, and policy. The industry needs a new, clear, vision for wind power that is shared among stakeholders from the U.S. government, industry, academia, and NGO communities. At WINDPOWER 2013, the U.S. Department of Energy, in partnership with the American Wind Energy Association and the Wind Energy Foundation, launched a project to update the 20% report with new objectives. This conference poster outlines the elements of the new Wind Vision.

  4. History of Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    History of Wind Energy History of Wind Energy

  5. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Menu Home Home Solar Solar Wind Wind Analysis Analysis Bioenergy Bioenergy Buildings Buildings Transportation Transportation Manufacturing Manufacturing Energy Systems Integration Energy Systems Integration Wind turbines must withstand powerful aerodynamic forces unlike any other propeller-drive machines. Close NREL's work with industry has improved the efficiency and durability of turbine blades and gearboxes. Innovations include: Specialized airfoils Variable-speed turbines

  6. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  7. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  8. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  9. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    User Policy Print 1. Guiding Principles The aim of User Policy at the Advanced Light Source (ALS) is to provide a framework for establishing a challenging yet congenial environment where talented scientists from different backgrounds can work together in pursuit of the new scientific opportunities presented by the availability of this innovative facility. User policy must address a variety of user needs and sensitivities. On one hand, the qualified researcher with little financial backing needs

  10. Wind Energy Benefits: Slides

    Wind Powering America (EERE)

    1. Wind energy is cost competitive. *Wiser, R.; Bolinger, M. (2015). 2014 Wind Technologies Market Report. U.S. Department of Energy. Wind Energy Benefits Photo from DOE Flickr. 465 020 003 In 2014, the average levelized price of signed wind power purchase agreements was about 2.35 cents per kilowatt-hour. This price is cost competitive with new gas-fired power plants and projects compare favorably through 2040.* 2. Wind energy creates jobs. American Wind Energy Association. (2015). U.S. Wind

  11. Energy Policy

    Broader source: Energy.gov [DOE]

    The Energy Department is focusing on an all-of-the-above energy policy, investing in all sources of American energy.

  12. User Policy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE pricing policy will apply for experiments whose results are not intended for the open literature. In addition, experimenters will be required to open operating or equipment...

  13. New England Wind Forum, Volume 1, Issue 1 -- January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-01-01

    The New England Wind Forum electronic newsletter summarizes the latest news in wind energy development activity, markets, education and policy in the New England region. It also features an interview with a key figure influencing New England's wind energy development. Volume 1, Issue 1 features an interview with Brother Joseph of Portsmouth Abbey. A commercial-scale Vestas V47 wind turbine will soon be installed on the grounds of the Benedictine monastery and prep school in Rhode Island, with the assistance of a grant from the Rhode Island Renewable Energy Fund. This will be the first large-scale turbine located behind the customer meter in the region.

  14. New DOE Report Investigates Port Readiness for Offshore Wind

    Broader source: Energy.gov [DOE]

    As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind supply chain, because all plant and transport logistics must transit through these facilities. Therefore, it is important that federal and state policy-makers and port authorities understand offshore wind's ports requirements in planning future investments. The Department of Energy tasked the independent consultancy GL Garrad Hassan with reviewing the current capability of U.S. ports to support offshore wind project development and assessing the challenges and opportunities related to upgrading this capability to support the targeted capacity growth of as much as 54 gigawatts installed in U.S. waters by 2030.

  15. NREL: Wind Research - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities Our facilities are designed to meet the wind industry's critical research needs with state-of-the-art design and testing facilities. NREL's unique and highly versatile facilities at the National Wind Technology Center offer research and analysis of wind turbine components and prototypes rated from 400 watts to 3 megawatts. Satellite facilities support the growth of wind energy development across the United States. National Wind Technology Center Facilities Our facilities are contained

  16. WINDExchange: Collegiate Wind Competition

    Wind Powering America (EERE)

    Education Printable Version Bookmark and Share Workforce Development Collegiate Wind Competition Wind for Schools Project School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Collegiate Wind Competition The U.S. Department of Energy (DOE) Collegiate Wind Competition challenges interdisciplinary teams of undergraduate students from a variety of programs to offer a unique solution to a complex wind energy project; providing each student with

  17. WINDExchange: Wind Energy Ordinances

    Wind Powering America (EERE)

    Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The nature of the project and its location will largely drive the levels of regulation required. Wind energy ordinances adopted by counties, towns, and other types of municipalities are one of the best ways for local governments to identify conditions and priorities for all types of wind development. These ordinances regulate aspects of wind projects such as their location, permitting

  18. ARM - Wind Chill Calculations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CalculatorsWind Chill Calculations Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Wind Chill Calculations Wind Chill is the apparent temperature felt on the exposed human body owing to the combination of temperature and wind speed. From 1945 to 2001, Wind Chill was calculated by the Siple

  19. WINDExchange: Offshore 90-Meter Wind Maps and Wind Resource Potential

    Wind Powering America (EERE)

    Offshore 90-Meter Wind Maps and Wind Resource Potential The U.S. Department of Energy provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California

  20. Collegiate Wind Competition Wind Tunnel Specifications | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of Energy Collegiate Wind Competition must design a prototype wind turbine that fits inside the wind tunnel created to test the performance of each team's project. The tunnel has a "draw down" configuration, introduced by the fan, that sucks air through the box. There are

  1. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect (OSTI)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  2. Final Solar and Wind H2 Report EPAct 812.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar and Wind H2 Report EPAct 812.doc Final Solar and Wind H2 Report EPAct 812.doc Report to Congress (ESECS EE-3060) in response to section 812(e) of the Energy Policy Act of 2005 summarizing technology roadmaps for solar- and wind-based hydrogen production. PDF icon Solar and Wind Technologies for Hydrogen Production: Report to Congress More Documents & Publications Technoeconomic Boundary Analysis of Biological Pathways to Hydrogen Production Analysis Activities at National Renewable

  3. 2012-2014 Offshore Wind Market and Economic Analysis Reports | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy -2014 Offshore Wind Market and Economic Analysis Reports 2012-2014 Offshore Wind Market and Economic Analysis Reports These reports authored by the Navigant Consortium provide a comprehensive annual assessment of the U.S. offshore wind market from 2012 to 2014. The reports provides stakeholders with a reliable and consistent data source addressing entry barriers and U.S. competitiveness in the offshore wind market. The 2012 edition contains significant policy and economic analyses,

  4. Assessment of Vessel Requirements for the U.S. Offshore Wind Sector |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Vessel Requirements for the U.S. Offshore Wind Sector Assessment of Vessel Requirements for the U.S. Offshore Wind Sector Report that investigates the anticipated demand for various vessel types associated with offshore wind development in the United States through 2030 and assesses related market barriers and mitigating policy options. PDF icon Assessment of Vessel Requirements for the U.S. Offshore Wind Sector PDF icon Assessment of Vessel Requirements for the U.S.

  5. Siting guidelines for utility application of wind turbines. Final report

    SciTech Connect (OSTI)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  6. National Wind Assessments formerly Romuld Wind Consulting | Open...

    Open Energy Info (EERE)

    Assessments formerly Romuld Wind Consulting Jump to: navigation, search Name: National Wind Assessments (formerly Romuld Wind Consulting) Place: Minneapolis, Minnesota Zip: 55416...

  7. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  8. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply ...

  9. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State ...

  10. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply The report considers ...

  11. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  12. DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential |

    Energy Savers [EERE]

    Department of Energy DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential DOE-DOI Strategy Seeks to Harness U.S. Offshore Wind Energy Potential May 20, 2011 - 1:34pm Addthis This is an excerpt from the Second Quarter 2011 edition of the Wind Program R&D Newsletter. Image of the EERE National Offshore Wind Strategy report cover featuring a photo of a receding line of offshore wind turbines in the ocean. The winds of change are blowing for renewable energy policy, and some of

  13. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards and Testing NREL's Offshore Wind Testing Capabilities 35 years of wind turbine testing experience Custom high speed data acquisition system integrated for offshore testing Trained crew of offshore certified test engineers and technicians Colorado- and Boston-based laboratory test facilities for large blade and multi-megawatt drivetrain testing A2LA accredited certification testing to IEC standards Third-party design verification of innovative floating and fixed-bottom wind turbines

  14. DOE Science Showcase - Wind Power

    Office of Scientific and Technical Information (OSTI)

    DOE Science Showcase - Wind Power Wind Powering America Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Wind Power Research Results in DOE Databases IEA Wind Task 26: The Past and Future Cost of Wind Energy, Work Package 2, Energy Citations Database NREL Triples Previous Estimates of U.S. Wind

  15. Chaninik Wind Group: Harnessing Wind, Building Capacity

    Office of Environmental Management (EM)

    Chaninik Wind Group Villages Kongiganak pop.359 Kwigillingok pop. 388 Kipnuk pop.644 Tuntutuliak pop. 370 On average, 24% of families are below the poverty line. ...

  16. Chaninik Wind Group Wind Heat Smart Grid

    Office of Environmental Management (EM)

    24% of families are Department of Energy Tribal Energy Program Review ... data and analyze the situation Annual Average Village Fuel Usage Village Wind Diesel Smart Grids ...

  17. CAMD Policy Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lists: Caretakers, Accelerator Operators, Shift Operators Building Security: Policy Crane: Directive, Use, Procedure Emergency: Policy, Procedure Experimental Hall: Policy...

  18. Spanish Fork Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Fork Wind Farm Jump to: navigation, search Name Spanish Fork Wind Farm Facility Spanish Fork Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Sigel Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Sigel Wind Park Jump to: navigation, search Name Sigel Wind Park Facility Sigel Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  20. Minden Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Minden Wind Park Jump to: navigation, search Name Minden Wind Park Facility Minden Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  1. Fossil Gulch Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Gulch Wind Park Jump to: navigation, search Name Fossil Gulch Wind Park Facility Fossil Gulch Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  2. Criterion Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Criterion Wind Park Jump to: navigation, search Name Criterion Wind Park Facility Criterion Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  3. Golden Valley Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Wind Park Jump to: navigation, search Name Golden Valley Wind Park Facility Golden Valley Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  4. Adams Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Project Jump to: navigation, search Name Adams Wind Project Facility Adams Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Wildcat 1 Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Wildcat 1 Wind Project Jump to: navigation, search Name Wildcat 1 Wind Project Facility Wildcat 1 Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Springview II Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Springview II Wind Project Jump to: navigation, search Name Springview II Wind Project Facility Springview II Wind Project Sector Wind energy Facility Type Commercial Scale Wind...

  7. Shiloh Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Shiloh Wind Power Project Facility Shiloh Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenton Wind Power Project Facility Fenton Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Madison Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Madison Wind Power Project Facility Madison Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  10. Somerset Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Somerset Wind Power Project Facility Somerset Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Jump to: navigation, search Name Desert Wind Power Facility Desert Wind Power Sector Wind energy Facility Type Commercial Scale Wind Facility Status Proposed Developer...

  12. Moraine Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Moraine Wind Power Project Facility Moraine Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Tillamook Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Tillamook Offshore Wind Farm Jump to: navigation, search Name Tillamook Offshore Wind Farm Facility Tillamook Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  14. Deepwater Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Name Deepwater Wind Farm Facility Deepwater Wind Farm Sector Wind energy Facility Type Offshore Wind Facility Status Proposed Owner PSEG Renewable Generation Deepwater Wind...

  15. Galveston Offshore Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Galveston Offshore Wind Farm Jump to: navigation, search Name Galveston Offshore Wind Farm Facility Galveston Offshore Wind Farm Sector Wind energy Facility Type Offshore Wind...

  16. Montfort Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Montfort Wind Farm Jump to: navigation, search Name Montfort Wind Farm Facility Montfort Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  17. Palmetto Wind Research Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Research Project Jump to: navigation, search Name Palmetto Wind Research Project Facility Palmetto Wind Research Project Sector Wind energy Facility Type Offshore Wind...

  18. Luther College Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Luther College Wind Turbine Jump to: navigation, search Name Luther College Wind Turbine Facility Luther College Wind Turbine Sector Wind energy Facility Type Community Wind...

  19. Williams Stone Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Stone Wind Turbine Jump to: navigation, search Name Williams Stone Wind Turbine Facility Williams Stone Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status...

  20. Portsmouth Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Wind Turbine Jump to: navigation, search Name Portsmouth Wind Turbine Facility Portsmouth Wind Turbine Sector Wind energy Facility Type Community Wind Facility Status In Service...

  1. Charlestown Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Charlestown Wind Turbine Jump to: navigation, search Name Charlestown Wind Turbine Facility Charlestown Wind Turbine Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Power Project Jump to: navigation, search Name Fenner Wind Power Project Facility Fenner Wind Power Project Sector Wind energy Facility Type Commercial Scale Wind Facility...

  3. Gray County Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Gray County Wind Farm Jump to: navigation, search Name Gray County Wind Farm Facility Gray County Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  4. Hopkins Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Hopkins Ridge Wind Farm Facility Hopkins Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  5. Blue Creek Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Creek Wind Farm Jump to: navigation, search Name Blue Creek Wind Farm Facility Blue Creek Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  6. Tuana Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Farm Jump to: navigation, search Name Tuana Springs Wind Farm Facility Tuana Springs Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Thousand Springs Wind Park | Open Energy Information

    Open Energy Info (EERE)

    Springs Wind Park Jump to: navigation, search Name Thousand Springs Wind Park Facility Thousand Springs Wind Park Sector Wind energy Facility Type Commercial Scale Wind Facility...

  8. First State Marine Wind | Open Energy Information

    Open Energy Info (EERE)

    State Marine Wind Jump to: navigation, search Name First State Marine Wind Facility First State Marine Wind Sector Wind energy Facility Type Offshore Wind Facility Status Proposed...

  9. Gulf Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Gulf Wind Farm Facility Gulf Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Pattern Energy...

  10. Stetson Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Farm Jump to: navigation, search Name Stetson Wind Farm Facility Stetson Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind...

  11. Zirbel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Zirbel Wind Farm Facility Zirbel Wind Farm (Glenmore Wind Energy Facility) Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  12. Beebe Community Wind | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name Beebe Community Wind Facility Beebe Community Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind...

  13. Woodstock Municipal Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name Woodstock Municipal Wind Facility Woodstock Municipal Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer Juhl Wind...

  14. Winona County Wind | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name Winona County Wind Facility Winona County Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Juhl Wind...

  15. Story City Wind | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name Story City Wind Facility Story City Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Hamilton Wind Energy...

  16. Star Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Point Wind Farm Jump to: navigation, search Name Star Point Wind Farm Facility Star Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  17. Shane Cowell Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Shane Cowell Wind Farm Jump to: navigation, search Name Shane Cowell Wind Farm Facility Shane Cowell Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  18. Antelope Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Antelope Ridge Wind Farm Jump to: navigation, search Name Antelope Ridge Wind Farm Facility Antelope Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Locust Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Locust Ridge Wind Farm Jump to: navigation, search Name Locust Ridge Wind Farm Facility Locust Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Rosiere Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Rosiere Wind Farm Jump to: navigation, search Name Rosiere Wind Farm Facility Rosiere Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  1. Paynes Ferry Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Paynes Ferry Wind Farm Jump to: navigation, search Name Paynes Ferry Wind Farm Facility Paynes Ferry Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  2. Marengo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marengo Wind Farm Jump to: navigation, search Name Marengo Wind Farm Facility Marengo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  3. Stoney Corners Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stoney Corners Wind Farm Jump to: navigation, search Name Stoney Corners Wind Farm Facility Stoney Corners Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  4. Marshall Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Marshall Wind Farm Jump to: navigation, search Name Marshall Wind Farm Facility Marshall Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  5. Laredo Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Laredo Ridge Wind Farm Jump to: navigation, search Name Laredo Ridge Wind Farm Facility Laredo Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  6. Nine Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Nine Canyon Wind Farm Jump to: navigation, search Name Nine Canyon Wind Farm Facility Nine Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  7. Casper Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Casper Wind Farm Jump to: navigation, search Name Casper Wind Farm Facility Casper Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  8. Wallys Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wallys Wind Farm Jump to: navigation, search Name Wallys Wind Farm Facility Wallys Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Cassia Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cassia Wind Farm Jump to: navigation, search Name Cassia Wind Farm Facility Cassia Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  10. Hatchet Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Hatchet Ridge Wind Farm Jump to: navigation, search Name Hatchet Ridge Wind Farm Facility Hatchet Ridge Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  11. Cedar Point Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Cedar Point Wind Farm Jump to: navigation, search Name Cedar Point Wind Farm Facility Cedar Point Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  12. Allegheny Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Allegheny Ridge Wind Farm Jump to: navigation, search Name Allegheny Ridge Wind Farm Facility Allegheny Ridge wind farm Sector Wind energy Facility Type Commercial Scale Wind...

  13. Greensburg Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Greensburg Wind Farm Jump to: navigation, search Name Greensburg Wind Farm Facility Greensburg Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  14. Wheatfield Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wheatfield Wind Farm Jump to: navigation, search Name Wheatfield Wind Farm Facility Wheatfield Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  15. Ewington Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Ewington Wind Farm Jump to: navigation, search Name Ewington Wind Farm Facility Ewington Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service...

  16. Uilk Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Uilk Wind Farm Jump to: navigation, search Name Uilk Wind Farm Facility Uilk Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Developer...

  17. Octotillo Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Octotillo Wind Farm Jump to: navigation, search Name Octotillo Wind Farm Facility Octotillo Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  18. Don Sneve Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Sneve Wind Project Jump to: navigation, search Name Don Sneve Wind Project Facility Don Sneve Wind Project Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  19. Kansas/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Kansas Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  20. Idaho/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Idaho Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  1. Nevada/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Nevada Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  2. Iowa/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Iowa Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  3. Small Wind Guidebook | Open Energy Information

    Open Energy Info (EERE)

    Home >> Wind >> Small Wind Guidebook WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  4. Maine/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Maine Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  5. Hawaii/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Hawaii Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  6. Oregon/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Oregon Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  7. Alaska/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Wind Guidebook >> Alaska Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  8. Spring Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Spring Canyon Wind Farm Jump to: navigation, search Name Spring Canyon Wind Farm Facility Spring Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility...

  9. Red Canyon Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Canyon Wind Farm Jump to: navigation, search Name Red Canyon Wind Farm Facility Red Canyon Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  10. Green Mountain Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Wind Farm Jump to: navigation, search Name Green Mountain Wind Farm Facility Green Mountain Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In...

  11. Olsen Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Olsen Wind Farm Jump to: navigation, search Name Olsen Wind Farm Facility Olsen Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  12. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Minco Wind Energy Center Facility Minco Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  13. Dunlap Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Dunlap Wind Energy Project Jump to: navigation, search Name Dunlap Wind Energy Project Facility Dunlap Wind Energy Project Sector Wind energy Facility Type Commercial Scale Wind...

  14. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Facility Jump to: navigation, search Name Baseline Wind Energy Facility Facility Baseline Wind Energy Facility Sector Wind energy Facility Type Commercial Scale Wind...

  15. Howard Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Project Jump to: navigation, search Name Howard Wind Energy Project Facility Howard Wind Energy Project Sector Wind energy Facility Type Community Wind Facility Status...

  16. Cape Wind Project | Open Energy Information

    Open Energy Info (EERE)

    Project Jump to: navigation, search Name Cape Wind Project Facility Cape Wind Sector Wind energy Facility Type Offshore wind Facility Status Proposed Owner Cape Wind Developer Cape...

  17. Wales Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Wales Wind Energy Project Jump to: navigation, search Name Wales Wind Energy Project Facility Wales Wind Energy Project Sector Wind energy Facility Type Small Scale Wind Facility...

  18. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Wyoming Wind Energy Center Facility Wyoming Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  19. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    Wind Energy Center Jump to: navigation, search Name Vantage Wind Energy Center Facility Vantage Wind Energy Center Sector Wind energy Facility Type Commercial Scale Wind Facility...

  20. Bayonne Wind Energy Project | Open Energy Information

    Open Energy Info (EERE)

    Bayonne Wind Energy Project Jump to: navigation, search Name Bayonne Wind Energy Project Facility Bayonne Wind Energy Project Sector Wind energy Facility Type Community Wind...