Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Thermoelectric heat exchange element  

DOE Patents [OSTI]

A thermoelectric heat exchange module includes a first substrate including a heat receptive side and a heat donative side and a series of undulatory pleats. The module may also include a thermoelectric material layer having a ZT value of 1.0 or more disposed on at least one of the heat receptive side and the heat donative side, and an electrical contact may be in electrical communication with the thermoelectric material layer.

Callas, James J. (Peoria, IL); Taher, Mahmoud A. (Peoria, IL)

2007-08-14T23:59:59.000Z

2

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

3

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

4

High Heat Flux Thermoelectric Module Using Standard Bulk Material...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Heat Flux Thermoelectric Module Using Standard Bulk Material High Heat Flux Thermoelectric Module Using Standard Bulk Material Presents high heat flux thermoelectric module design...

5

Energy Efficient HVAC System for Distributed Cooling/Heating...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric Devices 2012 DOE...

6

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...

7

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Development of Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat...

8

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines Discusses a novel TEG which utilizes a...

9

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity Presents successful...

10

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

11

An Overview of Thermoelectric Waste Heat Recovery Activities...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An Overview of Thermoelectric Waste Heat Recovery Activities in Europe An overview presentation of R&D...

12

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

truck system. schock.pdf More Documents & Publications Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste...

13

Combustion Exhaust Gas Heat to Power usingThermoelectric Engines...  

Broader source: Energy.gov (indexed) [DOE]

Solutions Combustion Exhaust Gas Heat to Power using Thermoelectric Engines John LaGrandeur October 5, 2011 Advanced Thermoelectric Solutions - 1 - Market motivation based on CO 2...

14

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by the Application of Advanced Thermoelectric Systems Implemented in a Hybrid Configuration Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle...

15

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on a OTR truck schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

16

Thermoelectric recovery of waste heat -- Case studies  

SciTech Connect (OSTI)

The use of waste heat as an energy source for thermoelectric generation largely removes the constraint for the wide scale application of this technology imposed by its relatively low conversion efficiency (typically about 5%). Paradoxically, in some parasitic applications, a low conversion efficiency can be viewed as a distinct advantage. However, commercially available thermoelectric modules are designed primarily for refrigerating applications and are less reliable when operated at elevated temperatures. Consequently, a major factor which determines the economic competitiveness of thermoelectric recovery of waste heat is the cost per watt divided by the mean-time between module failures. In this paper is reported the development of a waste, warm water powered thermoelectric generator, one target in a NEDO sponsored project to economically recover waste heat. As an application of this technology case studies are considered in which thermoelectric generators are operated in both active and parasitic modes to generate electrical power for a central heating system. It is concluded that, in applications when the supply of heat essentially is free as with waste heat, thermoelectrics can compete economically with conventional methods of electrical power generation. Also, in this situation, and when the generating system is operated in a parasitic mode, conversion efficiency is not an important consideration.

Rowe, M.D.; Min, G.; Williams, S.G.K.; Aoune, A. [Cardiff School of Engineering (United Kingdom). Div. of Electronic Engineering; Matsuura, Kenji [Osaka Univ., Suita, Osaka (Japan). Dept. of Electrical Engineering; Kuznetsov, V.L. [Ioffe Physical-Technical Inst., St. Petersburg (Russian Federation); Fu, L.W. [Tsinghua Univ., Beijing (China). Microelectronics Inst.

1997-12-31T23:59:59.000Z

17

Recovering Industrial Waste Heat by the Means of Thermoelectricity  

E-Print Network [OSTI]

Recovering Industrial Waste Heat by the Means of Thermoelectricity Spring 2010 Department available thermoelectric modules and to build a thermoelectric power generator demonstration unit dependent. A calorimeter has been used to measure the heat supplied by a thermoelectric module #12;(operated

Kjelstrup, Signe

18

Why Blow Away Heat? Harvest Server's Heat Using Ther-moelectric Generators  

E-Print Network [OSTI]

Why Blow Away Heat? Harvest Server's Heat Using Ther- moelectric Generators Ted Tsung-Te Lai, Wei ABSTRACT This paper argues for harvesting energy from servers' wasted heat in data centers. Our approach is to distribute a large number of thermoelectric generators (TEGs) on or nearby server hotspot components whose

Huang, Polly

19

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technology for Automotive Waste Heat Recovery Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power...

20

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Program for Passenger Vehicles Thermoelectric Waste Heat Recovery Program for Passenger Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Presentation from the...

22

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

be 500 oC deer09schock.pdf More Documents & Publications Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of...

23

Thermoelectrics Partnership: High Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Performance Thermoelectric Waste Heat Recovery System Based on Zintl Phase Materials with Embedded Nanoparticles Thermoelectrics Partnership: High Performance Thermoelectric...

24

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

25

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

26

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology… (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

27

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites...

28

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2006deerschock.pdf More Documents & Publications Thermoelectrici Conversion of Waste Heat to Electricity in an IC Engine-Powered Vehicle Development of Thermoelectric...

29

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation 2005 Diesel Engine...

30

Silicon-Based Thermoelectrics: Harvesting Low Quality Heat Using Economically Printed Flexible Nanostructured Stacked Thermoelectric Junctions  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: UIUC is experimenting with silicon-based materials to develop flexible thermoelectric devices—which convert heat into energy—that can be mass-produced at low cost. A thermoelectric device, which resembles a computer chip, creates electricity when a different temperature is applied to each of its sides. Existing commercial thermoelectric devices contain the element tellurium, which limits production levels because tellurium has become increasingly rare. UIUC is replacing this material with microscopic silicon wires that are considerably cheaper and could be equally effective. Improvements in thermoelectric device production could return enough wasted heat to add up to 23% to our current annual electricity production.

None

2010-03-01T23:59:59.000Z

31

Thermoelectric Conversion of Wate Heat to Electricity in an IC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wate Heat to Electricity in an IC Engine Powered Vehicle Thermoelectric Conversion of Wate Heat to Electricity in an IC Engine Powered Vehicle Presentation given at the 16th...

32

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery Development for commercialization of...

33

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

34

Heat Transfer in Thermoelectric Materials and Devices  

E-Print Network [OSTI]

Solid-state thermoelectric devices are currently used in applications ranging from thermocouple sensors to power generators in space missions, to portable air-conditioners and refrigerators. With the ever-rising demand ...

Tian, Zhiting

35

From Heat to Electricity: How "nano" Saved Thermoelectrics  

E-Print Network [OSTI]

· Utilities · Chemical plants Space power Remote Power Generation Solar energy Geothermal power generationFrom Heat to Electricity: How "nano" Saved Thermoelectrics Sponsored by Mercouri Kanatzidis brittle materials strong Conclusions #12;Heat to Electrical Energy Directly Up to 20% conversion

Kanatzidis, Mercouri G

36

Effect of Heat Exchanger Material and Fouling on Thermoelectric Exhaust Heat Recovery  

SciTech Connect (OSTI)

This study is conducted in an effort to better understand and improve the performance of thermoelectric heat recovery systems for automotive use. For this purpose an experimental investigation of thermoelectrics in contact with clean and fouled heat exchangers of different materials is performed. The thermoelectric devices are tested on a bench-scale thermoelectric heat recovery apparatus that simulates automotive exhaust. The thermoelectric apparatus consists of a series of thermoelectric generators contacting a hot-side and a cold-side heat exchanger. The thermoelectric devices are tested with two different hot-side heat exchanger materials, stainless steel and aluminum, and at a range of simulated exhaust gas flowrates (40 to 150 slpm), exhaust gas temperatures (240 C and 280 C), and coolant-side temperatures (40 C and 80 C). It is observed that for higher exhaust gas flowrates, thermoelectric power output increases while overall system efficiency decreases. Degradation of the effectiveness of the EGR-type heat exchangers over a period of driving is also simulated by exposing the heat exchangers to diesel engine exhaust under thermophoretic conditions to form a deposit layer. For the fouled EGR-type heat exchangers, power output and system efficiency is observed to be significantly lower for all conditions tested. The study found, however, that heat exchanger material is the dominant factor in the ability of the system to convert heat to electricity with thermoelectric generators. This finding is thought to be unique to the heat exchangers used for this study, and not a universal trend for all system configurations.

Love, Norman [University of Texas, El Paso; Szybist, James P [ORNL; Sluder, Scott [ORNL

2011-01-01T23:59:59.000Z

37

An integrated approach towards efficient, scalable, and low cost thermoelectric waste heat recovery devices for vehicles  

Broader source: Energy.gov [DOE]

Efficient, scalable, and low cost vehicular thermoelectric generators development will include rapid synthesis of thermoelectric materials, different device geometries, heat sink designs, and durability and long-term performance tests

38

Improving Energy Efficiency by Developing Components for Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC Energy Efficient HVAC System for Distributed CoolingHeating with Thermoelectric...

39

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications  

Broader source: Energy.gov [DOE]

Progress in reliable high temperature segmented thermoelectric devices and potential for producing electricity from waste heat from energy intensive industrial processes and transportation vehicles exhaust are discussed

40

Feasibility of Thermoelectrics for Waste Heat Recovery in Conventional Vehicles  

SciTech Connect (OSTI)

Thermoelectric (TE) generators convert heat directly into electricity when a temperature gradient is applied across junctions of two dissimilar metals. The devices could increase the fuel economy of conventional vehicles by recapturing part of the waste heat from engine exhaust and generating electricity to power accessory loads. A simple vehicle and engine waste heat model showed that a Class 8 truck presents the least challenging requirements for TE system efficiency, mass, and cost; these trucks have a fairly high amount of exhaust waste heat, have low mass sensitivity, and travel many miles per year. These factors help maximize fuel savings and economic benefits. A driving/duty cycle analysis shows strong sensitivity of waste heat, and thus TE system electrical output, to vehicle speed and driving cycle. With a typical alternator, a TE system could allow electrification of 8%-15% of a Class 8 truck's accessories for 2%-3% fuel savings. More research should reduce system cost and improve economics.

Smith, K.; Thornton, M.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg  

E-Print Network [OSTI]

On thermoelectric power conversion from heat re-circulating combustion systems F. J. Weinberg for the Second Law heat engine cycles the maximum power that can be extracted is independent of layout Fax: 4420 7594 5604 Word count: 3750 Diags. equivalent: 1600 5350 #12;On thermoelectric power

42

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network [OSTI]

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

43

Advanced Thermoelectric Materials for Efficient Waste Heat Recovery in Process Industries  

SciTech Connect (OSTI)

The overall objective of the project was to integrate advanced thermoelectric materials into a power generation device that could convert waste heat from an industrial process to electricity with an efficiency approaching 20%. Advanced thermoelectric materials were developed with figure-of-merit ZT of 1.5 at 275 degrees C. These materials were not successfully integrated into a power generation device. However, waste heat recovery was demonstrated from an industrial process (the combustion exhaust gas stream of an oxyfuel-fired flat glass melting furnace) using a commercially available (5% efficiency) thermoelectric generator coupled to a heat pipe. It was concluded that significant improvements both in thermoelectric material figure-of-merit and in cost-effective methods for capturing heat would be required to make thermoelectric waste heat recovery viable for widespread industrial application.

Adam Polcyn; Moe Khaleel

2009-01-06T23:59:59.000Z

44

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue… (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

45

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams  

E-Print Network [OSTI]

An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

46

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents [OSTI]

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

47

Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint  

SciTech Connect (OSTI)

Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

Smith, K.; Thornton, M.

2007-12-01T23:59:59.000Z

48

Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov [DOE]

Presentation given by GenTherm at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about thermoelectric waste heat recovery...

49

ON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING AND EXPERIMENT  

E-Print Network [OSTI]

current densities. As a #12;rst step towards the design of an actuator, a thermoelectric module. Semiconductorshave been used for localized cooling, employing the thermoelectricPeltier eect. DependingON THE ROLE OF THERMOELECTRIC HEAT TRANSFER IN THE DESIGN OF SMA ACTUATORS: THEORETICAL MODELING

50

Improving Energy Efficiency by Developing Components for Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Modeling Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE)...

51

Improving Energy Efficiency by Developing Components for Distributed...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric (TE) HVAC Improving Energy Efficiency by Developing Components for Distributed Cooling and Heating Based on Thermal Comfort Modeling Thermoelectric (TE) HVAC...

52

Develop Thermoelectric Technology for Automotive Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Engineering and Materials for Automotive Thermoelectric Applications Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical...

53

NSF/DOE Thermoelectrics Partnership: Thermoelectrics for Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Development for commercialization of automotive thermoelectric generators from high-ZT TE materials with using low-cost, widely available materials, system design and modeling to maximize temperature differential across TE modules and maximize power output

54

Development of High-efficiency Thermoelectric Materials for Vehicle Waste Heat Utililization  

SciTech Connect (OSTI)

The goals of this . CRADA are: 1) Investigation of atomistic structure and nucleation of nanoprecipitates in (PbTe){sub I-x}(AgSbTe2){sub x} (LAST) system; and 2) Development of non-equilibrium synthesis of thermoelectric materials for waste heat recovery. We have made significant accomplishment in both areas. We studied the structure of LAST materials using high resolution imaging, nanoelectron diffraction, energy dispersive spectrum, arid electron energy loss spectrum, and observed a range of nanoparticles The results, published in J. of Applied Physics, provide quantitative structure information about nanoparticles, that is essential for the understanding of the origin of the high thermoelectric performance in this class of materials. We coordinated non-equilibrium synthesis and characterization of thermoelectric materials for waste heat recovery application. Our results, published in J. of Electronic Materials, show enhanced thermoelectric figure of merit and robust mechanical properties in bulk . filled skutterudites.

Li, Qiang

2009-04-30T23:59:59.000Z

55

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2005-03-03T23:59:59.000Z

56

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-05-10T23:59:59.000Z

57

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices.

Saeid Ghamaty; Sal Marchetti

2004-07-30T23:59:59.000Z

58

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents [OSTI]

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

59

Thermoelectric Generators 1. Thermoelectric generator  

E-Print Network [OSTI]

. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 on the direction of current and material [3]. This is called the Thomson effect (or Thomson heat). These three

Lee, Ho Sung

60

The preliminary design of thermoelectric generation system using the fluid heat sources  

SciTech Connect (OSTI)

This paper describes the preliminary design of a thermoelectric generation system using the fluid heat sources available as the waste heat of the phosphoric acid fuel cells. The thermoelectric generator consists of many thermoelectric generation units. For estimating the output performance of the thermoelectric generator, an equilibrium thermal circuit was derived from an analytic model of a thermoelectric generation unit. Based on the equivalent thermal circuit, the output performance at thermal equilibrium was calculated by iteration. In this paper, the output performance was estimated considering the cold side pumping power. The calculation was done by assuming a heat source temperature of about 450K on the hot side, about 310 K on the cold side, and 2,000kWth as heat exchange capacity. The electric power of the generator with a size of 1.5 x 1.5 x 1.4 (h) m{sup 3} was found to be about 70 kW and its power density, about 1.5 kW/m{sup 2} excepting the pumping power on the cold water side.

Hori, Y.; Ito, T. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

1995-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2004-01-01T23:59:59.000Z

62

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2006-02-01T23:59:59.000Z

63

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2006-03-31T23:59:59.000Z

64

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-05-01T23:59:59.000Z

65

QUANTUM WELL THERMOELECTRICS FOR CONVERTING WASTE HEAT TO ELECTRICITY  

SciTech Connect (OSTI)

New thermoelectric materials using Quantum Well (QW) technology are expected to increase the energy conversion efficiency to more than 25% from the present 5%, which will allow for the low cost conversion of waste heat into electricity. Hi-Z Technology, Inc. has been developing QW technology over the past six years. It will use Caterpillar, Inc., a leader in the manufacture of large scale industrial equipment, for verification and life testing of the QW films and modules. Other members of the team are Pacific Northwest National Laboratory, who will sputter large area QW films. The Scope of Work is to develop QW materials from their present proof-of-principle technology status to a pre-production level over a proposed three year period. This work will entail fabricating the QW films through a sputtering process of 50 {micro}m thick multi layered films and depositing them on 12 inch diameter, 5 {micro}m thick Si substrates. The goal in this project is to produce the technology for fabricating a basic 10-20 watt module that can be used to build up any size generator such as: a 5-10 kW Auxiliary Power Unit (APU), a multi kW Waste Heat Recovery Generator (WHRG) for a class 8 truck or as small as a 10-20 watt unit that would fit on a daily used wood fired stove and allow some of the estimated 2-3 billion people on earth, who have no electricity, to recharge batteries (such as a cell phone) or directly power radios, TVs, computers and other low powered devices. In this quarter Hi-Z has continued fabrication of the QW films and also continued development of joining techniques for fabricating the N and P legs into a couple. The upper operating temperature limit for these films is unknown and will be determined via the isothermal aging studies that are in progress. We are reporting on these studies in this report. The properties of the QW films that are being evaluated are Seebeck, thermal conductivity and thermal-to-electricity conversion efficiency.

Saeid Ghamaty

2005-07-01T23:59:59.000Z

66

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting Device  

E-Print Network [OSTI]

A Study of Heat Sink Performance in Air and Soil for Use in a Thermoelectric Energy Harvesting of a thermoelectric generator is to exploit the natural temperature difference between the air and the soil to generate small amounts of electrical energy. Since the conversion efficiency of even the best

67

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network [OSTI]

G. P. , Thermoelectric Generators for Automotive Waste Heatinto thermoelectric generators for waste heat recovery inThermoelectric Materials and Generator Technology for Automotive Waste Heat

Favaloro, Tela

2014-01-01T23:59:59.000Z

68

NSF/DOE Thermoelectics Partnership: Thermoelectrics for Automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste Heat Recovery 2011 DOE...

69

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect (OSTI)

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

70

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

71

Quantum Well Thermoelectrics for Converting Waste Heat to Electricity  

SciTech Connect (OSTI)

Fabrication development of high efficiency quantum well (QW) thermoelectric continues with the P-type and N-type Si/Si{sub 80}Ge{sub 20} films with encouraging results. These films are fabricated on Si substrates and are being developed for low as well as high temperature operation. Both isothermal and gradient life testing are underway. One couple has achieved over 4000 hours at T{sub H} of 300 C and T{sub C} of 50 C with little or no degradation. Emphasis is now shifting towards couple and module design and fabrication, especially low resistance joining between N and P legs. These modules can be used in future energy conversion systems as well as for air conditioning.

Saeid Ghamaty

2007-04-01T23:59:59.000Z

72

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable...  

Broader source: Energy.gov (indexed) [DOE]

Generator (Waste Heat 1) - TEG 1 (preliminary assembly and testing) - TEG 2 (Bi-Te modules) - TEG 3 (Skutterudite and Bi-Te modules) * Develop Cost-Effective TEG (Waste Heat...

73

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging,...

74

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Overview and status of project to develop...

75

Development of Thermoelectric Technology for Automotive Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Technology for Automotive Waste Heat Recovery Development of Thermoelectric Technology for Automotive Waste Heat Recovery Presentation from the U.S. DOE Office of...

76

Advanced Thermoelectric Materials and Generator Technology for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

77

Vehicle Technologies Office Merit Review 2014: Thermoelectric...  

Broader source: Energy.gov (indexed) [DOE]

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Vehicle Technologies Office Merit Review 2014: Thermoelectric Waste Heat Recovery Program for Passenger Vehicles...

78

A continuum theory of thermoelectric bodies and effective properties of thermoelectric composites  

E-Print Network [OSTI]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.3 A constitutive model for thermoelectric materials . . . . . . . . . . . . . . . . . . . . 6 2 composites. 1 Introduction Thermoelectric (TE) materials directly convert heat into electric energyA continuum theory of thermoelectric bodies and effective properties of thermoelectric composites

Liu, Liping

79

Potential of Thermoelectrics forOccupant Comfort and Fuel Efficiency...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Documents & Publications Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery Caterpillar Diesel Racing: Yesterday & Today Thermoelectric Conversion of...

80

Enhancing Heat Recovery for Thermoelectric Devices | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPCof Energy 12,Materials | Department ofDepartment ofHeat

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network [OSTI]

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

82

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree PipkinsSuperIntegrated

83

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesiree

84

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe10IO1OP001Long-Term StorageDepartmentSystem for Light-Duty

85

Development of Marine Thermoelectric Heat Recovery Systems | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602 -Energy Discusses benefits

86

Development of Marine Thermoelectric Heat Recovery Systems | Department of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMD 602 -Energy Discusses

87

Development of Thermoelectric Technology for Automotive Waste Heat Recovery  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy Duty Trucks |2| Department of

88

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1 DOE

89

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy 1

90

Develop Thermoelectric Technology for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent Company AgreesDesireeDepartment of Energy

91

High Heat Flux Thermoelectric Module Using Standard Bulk Material |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii CleanHeatinHigh Efficiency|Fuel

92

Proceedings of the sixth international conference on thermoelectric energy conversion  

SciTech Connect (OSTI)

This book presents the papers given at a conference on thermoelectric energy conversion. Topics considered at the conference included thermoelectric materials, the computer calculation of thermoelectric properties, the performance of crss-flow thermoelectric liquid coolers, thermoelectric cooler performance corrections for soft heat sinks, heat exchange in a thermoelectric cooling system, the optimal efficiency of a solar pond and thermoelectric generator system, and thermoelectric generation utilizing industrial waste heat as an energy source.

Rao, K.R.

1986-01-01T23:59:59.000Z

93

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situtations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others or to reduce the number of heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures is predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Natural convective loops that can occur in buildings are described and a few design guidelines are presented.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

94

WASTE HEAT RECOVERY USING THERMOELECTRIC DEVICES IN THE LIGHT METALS INDUSTRY  

SciTech Connect (OSTI)

Recently discovered thermoelectric materials and associated manufacturing techniques (nanostructures, thin-film super lattice, quantum wells...) have been characterized with thermal to electric energy conversion efficiencies of 12-25+%. These advances allow the manufacture of small-area, high-energy flux (350 W/cm2 input) thermoelectric generating (TEG) devices that operate at high temperatures (~750°C). TEG technology offers the potential for large-scale conversion of waste heat from the exhaust gases of electrolytic cells (e.g., Hall-Hèroult cells) and from aluminum, magnesium, metal and glass melting furnaces. This paper provides an analysis of the potential energy recovery and of the engineering issues that are expected when integrating TEG systems into existing manufacturing processes. The TEG module must be engineered for low-cost, easy insertion and simple operation in order to be incorporated into existing manufacturing operations. Heat transfer on both the hot and cold-side of these devices will require new materials, surface treatments and design concepts for their efficient operation.

Choate, William T.; Hendricks, Terry J.; Majumdar, Rajita

2007-05-01T23:59:59.000Z

95

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solution for Automotive Thermoelectric Modules Application Thermoelectrics Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces...

96

Nanostructured High Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste Heat Recovery Nanostructured High Temperature Bulk Thermoelectric Energy Conversion for Efficient Waste...

97

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

98

Heat distribution by natural convection  

SciTech Connect (OSTI)

Natural convection can provide adequate heat distribution in many situations that arise in buildings. This is appropriate, for example, in passive solar buildings where some rooms tend to be more strongly solar heated than others. Natural convection can also be used to reduce the number of auxiliary heating units required in a building. Natural airflow and heat transport through doorways and other internal building apertures are predictable and can be accounted for in the design. The nature of natural convection is described, and a design chart is presented appropriate to a simple, single-doorway situation. Experimental results are summarized based on the monitoring of 15 passive solar buildings which employ a wide variety of geometrical configurations including natural convective loops.

Balcomb, J.D.

1985-01-01T23:59:59.000Z

99

Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator Programs  

SciTech Connect (OSTI)

The purpose of this document is to serve as the Quality Assurance Plan for Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) programs performed at EG&G Mound Applied Technologies. As such, it identifies and describes the systems and activities in place to support the requirements contained in DOE Order 5700.6C as reflected in MD-10334, Mound Quality Policy and Responsibilities and the DOE/RPSD supplement, OSA/PQAR-1, Programmatic Quality Assurance Requirements for Space and Terrestrial Nuclear Power Systems. Unique program requirements, including additions, modifications, and exceptions to these quality requirements, are contained in the appendices of this plan. Additional appendices will be added as new programs and activities are added to Mound's HS/RTG mission assignment.

Gabriel, D. M.; Miller, G. D.; Bohne, W. A.

1995-03-16T23:59:59.000Z

100

Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container  

SciTech Connect (OSTI)

The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

Bronowski, D.R.; Madsen, M.M.

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Recent Progress in the Development of High Efficiency Thermoelectrics...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power Generation Quantum Well Thermoelectrics and Waste Heat Recovery Scale Up of Si...

102

Thermoelectrics: From Space Power Systems to Terrestrial Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat Recovery Applications...

103

Status of Segmented Element Thermoelectric Generator for Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery Discusses progress...

104

Low and high Temperature Dual Thermoelectric Generation Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles Low and high Temperature Dual Thermoelectric Generation Waste Heat...

105

Multi-physics modeling of thermoelectric generators for waste...  

Broader source: Energy.gov (indexed) [DOE]

Multi-physics modeling of thermoelectric generators for waste heat recovery applications Multi-physics modeling of thermoelectric generators for waste heat recovery applications...

106

General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

1996-07-01T23:59:59.000Z

107

General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect (OSTI)

The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1996-11-01T23:59:59.000Z

108

Program Final Report - Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

SciTech Connect (OSTI)

We conducted a vehicle analysis to assess the feasibility of thermoelectric technology for waste heat recovery and conversion to useful electrical power and found that eliminating the 500 W of electrical power generated by the alternator corresponded to about a 7% increase in fuel economy (FE) for a small car and about 6% for a full size truck. Electric power targets of 300 W were established for city and highway driving cycles for this project. We obtained critical vehicle level information for these driving cycles that enabled a high-level design and performance analysis of radiator and exhaust gas thermoelectric subsystems for several potential vehicle platforms, and we identified the location and geometric envelopes of the radiator and exhaust gas thermoelectric subsystems. Based on this analysis, we selected the Chevrolet Suburban as the most suitable demonstration vehicle for this project. Our modeling and thermal analysis assessment of a radiator-based thermoelectric generator (TEG), however, revealed severe practical limitations. Specifically the small temperature difference of 100°C or less between the engine coolant and ambient air results in a low Carnot conversion efficiency, and thermal resistance associated with air convection would reduce this conversion efficiency even further. We therefore decided not to pursue a radiator-based waste heat recovery system and focused only on the exhaust gas. Our overall approach was to combine science and engineering: (1) existing and newly developed TE materials were carefully selected and characterized by the material researcher members of our team, and most of the material property results were validated by our research partners, and (2) system engineers worked closely with vehicle engineers to ensure that accurate vehicle-level information was used for developing subsystem models and designs, and the subsystem output was analyzed for potential fuel economy gains. We incorporated material, module, subsystem, and integration costs into the material selection criteria in order to balance various materials, module and subsystem design, and vehicle integration options. Our work on advanced TE materials development and on TEG system design, assembly, vehicle integration, and testing proceeded in parallel efforts. Results from our two preliminary prototype TEGs using only Bi-Te TE modules allowed us to solve various mechanical challenges and to finalize and fine tune aspects of the design and implementation. Our materials research effort led us to quickly abandon work on PbTe and focus on the skutterudite materials due to their superior mechanical performance and suitability at automotive exhaust gas operating temperatures. We synthesized a sufficiently large quantity of skutterudite material for module fabrication for our third and final prototype. Our TEG#3 is the first of its kind to contain state-of-the-art skutterudite-based TE modules to be installed and tested on a production vehicle. The design, which consisted of 24 skutterudite modules and 18 Bi-Te modules, attempted to optimize electrical power generation by using these two kinds of TE modules that have their peak performance temperatures matched to the actual temperature profile of the TEG during operation. The performance of TEG#3 was limited by the maximum temperature allowable for the Bi-Te TE modules located in the colder end of the TEG, resulting in the operating temperature for the skutterudite modules to be considerably below optimum. We measured the power output for (1) the complete TEG (25 Watts) and (2) an individual TE module series string (1/3 of the TEG) operated at a 60°C higher temperature (19 Watts). We estimate that under optimum operating temperature conditions, TEG#3 will generate about 235 Watts. With additional improvements in thermal and electrical interfaces, temperature homogeneity, and power conditioning, we estimate TEG#3 could deliver a power output of about 425 Watts.

Gregory Meisner

2011-08-31T23:59:59.000Z

109

Advanced Soldier Thermoelectric Power System for Power Generation from Battlefield Heat Sources  

SciTech Connect (OSTI)

The U.S. military uses large amounts of fuel during deployments and battlefield operations. This project sought to develop a lightweight, small form-factor, soldier-portable advanced thermoelectric (TE) system prototype to recover and convert waste heat from various deployed military equipment (i.e., diesel generators/engines, incinerators, vehicles, and potentially mobile kitchens), with the ultimate purpose of producing power for soldier battery charging, advanced capacitor charging, and other battlefield power applications. The technical approach employed microchannel technology, a unique “power panel” approach to heat exchange/TE system integration, and newly-characterized LAST (lead-antimony-silver-telluride) and LASTT (lead-antimony-silver-tin-telluride) TE materials segmented with bismuth telluride TE materials in designing a segmented-element TE power module and system. This project researched never-before-addressed system integration challenges (thermal expansion, thermal diffusion, electrical interconnection, thermal and electrical interfaces) of designing thin “power panels” consisting of alternating layers of thin, microchannel heat exchangers (hot and cold) sandwiching thin, segmented-element TE power generators. The TE properties, structurally properties, and thermal fatigue behavior of LAST and LASTT materials were developed and characterized such that the first segmented-element TE modules using LAST / LASTT materials were fabricated and tested at hot-side temperatures = 400 °C and cold-side temperatures = 40 °C. LAST / LASTT materials were successfully segmented with bismuth telluride and electrically interconnected with diffusion barrier materials and copper strapping within the module electrical circuit. A TE system design was developed to produce 1.5-1.6 kW of electrical energy using these new TE modules from the exhaust waste heat of 60-kW Tactical Quiet Generators as demonstration vehicles.

Hendricks, Terry J.; Hogan, Tim; Case, Eldon D.; Cauchy, Charles J.

2010-09-01T23:59:59.000Z

110

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

111

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

112

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

113

Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle  

SciTech Connect (OSTI)

The thermoelectric generator shorting system provides the capability to monitor and short-out individual thermoelectric couples in the event of failure. This makes the series configured thermoelectric generator robust to individual thermoelectric couple failure. Open circuit detection of the thermoelectric couples and the associated short control is a key technique to ensure normal functionality of the TE generator under failure of individual TE couples. This report describes a five-year effort whose goal was the understanding the issues related to the development of a thermoelectric energy recovery device for a Class-8 truck. Likely materials and important issues related to the utility of this generator were identified. Several prototype generators were constructed and demonstrated. The generators developed demonstrated several new concepts including advanced insulation, couple bypass technology and the first implementation of skutterudite thermoelectric material in a generator design. Additional work will be required to bring this system to fruition. However, such generators offer the possibility of converting energy that is otherwise wasted to useful electric power. Uur studies indicate that this can be accomplished in a cost-effective manner for this application.

None

2012-01-31T23:59:59.000Z

114

Thermoelectrics Partnership: Automotive Thermoelectric Modules...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Novel Nanostructured Interface Solution for Automotive Thermoelectric...

115

Lighting system with heat distribution face plate  

DOE Patents [OSTI]

Lighting systems having a light source and a thermal management system are provided. The thermal management system includes synthetic jet devices, a heat sink and a heat distribution face plate. The synthetic jet devices are arranged in parallel to one and other and are configured to actively cool the lighting system. The heat distribution face plate is configured to radially transfer heat from the light source into the ambient air.

Arik, Mehmet; Weaver, Stanton Earl; Stecher, Thomas Elliot; Kuenzler, Glenn Howard; Wolfe, Jr., Charles Franklin; Li, Ri

2013-09-10T23:59:59.000Z

116

Heat distribution ceramic processing method  

DOE Patents [OSTI]

A multi-layered heat distributor system is provided for use in a microwave process. The multi-layered heat distributors includes a first inner layer of a high thermal conductivity heat distributor material, a middle insulating layer and an optional third insulating outer layer. The multi-layered heat distributor system is placed around the ceramic composition or article to be processed and located in a microwave heating system. Sufficient microwave energy is applied to provide a high density, unflawed ceramic product.

Tiegs, Terry N. (Lenoir City, TN); Kiggans, Jr., James O. (Oak Ridge, TN)

2001-01-01T23:59:59.000Z

117

Development of Cost-Competitive Advanced Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Development of Cost-Competitive Advanced Thermoelectric...

118

Overview of Thermoelectric Power Generation Technologies in Japan...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy...

119

Large-dimension, high-ZT Thermoelectric Nanocomposites for High...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation Large-dimension, high-ZT Thermoelectric...

120

Cost-Competitive Advanced Thermoelectric Generators for Direct...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Cost-Competitive Advanced Thermoelectric Generators for...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Establishing Thermo-Electric Generator (TEG) Design Targets for...  

Broader source: Energy.gov (indexed) [DOE]

of Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power Automotive Thermoelectric Generators and HVAC...

122

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for...

123

Vehicle Fuel Economy Improvement through Thermoelectric Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Recovery Vehicle Fuel Economy Improvement through Thermoelectric Waste Heat Recovery 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters...

124

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

thermoelectric materials design, synthesis, fabrication, and characterization for power generation using vehicle exhaust waste heat. subramanian.pdf More Documents &...

125

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

126

Improvements to solar thermoelectric generators through device design  

E-Print Network [OSTI]

A solar thermoelectric generator (STEG) is a device which converts sunlight into electricity through the thermoelectric effect. A STEG is nominally formed when a thermoelectric generator (TEG), a type of solid state heat ...

Weinstein, Lee A. (Lee Adragon)

2013-01-01T23:59:59.000Z

127

Bipolar thermoelectric devices  

E-Print Network [OSTI]

The work presented here is a theoretical and experimental study of heat production and transport in bipolar electrical devices, with detailed treatment of thermoelectric effects. Both homojunction and heterojunction devices ...

Pipe, Kevin P. (Kevin Patrick), 1976-

2004-01-01T23:59:59.000Z

128

Solar Thermoelectrics Mercouri Kanatzidis,  

E-Print Network [OSTI]

Solar Thermoelectrics Mercouri Kanatzidis, Materials Science Division December 15, 2009 #12;2 Heat #12;13 What is the dot made of? Cook, Kramer #12;14 Nanostructures reduce the lattice thermal

Kanatzidis, Mercouri G

129

Benefits of Thermoelectric Technology for the Automobile  

Broader source: Energy.gov [DOE]

Discusses improved fuel efficiency and other benefits of automotive application of thermoelectric (power generation and heating/cooling) and the need for production quantities of high-efficiency thermoelectric modules

130

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

131

Survey of Emissions Models for Distributed Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models...

132

Thermoelectric device characterization and solar thermoelectric system modeling  

E-Print Network [OSTI]

Recent years have witnessed a trend of rising electricity costs and an emphasis on energy efficiency. Thermoelectric (TE) devices can be used either as heat pumps for localized environmental control or heat engines to ...

Muto, Andrew (Andrew Jerome)

2011-01-01T23:59:59.000Z

133

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network [OSTI]

By scavenging waste heat, thermoelectric generators mightfor new thermoelectric generators to harvest waste heat fromthermoelectric energy generators (TEGs) that scavenge waste heat,

Chen, Alic

2011-01-01T23:59:59.000Z

134

Thermoelectric transport in superlattices  

SciTech Connect (OSTI)

The thermoelectric transport properties of superlattices have been studied using an exact solution of the Boltzmann equation. The role of heat transport along the barrier layers, of carrier tunneling through the barriers, of valley degeneracy and of the well width and energy dependences of the carrier-phonon scattering rates on the thermoelectric figure of merit are given. Calculations are given for Bi{sub 2}Te{sub 3} and for PbTe, and the results of recent experiments are discussed.

Reinecke, T.L.; Broido, D.A.

1997-07-01T23:59:59.000Z

135

Thermoelectric powered wireless sensors for spent fuel monitoring  

SciTech Connect (OSTI)

This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

2011-07-01T23:59:59.000Z

136

Modeling of solar thermal selective surfaces and thermoelectric generators  

E-Print Network [OSTI]

A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

McEnaney, Kenneth

2010-01-01T23:59:59.000Z

137

Comfort-constrained distributed heat pump management  

E-Print Network [OSTI]

This paper introduces the design of a demand response network control strategy aimed at thermostatically controlled electric heating and cooling systems in buildings. The method relies on the use of programmable communicating thermostats, which are able to provide important component-level state variables to a system-level central controller. This information can be used to build power density distribution functions for the aggregate heat pump load. These functions lay out the fundamental basis for the methodology by allowing for consideration of customer-level constraints within the system-level decision making process. The proposed strategy is then implemented in a computational model to simulate a distribution of buildings, where the aggregate heat pump load is managed to provide the regulation services needed to successfully integrate wind power generators. Increased exploitation of wind resources will place similarly themed ancillary services in high-demand, traditionally provided by dispatchable energy ...

Parkinson, Simon; Crawford, Curran; Djilali, Ned

2011-01-01T23:59:59.000Z

138

Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Nanostructured High-Temperature Bulk Thermoelectric Energy Conversion for Efficient Automotive Waste Heat Recovery Vehicle Technologies Office...

139

Overview of Thermoelectric Power Generation Technologies in Japan  

Broader source: Energy.gov [DOE]

Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

140

White Paper for U.S. Army Rapid Equipping Force: Waste Heat Recovery with Thermoelectric and Lithium-Ion Hybrid Power System  

SciTech Connect (OSTI)

By harvesting waste heat from engine exhaust and storing it in light-weight high-capacity modules, it is believed that the need for energy transport by convoys can be lowered significantly. By storing this power during operation, substantial electrical power can be provided during long periods of silent operation, while the engines are not operating. It is proposed to investigate the potential of installing efficient thermoelectric generators on the exhaust systems of trucks and other vehicles to generate electrical power from the waste heat contained in the exhaust and to store that power in advanced power packs comprised of polymer-gel lithium ion batteries. Efficient inexpensive methods for production of the thermoelectric generator are also proposed. The technology that exists at LLNL, as well as that which exists at industrial partners, all have high technology readiness level (TRL). Work is needed for integration and deployment.

Farmer, J C

2007-11-26T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Superconducting thermoelectric generator  

DOE Patents [OSTI]

Thermoelectricity is produced by applying a temperature differential to dissimilar electrically conducting or semiconducting materials, thereby producing a voltage that is proportional to the temperature difference. Thermoelectric generators use this effect to directly convert heat into electricity; however, presently-known generators have low efficiencies due to the production of high currents which in turn cause large resistive heating losses. Some thermoelectric generators operate at efficiencies between 4% and 7% in the 800{degrees} to 1200{degrees}C range. According to its major aspects and bradly stated, the present invention is an apparatus and method for producing electricity from heat. In particular, the invention is a thermoelectric generator that juxtaposes a superconducting material and a semiconducting material - so that the superconducting and the semiconducting materials touch - to convert heat energy into electrical energy without resistive losses in the temperature range below the critical temperature of the superconducting material. Preferably, an array of superconducting material is encased in one of several possible configurations within a second material having a high thermal conductivity, preferably a semiconductor, to form a thermoelectric generator.

Metzger, J.D.; El-Genk, M.S.

1994-01-01T23:59:59.000Z

142

Thermoelectric generator for motor vehicle  

DOE Patents [OSTI]

A thermoelectric generator for producing electric power for a motor vehicle from the heat of the exhaust gasses produced by the engine of the motor vehicle. The exhaust gasses pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure.

Bass, John C. (6121 La Pintra Dr., La Jolla, CA 92037)

1997-04-29T23:59:59.000Z

143

Thermoelectric generator for motor vehicle  

SciTech Connect (OSTI)

A thermoelectric generator is described for producing electric power for a motor vehicle from the heat of the exhaust gases produced by the engine of the motor vehicle. The exhaust gases pass through a finned heat transfer support structure which has seat positions on its outside surface for the positioning of thermoelectric modules. A good contact cylinder provides a framework from which a spring force can be applied to the thermoelectric modules to hold them in good contact on their seats on the surface of the heat transfer support structure. 8 figs.

Bass, J.C.

1997-04-29T23:59:59.000Z

144

On the role of interface imperfections in thermoelectric nondestructive materials characterization  

E-Print Network [OSTI]

On the role of interface imperfections in thermoelectric nondestructive materials characterization of thermoelectric nondestructive materials characterization technique. It is shown that contact heating between used in nonde- structive materials characterization. The thermoelectric volt- age is given by VSR Tc Ti

Nagy, Peter B.

145

High-Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

High-Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

146

High Temperature Thermoelectric Materials Characterization for...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermoelectric Materials Characterization for Automotive Waste Heat Recovery: Success Stories from the High Temperature Materials Laboratory (HTML) User Program...

147

QUANTUM WELLS THERMOELECTRIC DEVICES FOR DIESEL ENGINES  

SciTech Connect (OSTI)

Thermoelectric materials are utilized for power generation in remote locations, on spacecraft used for interplanetary exploration, and in places where waste heat can be recovered.

Ghamaty, Saeid

2000-08-20T23:59:59.000Z

148

Opportunities and Challenges of Thermoelectrlic Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

for Automotive Waste Heat Recovery Develop Thermoelectric Technology for Automotive Waste Heat Recovery Thermoelectric Generator Development for Automotive Waste Heat Recovery...

149

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery… (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

150

Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM  

Broader source: Energy.gov [DOE]

Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

151

Modeling the thermoelectric properties of bulk and nanocomposite thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials are materials which are capable of converting heat directly into electricity. They have long been used in specialized fields where high reliability is needed, such as space power generation. Recently, ...

Minnich, Austin (Austin Jerome)

2008-01-01T23:59:59.000Z

152

Energy Efficient HVAC System for Distributed Cooling/Heating with  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE:2009 DOEDeploymentHenry C. Foley AprilThermoelectric

153

Overview of Fords Thermoelectric Programs: Waste Heat Recovery and Climate Control  

Broader source: Energy.gov [DOE]

Overview of progress in TE waste heat recovery from sedan gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration

154

Development of a 500 Watt High Temperature Thermoelectric Generator...  

Broader source: Energy.gov (indexed) [DOE]

More Documents & Publications Development of a 100-Watt High Temperature Thermoelectric Generator Automotive Waste Heat Conversion to Power Program Automotive Waste Heat...

155

Thermoelectric system for an engine  

DOE Patents [OSTI]

An internal combustion engine that includes a block, a cylinder head having an intake valve port and exhaust valve port formed therein, a piston, and a combustion chamber defined by the block, the piston, and the head. At least one thermoelectric device is positioned within either or both the intake valve port and the exhaust valve port. Each of the valves is configured to move within a respective intake and exhaust valve port thereby causing said valves to engage the thermoelectric devices resulting in heat transfer from the valves to the thermoelectric devices. The intake valve port and exhaust valve port are configured to fluidly direct intake air and exhaust gas, respectively, into the combustion chamber and the thermoelectric device is positioned within the intake valve port, and exhaust valve port, such that the thermoelectric device is in contact with the intake air and exhaust gas.

Mcgilvray, Andrew N.; Vachon, John T.; Moser, William E.

2010-06-22T23:59:59.000Z

156

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

157

Development of an Underamor 1-kW Thermoelectric Generator Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models |Conduct, Parent CompanyaUSAMP AMDHeavy

158

High-Efficiency Quantum-Well Thermoelectrics for Waste Heat Power  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject:Ground Hawaii HIGH

159

Commercialization of Bulk Thermoelectric Materials for Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Hydrogen Embrittlement of Pipeline Steels: Causes and Remediation Distributed Bio-Oil...

160

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

162

Thermoelectrics run hot and cold  

SciTech Connect (OSTI)

Thermoelectricity, or the Seebeck effect, is the physical phenomenon used in thermocouples for temperature measurement. Over the past 2-3 years there has been renewed interest in the field for use in electronic refrigeration or power generation. This article summarizes information on new materials and new concepts for materials with some possibilities of higher performance than existing materials. Thermoelectric energy conversion utilizes the heat generated when an electric current is passed through a thermoelectric material to provide a temperature gradient. Advantages of thermoelectric solid state energy conversion are compactness, quietness, and localized heating or cooling. Possible automotive uses range from power generation to seat coolers. One group of materials receiving a lot of attention is the skutterudite materials. 8 refs., 1 fig.

Tritt, T.M. [Naval Research Lab., Washington, DC (United States)

1996-05-31T23:59:59.000Z

163

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerof solar combined heat and power systems . . . . . . .

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

164

Improved Thermoelectric Devices: Advanced Semiconductor Materials for Thermoelectric Devices  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: Phononic Devices is working to recapture waste heat and convert it into usable electric power. To do this, the company is using thermoelectric devices, which are made from advanced semiconductor materials that convert heat into electricity or actively remove heat for refrigeration and cooling purposes. Thermoelectric devices resemble computer chips, and they manage heat by manipulating the direction of electrons at the nanoscale. These devices aren’t new, but they are currently too inefficient and expensive for widespread use. Phononic Devices is using a high-performance, cost-effective thermoelectric design that will improve the device’s efficiency and enable electronics manufacturers to more easily integrate them into their products.

None

2009-12-11T23:59:59.000Z

165

Thermoelectric system  

DOE Patents [OSTI]

In one particular embodiment, an internal combustion engine is provided. The engine comprises a block, a head, a piston, a combustion chamber defined by the block, the piston, and the head, and at least one thermoelectric device positioned between the combustion chamber and the head. In this particular embodiment, the thermoelectric device is in direct contact with the combustion chamber. In another particular embodiment, a cylinder head configured to sit atop a cylinder bank of an internal combustion engine is provided. The cylinder head comprises a cooling channel configured to receive cooling fluid, valve seats configured for receiving intake and exhaust valves, and thermoelectric devices positioned around the valve seats.

Reiners, Eric A. (Washington, IL); Taher, Mahmoud A. (Peoria, IL); Fei, Dong (Peoria, IL); McGilvray, Andrew N. (East Peoria, IL)

2007-10-30T23:59:59.000Z

166

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

167

Review of Interests and Activities in Thermoelectric Materials and Devices at the Army Research Laboratory  

Broader source: Energy.gov [DOE]

Army interests in thermoelectrics include integrated TE-hand-held burners for battery-replacement, waste-heat recovery on vehicles, heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance

168

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network [OSTI]

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

169

Modular Isotopic Thermoelectric Generator  

SciTech Connect (OSTI)

Advanced RTG concepts utilizing improved thermoelectric materials and converter concepts are under study at Fairchild for DOE. The design described here is based on DOE's newly developed radioisotope heat source, and on an improved silicon-germanium material and a multicouple converter module under development at Syncal. Fairchild's assignment was to combine the above into an attractive power system for use in space, and to assess the specific power and other attributes of that design. The resultant design is highly modular, consisting of standard RTG slices, each producing ~24 watts at the desired output voltage of 28 volt. Thus, the design could be adapted to various space missions over a wide range of power levels, with little or no redesign. Each RTG slice consists of a 250-watt heat source module, eight multicouple thermoelectric modules, and standard sections of insulator, housing, radiator fins, and electrical circuit. The design makes it possible to check each thermoelectric module for electrical performance, thermal contact, leaktightness, and performance stability, after the generator is fully assembled; and to replace any deficient modules without disassembling the generator or perturbing the others. The RTG end sections provide the spring-loaded supports required to hold the free-standing heat source stack together during launch vibration. Details analysis indicates that the design offers a substantial improvement in specific power over the present generator of RTGs, using the same heat source modules. There are three copies in the file.

Schock, Alfred

1981-04-03T23:59:59.000Z

170

The effect of nonuniform axial heat flux distribution on the critical heat flux  

E-Print Network [OSTI]

A systematic experimental and analytic investigation of the effect of nonuniform axial heat flux distribution on critical heat rilux was performed with water in the quality condition. Utilizing a model which ascribes the ...

Todreas, Neil E.

1965-01-01T23:59:59.000Z

171

Superconducting thermoelectric generator  

DOE Patents [OSTI]

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, J.D.; El-Genk, M.S.

1996-01-01T23:59:59.000Z

172

Superconducting thermoelectric generator  

DOE Patents [OSTI]

An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device.

Metzger, John D. (Eaton's Neck, NY); El-Genk, Mohamed S. (Albuquerque, NM)

1998-01-01T23:59:59.000Z

173

Superconducting thermoelectric generator  

DOE Patents [OSTI]

An apparatus and method for producing electricity from heat is disclosed. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses. The elimination of resistive losses significantly increases the conversion efficiency of the thermoelectric device. 4 figs.

Metzger, J.D.; El-Genk, M.S.

1998-05-05T23:59:59.000Z

174

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

175

Special Application Thermoelectric Micro Isotope Power Sources  

SciTech Connect (OSTI)

Promising design concepts for milliwatt (mW) size micro isotope power sources (MIPS) are being sought for use in various space and terrestrial applications, including a multitude of future NASA scientific missions and a range of military applications. To date, the radioisotope power sources (RPS) used on various space and terrestrial programs have provided power levels ranging from one-half to several hundred watts. In recent years, the increased use of smaller spacecraft and planned new scientific space missions by NASA, special terrestrial and military applications suggest the need for lower power, including mW level, radioisotope power sources. These power sources have the potential to enable such applications as long-lived meteorological or seismological stations distributed across planetary surfaces, surface probes, deep space micro-spacecraft and sub-satellites, terrestrial sensors, transmitters, and micro-electromechanical systems. The power requirements are in the range of 1 mW to several hundred mW. The primary technical requirements for space applications are long life, high reliability, high specific power, and high power density, and those for some special military uses are very high power density, specific power, reliability, low radiological induced degradation, and very low radiation leakage. Thermoelectric conversion is of particular interest because of its technological maturity and proven reliability. This paper summarizes the thermoelectric, thermal, and radioisotope heat source designs and presents the corresponding performance for a number of mW size thermoelectric micro isotope power sources.

Heshmatpour, Ben; Lieberman, Al; Khayat, Mo; Leanna, Andrew; Dobry, Ted [Teledyne Energy Systems, Incorporated, 10707 Gilroy Road, Hunt Valley, MD 21031 (United States)

2008-01-21T23:59:59.000Z

176

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bell, Lon E; Crane, Douglas Todd

2013-05-21T23:59:59.000Z

177

Thermoelectric power generator with intermediate loop  

DOE Patents [OSTI]

A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

2009-10-27T23:59:59.000Z

178

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

179

Development of a Scalable 10% Efficient Thermoelectric Generator  

Broader source: Energy.gov (indexed) [DOE]

heating performance by a factor of two High power density designs that require 16 the thermoelectric (TE) material usage of conventional designs TGM Development Methodology TGM...

180

System level modeling of thermoelectric generators for automotive...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and for a wide range of operating conditions. chen.pdf More Documents & Publications Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Combustion Exhaust Gas...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Review of Interests and Activities in Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

heat-powered mobile units, and for thermoelectric cooling of high-performance infrared systems for surveillance taylor.pdf More Documents & Publications Review of Interests...

182

High-Performance Thermoelectric Devices Based on Abundant Silicide...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

vehicle waste heat recovery will include fundamental research to use abundant promising low-cost thermoelectric materials, thermal management and interfaces design, and metrology...

183

Adaptive Distributed Parameter and Input Estimation in Plasma Tokamak Heat  

E-Print Network [OSTI]

. Keywords: Thermonuclear fusion, distributed parameter systems, input state and parameter estimation, adaptive infinite-dimensional estimation, Galerkin method 1. INTRODUCTION In a controlled thermonuclear fusion reactor, the plasma thermal diffusivity and heating energy play an important role

Boyer, Edmond

184

Bulk dimensional nanocomposites for thermoelectric applications  

DOE Patents [OSTI]

Thermoelectric elements may be used for heat sensors, heat pumps, and thermoelectric generators. A quantum-dot or nano-scale grain size polycrystalline material the effects of size-quantization are present inside the nanocrystals. A thermoelectric element composed of densified Groups IV-VI material, such as calcogenide-based materials are doped with metal or chalcogenide to form interference barriers form along grains. The dopant used is either silver or sodium. These chalcogenide materials form nanoparticles of highly crystal grains, and may specifically be between 1- and 100 nm. The compound is densified by spark plasma sintering.

Nolas, George S

2014-06-24T23:59:59.000Z

185

High temperature thermoelectrics  

DOE Patents [OSTI]

In accordance with one embodiment of the present disclosure, a thermoelectric device includes a plurality of thermoelectric elements that each include a diffusion barrier. The diffusion barrier includes a refractory metal. The thermoelectric device also includes a plurality of conductors coupled to the plurality of thermoelectric elements. The plurality of conductors include aluminum. In addition, the thermoelectric device includes at least one plate coupled to the plurality of thermoelectric elements using a braze. The braze includes aluminum.

Moczygemba, Joshua E.; Biershcenk, James L.; Sharp, Jeffrey W.

2014-09-23T23:59:59.000Z

186

PSPICE-Compatible Equivalent Circuit of Thermoelectric Coolers Simon Lineykin and Sam Ben-Yaakov*  

E-Print Network [OSTI]

. The thermoelectric module (TEM) can be used for cooling, heating, and energy generation [1] - [3]. The objective OF OPERATION Five energy-conversion processes take place in a thermoelectric module: conductive heat transfer of thermodynamics, one can express the energy equilibrium at both sides of the thermoelectric module

187

Thick and Thin Film Polymer CNT Nanocomposites for Thermoelectric Energy Conversion and Transparent Electrodes  

E-Print Network [OSTI]

Thick and Thin Film Polymer ­ CNT Nanocomposites for Thermoelectric Energy Conversion gradient. Thermoelectric materials harvest electricity from waste heat or any temperature gradient]. The PDDA/(SWNT+DOC) system produced transparent (> 82% visible light transmittance) and electrically

Fisher, Frank

188

Energy Efficient HVAC System for Distributed Cooling/Heating with Thermoelectric Devices  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

189

Thermoelectric generator apparatus and operation method  

SciTech Connect (OSTI)

A method of operating a thermoelectric generator includes: cyclically producing increasing then decreasing temperature differences in the thermoelectric material of the generator; and generating a cyclically increasing then decreasing electrical generator output signal, in response to such temperature differences, to transmit electrical power generated by the generator from the generator. Part of the thermoelectric material reaches temperatures substantially above the melting temperature of the material. The thermoelectric material of the generator forms a part of a closed electrical loop about a transformer core so that the inductor voltage for the loop serves as the output signal of the generator. A thermoelectric generator, which can be driven by the described method of operation, incorporates fins into a thermopile to conduct heat toward or away from the alternating spaces between adjacent layers of different types of thermoelectric material. The fins extend from between adjacent layers, so that they can also conduct electrical current between such layers, perpendicularly to the direction of stacking of the layers. The exhaust from an internal combustion engine can be employed to drive the thermoelectric generator, and, also, to act as a driver for a thermoelectric generator in accordance with the method of operation initially described.

Lowther, F.E.

1984-07-31T23:59:59.000Z

190

Thermoelectrics Partnership: High Performance Thermoelectric Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered VehicleRecovery

191

Thermal analysis of directly buried conduit heat-distribution systems  

SciTech Connect (OSTI)

The calculations of heat losses and temperature field for directly buried conduit heat distribution systems were performed using the finite element computer programs. The finite element analysis solved two-dimensional, steady-state heat transfer problems involving two insulated parallel pipes encased in the same conduit casing and in separate casings, and the surrounding earth. Descriptions of the theoretical basis, computational scheme, and the data input and outputs of the developed computer programs are presented. Numerical calculations were carried out for predicting the temperature distributions within the existing high temperature hot water distribution system and two insulated pipes covered in the same metallic conduit and the surrounding soil. The predicted results generally agree with the experimental data obtained at the test site.

Fang, J.B.

1990-08-01T23:59:59.000Z

192

Thermo-electrically pumped semiconductor light emitting diodes  

E-Print Network [OSTI]

Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

Santhanam, Parthiban

2014-01-01T23:59:59.000Z

193

Thermoelectric Materials, Devices and Systems:  

Broader source: Energy.gov (indexed) [DOE]

-DRAFT - FOR OFFICIAL USE ONLY - DRAFT Thermoelectric Materials, Devices and Systems: 1 Technology Assessment 2 Contents 3 1. Thermoelectric Generation ......

194

Challenges and Opportunities in Thermoelectric Materials Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nanocomposites, plus Overview of Research on Thermoelectric Materials and Devices in China NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics...

195

Scalable Routes to Efficient Thermoelectric Materials  

E-Print Network [OSTI]

thermoelectric materials consisting of epitaxially-grownefficient thermoelectric materials," Nature, vol. 451, pp.superlattice thermoelectric materials and devices," Science,

Feser, Joseph Patrick

2010-01-01T23:59:59.000Z

196

Novel Nanostructured Interface Solution for Automotive Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces Thermoelectrics Partnership: Automotive Thermoelectric Modules with...

197

Solar Thermoelectric Energy Conversion | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Thermoelectric Energy Conversion Solar Thermoelectric Energy Conversion Efficiencies of different types of solar thermoelectric generators were predicted using theoretical...

198

Thermoelectric Effect across the Metal-Insulator Domain Walls in VO2  

E-Print Network [OSTI]

-performance thermoelectric materials are currently one of the focuses in materials research for energy conversion technologies.1-4 A good thermoelectric material should have a relatively high thermopower (Seebeck coefficient perpendicular to the current and heat flow direction. This offers a material platform where the thermoelectric

Wu, Junqiao

199

Atomistic calculations of the electronic, thermal, and thermoelectric properties of ultra-thin Si layers  

E-Print Network [OSTI]

. This is also the case for traditionally poor thermoelectric materials such as silicon. This work presents. This is the case even for traditionally poor thermoelectric materials such as Si, which has recently received significant attention in the thermoelectric community. The ability of a material to convert heat

200

PHYSICAL REVIEW B 88, 085426 (2013) Nonlinear thermoelectric transport: A class of nanodevices for high efficiency  

E-Print Network [OSTI]

I. INTRODUCTION Thermoelectric materials1 can convert unused waste heat to electricity (Seebeck effect) or use electricity for refrigeration (Peltier effect). A good thermoelectric material needs charge. As a result it has not yet been possible to find bulk thermoelectric materials efficient enough

Muttalib, Khandker

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Nontoxic and Abundant Copper Zinc Tin Sulfide Nanocrystals for Potential High-Temperature Thermoelectric Energy Harvesting  

E-Print Network [OSTI]

materials is of great interest due to its simplicity and reliability. However, many thermoelectric materials thermoelectric (TE) materials for waste heat recovery and solid-state cooling. However, most of these TE, the best-commercialized thermoelectric bulk material (Bi2Te3-based alloy) has a ZT around 1,2,3 whereas

Chen, Yong P.

202

Applied Mathematical Sciences, Vol. 4, 2010, no. 11, 505 -514 Efficiency of Inhomogeneous Thermoelectric  

E-Print Network [OSTI]

- rounding the ship. Future work in thermoelectrics includes converting waste heat from power plants, trucks Thermoelectric Generators Hong Zhou Department of Applied Mathematics Naval Postgraduate School, Monterey, CA thermoelectric generators. The effects of different physical parameters on the efficiency of a generator

Zhou, Hong

203

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

in a manner that recovers waste heat for heating and/or cooling--called combined heat and power-- negativeEfficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power environmental impacts can be decreased. Distributed generation/combined heat and power has been identified

204

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

Concentrating Solar Combined Heat and Power Systemfor Distributed Concentrating Solar Combined Heat and Powerin parabolic trough solar power technology. Journal of Solar

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

205

POTENTIAL THERMOELECTRIC APPLICATIONS IN DIESEL VEHICLES  

SciTech Connect (OSTI)

Novel thermodynamic cycles developed by BSST provide improvements by factors of approximately 2 in cooling, heating and power generation efficiency of solid-state thermoelectric systems. The currently available BSST technology is being evaluated in automotive development programs for important new applications. Thermoelectric materials are likely to become available that further increase performance by a comparable factor. These major advancements should allow the use of thermoelectric systems in new applications that have the prospect of contributing to emissions reduction, fuel economy, and improved user comfort. Potential applications of thermoelectrics in diesel vehicles are identified and discussed. As a case in point, the history and status of the Climate Controlled Seat (CCS) system from Amerigon, the parent of BSST, is presented. CCS is the most successful and highest production volume thermoelectric system in vehicles today. As a second example, the results of recent analyses on electric power generation from vehicle waste heat are discussed. Conclusions are drawn as to the practicality of waste power generation systems that incorporate BSST's thermodynamic cycle and advanced thermoelectric materials.

Crane, D

2003-08-24T23:59:59.000Z

206

Nanocomposites as thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials have attractive applications in electric power generation and solid-state cooling. The performance of a thermoelectric device depends on the dimensionless figure of merit (ZT) of the material, ...

Hao, Qing

2010-01-01T23:59:59.000Z

207

Development of an Underamor 1-kW Thermoelectric Generator Waste...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1-kW Thermoelectric Generator Waste Heat Recovery System for Military Vehicles 2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Hi-Z Technology, Inc....

208

CsBi4Te6: A High-Performance Thermoelectric Material for Low...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

M. Bastea, C. Uher, M. Kanatzidis Year: 2000 Abstract: Thermoelectric (Peltier) heat pumps are capable of refrigerating solid or fluid objects, and unlike conventional...

209

Thermoelectric-Generator-Based DC-DC Conversion Network for Automotive Applications.  

E-Print Network [OSTI]

?? As waste heat recovering techniques, especially thermoelectric generator (TEG technologies, develop during recent years?its utilization in automotive industry is attempted from many aspects. Previous… (more)

Li, Molan

2011-01-01T23:59:59.000Z

210

Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems  

Broader source: Energy.gov [DOE]

Advanced thermoelectric energy recovery and cooling system weight and volume improvements with low-cost microtechnology heat and mass transfer devices are presented

211

Catalytic converter with thermoelectric generator  

SciTech Connect (OSTI)

The unique design of an electrically heated catalyst (EHC) and the inclusion of an ECO valve in the exhaust of an internal combustion engine will meet the strict new emission requirements, especially at vehicle cold start, adopted by several states in this country as well as in Europe and Japan. The catalytic converter (CC) has been a most useful tool in pollution abatement for the automobile. But the emission requirements are becoming more stringent and, along with other improvements, the CC must be improved to meet these new standards. Coupled with the ECO valve, the EHC can meet these new emission limits. In an internal combustion engine vehicle (ICEV), approximately 80% of the energy consumed leaves the vehicle as waste heat: out the tail pipe, through the radiator, or convected/radiated off the engine. Included with the waste heat out the tail pipe are the products of combustion which must meet strict emission requirements. The design of a new CC is presented here. This is an automobile CC that has the capability of producing electrical power and reducing the quantity of emissions at vehicle cold start, the Thermoelectric Catalytic Power Generator. The CC utilizes the energy of the exothermic reactions that take place in the catalysis substrate to produce electrical energy with a thermoelectric generator. On vehicle cold start, the thermoelectric generator is used as a heat pump to heat the catalyst substrate to reduce the time to catalyst light-off. Thus an electrically heated catalyst (EHC) will be used to augment the abatement of tail pipe emissions. Included with the EHC in the exhaust stream of the automobile is the ECO valve. This valve restricts the flow of pollutants out the tail pipe of the vehicle for a specified amount of time until the EHC comes up to operating temperature. Then the ECO valve opens and allows the full exhaust, now treated by the EHC, to leave the vehicle.

Parise, R.J.

1998-07-01T23:59:59.000Z

212

Large-scale Ocean-based or Geothermal Power Plants by Thermoelectric Effects  

E-Print Network [OSTI]

Heat resources of small temperature difference are easily accessible, free and unlimited on earth. Thermoelectric effects provide the technology for converting these heat resources directly into electricity. We present designs of electricity generators based on thermoelectric effects and using heat resources of small temperature difference, e.g., ocean water at different depths and geothermal sources, and conclude that large-scale power plants based on thermoelectric effects are feasible and economically competitive. The key observation is that the power factor of thermoelectric materials, unlike the figure of merit, can be improved by orders of magnitude upon laminating good conductors and good thermoelectric materials. The predicted large-scale power plants based on thermoelectric effects, if validated, will have a global economic and social impact for its scalability, and the renewability, free and unlimited supply of heat resources of small temperature difference on earth.

Liu, Liping

2012-01-01T23:59:59.000Z

213

HEATING DISTRIBUTIONS IN THE TARGET OF THE SPALLATION NEUTRON SOURCE  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FORRemarksHEATING DISTRIBUTIONS IN THE TARGET

214

Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled  

E-Print Network [OSTI]

Transportable automated ammonia sensor based on a pulsed thermoelectrically cooled quantum single-frequency, thermoelectrically cooled, pulsed quantum-cascade laser with an embedded distributed absorption spectroscopy with a pulsed QC DFB laser was reported in Ref. 3, where wavelength modulation

215

Thermoelectric materials having porosity  

DOE Patents [OSTI]

A thermoelectric material and a method of making a thermoelectric material are provided. In certain embodiments, the thermoelectric material comprises at least 10 volume percent porosity. In some embodiments, the thermoelectric material has a zT greater than about 1.2 at a temperature of about 375 K. In some embodiments, the thermoelectric material comprises a topological thermoelectric material. In some embodiments, the thermoelectric material comprises a general composition of (Bi.sub.1-xSb.sub.x).sub.u(Te.sub.1-ySe.sub.y).sub.w, wherein 0.ltoreq.x.ltoreq.1, 0.ltoreq.y.ltoreq.1, 1.8.ltoreq.u.ltoreq.2.2, 2.8.ltoreq.w.ltoreq.3.2. In further embodiments, the thermoelectric material includes a compound having at least one group IV element and at least one group VI element. In certain embodiments, the method includes providing a powder comprising a thermoelectric composition, pressing the powder, and sintering the powder to form the thermoelectric material.

Heremans, Joseph P.; Jaworski, Christopher M.; Jovovic, Vladimir; Harris, Fred

2014-08-05T23:59:59.000Z

216

In-line thermoelectric module  

DOE Patents [OSTI]

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions may be perpendicular to the direction of current flow through the module.

Pento, Robert (Algonquin, IL); Marks, James E. (Glenville, NY); Staffanson, Clifford D. (S. Glens Falls, NY)

2000-01-01T23:59:59.000Z

217

In-Line Thermoelectric Module  

SciTech Connect (OSTI)

A thermoelectric module with a plurality of electricity generating units each having a first end and a second end, the units being arranged first end to second end along an-in-line axis. Each unit includes first and second elements each made of a thermoelectric material, an electrically conductive hot member arranged to heat one side of the first element, and an electrically conductive cold member arranged to cool another side of the first element and to cool one side of the second element. The hot member, the first element, the cold member and the second element are supported in a fixture, are electrically connected respectively to provide an electricity generating unit, and are arranged respectively in positions along the in-line axis. The individual components of each generating unit and the respective generating units are clamped in their in-line positions by a loading bolt at one end of the fixture and a stop wall at the other end of the fixture. The hot members may have a T-shape and the cold members an hourglass shape to facilitate heat transfer. The direction of heat transfer through the hot members may be perpendicular to the direction of heat transfer through the cold members, and both of these heat transfer directions maybe perpendicular to the direction-of current flow through the module.

Pento, Robert; Marks, James E.; Staffanson, Clifford D.

1998-07-28T23:59:59.000Z

218

High Temperature Integrated Thermoelectric Ststem and Materials  

SciTech Connect (OSTI)

The final goal of this project is to produce, by the end of Phase II, an all ceramic high temperature thermoelectric module. Such a module design integrates oxide ceramic n-type, oxide ceramic p-type materials as thermoelectric legs and oxide ceramic conductive material as metalizing connection between n-type and p-type legs. The benefits of this all ceramic module are that it can function at higher temperatures (> 700 C), it is mechanically and functionally more reliable and it can be scaled up to production at lower cost. With this all ceramic module, millions of dollars in savings or in new opportunities recovering waste heat from high temperature processes could be made available. A very attractive application will be to convert exhaust heat from a vehicle to reusable electric energy by a thermoelectric generator (TEG). Phase I activities were focused on evaluating potential n-type and p-type oxide compositions as the thermoelectric legs. More than 40 oxide ceramic powder compositions were made and studied in the laboratory. The compositions were divided into 6 groups representing different material systems. Basic ceramic properties and thermoelectric properties of discs sintered from these powders were measured. Powders with different particles sizes were made to evaluate the effects of particle size reduction on thermoelectric properties. Several powders were submitted to a leading thermoelectric company for complete thermoelectric evaluation. Initial evaluation showed that when samples were sintered by conventional method, they had reasonable values of Seebeck coefficient but very low values of electrical conductivity. Therefore, their power factors (PF) and figure of merits (ZT) were too low to be useful for high temperature thermoelectric applications. An unconventional sintering method, Spark Plasma Sintering (SPS) was determined to produce better thermoelectric properties. Particle size reduction of powders also was found to have some positive benefits. Two composition systems, specifically 1.0 SrO - 0.8 x 1.03 TiO2 - 0.2 x 1.03 NbO2.5 and 0.97 TiO2 - 0.03 NbO2.5, have been identified as good base line compositions for n-type thermoelectric compositions in future module design. Tests of these materials at an outside company were promising using that company's processing and material expertise. There was no unique p-type thermoelectric compositions identified in phase I work other than several current cobaltite materials. Ca3Co4O9 will be the primary p-type material for the future module design until alternative materials are developed. BaTiO3 and rare earth titanate based dielectric compositions show both p-type and n-type behavior even though their electrical conductivities were very low. Further research and development of these materials for thermoelectric applications is planned in the future. A preliminary modeling and optimization of a thermoelectric generator (TEG) that uses the n-type 1.0 SrO - 1.03 x 0.8 TiO2 - 1.03 x 0.2 NbO2.5 was performed. Future work will combine development of ceramic powders and manufacturing expertise at TAM, development of SPS at TAM or a partner organization, and thermoelectric material/module testing, modeling, optimization, production at several partner organizations.

Mike S. H. Chu

2011-06-06T23:59:59.000Z

219

Determination of Thermoelectric Module Efficiency A Survey  

SciTech Connect (OSTI)

The development of thermoelectrics (TE) for energy conversion is in the transition phase from laboratory research to device development. There is an increasing demand to accurately determine the module efficiency, especially for the power generation mode. For many thermoelectrics, the figure of merit, ZT, of the material sometimes cannot be fully realized at the device level. Reliable efficiency testing of thermoelectric modules is important to assess the device ZT and provide the end-users with realistic values on how much power can be generated under specific conditions. We conducted a general survey of efficiency testing devices and their performance. The results indicated the lack of industry standards and test procedures. This study included a commercial test system and several laboratory systems. Most systems are based on the heat flow meter method and some are based on the Harman method. They are usually reproducible in evaluating thermoelectric modules. However, cross-checking among different systems often showed large errors that are likely caused by unaccounted heat loss and thermal resistance. Efficiency testing is an important area for the thermoelectric community to focus on. A follow-up international standardization effort is planned.

Wang, Hsin [ORNL; McCarty, Robin [Marlow Industries, Inc; Salvador, James R. [GM R& D and Planning, Warren, Michigan; Yamamoto, Atsushi [AIST, Japan; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany

2014-01-01T23:59:59.000Z

220

Nanograined half-Heusler semiconductors as advanced thermoelectrics: an ab-initio high-throughput statistical study  

E-Print Network [OSTI]

the thermoelectric effect to scavenge electric power from waste heat has long been an attractive route in the pursuit of sustainable en- ergy generation.1 Despite recent progress, the goal of producing efficient thermoelectricNanograined half-Heusler semiconductors as advanced thermoelectrics: an ab-initio high

Curtarolo, Stefano

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 32, NO. 2, JUNE 2009 447 Temperature Profile Inside Microscale Thermoelectric  

E-Print Network [OSTI]

Temperature Profile Inside Microscale Thermoelectric Module Acquired Using Near-Infrared Thermoreflectance-scale thermoelectric modules. By determining localized sources of Joule heating, one can identify manufacturing errors and generate design rules that can improve the cooling performance of the thermoelectric device. Index Terms

222

A versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute accuracy  

E-Print Network [OSTI]

elements and thermoelectric modules to heat or cool in the 40 to 40 °C range. A schematic of our controllerA versatile thermoelectric temperature controller with 10 mK reproducibility and 100 mK absolute December 2009 We describe a general-purpose thermoelectric temperature controller with 1 mK stability, 10 m

Libbrecht, Kenneth G.

223

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

224

Rare earth thermoelectrics  

SciTech Connect (OSTI)

A review is presented of the thermoelectric properties of rare earth compounds: A discussion is presented of the prospects for future improvements in the figure of merit.

Mahan, G.D.

1997-07-01T23:59:59.000Z

225

Concentrated Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

and 24-hour operation. PROJECT DESCRIPTION The research team previously demonstrated flat-panel solar thermoelectric generators (STEGs) that produce electricity by harnessing the...

226

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

227

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions  

E-Print Network [OSTI]

Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions by Carl, Measurements of Film Flow Rate in Heated Tubes with Various Axial Power Distributions KTH Nuclear Reactor power is limited by a phenomenon called critical heat flux (CHF). It appears as a sudden detoriation

Haviland, David

228

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

permission. QC-06-053 Heat Transfer Pathways in Underfloorchange the dynamics of heat transfer within a room as wellchange the dynamics of heat transfer within a room as well

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

229

Characterizing the thermal efficiency of thermoelectric modules  

E-Print Network [OSTI]

An experimental setup was designed and utilized to measure the thermoelectric properties as functions of temperature of a commercially available, bismuth telluride thermoelectric module. Thermoelectric modules are solid ...

Phillips, Samuel S

2009-01-01T23:59:59.000Z

230

Vehicular Thermoelectric Applications Session DEER 2009  

Broader source: Energy.gov (indexed) [DOE]

Or this? Car of the Future? International Thermoelectric Conference 2009 - Frieburg, Germany U.S. Spacecraft using Radioisotope Thermoelectric Power Generators Thermoelectric...

231

Vehicular Thermoelectrics: A New Green Technology | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Vehicular Thermoelectrics: A New Green Technology Vehicular Thermoelectrics: A New Green Technology An overview of the DOE activities in vehicular application of thermoelectrics...

232

General Relativistic Thermoelectric Effects in Superconductors  

E-Print Network [OSTI]

We discuss the general-relativistic contributions to occur in the electromagnetic properties of a superconductor with a heat flow. The appearance of general-relativistic contribution to the magnetic flux through a superconducting thermoelectric bimetallic circuit is shown. A response of the Josephson junctions to a heat flow is investigated in the general-relativistic framework. Some gravitothermoelectric effects which are observable in the superconducting state in the Earth's gravitational field are considered.

B. J. Ahmedov

2007-01-13T23:59:59.000Z

233

Novel thermoelectric materials development, existing and potential applications, and commercialization routes  

E-Print Network [OSTI]

Thermoelectrics (TE) are devices which can convert heat in the form of a temperature gradient into electricity, or alternatively generate and absorb heat when an electrical current is run through them. It was established ...

Bertreau, Philippe

2006-01-01T23:59:59.000Z

234

Geek-Up[6.10.2011]: Thermoelectrics' Great Power, Key Ingredient in Bone's Nanostructure  

Broader source: Energy.gov [DOE]

Advanced thermoelectric materials could be used to develop vehicle exhaust systems that convert exhaust heat into electricity, concentrate solar energy for power generation and recover waste heat from industrial processes.

235

Exploring electron and phonon transport at the nanoscale for thermoelectric energy conversion  

E-Print Network [OSTI]

Thermoelectric materials are capable of solid-state direct heat to electricity energy conversion and are ideal for waste heat recovery applications due to their simplicity, reliability, and lack of environmentally harmful ...

Minnich, Austin Jerome

2011-01-01T23:59:59.000Z

236

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

237

330 IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, VOL. 30, NO. 2, JUNE 2007 Enhancing Performance of Thermoelectric Coolers  

E-Print Network [OSTI]

material-based research initiatives to further compound the benefits. Index Terms--Thermoelectric coolers Performance of Thermoelectric Coolers Through the Application of Distributed Control R. D. Harvey, D. G. Walker, and K. D. Frampton Abstract--The primary drawback of thermoelectric coolers (TECs

Walker, D. Greg

238

Calculation of Nonlinear Thermoelectric Coefficients of InAs1xSbx Using Monte Carlo Method  

E-Print Network [OSTI]

and increase the cooling power density when a lightly doped thermoelectric material is under a large electrical with local nonequi- librium charge distribution. InAs1Ã?xSbx is a favorable thermoelectric materialCalculation of Nonlinear Thermoelectric Coefficients of InAs1Ã?xSbx Using Monte Carlo Method RAMIN

239

Complex oxides useful for thermoelectric energy conversion  

DOE Patents [OSTI]

The invention provides for a thermoelectric system comprising a substrate comprising a first complex oxide, wherein the substrate is optionally embedded with a second complex oxide. The thermoelectric system can be used for thermoelectric power generation or thermoelectric cooling.

Majumdar, Arunava (Orinda, CA); Ramesh, Ramamoorthy (Moraga, CA); Yu, Choongho (College Station, TX); Scullin, Matthew L. (Berkeley, CA); Huijben, Mark (Enschede, NL)

2012-07-17T23:59:59.000Z

240

The Industrialization of Thermoelectric Power Generation Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Engineering and Materials for Automotive Thermoelectric Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Materials for Automotive Thermoelectric Applications Engineering and Materials for Automotive Thermoelectric Applications Design and optimization of TE exhaust generator,...

242

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Publications Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation...

243

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

244

The thermoelectric process  

SciTech Connect (OSTI)

The efficiency of thermoelectric technology today is limited by the properties of available thermoelectric materials and a wide variety of new approaches to developing better materials have recently been suggested. The key goal is to find a material with a large ZT, the dimensionless thermoelectric figure of merit. However, if an analogy is drawn between thermoelectric technology and gas-cycle engines then selecting different materials for the thermoelements is analogous to selecting a different working gas for the mechanical engine. And an attempt to improve ZT is analogous to an attempt to improve certain thermodynamic properties of the working-gas. An alternative approach is to focus on the thermoelectric process itself (rather than on ZT), which is analogous to considering alternate cycles such as Stirling vs. Brayton vs. Rankine etc., rather than merely considering alternative gases. Focusing on the process is a radically different approach compared to previous studies focusing on ZT. Aspects of the thermoelectric process and alternative approaches to efficient thermoelectric conversion are discussed.

Vining, C.B.

1997-07-01T23:59:59.000Z

245

Significant enhancement in thermoelectric properties of polycrystalline Pr-doped SrTiO{sub 3??} ceramics originating from nonuniform distribution of Pr dopants  

SciTech Connect (OSTI)

Recently, we have reported a significant enhancement (>70% at 500?°C) in the thermoelectric power factor (PF) of bulk polycrystalline Pr-doped SrTiO{sub 3} ceramics employing a novel synthesis strategy which led to the highest ever reported values of PF among doped polycrystalline SrTiO{sub 3}. It was found that the formation of Pr-rich grain boundary regions gives rise to an enhancement in carrier mobility. In this Letter, we investigate the electronic and thermal transport in Sr{sub 1?x}Pr{sub x}TiO{sub 3} ceramics in order to determine the optimum doping concentration and to evaluate the overall thermoelectric performance. Simultaneous enhancement in the thermoelectric power factor and reduction in thermal conductivity in these samples resulted in more than 30% improvement in the dimensionless thermoelectric figure of merit (ZT) for the whole temperature range over all previously reported maximum values. Maximum ZT value of 0.35 was obtained at 500?°C.

Dehkordi, Arash Mehdizadeh, E-mail: amehdiz@g.clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Bhattacharya, Sriparna; He, Jian [Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States); Alshareef, Husam N. [Materials Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900 (Saudi Arabia); Tritt, Terry M., E-mail: ttritt@clemson.edu [Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634 (United States); Department of Physics and Astronomy, Clemson University, Clemson, South Carolina 29634 (United States)

2014-05-12T23:59:59.000Z

246

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network [OSTI]

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Today’s thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics don’t need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

247

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1xZn2Sb2**  

E-Print Network [OSTI]

Zintl Phases as Thermoelectric Materials: Tuned Transport Properties of the Compounds CaxYb1±xZn2Sb. Introduction Because of their ability to convert waste heat into electricity, thermoelectric materials have in efficiency, thermoelectric materials could pro- vide a substantial amount of electrical power from automotive

248

Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared to Differently Oriented Channels  

E-Print Network [OSTI]

The ability of a material to convert heat into electricity is measured by the dimensionless thermoelectric (TE1 Large Thermoelectric Power Factor in P-type Si (110)/[110] Ultra-Thin-Layers Compared the thermoelectric power factor of ultra-thin-body p-type Si layers of thicknesses from W=3nm up to 10nm. We show

249

Thermoelectric Properties of n-type Polycrystalline BixSb2-xTe3 Alloys N. Gerovac, G. J. Snyder, and T. Caillat  

E-Print Network [OSTI]

. Introduction The best thermoelectric materials are semiconductors which limit the movement of heat conducting. The quality of a thermoelectric material is described by a dimensionless figure-of-merit, ZT, which depends thermoelectric materials have been made from (Bi,Sb)2Te3 compounds. In polycrystalline form, meaning made up

250

STRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy consumption in the US is lost, mostly through waste  

E-Print Network [OSTI]

consumption in the US is lost, mostly through waste heat. Development on thermoelectric technologySTRUCTURE ORIGIN OF THE ENHANCED THERMOELECTRIC POWER Today approximately 60% of the energy to significant energy savings. Many recent advances in thermoelectric materials are attributed to nanoscale

Homes, Christopher C.

251

2008 DOE FCVT Merit Review: BSST Waste Heat Recovery Program...  

Broader source: Energy.gov (indexed) [DOE]

Documents & Publications Automotive Waste Heat Conversion to Power Program Thermoelectric Waste Heat Recovery Program for Passenger Vehicles Development of a 100-Watt High...

252

Solar Thermoelectric Energy Conversion  

Broader source: Energy.gov (indexed) [DOE]

SOLID-STATE SOLAR-THERMAL ENERGY CONVERSION CENTER NanoEngineering Group Solar Thermoelectric Energy Conversion Gang Chen, 1 Daniel Kraemer, 1 Bed Poudel, 2 Hsien-Ping Feng, 1 J....

253

ITP Industrial Distributed Energy: Cooling, Heating, and Power...  

Broader source: Energy.gov (indexed) [DOE]

United States Government or any agency thereof. Abstract Investigators analyzed the energy consumption and end-user economics of Cooling, Heating, and Power (CHP) systems in...

254

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

255

Rational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties  

E-Print Network [OSTI]

, which can generate electricity by recovering waste heat or be used as solid-state cooling devices, have-based thermoelectric power generation and solid-state cooling devices with superior performance in a reliableRational Synthesis of Ultrathin n-Type Bi2Te3 Nanowires with Enhanced Thermoelectric Properties

Xu, Xianfan

256

Summary of the nano-related thermoelectric activities in BGU for the year of 2011  

E-Print Network [OSTI]

energy into electrical energy, plays an important role, particularly for the exploitation of waste heat of thermoelectric (TE) power generation. Alloys of type IV-VI, namely PbTe-, GeTe-, and SnTe- based, with ZT(=2 /)>1Summary of the nano-related thermoelectric activities in BGU for the year of 2011 Dr. Yaniv

Vardi, Amichay

257

Atomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth/Antimony Tellurides  

E-Print Network [OSTI]

Supporting Information ABSTRACT: Material design for direct heat-to-electricity conversion with substantial that the thermoelectric conversion can be interiorly achieved at the atomic steps of a homogeneous medium by directAtomic Layer-by-Layer Thermoelectric Conversion in Topological Insulator Bismuth

Jo, Moon-Ho

258

REVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric-temperature-mapping microbial incubator  

E-Print Network [OSTI]

. [http://dx.doi.org/10.1063/1.4705748] I. INTRODUCTION Thermoelectric (TE) modules are advantageous of current flow- ing through the TE modules, heating and cooling functions of the TE modules can be generatedREVIEW OF SCIENTIFIC INSTRUMENTS 83, 045116 (2012) Multi-layer thermoelectric

Lin, Pei-Chun

259

Experimental and theoretical analysis of a thermoelectric generator  

SciTech Connect (OSTI)

The primary objectives of this study were to develop models for studying performance of a thermoelectric generator for the case of steady-state, and transient problems; and to develop a method and procedure for analyzing data taken experimentally and compare them with the theoretical results. The work is divided into primary areas that involve (i) model development and linear and nonlinear parameter estimations, (ii) experimental tests, and (iii) design and simulation. Analysis and experiments were conducted to describe the effects of the leg-surface heat loss, and the temperature difference on the performance of a thermoelectric generator. Two numerical models that treat the problem of thermoelectric generator, linear and nonlinear were developed. A Global Corporation model 5120, 120-watt thermoelectric generator system was tested in the 5-kW NMSU/PSL solar furnace at two different hot and cold junction temperatures. The developed computer models were used for design and simulation of an auto thermoelectric generator (Automobile Thermoelectric Generator) that converts waste heat from the car engine directly to the electrical power as a substitute device for the electrical generator used in cars.

Moghaddas, M.H.

1986-01-01T23:59:59.000Z

260

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communication, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of material resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, M.M.

1993-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu{sub 238} or Sr{sub 90} thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu{sub 238} or Sr{sub 90} thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications. 2 figs.

Hart, M.M.

1995-04-18T23:59:59.000Z

262

Fiber optic signal amplifier using thermoelectric power generation  

DOE Patents [OSTI]

A remote fiber optic signal amplifier for use as a repeater/amplifier, such as in transoceanic communications, powered by a Pu.sub.238 or Sr.sub.90 thermoelectric generator. The amplifier comprises a unit with connections on the receiving and sending sides of the communications system, and an erbium-doped fiber amplifier connecting each sending fiber to each receiving fiber. The thermoelectric generator, preferably a Pu.sub.238 or Sr.sub.90 thermoelectric generator delivers power to the amplifiers through a regulator. The heat exchange surfaces of the thermoelectric generator are made of materials resistant to corrosion and biological growth and are directly exposed to the outside, such as the ocean water in transoceanic communications.

Hart, Mark M. (Aiken, SC)

1995-01-01T23:59:59.000Z

263

Prescription to Improve Thermoelectric Efficiency  

E-Print Network [OSTI]

In this work, patterns in the behavior of different classes and types of thermoelectric materials are observed, and an alchemy that could help engineer a highly efficient thermoelectric is proposed. A method based on cross-correlation of Seebeck...

Meka, Shiv Akarsh

2012-07-16T23:59:59.000Z

264

Synthesis and evaluation of single layer, bilayer, and multilayer thermoelectric thin films  

SciTech Connect (OSTI)

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Olsen, M.L.; Foreman, R.J.; Summers, L.J. [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S.; Hicks, L.D. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Physics

1995-01-20T23:59:59.000Z

265

Synthesis and Evaluation of Single Layer, Bilayer, and Multilayer Thermoelectric Thin Films  

DOE R&D Accomplishments [OSTI]

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or one-dimensional (ID) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering thermoelectric and barrier materials onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum well concept and gain insight into relevant transport mechanisms. If successful, research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J. C.; Barbee, T. W. Jr.; Chapline, G. C. Jr.; Olsen, M. L.; Foreman, R. J.; Summers, L. J.; Dresselhaus, M. S.; Hicks, L. D.

1995-01-20T23:59:59.000Z

266

New approaches to interfacing thermoelectric generators to the load bus in a nuclear space vehicle  

E-Print Network [OSTI]

reactor and the thermoelectrics. This type oi' system wastes the excess power generated as heat. Heat dissipation in space is very difficult. In the reference design TCAs (thermoelectric converter assembly) and shunt regulators connect directly... ballast load. The variable ballast compensa, tes 1' or the variation of the load. This type of control philosophy is very inefficient. Of the power generated, some is wasted in the variable ballast by heat dissipation. New architectures of controlling...

Brohlin, Paul LeRoy

1988-01-01T23:59:59.000Z

267

ITP Industrial Distributed Energy: Promoting Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

1 Promoting Combined Heat and Power (CHP) for Multifamily Properties Robert Groberg, U.S. Department of Housing and Urban Development (HUD) Mike MacDonald and Patti Garland, Oak...

268

ITP Industrial Distributed Energy: HUD Combined Heat and Power...  

Broader source: Energy.gov (indexed) [DOE]

HUD COMBINED HEAT AND POWER (CHP) GUIDE 3 INTRODUCTION TO THE LEVEL 2 ANALYSIS TOOL FOR MULTIFAMILY BUILDINGS PREPARED FOR U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT BY U.S....

269

Indentation of a punch with chemical or heat distribution at...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the subject of three-dimensional problems involving the combined heating and loading of solid surface, we mention here only few key works. Reference 42 presented a general theory...

270

ITP Industrial Distributed Energy: Combined Heat & Power (CHP...  

Broader source: Energy.gov (indexed) [DOE]

City OpYear Prime Mover Capacity (kW) Fuel Class 1 Sparks Regional Medical Center AR Fort Smith 1986 ERENG 8,500 NG 2 Tucson Medical Center Heating & Cooling AZ Tucson 1989 CT 750...

271

LIQUID-FLUIDIZED-BED HEAT' EXCHANGER FLOW DISTRIBUTION MODELS  

Office of Scientific and Technical Information (OSTI)

rods, and shell-side heat transfer coefficients were calculated u s i n g "Newton's Law o f Cooling": a c The horizontal tubes showed a definite angular dependence of the...

272

Heat storage and distribution inside passive-solar buildings  

SciTech Connect (OSTI)

Passive solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed. Design guidelines are given.

Balcomb, J.D.

1983-05-01T23:59:59.000Z

273

Thermoelectric energy conversion The objective of this laboratory is for you to explore the physics and practical aspects of solidsate heat  

E-Print Network [OSTI]

exchanger · Two dc power supplies; power supply for running the cooling fan · Thermocouples, heaters, load: Peltier current and solidstate heat pumps · Explore heat Peltier cooling and heating by applying current for this module from the maximum cooling. · Measure the Peltier coefficient of the module by balancing

Braun, Paul

274

New materials and devices for thermoelectric applications  

SciTech Connect (OSTI)

The development of new, more efficient materials and devices is the key to expanding the range of application of thermoelectric generators and coolers. In the last couple of years, efforts to discover breakthrough thermoelectric materials have intensified, in particular in the US. Recent results on novel materials have already demonstrated that dimensionless figure of merit ZT values 40 to 50% larger than 1.0, the current limit, could be obtained in the 475 to 950 K temperature range. New terrestrial power generation applications have been recently described in the literature. There exists a wide range of heat source temperatures for these applications, from low grade waste heat, at 325--350 K, up to 850 to 1,100 K, such as in the heat recovery from a processing plant of combustible solid waste. The automobile industry has also recently developed a strong interest in a waste exhaust heat recovery power source operating in the 375--750 K temperature range to supplement or replace the alternator and thus decrease fuel consumption. Based on results achieved to date at the Jet Propulsion Laboratory (JPL) on novel materials, the performance of an advanced segmented generator design operating in a large 300--945 K temperature gradient is predicted to achieve about 15% conversion efficiency. This would be a very substantial improvement over state-of-the-art (SOA) thermoelectric power converters. Such a terrestrial power generator could be using waste heat or liquid fuels as a heat source. High performance radioisotope generators (RTG) are still of interest for deep space missions but the shift towards small, light spacecraft has developed a need for advanced power sources in the watt to milliwatt range. The powerstick concept would provide a study, compact, lightweight and low cost answer to this need. The development of thin film thermoelectric devices also offer attractive possibilities. The combination of semiconductor technology, thermoelectric films and high thermal conductivity materials could lead to the fabrication of light weight, high voltage devices with high cooling or high electrical power density characteristics. The use of microcoolers for the thermal management of power electronics is of particular interest.

Fleurial, J.P.; Borshchevsky, A.; Caillat, T.; Ewell, R. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

275

The Electrodeposition of PbTe Nanowires for Thermoelectric Applications  

E-Print Network [OSTI]

of thermoelectrics. Radioisotope Thermoelectric Generatorthermoelectric generators use radiation from the sun instead of a radioisotope

Hillman, Peter

2012-01-01T23:59:59.000Z

276

Thermoelectric Development at Hi-Z Technology  

SciTech Connect (OSTI)

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely. The TEG is comprised of 72 TE modules, which are capable of producing 1kW of electrical power at 30 V DC during nominal engine operation. Currently the upgraded generator has completed testing in a test cell and starting from August 2001 will be tested on a Diesel truck under typical road and environmental conditions. It is expected that the TEG will be able to supplement the existing shaft driven alternator, resulting in significant fuel saving, generating additional power required by the truck?s accessories. The electronic and thermal properties of bulk materials are altered when they are incorporated into quantum wells. Two-dimensional quantum wells have been synthesized by alternating layers of B4C and B9C in one system and alternating layers of Si and Si0.8Ge0.2 in another system. Such nanostructures are being investigated as candidate thermoelectric materials with high figures of merit (Z). The predicted enhancement is attributed to the confined motion of charge carriers and phonons in the two dimensions and separating them from the ion scattering centers. Multilayer quantum well materials development continues with the fabrication of thicker films, evaluation of various substrates to minimize bypass heat loss, and bonding techniques to minimize high contact resistance. Quantum well thermoelectric devices with N-type Si/Si0.8Ge0.2 and P-type B4C/B9C have been fabricated from these films. The test results generated continue to indicate that much higher thermoelectric efficiencies can be achieved in the quantum wells compared to the bulk materials.

Kushch, Aleksandr

2001-08-05T23:59:59.000Z

277

A study of temperature distributions due to conduction reservoir heating  

E-Print Network [OSTI]

of thermal conductivity with temperature. He showed this effect could be very important in considering a material such as oil shale, where the conductivity of the raw shale may be five times as great as that of the spent shale. Neglecting this variation... conduction model to investigate the in place heating of oil shale by hot gases forced through a fracture. The heat injection rate he considered is much less than would normally be employed for steam injection into permeable reservoirs and is only about...

Connaughton, Charles Richard

2012-06-07T23:59:59.000Z

278

Heat storage and distribution inside passive-solar buildings  

SciTech Connect (OSTI)

Passive-solar buildings are investigated from the viewpoint of the storage of solar heat in materials of the building: walls, floors, ceilings, and furniture. The effects of the location, material, thickness, and orientation of each internal building surface are investigated. The concept of diurnal heat capacity is introduced and a method of using this parameter to estimate clear-day temperature swings is developed. Convective coupling to remote rooms within a building is discussed, including both convection through single doorways and convective loops that may exist involving a sunspace. Design guidelines are given.

Balcomb, J.D.

1983-01-01T23:59:59.000Z

279

Synthetic thermoelectric materials comprising phononic crystals  

DOE Patents [OSTI]

Synthetic thermoelectric materials comprising phononic crystals can simultaneously have a large Seebeck coefficient, high electrical conductivity, and low thermal conductivity. Such synthetic thermoelectric materials can enable improved thermoelectric devices, such as thermoelectric generators and coolers, with improved performance. Such synthetic thermoelectric materials and devices can be fabricated using techniques that are compatible with standard microelectronics.

El-Kady, Ihab F; Olsson, Roy H; Hopkins, Patrick; Reinke, Charles; Kim, Bongsang

2013-08-13T23:59:59.000Z

280

Local heat transfer distribution in a triangular channel with smooth walls and staggered ejection holes  

E-Print Network [OSTI]

Transient liquid crystal experiments have been conducted to determine the distribution of the local heat transfer coefficient in a triangular channel with smooth wails and ejection holes along one or two of the wails. The end of the test channel...

Moon, Sung-Won

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Sinc Approximation of the Heat Distribution on the Boundary of a Two-Dimensional Finite Slab  

E-Print Network [OSTI]

We consider the two-dimensional problem of recovering globally in time the heat distribution on the surface of a layer inside of a heat conducting body from two interior temperature measurements. The problem is ill-posed. The approximation function is represented by a two-dimensional Sinc series and the error estimate is given.

Dinh, Alain Pham Ngoc; Trong, Dang Duc

2007-01-01T23:59:59.000Z

282

A study of heat distribution in human skin: use of Infrared Thermography  

E-Print Network [OSTI]

A study of heat distribution in human skin: use of Infrared Thermography Domoina Ratovoson, Franck of this study is to be able to act quickly on body burns, to avoid propagating lesions due to heat diffusion the temperature change using an infra-red camera. Blood circulation in the veins was seen to clearly influence

Paris-Sud XI, Université de

283

Inferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica  

E-Print Network [OSTI]

-flow measurements are rare or entirely absent. This will result in a smooth global heat-flow map that may proveInferring surface heat flux distributions guided by a global seismic model: particular application to Antarctica Nikolai M. Shapiro*, Michael H. Ritzwoller Department of Physics, Center for Imaging the Earth

Shapiro, Nikolai

284

Thermoelectrically cooled water trap  

DOE Patents [OSTI]

A water trap system based on a thermoelectric cooling device is employed to remove a major fraction of the water from air samples, prior to analysis of these samples for chemical composition, by a variety of analytical techniques where water vapor interferes with the measurement process. These analytical techniques include infrared spectroscopy, mass spectrometry, ion mobility spectrometry and gas chromatography. The thermoelectric system for trapping water present in air samples can substantially improve detection sensitivity in these analytical techniques when it is necessary to measure trace analytes with concentrations in the ppm (parts per million) or ppb (parts per billion) partial pressure range. The thermoelectric trap design is compact and amenable to use in a portable gas monitoring instrumentation.

Micheels, Ronald H. (Concord, MA)

2006-02-21T23:59:59.000Z

285

A PC simulation of heat transfer and temperature distribution in a circulating wellbore  

E-Print Network [OSTI]

A PC SIMULATION OF HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN A CIRCULATING WELLBORE A Thesis by ROBERT DUANE PIERCE Submitted to the Graduate College of Texas ARM University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE December 1987 Major Subject: Petroleum Engineering A PC SIMULATION OF HEAT TRANSFER AND TEMPERATURE DISTRIBUTION IN A CIRCULATING WELLBORE A Thesis by ROBERT DUANE PIERCE Approved as to style and content by; Hans C . Juvkam...

Pierce, Robert Duane

1987-01-01T23:59:59.000Z

286

Heat transfer pathways in underfloor air distribution (UFAD) systems  

E-Print Network [OSTI]

room cooling load, room air setpoint, and supply air temper-distribution of room cooling load into the supply plenum orof room cooling load between the underfloor supply plenum

Bauman, F.; Jin, H.; Webster, T.

2006-01-01T23:59:59.000Z

287

Industrial Distributed Energy: Combined Heat & Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indiana College Provides Training for|

288

Modeling and characterization of thermoelectric properties of SiGe nanocomposites  

E-Print Network [OSTI]

Direct energy conversion between thermal and electrical energy based on thermoelectric effects is attractive for potential applications in waste heat recovery and environmentally-friendly refrigeration. The energy conversion ...

Lee, Hohyun, 1978-

2009-01-01T23:59:59.000Z

289

Nanostructured thin film thermoelectric composite materials using conductive polymer PEDOT:PSS  

E-Print Network [OSTI]

Thermoelectric materials have the ability to convert heat directly into electricity. This clean energy technology has advantages over other renewable technologies in that it requires no sunlight, has no moving parts, and ...

Kuryak, Chris A. (Chris Adam)

2013-01-01T23:59:59.000Z

290

Nanoscale Engineering for the Design of Efficient Inorganic-Organic Hybrid Thermoelectrics  

E-Print Network [OSTI]

Research aimed at enhancing the thermoelectric performance of semiconductors comprised of only earth-abundant elements has recently come under renewed focus as these materials systems offer a cost-effective path for scavenging waste heat. In light...

Brockway, Lance Robert

2014-04-14T23:59:59.000Z

291

Thermoelectric Power Generation as an Alternative Green Technology of Energy Harvesting  

E-Print Network [OSTI]

The vast majority of heat that is generated from computer processor chips to car engines to electric power plants, the need to use of excess heat creates a major source of inefficiency. Energy harvesters are thermoelectric materials which are solid-state energy converters used to convert waste heat into electricity. Significant improvements to the thermoelectric materials measured by figure of merit (ZT).forconverting waste-heat energy directly into electrical power, application of this alternative green technology can be made and also it will improve the overall efficiencies of energy conversion systems. In this paper, the basic concepts of thermoelectric material and its power generation is presented and recent patents of thermoelectric material are reviewed and discussed.

Ravi R. Nimbalkar; Sanket S. Kshirsagar

292

Radioisotope thermoelectric generator reliability and safety  

SciTech Connect (OSTI)

There are numerous occasions when a planetary mission requires energy in remote areas of the solar system. Anytime power is required much beyond Mars or the Asteroid Belts, solar power is not an option. The radioisotope thermoelectric generator (RTG) was developed for such a mission requirement. It is a relatively small and lightweight power source that can produce power under adverse conditions. Just this type of source has become the backbone of the power system for far outer plant exploration. Voyagers I and II are utilizing RTGs, which will soon power the Galileo spacecraft to Jupiter and the Ulysses spacecraft to study the solar poles. The paper discusses RTG operation including thermoelectric design, converter design, general-purpose heat source; RTG reliability including design, testing, experience, and launch approval; and RTG safety issues and methods of ensuring safety.

Campbell, R.; Klein, J.

1989-01-01T23:59:59.000Z

293

Green thermoelectrics: Observation and analysis of plant thermoelectric response  

E-Print Network [OSTI]

Plants are sensitive to thermal and electrical effects; yet the coupling of both, known as thermoelectricity, and its quantitative measurement in vegetal systems never were reported. We recorded the thermoelectric response of bean sprouts under various thermal conditions and stress. The obtained experimental data unambiguously demonstrate that a temperature difference between the roots and the leaves of a bean sprout induces a thermoelectric voltage between these two points. Basing our analysis of the data on the force-flux formalism of linear response theory, we found that the strength of the vegetal equivalent to the thermoelectric coupling is one order of magnitude larger than that in the best thermoelectric materials. Experimental data also show the importance of the thermal stress variation rate in the plant's electrophysiological response. Therefore, thermoelectric effects are sufficiently important to partake in the complex and intertwined processes of energy and matter transport within plants.

Goupil, C; Khamsing, A; Apertet, Y; Bouteau, F; Mancuso, S; Patino, R; Lecoeur, Ph

2015-01-01T23:59:59.000Z

294

Combustion-thermoelectric tube  

SciTech Connect (OSTI)

In direct combustion-thermoelectric energy conversion, direct fuel injection and reciprocation of the air flowing in a solid matrix are combined with the solid conduction to allow for obtaining super-adiabatic temperatures at the hot junctions. While the solid conductivity is necessary, the relatively large thermal conductivity of the available high-temperature thermoelectric materials (e.g., Si-Ge alloys) results in a large conduction loss from the hot junctions and deteriorates the performance. Here a combustion-thermoelectric tube is introduced and analyzed. Radially averaged temperatures are used for the fluid and solid phases. A combination of external cooling of the cold junctions, and direct injection of the fuel, has been used to increase the energy conversion efficiency for low thermal conductivity, high-melting temperature thermoelectric materials. The parametric study (geometry, flow, stoichiometry, materials) shows that with the current high figure of merit, high temperature Si{sub 0.7}Ge{sub 0.3} properties, a conversion efficiency of about 11% is achievable. With lower thermal conductivities for these high-temperature materials, efficiencies about 25% appear possible. This places this energy conversion in line with the other high efficiency, direct electric power generation methods.

Park, C.W.; Kaviany, M.

1999-07-01T23:59:59.000Z

295

Large-dimension, high-ZT Thermoelectric Nanocomposites for High-Power High-efficiency Waste Heat Recovery for Electricity Generation  

Broader source: Energy.gov [DOE]

Large-dimension, high-ZT BiTe and Pb-based nanocomposites produced with a low-cost scalable process were used for development and testing of TE module prototypes, and demonstration of a waste heat recovery system

296

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S. Bozin,1 S. M. Haile,2 G. J. Snyder,2 and S. J. L. Billinge1,  

E-Print Network [OSTI]

Nanoscale -structural domains in the phonon-glass thermoelectric material -Zn4Sb3 H. J. Kim,1 E. S April 2007 A study of the local atomic structure of the promising thermoelectric material -Zn4Sb3, using Thermoelectric materials allow for direct conversion of heat into electrical energy and vice versa. They hold

297

Proactive Strategies for Designing Thermoelectric Materials for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Proactive Strategies for Designing Thermoelectric Materials for Power Generation Proactive Strategies for Designing Thermoelectric Materials for Power Generation 2009 DOE Hydrogen...

298

Modeling studies of heat transfer and phase distribution in two-phase geothermal reservoirs  

SciTech Connect (OSTI)

Phase distribution as well as mass flow and heat transfer behavior in two-phase geothermal systems have been studied by numerical modeling. A two-dimensional porous-slab model was used with a non-uniform heat flux boundary conditions at the bottom. Steady-state solutions are obtained for the phase distribution and heat transfer behavior for cases with different mass of fluid (gas saturation) in place, permeabilities, and capillary pressures. The results obtained show very efficient heat transfer in the vapor-dominated zone due to the development of heat pipes and near-uniform saturations. The phase distribution below the vapor-dominated zone depends on permeability. For relatively high-permeability systems, single-phase liquid zones prevail, with convection providing the energy throughput. For lower permeability systems, a two-phase liquid-dominated zone develops, because single-phase liquid convection is not sufficient to dissipate heat released from the source. These results are consistent with observations from the field, where most high-temperature liquid-dominated two-phase systems have relatively low permeabilities e.g. Krafla, Iceland; Kenya; Baca, New Mexico. The numerical results obtained also show that for high heat flow a high-temperature single-phase vapor zone can develop below a typical (240 C) vapor-dominated zone, as has recently been found at the Geysers, California, and Larderello, Italy.

Lai, C.H.; Bodvarsson, G.S.; Truesdell, A.H. (Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.)

1994-02-01T23:59:59.000Z

299

Real-time imaging of the spatial distribution of rf-heating in NMR samples during broadband decoupling  

E-Print Network [OSTI]

by the temperature control system. Moreover, as the heating is spatially inhomogeneous, higher temperature increases of the numerical simulations. Since electric fields manifest themselves by rf-heating, the E-field distributionReal-time imaging of the spatial distribution of rf-heating in NMR samples during broadband

Wider, Gerhard

300

Microscreen radiation shield for thermoelectric generator  

DOE Patents [OSTI]

The present invention provides a microscreen radiation shield which reduces radiative heat losses in thermoelectric generators such as sodium heat engines without reducing the efficiency of operation of such devices. The radiation shield is adapted to be interposed between a reaction zone and a means for condensing an alkali metal vapor in a thermoelectric generator for converting heat energy directly to electrical energy. The radiation shield acts to reflect infrared radiation emanating from the reaction zone back toward the reaction zone while permitting the passage of the alkali metal vapor to the condensing means. The radiation shield includes a woven wire mesh screen or a metal foil having a plurality of orifices formed therein. The orifices in the foil and the spacing between the wires in the mesh is such that radiant heat is reflected back toward the reaction zone in the interior of the generator, while the much smaller diameter alkali metal atoms such as sodium pass directly through the orifices or along the metal surfaces of the shield and through the orifices with little or no impedance.

Hunt, Thomas K. (Ann Arbor, MI); Novak, Robert F. (Farmington Hills, MI); McBride, James R. (Ypsilanti, MI)

1990-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Proceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26-29, 1997 Skutterudites: An Update  

E-Print Network [OSTI]

be meaningful for near room temperature applications [1], thermoelectric power generators which could operate technologies. This is true in particular for high power (over 200 W) automobile waste heat recovery and spaceProceedings of the XVI International Conference on Thermoelectrics, Dresden, Germany, August 26

302

High-temperature stability, structure and thermoelectric properties of CaMn1xNbxO3 phases  

E-Print Network [OSTI]

technologies such as solid oxide fuel cells, thermoelectric (TE) modules and high-temperature superconductorsHigh-temperature stability, structure and thermoelectric properties of CaMn1Ã?xNbxO3 phases Laura diffraction and electron diffraction data. Thermogravi- metric heating/cooling studies showed a reversible

303

The thermoelectric properties of Ge/SiGe modulation doped superlattices A. Samarelli, L. Ferre Llin, S. Cecchi, J. Frigerio, T. Etzelstorfer et al.  

E-Print Network [OSTI]

. [http://dx.doi.org/10.1063/1.4811228] I. INTRODUCTION Thermoelectric generators use the Seebeck effect to con- vert thermal energy into electrical energy. Since waste heat is abundant, there is renewed,3 The major use of thermoelectric materials is as heat pumps for cooling applications where the Peltier effect

Hague, Jim

304

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect (OSTI)

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

305

High Temperature Experimental Characterization of Microscale Thermoelectric Effects  

E-Print Network [OSTI]

Mission Radioisotope Thermoelectric Generator (MMRTG) FactFigure 1.1: Radioisotope thermoelectric generator used byhand side radioisotope thermoelectric generator reflectivity

Favaloro, Tela

2014-01-01T23:59:59.000Z

306

Development of a Thermoelectric Device for an Automotive Zonal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Thermoelectric Device for an Automotive Zonal HVAC System Development of a Thermoelectric Device for an Automotive Zonal HVAC System Presents development of a thermoelectric...

307

NSF/DOE Thermoelectric Partnership: Inorganic-Organic Hybrid...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Inorganic-Organic Hybrid Thermoelectrics NSFDOE Thermoelectric Partnership: Inorganic-Organic Hybrid Thermoelectrics 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle...

308

High performance thermoelectric nanocomposite device  

DOE Patents [OSTI]

A thermoelectric device includes a nanocomposite material with nanowires of at least one thermoelectric material having a predetermined figure of merit, the nanowires being formed in a porous substrate having a low thermal conductivity and having an average pore diameter ranging from about 4 nm to about 300 nm.

Yang, Jihui (Lakeshore, CA); Snyder, Dexter D. (Birmingham, MI)

2011-10-25T23:59:59.000Z

309

Office Building Uses Ice Storage, Heat Recovery, and Cold-Air Distribution  

E-Print Network [OSTI]

Ice storage offers many opportunities to use other tcchnologies, such as heat recovery and cold-air distribution. In fact, by using them, the designer can improve the efficiency and lower the construction cost of an ice system. This paper presents a...

Tackett, R. K.

1989-01-01T23:59:59.000Z

310

Sodium heat engine electrical feedthrough  

DOE Patents [OSTI]

A thermoelectric generator device which converts heat energy to electrical energy is disclosed. An alkali metal is used with a solid electrolyte and a hermetically sealed feedthrough structure. 4 figs.

Weber, N.

1985-03-19T23:59:59.000Z

311

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

312

Manufacture of thermoelectric generator structures by fiber drawing  

DOE Patents [OSTI]

Methods of manufacturing a thermoelectric generator via fiber drawing and corresponding or associated thermoelectric generator devices are provided.

McIntyre, Timothy J; Simpson, John T; West, David L

2014-11-18T23:59:59.000Z

313

NSF/DOE Thermoelectrics Partnership: Purdue ? GM Partnership...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Partnership: Automotive Thermoelectric Modules with Scalable Thermo- and Electro-Mechanical Interfaces NSFDOE Thermoelectics Partnership: Thermoelectrics for Automotive Waste...

314

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M. A. H.; Hinckley, J. E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-15T23:59:59.000Z

315

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel. {copyright} {ital 1998 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory, P.O. Box 1663, MS-E502, Los Alamos, New Mexico 87545 (United States)

1998-01-01T23:59:59.000Z

316

Radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system (PMS). The results of this test indicated that impact of the RTG by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the convertor housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1998-12-31T23:59:59.000Z

317

Simple method for highlighting the temperature distribution into a liquid sample heated by microwave power field  

SciTech Connect (OSTI)

Microwave induced heating is widely used in medical treatments, scientific and industrial applications. The temperature field inside a microwave heated sample is often inhomogenous, therefore multiple temperature sensors are required for an accurate result. Nowadays, non-contact (Infra Red thermography or microwave radiometry) or direct contact temperature measurement methods (expensive and sophisticated fiber optic temperature sensors transparent to microwave radiation) are mainly used. IR thermography gives only the surface temperature and can not be used for measuring temperature distributions in cross sections of a sample. In this paper we present a very simple experimental method for temperature distribution highlighting inside a cross section of a liquid sample, heated by a microwave radiation through a coaxial applicator. The method proposed is able to offer qualitative information about the heating distribution, using a temperature sensitive liquid crystal sheet. Inhomogeneities as smaller as 1°-2°C produced by the symmetry irregularities of the microwave applicator can be easily detected by visual inspection or by computer assisted color to temperature conversion. Therefore, the microwave applicator is tuned and verified with described method until the temperature inhomogeneities are solved.

Surducan, V.; Surducan, E.; Dadarlat, D. [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, Cluj-Napoca (Romania)] [National Institute for Research and Development of Isotopic and Molecular Technologies, 65-103 Donath Street, Cluj-Napoca (Romania)

2013-11-13T23:59:59.000Z

318

Heat flow and subsurface temperature distributions in central and western New York. Volume 2  

SciTech Connect (OSTI)

Existing data in western and central New York indicates the possibility of a low-temperature, direct-use geothermal resource. This report evaluates the heat flow and provides a representation of temperatures at depth in this area. This has been done by: (1) analyzing known temperature distributions, (2) measuring the thermal conductivity of sedimentary rock units. Based on this information, areas of higher-than-normal heat flow and temperatures in possible geothermal source reservoirs are described to aid in targeting areas for the exploitation of geothermal energy in New York.

Hodge, D.S.; Fromm, K.A.

1982-08-01T23:59:59.000Z

319

Thermoelectric properties of two-dimensional topological insulators doped with nonmagnetic impurities  

SciTech Connect (OSTI)

We present a theoretical study on the thermoelectric properties of two-dimensional topological insulators (2DTIs) doped with nonmagnetic impurities. We develop a tractable model to calculate the electronic band structure without additional input parameters and to evaluate the thermoelectric properties of 2DTIs based on CdTe/HgTe quantum wells. We find that with increasing the doping concentration of nonmagnetic impurity, the edge states dominate the thermoelectric transport and the bulk-state conduction is largely suppressed. For typical sample parameters, the thermoelectric figure of merit ZT (a quantity used to characterize the conversion efficiency of a thermoelectric device between the heat and electricity) can be much larger than 1, which is a great advance over conventional thermoelectric materials. Furthermore, we show that with decreasing the 2DTI ribbon width or the Hall-bar width, ZT can be considerably further improved. These results indicate that the CdTe/HgTe 2DTIs doped with nonmagnetic impurities can be potentially applied as high-efficiency thermoelectric materials and devices.

Li, L. L., E-mail: lllihfcas@foxmail.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Xu, W., E-mail: wenxu-issp@aliyun.com [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Department of Physics, Yunnan University, Kunming 650091 (China)

2014-07-07T23:59:59.000Z

320

Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems  

SciTech Connect (OSTI)

The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

2009-01-11T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Atomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews,ab  

E-Print Network [OSTI]

electrical power is generated through the scavenging of waste heat. The efficiency of this conversion the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features canAtomic-level control of the thermoelectric properties in polytypoid nanowires Sean C. Andrews

Yang, Peidong

322

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure. {copyright} {ital 1997 American Institute of Physics.}

Reimus, M.A.; Hinckley, J.E. [Los Alamos National Laboratory P.O. Box 1663, MS-E502 Los Alamos, New Mexico87545 (United States)

1997-01-01T23:59:59.000Z

323

End-on radioisotope thermoelectric generator impact tests  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of [sup 238]Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). The modular GPHS design was developed to address both survivability during launch abort and return from orbit. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hhinckley, J.E.

1997-01-01T23:59:59.000Z

324

Optimal working conditions for thermoelectric generators with realistic thermal coupling  

E-Print Network [OSTI]

We study how maximum output power can be obtained from a thermoelectric generator(TEG) with nonideal heat exchangers. We demonstrate with an analytic approach based on a force-flux formalism that the sole improvement of the intrinsic characteristics of thermoelectric modules including the enhancement of the figure of merit is of limited interest: the constraints imposed by the working conditions of the TEG must be considered on the same footing. Introducing an effective thermal conductance we derive the conditions which permit maximization of both efficiency and power production of the TEG dissipatively coupled to heat reservoirs. Thermal impedance matching must be accounted for as well as electrical impedance matching in order to maximize the output power. Our calculations also show that the thermal impedance does not only depend on the thermal conductivity at zero electrical current: it also depends on the TEG figure of merit. Our analysis thus yields both electrical and thermal conditions permitting optima...

Apertet, Y; Glavatskaya, O; Goupil, C; Lecoeur, P

2011-01-01T23:59:59.000Z

325

Thermoelectric energy conversion using nanostructured materials  

E-Print Network [OSTI]

High performance thermoelectric materials in a wide range of temperatures are essential to broaden the application spectrum of thermoelectric devices. This paper presents experiments on the power and efficiency characteristics ...

Chen, Gang

326

Thermoelectric Applications to Truck Essential Power  

SciTech Connect (OSTI)

The subjects covered in this report are: thermoelectrics, 1-kW generator for diesel engine; self-powered heater; power for wireless data transmission; and quantum-well thermoelectrics.

John C. Bass; Norbert B. Elsner

2001-12-12T23:59:59.000Z

327

Recent Theoretical Results for Advanced Thermoelectric Materials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials Recent Theoretical Results for Advanced Thermoelectric Materials Transport theory and first principles calculations applied to oxides, chalcogenides and...

328

Distributed energy resources customer adoption modeling with combined heat and power applications  

SciTech Connect (OSTI)

In this report, an economic model of customer adoption of distributed energy resources (DER) is developed. It covers progress on the DER project for the California Energy Commission (CEC) at Berkeley Lab during the period July 2001 through Dec 2002 in the Consortium for Electric Reliability Technology Solutions (CERTS) Distributed Energy Resources Integration (DERI) project. CERTS has developed a specific paradigm of distributed energy deployment, the CERTS Microgrid (as described in Lasseter et al. 2002). The primary goal of CERTS distributed generation research is to solve the technical problems required to make the CERTS Microgrid a viable technology, and Berkeley Lab's contribution is to direct the technical research proceeding at CERTS partner sites towards the most productive engineering problems. The work reported herein is somewhat more widely applicable, so it will be described within the context of a generic microgrid (mGrid). Current work focuses on the implementation of combined heat and power (CHP) capability. A mGrid as generically defined for this work is a semiautonomous grouping of generating sources and end-use electrical loads and heat sinks that share heat and power. Equipment is clustered and operated for the benefit of its owners. Although it can function independently of the traditional power system, or macrogrid, the mGrid is usually interconnected and exchanges energy and possibly ancillary services with the macrogrid. In contrast to the traditional centralized paradigm, the design, implementation, operation, and expansion of the mGrid is meant to optimize the overall energy system requirements of participating customers rather than the objectives and requirements of the macrogrid.

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-07-01T23:59:59.000Z

329

AbstractAbstract Improving efficiency of thermoelectric  

E-Print Network [OSTI]

-classical transport models used to predict ZT can effectively predict thermoelectric performance of bulk materials Material PerformanceThermoelectric Material Performance 0 0.5 1 1.5 2 2.5 3 1950 1960 1970 1980 1990 2000AbstractAbstract · Improving efficiency of thermoelectric energy conversion devices is a major

Walker, D. Greg

330

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials  

E-Print Network [OSTI]

CONFERENCE PROCEEDINGS Low-dimensional thermoelectric materials M. S. Dresselhaus Department of low dimensional thermoelectric materials for enhanced performance is reviewed, with particular-dimensional thermoelectric material is discussed. © 1999 American Institute of Physics. S1063-7834 99 00105-7 Professor Abram

Cronin, Steve

331

Measurements and Standards for Thermoelectric Materials  

E-Print Network [OSTI]

Measurements and Standards for Thermoelectric Materials CERAMICS Our goal is to develop standard, electrical conductivity, thermal conductivity) for thin film and bulk thermoelectric materials to enable the commercialization of these materials. Objective Impact and Customers · Thermoelectric SRMs and measurement methods

332

Electron heat conduction under non-Maxwellian distribution in hohlraum simulation  

SciTech Connect (OSTI)

An electron transport model based on the non-Maxwellian distribution f{sub 0}{proportional_to}e{sup -{nu}{sup m}} (NM model), caused by the inverse bremsstrahlung heating, is used in 1-D plane target and 2-D hohlraum simulations. In the NM model, the electron heat flux depends not only on the gradient of electron temperature T{sub e} but also on the gradients of electron number density and the index m. From 1-D simulations, the spatial distribution of T{sub e} is dune-like and T{sub e} decreases obviously in the flux-heated region, which is very different from the flat profile obtained by using the flux limit model (FL model) but similar to the experimental observations [Gregori et al., Phys. Rev. Lett. 92, 205006 (2004)] and the nonlocal results [Rosen et al., High Energy Density Phys. 7, 180 (2011)]. The reason which causes the dune-like profile of T{sub e} is discussed in the paper. From 2-D hohlraum simulations, the NM results of the plasma status, the emission peak and profile inside hohlraum are very different from the FL model results. Finally, it is hard to use an average flux limiter in the FL model to obtain the same hohlraum plasma status and emission with those under the NM model.

Wen Yihuo; Ke Lan; Pei Jungu; Heng Yong; Qing Hongzeng [Institute of Applied Physics and Computational Mathematics, Beijing 100088 (China)

2012-01-15T23:59:59.000Z

333

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Broader source: Energy.gov (indexed) [DOE]

Mark Verbrugge GM Global Powertrain & Engineering: Joshua Cowgill Jennifer Stanek Stuart Smith External R & D Partners: Marlow Industries Oak Ridge National Laboratory Future Tech...

334

Thermoelectric Generator Development for Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. deer10meisner.pdf More Documents & Publications Advanced...

335

Waste Heat Recovery Opportunities for Thermoelectric Generators |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of EnergyDepartmentDepartment ofof EnergyMotion

336

Energy Distribution of Heating Processes in the Quiet Solar Sam Krucker 1;2 and Arnold O. Benz 1  

E-Print Network [OSTI]

Energy Distribution of Heating Processes in the Quiet Solar Corona S¨am Krucker 1;2 and Arnold O region of the Sun. The emission measure is found to vary significantly in at least 85% of all the pixels is calculated from the observed increases in emission measure and the derived temperature. Heating events have

337

Synthesis and Characterization of 14-1-11 Ytterbium Manganese Antimonide Derivatives for Thermoelectric Applications  

E-Print Network [OSTI]

have made radioisotope thermoelectric generators (RTGs),Mission Radioisotope Thermoelectric Generator (MMRTG) used

Star, Kurt

2013-01-01T23:59:59.000Z

338

Distributed energy resources customer adoption modeling with combined heat and power applications  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications SCE, S.Modeling with Combined Heat and Power Applications FigureModeling with Combined Heat and Power Applications Figure

Siddiqui, Afzal S.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

339

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

combined heat and power systems. ASME Conference Proceedingsfor combined heat and power applications. ASME ConferenceRankine combined heat and power technology. ASME Conference

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

340

A Solid Core Heatpipe Reactor with Cylindrical Thermoelectric Converter Modules  

SciTech Connect (OSTI)

A nuclear space power system that consists of a solid metal nuclear reactor core with heat pipes carrying energy to a cylindrical thermoelectric converter surrounding each of the heat pipes with a heat pipe radiator surrounding the thermoelectric converter is the most simple and reliable space power system. This means no single point of failure since each heat pipe and cylindrical converter is a separate power system and if one fails it will not affect the others. The heat pipe array in the solid core is designed so that if an isolated heat pipe or even two adjacent heat pipes fail, the remaining heat pipes will still transport the core heat without undue overheating of the uranium nitride fuel. The primary emphasis in this paper is on simplicity, reliability and fabricability of such a space nuclear power source. The core and heat pipes are made of Niobium 1% Zirconium alloy (Nb1Zr), with rhenium lined fuel tubes, bonded together by hot isostatic pressure (HIPing) and with sodium as the heat pipe working fluid, can be operated up to 1250K. The cylindrical thermoelectric converter is made by depositing the constituents of the converter around a Nb1%Zr tube and encasing it in a Nb 1% Zr alloy tube and HIPing the structure to get final bonding and to produce residual compressive stresses in all brittle materials in the converter. A radiator heat pipe filled with potassium that operates at 850K is bonded to the outside of the cylindrical converter for cooling. The solid core heat pipe and cylindrical converter are mated by welding during the final assembly. A solid core reactor with 150 heat pipes with a 0.650-inch (1.65 cm) ID and a 30-inch (76.2 cm) length with an output of 8 Watts per square inch as demonstrated by the SP100 PD2 cell tests will produce about 80 KW of electrical power. An advanced solid core reactor made with molybdenum 47% rhenium alloy, with lithium heat pipes and the PD2 theoretical output of 11 watts per square inch or advanced higher temperature converter to operate at 1350K could produce a greater output of approximately 100KW.

Sayre, Edwin D. [218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Vaidyanathan, Sam [6663 Pomander Place, San Jose, CA 95120 (United States)

2006-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Department of Mechanical Engineering "Heat Under the Microscope  

E-Print Network [OSTI]

applications ranging from thermoelectric waste heat recovery to radio astronomy. BIOGRAPHY Austin MinnichDepartment of Mechanical Engineering presents "Heat Under the Microscope: Uncovering an essential role in nearly every technological application, ranging from space power generation to consumer

Militzer, Burkhard

342

Method for distributing chemicals through a fibrous material using low-headspace dielectric heating  

DOE Patents [OSTI]

System and method for diffusing chemicals rapidly and evenly into and through fibrous material, such as wood. Chemicals are introduced into the fibrous material by applying the chemicals to the fibrous material. After treating the fibrous material with the chemicals, the fibrous material is maintained under low-headspace conditions. Thermal energy or dielectric heating, such as microwave or radio frequency energy, is applied to the fibrous material. As a result, the chemicals are able to distribute evenly and quickly throughout the fibrous material.

Banerjee, Sujit (Marietta, GA); Malcolm, Earl (Bluffton, SC)

2002-01-01T23:59:59.000Z

343

Combustion Synthesis of Doped Thermoelectric Oxides  

SciTech Connect (OSTI)

Self-propagating high-temperature synthesis (SHS) was used to prepare silver doped calcium cobaltates (Ca1.24- xAgxCo1.62O3.86, x = 0.03 - 0.12) powders. SHS is a simple and economic process to synthesize ceramic materials with minimum energy requirements. The heat generated by the SHS reaction can sustain the propagation of the reaction front and convert reactants to desired products. The effect of doping level on thermoelectric properties was investigated in this study. Results show the substitution of calcium by silver decreases the thermal conductivity significantly. XRD and surface area measurements show synthesized powders are phase pure and have large specific surface areas.

Selig, Jiri [Lamar University; Lin, Sidney [Lamar University; Lin, Hua-Tay [ORNL; Johnson, D Ray [ORNL

2012-01-01T23:59:59.000Z

344

Mobile power plants : waste body heat recovery  

E-Print Network [OSTI]

Novel methods to convert waste metabolic heat into useful and useable amounts of electricity were studied. Thermoelectric, magneto hydrodynamic, and piezo-electric energy conversions at the desired scope were evaluated to ...

Gibbons, Jonathan S. (Jonathan Scott), 1979-

2004-01-01T23:59:59.000Z

345

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect (OSTI)

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

346

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect (OSTI)

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

Adkins, H.E.; Bearden, T.E.

1990-10-01T23:59:59.000Z

347

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

348

High-Efficiency Solid State Cooling Technologies: Non-Equilibrium Asymmetic Thermoelectrics (NEAT) Devices  

SciTech Connect (OSTI)

BEETIT Project: Sheetak is developing a thermoelectric-based solid state cooling system to replace typical air conditioners that use vapor compression to cool air. With noisy mechanical components, vapor compression systems use a liquid refrigerant to circulate within the air conditioner, absorb heat, and pump the heat out into the external environment. With no noisy moving parts or polluting refrigerants, thermoelectric systems rely on an electrical current being passed through the junction of the two different conducting materials to change temperature. Using advanced semiconductor technology, Sheetak is improving solid state cooling systems by using proprietary thermoelectric materials along with other innovations to achieve significant energy efficiency. Sheetak’s new design displaces compressor-based technology; improves reliability; and decreases energy usage. Sheetak’s use of semiconductor manufacturing methods leads to less material use—facilitating cheaper production.

None

2010-09-01T23:59:59.000Z

349

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1  

E-Print Network [OSTI]

Nanostructured Thermoelectric Materials: From Superlattices to Nanocomposites Ronggui Yang1. Materials with a large thermoelectric figure of merit can be used to develop efficient solid-state devices nanocomposites, aiming at developing high efficiency thermoelectric energy conversion materials. 1. Introduction

Chen, Gang

350

Role of anisotropy in noncontacting thermoelectric materials characterization  

E-Print Network [OSTI]

Role of anisotropy in noncontacting thermoelectric materials characterization Adnan H. Nayfeh by the intrinsic thermoelectric anisotropy and inhomogeneity of the material to be inspected. This article presents for non- destructive evaluation NDE and materials characterization. Most existing thermoelectric NDE

Nagy, Peter B.

351

Phase Transition Enhanced Thermoelectrics From the Resnick Sustainability Institute  

E-Print Network [OSTI]

class of thermoelectric materials, mixed ion-electron conductors. It examines a new method thermoelectric material, Cu2 Se, that shows enhanced efficiency near its structural phase transition temperature and enhancing the thermoelectric effect. Via material engineering, including electrochemical investigations

352

Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren  

E-Print Network [OSTI]

2.00pm Electron and Phonon Engineering in Nanostructured Thermoelectric Materials Zhifeng Ren Department of Physics, Boston College, Chestnut Hill, Massachusetts Abstract Thermoelectric materials a successful case for potentially large scale application using thermoelectric materials. Biography Dr Zhifeng

Levi, Anthony F. J.

353

High Reliability, High TemperatureThermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

354

Modeling study of thermoelectric SiGe nanocomposites  

E-Print Network [OSTI]

Nanocomposite thermoelectric materials have attracted much attention recently due to experimental demonstrations of improved thermoelectric properties over those of the corresponding bulk material. In order to better ...

Minnich, Austin Jerome

355

Analysis of a novel thermoelectric generator in the built environment.  

E-Print Network [OSTI]

??This study centered on a novel thermoelectric generator (TEG) integrated into the built environment. Designed by Watts Thermoelectric LLC, the TEG is essentially a novel… (more)

Lozano, Adolfo

2011-01-01T23:59:59.000Z

356

Overview of Research on Thermoelectric Materials and Devices...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Research on Thermoelectric Materials and Devices in China Overview of Research on Thermoelectric Materials and Devices in China An overview presentation of R&D projects on...

357

New nano structure approaches for bulk thermoelectric materials  

E-Print Network [OSTI]

in bulk thermoelectric materials", M. Mater. Res. Soc.Thermoelectricity", Materials Reserach Society Symposium,Johnson, D. C. , Eds. Materials Research Society: Boston,

Kim, Jeonghoon

2010-01-01T23:59:59.000Z

358

Innovative Nano-structuring Routes for Novel ThermoelectricMaterials...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking & DOS Engineering Innovative Nano-structuring Routes for Novel Thermoelectric Materials;Phonon Blocking &...

359

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications Thermoelectric HVAC and Thermal Comfort Enablers for Light-Duty Vehicle Applications 2012 DOE...

360

Development of a High-Efficiency Zonal Thermoelectric HVAC System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Progress toward Development of a High-Efficiency Zonal Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

toward Development of a High-Efficiency Zonal Thermoelectric HVAC System for Automotive Applications Progress toward Development of a High-Efficiency Zonal Thermoelectric HVAC...

362

Overview of Progress in Thermoelectric Power Generation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

363

Development of a 100-Watt High Temperature Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Generator Development of a 100-Watt High Temperature Thermoelectric Generator Test results for low and high temperature thermoelectric generators (TEG) those for a...

364

Glass-like thermal conductivity in high efficiency thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Glass-like thermal conductivity in high efficiency thermoelectric materials Glass-like thermal conductivity in high efficiency thermoelectric materials Discusses strategies to...

365

Feasibility of OnBoard Thermoelectric Generation for Improved...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Feasibility of OnBoard Thermoelectric Generation for Improved Vehicle Fuel Economy Poster presentation at the...

366

Transport Properties of Bulk Thermoelectrics An International Round-Robin Study, Part I: Seebeck Coefficient and Electrical Resistivity  

SciTech Connect (OSTI)

Recent research and development of high temperature thermoelectric materials has demonstrated great potential of converting automobile exhaust heat directly into electricity. Thermoelectrics based on classic bismuth telluride have also started to impact the automotive industry by enhancing air conditioning efficiency and integrated cabin climate control. In addition to engineering challenges of making reliable and efficient devices to withstand thermal and mechanical cycling, the remaining issues in thermoelectric power generation and refrigeration are mostly materials related. The figure-of-merit, ZT, still needs to improve from the current value of 1.0 - 1.5 to above 2 to be competitive to other alternative technologies. In the meantime, the thermoelectric community could greatly benefit from the development of international test standards, improved test methods and better characterization tools. Internationally, thermoelectrics have been recognized by many countries as an important area for improving energy efficiency. The International Energy Agency (IEA) group under the implementing agreement for Advanced Materials for Transportation (AMT) identified thermoelectric materials as an important area in 2009. This paper is Part I of the international round-robin testing of transport properties of bulk thermoelectrics. The main focuses in Part I are on two electronic transport properties: Seebeck coefficient and electrical resistivity.

Wang, Hsin [ORNL; Porter, Wallace D [ORNL; Bottner, Harold [Fraunhofer-Institute, Freiburg, Germany; Konig, Jan [Fraunhofer-Institute, Freiburg, Germany; Chen, Lidong [Chinese Academy of Sciences; Bai, Shengqiang [Chinese Academy of Sciences; Tritt, Terry M. [Clemson University; Mayolett, Alex [Corning, Inc; Senawiratne, Jayantha [Corning, Inc; Smith, Charlene [Corning, Inc; Harris, Fred [ZT-Plus; Gilbert, Partricia [Marlow Industries, Inc; Sharp, Jeff [Marlow Industries, Inc; Lo, Jason [CANMET - Materials Technology Laboratory, Natural Resources of Canada; Keinke, Holger [University of Waterloo, Canada; Kiss, Laszlo I. [University of Quebec at Chicoutimi

2013-01-01T23:59:59.000Z

367

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

368

Probabilistic Mechanical Reliability Prediction of Thermoelectric Legs  

SciTech Connect (OSTI)

The probability of failure, Pf, for various square-arrayed thermoelectric device designs using bismuth telluride, lead telluride, or skutterudite thermoelectric materials were estimated. Only volume- or bulk-based Pf analysis was considered in this study. The effects of the choice of the thermoelectric material, the size of the leg array, the height of the thermoelectric legs, and the boundary conditions on the Pf of thermoelectric devices were investigated. Yielding of the solder contacts and mounting layer was taken into account. The modeling results showed that the use of longer legs, using skutterudites, allowing the thermoelectric device to freely deform while under a thermal gradient, and using smaller arrays promoted higher probabilities of survival.

Jadaan, Osama M. [University of Wisconsin, Platteville; Wereszczak, Andrew A [ORNL

2009-05-01T23:59:59.000Z

369

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

370

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

heating a high temperature working fluid to power a remoteand heating for a significant portion of the developed and developing world, including those in remote

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

371

High thermoelectric performance by resonant dopant indium in nanostructured SnTe  

E-Print Network [OSTI]

From an environmental perspective, lead-free SnTe would be preferable for solid-state waste heat recovery if its thermoelectric figure-of-merit could be brought close to that of the lead-containing chalcogenides. In this ...

Liao, Bolin

372

Powering a Cat Warmer Using Thin-Film Thermoelectric Conversion of Microprocessor  

E-Print Network [OSTI]

towards one end, creating a difference in potential. The efficiency of thermo- electric generators (TEG efficiencies when converting heat to electricity using the thermoelectric ef- fect. Applied to microprocessors produced by laptops [14], [17], climate-change inducing electricity consumption [11], and unhappy house

Yang, Junfeng

373

Local heat transfer distribution in a two-pass trapezoidal channel with a 180 [degree] turn via transient liquid crystal technique  

E-Print Network [OSTI]

cross section. Attention is focused on the effect of the 180' turn on the local heat transfer distributions on the interior surfaces of the various walls at the turn, under turbulent flow conditions. Transient heat transfer experiments, using...

Endley, Saurabh

1996-01-01T23:59:59.000Z

374

Concentrated Thermoelectric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

375

Scientists Connect Thermoelectric Materials and Topological Insulators...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and relativity in combination produce a unique conducting state on the surface. Excellent thermoelectric performance depends on a material having both high conductivity and high...

376

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

377

Thermoelectric Activities of European Community within Framework...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of European Community within Framework Programme 7 and additional activities in Germany Thermoelectric Activities of European Community within Framework Programme 7 and...

378

Thermoelectric Materials by Design: Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by Design: Computational Theory and Structure Thermoelectric Materials by Design: Computational Theory and Structure Presentation from the U.S. DOE Office of Vehicle Technologies...

379

Thermoelectric Materials By Design: Mechanical Reliability (Agreement...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

By Design: Mechanical Reliability (Agreement 14957) Thermoelectric Materials By Design: Mechanical Reliability (Agreement 14957) Presentation from the U.S. DOE Office of Vehicle...

380

Thermoelectric Materials by Design, Computational Theory and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

by Design, Computational Theory and Structure Thermoelectric Materials by Design, Computational Theory and Structure 2009 DOE Hydrogen Program and Vehicle Technologies Program...

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Thermoelectric Bulk Materials from the Explosive Consolidation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Bulk Materials from the Explosive Consolidation of Nanopowders Thermoelectric Bulk Materials from the Explosive Consolidation of Nanopowders Describes technique of explosively...

382

Electrical and Thermoelectrical Transport Properties of Graphene  

E-Print Network [OSTI]

OF CALIFORNIA RIVERSIDE Electrical and ThermoelectricalIn addition to the electrical conductivity, thermoelectricthe energy-dependent electrical conductivity under certain

Wang, Deqi

2011-01-01T23:59:59.000Z

383

Ferecrystals: Thermoelectric Materials Poised Between the Crystalline...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

These new compounds are thermal stable to 650 C, have low thermal and an increased ZT. johnson.pdf More Documents & Publications Trends in Thermoelectric Properties with...

384

Trends in Thermoelectric Properties with Nanostructure: Ferecrystals...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

to interleave on the nanoscale two or more compounds with different crystal structures johnson.pdf More Documents & Publications Ferecrystals: Thermoelectric Materials Poised...

385

Vehicular Thermoelectrics: The New Green Technology  

Broader source: Energy.gov (indexed) [DOE]

eere.energy.gov 37 Green Advantage of Vehicular Thermoelectric HVAC Current Vehicular Air Conditioner (AC) uses Compressed R134-a Refrigerant Gas -- Vehicles leak 110 gyear...

386

Microstructure and Thermoelectric Properties of Mechanically...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Microstructure and Thermoelectric Properties of Mechanically Robust PbTe-Si Eutectic Composites Home Author: J. R. Sootsman, J. He, V. P. Dravid, S. Ballikaya, D. Vermeulen, C....

387

Correlation Between Structure and Thermoelectric Properties of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

converted into crystalline bulks under pressure produced thermoelectric materials of nano-sized grains with strongly coupled grain boundaries, achieving reduced lattice thermal...

388

Recent Device Developments with Advanced Bulk Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

at RTI Reviews work in engineered thin-film nanoscale thermoelectric materials and nano-bulk materials with high ZT undertaken by RTI in collaboration with its research...

389

Thermoelectric Generator (TEG) Fuel Displacement Potential using...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation...

390

Modeling Energy Recovery Using Thermoelectric Conversion Integrated with an Organic Rankine Bottoming Cycle  

SciTech Connect (OSTI)

Hot engine exhaust represents a resource that is often rejected to the environment without further utilization. This resource is most prevalent in the transportation sector, but stationary engine-generator systems also typically do not utilize this resource. Engine exhaust is a source of high grade thermal energy that can potentially be utilized by various approaches to produce electricity or to drive heating and cooling systems. This paper describes a model system that employs thermoelectric conversion as a topping cycle integrated with an organic Rankine bottoming cycle for waste heat utilization. This approach is being developed to fully utilize the thermal energy contained in hot exhaust streams. The model is composed of a high temperature heat exchanger which extracts thermal energy for driving the thermoelectric conversion elements. However, substantial sensible heat remains in the exhaust stream after emerging from the heat exchanger. The model incorporates a closely integrated bottoming cycle to utilize this remaining thermal energy in the exhaust stream. The model has many interacting parameters that define combined system quantities such as overall output power, efficiency, and total energy utilization factors. In addition, the model identifies a maximum power operating point for the system. That is, the model can identify the optimal amount of heat to remove from the exhaust flow to run through the thermoelectric elements. Removing too much or too little heat from the exhaust stream in this stage will reduce overall cycle performance. The model has been developed such that heat exchanger UAh values, thermal resistances, ZT values, and multiple thermoelectric elements can be investigated in the context of system operation. The model also has the ability to simultaneously determine the effect of each cycle design parameter on the performance of the overall system, thus giving the ability to utilize as much waste heat as possible. Key analysis results are presented showing the impact of critical design parameters on power output, system performance and inter-relationships between design parameters in governing performance.

Miller, Erik W.; Hendricks, Terry J.; Peterson, Richard B.

2009-07-01T23:59:59.000Z

391

Miniature thermo-electric cooled cryogenic pump  

DOE Patents [OSTI]

A miniature thermo-electric cooled cryogenic pump is described for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a {Delta}T=100 C characteristic. The pump operates under vacuum pressures of 5{times}10{sup {minus}4} Torr to ultra high vacuum (UHV) conditions in the range of 1{times}10{sup {minus}7} to 3{times}10{sup {minus}9} Torr and will typically remove partial pressure, 2{times}10{sup {minus}7} Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5{degree}, and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof. 2 figs.

Keville, R.F.

1997-11-18T23:59:59.000Z

392

Miniature thermo-electric cooled cryogenic pump  

DOE Patents [OSTI]

A miniature thermo-electric cooled cryogenic pump for removing residual water molecules from an inlet sample prior to sample analysis in a mass spectroscopy system, such as ion cyclotron resonance (ICR) mass spectroscopy. The cryogenic pump is a battery operated, low power (<1.6 watts) pump with a .DELTA.T=100.degree. C. characteristic. The pump operates under vacuum pressures of 5.times.10.sup.-4 Torr to ultra high vacuum (UHV) conditions in the range of 1.times.10.sup.-7 to 3.times.10.sup.-9 Torr and will typically remove partial pressure, 2.times.10.sup.-7 Torr, residual water vapor. The cryogenic pump basically consists of an inlet flange piece, a copper heat sink with a square internal bore, four two tier Peltier (TEC) chips, a copper low temperature square cross sectional tubulation, an electronic receptacle, and an exit flange piece, with the low temperature tubulation being retained in the heat sink at a bias angle of 5.degree., and with the TECs being positioned in parallel to each other with a positive potential being applied to the top tier thereof.

Keville, Robert F. (Valley Springs, CA)

1997-01-01T23:59:59.000Z

393

Thermoelectric behavior of conducting polymers: On the possibility of off-diagonal thermoelectricity  

SciTech Connect (OSTI)

Non-cubic materials, when structurally aligned, possess sufficient anisotropy to exhibit thermoelectric effects where the electrical and thermal currents are orthogonal (off-diagonal thermoelectricity). The authors discuss the benefits of this form of thermoelectricity for devices and describe a search for suitable properties in the air-stable conducting polymers polyaniline and polypyrrole. They find the simple and general correlation that the logarithm of the electrical conductivity scales linearly with the Seebeck coefficient on doping but with proportionality in excess of the conventional prediction for thermoelectricity. The correlation is unexpected in its universality and unfavorable for thermoelectric applications. A simple model suggests that mobile charges of both signs exist in these polymers, and this leads to reduced thermoelectric efficiency. They also briefly discuss non air-stable polyacetylene, where ambipolar transport does not appear to occur, and where properties seem more favorable for thermoelectricity.

Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L.

1997-07-01T23:59:59.000Z

394

Development of a solar receiver for a high-efficiency thermionic/thermoelectric conversion system  

SciTech Connect (OSTI)

Solar energy is one of the most promising energy resources on Earth and in space, because it is clean and inexhaustible. Therefore, we have been developing a solar-powered high-efficiency thermionic-thermoelectric conversion system which combines a thermionic converter (TIC) with a thermoelectric converter (TEC) to use thermal energy efficiently and to achieve high efficiency conversion. The TIC emitter must uniformly heat up to 1800 K. The TIC emitter can be heated using thermal radiation from a solar receiver maintained at a high temperature by concentrated solar irradiation. A cylindrical cavity-type solar receiver constructed from graphite was designed and heated in a vacuum by using the solar concentrator at Tohoku University. The maximum temperature of the solar receiver enclosed by a molybdenum cup reached 1965 K, which was sufficiently high to heat a TIC emitter using thermal radiation from the receiver. 4 refs., 6 figs., 1 tab.

Naito, H.; Kohsaka, Y.; Cooke, D.; Arashi, H. [Tohoku Univ., Aramaki (Japan)] [Tohoku Univ., Aramaki (Japan)

1996-10-01T23:59:59.000Z

395

Atomic-level cotrol of the thermoelectric properties in polytypoid nanowires  

SciTech Connect (OSTI)

Thermoelectric materials have generated interest as a means of increasing the efficiency of power generation through the scavenging of waste heat. Materials containing nanometer-sized structural and compositional features can exhibit enhanced thermoelectric performance due to the decoupling of certain electrical and thermal properties, but the extent to which these features can be controlled is often limited. Here we report a simple synthesis of M{sub 2}O{sub 3}(ZnO){sub n} (M = In, Ga, Fe) nanowires with controllable polytypoid structures, where the nanostructured features are tuned by adjusting the amount of metal precursor. After the introduction of nanometer-scale features (individual atomic layers and alloying), thermal and electrical measurements on single In{sub 2-x}Ga{sub x}O3(ZnO){sub n} nanowires reveal a simultaneous improvement in all contributing factors to the thermoelectric figure of merit, indicating successful modification of the nanowire transport properties.

Andrews, Sean C.; Fardy, Melissa A.; Moore, Michael C.; Aloni, Shaoul; Zhang, Minjuan; Radmilovic, Velimir; Yang, Peidong

2010-10-23T23:59:59.000Z

396

Design and Optimization of Compatible, Segmented Thermoelectric Generators  

E-Print Network [OSTI]

to rationally select materials for a segmented thermoelectric generator. The thermoelectric potential is used for the exact analytic expressions for materials with temperature dependent thermoelectric properties C H T T = . The thermoelectric material governs how close the efficiency can be to Carnot primarily

397

IMPROVING THERMOELECTRIC TECHNOLOGY PERFORMANCE AND DURABILITY WITH AEROGEL  

E-Print Network [OSTI]

aerogel as an effective sublimation barrier for a wide range of thermoelectric technologies based on Si

Jeff Sakamoto; Thierry Caillat; Jean-pierre Fleurial; Steve Jones; Jong-ah Paik; Winny Dong

398

Finding New Thermoelectric Compounds Using Crystallographic Data: Atomic Displacement Parameters  

SciTech Connect (OSTI)

A new structure-property relationship is discussed which links atomic displacement parameters (ADPs) and the lattice thermal conductivity of clathrate-like compounds. For many clathrate-like compounds, in which one of the atom types is weakly bound and ''rattles'' within its atomic cage, room temperature ADP information can be used to estimate the room temperature lattice thermal conductivity, the vibration frequency of the ''rattler'', and the temperature dependence of the heat capacity. Neutron data and X-ray crystallography data, reported in the literature, are used to apply this analysis to several promising classes of thermoelectric materials.

Chakoumakos, B.C.; Mandrus, D.G.; Sales, B.C.; Sharp, J.W.

1999-08-29T23:59:59.000Z

399

Nanostructures having high performance thermoelectric properties  

SciTech Connect (OSTI)

The invention provides for a nanostructure, or an array of such nanostructures, each comprising a rough surface, and a doped or undoped semiconductor. The nanostructure is an one-dimensional (1-D) nanostructure, such a nanowire, or a two-dimensional (2-D) nanostructure. The nanostructure can be placed between two electrodes and used for thermoelectric power generation or thermoelectric cooling.

Yang, Peidong; Majumdar, Arunava; Hochbaum, Allon I; Chen, Renkun; Delgado, Raul Diaz

2014-05-20T23:59:59.000Z

400

Thermoelectric Development at Hi-Z Technology  

SciTech Connect (OSTI)

An improved Thermoelectric Generator (TEG) for the Heavy Duty Class Eight Diesel Trucks is under development at Hi-Z Technology. The current TEG is equipped with the improved HZ-14 Thermoelectric module, which features better mechanical properties as well as higher electric power output. Also, the modules are held in place more securely.

Kushch, Aleksandr S.; Bass, John C.; Ghamaty, Saeid; Elsner, Norbert B.; Bergstrand, Richard A.; Furrow, David; Melvin, Mike

2002-08-25T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

review of small solar-powered heat engines part II: Researchsince 1950-conventional engines up to 100kW. Solar Energysmall solar-powered heat engines. part III: Research since

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

402

Noncollisional heating and electron energy distributions in magnetically enhanced inductively coupled and helicon plasma sources  

E-Print Network [OSTI]

region. This enhancement results from noncollisional heating by the axial electric field for electrons­11 The mecha- nisms through which more efficient heating of electrons oc- curs in these systems are not well- teraction mechanism is electron acceleration by the parallel component of the electric field. The heating

Kushner, Mark

403

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

404

Recovering "Waste" from "WTEs"? Heat Attaching devices to flues and exhaust pipes could harvest waste heat-  

E-Print Network [OSTI]

Kanatzidis argues that wherever heat is generated as part of power generation, thermoelectric devices couldRecovering "Waste" from "WTEs"? Heat Attaching devices to flues and exhaust pipes could harvest waste heat- Mar 16th 2006 | From The Economist print edition HERE is a thought: approximately 60

Columbia University

405

Thermoelectric materials development. Final report  

SciTech Connect (OSTI)

A systematic search for advanced thermoelectric materials was initiated at JPL several years ago to evaluate candidate materials which includes consideration of the following property attributes: (1) semiconducting properties; (2) large Seebeck coefficient; (3) high carrier mobility and high electrical conductivity; (4) low lattice thermal conductivity; and (5) chemical stability and low vapor pressure. Through this candidate screening process, JPL identified several families of materials as promising candidates for improved thermoelectric materials including the skutterudite family. There are several programs supporting various phases of the effort on these materials. As part of an ongoing effort to develop skutterudite materials with lower thermal conductivity values, several solid solutions and filled skutterudite materials were investigated under the effort sponsored by DOE. The efforts have primarily focused on: (1) study of existence and properties of solid solutions between the binary compounds CoSb{sub 3} and IrSb{sub 3}, and RuSb{sub 2}Te, and (2) CeFe{sub 4{minus}x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} based filled compositions. For the solid solutions, the lattice thermal conductivity reduction was expected to be reduced by the introduction of the Te and Ru atoms while in the case of CeFe{sub 4{minus}x}Ru{sub x}Sb{sub 12} filled compositions, the reduction would be caused by the rattling of Ce atoms located in the empty voids of the skutterudite structure and the substitution of Fe for Ru. The details of the sample preparation and characterization of their thermoelectric properties are reported in this report.

Fleurial, J.P.; Caillat, T.; Borshchevsky, A.

1998-09-01T23:59:59.000Z

406

An overview of the Radioisotope Thermoelectric Generator Transportation System Program  

SciTech Connect (OSTI)

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

1996-03-01T23:59:59.000Z

407

An overview of the Radioisotope Thermoelectric Generator Transporation System Program  

SciTech Connect (OSTI)

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

McCoy, J.C.

1995-10-01T23:59:59.000Z

408

A facility to remotely assemble radioisotope thermoelectric generators  

SciTech Connect (OSTI)

Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools.

Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

1992-07-01T23:59:59.000Z

409

Most efficient quantum thermoelectric at finite power output  

E-Print Network [OSTI]

Machines are only Carnot efficient if they are reversible, but then their power output is vanishingly small. Here we ask, what is the maximum efficiency of an irreversible device with finite power output? We use a nonlinear scattering theory to answer this question for thermoelectric quantum systems; heat engines or refrigerators consisting of nanostructures or molecules that exhibit a Peltier effect. We find that quantum mechanics places an upper bound on both power output, and on the efficiency at any finite power. The upper bound on efficiency equals Carnot efficiency at zero power output, but decays with increasing power output. It is intrinsically quantum (wavelength dependent), unlike Carnot efficiency. This maximum efficiency occurs when the system lets through all particles in a certain energy window, but none at other energies. A physical implementation of this is discussed, as is the suppression of efficiency by a phonon heat flow.

Robert S. Whitney

2014-03-13T23:59:59.000Z

410

Synthesis of High Efficiency Thermoelectric Materials - Energy...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

or subjected to spark-plasma sintering for a matter of minutes. The end result is a thermoelectric material with ZT about 20% to 50% higher than the bulk value. Benefits...

411

Photoacoustic measurement of bandgaps of thermoelectric materials  

E-Print Network [OSTI]

Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

Ni, George (George Wei)

2014-01-01T23:59:59.000Z

412

Modeling of concentrating solar thermoelectric generators  

E-Print Network [OSTI]

The conversion of solar power into electricity is dominated by non-concentrating photovoltaics and concentrating solar thermal systems. Recently, it has been shown that solar thermoelectric generators (STEGs) are a viable ...

Ren, Zhifeng

413

Modeling water use at thermoelectric power plants  

E-Print Network [OSTI]

The withdrawal and consumption of water at thermoelectric power plants affects regional ecology and supply security of both water and electricity. The existing field data on US power plant water use, however, is of limited ...

Rutberg, Michael J. (Michael Jacob)

2012-01-01T23:59:59.000Z

414

Device testing and characterization of thermoelectric nanocomposites  

E-Print Network [OSTI]

It has become evident in recent years that developing clean, sustainable energy technologies will be one of the world's greatest challenges in the 21st century. Thermoelectric materials can potentially make a contribution ...

Muto, Andrew (Andrew Jerome)

2008-01-01T23:59:59.000Z

415

Thermoelectrics : material advancements and market applications  

E-Print Network [OSTI]

Thermoelectric properties have been known since the initial discovery in 1821 by Thomas Seebeck, who found that a current flowed at the junction of two dissimilar metals when placed under a temperature differential. This ...

Monreal, Jorge

2007-01-01T23:59:59.000Z

416

Generalized drift-diffusion for microscopic thermoelectricity  

E-Print Network [OSTI]

Although thermoelectric elements increasingly incorporate nano-scale features in similar material systems as other micro-electronic devices, the former are described in the language of irreversible thermodynamics while ...

Santhanam, Parthiban

2009-01-01T23:59:59.000Z

417

Solar thermoelectrics for small scale power generation  

E-Print Network [OSTI]

In the past two decades, there has been a surge in the research of new thermoelectric (TE) materials, driven party by the need for clean and sustainable power generation technology. Utilizing the Seebeck effect, the ...

Amatya, Reja

2012-01-01T23:59:59.000Z

418

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

419

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

solar CHP system supplying arbitrary heat and power outputs.e Electrical power output of system Q Solar CHP to PV yearlysolar Rankine CHP system, sized equally in terms of peak power output,

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

420

Radioisotope thermoelectric generator licensed hardware package and certification tests  

SciTech Connect (OSTI)

This paper presents the Licensed Hardware package and the Certification Test portions of the Radioisitope Themoelectric Generator Transportation System. This package has been designed to meet those portions of the {ital Code} {ital of} {ital Federal} {ital Regulations} (10 CFR 71) relating to ``Type B`` shipments of radioactive materials. The licensed hardware is now in the U. S. Department of Energy licensing process that certifies the packaging`s integrity under accident conditions. The detailed information for the anticipated license is presented in the safety analysis report for packaging, which is now in process and undergoing necessary reviews. As part of the licensing process, a full-size Certification Test Article unit, which has modifications slightly different than the Licensed Hardware or production shipping units, is used for testing. Dimensional checks of the Certification Test Article were made at the manufacturing facility. Leak testing and drop testing were done at the 300 Area of the U.S. Department of Energy`s Hanford Site near Richland, Washington. The hardware includes independent double containments to prevent the environmental spread of {sup 238}Pu, impact limiting devices to protect portions of the package from impacts, and thermal insulation to protect the seal areas from excess heat during accident conditions. The package also features electronic feed-throughs to monitor the Radioisotope Thermoelectric Generator`s temperature inside the containment during the shipment cycle. This package is designed to safely dissipate the typical 4,500 thermal watts produced in the largest Radioisotope Thermoelectric Generators. The package also contains provisions to ensure leak tightness when radioactive materials, such as a Radioisotope Thermoelectric Generator for the Cassini Mission, planned for 1997 by the National Aeronautics and Space Administration, are being prepared for shipment. (Abstract Truncated)

Goldmann, L.H.; Averette, H.S. [Westinghouse Hanford Company, P.O. Box 1970, M/S R3-86 or N1-32, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

2052 OPTICS LETTERS / Vol. 28, No. 21 / November 1, 2003 Carbonyl sulfide detection with a thermoelectrically cooled  

E-Print Network [OSTI]

configura- tion is shown in Fig. 1. A QC laser was mounted on a two-stage Peltier cooler with a copper heat gas cell (New Focus Model 5611) of 36-m optical path length Fig. 1. Schematic of a TLAS sensor consisting of a pulsed thermoelectrically cooled QC laser (QCL), a 36-m optical multipass gas cell

422

Segregated Network Polymer-Carbon Nanotubes Composites For Thermoelectrics  

E-Print Network [OSTI]

nanocomposites were measured for carbon nanotubes and the thermoelectric figure of merit, ZT, was calculated at room temperature. The influence on thermoelectric properties from filler concentration, stabilizer materials and drying condition are also discussed....

Kim, Dasaroyong

2010-10-12T23:59:59.000Z

423

advanced thermoelectric materials: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

advanced thermoelectric materials First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Thermoelectrics :...

424

Synthesis and physical characterization of thermoelectric single crystals  

E-Print Network [OSTI]

There is much current interest in thermoelectric devices for sustainable energy. This thesis describes a research project on the synthesis and physical characterization of thermoelectric single crystals. 1In?Se?-[delta] ...

Porras Pérez Guerrero, Juan Pablo

2012-01-01T23:59:59.000Z

425

Proposal for a phase-coherent thermoelectric transistor  

E-Print Network [OSTI]

solution since their near perfect electron-hole symmetry leads to a negligible thermoelectric response; however, here we demonstrate theoretically a superconducting thermoelectric transistor which offers unparalleled figures of merit of up to ~ 45...

Giazotto, F.; Robinson, J. W. A.; Moodera, J. S.; Bergeret, F. S.

2014-01-01T23:59:59.000Z

426

Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials  

SciTech Connect (OSTI)

After a brief review of the transport and thermoelectric properties of filled skutterudite antimonides, the authors present resonant ultrasound, specific heat, and inelastic neutron scattering results that establish the existence of two low-energy vibrational modes in the filled skutterudite LaFe{sub 3}CoSb{sub 12}. It is likely that at least one of these modes represents the localized, incoherent vibrations of the La ion in an oversized atomic cage. These results support the usefulness of weakly bound, rattling ions for the improvement of thermoelectric performance.

Mandrus, D.; Sales, B.C.; Keppens, V. [and others

1997-07-01T23:59:59.000Z

427

Filled skutterudite antimonides: Validation of the electron-crystal phonon-glass approach to new thermoelectric materials  

SciTech Connect (OSTI)

After a brief review of the transport and thermoelectric properties of filled skutterudite antimonides, the authors present resonant ultrasound, specific heat, and inelastic neutron scattering results that establish the existence of two low-energy vibrational modes in the filled skutterudite LaFe{sub 3}CoSb{sub 12}. It is likely that at least one of these modes represents the localized, incoherent vibrations of the La ion in an oversized atomic {open_quotes}cage{close_quotes}. These results support the usefulness of weakly bound, {open_quotes}rattling{close_quotes} ions for the improvement of thermoelectric performance.

Mandrus, D.; Sales, B.C.; Keppens, V. [and others

1997-04-01T23:59:59.000Z

428

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

429

Compositional ordering and stability in nanostructured, bulk thermoelectric alloys.  

SciTech Connect (OSTI)

Thermoelectric materials have many applications in the conversion of thermal energy to electrical power and in solid-state cooling. One route to improving thermoelectric energy conversion efficiency in bulk material is to embed nanoscale inclusions. This report summarize key results from a recently completed LDRD project exploring the science underpinning the formation and stability of nanostructures in bulk thermoelectric and the quantitative relationships between such structures and thermoelectric properties.

Hekmaty, Michelle A.; Faleev, S.; Medlin, Douglas L.; Leonard, F.; Lensch-Falk, J.; Sharma, Peter Anand; Sugar, J. D.

2009-09-01T23:59:59.000Z

430

Thermoelectrics Combined with Solar Concentration for Electrical and Thermal Cogeneration  

E-Print Network [OSTI]

the thermoelectric module, and the water cooling tubes. Tothermoelectric module, combined with the thermal power transferred by the water cooling

Jackson, Philip Robert

2012-01-01T23:59:59.000Z

431

Using Thermally-Degrading, Partitioning, and Nonreactive Tracers to Determine Temperature Distribution and Fracture/Heat Transfer Surface Area in Geothermal Reservoirs  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. The goal of this project is to provide integrated tracer and tracer interpretation tools to facilitate quantitative characterization of temperature distributions and surface area available for heat transfer in EGS.

432

Gravitational and distributed heating effects of a cD galaxy on the hydrodynamical structure of its host cluster  

E-Print Network [OSTI]

We investigate the effects of a cD galaxy's gravity and AGN heating of the host galaxy cluster. We consider a standard prescription for the hydrodynamics, with the structures determined by mass continuity, momentum and energy conservation equations in spherical symmetry. The cluster comprises a dark matter halo (DM) and ionised X-ray emitting intracluster gas (ICM), which jointly determine the gravitational potential. The cD galaxy is an additive gravitational potential component. The DM assumes a polytropic equation of state (determined by its microphysics), which could be non-radiative self-interacting particles or more exotically interacting particles. The AGN provides distributed heating, counteracting radiative cooling. Stationary density and velocity dispersion profiles are obtained by numerically integrating the hydrodynamic equations with appropriate boundary conditions. The minimum gas temperature in the cluster core is higher when a cD galaxy is present than when it is absent. The solutions also yie...

Saxton, Curtis J

2013-01-01T23:59:59.000Z

433

BuildingaThermoelectricMug This rllorrfh,s  

E-Print Network [OSTI]

(Radioisotope Thermoelectric Generators), which are basically armored canisters holding plutonium dioxide fuel. Here, I will show how you can use these in reverseto generate electrical power. Thermoelectric Devicesfava Power BuildingaThermoelectricMug F This rllorrfh,s ?rcjae J a v a P o w e r. . . . . . . . 4 6

Lorenz, Ralph D.

434

Engineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons  

E-Print Network [OSTI]

- ties [7]. Graphene, however, is not a useful thermoelectric material. Although its electricalEngineering Enhanced Thermoelectric Properties in Zigzag Graphene Nanoribbons Hossein Karamitaheri1@iue.tuwien.ac.at (Dated: March 7, 2012) Abstract We theoretically investigate the thermoelectric properties of zigzag

435

Evaluating the potential for high thermoelectric efficiency of silver selenide  

E-Print Network [OSTI]

to the exceptionally high mobility, higher than other optimized thermoelectric materials. Although zT decreases at high refrigerants.1 Increasing the efficiency of a thermoelectric material necessitates increasing the gure of merit contribution and an electronic contribution. Thermoelectric materials used in practice have zT near 1. One

Martin, Alain

436

G. J. Snyder Page 1 THERMOELECTRIC PROPERTIES OF SELENIDE SPINELS  

E-Print Network [OSTI]

of merit, ZT, for thermoelectric materials. The figure of merit is defined as ZT = 2 T/, where conductivity. Thus, one method for finding new, advanced thermoelectric materials is to searchG. J. Snyder Page 1 THERMOELECTRIC PROPERTIES OF SELENIDE SPINELS G. Jeffrey Snyder*, T. Caillat

437

THERMOELECTRICAL ENERGY RECOVERY FROM THE EXHAUST OF A LIGHT TRUCK  

SciTech Connect (OSTI)

A team formed by Clarkson University is engaged in a project to design, build, model, test, and develop a plan to commercialize a thermoelectric generator (TEG) system for recovering energy from the exhaust of light trucks and passenger cars. Clarkson University is responsible for project management, vehicle interface design, system modeling, and commercialization plan. Hi-Z Technology, Inc. (sub-contractor to Clarkson) is responsible for TEG design and construction. Delphi Corporation is responsible for testing services and engineering consultation and General Motors Corporation is responsible for providing the test vehicle and information about its systems. Funds were supplied by a grant from the Transportation Research Program of the New York State Energy Research and Development Authority (NYSERDA), through Joseph R. Wagner. Members of the team and John Fairbanks (Project Manager, Office of Heavy Vehicle Technology). Currently, the design of TEG has been completed and initial construction of the TEG has been initiated by Hi-Z. The TEG system consists of heat exchangers, thermoelectric modules and a power conditioning unit. The heat source for the TEG is the exhaust gas from the engine and the heat sink is the engine coolant. A model has been developed to simulate the performance of the TEG under varying operating conditions. Preliminary results from the model predict that up to 330 watts can be generated by the TEG which would increase fuel economy by 5 percent. This number could possibly increase to 20 percent with quantum-well technology. To assess the performance of the TEG and improve the accuracy of the modeling, experimental testing will be performed at Delphi Corporation. A preliminary experimental test plan is given. To determine the economic and commercial viability, a business study has been conducted and results from the study showing potential areas for TEG commercialization are discussed.

Karri, M; Thacher, E; Helenbrook, B; Compeau, M; Kushch, A; Elsner, N; Bhatti, M; O' Brien, J; Stabler, F

2003-08-24T23:59:59.000Z

438

The Well-Group Distribution of Groundwater Source Heat Pump System Optimized Research  

E-Print Network [OSTI]

It is the key question that how does the well group arrange for application of GWSHP system. Based on the fact that the water movement is the important factor of heat transfer on aquifer, this paper presents two steps analysis method and analyze...

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

439

Optimal Well-Group Distribution of a Groundwater Source Heat Pump System  

E-Print Network [OSTI]

It is critical to determine how the well group arranges for application of the GWSHP system. Based on the fact that water movement is the most important factor influencing heat transfer in an aquifer, this paper presents a two-step analysis method...

Liu, Z.; Lu, L.; Yoshida, H.

2006-01-01T23:59:59.000Z

440

Silicon-germanium/gallium phosphide material in high power density thermoelectric modules. Final report, February 1980--September 1981  

SciTech Connect (OSTI)

This is the final report of work on the characterization of an improved Si-Ge alloy and the fabrication of thermoelectric devices. The improved Si-Ge alloy uses a small addition of GaP in n- and p- type 80 at.% Si-20 at.% Ge; this addition reduces the thermal conductivity, thereby increasing its figure of merit and conversion efficiency. The thermoelectric devices fabricated include multicouples intended for use in Radioisotope Thermoelectric Generators (RTGs) and ring-type modules intended for use with nuclear reactor heat sources. This report summarizes the effort in the material as well as the device areas and discusses individual phases of each area. Results should form basis for further effort.

Not Available

1981-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Velocity and temperature distribution of air in the boundary layer of a vertical plate for free-convective heat transfer  

E-Print Network [OSTI]

against the nozzle and clamped to. a stand in such a way that its vertical position could be, set. as desired. Hot-Wire Anemometer A Plow Corporation Model HWB2 hot wire anemometer was used in connection with a single, filament, probe to measure...VELOCITY AND TEMPERATURE DISTRIBUTION OF AIR IN THE BOUNDARY LAYER OF A VERTICAL PLATE FOR FREE-CONVECTIVE HEAT TRANSFER A Thesis By JEAN MAXIME JOSE JULLIENNE Submitted to . the . Graduate School of the Agricultural. and Mechanical. College...

Jullienne, Jean Maxime Jose

2012-06-07T23:59:59.000Z

442

Sputter deposition of multilayer thermoelectric films: An approach to the fabrication of two-dimensional quantum wells  

SciTech Connect (OSTI)

The relative efficiency of a thermoelectric material is measured in terms of a dimensionless figure of merit, ZT. Though all known thermoelectric materials are believed to have ZT{le}1, recent theoretical results predict that thermoelectric devices fabricated as two-dimensional quantum wells (2D QWs) or onedimensional (1D) quantum wires could have ZT{ge}3. Multilayers with the dimensions of 2D QWs have been synthesized by alternately sputtering Bi{sub 0.9}Sb{sub 0.1} and PbTe{sub 0.8}Se{sub 0.2} onto a moving single-crystal sapphire substrate from dual magnetrons. These materials have been used to test the thermoelectric quantum-well concept and gain insight into relevant transport mechanisms. If successful, this research could lead to thermoelectric devices that have efficiencies close to that of an ideal Carnot engine. Ultimately, such devices could be used to replace conventional heat engines and mechanical refrigeration systems.

Farmer, J.C.; Barbee, T.W. Jr.; Chapline, G.C. Jr.; Foreman, R.J.; Summers, L.J. [Lawrence Livermore National Lab., CA (United States); Dresselhaus, M.S.; Hicks, L.D. [Massachusetts Institute of Technology, Boston, MA (United States). Dept. of Physics

1994-07-01T23:59:59.000Z

443

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 |

444

NSF/DOE Thermoelectric Partnership: High-Performance Thermoelectric...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

on Abundant Silicide Materials for Vehicle Waste Heat Recovery 2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer...

445

Thermoelectric Potential of Bi and Bi1-x Sbx Nanowire M. S. Dresselhausa,b  

E-Print Network [OSTI]

for thermoelectric applications is discussed. The advantages of bismuth as a low dimensional thermoelectric material as the wire diameter as materials parameters for optimizing the thermoelectric performance of these nanowires thermoelectric material. INTRODUCTION Bismuth provides a very attractive model system for thermoelectric

Cronin, Steve

446

Analytical thermal model validation for Cassini radioisotope thermoelectric generator  

SciTech Connect (OSTI)

The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

447

Method of operating a thermoelectric generator  

DOE Patents [OSTI]

A method for operating a thermoelectric generator supplying a variable-load component includes commanding the variable-load component to operate at a first output and determining a first load current and a first load voltage to the variable-load component while operating at the commanded first output. The method also includes commanding the variable-load component to operate at a second output and determining a second load current and a second load voltage to the variable-load component while operating at the commanded second output. The method includes calculating a maximum power output of the thermoelectric generator from the determined first load current and voltage and the determined second load current and voltage, and commanding the variable-load component to operate at a third output. The commanded third output is configured to draw the calculated maximum power output from the thermoelectric generator.

Reynolds, Michael G; Cowgill, Joshua D

2013-11-05T23:59:59.000Z

448

Measurement and characterization techniques for thermoelectric materials  

SciTech Connect (OSTI)

Characterization of thermoelectric materials can pose many problems. A temperature difference can be established across these materials as an electrical current is passed due to the Peltier effect. The thermopower of these materials is quite large and thus large thermal voltages can contribute to many of the measurements necessary to investigate these materials. This paper will discuss the chracterization techniques necessary to investigate these materials and provide an overview of some of the potential systematic errors which can arise. It will also discuss some of the corrections one needs to consider. This should provide an introduction to the characterization and measurement of thermoelectric materials and provide references for a more in depth discussion of the concepts. It should also serve as an indication of the care that must be taken while working with thermoelectric materials.

Tritt, T.M.

1997-07-01T23:59:59.000Z

449

ITP Distributed Energy: Assessment of Combined Heat and Power Premium Power Applications in California  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | UC Berkeley UC

450

ITP Industrial Distributed Energy: Combined Heat and Power Market Potential for Opportunity Fuels  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S. Department ofIOWA1999) | Department2009 | The U.S. Power

451

Clean Diesel Engine Component Improvement Program Diesel Truck Thermoelectric Generator  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) is currently developing four different auxiliary generator designs that are used to convert a portion (5 to 20%) of the waste heat from vehicle engines exhaust directly to electricity. The four designs range from 200 Watts to 10 kW. The furthest along is the 1 kW Diesel Truck Thermoelectric Generator (DTTEG) for heavy duty Class 8 Diesel trucks, which, under this program, has been subjected to 543,000 equivalent miles of bouncing and jarring on PACCARâ??s test track. Test experience on an earlier version of the DTTEG on the same track showed the need for design modifications incorporated in DTTEG Mod 2, such as a heavy duty shock mounting system and reinforcement of the electrical leads mounting system, the thermocouple mounting system and the thermoelectric module restraints. The conclusion of the 543,000 mile test also pointed the way for an upgrading to heavy duty hose or flex connections for the internal coolant connections for the TEG, and consideration of a separate lower temperature cooling loop with its own radiator. Fuel savings of up to $750 per year and a three to five year payback are believed to be possible with the 5 % efficiency modules. The economics are expected to improve considerably to approach a two year payback when the 5 kW to 10 kW generators make it to the market in a few years with a higher efficiency (20%) thermoelectric module system called Quantum Wells, which are currently under development by Hi-Z. Ultimately, as automation takes over to reduce material and labor costs in the high volume production of QW modules, a one year payback for the 5 kW to10 kW generator appears possible. This was one of the stated goals at the beginning of the project. At some future point in time, with the DTTEG becoming standard equipment on all trucks and automobiles, fuel savings from the 25% conversion of exhaust heat to useable electricity nationwide equates to a 10% reduction in the 12 to 15 million barrels per day of imported oil, that much less air pollution, and an equivalent reduction in the trade deficit, which is expected to lower the inflation rate.

N.B. Elsner; J.C. Bass; S. Ghamaty; D. Krommenhoek; A. Kushch; D. Snowden; S. Marchetti

2005-03-31T23:59:59.000Z

452

Alkaline earth filled nickel skutterudite antimonide thermoelectrics  

DOE Patents [OSTI]

A thermoelectric material including a body centered cubic filled skutterudite having the formula A.sub.xFe.sub.yNi.sub.zSb.sub.12, where A is an alkaline earth element, x is no more than approximately 1.0, and the sum of y and z is approximately equal to 4.0. The alkaline earth element includes guest atoms selected from the group consisting of Be, Mb, Ca, Sr, Ba, Ra and combinations thereof. The filled skutterudite is shown to have properties suitable for a wide variety of thermoelectric applications.

Singh, David Joseph

2013-07-16T23:59:59.000Z

453

Holey Silicon as an Efficient Thermoelectric Material  

SciTech Connect (OSTI)

This work investigated the thermoelectric properties of thin silicon membranes that have been decorated with high density of nanoscopic holes. These ?holey silicon? (HS) structures were fabricated by either nanosphere or block-copolymer lithography, both of which are scalable for practical device application. By reducing the pitch of the hexagonal holey pattern down to 55 nm with 35percent porosity, the thermal conductivity of HS is consistently reduced by 2 orders of magnitude and approaches the amorphous limit. With a ZT value of 0.4 at room temperature, the thermoelectric performance of HS is comparable with the best value recorded in silicon nanowire system.

Tang, Jinyao; Wang, Hung-Ta; Hyun Lee, Dong; Fardy, Melissa; Huo, Ziyang; Russell, Thomas P.; Yang, Peidong

2010-09-30T23:59:59.000Z

454

Nonequilibrium Thermoelectrics: Low-Cost, High-Performance Materials for Cooling and Power Generation  

SciTech Connect (OSTI)

Thermoelectric materials can be made into coolers (TECs) that use electricity to develop a temperature difference, cooling something, or generators (TEGs) that convert heat directly to electricity. One application of TEGs is to place them in a waste heat stream to recuperate some of the power being lost and putting it to use more profitably. To be effective thermoelectrics, however, materials must have both high electrical conductivity and low thermal conductivity, a combination rarely found in nature. Materials selection and processing has led to the development of several systems with a figure of merit, ZT, of nearly unity. By using non-equilibrium techniques, we have fabricated higher efficiency thermoelectric materials. The process involves creating an amorphous material through melt spinning and then sintering it with either spark plasma or a hot press for as little as two minutes. This results in a 100% dense material with an extremely fine grain structure. The grain boundaries appear to retard phonons resulting in a reduced thermal conductivity while the electrons move through the material relatively unchecked. The techniques used are low-cost and scaleable to support industrial manufacturing.

Li, Q.

2011-05-18T23:59:59.000Z

455

Welding Isotopic Heat Sources for the Cassini Mission to Saturn (U)  

SciTech Connect (OSTI)

In 1997 NASA will launch the Cassini scientific probe to the planet Saturn. Electric power for this probe will be provided by Radioisotope Thermoelectric Generators thermally driven by General Purpose Heat Source modules.

Franco-Ferreira, E.A. [Westinghouse Savannah River Company, SC (United States); George, T.G. [Los Alamos National Laboratory, CA (United States)

1995-02-28T23:59:59.000Z

456

An electrochemical system for efficiently harvesting low-grade heat energy  

E-Print Network [OSTI]

Efficient and low-cost thermal energy-harvesting systems are needed to utilize the tremendous low-grade heat sources. Although thermoelectric devices are attractive, its efficiency is limited by the relatively low ...

Lee, Seok Woo

457

Minority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram  

E-Print Network [OSTI]

results are given for several common material systems. Introduction Thermoelectric effects haveMinority-Carrier Thermoelectric Devices Kevin P. Pipe and Rajeev J. Ram Research Laboratory the thermoelectric performance of the electronic devices themselves. Recognizing that minority carriers play

458

Method of controlling temperature of a thermoelectric generator in an exhaust system  

DOE Patents [OSTI]

A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

2013-05-21T23:59:59.000Z

459

Lunar Nuclear Power Plant With Solid Core Reactor, Heatpipes and Thermoelectric Conversion  

SciTech Connect (OSTI)

This is a lunar nuclear power plant with the advantages of minimum mass, with no moving parts, no pumped liquid coolant, a solid metal rugged core, with no single point of failure. The electrical output is 100 kilowatts with a 500 kilowatt thermal reactor. The thermoelectric converters surround the potassium heatpipes from the core and water heatpipes surround the converter and connect to the radiator. The solid core reactor is made from HT9 alloy. The fuel is uranium oxide with 90% enrichment. The thermoelectric converter is bonded to the outside of the 1.10 inch ID heat pipe and is 30 inches long. The thermoelectric couple is Si/SiGe-Si/SiC Quantum Well with over 20% efficiency with an 890 K hot side and a 490 K cold side and produces 625 Watts. 176 converters produce 110 kWe. With less than 10% loss in controls this yields 100 kWe for use. The cylindrical thermoelectric converter is designed and fabricated by HIPing to keep brittle materials in compression and to ensure conductivity. The solid core is fabricated by machining the heatpipe tubes with 6 grooves that are diffusion bonded together by HIPing to form the fuel tubes. The maximum temperature of the heat pipes is 940 K and the return flow temperature is 890 K. The reactor core is hexagonal shaped, 61 cm. wide and 76.2 cm high with 12 rotating control drums surrounding it. There is shielding to protect components and human habitation. The radiator is daisy shaped at 45 degrees with each petal 5.5 meters long. The design life is ten years.

Sayre, Edwin D. [Engineering Consultant, 218 Brooke Acres Drive, Los Gatos, CA 95032 (United States); Ring, Peter J. [Advanced Methods and Materials, 1190 Mountain View-Alviso Rd. Suite P, Sunnyvale, CA 94089 (United States); Brown, Neil [Engineering Consultant, 5134 Cordoy Lane, San Jose, CA 95124 (United States); Elsner, Norbert B.; Bass, John C. [Hi-Z Technology, Inc., 7606 Miramar Rd. Suite 7400, San Diego, CA 92126 (United States)

2008-01-21T23:59:59.000Z

460

Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle  

DOE Patents [OSTI]

A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

Boberg, Evan S. (Hazel Park, MI); Gebby, Brian P. (Hazel Park, MI)

1999-09-28T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

On the role of electron energy distribution function in double frequency heating of electron cyclotron resonance ion source plasmas  

SciTech Connect (OSTI)

Double frequency heating (DFH) is a tool to improve the output of highly charged ions particularly from modern electron cyclotron resonance ion source installations with very high RF-frequencies. In order to gain information on the DFH-mechanism and on the role of the lower injected frequency we have carried out a series of dedicated experiments where we have put emphasis on the creation of a discrete resonance surface also for this lower frequency. Our well-established method of inserting an emissive MD (metal-dielectric) liner into the plasma chamber of the source is used in these experiments as a tool of investigation. In this way, the electron temperature and density for both ECR zones is increased in a controlled manner, allowing conclusions on the role of the change of the electron-energy-distribution function with and without DFH.

Schachter, L., E-mail: lsch@tandem.nipne.ro; Dobrescu, S. [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)] [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Stiebing, K. E. [Institut für Kernphysik der J. W. Goethe Universität, Frankfurt/Main (Germany)] [Institut für Kernphysik der J. W. Goethe Universität, Frankfurt/Main (Germany)

2014-02-15T23:59:59.000Z

462

Titanium nitride electrodes for thermoelectric generators  

DOE Patents [OSTI]

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film of titanium nitride as an electrode deposited onto solid electrolyte. The invention is also directed to the method of making same.

Novak, Robert F. (Farmington Hills, MI); Schmatz, Duane J. (Dearborn Heights, MI); Hunt, Thomas K. (Ann Arbor, MI)

1987-12-22T23:59:59.000Z

463

Molybdenum oxide electrodes for thermoelectric generators  

DOE Patents [OSTI]

The invention is directed to a composite article suitable for use in thermoelectric generators. The article comprises a thin film comprising molybdenum oxide as an electrode deposited by physical deposition techniques onto solid electrolyte. The invention is also directed to the method of making same.

Schmatz, Duane J. (Dearborn Heights, MI)

1989-01-01T23:59:59.000Z

464

Thermoelectric cooling container for medical applications  

SciTech Connect (OSTI)

In this work the thermoelectric cooling container for storing and transportation of the medicine, particularly for insulin, is discussed. In the working volume the temperature is supported on the level of +4 C. The container can work in two operating conditions: with the power supply and without the power supply. Two removable blocks are used for this purpose. One block (thermoelectric) is used for the work with the power supply and another (passive)-for the work without power supply. The thermoelectric block has a 12V power supply, which is used in the automobiles, yachts and other kinds of transport. The temperature in the working volume is supported by the use of the Peltier effect. An electronic device is used in this block and stabilizes temperature on the level of +4 C and indicates information about working conditions. The thermoelectric container has a power supply block for work at 220(110)V. The working temperature in the container can be maintained in the absence of the power supply. In this case the necessary temperature conditions are supported by melting of the crystallized salt. For this purpose the container has a hermetic volume containing this salt and contacting with the working volume.

Aivazov, A.A.; Shtern, Y.I.; Budaguan, B.G.; Makhrachev, K.B.; Pastor, M.

1997-07-01T23:59:59.000Z

465

Design concepts for improved thermoelectric materials  

SciTech Connect (OSTI)

Some new guidelines are given that should be useful in the search for thermoelectric materials that are better than those currently available. In particular, clathrate and cryptoclathrate compounds with filler atoms in their cages offer the ability to substantially lower the lattice thermal conductivity.

Slack, G.A.

1997-07-01T23:59:59.000Z

466

The Effects of an Exhaust Thermoelectric Generator of a GM Sierra...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck The Effects of an Exhaust Thermoelectric Generator of a GM Sierra Pickup Truck 2004 Diesel Engine Emissions...

467

Simulations of heating and electron energy distributions in optical field ionized plasmas Imperial College of Science, Technology and Medicine, Prince Consort Road, London SW7 2BZ, United Kingdom  

E-Print Network [OSTI]

Simulations of heating and electron energy distributions in optical field ionized plasmas T is important. The consequences that the calculated energy distributions have on three-body recombination rates extent 7­9 . In calculating the magnitude of the collisional heating the electron energy distribution

Ditmire, Todd

468

Towards Intelligent District Heating.  

E-Print Network [OSTI]

??A district heating system consists of one or more production units supplying energy in the form of heated water through a distribution pipe network to… (more)

Johansson, Christian

2010-01-01T23:59:59.000Z

469

High Efficiency Integrated Space Conditioning, Water Heating and Air Distribution System for HUD-Code Manufactured Housing  

SciTech Connect (OSTI)

Recognizing the need for new space conditioning and water heating systems for manufactured housing, DeLima Associates assembled a team to develop a space conditioning system that would enhance comfort conditions while also reducing energy usage at the systems level. The product, Comboflair® was defined as a result of a needs analysis of project sponsors and industry stakeholders. An integrated system would be developed that would combine a packaged airconditioning system with a small-duct, high-velocity air distribution system. In its basic configuration, the source for space heating would be a gas water heater. The complete system would be installed at the manufactured home factory and would require no site installation work at the homesite as is now required with conventional split-system air conditioners. Several prototypes were fabricated and tested before a field test unit was completed in October 2005. The Comboflair® system, complete with ductwork, was installed in a 1,984 square feet, double-wide manufactured home built by Palm Harbor Homes in Austin, TX. After the home was transported and installed at a Palm Harbor dealer lot in Austin, TX, a data acquisition system was installed for remote data collection. Over 60 parameters were continuously monitored and measurements were transmitted to a remote site every 15 minutes for performance analysis. The Comboflair® system was field tested from February 2006 until April 2007. The cooling system performed in accordance with the design specifications. The heating system initially could not provide the needed capacity at peak heating conditions until the water heater was replaced with a higher capacity standard water heater. All system comfort goals were then met. As a result of field testing, we have identified improvements to be made to specific components for incorporation into production models. The Comboflair® system will be manufactured by Unico, Inc. at their new production facility in St. Louis, MO. The product will be initially launched in the hot-humid climates of the southern U.S.

Henry DeLima; Joe Akin; Joseph Pietsch

2008-09-14T23:59:59.000Z

470

"Developing novel heat transfer diagnostics for nanosystems."  

E-Print Network [OSTI]

and development of electronic devices, power generation modules, and waste energy harvesting techniques alloys. Thermal conductivity of bismuth-doped III-V alloys Thermoelectric power generation (TPG) has become an increasingly popular technology for waste heat recovery in the last few years. The efficiency

Acton, Scott

471

Establishing Thermo-Electric Generator (TEG) Design Targets for...  

Broader source: Energy.gov (indexed) [DOE]

Evaluate the fuel economy impact of thermoelectric devices on a conventional vehicle, using engine-in- the-loop testing and simulation studies Results: * Cold & hot start...

472

Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Couple Demonstration of (In, Ce)-based Skutterudite Materials for Automotive Energy Recovery Thermoelectric Couple Demonstration of (In, Ce)-based Skutterudite Materials for...

473

Strategies for High Thermoelectric zT in Bulk Materials  

Broader source: Energy.gov [DOE]

Zintl principle in chemistry, complex electronic band structures, and incorporation of nanometer sized particles were used to explore, optimize and improve bulk thermoelectric materials

474

Automotive Thermoelectric Moduleswith Scalable Thermo- andElectro...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermo- and Electro-Mechanical Interfaces Interface materials based on carbon nanotubes and metallic alloys, scalable p- and n-type thermoelectrics, materials compatibility...

475

Thermoelectric Generator Development at Renault Trucks-Volvo...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Trucks-Volvo Group Reviews project to study the potential of thermoelectricity for diesel engines of trucks and passenger cars, where relatively low exhaust temperature is...

476

Status of Segmented Element Thermoelectric Generator for Vehicle...  

Broader source: Energy.gov (indexed) [DOE]

ring which includes TE elements Advanced Thermoelectric Solutions - 10 - Liquid tanks are attached at each end of the TEG. The cooling liquid flows counter to the flow of...

477

Improved thermoelectric power output from multilayered polyethylenimine doped carbon nanotube based organic composites  

SciTech Connect (OSTI)

By appropriately selecting the carbon nanotube type and n-type dopant for the conduction layers in a multilayered carbon nanotube composite, the total device thermoelectric power output can be increased significantly. The particular materials chosen in this study were raw single walled carbon nanotubes for the p-type layers and polyethylenimine doped single walled carbon nanotubes for the n-type layers. The combination of these two conduction layers leads to a single thermocouple Seebeck coefficient of 96 ± 4??VK{sup ?1}, which is 6.3 times higher than that previously reported. This improved Seebeck coefficient leads to a total power output of 14.7 nW per thermocouple at the maximum temperature difference of 50?K, which is 44 times the power output per thermocouple for the previously reported results. Ultimately, these thermoelectric power output improvements help to increase the potential use of these lightweight, flexible, and durable organic multilayered carbon nanotube based thermoelectric modules in low powered electronics applications, where waste heat is available.

Hewitt, Corey A.; Montgomery, David S.; Barbalace, Ryan L.; Carlson, Rowland D.; Carroll, David L., E-mail: carroldl@wfu.edu [Center for Nanotechnology and Molecular Materials, Wake Forest University, 501 Deacon Blvd., Winston Salem, North Carolina 27105 (United States)

2014-05-14T23:59:59.000Z

478

Performance of the 1 kW thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

Hi-Z Technology, Inc. (Hi-Z) has been developing a 1 kW thermoelectric generator for class eight Diesel truck engines under U.S. Department of Energy and California Energy Commission funding since 1992. The purpose of this generator is to replace the currently used shaft-driven alternator by converting part of the waste heat in the engine`s exhaust directly to electricity. The preliminary design of this generator was reported at the 1992 meeting of the XI-ICT in Arlington, Texas. This paper will report on the final mechanical, thermal and thermoelectric design of this generator. The generator uses seventy-two of Hi-Z`s 13 Watt bismuth-telluride thermoelectric modules for energy conversion. The number of modules and their arrangement has remained constant through the program. The 1 kW generator was tested on several engines during the development process. Many of the design features were changed during this development as more information was obtained. We have only recently reached our design goal of 1 kW output. The output parameters of the generator are reported. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Bass, J.C.; Elsner, N.B.; Leavitt, F.A. [Hi-Z Technology, Inc (??)

1994-08-10T23:59:59.000Z

479

Heating system  

SciTech Connect (OSTI)

A heating system utilizing solar panels and buried ground conduits to collect and store heat which is delivered to a heatpump heat exchanger. A heat-distribution fluid continuously circulates through a ground circuit to transfer heat from the ground to the heat exchanger. The ground circuit includes a length of buried ground conduit, a pump, a check valve and the heat exchanger. A solar circuit, including a solar panel and a second pump, is connected in parallel with the check valve so that the distribution fluid transfers solar heat to the heat exchanger for utilization and to the ground conduit for storage when the second pump is energized. A thermostatically instrumented control system energizes the second pump only when the temperature differential between the solar panel inlet and outlet temperatures exceeds a predetermined value and the ground temperature is less than a predetermined value. Consequently, the distribution fluid flows through the solar panel only when the panel is capable of supplying significant heat to the remainder of the system without causing excessive drying of the ground.

Nishman, P.J.

1983-03-08T23:59:59.000Z

480

District heating and cooling systems for communities through power plant retrofit distribution network. Phase 2. Final report, March 1, 1980-January 31, 1984. Volume IV  

SciTech Connect (OSTI)

This volume contains the following: discussion of cost estimating methodology, detailed cost estimates of Hudson No. 2 retrofit, intermediate thermal plant (Kearny No. 12) and local heater plants; transmission and distribution cost estimate; landfill gas cost estimate; staged development scenarios; economic evaluation; fuel use impact; air quality impact; and alternatives to district heating.

Not Available

1984-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed thermoelectric heating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Synthesis and evaluation of thermoelectric multilayer films  

SciTech Connect (OSTI)

The deposition of compositionally modulated (Bi{sub 1-x}Sb{sub x}){sub 2}(Te{sub 1-y}Se{sub y}){sub 3} thermoelectric multilayer films by magnetron sputtering has been demonstrated. Structures with a period of 140{Angstrom} are shown to be stable to interdiffusion at the high deposition temperatures necessary for growth of single layer crystalline films with ZT {gt} 0.5. These multilayers are of the correct dimension to exhibit the electronic properties of quantum well structures. Furthermore it is shown that the Seebeck coefficient of the films is not degraded by the presence of this multilayer structure. It may be possible to synthesize a multilayer thermoelectric material with enhanced ZT by maximizing the barrier height through optimization of the composition of the barrier.

Wagner, A.V.; Foreman, R.J.; Summers, L.J.; Barbee, T.W. Jr.; Farmer, J.C.

1996-03-21T23:59:59.000Z

482

Composite Thermoelectric Devices | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codestheatfor Optimized SCR SystemsThermoelectric

483

Vehicular Thermoelectrics Applications Overview | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwoVulnerabilitiesPowertrainReadiness10Thermoelectrics

484

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

485

Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-01stephenson.pdf More Documents & Publications Development of...

486

A Thermoelectric Generator with an Intermediate Heat Exchanger...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. p-20kim.pdf More Documents & Publications Low and high...

487

Overview of Fords Thermoelectric Programs: Waste Heat Recovery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

gasoline-engine exhaust, TE HVAC system in hybrid sedan, and establishing targets for cost, power density, packaging, durability, and systems integration maranville.pdf More...

488

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ace049schock2011o.pdf More Documents & Publications...

489

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. ace46schock...

490

Thermoelectric Conversion of Waste Heat to Electricity in an...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

10 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. ace049schock2010o...

491

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles  

Broader source: Energy.gov (indexed) [DOE]

10% Phase 5 Objectives Improve cylindrical TEG prototype manufacture with improved tooling and subassembly component manufacture Integrate TEGs into BMW and Ford vehicles for...

492

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov (indexed) [DOE]

Budget Barriers * Interactionscollaborations ORNL - High temperature transport and mechanical property measurements UNLV - Computational materials development Marlow - TE module...

493

Develop Thermoelectric Technology for Automotive Waste Heat Recovery  

Broader source: Energy.gov (indexed) [DOE]

4 K to room temperature * High temperature transport property measurements (ORNL) * Neutron scattering for phonon DOS and phonon mode analysis (NCNR) * Computational research...

494

Combustion Exhaust Gas Heat to Power Using Thermoelectric Engines |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTieCelebrate Earth Codes andDepartment ofPressure Sampling forDepartment

495

Thermoelectric Conversion of Exhaust Gas Waste Heat into Usable Electricity  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment of EnergyThermodynamic7 and| Department

496

Thermoelectric Generator Development for Automotive Waste Heat Recovery |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered Vehicle |Department of

497

Thermoelectric Technology for Automotive Waste Heat Recovery | Department  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartment

498

Thermoelectric Waste Heat Recovery Program for Passenger Vehicles |  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPowered VehicleDepartmentDepartment of

499

Thermoelectrics: From Space Power Systems to Terrestrial Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyThe EnergyDepartment ofPoweredEngine-Powered

500

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverviewFranklin M.EngineReportRecovery |