National Library of Energy BETA

Sample records for distributed utility associates

  1. Voltage Impacts of Utility-Scale Distributed Wind

    SciTech Connect (OSTI)

    Allen, A.

    2014-09-01

    Although most utility-scale wind turbines in the United States are added at the transmission level in large wind power plants, distributed wind power offers an alternative that could increase the overall wind power penetration without the need for additional transmission. This report examines the distribution feeder-level voltage issues that can arise when adding utility-scale wind turbines to the distribution system. Four of the Pacific Northwest National Laboratory taxonomy feeders were examined in detail to study the voltage issues associated with adding wind turbines at different distances from the sub-station. General rules relating feeder resistance up to the point of turbine interconnection to the expected maximum voltage change levels were developed. Additional analysis examined line and transformer overvoltage conditions.

  2. Comments from The National Association of Regulatory Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from The National Association of Regulatory Utility Commissioners (NARUC) on the Smart Grid RFI Comments from The National Association of Regulatory Utility Commissioners (NARUC) ...

  3. Proceedings of the distributed utility valuation project institutional issues workshop

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    These proceedings summarize the discussions during a one-day working session on institutional issues related to the distributed utility (DU) concept. The purpose of the session was to provide an initial assessment of the {open_quotes}institutional{close_quotes} issues, including legal, regulatory, industry structure, utility organization, competition, and related matters that may affect the development and the relationships among distributed utility stakeholders. The assessment was to identify institutional barriers to utilities realizing benefits of the distributed concept (should these benefits be confirmed), as well as to identify opportunities for utilities and other stakeholders for moving ahead to more easily capture these benefits.

  4. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For operational management to support the distribution system, the utility's consumers (e.g., homeowners) need to be provided financial incentives. Historically, demand-response ...

  5. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect (OSTI)

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  6. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  7. On the Path to SunShot: Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    670 LBNL-1004371 Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Cover photos (clockwise from top left): Solar Design Associates, Inc., NREL 08563; SolarReserve; Dennis Schroeder, NREL 30551; and iStock 000075760625 On the Path to SunShot: Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Galen Barbose 1 , John Miller 2 , Ben Sigrin 2 , Emerson Reiter 2 ,

  8. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Energy Savers [EERE]

    DOENational Association of Regulatory Utility Commissioners Natural Gas Infrastructure ... Commissioners (NARUC) to encourage investments in infrastructure modernization to ...

  9. Distributed Wind Energy Association | Open Energy Information

    Open Energy Info (EERE)

    Energy Association Jump to: navigation, search Name: Distributed Wind Energy Association Address: PO Box 1861 Place: Flagstaff, AZ Zip: 86002 Phone Number: 928-255-0214 Website:...

  10. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  11. Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities

    Office of Energy Efficiency and Renewable Energy (EERE)

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  12. Utility Regulation and Business Model Reforms for Advancing the Financial Impacts of Distributed Solar on Utilities

    Broader source: Energy.gov [DOE]

    Implementing a range of alternative utility-rate reforms could minimize solar value losses at increasing levels of distributed PV penetration (see Barbose et al. 2016). In conjunction with the technical issues described above, the connections between distributed PV and electric distribution systems hinge on utility business models and regulations. As PV deployment has leapt forward and presaged a truly significant solar contribution, however, it has become clear that utilities’ traditional treatment of distributed PV cannot be taken for granted—nor can the future value and deployment of distributed PV. At the heart of this issue is net energy metering (NEM). Under NEM, PV owners can sell to a utility the electricity they generate but cannot consume on site, often at full retail rates. This widespread policy has helped drive the rapid growth of distributed PV, but the success has raised concerns about the potential for higher electricity rates and cost-shifting to non-solar customers, reduced utility shareholder profitability, reduced utility earnings opportunities, and inefficient resource allocation. The resulting reform efforts have revolved largely around changing NEM rules and retail rate structures. Most of the reforms to date address NEM concerns by reducing the benefits provided to distributed PV customers and thus constraining PV deployment. A new analysis estimates that eliminating NEM nationwide, by compensating exports of PV electricity at wholesale rather than retail rates would cut cumulative distributed PV deployment by 20% in 2050 compared with a continuation of current policies. This would slow the PV cost reductions that arise from larger scale and market certainty. It could also thwart achievement of the SunShot deployment goals even if the initiative’s cost targets are achieved. This undesirable prospect is stimulating the development of alternative reform strategies that address concerns about distributed PV compensation without

  13. The integration of renewable energy sources into electric power distribution systems. Volume 2, Utility case assessments

    SciTech Connect (OSTI)

    Zaininger, H.W.; Ellis, P.R.; Schaefer, J.C.

    1994-06-01

    Electric utility distribution system impacts associated with the integration of renewable energy sources such as photovoltaics (PV) and wind turbines (WT) are considered in this project. The impacts are expected to vary from site to site according to the following characteristics: (1) The local solar insolation and/or wind characteristics; (2) renewable energy source penetration level; (3) whether battery or other energy storage systems are applied; and (4) local utility distribution design standards and planning practices. Small, distributed renewable energy sources are connected to the utility distribution system like other, similar kW- and MW-scale equipment and loads. Residential applications are expected to be connected to single-phase 120/240-V secondaries. Larger kw-scale applications may be connected to three-phase secondaries, and larger hundred-kW and MW-scale applications, such as MW-scale windfarms or PV plants, may be connected to electric utility primary systems via customer-owned primary and secondary collection systems. Small, distributed renewable energy sources installed on utility distribution systems will also produce nonsite-specific utility generation system benefits such as energy and capacity displacement benefits, in addition to the local site-specific distribution system benefits. Although generation system benefits are not site-specific, they are utility-specific, and they vary significantly among utilities in different regions. In addition, transmission system benefits, environmental benefits and other benefits may apply. These benefits also vary significantly among utilities and regions. Seven utility case studies considering PV, WT, and battery storage were conducted to identify a range of potential renewable energy source distribution system applications.

  14. Reply Comments by the National Association of State Utility Consumer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advocates | Department of Energy by the National Association of State Utility Consumer Advocates Reply Comments by the National Association of State Utility Consumer Advocates The National Association of State Utility Consumer Advocates ("NASUCA") submits these reply comments in response to the United States Department of Energy's ("DOE") Request for Information ("RFI") entitled "Implementing the National Broadband Plan by Empowering Consumers and the Smart

  15. Comments from The National Association of Regulatory Utility Commissioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (NARUC) on the Smart Grid RFI | Department of Energy from The National Association of Regulatory Utility Commissioners (NARUC) on the Smart Grid RFI Comments from The National Association of Regulatory Utility Commissioners (NARUC) on the Smart Grid RFI The National Association of Regulatory Utility Commissioners (NARUC) appreciates the opportunity to provide comments to the Department of Energy (DOE) on this Request for Information (RFI) regarding the policy and logistical challenges of the

  16. Fact Sheet: DOE/National Association of Regulatory Utility Commissione...

    Broader source: Energy.gov (indexed) [DOE]

    Fact Sheet: DOENational Association of Regulatory Utility Commissioners Natural Gas ... will work with NARUC to encourage investments in infrastructure modernization to ...

  17. Electrical utilities model for determining electrical distribution capacity

    SciTech Connect (OSTI)

    Fritz, R. L.

    1997-09-03

    In its simplest form, this model was to obtain meaningful data on the current state of the Site`s electrical transmission and distribution assets, and turn this vast collection of data into useful information. The resulting product is an Electrical Utilities Model for Determining Electrical Distribution Capacity which provides: current state of the electrical transmission and distribution systems; critical Hanford Site needs based on outyear planning documents; decision factor model. This model will enable Electrical Utilities management to improve forecasting requirements for service levels, budget, schedule, scope, and staffing, and recommend the best path forward to satisfy customer demands at the minimum risk and least cost to the government. A dynamic document, the model will be updated annually to reflect changes in Hanford Site activities.

  18. Iowa Association of Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Name: Iowa Association of Municipal Utilities Place: Ankeny, IA Website: www.iamu.org References: SGIC1 This article is a stub. You can help OpenEI...

  19. Fact Sheet: DOE/National Association of Regulatory Utility Commissioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Natural Gas Infrastructure Modernization Partnership | Department of Energy DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership The following fact sheet outlines one of the Department of Energy's series of actions, partnerships, and stakeholder commitments to help modernize the nation¹s natural gas

  20. Fact Sheet: DOE/National Association of Regulatory Utility Commissioners

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: DOE/National Association of Regulatory Utility Commissioners Natural Gas Infrastructure Modernization Partnership Summary: Building on many years of productive collaboration, the U.S. Department of Energy will work with NARUC to encourage investments in infrastructure modernization to enhance pipeline safety, efficiency and deliverability. State Public Utility Commissions serve a leading role in ensuring continued investments are made to secure safe, reliable, affordable and robust

  1. Utilization of coal-associated minerals. Final report

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-01-01

    Under contract number DE-AS21-77ET10533 with the US-DOE several methods of utilizing coal associated by-products were examined for potential commercial use. Such use could transform a costly waste disposal situation into new materials for further use and could provide incentive for the adoption of new coal utilization processes. Several utilization processes appear to have merit and are recommended for further study. Each process is discussed separately in the text of this report. Common coal cleaning processes were also examined to determine the effect of such processes on the composition of by-products. Data obtained in this portion of the research effort are reported in the Appendix. Information of this type is required before utilization processes can be considered. A knowledge of the mineral composition of these materials is also required before even simple disposal methods can be considered.

  2. Integration of distributed resources in electric utility systems: Current interconnection practice and unified approach. Final report

    SciTech Connect (OSTI)

    Barker, P.; Leskan, T.; Zaininger, H.; Smith, D.

    1998-11-01

    Deregulation of the electric utility industry, new state and federal programs, and technology developments are making distributed resources (DR) an increasingly utilized option to provide capacity for growing or heavily loaded electric power systems. Optimal DR placement near loads provides benefits not attainable from bulk generation system additions. These include reduced loading of the T and D system, reduced losses, voltage support, and T and D equipment upgrade deferments. The purpose of this document is to review existing interconnection practices and present interconnection guidelines are relevant to the protection, control, and data acquisition requirements for the interconnection of distributed resources to the utility system. This is to include protection performance requirements, data collection and reporting requirements, on-line communication requirements, and ongoing periodic documentation requirements. This document also provides guidelines for the practical placement and sizing of resources as pertinent to determining the interconnection equipment and system control requirements. The material contained herein has been organized into 4 sections dealing with application issues, existing practices, a unified interconnection approach, and future work. Section 2 of the report discusses the application issues associated with distributed resources and deals with various engineering issues such as overcurrent protection, voltage regulation, and islanding. Section 3 summarizes the existing utility interconnection practices and guidelines as determined from the documents provided by participating utilities. Section 4 presents a unified interconnection approach that is intended to serve as a guide for interconnection of distributed resources to the utility system. And finally, Section 5 outlines possible future areas of study to expand upon the topics discussed in this report.

  3. Comments by the National Association of State Utility Consumer Advocates |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The National Association of State Utility Consumer Advocates ("NASUCA") hereby submits the following comments in response to the United States Department of Energy ("DOE") Request for Information ("RFI") entitled "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy." See 75 Fed. Reg. 26203 (May 11, 2010). The RFI requests comments and information from

  4. Economic and technical analysis of distributed utility benefits for hydrogen refueling stations

    SciTech Connect (OSTI)

    Iannucci, J.J.; Eyer, J.M.; Horgan, S.A.; Schoenung, S.M.

    1998-08-01

    This paper discusses the potential economic benefits of operating hydrogen refueling stations to supplying pressurized hydrogen for vehicles, and supplying distributed utility generation, transmission and distribution peaking needs to the utility. The study determined under what circumstances using a hydrogen-fueled generator as a distributed utility generation source, co-located with the hydrogen refueling station components (electrolyzer and storage), would result in cost savings to the station owner, and hence lower hydrogen production costs.

  5. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    1992-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  6. Electric utilities monthly sales and revenue report with state distributions, 1991-1992 (EIA-826H). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, Annual Electric Utility Report. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  7. Comments by the National Association of State Utility Consumer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    state laws to represent utility consumers before federal and state utility regulatory commissions, before other federal and state agencies, and before federal and state courts. ...

  8. An examination of the costs and critical characteristics of electric utility distribution system capacity enhancement projects

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Schienbein, Lawrence A.; Nguyen, Tony B.; Brown, Daryl R.; Fathelrahman, Eihab M.

    2004-06-01

    This report classifies and analyzes the capital and total costs (e.g., income tax, property tax, depreciation, centralized power generation, insurance premiums, and capital financing) associated with 130 electricity distribution system capacity enhancement projects undertaken during 1995-2002 or planned in the 2003-2011 time period by three electric power utilities operating in the Pacific Northwest. The Pacific Northwest National Laboratory (PNNL), in cooperation with participating utilities, has developed a large database of over 3,000 distribution system projects. The database includes brief project descriptions, capital cost estimates, the stated need for each project, and engineering data. The database was augmented by additional technical (e.g., line loss, existing substation capacities, and forecast peak demand for power in the area served by each project), cost (e.g., operations, maintenance, and centralized power generation costs), and financial (e.g., cost of capital, insurance premiums, depreciations, and tax rates) data. Though there are roughly 3,000 projects in the database, the vast majority were not included in this analysis because they either did not clearly enhance capacity or more information was needed, and not available, to adequately conduct the cost analyses. For the 130 projects identified for this analysis, capital cost frequency distributions were constructed, and expressed in terms of dollars per kVA of additional capacity. The capital cost frequency distributions identify how the projects contained within the database are distributed across a broad cost spectrum. Furthermore, the PNNL Energy Cost Analysis Model (ECAM) was used to determine the full costs (e.g., capital, operations and maintenance, property tax, income tax, depreciation, centralized power generation costs, insurance premiums and capital financing) associated with delivering electricity to customers, once again expressed in terms of costs per kVA of additional capacity

  9. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structures: Preprint

    SciTech Connect (OSTI)

    Ruth, Mark; Pratt, Annabelle; Lunacek, Monte; Mittal, Saurabh; Wu, Hongyu; Jones, Wesley

    2015-07-17

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is poorly understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time of use tariff to estimate economic and physical impacts on both the households and the distribution utilities. HEMS reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Household savings are greater than the reduction utility net revenue indicating that HEMS can provide a societal benefit providing tariffs are structured so that utilities remain solvent. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices and resulting in a higher peak load.

  10. DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Service Contracts, and More | Department of Energy the Distributed Wind Power Market, Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration

  11. The feasibility of replacing or upgrading utility distribution transformers during routine maintenance

    SciTech Connect (OSTI)

    Barnes, P.R.; Van Dyke, J.W.; McConnell, B.W.; Cohn, S.M.; Purucker, S.L.

    1995-04-01

    It is estimated that electric utilities use about 40 million distribution transformers in supplying electricity to customers in the United States. Although utility distribution transformers collectively have a high average efficiency, they account for approximately 61 billion kWh of the 229 billion kWh of energy lost annually in the delivery of electricity. Distribution transformers are being replaced over time by new, more efficient, lower-loss units during routine utility maintenance of power distribution systems. Maintenance is typically not performed on units in service. However, units removed from service with appreciable remaining life are often refurbished and returned to stock. Distribution transformers may be removed from service for many reasons, including failure, over- or underloading, or line upgrades such as voltage changes or rerouting. When distribution transformers are removed from service, a decision must be made whether to dispose of the transformer and purchase a lower-loss replacement or to refurbish the transformer and return it to stock for future use. This report contains findings and recommendations on replacing utility distribution transformers during routine maintenance, which is required by section 124(c) of the Energy Policy Act of 1992. The objectives of the study are to evaluate the practicability, cost-effectiveness, and potential energy savings of replacing or upgrading existing transformers during routine utility maintenance and to develop recommendations on was to achieve the potential energy savings.

  12. Impact of Utility-Scale Distributed Wind on Transmission-Level System Operations

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.

    2014-09-01

    This report presents a new renewable integration study that aims to assess the potential for adding distributed wind to the current power system with minimal or no upgrades to the distribution or transmission electricity systems. It investigates the impacts of integrating large amounts of utility-scale distributed wind power on bulk system operations by performing a case study on the power system of the Independent System Operator-New England (ISO-NE).

  13. Regulatory Considerations Associated with the Expanded Adoption of Distributed Solar

    SciTech Connect (OSTI)

    Bird, L.; McLaren, J.; Heeter, J.; Linvill, C.; Shenot, J.; Sedano, R.; Migden-Ostrander, J.

    2013-11-01

    Increased adoption of distributed PV, and other forms of distributed generation, have the potential to affect utility-customer interactions, system costs recovery, and utility revenue streams. If a greater number of electricity customers choose to self-generate, demand for system power will decrease and utility fixed costs will have to be recovered over fewer kilowatt hours of sales. As such, regulators will need to determine the value and cost of additional distributed PV and determine the appropriate allocation of the costs and benefits among consumers. The potential for new business models to emerge also has implications for regulation and rate structures that ensure equitable solutions for all electricity grid users. This report examines regulatory tools and rate designs for addressing emerging issues with the expanded adoption of distributed PV and evaluates the potential effectiveness and viability of these options going forward. It offers the groundwork needed in order for regulators to explore mechanisms and ensure that utilities can collect sufficient revenues to provide reliable electric service, cover fixed costs, and balance cost equity among ratepayers -- while creating a value proposition for customers to adopt distributed PV.

  14. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic for today

  15. Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 July 2016 ______________________________________________________________________________ 1 Utilities [References: FAR 41, DEAR 941 and 970.4102] 1.0 Summary of Latest Changes This update includes administrative changes. 2.0 Discussion This chapter supplements other more primary acquisition regulations and policies contained in the references above and should be considered in the context of those references. 2.1 Overview. This section discusses the acquisition and sales of utility services by

  16. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect (OSTI)

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  17. Power Electronics for Distributed Energy Systems and Transmission and Distribution Applications: Assessing the Technical Needs for Utility Applications

    SciTech Connect (OSTI)

    Tolbert, L.M.

    2005-12-21

    Power electronics can provide utilities the ability to more effectively deliver power to their customers while providing increased reliability to the bulk power system. In general, power electronics is the process of using semiconductor switching devices to control and convert electrical power flow from one form to another to meet a specific need. These conversion techniques have revolutionized modern life by streamlining manufacturing processes, increasing product efficiencies, and increasing the quality of life by enhancing many modern conveniences such as computers, and they can help to improve the delivery of reliable power from utilities. This report summarizes the technical challenges associated with utilizing power electronics devices across the entire spectrum from applications to manufacturing and materials development, and it provides recommendations for research and development (R&D) needs for power electronics systems in which the U.S. Department of Energy (DOE) could make a substantial impact toward improving the reliability of the bulk power system.

  18. Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy, Fiscal Years 2006-2014

    SciTech Connect (OSTI)

    None, None

    2014-04-01

    This report covers the Wind and Water Power Technologies Office's Testing, Manufacturing, and Component Development Projects for Utility-Scale and Distributed Wind Energy from 2006 to 2014.

  19. Benchmarking for electric utilities, tree trimming benchmarking, service line installation to single family residence, and distribution revenue meter testing and repair

    SciTech Connect (OSTI)

    Harder, J.

    1994-12-31

    An American Public Power Association (APPA) task force study on benchmarking for electric utilities is presented. Benchmark studies were made of three activities: (1) Tree trimming; (2) Service line installation to single family residence; (3) Distribution revenue meter testing and repair criteria. The results of the study areas are summarized for 15 utilities. The methodologies used for data collection and analysis are discussed. 28 figs., 9 tabs.

  20. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    June 3, 2015 "Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements" Joslyn Sato, Hawaiian Electric Companies Michael Conway, Borrego Solar Systems, Inc. Kristen Ardani and Emerson Reiter, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Learn how data reporting requirements for interconnection vary across States, how tracking and data reporting for interconnection requests is evolving

  1. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  2. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  3. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  4. WARP: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.P.

    1996-07-01

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kilowatts each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP) Windframe, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user-friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/kWh, depending on the wind resource.

  5. WARP{trademark}: A modular wind power system for distributed electric utility application

    SciTech Connect (OSTI)

    Weisbrich, A.L.; Ostrow, S.L.; Padalino, J.

    1995-12-31

    Steady development of wind turbine technology, and the accumulation of wind farm operating experience, have resulted in the emergence of wind power as a potentially attractive source of electricity for utilities. Since wind turbines are inherently modular, with medium-sized units typically in the range of a few hundred kW each, they lend themselves well to distributed generation service. A patented wind power technology, the Toroidal Accelerator Rotor Platform (TARP{trademark}) Windframe{trademark}, forms the basis for a proposed network-distributed, wind power plant combining electric generation and transmission. While heavily building on proven wind turbine technology, this system is projected to surpass traditional configuration windmills through a unique distribution/transmission combination, superior performance, user friendly operation and maintenance, and high availability and reliability. Furthermore, its environmental benefits include little new land requirements, relatively attractive appearance, lower noise and EMI/TV interference, and reduced avian (bird) mortality potential. Its cost of energy is projected to be very competitive, in the range of from approximately 2{cents}/kWh to 5{cents}/ kWh, depending on the wind resource.

  6. Utilization of coal associated minerals. Quarterly report No. 11, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Slonaker, J. F.; Akers, D. J.; Alderman, J. K.

    1980-08-29

    The purpose of this research program is to examine the effects of coal mineral materials on coal waste by-product utilization and to investigate new and improved methods for the utilization of waste by-products from cleaning, combustion and conversion processing of coal. The intermediate objectives include: (1) the examination of the effects of cleaning, gasification and combustion on coal mineral materials; and (2) the changes which occur in the coal wastes as a result of both form and distribution of mineral materials in feed coals in conjunction with the coal treatment effects resulting from coal cleaning or either gasification or combustion.

  7. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  8. Effects of Home Energy Management Systems on Distribution Utilities and Feeders Under Various Market Structure; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Ruth, M.; Pratt, A.; Lunacek, M.; Mittal, S.; Wu, H.; Jones, W.

    2015-06-15

    The combination of distributed energy resources (DER) and retail tariff structures to provide benefits to both utility consumers and the utilities is not well understood. To improve understanding, an Integrated Energy System Model (IESM) is being developed to simulate the physical and economic aspects of DER technologies, the buildings where they reside, and feeders servicing them. The IESM was used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load. used to simulate 20 houses with home energy management systems on a single feeder under a time-of-use (TOU) tariff to estimate economic and physical impacts on both the households and the distribution utilities. Home energy management systems (HEMS) reduce consumers’ electric bills by precooling houses in the hours before peak electricity pricing. Utilization of HEMS reduce peak loads during high price hours but shifts it to hours with off-peak and shoulder prices, resulting in a higher peak load.

  9. Overview of U.S. electric utilities: Transmission and distribution systems

    SciTech Connect (OSTI)

    Brown, R.D.

    1994-12-31

    I hope this brief description of the US electric utility industry has been interesting and informative. No doubt many characteristics, concerns, and research efforts mirror those of the electric utility industry in South Korea. It is hoped that through workshops such as this that electric utilities, manufacturers and consultants may learn from each other for the mutual benefit of all.

  10. Passive and Active Neutron Matrix Correction for Heterogeneous Distributions Utilizing the Neutron Imaging Technique

    SciTech Connect (OSTI)

    Villani, M.F.; Croft, St.; Alvarez, E.; Wilkins, C.G.; Stamp, D.; Fisher, J.; Ambrifi, A.; Simone, G.; Bourva, L.C.

    2008-07-01

    Classical Non-Destructive Assay (NDA) Passive Neutron Coincidence Counting (PNCC) and Differential Die-Away (DDA) active neutron interrogation techniques [1, 2] are well suited for determining the gross matrix correction factors for homogenous mass distributions of Special Nuclear Material (SNM) within an interfering waste drum matrix. These measured passive and active matrix correction factors are crucial in quantifying the SNM mass, associated Total Measurement Uncertainty (TMU), and Minimum Detectable Activity (MDA) within the drum. When heterogeneous SNM mass distributions are encountered, the measured SNM mass, TMU and MDA biases introduced may be 100%, or greater, especially for dense hydrogenous matrices. The standard matrix correction factors can be adjusted if a coarse spatial image of the SNM mass, relative to the matrix, is available. The image can then be analyzed to determine the spatially-adjusted, matrix correction factors case by case. This image analysis approach was accomplished by modifying the standard Passive-Active Neutron (PAN) counter design [3] to accommodate a unique data acquisition architecture that supports a newly developed image acquisition and analysis application called the Neutron Imaging Technique (NIT). The NIT functionality supports both PNCC and DDA acquisition and analysis modes and exploits the symmetry between a stored set of factory acquired NIT images with those from the unknown PAN assay. The NIT result is then an adjustment to the classical correction factor reducing, if not removing, the SNM mass bias and revealing the true TMU and MDA values. In this paper we describe the NIT for the PAN design from the software and algorithmic perspectives and how this technique accommodates waste matrix drums that are difficult, from the classical standpoint, if not impossible, to extract meaningful SNM mass, TMU and MDA results. (authors)

  11. A Quantitative Assessment of Utility Reporting Practices for Reporting Electric Power Distribution Events

    SciTech Connect (OSTI)

    Hamachi La Commare, Kristina

    2011-11-11

    Metrics for reliability, such as the frequency and duration of power interruptions, have been reported by electric utilities for many years. This study examines current utility practices for collecting and reporting electricity reliability information and discusses challenges that arise in assessing reliability because of differences among these practices. The study is based on reliability information for year 2006 reported by 123 utilities in 37 states representing over 60percent of total U.S. electricity sales. We quantify the effects that inconsistencies among current utility reporting practices have on comparisons of System Average Interruption Duration Index (SAIDI) and System Average Interruption Frequency Index (SAIFI) reported by utilities. We recommend immediate adoption of IEEE Std. 1366-2003 as a consistent method for measuring and reporting reliability statistics.

  12. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  13. Distributed File System Utilities to Manage Large DatasetsVersion 0.5

    Energy Science and Technology Software Center (OSTI)

    2014-05-21

    FileUtils provides a suite of tools to manage large datasets typically created by large parallel MPI applications. They are written in C and use standard POSIX I/Ocalls. The current suite consists of tools to copy, compare, remove, and list. The tools provide dramatic speedup over existing Linux tools, which often run as a single process.

  14. Ordinary mode instability associated with thermal ring distribution

    SciTech Connect (OSTI)

    Hadi, F.; Qamar, A.; Yoon, P. H.

    2015-02-15

    The purely growing ordinary (O) mode instability driven by excessive parallel temperature anisotropy has recently received renewed attention owing to its potential applicability to the solar wind plasma. Previous studies of O mode instability have assumed either bi-Maxwellian or counter-streaming velocity distributions. For solar wind plasma trapped in magnetic mirror-like geometry such as magnetic clouds or in the vicinity of the Earth's collisionless bow shock environment, however, the velocity distribution function may possess a loss-cone feature. The O-mode instability in such a case may be excited for cyclotron harmonics as well as the purely growing branch. The present paper investigates the O-mode instability for plasmas characterized by the parallel Maxwellian distribution and perpendicular thermal ring velocity distribution in order to understand the general stability characteristics.

  15. Coal Distribution and Utilization Act of 1987. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, First Session on S. 801, September 10, 1987

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The hearing was called to review Senate bill S.801 which would provide Federal eminent domain authority for coal slurry pipelines to facilitate the national distribution and utilization of coal. Obtaining rights-of-way for the pipelines, particularly across railroad lands, has been a major stumbling lock to construction in the US. Testimony was heard from 9 witnesses, representing the Building and Construction Trade Department of AFL-CIO, Snamprogetti USA, Association of American Railroads, Railway Labor Executives Association, Coal and Slurry Technology Association, American Mining Congress, Edison Electric Institute, and the state of Louisiana. An attorney at law also gave testimony. Additional material was submitted by the National Association of Regulatory Utility Commissioners, the American Farm Bureau Federation, American Public Power Association, several union representatives, and the National Rural Electric Cooperative Association.

  16. Optimal site selection and sizing of distributed utility-scale wind power plants

    SciTech Connect (OSTI)

    Milligan, M.R.; Artig, R.

    1998-04-01

    As electric market product unbundling occurs, sellers in the wholesale market for electricity will find it to their advantage to be able to specify the quantity of electricity available and the time of availability. Since wind power plants are driven by the stochastic nature of the wind itself, this can present difficulties. To the extent that an accurate wind forecast is available, contract deviations, and therefore penalties, can be significantly reduced. Even though one might have the ability to accurately forecast the availability of wind power, it might not be available during enough of the peak period to provide sufficient value. However, if the wind power plant is developed over geographically disperse locations, the timing and availability of wind power from these multiple sources could provide a better match with the utility`s peak load than a single site. There are several wind plants in various stages of planning or development in the US. Although some of these are small-scale demonstration projects, significant wind capacity has been developed in Minnesota, with additional developments planned in Wyoming and Iowa. As these and other projects are planned and developed, there is a need to perform analysis of the value of geographically diverse sites on the efficiency of the overall wind plant. In this paper, the authors use hourly wind-speed data from six geographically diverse sites to provide some insight into the potential benefits of disperse wind plant development. They provide hourly wind power from each of these sites to an electric reliability simulation model. This model uses generating plant characteristics of the generators within the state of Minnesota to calculate various reliability indices. Since they lack data on wholesale power transactions, they do not include them in the analysis, and they reduce the hourly load data accordingly. The authors present and compare results of their methods and suggest some areas of future research.

  17. UTILIZING WATER EMULSIFICATION TO REDUCE NOX AND PARTICULATE EMISSIONS ASSOCIATED WITH BIODIESEL

    SciTech Connect (OSTI)

    Kass, Michael D; Lewis Sr, Samuel Arthur; Lee, Doh-Won; Huff, Shean P; Storey, John Morse; Swartz, Matthew M; Wagner, Robert M

    2009-01-01

    A key barrier limiting extended utilization of biodiesel is higher NOx emissions compared to petrodiesel fuels. The reason for this effect is unclear, but various researchers have attributed this phenomena to the higher liquid bulk modulus associated with biodiesel and the additional heat released during the breaking of C-C double bonds in the methyl ester groups. In this study water was incorporated into neat biodiesel (B100) as an emulsion in an attempt to lower NOx and particulate matter (PM) emissions. A biodiesel emulsion containing 10wt% water was formulated and evaluated against an ultra-low sulfur petroleum diesel (ULSD) and neat biodiesel (B100) in a light-duty diesel engine operated at 1500RPM and at loads of 68Nm (50ft-lbs) and 102Nm (75ft-lbs). The influence of exhaust gas recirculation (EGR) was also examined. The incorporation of water was found to significantly lower the NOx emissions of B100, while maintaining fuel efficiency when operating at 0 and 27% EGR. The soot fraction of the particulates (as determined using an opacity meter) was much lower for the B100 and B100-water emulsion compared ULSD. In contrast, total PM mass (for the three fuel types) was unchanged for the 0% EGR condition but was significantly lower for the B100 and B100-emulsion during the 27% EGR condition compared to the ULSD fuel. Analysis of the emissions and heat release data indicate that water enhances air-fuel premixing to maintain fuel economy and lower soot formation. The exhaust chemistry of the biodiesel base fuels (B100 and water-emulsified B100) was found to be unique in that they contained measurable levels of methyl alkenoates, which were not found for the ULSD. These compounds were formed by the partial cracking of the methyl ester groups during combustion.

  18. Interactive statistical-distribution-analysis program utilizing numerical and graphical methods

    SciTech Connect (OSTI)

    Glandon, S. R.; Fields, D. E.

    1982-04-01

    The TERPED/P program is designed to facilitate the quantitative analysis of experimental data, determine the distribution function that best describes the data, and provide graphical representations of the data. This code differs from its predecessors, TEDPED and TERPED, in that a printer-plotter has been added for graphical output flexibility. The addition of the printer-plotter provides TERPED/P with a method of generating graphs that is not dependent on DISSPLA, Integrated Software Systems Corporation's confidential proprietary graphics package. This makes it possible to use TERPED/P on systems not equipped with DISSPLA. In addition, the printer plot is usually produced more rapidly than a high-resolution plot can be generated. Graphical and numerical tests are performed on the data in accordance with the user's assumption of normality or lognormality. Statistical analysis options include computation of the chi-squared statistic and its significance level and the Kolmogorov-Smirnov one-sample test confidence level for data sets of more than 80 points. Plots can be produced on a Calcomp paper plotter, a FR80 film plotter, or a graphics terminal using the high-resolution, DISSPLA-dependent plotter or on a character-type output device by the printer-plotter. The plots are of cumulative probability (abscissa) versus user-defined units (ordinate). The program was developed on a Digital Equipment Corporation (DEC) PDP-10 and consists of 1500 statements. The language used is FORTRAN-10, DEC's extended version of FORTRAN-IV.

  19. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  20. Evaluation of higher distribution and/or utilization voltages. Second interim report (March 1979): identification of components and parameters for cost and energy-efficiency analysis

    SciTech Connect (OSTI)

    Not Available

    1981-04-01

    This interim report provides documentation on the second task, Identification of Components and Parameters for Cost and Energy-Efficiency Analysis, of DOE Contract No. ET-78-C-01-2866, Evaluation of Higher Distribution and/or Utilization Voltages. The work performed under this task includes an identification of the elements of the distribution/utilization system, a characterization of the distribution elements and a characterization of end use elements. The purpose of this task is to identify the distribution and utilization system elements which will be subjected to a detailed analysis and computer modeling in later tasks. The elements identified are characterized in terms of their interface with other elements in the system and with respect to their energy consumption, efficiency, and costs. A major output of this task is a list of elements to be modeled under Task 3 and a set of specifications for the computer model to be developed under that task.

  1. Environmental implications associated with integrated resource planning by public utilities in the western United States

    SciTech Connect (OSTI)

    Baechler, M.C.; Haber, G.S.; Cothran, J.N.; Hand, M.M.

    1994-08-01

    The Western Area Power Administration is about to impose integrated resource planning requirements on its 612 public-power customers as part of its Energy Planning and Management Program (EPAM) and consistent with the Energy Policy Act of 1992. EPAM will affect public utilities over a 15-state region stretching from Minnesota to California, Montana to Texas. In this study, an assessment is made of the environmental impacts of the IRP requirements. Environmental impacts are calculated based on modeled changes in electric power generation and capacity additions.

  2. User Instructions for the CiderF Individual Dose Code and Associated Utility Codes

    SciTech Connect (OSTI)

    Eslinger, Paul W.; Napier, Bruce A.

    2013-08-30

    Historical activities at facilities producing nuclear materials for weapons released radioactivity into the air and water. Past studies in the United States have evaluated the release, atmospheric transport and environmental accumulation of 131I from the nuclear facilities at Hanford in Washington State and the resulting dose to members of the public (Farris et al. 1994). A multi-year dose reconstruction effort (Mokrov et al. 2004) is also being conducted to produce representative dose estimates for members of the public living near Mayak, Russia, from atmospheric releases of 131I at the facilities of the Mayak Production Association. The approach to calculating individual doses to members of the public from historical releases of airborne 131I has the following general steps: Construct estimates of releases 131I to the air from production facilities. Model the transport of 131I in the air and subsequent deposition on the ground and vegetation. Model the accumulation of 131I in soil, water and food products (environmental media). Calculate the dose for an individual by matching the appropriate lifestyle and consumption data for the individual to the concentrations of 131I in environmental media at their residence location. A number of computer codes were developed to facilitate the study of airborne 131I emissions at Hanford. The RATCHET code modeled movement of 131I in the atmosphere (Ramsdell Jr. et al. 1994). The DECARTES code modeled accumulation of 131I in environmental media (Miley et al. 1994). The CIDER computer code estimated annual doses to individuals (Eslinger et al. 1994) using the equations and parameters specific to Hanford (Snyder et al. 1994). Several of the computer codes developed to model 131I releases from Hanford are general enough to be used for other facilities. This document provides user instructions for computer codes calculating doses to members of the public from atmospheric 131I that have two major differences from the Hanford

  3. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  4. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  5. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  6. A High Efficiency DC-DC Converter Topology Suitable for Distributed Large Commercial and Utility Scale PV Systems

    SciTech Connect (OSTI)

    Agamy, Mohammed S; Harfman-Todorovic, Maja; Elasser, Ahmed; Steigerwald, Robert L; Sabate, Juan A; Chi, Song; McCann, Adam J; Zhang, Li; Mueller, Frank

    2012-09-01

    In this paper a DC-DC power converter for distributed photovoltaic plant architectures is presented. The proposed converter has the advantages of simplicity, high efficiency, and low cost. High efficiency is achieved by having a portion of the input PV power directly fed forward to the output without being processed by the converter. The operation of this converter also allows for a simplified maximum power point tracker design using fewer measurements

  7. Distribution Category:

    Office of Legacy Management (LM)

    - Distribution Category: Remedial Action and Decommissioning Program (UC-70A) DOE/EV-0005/48 ANL-OHS/HP-84-104 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 FORMERLY UTILIZED MXD/AEC SITES REMEDIAL ACTION PROGRAM RADIOLOGICAL SURVEY OF THE HARSHAW CHEMICAL COMPANY CLEVELAND. OHIO Prepared by R. A. Wynveen Associate Division Director, OHS W. H. Smith Senior Health Physicist C. M. Sholeen Health Physicist A. L. Justus Health Physicist K. F. Flynn Health Physicist

  8. Electric utility transmission and distribution upgrade deferral benefits from modular electricity storage : a study for the DOE Energy Storage Systems Program.

    SciTech Connect (OSTI)

    Eyer, James M.

    2009-06-01

    The work documented in this report was undertaken as part of an ongoing investigation of innovative and potentially attractive value propositions for electricity storage by the United States Department of Energy (DOE) and Sandia National Laboratories (SNL) Electricity Storage Systems (ESS) Program. This study characterizes one especially attractive value proposition for modular electricity storage (MES): electric utility transmission and distribution (T&D) upgrade deferral. The T&D deferral benefit is characterized in detail. Also presented is a generalized framework for estimating the benefit. Other important and complementary (to T&D deferral) elements of possible value propositions involving MES are also characterized.

  9. Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy Storage (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    t e c h n i c a l a s s i s ta n c e NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. t e c h n i c a l a s s i s ta n c e Issue Brief: A Survey of State Policies to Support Utility-Scale and Distributed-Energy

  10. Distribution:

    Office of Legacy Management (LM)

    JAN26 19% Distribution: OR00 Attn: h.H.M.Roth DFMusser ITMM MMMann INS JCRyan FIw(2) Hsixele SRGustavson, Document rocm Formal file i+a@mmm bav@ ~@esiaw*cp Suppl. file 'Br & Div rf's s/health (lic.only) UNITED STATES ATOMIC ENERGY COMMISSION SPECIAL NUCLEAB MATERIAL LICENSE pursuant to the Atomic Energy Act of 1954 and Title 10, Code of Federal Regulations, Chapter 1, P&t 70, "Special Nuclear Material Reg)llatiqm," a license is hereby issued a$hortztng the licensee to rekeive

  11. Golden Valley Electric Association- Sustainable Natural Alternative Power (SNAP) Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Golden Valley Electric Association's (GVEA) SNAP program encourages members to install renewable energy generators and connect them to the utility's electrical distribution system by offering an...

  12. Distribution of Mississippian oolites and associated hydrocarbon production in the United States

    SciTech Connect (OSTI)

    Keith, B.D.; Zuppann, C.W. )

    1989-12-01

    Mississippian oolites (oolitic limestones) are widely distributed across the continental US, and are economically important as hydrocarbon reservoirs. Initial understanding of Mississippian oolitic reservoirs comes from an overview of the Mississippian depositional framework and a review of published literature on depositional models for Mississippian oolites and associated facies. The Mississippian was divided into four intervals corresponding approximately to the following stages: Kinderhookian (interval A), early Valmeyeran or Osagian (interval B), late Valmeyeran or Meramercian (interval C), and Chesterian (interval D). These intervals, which are not unique to this study, provide a convenient method of subdividing Mississippian rocks for more detailed regional mapping. Paleogeographic and gross lithofacies maps were prepared for each interval to relate oolite occurrences to their regional settings. Interval A was characterized by two broad, shallow seas separated by the Transcontinental lowlands. Marine deposition was dominantly carbonate toward the west and shale to the east. Areas of extensive oolite deposition were adjacent to either side of the Transcontinental lowlands. Interval B was a time of extensive marine transgression with small land areas isolated in a broad, generally shallow sea. Shale deposition continued in the Michigan, Illinois, and northern Appalachian basin, and cherty carbonates accumulated elsewhere. Oolite deposition was limited to the western US in the Williston basin, and to other areas along the slightly submerged Transcontinental arch. During interval C, land areas became more emergent and the Transcontinental lowlands once again separated the eastern and western seas.

  13. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  14. Advanced Power Electronic Interfaces for Distributed Energy Systems, Part 2: Modeling, Development, and Experimental Evaluation of Advanced Control Functions for Single-Phase Utility-Connected Inverter

    SciTech Connect (OSTI)

    Chakraborty, S.; Kroposki, B.; Kramer, W.

    2008-11-01

    Integrating renewable energy and distributed generations into the Smart Grid architecture requires power electronic (PE) for energy conversion. The key to reaching successful Smart Grid implementation is to develop interoperable, intelligent, and advanced PE technology that improves and accelerates the use of distributed energy resource systems. This report describes the simulation, design, and testing of a single-phase DC-to-AC inverter developed to operate in both islanded and utility-connected mode. It provides results on both the simulations and the experiments conducted, demonstrating the ability of the inverter to provide advanced control functions such as power flow and VAR/voltage regulation. This report also analyzes two different techniques used for digital signal processor (DSP) code generation. Initially, the DSP code was written in C programming language using Texas Instrument's Code Composer Studio. In a later stage of the research, the Simulink DSP toolbox was used to self-generate code for the DSP. The successful tests using Simulink self-generated DSP codes show promise for fast prototyping of PE controls.

  15. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  16. Hualapai Tribal Utility Development Project

    SciTech Connect (OSTI)

    Hualapai Tribal Nation

    2008-05-25

    The first phase of the Hualapai Tribal Utility Development Project (Project) studied the feasibility of establishing a tribally operated utility to provide electric service to tribal customers at Grand Canyon West (see objective 1 below). The project was successful in completing the analysis of the energy production from the solar power systems at Grand Canyon West and developing a financial model, based on rates to be charged to Grand Canyon West customers connected to the solar systems, that would provide sufficient revenue for a Tribal Utility Authority to operate and maintain those systems. The objective to establish a central power grid over which the TUA would have authority and responsibility had to be modified because the construction schedule of GCW facilities, specifically the new air terminal, did not match up with the construction schedule for the solar power system. Therefore, two distributed systems were constructed instead of one central system with a high voltage distribution network. The Hualapai Tribal Council has not taken the action necessary to establish the Tribal Utility Authority that could be responsible for the electric service at GCW. The creation of a Tribal Utility Authority (TUA) was the subject of the second objective of the project. The second phase of the project examined the feasibility and strategy for establishing a tribal utility to serve the remainder of the Hualapai Reservation and the feasibility of including wind energy from a tribal wind generator in the energy resource portfolio of the tribal utility (see objective 2 below). It is currently unknown when the Tribal Council will consider the implementation of the results of the study. Objective 1 - Develop the basic organizational structure and operational strategy for a tribally controlled utility to operate at the Tribe’s tourism enterprise district, Grand Canyon West. Coordinate the development of the Tribal Utility structure with the development of the Grand Canyon

  17. The utility of web mining for epidemiological research: studying the association between parity and cancer risk [Web Mining for Epidemiological Research. Assessing its Utility in Exploring the Association Between Parity and Cancer Risk

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tourassi, Georgia; Yoon, Hong-Jun; Xu, Songhua; Han, Xuesong

    2015-11-27

    Background: The World Wide Web has emerged as a powerful data source for epidemiological studies related to infectious disease surveillance. However, its potential for cancer-related epidemiological discoveries is largely unexplored. Methods: Using advanced web crawling and tailored information extraction procedures we automatically collected and analyzed the text content of 79,394 online obituary articles published between 1998 and 2014. The collected data included 51,911 cancer (27,330 breast; 9,470 lung; 6,496 pancreatic; 6,342 ovarian; 2,273 colon) and 27,483 non-cancer cases. With the derived information, we replicated a case-control study design to investigate the association between parity and cancer risk. Age-adjusted odds ratiosmore » (ORs) with 95% confidence intervals (CIs) were calculated for each cancer type and compared to those reported in large-scale epidemiological studies. Results: Parity was found to be associated with a significantly reduced risk of breast cancer (OR=0.78, 95% CI = 0.75 to 0.82), pancreatic cancer (OR=0.78, 95% CI = 0.72 to 0.83), colon cancer (OR=0.67, 95% CI = 0.60 to 0.74), and ovarian cancer (OR=0.58, 95% CI = 0.54 to 0.62). Marginal association was found for lung cancer prevalence (OR=0.87, 95% CI = 0.81 to 0.92). The linear trend between multi-parity and reduced cancer risk was dramatically more pronounced for breast and ovarian cancer than the other cancers included in the analysis. Conclusion: This large web-mining study on parity and cancer risk produced findings very similar to those reported with traditional observational studies. It may be used as a promising strategy to generate study hypotheses for guiding and prioritizing future epidemiological studies.« less

  18. The utility of web mining for epidemiological research: studying the association between parity and cancer risk [Web Mining for Epidemiological Research. Assessing its Utility in Exploring the Association Between Parity and Cancer Risk

    SciTech Connect (OSTI)

    Tourassi, Georgia; Yoon, Hong-Jun; Xu, Songhua; Han, Xuesong

    2015-11-27

    Background: The World Wide Web has emerged as a powerful data source for epidemiological studies related to infectious disease surveillance. However, its potential for cancer-related epidemiological discoveries is largely unexplored. Methods: Using advanced web crawling and tailored information extraction procedures we automatically collected and analyzed the text content of 79,394 online obituary articles published between 1998 and 2014. The collected data included 51,911 cancer (27,330 breast; 9,470 lung; 6,496 pancreatic; 6,342 ovarian; 2,273 colon) and 27,483 non-cancer cases. With the derived information, we replicated a case-control study design to investigate the association between parity and cancer risk. Age-adjusted odds ratios (ORs) with 95% confidence intervals (CIs) were calculated for each cancer type and compared to those reported in large-scale epidemiological studies. Results: Parity was found to be associated with a significantly reduced risk of breast cancer (OR=0.78, 95% CI = 0.75 to 0.82), pancreatic cancer (OR=0.78, 95% CI = 0.72 to 0.83), colon cancer (OR=0.67, 95% CI = 0.60 to 0.74), and ovarian cancer (OR=0.58, 95% CI = 0.54 to 0.62). Marginal association was found for lung cancer prevalence (OR=0.87, 95% CI = 0.81 to 0.92). The linear trend between multi-parity and reduced cancer risk was dramatically more pronounced for breast and ovarian cancer than the other cancers included in the analysis. Conclusion: This large web-mining study on parity and cancer risk produced findings very similar to those reported with traditional observational studies. It may be used as a promising strategy to generate study hypotheses for guiding and prioritizing future epidemiological studies.

  19. Utility Regulation and Business Model Reforms for Addressing the Financial

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Impacts of Distributed Solar on Utilities | Department of Energy Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Utility Regulation and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Implementing a range of alternative utility-rate reforms could minimize solar

  20. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  1. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  2. AWWA Utility Management Conference

    Broader source: Energy.gov [DOE]

    Hosted by the American Water Works Association (AWWA), the Utility Management Conference is one of the leading management conferences to share experiences and learn from others in similar situations to the most pressing management issues of the day.

  3. THE HERSCHEL EXPLOITATION OF LOCAL GALAXY ANDROMEDA (HELGA). VI. THE DISTRIBUTION AND PROPERTIES OF MOLECULAR CLOUD ASSOCIATIONS IN M31

    SciTech Connect (OSTI)

    Kirk, J. M.; Gear, W. K.; Smith, M. W. L.; Ford, G.; Eales, S. A.; Gomez, H. L.; Fritz, J.; Baes, M.; De Looze, I.; Gentile, G.; Gordon, K.; Verstappen, J.; Viaene, S.; Bendo, G. J.; O'Halloran, B.; Madden, S. C.; Lebouteiller, V.; Boselli, A.; Cooray, A.; and others

    2015-01-01

    In this paper we present a catalog of giant molecular clouds (GMCs) in the Andromeda (M31) galaxy extracted from the Herschel Exploitation of Local Galaxy Andromeda (HELGA) data set. GMCs are identified from the Herschel maps using a hierarchical source extraction algorithm. We present the results of this new catalog and characterize the spatial distribution and spectral energy properties of its clouds based on the radial dust/gas properties found by Smith et al. A total of 326 GMCs in the mass range 10{sup 4}-10{sup 7} M {sub ☉} are identified; their cumulative mass distribution is found to be proportional to M {sup –2.34}, in agreement with earlier studies. The GMCs appear to follow the same correlation of cloud mass to L {sub CO} observed in the Milky Way. However, comparison between this catalog and interferometry studies also shows that the GMCs are substructured below the Herschel resolution limit, suggesting that we are observing associations of GMCs. Following Gordon et al., we study the spatial structure of M31 by splitting the observed structure into a set of spiral arms and offset rings. We fit radii of 10.3 and 15.5 kpc to the two most prominent rings. We then fit a logarithmic spiral with a pitch angle of 8.°9 to the GMCs not associated with either ring. Last, we comment on the effects of deprojection on our results and investigate the effect different models for M31's inclination will have on the projection of an unperturbed spiral arm system.

  4. Trends in Utility Green Pricing Programs (2004)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2005-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  5. An economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell: a model of a central utility plant.

    SciTech Connect (OSTI)

    Not Available

    1993-06-30

    This central utilities plant model details the major elements of a central utilities plant for several classes of users. The model enables the analyst to select optional, cost effective, plant features that are appropriate to a fuel cell application. These features permit the future plant owner to exploit all of the energy produced by the fuel cell, thereby reducing the total cost of ownership. The model further affords the analyst an opportunity to identify avoided costs of the fuel cell-based power plant. This definition establishes the performance and capacity information, appropriate to the class of user, to support the capital cost model and the feasibility analysis. It is detailed only to the depth required to identify the major elements of a fuel cell-based system. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

  6. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  7. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  8. Trends in Utility Green Pricing Programs (2005)

    SciTech Connect (OSTI)

    Bird, Lori; Brown, Elizabeth

    2006-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 600 utilities—or about 20% of all utilities nationally—provide their customers a “green power” option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals more than 130. Through these programs, more than 50 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  9. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at √s= 1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T

    2011-04-28

    We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

  10. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp? Collisions at ?s= 1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Aaltonen, T; Alvarez Gonzalez, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Apresyan, A; et al

    2011-04-28

    We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

  11. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  12. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  13. Borough of Chambersburg, Pennsylvania (Utility Company) | Open...

    Open Energy Info (EERE)

    861 Data Utility Id 3329 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  14. Easton Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5625 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  15. PPL Electric Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14715 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes Alt Fuel Vehicle Yes Alt...

  16. Borough of Mifflinburg, Pennsylvania (Utility Company) | Open...

    Open Energy Info (EERE)

    Data Utility Id 12523 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  17. Borough of Quakertown, Pennsylvania (Utility Company) | Open...

    Open Energy Info (EERE)

    Data Utility Id 15541 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  18. TriUtils Trilinos Utilities Package

    Energy Science and Technology Software Center (OSTI)

    2011-09-26

    TriUtils is a package of utilities for other Trilinos packages. TriUtils contains utilities to perform common operations such as command line parsing, and input file reading.

  19. Federal Utility Partnership Working Group Spring 2007 Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Nevada. This project: * Provides renewable utility service from a contractor-owned photovoltaic array to the Nellis AFB electrical distribution system. * Utilizes a UESC. *...

  20. City of Wahoo, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 19968 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  1. Village of Spalding, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 17727 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  2. Town of Laverne, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 10777 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Distribution Yes Activity Bundled...

  3. City of Glasco, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 7269 Utility Location Yes Ownership M NERC SPP Yes RTO SPP Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled...

  4. City of Oxford, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14276 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  5. City of St John, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17879 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  6. Village of Winnetka, Illinois (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 20824 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  7. City of Franklin, Virginia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 6715 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  8. City of Monett, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 12782 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled...

  9. City of Savonburg, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16876 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail...

  10. City of Wisner, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20880 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  11. City of Franklin, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6723 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Distribution Yes Activity Bundled...

  12. Town of Culpeper, Virginia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 4619 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  13. City of Burlingame, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 2547 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Distribution Yes Activity Bundled...

  14. City of Altus, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 416 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes Activity Retail Marketing...

  15. Development of a High Resolution, Real Time, Distribution-Level Metering System and Associated Visualization, Modeling, and Data Analysis Functions

    SciTech Connect (OSTI)

    Bank, J.; Hambrick, J.

    2013-05-01

    NREL is developing measurement devices and a supporting data collection network specifically targeted at electrical distribution systems to support research in this area. This paper describes the measurement network which is designed to apply real-time and high speed (sub-second) measurement principles to distribution systems that are already common for the transmission level in the form of phasor measurement units and related technologies.

  16. Manitowoc Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  17. Invariant Mass Distribution of Jet Pairs Produced in Association with a W boson in pp-bar Collisions at ?s= 1.96 TeV

    SciTech Connect (OSTI)

    Aaltonen, T

    2011-04-28

    We report a study of the invariant mass distribution of jet pairs produced in association with a W boson using data collected with the CDF detector which correspond to an integrated luminosity of 4.3 fb-1. The observed distribution has an excess in the 120-160 GeV/c2 mass range which is not described by current theoretical predictions within the statistical and systematic uncertainties. In this letter we report studies of the properties of this excess.

  18. River Falls Municipal Utilities- Distributed Solar Tariff

    Broader source: Energy.gov [DOE]

    RFMU was originally allocated 10 kW for their tariff, but because of the program's popularity, that limit has been increased several times, and is now limited to 30 kW. As of May 2013, the progra...

  19. EGA urges regulators to rethink utility structure

    SciTech Connect (OSTI)

    O'Driscoll, M.

    1994-03-04

    State and federal regulators need to rethink the existing structure of the electric power industry because the continued application of traditional processes to its emerging competitive nature is creating a conflict between market-driven generators and regulated utilities, the Electric Generation Association says. Indeed, because of the current regulatory structure, many utilities have been forced to actively resist the development of a competitive market place, the group says in a paper published for this week's National Association of Regulatory Utility Commissioners winter meetings. In place of the existing structure, the industry needs a [open quotes]new, more discerning model of regulation[close quotes] that unbundles generation from transmission and realizes that, at least during the transition, all generation facilities are at risk of being considered stranded assets. A transition policy must minimize costs overall by achieving an early and smooth resolution of the stranded investment issue. One approach looks promising: Utilities that spin off high-cost assets would be preauthorized to enter into a binding contract to buy the output of the facility for an established period at rates slightly below what the cost of power would have been, assuming continued rate base treatment of the facility. Another alternative would reflect the rate design mechanisms used in the unbundling of gas supply from transportation service: A utility calculates the differential between the book value and market value of a high-cost asset, and then converts it from a generation-related charge into a form of transition surcharge. This is added to the inelastic portion of its system rates, which most logically is the distribution charge for retail and wholesale requirements customers. The charge would be applied over a specific period of time or to a specific volume of sales.

  20. Federal Utility Partnership Working Group Utility Partners

    Broader source: Energy.gov [DOE]

    Federal Utility Partnership Working Group (FUPWG) utility partners are eager to work closely with Federal agencies to help achieve energy management goals.

  1. Federal Utility Partnership Working Group - Utility Interconnection...

    Energy Savers [EERE]

    Federal Utility Partnership Working Group (FUPWG) meeting-discusses solarphotovoltaic (PV) projects to connect with utility in California and their issues. fupwgfall12jewell.pd...

  2. Trends in Utility Green Pricing Programs (2005)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2006-10-01

    This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  3. Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utilities Utilities Below are resources for Tribes about utilities. The Economics of Electric System Municipalization Looks at the economic environment in California to determine ...

  4. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  5. Electric utilities monthly sales and revenue report (EIA-826), current (on magnetic tape). Data file

    SciTech Connect (OSTI)

    1991-12-31

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The Form EIA-826 survey is a statistical sample drawn from the respondents to the Form EIA-861, `Annual Electric Utility Report.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  6. Development of a High-Speed Static Switch for Distributed Energy and Microgrid Applications

    SciTech Connect (OSTI)

    Kroposki, B.; Pink, C.; Lynch, J.; John, V.; Meor Daniel, S.; Benedict, E.; Vihinen, I.

    2007-01-01

    Distributed energy resources can provide power to local loads in the electric distribution system and benefits such as improved reliability. Microgrids are intentional islands formed at a facility or in an electrical distribution system that contains at least one distributed resource and associated loads. Microgrids that operate both electrical generation and loads in a coordinated manner can offer additional benefits to the customer and local utility. The loads and energy sources can be disconnected from and reconnected to the area or local utility with minimal disruption to the local loads, thereby improving reliability. This paper details the development and testing of a highspeed static switch for distributed energy and microgrid applications.

  7. Secretary Moniz Announces the Launch of New Veterans' Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Veterans Affairs, and five utility trade associations will recruit and train ... and other federal training resources where military occupations map to utility jobs. ...

  8. Utility-Interconnected Photovoltaic Systems: Evaluating the Rationale for the Utility-Accessible External Disconnect Switch

    SciTech Connect (OSTI)

    Coddington, M.; Margolis, R.M.; Aabakken, J.

    2008-01-01

    The utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, is a hardware feature that allows a utility?s employees to manually disconnect a customer-owned generator from the electricity grid. This paper examines the utility-accessible EDS debate in the context of utility-interactive PV systems for residential and small commercial installations. It also evaluates the rationale for EDS requirements.

  9. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  10. NET PRED UTILITY

    Energy Science and Technology Software Center (OSTI)

    002602IBMPC00 Normalized Elution Time Prediction Utility http://omics.pnl.gov/software/NETPredictionUtility.php

  11. Distributed generation systems model

    SciTech Connect (OSTI)

    Barklund, C.R.

    1994-12-31

    A slide presentation is given on a distributed generation systems model developed at the Idaho National Engineering Laboratory, and its application to a situation within the Idaho Power Company`s service territory. The objectives of the work were to develop a screening model for distributed generation alternatives, to develop a better understanding of distributed generation as a utility resource, and to further INEL`s understanding of utility concerns in implementing technological change.

  12. Tribal Utility Policy Issues

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Policy Issues New Mexico July 27, 2015 Margaret Schaff Kanim Associates, LLC (An Indian Owned Consulting Firm) 303-443-0182 mschaff@att.net *US Energy Information Administration New Mexico Energy Stats  Sixth in crude oil production in the nation in 2013.  5% of U.S. marketed natural gas production in 2012  Largest coal-fired electric power plants in NM both on Navajo Nation  2,100-megawatt Four Corners (Navajo Mine) (APS)  1,643-megawatt San Juan (San Juan Mines) (Public

  13. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection" Mark Rawson, Sacramento Municipal Utility District and David Pinney, National Rural Electric Cooperative Association with introductory remarks by Rick Thompson, Greentech Media May 28, 2014 2 Purpose of Today's Meeting * Foster stakeholder collaboration and awareness o Learn about Green Tech Media's (GTM) new Grid Edge Initiative, Rick Thompson, GTM * Hear an example of how a municipal utility is planning for solar

  14. Legal & regulatory issues affecting participation in distributed resource markets

    SciTech Connect (OSTI)

    Nimmons, J.T.

    1996-12-31

    This paper describes recent research co-sponsored by the National Renewable Energy Laboratory and four investor-owned utilities. Its purpose was to investigate how legal and regulatory factors will shape strategic decisions on the roles of utilities and others in the development of distributed resources. The work was performed during 1995 and early 1996 by John Nimmons & Associates, with support from Thomas J. Starts, Energy & Environmental Economics, and Awad & Singer.

  15. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    SciTech Connect (OSTI)

    Briggs, Brandon R.; Graw, Michael; Brodie, Eoin L.; Bahk, Jang-Jun; Kim, Sung-Han; Hyun, Jung-Ho; Kim, Ji-Hoon; Torres, Marta; Colwell, Frederick S.

    2013-11-01

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfatemethane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining the results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.

  16. Distributed Solar Interconnection Challenges and Best Practices

    Broader source: Energy.gov [DOE]

    The continued growth of the distributed solar market in the United States has spurred electric utilities, regulators, and stakeholders to consider improvements to distributed generation (DG) interconnection processes. More than 475,000 solar energy systems were interconnected in the U.S. by the end of 2013, but 1 million are expected by the end of 2017. Based on the SunShot Initiative's current trajectory, permitting, inspection, and interconnection (PII) soft costs are expected to drop from a current cost of $0.17/watt to $0.14/watt by 2020. While the actual cost metrics for utility PII are undetermined, they are real. A survey and interviews conducted by Solar Electric Power Association (SEPA) in 2014 have uncovered utility initiatives to lower the administrative costs of DG interconnection, making the process of connecting to the grid simpler and more transparent for customers.

  17. Utility Potential Calculator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Potential Studies in the Northwest V1.0 Utility Potential Calculator V1.0 for Excel 2007 Utility Potential Calculator V1.0 for Excel 2003 Note: BPA developed the Utility...

  18. Utility Partnerships Program Overview

    Broader source: Energy.gov (indexed) [DOE]

    Management Program (FEMP) Utility Partnerships Program fosters effective partnerships between federal agencies and their local serving utility. FEMP works to reduce the cost ...

  19. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers). Data file

    SciTech Connect (OSTI)

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, `Monthly Electric Utility Sales and Revenue Report with State Distributions.` The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  20. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  1. Sharyland Utilities LP | Open Energy Information

    Open Energy Info (EERE)

    Id 17008 Utility Location Yes Ownership I NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes This article is a stub. You...

  2. Winner Municipal Utility | Open Energy Information

    Open Energy Info (EERE)

    Activity Distribution Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.1040kWh...

  3. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level

  4. Utility Partnership Program Utility Partners | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Heuser Kentucky Northeast Utilities Marge Howell 860-280-2510 Connecticut, Massachusetts, New Hampshire NSTAR Robert Laurence 800-592-2000 Massachusetts Oklahoma Gas & Electric Co. ...

  5. Equity implications of utility energy conservation programs

    SciTech Connect (OSTI)

    Sutherland, R.J.

    1994-03-15

    This paper uses the Residential Energy Consumption Survey undertaken by the Energy Information Administration in 1990 to estimate the statistical association between household income and participation in electric utility energy conservation programs and the association between participation and the electricity consumption. The results indicate that utility rebates, energy audits, load management programs and other conservation measures tend to be undertaken at greater frequency by high income households than by low income households. Participants in conservation programs tend to occupy relatively new and energy efficient residences and undertake conservation measures other than utility programs, which suggests that utility sponsored programs are substitutes for other conservation investments. Electricity consumption during 1990 is not significantly less for households participating in utility programs than for nonparticipants, which also implies that utility conservation programs are displacing other conservation investments. Apparently, utility programs are not avoiding costs of new construction and instead are transferring wealth, particularly to high income participating households.

  6. AUTOMATED UTILITY SERVICE AREA ASSESSMENT UNDER EMERGENCY CONDITIONS

    SciTech Connect (OSTI)

    G. TOOLE; S. LINGER

    2001-01-01

    All electric utilities serve power to their customers through a variety of functional levels, notably substations. The majority of these components consist of distribution substations operating at lower voltages while a small fraction are transmission substations. There is an associated geographical area that encompasses customers who are served, defined as the service area. Analysis of substation service areas is greatly complicated by several factors: distribution networks are often highly interconnected which allows a multitude of possible switching operations; also, utilities dynamically alter the network topology in order to respond to emergency events. As a result, the service area for a substation can change radically. A utility will generally attempt to minimize the number of customers outaged by switching effected loads to alternate substations. In this manner, all or a portion of a disabled substation's load may be served by one or more adjacent substations. This paper describes a suite of analytical tools developed at Los Alamos National Laboratory (LANL), which address the problem of determining how a utility might respond to such emergency events. The estimated outage areas derived using the tools are overlaid onto other geographical and electrical layers in a geographic information system (GIS) software application. The effects of a power outage on a population, other infrastructures, or other physical features, can be inferred by the proximity of these features to the estimated outage area.

  7. Town of Lusk, Wyoming (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 11330 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Retail Marketing Yes This...

  8. Village of Wharton, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 20471 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Retail Marketing Yes This...

  9. Town of Wakefield, Massachusetts (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 19979 Utility Location Yes Ownership M NERC Location NPCC NERC NPCC Yes Activity Buying Transmission Yes Activity Distribution Yes...

  10. Village of Carey, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility Id 3008 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity...

  11. Borough of Duncannon, Pennsylvania (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Utility Location Yes Ownership M NERC Location RFC Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  12. Village of Plymouth, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 15203 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  13. City of Columbiana, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4061 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  14. Borough of Olyphant, Pennsylvania (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 14124 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  15. City of Prescott, Arkansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 15337 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  16. Town of Avilla, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 1028 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes Activity Bundled Services Yes This article is a stub....

  17. City of Needles, California (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Data Utility Id 13149 Utility Location Yes Ownership M NERC Location WECC NERC WECC Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  18. City of Iola, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 9418 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  19. Village of Minster, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 12660 Utility Location Yes Ownership M NERC Location ECAR NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  20. City of New Madrid, Missouri (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 13470 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  1. City of Girard, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 7257 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  2. Village of Republic, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 15865 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  3. Village of Versailles, Ohio (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Data Utility Id 19805 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  4. Town of Mannford, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 11578 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  5. Borough of Kutztown, Pennsylvania (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 10494 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  6. City of Blackwell, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    861 Data Utility Id 1800 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes This article is a stub. You...

  7. Borough of South River, New Jersey (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 17571 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  8. Village of Sycamore, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 18393 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  9. Village of Bloomdale, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 1677 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  10. City of Westerville, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20477 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Transmission Yes Activity Distribution Yes This article is a stub. You...

  11. Town of Windsor, North Carolina (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 20811 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  12. City of Garrett, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6970 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  13. City of Seaford, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16852 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  14. City of Niles, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13604 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  15. City of Brownfield, Texas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 2404 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  16. Borough of Goldsboro, Pennsylvania (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    861 Data Utility Id 7359 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  17. Borough of New Wilmington, Pennsylvania (Utility Company) | Open...

    Open Energy Info (EERE)

    Data Utility Id 13489 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  18. City of Olustee, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 13966 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes Activity Bundled Services Yes This article is a stub....

  19. City of Galion, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6914 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  20. City of Gas City, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 6993 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  1. City of New Martinsville, West Virginia (Utility Company) | Open...

    Open Energy Info (EERE)

    Data Utility Id 13471 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  2. City of Cushing, Oklahoma (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4667 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  3. Borough of Weatherly, Pennsylvania (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 20232 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  4. Village of Cygnet, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 4685 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  5. City of Scranton, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 16834 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  6. City of Spencer, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17787 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes RTO SPP Yes Activity Distribution Yes Activity Bundled Services Yes This article is a stub....

  7. City of Frederick, Oklahoma (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    861 Data Utility Id 6750 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  8. City of Alexandria, Louisiana (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    861 Data Utility Id 298 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  9. Village of Beach City, Ohio (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    861 Data Utility Id 1386 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  10. Borough of Park Ridge, New Jersey (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 14472 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  11. City of Waterville, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20189 Utility Location Yes Ownership M NERC Location SPP NERC SERC Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  12. City of Dover, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5335 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  13. City of Haven, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 8279 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  14. City of Ponca City, Oklahoma (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 15202 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  15. City of Mishawaka, Indiana (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 12674 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Buying Distribution Yes This article is a stub. You can help OpenEI by...

  16. Village of New Bremen, Ohio (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Data Utility Id 13420 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  17. City of Arma, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 832 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  18. Village of Eldorado, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 5752 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes ISO MISO Yes Activity Buying Transmission Yes Activity Distribution Yes This article is a...

  19. The Utility Management Conference

    Broader source: Energy.gov [DOE]

    The Utility Management Conference™ 2016 in San Diego is the place to be for leading utility and consulting staff. The technical program has been expanded to 36 sessions running in four concurrent rooms in order to provide utility leaders with the latest tools, techniques, best practices, and emerging solutions you need for effective utility management. This event will empower attendees, leading the water sector “On the Road to the Utilities of the Future.”

  20. A Case Study of Danville Utilities: Utilizing Industrial Assessment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study of Danville Utilities: Utilizing Industrial Assessment Centers to Provide Energy Efficiency Resources for Key Accounts A Case Study of Danville Utilities: Utilizing ...

  1. Capacity Utilization Study for Aviation Security Cargo Inspection Queuing System

    SciTech Connect (OSTI)

    Allgood, Glenn O; Olama, Mohammed M; Lake, Joe E; Brumback, Daryl L

    2010-01-01

    In this paper, we conduct performance evaluation study for an aviation security cargo inspection queuing system for material flow and accountability. The queuing model employed in our study is based on discrete-event simulation and processes various types of cargo simultaneously. Onsite measurements are collected in an airport facility to validate the queuing model. The overall performance of the aviation security cargo inspection system is computed, analyzed, and optimized for the different system dynamics. Various performance measures are considered such as system capacity, residual capacity, throughput, capacity utilization, subscribed capacity utilization, resources capacity utilization, subscribed resources capacity utilization, and number of cargo pieces (or pallets) in the different queues. These metrics are performance indicators of the system s ability to service current needs and response capacity to additional requests. We studied and analyzed different scenarios by changing various model parameters such as number of pieces per pallet, number of TSA inspectors and ATS personnel, number of forklifts, number of explosives trace detection (ETD) and explosives detection system (EDS) inspection machines, inspection modality distribution, alarm rate, and cargo closeout time. The increased physical understanding resulting from execution of the queuing model utilizing these vetted performance measures should reduce the overall cost and shipping delays associated with new inspection requirements.

  2. On the Path to SunShot. Utility Regulatory and Business Model...

    Office of Scientific and Technical Information (OSTI)

    Utility Regulatory and Business Model Reforms for Addressing the Financial Impacts of Distributed Solar on Utilities Net-energy metering (NEM) has helped drive the rapid growth of ...

  3. Trends in Utility Green Pricing Programs (2005)

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs. It is important to note that this report covers only a portion of voluntary markets for renewable energy. It does not cover green power sold by independent marketers except for cases in which the marketers work in conjunction with utilities or default electricity suppliers.

  4. Metering Best Practices: A Guide to Achieving Utility Resource...

    Broader source: Energy.gov (indexed) [DOE]

    distribution-level, and end-use metering. * Explain the ... by major utility type: electricity, natural gas, steam, ... Increase in Energy Consumption ...... 5.8 ...

  5. City of Wayne, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  6. Village of Arcade, New York (Utility Company) | Open Energy Informatio...

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  7. Property:Heat Recovery Utility | Open Energy Information

    Open Energy Info (EERE)

    search Property Name Heat Recovery Utility Property Type Page Description The purpose of Distributed Generation heat recovery This is a property of type Page. Retrieved from...

  8. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  9. Utility Partnerships Program Overview

    SciTech Connect (OSTI)

    2014-10-03

    Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program.

  10. Renewable energy and utility regulation

    SciTech Connect (OSTI)

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC'S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  11. Renewable energy and utility regulation

    SciTech Connect (OSTI)

    Not Available

    1991-04-10

    This report summarizes the results of a joint project on renewable energy of the National Association of Regulatory Utility Commissioners (NARUC) and the US DOE. NARUC`S Task Force on Renewable Energy conducted a review of the current state of renewable energy technologies to evaluate their potential and extract key policy lessons from experience already gained in deployment of these technologies in numerous states. The main focus of this effort has been to clarify how utility regulators affect the development of renewable energy resources. The goal of the project was twofold: (1) identify the factors that have led to success or failure or renewable energy technologies in various energy markets, and (2) to develop an agenda on renewable energy and utility regulation for NARUC and the DOE. This report consists of three sections: renewable energy contributions, costs and potential; factors affecting development of renewable energy resources; and a renewable energy agenda for NARUC.

  12. Ozone Risk Assessment Utilities

    Energy Science and Technology Software Center (OSTI)

    1999-08-10

    ORAMUS is a user-friendly, menu-driven software system that calculates and displays user-selected risk estimates for health effects attributable to short-term exposure to tropospheric ozone. Inputs to the risk assessment are estimates of exposure to ozone and exposure-response relationships to produce overall risk estimates in the form of probability distributions. Three fundamental models are included: headcount risk, benchmark risk, and hospital admissions. Exposure-response relationships are based on results of controlled human exposure studies. Exposure estimates aremore » based on the EPA''s probabilistic national ambient air quality standards (NAAQS) exposure model, pNEM/Osub3, which simulates air quality associated with attainment of alternative NAAQS. Using ORAMUS, risk results for 27 air quality scenarios, air quality in 9 urban areas, 33 health endpoints, and 4 chronic health endpoints can be calculated.« less

  13. Trends in Utility Green Pricing Programs (2006)

    SciTech Connect (OSTI)

    Bird, L.; Kaiser, M.

    2007-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities--or about 25% of all utilities nationally--provide their customers a "green power" option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  14. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  15. Utility FGD Survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1992-03-01

    The Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company.

  16. Electric utilities monthly sales and revenue report (EIA-826), current (for microcomputers) (January 1991-August 1992). Data file

    SciTech Connect (OSTI)

    Not Available

    1992-08-01

    Data regarding electricity sales (megawatthours) and associated revenue (thousand dollars) are submitted to the Energy Information Administration (EIA) by selected electric utilities on the Form EIA-826, Monthly Electric Utility Sales and Revenue Report with State Distributions. The monthly survey consists of the utilities with the largest sales within each state and a stratified random sample of the remaining utilities. The Form EIA-826 is designed to facilitate the estimation of electricity sales and associated revenue at the National Census Division, and state level, by class of consumer. These estimates in turn, can be used to calculate average revenue per milowatthour and estimates of sales, revenue, and average revenue per kilowatthour coefficients of variation.

  17. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon "List of Covered Electric Utilities" under the Public Utility Regulatory Policies ... Public Utility Regulatory Policies Act of 1978 (PURPA) as Applicable to the Energy Policy ...

  18. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 Revised "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2006 Revised Under Title I of the Public Utility Regulatory...

  19. Carrots for Utilities: Providing Financial Returns for Utility...

    Open Energy Info (EERE)

    Carrots for Utilities: Providing Financial Returns for Utility Investments in Energy Efficiency Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carrots for Utilities:...

  20. "List of Covered Electric Utilities" under the Public Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "List of Covered Electric Utilities" under the Public Utility Regulatory Policies Act of 1978 (PURPA) - 2009 Under Title I, Sec. 102(c) of the Public Utility Regulatory Policies ...

  1. Carbon Dioxide Utilization Summit

    Broader source: Energy.gov [DOE]

    The 6th Carbon Dioxide Utilization Summit will be held in Newark, New Jersey, from Feb. 24–26, 2016. The conference will look at the benefits and challenges of carbon dioxide utilization. Advanced Algal Systems Program Manager Alison Goss Eng and Technology Manager Devinn Lambert will be in attendance. Dr. Goss Eng will be chairing a round table on Fuels and Chemicals during the Carbon Dioxide Utilization: From R&D to Commercialization discussion session.

  2. Utilities | Open Energy Information

    Open Energy Info (EERE)

    historic, in human and machine readable formats. See also the NREL System Advisor Model (SAM) and NREL's BEOpt. Utility Outage Information dataset - Information and resources...

  3. Utility Service Renovations

    Broader source: Energy.gov [DOE]

    Any upgrade to utility service provides an opportunity to revisit a Federal building's electrical loads and costs, but it also may provide an economic way to bundle the upgrade with an onsite renewable electricity project during renovation. Upgrading utility service to the site may involve improving or adding a transformer, upgrading utility meters, or otherwise modifying the interconnection equipment or services with the utility. In some cases, the upgrade may change the tariff structure for the facility and may qualify the property for a different structure with lower overall costs. In all cases, the implementation of renewable energy technologies should be identified during the design phase.

  4. USET Tribal Utility Summit

    Broader source: Energy.gov [DOE]

    The United South and Eastern Tribes (USET) is hosting its annual Tribal Utility Summit at the Harrah's Cherokee Casino and hosted by Eastern Band of Cherokee Indians.

  5. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  6. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  7. Tribal Utility Policy Issues

    Broader source: Energy.gov (indexed) [DOE]

    ... Coal Combustion Residuals Regulation Act of 2015 (H.R. 1734) FCC's Connect America Funding to provide broadband to rural communities Gas Utility Issues Pipeline Safety & ...

  8. When Utility Bills Attack!

    Broader source: Energy.gov [DOE]

    As proactive as I am with my monthly budgeting, I tend to be reactive when it comes to my monthly utility bills.

  9. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tool Conduit Utility Sounding Board Residential Segmentation Six Going On Seven The USB was created to inform BPA on the implementation of energy efficiency programs...

  10. EM Utility Contracts

    Office of Environmental Management (EM)

    22012 EM UTILITY CONTRACT Site State Supplier Executed Contract Type DOE Contract East Tennessee Technology Park TN Tennessee Valley Authority 4272007 Energy supply contract ...

  11. Resources for Utility Regulators

    SciTech Connect (OSTI)

    SEE Action

    2012-06-01

    Provides a summary of State and Local Energy Efficiency Action Network (SEE Action) information resources available to utility regulators, organized by topic.

  12. Utility: Order (2016-SE-42003) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SE-42003) Utility: Order (2016-SE-42003) March 1, 2016 DOE ordered Utility Refrigerator to pay a $200 civil penalty after finding Utility manufactured and distributed in commerce in the U.S. 1 unit of a Utility brand commercial refrigerator, model PT-R-75-SS-3S-3S-N. The Order adopted a Compromise Agreement, which reflected settlement terms between DOE and Utility. Federal law subjects manufacturers and private labelers to civil penalties if those parties distribute in the U.S. products that do

  13. Dalton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Dalton Utilities Jump to: navigation, search Name: Dalton Utilities Place: Georgia Phone Number: 706-278-1313 Website: www.dutil.comresidentialinde Twitter: @DaltonUtilities...

  14. Trends in Utility Green Pricing Programs (2006)

    SciTech Connect (OSTI)

    Bird, Lori; Kaiser, Marshall

    2007-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities—or about 25% of all utilities nationally—provide their customers a “green power” option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  15. Utility+Utility Access Map | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  16. Teuchos Utility Package

    Energy Science and Technology Software Center (OSTI)

    2004-03-01

    Teuchos is designed to provide portable, object-oriented tools for Trillnos developers and users. This includes templated wrappers to BLAS/LAPACK, a serial dense matrix class, a parameter list, XML parsing utilities, reference counted pointer (smart pointer) utilities, and more. These tools are designed to run on both serial and parallel computers.

  17. Utilities Offering Federal Utility Energy Service Contracts | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Utilities Offering Federal Utility Energy Service Contracts Utilities Offering Federal Utility Energy Service Contracts The Energy Policy Act of 1992 (codified as 42 USC Section 8256 (c) Utility Incentive Programs) authorizes and encourages agencies to participate in generally available utility programs to increase energy efficiency; conserve water; or manage electricity demand conducted by gas, water, or electric utilities. The following maps show utility service territories

  18. Utility Partnership Program Utility Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partners Utility Partnership Program Utility Partners Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals. If a serving utility is not listed below, utilities and agencies can contact the Federal Energy Management Program to discuss launching a utility energy service contract program. Organization Contact States Served AGL Resources Kathy Robb 404-584-4372 Florida, Georgia, Maryland, New Jersey, Virginia

  19. Utility Partnership Program Utility Partners | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partners Utility Partnership Program Utility Partners Utility Partnership Program utility partners are eager to work closely with federal agencies to help achieve energy management goals. If a serving utility is not listed below, utilities and agencies can contact the Federal Energy Management Program to discuss launching a utility energy service contract program. Organization Contact States Served AGL Resources Kathy Robb 404-584-4372 Florida, Georgia, Maryland, New Jersey, Virginia

  20. Restructuring local distribution services: Possibilities and limitations

    SciTech Connect (OSTI)

    Duann, D.J.

    1994-08-01

    The restructuring of local distribution services is now the focus of the natural gas industry. It is the last major step in the ``reconstitution`` of the natural gas industry and a critical clement in realizing the full benefits of regulatory and market reforms that already have taken place in the wellhead and interstate markets. It could also be the most important regulatory initiative for most end-use customers because they are affected directly by the costs and reliability of distribution services. Several factors contribute to the current emphasis on distribution service restructuring. They include the unbundling and restructuring of upstream markets, a realization of the limitations of supply-side options (such as gas procurement oversight), and the increased diversity and volatility of gas demand facing local distribution companies. Local distribution service is not one but a series of activities that start with commodity gas procurement and extend to transportation, load balancing, storage, and metering and billing of services provided. There are also considerable differences in the economies of scale and scope associated with these various activities. Thus, a mixture of supply arrangements (such as a competitive market or a monopoly) is required for the most efficient delivery of local distribution services. A distinction must be made between the supply of commodity gas and the provision of a bundled distribution service. This distinction and identification of the best supply arrangements for various distribution service components are the most critical factors in developing appropriate restructuring policies. For most state public utility commissions the criteria for service restructuring should include pursuing the economies of scale and scope in gas distribution, differentiating and matching gas service reliability and quality with customer requirements, and controlling costs associated with the search, negotiation, and contracting of gas services.

  1. Utility: Noncompliance Determination (2016-SE-42003) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Noncompliance Determination (2016-SE-42003) Utility: Noncompliance Determination (2016-SE-42003) December 30, 2015 DOE issued a Notice of Noncompliance Determination to Utility Refrigerator finding that commercial refrigeration equipment basic model number PT-R-75-SS-3S-3S-N does not comport with the energy conservation standards. DOE determined the product was noncompliant based on DOE testing. Utility must immediately notify each person (or company) to whom Utility distributed the noncompliant

  2. Photovoltaics Program: utility interface southwest regional workshop proceedings

    SciTech Connect (OSTI)

    1981-04-01

    This was the first of a series of regional workshops that will focus on the photovoltaic and utility interface, and the use of photovoltaics as a cogeneration option by utilities. The needs and constraints of the utilities are defined and an understanding is established of the capabilities and limitations of photovoltaic systems as an alternative electricity generation option by utilities. Utilities' viewpoints regarding large-scale central systems and small-scale, interconnected, distributed systems are given. The Public Utility Regulatory Policies Act and other economic, legislative, and regulatory factors affecting photovoltaic systems are discussed. Current status of photovoltaic systems with respect to the Department of Energy Photovoltaic Program is given. (LEW)

  3. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Provides utility representatives with additional training to meet their responsibilities with respect to Utility Energy Savings Contracts (UESC).

  4. Benzene exposure in the petroleum distribution industry associated with leukemia in the United Kingdom: Overview of the methodology of a case-control study

    SciTech Connect (OSTI)

    Rushton, L.

    1996-12-01

    This paper describes basic principles underlying the methodology for obtaining quantitative estimates of benzene exposure in the petroleum marketing and distribution industry. Work histories for 91 cases of leukemia and 364 matched controls (4 per case) identified for a cohort of oil distribution workers up to the end of 1992 were obtained, primarily from personnel records. Information on the distribution sites, more than 90% of which were closed at the time of data collection, was obtained from site visits and archive material. Industrial hygiene measurements measured under known conditions were assembled for different tasks. These were adjusted for conditions where measured data were not available using variables known to influence exposure, such as temperature, technology, percentage of benzene in fuel handled, products handled, number of loads, and job activity. A quantitative estimate of dermal contact and peak exposure was also made. 20 refs., 1 fig., 3 tabs.

  5. PAM stack test utility

    Energy Science and Technology Software Center (OSTI)

    2007-08-22

    The pamtest utility calls the normal PAM hooks using a service and username supplied on the command line. This allows an administratory to test any one of many configured PAM stacks as any existing user on the machine.

  6. Utility Metering- AGL Resources

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—discusses AGL Resources metering, including interruptible rate customers, large users, and meeting federal metering goals.

  7. Hualapai Tribal Utility Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hualapai Tribal Utility Project Tribal Utility Project DOE First Steps Program DOE First Steps Program Jack Ehrhardt Jack Ehrhardt - - Hualapai Planning Director Hualapai Planning Director WHO WE ARE WHO WE ARE ~1 MILLION ACRES IN ~1 MILLION ACRES IN NW ARIZONA NW ARIZONA 108 MILES OF THE 108 MILES OF THE GRAND CANYON GRAND CANYON 2500 Members 2500 Members Peach Springs Peach Springs Community Community ~240 electric customers ~240 electric customers ECONOMIC SITUATION ECONOMIC SITUATION Very

  8. Interconnection of Distributed Energy Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection of Distributed Energy Resources Delivered to: Transmission and Grid Basics for Tribal Economic and Energy Development Dave Narang Principal Engineer, NREL March 30, 2016 2 Discussion Topics * Distribution System Interconnections - Part 1 o Background o Distribution Systems Overview o Electric Utility Operations o Emerging Topics in Grid Integration o DOE Grid Modernization Initiative * Distribution System Interconnections - Part 2 o Permitting o Interconnection * Wrap up o

  9. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  10. Sustained utility implementation of photovoltaics. Final report

    SciTech Connect (OSTI)

    Osborn, D.E.

    1998-05-01

    SMUD is a leader in utility grid-connected applications of PVs with the world`s largest distributed PV power system. SMUD is continuing its ambitious sustained, orderly development (SOD) commercialization effort of the grid-connected, utility PV market. This program is aimed at developing the experience needed to successfully integrate PV as distributed generation into the utility system, develop market and long-term business strategies and to stimulate the collaborative processes needed to accelerate the cost-reductions necessary for PV to be cost-competitive in these applications by about the year 2002. This report documents the progress made in the 1994/1995 SMUD PV Program under this contract and the PV projects partially supported by this contract. This contract has been considered a Pre-cursor to the TEAM-UP program implemented the following year.

  11. Solar Utility Procurement Specialist

    Broader source: Energy.gov [DOE]

    Alternate Title(s):Renewable Energy Procurement Associate; Renewable Energy Transactions Specialist;

  12. Utility FGD survey, January--December 1989

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1992-03-01

    This is Volume 2 part 2, of the Utility flue gas desulfurization (FGD) Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. This volume particularly contains basic design and performance data.

  13. Electric utility applications of hydrogen energy storage systems

    SciTech Connect (OSTI)

    Swaminathan, S.; Sen, R.K.

    1997-10-15

    This report examines the capital cost associated with various energy storage systems that have been installed for electric utility application. The storage systems considered in this study are Battery Energy Storage (BES), Superconducting Magnetic Energy Storage (SMES) and Flywheel Energy Storage (FES). The report also projects the cost reductions that may be anticipated as these technologies come down the learning curve. This data will serve as a base-line for comparing the cost-effectiveness of hydrogen energy storage (HES) systems in the electric utility sector. Since pumped hydro or compressed air energy storage (CAES) is not particularly suitable for distributed storage, they are not considered in this report. There are no comparable HES systems in existence in the electric utility sector. However, there are numerous studies that have assessed the current and projected cost of hydrogen energy storage system. This report uses such data to compare the cost of HES systems with that of other storage systems in order to draw some conclusions as to the applications and the cost-effectiveness of hydrogen as a electricity storage alternative.

  14. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  15. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  16. The Flexible Solar Utility. Preparing for Solar's Impacts to Utility Planning and Operations

    SciTech Connect (OSTI)

    Sterling, John; Davidovich, Ted; Cory, Karlynn; Aznar, Alexandra; McLaren, Joyce

    2015-09-01

    This paper seeks to provide a flexible utility roadmap for identifying the steps that need to be taken to place the utility in the best position for addressing solar in the future. Solar growth and the emergence of new technologies will change the electric utility of tomorrow. Although not every utility, region, or market will change in the same way or magnitude, developing a path forward will be needed to reach the Electric System of the Future in the coming decades. In this report, a series of potential future states are identified that could result in drastically different energy mixes and profiles: 1) Business as Usual, 2) Low Carbon, Centralized Generation, 3) Rapid Distributed Energy Resource Growth, 4) Interactivity of Both the Grid and Demand, and 5) Grid or Load Defection. Complicating this process are a series of emerging disruptions; decisions or events that will cause the electric sector to change. Understanding and preparing for these items is critical for the transformation to any of the future states to be successful. Predicting which future state will predominate 15 years from now is not possible; however, utilities still will need to look ahead and try to anticipate how factors will impact their planning, operations, and business models. In order to dig into the potential transformations facing the utility industry, the authors conducted a series of utility interviews, held a working session at a major industry solar conference, and conducted a quantitative survey. To focus conversations, the authors leveraged the Rapid Distributed Energy Resource (DER) Growth future to draw out how utilities would have to adapt from current processes and procedures in order to manage and thrive in that new environment. Distributed solar was investigated specifically, and could serve as a proxy resource for all distributed generation (DG). It can also provide the foundation for all DERs.

  17. Distributed Wind Market Applications

    SciTech Connect (OSTI)

    Forsyth, T.; Baring-Gould, I.

    2007-11-01

    Distributed wind energy systems provide clean, renewable power for on-site use and help relieve pressure on the power grid while providing jobs and contributing to energy security for homes, farms, schools, factories, private and public facilities, distribution utilities, and remote locations. America pioneered small wind technology in the 1920s, and it is the only renewable energy industry segment that the United States still dominates in technology, manufacturing, and world market share. The series of analyses covered by this report were conducted to assess some of the most likely ways that advanced wind turbines could be utilized apart from large, central station power systems. Each chapter represents a final report on specific market segments written by leading experts in this field. As such, this document does not speak with one voice but rather a compendium of different perspectives, which are documented from a variety of people in the U.S. distributed wind field.

  18. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  19. Flora Utilities | Open Energy Information

    Open Energy Info (EERE)

    Flora Utilities Jump to: navigation, search Name: Flora Utilities Place: Indiana Phone Number: 574-967-4971 Website: www.townofflora.orgflora-util Outage Hotline: 574-967-4971...

  20. World-wide distribution automation systems

    SciTech Connect (OSTI)

    Devaney, T.M.

    1994-12-31

    A worldwide power distribution automation system is outlined. Distribution automation is defined and the status of utility automation is discussed. Other topics discussed include a distribution management system, substation feeder, and customer functions, potential benefits, automation costs, planning and engineering considerations, automation trends, databases, system operation, computer modeling of system, and distribution management systems.

  1. UESC Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    Webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  2. Industrial Energy Efficiency Utility Webinars

    Office of Energy Efficiency and Renewable Energy (EERE)

    State, regional, and utility partners can learn how to help manufacturing customers save energy by reading the following presentations. Webinars feature experts from utilities, government, and...

  3. UESCs Training for Utility Representatives

    Broader source: Energy.gov [DOE]

    This webinar covers utility energy service contracts (UESC), which allow utilities to provide their Federal agencies with comprehensive energy and water efficiency improvements and demand-reduction services.

  4. GSA-Utility Interconnection Agreements

    Broader source: Energy.gov [DOE]

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Service Administration's (GSA's) utility interconnection agreements.

  5. Cannelton Utilities | Open Energy Information

    Open Energy Info (EERE)

    Cannelton Utilities Jump to: navigation, search Name: Cannelton Utilities Place: Indiana Phone Number: (812) 547-7919 Outage Hotline: (812) 547-7919 References: EIA Form EIA-861...

  6. Hustisford Utilities | Open Energy Information

    Open Energy Info (EERE)

    Hustisford Utilities Jump to: navigation, search Name: Hustisford Utilities Place: Wisconsin Phone Number: (920) 349-3650 Website: www.hustisford.comindex.asp?S Outage Hotline:...

  7. Maryville Utilities | Open Energy Information

    Open Energy Info (EERE)

    Maryville Utilities Jump to: navigation, search Name: Maryville Utilities Place: Tennessee Phone Number: 865.273.3900 or 865-273-3300 Website: www.maryvillegov.comutility-p...

  8. Slinger Utilities | Open Energy Information

    Open Energy Info (EERE)

    Slinger Utilities Jump to: navigation, search Name: Slinger Utilities Place: Wisconsin Phone Number: (262)644-5265 Website: www.vi.slinger.wi.govindex.as Outage Hotline: (262)...

  9. City of Wilber, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Generating Plant Yes Activity Generation Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  10. City of Holdrege, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Location MRO Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  11. City of Crete, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Id 4527 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  12. Utility Community Solar Handbook- Understanding and Supporting Utility Program Development

    Broader source: Energy.gov [DOE]

    The "Utility Community Solar Handbook: Understanding and Supporting Utility Program Development" provides the utility's perspective on community solar program development and is a resource for government officials, regulators, community organizers, solar energy advocates, non-profits, and interested citizens who want to support their local utilities in implementing projects.

  13. Utility FGD survey, Janurary--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW. 2 figs., 9 tabs.

  14. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, systems designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  15. Utility FGD survey, January--December 1988

    SciTech Connect (OSTI)

    Hance, S.L.; McKibben, R.S.; Jones, F.M. )

    1991-09-01

    The Utility FGD Survey report, which is generated by a computerized data base management system, represents a survey of operational and planned domestic utility flue gas desulfurization (FGD) systems. It summarizes information contributed by the utility industry, system and equipment suppliers, system designers, research organizations, and regulatory agencies. The data cover system design, fuel characteristics, operating history, and actual system performance. Also included is a unit-by-unit discussion of problems and solutions associated with the boilers, scrubbers, and FGD systems. The development status (operational, under construction, or in the planning stages), system supplier, process, waste disposal practice, and regulatory class are tabulated alphabetically by utility company. Simplified process flow diagrams of FGD systems, definitions, and a glossary of terms are attached to the report. Current data for domestic FGD systems show systems in operation, systems under construction, and systems planned. The current total FGD-controlled capacity in the United States is 67,091 MW.

  16. Trends in Utility Green Pricing Programs (2003)

    SciTech Connect (OSTI)

    Bird, L.; Cardinal, K.

    2004-09-01

    Utilities first began offering consumers a choice of purchasing electricity generated from renewable energy sources in the early 1990s. Since then, the number of U.S. utilities offering green pricing programs has steadily grown. Today, more than 500 utilities in regulated electricity markets--or about 16% of all utilities nationally--offer their customers green power options. Because some of these utilities offer programs in conjunction with cooperative associations or other public power entities, the number of distinct programs is slightly more than 100. Through these programs, more than 33 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs, or make contributions to support the development of renewable energy resources. Typically, customers must pay a premium above standard electricity rates for this service. This report presents year-end 2003 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data provided in this report can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  17. MTV Utility Library

    Energy Science and Technology Software Center (OSTI)

    2008-02-29

    The MSV Java Utility Library contains software developed over many years for many sponsors. (This work is not a derivative of CB-EMIS), but rather support to the CB-EMIS software). Projects that have used and contributed to code in this library: CB-EMIS (PROTECT), BWIC, Fort Future, Teva, Integrated Oceans, ENKIMDU, RCW, JEMS, JWACS, EPA watershed, and many others. This library will continue to be used in other non-CB-EMIS related projects. The components include: Spatial components: Multi-coordinatemore » system spatial objects. 2D spatial indexing system, and polygon griding system. Data translation: Allows import and export of file based data to and from object oriented systems. Multi-platform data streams: Allows platform specific data streams to operate on any support platform. Other items include printing, custom GUI components, support for NIMA Raster Product Format, program logging utilities and others.« less

  18. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  19. Fly ash quality and utilization

    SciTech Connect (OSTI)

    Barta, L.E.; Lachner, L.; Wenzel, G.B.; Beer, M.J.

    1995-12-01

    The quality of fly ash is of considerable importance to fly ash utilizers. The fly ash puzzolanic activity is one of the most important properties that determines the role of fly ash as a binding agent in the cementing process. The puzzolanic activity, however is a function of fly ash particle size and chemical composition. These parameters are closely related to the process of fly ash formation in pulverized coal fired furnaces. In turn, it is essential to understand the transformation of mineral matter during coal combustion. Due to the particle-to-particle variation of coal properties and the random coalescence of mineral particles, the properties of fly ash particles e.g. size, SiO{sub 2} content, viscosity can change considerably from particle to particle. These variations can be described by the use of the probability theory. Since the mean values of these randomly changing parameters are not sufficient to describe the behavior of individual fly ash particles during the formation of concrete, therefore it is necessary to investigate the distribution of these variables. Examples of these variations were examined by the Computer Controlled Scanning Electron Microscopy (CCSEM) for particle size and chemical composition for Texas lignite and Eagel Butte mineral matter and fly ash. The effect of combustion on the variations of these properties for both the fly ash and mineral matter were studied by using a laminar flow reactor. It is shown in our paper, that there are significant variations (about 40-50% around the mean values) of the above-listed properties for both coal samples. By comparing the particle size and chemical composition distributions of the mineral matter and fly ash, it was possible to conclude that for the Texas lignite mineral matter, the combustion did not effect significantly the distribution of these properties, however, for the Eagel Butte coal the combustion had a major impact on these mineral matter parameters.

  20. Effects of Home Energy Management Systems on Distribution Utilities...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - U.S.A - Session 6 - Paper 1560 7 * Residential Service Time-of-Use Schedule R-TOU-31 ... 2015 Average Residence Saves 5% on Electric Bill Estimated energy bills for July ...

  1. STEP Utility Bill Analysis Report

    Broader source: Energy.gov [DOE]

    STEP Utility Bill Analysis Report, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  2. STEP Utility Data Release Form

    Broader source: Energy.gov [DOE]

    STEP Utility Data Release Form, from the Tool Kit Framework: Small Town University Energy Program (STEP).

  3. Smart distribution systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jiang, Yazhou; Liu, Chen -Ching; Xu, Yin

    2016-04-19

    The increasing importance of system reliability and resilience is changing the way distribution systems are planned and operated. To achieve a distribution system self-healing against power outages, emerging technologies and devices, such as remote-controlled switches (RCSs) and smart meters, are being deployed. The higher level of automation is transforming traditional distribution systems into the smart distribution systems (SDSs) of the future. The availability of data and remote control capability in SDSs provides distribution operators with an opportunity to optimize system operation and control. In this paper, the development of SDSs and resulting benefits of enhanced system capabilities are discussed. Amore » comprehensive survey is conducted on the state-of-the-art applications of RCSs and smart meters in SDSs. Specifically, a new method, called Temporal Causal Diagram (TCD), is used to incorporate outage notifications from smart meters for enhanced outage management. To fully utilize the fast operation of RCSs, the spanning tree search algorithm is used to develop service restoration strategies. Optimal placement of RCSs and the resulting enhancement of system reliability are discussed. Distribution system resilience with respect to extreme events is presented. Furthermore, test cases are used to demonstrate the benefit of SDSs. Active management of distributed generators (DGs) is introduced. Future research in a smart distribution environment is proposed.« less

  4. Tribal Utility Feasibility Study

    SciTech Connect (OSTI)

    Engel, R. A.; Zoellick, J. J.

    2007-06-30

    The Schatz Energy Research Center (SERC) assisted the Yurok Tribe in investigating the feasibility of creating a permanent energy services program for the Tribe. The original purpose of the DOE grant that funded this project was to determine the feasibility of creating a full-blown Yurok Tribal electric utility to buy and sell electric power and own and maintain all electric power infrastructure on the Reservation. The original project consultant found this opportunity to be infeasible for the Tribe. When SERC took over as project consultant, we took a different approach. We explored opportunities for the Tribe to develop its own renewable energy resources for use on the Reservation and/or off-Reservation sales as a means of generating revenue for the Tribe. We also looked at ways the Tribe can provide energy services to its members and how to fund such efforts. We identified opportunities for the development of renewable energy resources and energy services on the Yurok Reservation that fall into five basic categories: • Demand-side management – This refers to efforts to reduce energy use through energy efficiency and conservation measures. • Off-grid, facility and household scale renewable energy systems – These systems can provide electricity to individual homes and Tribal facilities in areas of the Reservation that do not currently have access to the electric utility grid. • Village scale, micro-grid renewable energy systems - These are larger scale systems that can provide electricity to interconnected groups of homes and Tribal facilities in areas of the Reservation that do not have access to the conventional electric grid. This will require the development of miniature electric grids to serve these interconnected facilities. • Medium to large scale renewable energy development for sale to the grid – In areas where viable renewable energy resources exist and there is access to the conventional electric utility grid, these resources can be

  5. Coming utility squeeze play

    SciTech Connect (OSTI)

    Stoiaken, L.N.

    1988-02-01

    Like a sleeping giant, utilities are waking up and preparing to participate in the increasingly competitive power production industry. Some are establishing subsidiaries to participate in join venture deals with independents. Others are competing by offering lucrative discount or deferral rates to important industrial and commercial customers considering cogeneration. And now, a third approach is beginning to shape up- the disaggregation of generation assets into a separate generation company, or genco. This article briefly discusses these three and also devotes brief sections to functional segmentation and The regulatory arena.

  6. Tribal Utility Formation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    I L L E P O W E R A D M I N I S T R A T I O N Tribal Utility Formation in the Bonneville Power Administration Service Territory Ken Johnston Acting Tribal Affairs Manager BPA TRIBAL AFFAIRS DEPARTMENT JULY 2015 B O N N E V I L L E P O W E R A D M I N I S T R A T I O N 2 The Basics  BPA markets power from 31 Federal dams, the Columbia Generating Station Nuclear Plant, and several small non- Federal power plants  About 80% of the power BPA sells is hydroelectric  BPA accounts for about

  7. The directory of United States coal & technology export resources. Profiles of domestic US corporations, associations and public entities, nationwide, which offer products or services suitable for export, relating to coal and its utilization

    SciTech Connect (OSTI)

    Not Available

    1994-01-01

    The purpose of this directory is to provide a listing of available U.S. coal and coal related resources to potential purchasers of those resources abroad. The directory lists business entities within the US which offer coal related resources, products and services for sale on the international market. Each listing is intended to describe the particular business niche or range of product and/or services offered by a particular company. The listing provides addresses, telephones, and telex/fax for key staff in each company committed to the facilitation of international trade. The content of each listing has been formulated especially for this directory and reflects data current as of the date of this edition. The directory listings are divided into four primary classifications: coal resources; technology resources; support services; and financing and resource packaging. The first three of which are subdivided as follows: Coal Resources -- coal derivatives, coal exporters, and coal mining; Technology Resources -- advanced utilization, architects and engineers, boiler equipment, emissions control and waste disposal systems, facility construction, mining equipment, power generation systems, technical publications, and transport equipment; Support Services -- coal transport, facility operations, freight forwarders, sampling services and equipment, and technical consultants. Listings for the directory were solicited on the basis of this industry breakdown. Each of the four sections of this directory begins with a matrix illustrating which companies fall within the particular subclassifications specific to that main classification. A general alphabetical index of companies and an index by product/service classification are provided following the last section of the directory.

  8. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  9. Utilization Technology Institute | Open Energy Information

    Open Energy Info (EERE)

    Utilization Technology Institute Jump to: navigation, search Name: Utilization Technology Institute Place: Des Plaines, IL References: Utilization Technology Institute1...

  10. Distributed Wind Policy Comparison Tool

    Broader source: Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  11. Utility Energy Service Contracts Training for Utility Representatives

    Office of Energy Efficiency and Renewable Energy (EERE)

    This webinar targets Federal staff, as well as utility representatives, and provides an understanding of the legal parameters, contracting requirements, financing options, and other aspects of utility energy service contracts (UESC).

  12. Federal Utility Partnership Working Group- Utility Interconnection Panel

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation—given at at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting—discusses solar/photovoltaic (PV) projects to connect with utility in California and their issues.

  13. EM Utility Contracts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Contracts EM Utility Contracts Table providing summary information of EM awards for utility services. PDF icon EM Utility Contracts More Documents & Publications Land and ...

  14. utility rate | OpenEI Community

    Open Energy Info (EERE)

    utility Utility Companies utility rate Utility Rates version 1 version 2 version 3 web service Smart meter After several months of development and testing, the next...

  15. Optimal planning for the sustainable utilization of municipal solid waste

    SciTech Connect (OSTI)

    Santibañez-Aguilar, José Ezequiel; Ponce-Ortega, José María; Betzabe González-Campos, J.; Serna-González, Medardo; El-Halwagi, Mahmoud M.

    2013-12-15

    Highlights: • An optimization approach for the sustainable management of municipal solid waste is proposed. • The proposed model optimizes the entire supply chain network of a distributed system. • A case study for the sustainable waste management in the central-west part of Mexico is presented. • Results shows different interesting solutions for the case study presented. - Abstract: The increasing generation of municipal solid waste (MSW) is a major problem particularly for large urban areas with insufficient landfill capacities and inefficient waste management systems. Several options associated to the supply chain for implementing a MSW management system are available, however to determine the optimal solution several technical, economic, environmental and social aspects must be considered. Therefore, this paper proposes a mathematical programming model for the optimal planning of the supply chain associated to the MSW management system to maximize the economic benefit while accounting for technical and environmental issues. The optimization model simultaneously selects the processing technologies and their location, the distribution of wastes from cities as well as the distribution of products to markets. The problem was formulated as a multi-objective mixed-integer linear programing problem to maximize the profit of the supply chain and the amount of recycled wastes, where the results are showed through Pareto curves that tradeoff economic and environmental aspects. The proposed approach is applied to a case study for the west-central part of Mexico to consider the integration of MSW from several cities to yield useful products. The results show that an integrated utilization of MSW can provide economic, environmental and social benefits.

  16. Utility Partnership Webinar Series: State Mandates for Utility Energy Efficiency

    Broader source: Energy.gov [DOE]

    This webinar highlights state mandates from throughout the country, and how they’ve influenced utility industrial energy efficiency programs.

  17. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  18. Utility Connection | Open Energy Information

    Open Energy Info (EERE)

    your utility company, then provide us a little information about yourself. Only one person from each utility can answer these questions and the results from your input will be...

  19. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2002, each electric utility must inform its customers on a quarterly basis of the voluntary option to purchase green power. The details of each utility's program must be...

  20. Optimizing Asset Utilization and Operating Efficiency Efficiently, June

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 | Department of Energy Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Optimizing Asset Utilization and Operating Efficiency Efficiently, June 2008 Smart Grid Implementation Workshop Breakout Group Report, a discussion of metrics for smart grid implementation. The following major caveats and findings were identified: Optimizing asset utilization and operating efficiently depends on proper integration of technologies with business processes and associated IT

  1. NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) NARUC Releases Cybersecurity Primer for Utility Regulators (June 2012) June 14, 2012 - 4:50pm Addthis The National Association of Regulatory Utility Commissioners (NARUC) has released "Cybersecurity for State Regulators," a primer that explains conceptual cybersecurity basics and points to additional resources that can help regulators develop internal cybersecurity expertise, ask questions

  2. Mitigation Measures for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mitigation Measures for Distributed Interconnection" Michael Coddington with National Renewable Energy Laboratory and Robert Broderick with Sandia National Laboratories July 9, 2014 2 Speakers Michael Coddington Principal Investigator Distributed Grid Integration NREL Robert Broderick Technical Lead Distributed Grid Integration Programs Sandia National Laboratories Kristen Ardani Solar Analyst, (today's moderator) NREL 3 INTERCONNECTION, SCREENING & MITIGATION PRACTICES OF 21 UTILITIES

  3. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  4. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  5. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  6. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, ...

  7. YEAR 2 BIOMASS UTILIZATION

    SciTech Connect (OSTI)

    Christopher J. Zygarlicke

    2004-11-01

    This Energy & Environmental Research Center (EERC) Year 2 Biomass Utilization Final Technical Report summarizes multiple projects in biopower or bioenergy, transportation biofuels, and bioproducts. A prototype of a novel advanced power system, termed the high-temperature air furnace (HITAF), was tested for performance while converting biomass and coal blends to energy. Three biomass fuels--wood residue or hog fuel, corn stover, and switchgrass--and Wyoming subbituminous coal were acquired for combustion tests in the 3-million-Btu/hr system. Blend levels were 20% biomass--80% coal on a heat basis. Hog fuel was prepared for the upcoming combustion test by air-drying and processing through a hammer mill and screen. A K-Tron biomass feeder capable of operating in both gravimetric and volumetric modes was selected as the HITAF feed system. Two oxide dispersion-strengthened (ODS) alloys that would be used in the HITAF high-temperature heat exchanger were tested for slag corrosion rates. An alumina layer formed on one particular alloy, which was more corrosion-resistant than a chromia layer that formed on the other alloy. Research activities were completed in the development of an atmospheric pressure, fluidized-bed pyrolysis-type system called the controlled spontaneous reactor (CSR), which is used to process and condition biomass. Tree trimmings were physically and chemically altered by the CSR process, resulting in a fuel that was very suitable for feeding into a coal combustion or gasification system with little or no feed system modifications required. Experimental procedures were successful for producing hydrogen from biomass using the bacteria Thermotoga, a deep-ocean thermal vent organism. Analytical procedures for hydrogen were evaluated, a gas chromatography (GC) method was derived for measuring hydrogen yields, and adaptation culturing and protocols for mutagenesis were initiated to better develop strains that can use biomass cellulose. Fly ash derived from

  8. Avista Utilities (Gas)- Oregon Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Avista Utilities also provides a free in-home inspection to evaluate the cost and benefits associated with weatherizing your home. This free analysis is available to qualified Oregon residential...

  9. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  10. DEMEC Member Utilities- Green Energy Program Incentives (8 utilities)

    Office of Energy Efficiency and Renewable Energy (EERE)

    Delaware's municipal utilities provide incentives for solar photovoltaic (PV), solar thermal, wind, geothermal, and fuel cell systems installed by their electric customers. Eligibility is limited...

  11. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  12. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  13. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Beam Loading by Distributed Injection of Electrons in a Plasma Wakefield ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  14. Sheffield Utilities | Open Energy Information

    Open Energy Info (EERE)

    Place: Alabama Phone Number: (256) 389-2000 Website: sheffieldutilities.orgelectri Facebook: https:www.facebook.compagesSheffield-Utilities475026559217897 Outage Hotline:...

  15. Decatur Utilities | Open Energy Information

    Open Energy Info (EERE)

    Number: (256) 552-1400 Website: www.decaturutilities.com Twitter: @decaturutility Facebook: https:www.facebook.comDecaturUtilitiesAlabama Outage Hotline: (256) 552-1400...

  16. Waupun Utilities | Open Energy Information

    Open Energy Info (EERE)

    .waupunutilities.com Facebook: https:www.facebook.compagesUtilities111651042230525?refbrrs Outage Hotline: 920-324-7920 References: EIA Form EIA-861 Final Data File for...

  17. Public Utilities Specialist (Energy Efficiency)

    Broader source: Energy.gov [DOE]

    This position will serve as a Public Utilities Specialist in the Programs group (PEJC) of the Program Implementation organization. The Program Implementation organization is responsible for the...

  18. Utility Partnerships Program Overview (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Program overview brochure for the Utility Partnerships Program within the U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP).

  19. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg -- This project is inactive -- Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate

  20. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  1. Navajo Tribal Utility Association Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    Reading Costs Reduced Operating and Maintenance Costs Improved Electric Service Reliability and Power Quality Reduced Electricity Costs for Customers Reduced Truck Fleet Fuel...

  2. Iowa Association of Municipal Utilities Smart Grid Project |...

    Open Energy Info (EERE)

    demand reductions during peak periods.3 Equipment Approx. 5,450 Smart Meters AMI Communication Systems Meter Communications Network Backhaul Communications Meter Data...

  3. Business Owners: Prepare for Utility Disruptions | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Disruptions Business Owners: Prepare for Utility Disruptions Business Owners: Prepare for Utility Disruptions Have a plan in place in case a natural disaster or other ...

  4. Sandia Energy - Utility Operations and Programs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Operations and Programs Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Utility Operations and Programs Utility...

  5. Green Utility Srl | Open Energy Information

    Open Energy Info (EERE)

    Utility Srl Jump to: navigation, search Name: Green Utility Srl Place: Rome, Italy Zip: 153 Product: Italian PV project developer established by Solon, GESENU and Green Utility...

  6. Federal Utility Partnership Working Group Meeting Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fall 2012 Federal Utility Partnership Working Group (FUPWG) meeting-lists key utility program projects and upcoming utility energy service contract (UESC) training. fupwgfall12...

  7. TEST UTILITY COMPANY | Open Energy Information

    Open Energy Info (EERE)

    TEST UTILITY COMPANY Jump to: navigation, search Name: Test Utility Company Place: West Virginia References: Energy Information Administration.1 EIA Form 861 Data Utility Id...

  8. Fairmont Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Fairmont Public Utilities Comm Jump to: navigation, search Name: Fairmont Public Utilities Comm Place: Minnesota Phone Number: 507-235-6918 Website: fairmont.orgpublic-utilities...

  9. Pascoag Utility District | Open Energy Information

    Open Energy Info (EERE)

    search Name: Pascoag Utility District Place: Rhode Island Website: www.pud-ri.org Twitter: @PascoagUtility Facebook: https:www.facebook.comPascoagUtilityDistrict Outage...

  10. Xylose utilization in recombinant Zymomonas

    DOE Patents [OSTI]

    Kahsay, Robel Y; Qi, Min; Tao, Luan; Viitanen, Paul V; Yang, Jianjun

    2013-01-07

    Zymomonas expressing xylose isomerase from A. missouriensis was found to have improved xylose utilization, growth, and ethanol production when grown in media containing xylose. Xylose isomerases related to that of A. missouriensis were identified structurally through molecular phylogenetic and Profile Hidden Markov Model analyses, providing xylose isomerases that may be used to improve xylose utilization.

  11. Xylose utilization in recombinant zymomonas

    DOE Patents [OSTI]

    Caimi, Perry G; McCole, Laura; Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V

    2014-03-25

    Xylose-utilizing Zymomonas strains studied were found to accumulate ribulose when grown in xylose-containing media. Engineering these strains to increase ribose-5-phosphate isomerase activity led to reduced ribulose accumulation, improved growth, improved xylose utilization, and increased ethanol production.

  12. Utilities combat theft of service

    SciTech Connect (OSTI)

    Lady, P.

    1983-01-01

    Today theft of service has become a serious problem for the gas utilities (one utility estimated it to be 10% of its net profit) and many companies have established special departments or units to deal with it. Major factors contributing to gas theft are (1) the price escalation after the 1973-74 oil embargo, (2) high unemployment, (3) poor economic conditions, (4) a general decline in respect for utilities and the law, (5) minimal risk to offenders (customers feel that nothing will happen to them if they get caught), (6) relatively low skill required to illegally restore utility service, and (7) the attitude of getting something for nothing. Some preventive methods now being recommended include the following: (1) the use of computers to scan consumption patterns, (2) unannounced meter readings, and (3) tips from hotline tape recordings and from meter readers, departments, and neighboring utilities.

  13. A Framework for Organizing Current and Future Electric Utility Regulatory and Business Models

    Broader source: Energy.gov [DOE]

    In this report, we will present a descriptive and organizational framework for incremental and fundamental changes to regulatory and utility business models in the context of clean energy public policy goals. We will also discuss the regulated utility's role in providing value-added services that relate to distributed energy resources, identify the "openness" of customer information and utility networks necessary to facilitate change, and discuss the relative risks, and the shifting of risks, for utilities and customers.

  14. OpenEI Community - Utility+Utility Access Map

    Open Energy Info (EERE)

    the Special Ask page, in the query box enter the following:

    &91;&91;Category:Utility...

  15. UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    UTILITIES COLORADO WESTERN POWER ADMIN POC Cheryl Drake Telephone (720) 962-7154 Email drake@wapa.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov Electric Bulk Power Transmission and Control 221121 Electric Power Distribution 221122 OKLAHOMA SOUTHWESTERN POWER ADMIN POC Gary Bridges Telephone (918) 595-6671 Email gary.bridges@swpa.gov Electric Bulk Power

  16. FEMP Announces New Utilities Offering UESCs

    Broader source: Energy.gov [DOE]

    FEMP is pleased to announce four new utilities now offering Utility Energy Service Contracts (UESCs) to their Federal customers.

  17. Competing Federal Utility Energy Service Contracts

    Broader source: Energy.gov [DOE]

    Opening utility energy service contracts to competing franchised utility companies ensures federal agencies get the best value for their projects.

  18. Evaluation Ratings Definitions (Excluding Utilization of Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Excluding Utilization of Small Business) Rating Definition Note Exceptional ... Definitions (Utilization of Small Business) Rating Definition Note Exceptional ...

  19. Collaborating With Utilities on Residential Energy Efficiency...

    Office of Environmental Management (EM)

    Collaborating With Utilities on Residential Energy Efficiency Collaborating With Utilities on Residential Energy Efficiency Better Buildings Residential Network Program ...

  20. Utility Grant Program | Open Energy Information

    Open Energy Info (EERE)

    Government Comprehensive MeasuresWhole Building Yes Riverside Public Utilities - Energy Efficiency Technology Grant Program (California) Utility Grant Program California...

  1. Utility Partnerships Program Overview | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnerships Program Overview Utility Partnerships Program Overview Document describes the Utility Partnerships Program within the U.S. Department of Energy's Federal Energy Management Program. Download the Utility Partnerships Program Overview. (1.83 MB) More Documents & Publications Federal Utility Partnership Working Group Seminar: Chairman's Corner Funding Federal Energy and Water Projects Federal Utility Partnership Working Group Meeting Chairman's Corner

  2. DWEA July Webinar: Financing Distributed Wind

    Broader source: Energy.gov [DOE]

    Join the Distributed Wind Energy Association (DWEA) for a webinar on financing distributed wind. Presenters are Chris Diaz, Seminole Financial Services LLC, and Russell Tencer, founder and CEO of...

  3. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    In 2015, H.B. 2941 expanded this requirement to include a rate option with a specific renewable energy resource, such as solar photovoltaics, if the Public Utilities Commission finds there is...

  4. BBEE Public Utility Conference Call

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that some sort of joint design and development effort that could take advantage of economies of scale and more favorable pricing could be good. He said that small utilities...

  5. Utility Scale Solar Incentive Program

    Broader source: Energy.gov [DOE]

    HB 4037 of 2016 created the Solar Incentive Program for utility-scale solar development. The bill directs Oregon's Business Development Department (the Department) to establish and administer a...

  6. Utility Security & Resiliency: Working Together

    Broader source: Energy.gov [DOE]

    Presentation—given at the Federal Utility Partnership Working Group (FUPWG) Fall 2008 meeting—discusses Edison Electric Institute (EEI), including its key security objectives, key activities, cybersecurity activities, and spare transformer equipment program (STEP).

  7. Austin Utilities- Solar Rebate Program

    Broader source: Energy.gov [DOE]

    In order to obtain eligibility, customers must agree to a net-metering and interconnection contract with Austin Utilities. An energy audit must be performed prior to system installation and...

  8. utility | OpenEI Community

    Open Energy Info (EERE)

    service Smart meter After several months of development and testing, the next generation web service for the utility rate database is finally here I encourage you to check out...

  9. Orlando Utilities Commission- Solar Programs

    Broader source: Energy.gov [DOE]

    The Orlando Utilities Commission (OUC) also offers incentive for solar hot water heating systems. Commercial solar hot water heating systems receive a $0.03 per kWh equivalent. Residential...

  10. WINDExchange: Utility-Scale Wind

    Wind Powering America (EERE)

    Utility-Scale Wind Photo of two people standing on top of the nacelle of a utility-scale wind turbine. Wind is an important source of affordable, renewable energy, currently supplying nearly 5% of our nation's electricity demand. By generating electricity from wind turbines, the United States can reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and help revitalize key sectors of its economy, including manufacturing.

  11. Pueblo of Laguna Utility Authority

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PUEBLO OF LAGUNA UTILITY AUTHORITY TRIBAL UTILITY FORMATION: REGULATION, FINANCE AND BUSINESS STRUCTURE FACTS ON LAGUNA PUEBLO * LAGUNA IS LOCATED ABOUT 45 MILES WEST OF ALBUQUERQUE ON INTERSTATE 40 * RESERVATION CONSISTS OF APPROX. 500,000 ACRES OF LAND SITUATED IN CIBOLA, VALENCIA AND BERNALILLO COUNTIES * SIX (6) VILLAGES, LAGUNA, MESITA, PAGUATE, SEAMA, ENCINAL, PARAJE ARE ALL WITHIN THE LAGUNA RESERVATION * 4,000+ TRIBAL MEMBERS LIVE ON THE RESERVATION * CASINOS, TRAVEL CENTERS, SUPERMARKET

  12. Effect of nuclear ownership on utility bond ratings and yields

    SciTech Connect (OSTI)

    Nesse, R.J.

    1982-02-01

    The major objective of this study was to test the hypothesis that investors have required an additional interest rate premium before purchasing bonds of utilities with large investments in nuclear facilities. The study required several tasks. First, the literature relating to firm bankruptcy and default was reviewed. Second, the failing financial health of the electric utility industry was assessed in terms of construction problems, the impact of federal and state regulations, and the impact of Three Mile Island. Finally, data were collected on 63 electric utilities. This allowed statistical estimation of the magnitude of the risk premium associated with utility involvement in nuclear power. The effect of this involvement on a utility's bond ratings was also examined. Multiple regression was the statistical tool used for the statistical testing and estimation.

  13. Near equilibrium distributions for beams with space charge in linear and nonlinear periodic focusing systems

    SciTech Connect (OSTI)

    Sonnad, Kiran G.; Cary, John R.

    2015-04-15

    A procedure to obtain a near equilibrium phase space distribution function has been derived for beams with space charge effects in a generalized periodic focusing transport channel. The method utilizes the Lie transform perturbation theory to canonically transform to slowly oscillating phase space coordinates. The procedure results in transforming the periodic focusing system to a constant focusing one, where equilibrium distributions can be found. Transforming back to the original phase space coordinates yields an equilibrium distribution function corresponding to a constant focusing system along with perturbations resulting from the periodicity in the focusing. Examples used here include linear and nonlinear alternating gradient focusing systems. It is shown that the nonlinear focusing components can be chosen such that the system is close to integrability. The equilibrium distribution functions are numerically calculated, and their properties associated with the corresponding focusing system are discussed.

  14. Utility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utah Natural Gas Gross Withdrawals (Million Cubic Feet) Utah Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 29,169 25,803 28,696 27,430 26,066 25,904 26,327 27,840 23,393 28,671 28,721 25,640 1992 27,197 25,078 25,991 23,358 25,028 25,354 26,008 25,896 26,956 27,416 27,403 28,590 1993 29,036 27,418 31,267 29,882 27,942 28,358 27,521 25,763 24,670 27,934 27,324 29,068 1994 28,316 28,226 30,799 29,630 29,997 28,579 29,370 30,013 28,336

  15. utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water ...

  16. Secretary Moniz Announces the Launch of New Veterans’ Utility Industry Transition Effort

    Office of Energy Efficiency and Renewable Energy (EERE)

    Today U.S. Department of Energy Secretary Ernest Moniz announced the creation of the Utility Industry Workforce Initiative, a partnership between the Departments of Energy, Labor, Defense, and Veterans Affairs and five utility trade associations to recruit and train service members, veterans and military spouses to qualify for high-skilled jobs in the utility industry.

  17. Estimation and decomposition of productive efficiency in a panel data model: an application to electric utilities

    SciTech Connect (OSTI)

    Melfi, C.A.

    1984-01-01

    New econometric methodology for modeling and estimating technical and allocative efficiency in production is proposed and applied. Translog cost frontier and share equations are presented in a panel data context, with the structure of the error terms representing noise and inefficiency. The use of panel data with this multivariate error components approach facilitates the separation of eficiency into its technical and allocative components, as well as the separation of noise from inefficiency. The model used is logically consistent in that the distributional assumptions concerning the disturbance vectors take into account the relationships among the disturbance terms in the cost and share equations. This method of efficiency measurement is applied to the electric utilities industry to obtain individual firm estimates of technical and allocative efficiency. The data consist of yearly cost, output, and input price information on 38 electric utility firms over a period of 18 years. Rate-of-return regulation in the electric utilities industry requires estimation of a regulated cost frontier and the associated share equations. Estimates of technical and allocative efficiency are obtained for each firm in every year. Comparisons are made with previous efficiency measurement studies. The measures of efficiency are analyzed in light of rate-of-return regulation.

  18. Constraints to waste utilization and disposal

    SciTech Connect (OSTI)

    Steadman, E.N.; Sondreal, E.A.; Hassett, D.J.; Eylands, K.E.; Dockter, B.A.

    1995-12-01

    The value of coal combustion by-products for various applications is well established by research and commercial practice worldwide. As engineering construction materials, these products can add value and enhance strength and durability while simultaneously reducing cost and providing the environmental benefit of reduced solid waste disposal. In agricultural applications, gypsum-rich products can provide plant nutrients and improve the tilth of depleted soils over large areas of the country. In waste stabilization, the cementitious and pozzolanic properties of these products can immobilize hazardous nuclear, organic, and metal wastes for safe and effective environmental disposal. Although the value of coal combustion by-products for various applications is well established, the full utilization of coal combustion by-products has not been realized in most countries. The reasons for the under utilization of these materials include attitudes that make people reluctant to use waste materials, lack of engineering standards for high-volume uses beyond eminent replacement, and uncertainty about the environmental safety of coal ash utilization. More research and education are needed to increase the utilization of these materials. Standardization of technical specifications should be pursued through established standards organizations. Adoption of uniform specifications by government agencies and user trade associations should be encouraged. Specifications should address real-world application properties, such as air entrainment in concrete, rather than empirical parameters (e.g., loss on ignition). The extensive environmental assessment data already demonstrating the environmental safety of coal ash by-products in many applications should be more widely used, and data should be developed to include new applications.

  19. Distributed Wind Policy Comparison Tool

    SciTech Connect (OSTI)

    2011-12-01

    Power through Policy: 'Best Practices' for Cost-Effective Distributed Wind is a U.S. Department of Energy (DOE)-funded project to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool (Policy Tool) is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Policy Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth). It also allows policymakers to determine the impact of policy options, addressing market challenges identified in the U.S. DOE’s '20% Wind Energy by 2030' report and helping to meet COE targets.

  20. Cpp Utility - Version 1.0

    Energy Science and Technology Software Center (OSTI)

    2014-09-08

    A collection of general Umbra modules that are reused by other Umbra libraries. These capabilities include line segments, file utilities, color utilities, string utilities (for std::string), list utilities (for std ::vector ), bounding box intersections, range limiters, simple filters, cubic roots solvers and a few other utilities.

  1. Chapter 41: Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1: Utilities Chapter 41: Utilities Acquisition Guide Chapter 41: Utilities Chapter 41: Utilities (42.84 KB) More Documents & Publications Policy Flash 2016-31 Chapter 41 - Acquisition of Utility Services AcqGuide41pt1.doc&#0;

  2. Waste heat: Utilization and management

    SciTech Connect (OSTI)

    Sengupta, S.; Lee, S.S.

    1983-01-01

    This book is a presentation on waste heat management and utilization. Topics covered include cogeneration, recovery technology, low grade heat recovery, heat dispersion models, and ecological effects. The book focuses on the significant fraction of fuel energy that is rejected and expelled into the environment either as industrial waste or as a byproduct of installation/equipment operation. The feasibility of retrieving this heat and energy is covered, including technical aspects and potential applications. Illustrations demonstrate that recovery methods have become economical due to recent refinements. The book includes theory and practice concerning waste heat management and utilization.

  3. Emerging Issues and Challenges with Integrating High Levels of Solar into the Distribution System

    Broader source: Energy.gov [DOE]

    Wide use of advanced inverters could double the electricity-distribution system’s hosting capacity for distributed PV at low costs—from about 170 GW to 350 GW (see Palmintier et al. 2016). At the distribution system level, increased variable generation due to high penetrations of distributed PV (typically rooftop and smaller ground-mounted systems) could challenge the management of distribution voltage, potentially increase wear and tear on electromechanical utility equipment, and complicate the configuration of circuit-breakers and other protection systems—all of which could increase costs, limit further PV deployment, or both. However, improved analysis of distribution system hosting capacity—the amount of distributed PV that can be interconnected without changing the existing infrastructure or prematurely wearing out equipment—has overturned previous rule-of-thumb assumptions such as the idea that distributed PV penetrations higher than 15% require detailed impact studies. For example, new analysis suggests that the hosting capacity for distributed PV could rise from approximately 170 GW using traditional inverters to about 350 GW with the use of advanced inverters for voltage management, and it could be even higher using accessible and low-cost strategies such as careful siting of PV systems within a distribution feeder and additional minor changes in distribution operations. Also critical to facilitating distributed PV deployment is the improvement of interconnection processes, associated standards and codes, and compensation mechanisms so they embrace PV’s contributions to system-wide operations. Ultimately SunShot-level PV deployment will require unprecedented coordination of the historically separate distribution and transmission systems along with incorporation of energy storage and “virtual storage,” which exploits improved management of electric vehicle charging, building energy systems, and other large loads. Additional analysis and

  4. Minnkota Power Cooperative (17 Utilities) - PowerSavers Commercial...

    Broader source: Energy.gov (indexed) [DOE]

    Electric Cooperative Roseau Municipal Utilities Fosston Municipal Utilities City of Stephen Municipal Utilities Halstad Municipal Utilities Thief River Falls Municipal Utilities...

  5. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    2015-12-01

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Patents [OSTI]

    Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  7. Effective Strategies for Participating in Utility Planning

    Broader source: Energy.gov [DOE]

    Better Buildings Neighborhood Program Working with Utilities Peer Exchange Call: Effective Strategies for Participating in Utility Planning, Call Slides and Discussion Summary, August 2, 2012. This Peer Exchange Call discussed effective strategies for participating in utility planning.

  8. Ocala Utility Services- Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Ocala Utility Services Electric and Telecommunications is a community owned utility that serves around 50,000 customers in Ocala and Marion County area. Ocala Utility Services offers rebates on A/C...

  9. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect (OSTI)

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  10. Utility Energy Service Contracts - Lessons Learned

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Contracts-Lessons Learned Utility Energy Services Contracts Lessons Learned Water Conservation Negotiating Financing Lowering Finance Rates Utility Energy Service Contracts-Lessons Learned 2 -- FEDERAL ENERGY MANAGEMENT PROGRAM Contents Introduction .............................................................................................................................................................................3 Financing Utility Energy Services Contracts

  11. New London Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Jump to: navigation, search Name: New London Municipal Utilities Place: Iowa References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form 861 Data Utility...

  12. LLNL E-Mail Utilities

    Energy Science and Technology Software Center (OSTI)

    2005-10-31

    The LLNL E-mail Utilities software library is a Java API that simplifies the creation and delivery of email in Java business applications. It consists of a database-driven template engine, various strategies for composing, queuing, dispatching email and a Java Swing GUI for creating and editing email templates.

  13. Departmental Energy and Utilities Management

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-04-15

    To establish requirements and responsibilities for managing Department of Energy (DOE) energy and utility supplies and services. Cancels paragraphs 6d(2), 6h, 7b(1), 7b(2), and 7e(16) of DOE O 430.1A) Cancels: DOE O 430.2, DOE O 430.1A (in part)

  14. Zymomonas with improved xylose utilization

    DOE Patents [OSTI]

    Viitanen, Paul V.; Tao, Luan; Zhang, Yuying; Caimi, Perry G.; McCutchen, Carol M.; McCole, Laura; Zhang, Min; Chou, Yat-Chen; Franden, Mary Ann

    2011-08-16

    Strains of Zymomonas were engineered by introducing a chimeric xylose isomerase gene that contains a mutant promoter of the Z. mobilis glyceraldehyde-3-phosphate dehydrogenase gene. The promoter directs increased expression of xylose isomerase, and when the strain is in addition engineered for expression of xylulokinase, transaldolase and transketolase, improved utilization of xylose is obtained.

  15. TWRS LDUA utilization study report

    SciTech Connect (OSTI)

    Rieck, R.H.

    1994-09-01

    Tank Waste Remediation Systems functional requirements were reviewed. The Light Duty Utility Arm capabilities were considered as a means to support completion of these functional requirements. The recommendation is made to continue to develop the LDUA, integrating TWRS functional needs into the design to better support completion of TWRS mission needs.

  16. Working With Municipal Utilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With Municipal Utilities Working With Municipal Utilities Better Buildings Residential Network Program Sustainability / Working with Utilities Peer Exchange Call: Working with Smaller Municipal Utilities, Call Slides and Summary, June 27, 2013. Call Slides and Summary (490.27 KB) More Documents & Publications Better Buildings Working with Utilities Peer Exchange Call: Kick-off Transitioning to a Utility Funded Program Environment: What Do I Need to Know? Tracking and Using Data to Support

  17. A utility`s perspective of the market for IGCC

    SciTech Connect (OSTI)

    Black, C.R.

    1993-06-01

    The market for Integrated Gasification Combined Cycle (IGCC) power plants is discussed and some of the experiments with an Integrated Gasification Combined Cycle Power Plant Project, Polk Unit {number_sign}1 are described. It was found that not only is the technology different from what most US utilities are accustomed to, but also that the non-technical issues or business issues, such as contracting, project management and contract administration also have different requirements. The non-technical or business issues that are vital to the successful commercialization of this technology are described. These business issues must be successfully addressed by both the utilities and the technology suppliers in order for integrated gasification combined cycle power plants to achieve commercial success.

  18. Industrial Utility Webinar: Public Power Open Session

    SciTech Connect (OSTI)

    2010-02-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  19. Superhydrophobic analyte concentration utilizing colloid-pillar...

    Office of Scientific and Technical Information (OSTI)

    Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates Citation Details In-Document Search Title: Superhydrophobic analyte concentration utilizing ...

  20. Shawano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: Wisconsin Phone Number: 715-526-3131 Website: www.shawano.tv Facebook: https:www.facebook.compagesShawano-Municipal-Utilities156410777732483 Outage...

  1. 2012 Green Utility Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 Green Utility Leaders 2012 Green Utility Leaders Ranking the Top Green Power Providers See All Leaders x Renewable Energy Sales Total Customer Participants Customer Participation...

  2. Clark Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    utility. The company started the Green Lights program to support the development of renewable energy resources in the Northwest. References: Clark Public Utilities1 This...

  3. Utility Partnership Program Strategic Partnership Meetings |...

    Broader source: Energy.gov (indexed) [DOE]

    (FEMP) hosts strategic partnership meetings for federal agencies and their serving utilities as part of the Utility Partnerships Program. At these meetings, FEMP experts train ...

  4. Wells Public Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Wells Public Utilities Website http:www.SaveEnergyInWells.com State Minnesota Program Type...

  5. Wonewoc Electric & Water Util | Open Energy Information

    Open Energy Info (EERE)

    Wonewoc Electric & Water Util Jump to: navigation, search Name: Wonewoc Electric & Water Util Place: Wisconsin Phone Number: (608) 464-3114 Website: www.wonewocwisc.compublicwor...

  6. UGI Utilities, Inc | Open Energy Information

    Open Energy Info (EERE)

    UGI Utilities, Inc Jump to: navigation, search Name: UGI Utilities, Inc Place: Pennsylvania Phone Number: (800) 276-2722 Website: www.ugi.comportalpageportal Twitter: https:...

  7. Clinton Combined Utility Sys | Open Energy Information

    Open Energy Info (EERE)

    Clinton Combined Utility Sys Jump to: navigation, search Name: Clinton Combined Utility Sys Place: South Carolina Phone Number: 864-833-7524 Website: www.cityofclintonsc.com...

  8. West Point Utility System | Open Energy Information

    Open Energy Info (EERE)

    Utility System Jump to: navigation, search Name: West Point Utility System Place: Iowa Phone Number: (319) 837-6313 Website: www.westpointiowa.comwp-utili Facebook: https:...

  9. Industrial Utility Webinar: Financial Mechanisms and Incentives

    SciTech Connect (OSTI)

    2010-03-10

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  10. Utility Data Accessibility Map | Open Energy Information

    Open Energy Info (EERE)

    utility company to see your electricity data access options. Select the Benchmarking or Demand ResponseEnergy Efficiency map to find out whether your utility provides sufficient...

  11. Studying the Communications Requirements of Electric Utilities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Electric Utilities to Inform Federal Smart Grid Policies- Public Meeting Studying the Communications Requirements of Electric Utilities to Inform Federal Smart Grid ...

  12. Community Renewable Energy Deployment: Sacramento Municipal Utility...

    Open Energy Info (EERE)

    Sacramento Municipal Utility District Projects Jump to: navigation, search Name Community Renewable Energy Deployment: Sacramento Municipal Utility District Projects AgencyCompany...

  13. City Utilities of Springfield | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17833 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  14. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  15. Industrial Utility Webinar: Combined Heat and Power

    SciTech Connect (OSTI)

    2010-06-09

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  16. EPOD Renewable Utilities Inc | Open Energy Information

    Open Energy Info (EERE)

    EPOD Renewable Utilities Inc Jump to: navigation, search Name: EPOD Renewable Utilities Inc Place: Frankfurt, Germany Sector: Renewable Energy Product: Focused on operating...

  17. Maximizing Light Utilization Efficiency and Hydrogen Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maximizing Light Utilization Efficiency and Hydrogen Production in Microalgal Cultures, DOE Hydrogen Program FY 2010 Annual Progress Report Maximizing Light Utilization Efficiency ...

  18. Mora Municipal Utilities - Commercial & Industrial Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Commercial Refrigeration Equipment Program Info Sector Name Utility Administrator Mora Municipal Utilities Website http:www.SaveEnergyInMora.com State Minnesota Program...

  19. Federal Utility Partnership Working Group Seminar: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Seminar: Chairman's Corner Federal Utility Partnership Working Group Seminar: Chairman's Corner Presentation covers the Federal Utility Partnership Working Group Seminar: Chairman's ...

  20. Federal Utility Partnership Working Group Meeting: Chairman's...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Meeting: Chairman's Corner Presentation-given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting-lists key ...

  1. Federal Utility Partnership Working Group Meeting: Washington...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Utility Partnership Working Group Meeting: Washington Update PDF icon fupwgspring12unruh.pdf More Documents & Publications Federal Utility Partnership Working Group ...

  2. Greenville Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenville Utilities Comm Jump to: navigation, search Name: Greenville Utilities Comm Place: North Carolina Phone Number: 1-855-767-2482 Website: www.guc.com Twitter: @gucinfo...

  3. Truman Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Truman Public Utilities Comm Jump to: navigation, search Name: Truman Public Utilities Comm Place: Minnesota Phone Number: 507-776-7951 Website: trumanmn.usutilities Outage...

  4. Hibbing Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Hibbing Public Utilities Comm Jump to: navigation, search Name: Hibbing Public Utilities Comm Place: Minnesota Website: www.hpuc.com Outage Hotline: 218-262-7720 References: EIA...

  5. Trinity Public Utilities Dist | Open Energy Information

    Open Energy Info (EERE)

    Public Utilities Dist Jump to: navigation, search Name: Trinity Public Utilities Dist Place: California Website: trinitypud.com Outage Hotline: (530) 623-5536 References: EIA Form...

  6. Keewatin Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Keewatin Public Utilities Jump to: navigation, search Name: Keewatin Public Utilities Place: Minnesota Phone Number: 218-778-6544 Website: www.keewatin.govoffice.comind Outage...

  7. Willmar Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Page Edit with form History Willmar Municipal Utilities Jump to: navigation, search Name: Willmar Municipal Utilities Place: Minnesota Phone Number: 320.235.4422 Website:...

  8. Delano Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Delano Municipal Utilities Jump to: navigation, search Name: Delano Municipal Utilities Place: Minnesota Website: www.dmumn.com Outage Hotline: (763)972-0557 References: EIA Form...

  9. Greenwood Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Greenwood Utilities Comm Jump to: navigation, search Name: Greenwood Utilities Comm Place: Mississippi Phone Number: (622) 453-7234 Website: www.greenwoodutilities.com Facebook:...

  10. Brainerd Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Brainerd Public Utilities Jump to: navigation, search Name: Brainerd Public Utilities Abbreviation: BPU Address: 8027 Highland Scenic Rd Place: Brainerd, MN Zip: 56401 Phone...

  11. Shakopee Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Shakopee Public Utilities Comm Jump to: navigation, search Name: Shakopee Public Utilities Comm Place: Minnesota Website: spucweb.com Outage Hotline: 952-445-1988 References: EIA...

  12. Corbin City Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Corbin City Utilities Comm Jump to: navigation, search Name: Corbin City Utilities Comm Place: Kentucky Phone Number: 606-528-4026 Website: corbinutilities.com Outage Hotline:...

  13. Clarksdale Public Utilities | Open Energy Information

    Open Energy Info (EERE)

    Clarksdale Public Utilities Jump to: navigation, search Name: Clarksdale Public Utilities Place: Mississippi Phone Number: (662) 627-8499 Website: www.clarksdale.com Facebook:...

  14. Aitkin Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Aitkin Public Utilities Comm Jump to: navigation, search Name: Aitkin Public Utilities Comm Place: Minnesota Phone Number: 763-576-2750 Website: www.anokaelectric.govoffice3.c...

  15. Indianola Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Indianola Municipal Utilities Jump to: navigation, search Name: Indianola Municipal Utilities Place: Iowa Phone Number: 515.961.9444 Website: www.i-m-u.com Outage Hotline:...

  16. Preston Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Preston Public Utilities Comm Jump to: navigation, search Name: Preston Public Utilities Comm Place: Minnesota Phone Number: (507) 765-2491 Website: www.prestonmn.orgpuc1.htm...

  17. Shared Value in Utility and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Shared Value in Utility and Efficiency Partnerships, July 10, 2012. Presents four case studies highlighting partnerships between local utilities and energy efficiency programs.

  18. Osage Municipal Utilities Wind | Open Energy Information

    Open Energy Info (EERE)

    Name Osage Municipal Utilities Wind Facility Osage Municipal Utilities Wind Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Osage...

  19. Central Lincoln People's Utility District - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    electric Program Info Sector Name Utility Administrator Central Lincoln People(tm)s Utility District Website http:clpud.orgrebate-information State Oregon Program Type...

  20. Truckee Donner Public Utility District - Energy Conservation...

    Broader source: Energy.gov (indexed) [DOE]

    rebates 10,000 Program Info Sector Name Utility Administrator Truckee Donner Public Utility District Website http:www.tdpud.org State California Program Type Rebate...

  1. Industrial Utility Webinar: Natural Gas Efficiency Programs

    SciTech Connect (OSTI)

    2010-04-15

    The Industrial Utility Webinars focus on providing utilities with information on how to develop sucessful energy efficeincy programs for industrial energy consumers.

  2. Federal Energy Efficiency through Utility Partnerships

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Two-page fact sheet on FEMP's Federal Utility Program that works with federal agencies and their utilities to reduce energy use.

  3. A Case Study of Danville Utilities:

    SciTech Connect (OSTI)

    2010-03-09

    This case study provides information on how Danville Utilities utilized ITP Industrial Assessment Centers to provide energy efficiency resources to key accounts.

  4. Watertown Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Utilities Place: South Dakota Phone Number: (605)882-6233 Website: watertownmu.com Twitter: @watertownmu Facebook: https:www.facebook.compagesWatertown-Municipal-Utiliti...

  5. Tipton Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Electric Util Jump to: navigation, search Name: Tipton Municipal Electric Util Address: P.O. Box 288 Place: Tipton, Indiana Zip: 46072 Service Territory: Indiana Phone Number:...

  6. Manufacturing challenges of optical current and voltage sensors for utility applications

    SciTech Connect (OSTI)

    Yakymyshyn, C.P.; Brubaker, M.A.; Johnston, P.M.; Reinbold, C.

    1997-12-01

    Measurement of voltages and currents in power transmission and distribution systems are critical to the electric utility industry for both revenue metering and reliability. Nonconventional instrument transformers based on intensity modulation of optical signals have been reported in the literature for more than 20 years. Recently described devices using passive bulk optical sensor elements include the Electro-Optic Voltage Transducer (EOVT) and Magneto-Optic Current Transducer (MOCT). These technologies offer substantial advantages over conventional instrument transformers in accuracy, optical isolation bandwidth, environmental compatibility, weight and size. This paper describes design and manufacturing issues associated with the EOVT and the Optical Metering Unit (OMU) recently introduced by ABB with field installation results presented for prototype units in the 345 kV and 420 kV voltage classes. The OMU incorporates an EOVT and MOCT to monitor the voltage and current on power transmission lines using a single free-standing device.

  7. Finding Utility Companies Under a Given Utility ID | OpenEI Community

    Open Energy Info (EERE)

    utility company pages under a given utility id. From the Special Ask page, in the query box enter the following: Category:Utility CompaniesEiaUtilityId::15248 substituting...

  8. Bernstein instability driven by thermal ring distribution

    SciTech Connect (OSTI)

    Yoon, Peter H.; Hadi, Fazal; Qamar, Anisa

    2014-07-15

    The classic Bernstein waves may be intimately related to banded emissions detected in laboratory plasmas, terrestrial, and other planetary magnetospheres. However, the customary discussion of the Bernstein wave is based upon isotropic thermal velocity distribution function. In order to understand how such waves can be excited, one needs an emission mechanism, i.e., an instability. In non-relativistic collision-less plasmas, the only known Bernstein wave instability is that associated with a cold perpendicular velocity ring distribution function. However, cold ring distribution is highly idealized. The present Brief Communication generalizes the cold ring distribution model to include thermal spread, so that the Bernstein-ring instability is described by a more realistic electron distribution function, with which the stabilization by thermal spread associated with the ring distribution is demonstrated. The present findings imply that the excitation of Bernstein waves requires a sufficiently high perpendicular velocity gradient associated with the electron distribution function.

  9. A versatile technique to minimize electrical losses in distribution feeders

    SciTech Connect (OSTI)

    Kyaruzi, A.L.

    1994-12-31

    This dissertation presents a method of minimizing electrical losses in radial distribution feeders by the use of shunt capacitors. The engineering benefits of reducing peak electrical power and energy losses are compared to the costs associated with the current engineering practice of buying, installing and servicing capacitor banks in the distribution feeders. The present analysis defines this cost-benefit problem and the formulation of the problem of nonuniform feeders with different wire gauges at various feeder sections. Standard utility capacitor bank sizes are used to give a more realistic model. An original computer solution methodology based on techniques developed for this study determines: (i) Whether it is economical to install compensating capacitor banks on a particular radial distribution feeder or not. (ii) The locations at which capacitor banks should be installed. (iii) The types and sizes of capacitor banks to be installed. (iv) The time setting of switched capacitor banks. The techniques have been applied to a typical radial distribution feeder in Dar-es-Salaam, Tanzania. The results and the engineering implications of this work are discussed and recommendations for the engineering community made.

  10. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  11. Building a Smarter Distribution System in Pennsylvania

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study - PPL Electric Utilities Corporation Smart Grid Investment Grant 1 Building a Smarter Distribution System in Pennsylvania PPL Electric Utilities Corporation (PPL) provides electricity to 1.4 million customers across central and eastern Pennsylvania. Having installed smart meters and other advanced technologies over the last several years, PPL has experience with operating smart grid systems and achieving operational improvements. To further improve quality of service for its customers, PPL

  12. AWWA, WEF Utility Management Conference

    Broader source: Energy.gov [DOE]

    The American Water Works Association (AWWA) and Water Environment Federation (WEF) are hosting their annual conference in Austin, TX, on Feb. 17-20, 2015.

  13. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-01-21

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  14. Evaluating the Rationale for the Utility-Accessible External Disconnect Switch: Preprint

    SciTech Connect (OSTI)

    Coddington, M. H.

    2008-05-01

    This paper describes the utility-accessible alternating current (AC) external disconnect switch (EDS) for distributed generators, including photovoltaic (PV) systems, which is a hardware feature that allows a utility's employees to manually disconnect a customer-owned generator from the electricity grid.

  15. Distribution Integrity Management Plant (DIMP)

    SciTech Connect (OSTI)

    Gonzales, Jerome F.

    2012-05-07

    This document is the distribution integrity management plan (Plan) for the Los Alamos National Laboratory (LANL) Natural Gas Distribution System. This Plan meets the requirements of 49 CFR Part 192, Subpart P Distribution Integrity Management Programs (DIMP) for the LANL Natural Gas Distribution System. This Plan was developed by reviewing records and interviewing LANL personnel. The records consist of the design, construction, operation and maintenance for the LANL Natural Gas Distribution System. The records system for the LANL Natural Gas Distribution System is limited, so the majority of information is based on the judgment of LANL employees; the maintenance crew, the Corrosion Specialist and the Utilities and Infrastructure (UI) Civil Team Leader. The records used in this report are: Pipeline and Hazardous Materials Safety Administration (PHMSA) 7100.1-1, Report of Main and Service Line Inspection, Natural Gas Leak Survey, Gas Leak Response Report, Gas Leak and Repair Report, and Pipe-to-Soil Recordings. The specific elements of knowledge of the infrastructure used to evaluate each threat and prioritize risks are listed in Sections 6 and 7, Threat Evaluation and Risk Prioritization respectively. This Plan addresses additional information needed and a method for gaining that data over time through normal activities. The processes used for the initial assessment of Threat Evaluation and Risk Prioritization are the methods found in the Simple, Handy Risk-based Integrity Management Plan (SHRIMP{trademark}) software package developed by the American Pipeline and Gas Agency (APGA) Security and Integrity Foundation (SIF). SHRIMP{trademark} uses an index model developed by the consultants and advisors of the SIF. Threat assessment is performed using questions developed by the Gas Piping Technology Company (GPTC) as modified and added to by the SHRIMP{trademark} advisors. This Plan is required to be reviewed every 5 years to be continually refined and improved. Records

  16. Enhanced methanol utilization in direct methanol fuel cell

    DOE Patents [OSTI]

    Ren, Xiaoming; Gottesfeld, Shimshon

    2001-10-02

    The fuel utilization of a direct methanol fuel cell is enhanced for improved cell efficiency. Distribution plates at the anode and cathode of the fuel cell are configured to distribute reactants vertically and laterally uniformly over a catalyzed membrane surface of the fuel cell. A conductive sheet between the anode distribution plate and the anodic membrane surface forms a mass transport barrier to the methanol fuel that is large relative to a mass transport barrier for a gaseous hydrogen fuel cell. In a preferred embodiment, the distribution plate is a perforated corrugated sheet. The mass transport barrier may be conveniently increased by increasing the thickness of an anode conductive sheet adjacent the membrane surface of the fuel cell.

  17. Tribal Legal Code: Umpqua Indian Utility Cooperative

    Broader source: Energy.gov [DOE]

    Provides an example tribal utility legal code. Also includes an example tribal energy development vision statement.

  18. 7.4 Landfill Methane Utilization

    Office of Energy Efficiency and Renewable Energy (EERE)

    A chapter on Landfill Methane Utilization from the Clean Energy Strategies for Local Governments publication.

  19. Utility Sector Impacts of Reduced Electricity Demand

    SciTech Connect (OSTI)

    Coughlin, Katie

    2014-12-01

    This report presents a new approach to estimating the marginal utility sector impacts associated with electricity demand reductions. The method uses publicly available data and provides results in the form of time series of impact factors. The input data are taken from the Energy Information Agency's Annual Energy Outlook (AEO) projections of how the electric system might evolve in the reference case, and in a number of side cases that incorporate different effciency and other policy assumptions. The data published with the AEO are used to define quantitative relationships between demand-side electricity reductions by end use and supply-side changes to capacity by plant type, generation by fuel type and emissions of CO2, Hg, NOx and SO2. The impact factors define the change in each of these quantities per unit reduction in site electricity demand. We find that the relative variation in these impacts by end use is small, but the time variation can be significant.

  20. 2014 Non-Utility Power Producers- Revenue

    U.S. Energy Information Administration (EIA) Indexed Site

    Revenue (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 296 0 0 296 Constellation NewEnergy, Inc AZ Non_Utility 0 256 0 0 256 Constellation Solar Arizona LLC AZ Non_Utility 0 774 0 0 774 Main Street Power AZ Non_Utility 0 533 0 0 533 Main Street Power AZ Non_Utility 0 265 0 0 265 Main Street Power AZ Non_Utility 0 165 0 0 165 Solar Star Arizona II LLC AZ Non_Utility 0 638 0 0 638 Solar Star

  1. EIA - Coal Distribution

    Gasoline and Diesel Fuel Update (EIA)

    Annual Coal Distribution Report > Annual Coal Distribution Archives Annual Coal Distribution Archive Release Date: February 17, 2011 Next Release Date: December 2011 Domestic coal ...

  2. Siting guidelines for utility application of wind turbines. Final report

    SciTech Connect (OSTI)

    Pennell, W.T.

    1983-01-01

    Utility-oriented guidelines are described for identifying viable sites for wind turbines. Topics and procedures are also discussed that are important in carrying out a wind turbine siting program. These topics include: a description of the Department of Energy wind resource atlases; procedures for predicting wind turbine performance at potential sites; methods for analyzing wind turbine economics; procedures for estimating installation and maintenance costs; methods for anlayzing the distribution of wind resources over an area; and instrumentation for documenting wind behavior at potential sites. The procedure described is applicable to small and large utilities. Although the procedure was developed as a site-selection tool, it can also be used by a utility who wishes to estimate the potential for wind turbine penetration into its future generation mix.

  3. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  4. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    The U.S. Department of Energy (DOE) has teamed with cities across the country through the Solar America Cities (SAC) partnership program to help reduce barriers and accelerate implementation of solar energy. The New York City SAC team is a partnership between the City University of New York (CUNY), the New York City Mayor s Office of Long-term Planning and Sustainability, and the New York City Economic Development Corporation (NYCEDC).The New York City SAC team is working with DOE s National Renewable Energy Laboratory (NREL) and Con Edison, the local utility, to develop a roadmap for photovoltaic (PV) installations in the five boroughs. The city set a goal to increase its installed PV capacity from1.1 MW in 2005 to 8.1 MW by 2015 (the maximum allowed in 2005). A key barrier to reaching this goal, however, is the complexity of the interconnection process with the local utility. Unique challenges are associated with connecting distributed PV systems to secondary network distribution systems (simplified to ???¢????????networks???¢??????? in this report). Although most areas of the country use simpler radial distribution systems to distribute electricity, larger metropolitan areas like New York City typically use networks to increase reliability in large load centers. Unlike the radial distribution system, where each customer receives power through a single line, a network uses a grid of interconnected lines to deliver power to each customer through several parallel circuits and sources. This redundancy improves reliability, but it also requires more complicated coordination and protection schemes that can be disrupted by energy exported from distributed PV systems. Currently, Con Edison studies each potential PV system in New York City to evaluate the system s impact on the network, but this is time consuming for utility engineers and may delay the customer s project or add cost for larger installations. City leaders would like to streamline

  5. Cost and Quality of Fuels for Electric Utility Plants

    Gasoline and Diesel Fuel Update (EIA)

    1) Distribution Category UC-950 Cost and Quality of Fuels for Electric Utility Plants 2001 March 2004 Energy Information Administration Office of Coal, Nuclear, Electric and Alternate Fuels U.S. Department of Energy Washington DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the

  6. Inverter for interfacing advanced energy sources to a utility grid

    DOE Patents [OSTI]

    Steigerwald, Robert L.

    1984-01-01

    A transistor is operated in the PWM mode such that a hlaf sine wave of current is delivered first to one-half of a distribution transformer and then the other as determined by steering thyristors operated at the fundamental sinusoidal frequency. Power to the transistor is supplied by a dc source such as a solar array and the power is converted such that a sinusoidal current is injected into a utility at near unity power factor.

  7. Overview of the Distributed Generation Interconnection Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2013 Overview presentation for group call, 1:00-2:30EST 2 October 21,2013 NREL and EPRI facilitated workshop of electric utilities, PV developers, PUCs, and other stakeholders to discuss the formulation of a collaborative effort focused on distributed PV interconnection: - Data and informational gaps/needs - Persistent challenges - Replicable innovation - Informed decision making and planning for anticipated rise in distributed PV interconnection Based on stakeholder input and

  8. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  9. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests

  10. Development of an Integrated Distribution Management System

    SciTech Connect (OSTI)

    Schatz, Joe E.

    2010-10-20

    This final report details the components, functionality, costs, schedule and benefits of developing an Integrated Distribution Management System (IDMS) for power distribution system operation. The Distribution Automation (DA) and Supervisory Control and Data Acquisition (SCADA) systems used by electric power companies to manage the distribution of electric power to retail energy consumers are vital components of the Nation’s critical infrastructure. Providing electricity is an essential public service and a disruption in that service, if not quickly restored, could threaten the public safety and the Nation’s economic security. Our Nation’s economic prosperity and quality of life have long depended on the essential services that utilities provide; therefore, it is necessary to ensure that electric utilities are able to conduct their operations safely and efficiently. A fully integrated technology of applications is needed to link various remote sensing, communications and control devices with other information tools that help guide Power Distribution Operations personnel. A fully implemented IDMS will provide this, a seamlessly integrated set of applications to raise electric system operating intelligence. IDMS will enhance DA and SCADA through integration of applications such as Geographic Information Systems, Outage Management Systems, Switching Management and Analysis, Operator Training Simulator, and other Advanced Applications, including unbalanced load flow and fault isolation/service restoration. These apps are capable of utilizing and obtaining information from appropriately installed DER, and by integrating disparate systems, the Distribution Operators will benefit from advanced capabilities when analyzing, controlling and operating the electric system.

  11. Development and utilization strategies for recovery and utilization of coal mine methane

    SciTech Connect (OSTI)

    Byrer, C.W.; Layne, A.W.; Guthrie, H.D.

    1995-10-01

    The U.S. Department of Energy (DOE), at its Morgantown Energy Technology Center, has been involved in natural gas research since the 1970`s. DOE has assessed the potential of gas in coals throughout the U.S. and promoted research and development for recovery and use of methane found in minable and unminable coalbeds. DOE efforts have focused on the use of coal mine methane for regional economic gas self-sufficiency, energy parks, self-help initiatives, and small-power generation. This paper focuses on DOE`s past and present efforts to more effectively and efficiently recover and use this valuable domestic energy source. The Climate Change Action Plan (CCAP) (1) lists a series of 50 voluntary initiatives designed to reduce greenhouse gas emissions, such as methane from mining operations, to their 1990 levels. Action No. 36 of the CCAP expands the DOE research, development, and demonstration (RD&D) efforts to broaden the range of cost-effective technologies and practices for recovering methane associated with coal mining operations. The major thrust of Action No. 36 is to reduce methane emissions associated with coal mining operations from target year 2000 levels by 1.5 MMT of carbon equivalent. Crosscutting activities in the DOE Natural Gas Program supply the utilization sectors will address RD&D to reduce methane emissions released from various mining operations, focusing on recovery and end use technology systems to effectively drain, capture, and utilize the emitted gas. Pilot projects with industry partners will develop and test the most effective methods and technology systems for economic recovery and utilization of coal mine gas emissions in regions where industry considers efforts to be presently non-economic. These existing RD&D programs focus on near-term gas recovery and gathering systems, gas upgrading, and power generation.

  12. Public Utility Holding Company Act of 1935: 1935--1992

    SciTech Connect (OSTI)

    Not Available

    1993-01-15

    This report provides an economic and legislative history and analysis of the Public Utilities Holding Company Act (PUHCA) of 1935. This Act was substantially amended for the first time in 1992 by passage of the Energy Policy Act (EPACT). The report also includes a discussion of the issues which led to the amendment of PUHCA and projections of the impact of these changes on the electric industry. The report should be of use to Federal and State regulators, trade associations, electric utilities, independent power producers, as well as decision-makers in Congress and the Administration.

  13. A Multi Agent-Based Framework for Simulating Household PHEV Distribution and Electric Distribution Network Impact

    SciTech Connect (OSTI)

    Cui, Xiaohui; Liu, Cheng; Kim, Hoe Kyoung; Kao, Shih-Chieh; Tuttle, Mark A; Bhaduri, Budhendra L

    2011-01-01

    The variation of household attributes such as income, travel distance, age, household member, and education for different residential areas may generate different market penetration rates for plug-in hybrid electric vehicle (PHEV). Residential areas with higher PHEV ownership could increase peak electric demand locally and require utilities to upgrade the electric distribution infrastructure even though the capacity of the regional power grid is under-utilized. Estimating the future PHEV ownership distribution at the residential household level can help us understand the impact of PHEV fleet on power line congestion, transformer overload and other unforeseen problems at the local residential distribution network level. It can also help utilities manage the timing of recharging demand to maximize load factors and utilization of existing distribution resources. This paper presents a multi agent-based simulation framework for 1) modeling spatial distribution of PHEV ownership at local residential household level, 2) discovering PHEV hot zones where PHEV ownership may quickly increase in the near future, and 3) estimating the impacts of the increasing PHEV ownership on the local electric distribution network with different charging strategies. In this paper, we use Knox County, TN as a case study to show the simulation results of the agent-based model (ABM) framework. However, the framework can be easily applied to other local areas in the US.

  14. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  15. EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Helping Policymakers Evaluate Distributed Wind Options EERE Success Story-Helping Policymakers Evaluate Distributed Wind Options April 18, 2013 - 12:00am Addthis With EERE support, eFormative Options is helping policymakers, utilities, advocates, and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to generate their own clean electricity and cut

  16. Spectral utilization in thermophotovoltaic devices

    SciTech Connect (OSTI)

    Clevenger, M.B.; Murray, C.S.

    1997-12-31

    Multilayer assemblies of epitaxially-grown, III-V semiconductor materials are being investigated for use in thermophotovoltaic (TPV) energy conversion applications. It has been observed that thick, highly-doped semiconductor layers within cell architectures dominate the parasitic free-carrier absorption (FCA) of devices at wavelengths above the bandgap of the semiconductor material. In this work, the wavelength-dependent, free-carrier absorption of p- and n-type InGaAs layers grown epitaxially onto semi-insulating (SI) InP substrates has been measured and related to the total absorption of long-wavelength photons in thermophotovoltaic devices. The optical responses of the TPV cells are then used in the calculation of spectral utilization factors and device efficiencies.

  17. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  18. Economics of coal fines utilization

    SciTech Connect (OSTI)

    Hathi, V.; McHale, E.; Ramezan, M.; Winslow, J.

    1995-12-31

    In the twentieth century, coal has become the major fuel for electric power generation in the U.S. and most of the nonpetroleum-producing countries of the world. In 1998, the world coal-fired capacity for electric power generation was about 815 GW, consuming large quantities of coals of all ranks. Today, coal provides a third of the world`s energy requirements. In fact, coal use for power generation has grown steadily since the oil embargo in 1973 and has seen an even faster rate of growth in recent years. It has been reported that the global demand for new coal will increase by more than 1500 million tons by the year 2000. However, this increased production of coal has its drawbacks, including the concomitant production of coal waste. Reported estimates indicate that billions of tons of coal waste have already been disposed of in waste impoundments throughout the U.S. Further, in the U.S. today, about 20-25 % of each ton of mined coal is discarded by preparation plants as gob and plant tailings. It appears that the most economical near-term approach to coal waste recovery is to utilize the waste coal fines currently discarded with the refuse stream, rather than attempt to recover coal from waste impoundments that require careful prior evaluation and site preparation. A hypothetical circuit was designed to examine the economics of recovery and utilization of waste coal fines. The circuit recovers products from 100 tons per hour (tph) of coal waste feed recovering 70 tph of fine coal that can be used in coal-fired boilers. The present analysis indicates that the coal waste recovery is feasible and economical. In addition, significant environmental benefits can be expected.

  19. 2014 Non-Utility Power Producers- Customers

    U.S. Energy Information Administration (EIA) Indexed Site

    Customers (Data from form EIA-861U) Entity State Ownership Residential Commercial Industrial Transportation Total Constellation NewEnergy, Inc AZ Non_Utility 0 1 0 0 1 Constellation NewEnergy, Inc AZ Non_Utility 0 1 0 0 1 Constellation Solar Arizona LLC AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Main Street Power AZ Non_Utility 0 1 0 0 1 Solar Star Arizona II LLC AZ Non_Utility 0 1 0 0 1 Solar Star Arizona II LLC AZ Non_Utility

  20. Bethel Utilities Corp | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 EIA Form 861 Data Utility Id 1651 Utility Location Yes Ownership I...

  1. Knoxville Utilities Board | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 SGIC2 Energy Information Administration Form 8263 EIA Form 861 Data Utility Id 10421 Utility Location Yes Ownership M...

  2. Sacramento Municipal Utility District | Open Energy Information

    Open Energy Info (EERE)

    EIA Form EIA-861 Final Data File for 2010 - File1a1 Energy Information Administration Form 8262 SGIC3 EIA Form 861 Data Utility Id 16534 Utility Location Yes...

  3. La Porte City Utilities | Open Energy Information

    Open Energy Info (EERE)

    Porte City Utilities Jump to: navigation, search Name: La Porte City Utilities Place: Iowa Phone Number: (319)342-3139 or (319) 342-3160 Website: lpcia.comservices Facebook:...

  4. Page Electric Utility | Open Energy Information

    Open Energy Info (EERE)

    Page Electric Utility Jump to: navigation, search Name: Page Electric Utility Place: Arizona Phone Number: (928) 645-2419 Website: pageutility.com Outage Hotline: (928) 645-2419...

  5. Sustainable Business Models: Utilities and Efficiency Partnerships

    Broader source: Energy.gov [DOE]

    Residential Energy Efficiency Solutions Conference: Session 1 -– Sustainable Business Models: Utilities and Efficiency Partnerships, July 10, 2012. Provides an overview and lessons learned on Energize Phoenix's utility partnership.

  6. Orlando Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Orlando Utilities Comm Jump to: navigation, search Name: Orlando Utilities Comm Place: Florida Phone Number: 407.423.9018 or 407.957.7373 Website: www.ouc.com Twitter: https:...

  7. Utility Energy Service Contracts for Federal Agencies

    Broader source: Energy.gov [DOE]

    Utility Energy Service Contracts (UESCs) allow federal agencies to take advantage of energy management services offered by their serving utilities including energy- and water-efficiency improvements, renewable energy, and demand-reduction.

  8. Fort Pierce Utilities Auth | Open Energy Information

    Open Energy Info (EERE)

    Utilities Auth Jump to: navigation, search Name: Fort Pierce Utilities Auth Place: Florida Phone Number: (772) 466-1600 Website: www.fpua.com Outage Hotline: (772) 466-1600...

  9. Federal Utility Partnership Working Group Seminar

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Partnership Working Group Seminar Jim Henning - President, Duke Energy Ohio & Kentucky 3 Creative Collaborations Federal Utility Partnership Working Group Seminar Jim Henning - President, Duke Energy Ohio & Kentucky

  10. Inter-Tribal Utility Forum and Gathering

    Broader source: Energy.gov [DOE]

    Hosted by the Rosebud Sioux Tribal Utility Commission, the second annual Inter-Tribal Utility Forum and Gathering will cover "Foundations for Tribal Energy Development." Attendees will hear about tribal renewable energy projects, project development, and more.

  11. Category:Utility Rates | Open Energy Information

    Open Energy Info (EERE)

    Rates Jump to: navigation, search Add a new Utility Rate This category currently contains no pages or media. Retrieved from "http:en.openei.orgwindex.php?titleCategory:Utility...

  12. U.S. Refining Capacity Utilization

    Reports and Publications (EIA)

    1995-01-01

    This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

  13. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...

  14. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: DOE Type Term Title Author Replies Last Post sort icon Blog entry DOE...

  15. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Utility Rate Home > Groups > Groups > Utility Rate Content Group Activity By term Q & A Feeds There are no feeds from external sites for this group. Groups Menu You must login in...

  16. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: API Type Term Title Author Replies Last Post sort icon Blog entry API...

  17. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EZFeed Type Term Title Author Replies Last Post sort icon Blog entry...

  18. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Database Type Term Title Author Replies Last Post sort icon Blog entry...

  19. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: bug Type Term Title Author Replies Last Post sort icon Discussion bug...

  20. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: energy efficiency Type Term Title Author Replies Last Post sort icon...

  1. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: clean energy Type Term Title Author Replies Last Post sort icon Blog...

  2. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: datasets Type Term Title Author Replies Last Post sort icon Blog entry...

  3. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: FOA Type Term Title Author Replies Last Post sort icon Blog entry FOA...

  4. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Illinois State University Type Term Title Author Replies Last Post sort...

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load Type Term Title Author Replies Last Post sort icon Blog...

  6. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: building load data Type Term Title Author Replies Last Post sort icon...

  7. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: dataset Type Term Title Author Replies Last Post sort icon Blog entry...

  8. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: Energy Visions Prize Type Term Title Author Replies Last Post sort icon...

  9. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: funding Type Term Title Author Replies Last Post sort icon Blog entry...

  10. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: EIA Type Term Title Author Replies Last Post sort icon Blog entry EIA...

  11. CXD 4602, 9744 Utility Isolations Project (4602)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9744 Utility Isolations Project (4602) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to perform utility isolations, re-route of the fire systems,...

  12. Utility Infrastructure Improvements Using GSA Areawide Contract

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2013 Federal Utility Partnership Working Group (FUPWG) meeting—covers the General Services Administration's (GSA's) authority for utility services, including area-wide services and the Green Button initiative.

  13. Hawley Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Hawley Public Utilities Comm Jump to: navigation, search Name: Hawley Public Utilities Comm Place: Minnesota Phone Number: 218-483-3331 or 701-361-8219 or 701-361-4803 Website:...

  14. Sylacauga Utilities Board | Open Energy Information

    Open Energy Info (EERE)

    Sylacauga Utilities Board Jump to: navigation, search Name: Sylacauga Utilities Board Place: Alabama Phone Number: (256) 249-8501 or (256) 249-0372 Website: www.sylacauga.net...

  15. Adrian Public Utilities Comm | Open Energy Information

    Open Energy Info (EERE)

    Adrian Public Utilities Comm Jump to: navigation, search Name: Adrian Public Utilities Comm Address: 20 Maine Ave Place: Adrian, MN Zip: 56110 Phone Number: 507-483-2680 Website:...

  16. Foley Board of Utilities | Open Energy Information

    Open Energy Info (EERE)

    Foley Board of Utilities Jump to: navigation, search Name: Foley Board of Utilities Place: Alabama Phone Number: Foley: 251-943-5001 or Daphne: 251-626-5000 Website:...

  17. Atmautluak Tribal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Atmautluak Tribal Utilities Jump to: navigation, search Name: Atmautluak Tribal Utilities Place: Alaska Phone Number: 1-907-553-5429 Outage Hotline: 1-907-553-5429 References: EIA...

  18. Kenyon Municipal Utilities | Open Energy Information

    Open Energy Info (EERE)

    Kenyon Municipal Utilities Jump to: navigation, search Name: Kenyon Municipal Utilities Place: Minnesota References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  19. Federal Utility Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01

    Fact sheet overview of the U.S. Department of Energy (DOE) Federal Energy Management Program's (FEMP) Federal Utility Program, including common contracts and services available to Federal agencies through local serving utilities.

  20. PROJECT PROFILE: UtilityAPI (Incubator 10)

    Broader source: Energy.gov [DOE]

    UtilityAPI is automating the process of authorizing, collecting, and cleaning electricity data from utilities. Access to standardized data means a larger sales funnel, a frictionless customer journey, and easy data verification for financing for solar.