National Library of Energy BETA

Sample records for distributed power grids

  1. Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2008 | Department of Energy Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Protecting Intelligent Distributed Power Grids Against Cyber Attacks - May 2008 Development of a novel distributed and hierarchical security layer specific to intelligent grid design will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation, distribution, IT networks, and

  2. Fact Sheet: Protecting Intelligent Distributed Power Grids Against...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of a novel distributed and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing ...

  3. Fact Sheet: Protecting Intelligent Distributed Power Grids Against Cyber Attacks

    Office of Environmental Management (EM)

    Protecting Intelligent Distributed Power Grids Against Cyber Attacks Development of a novel distributed and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation, distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, effciency, and reliability. But increased interconnection and automation over a large

  4. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Distribution Grid Integration Distribution Grid...

  5. Protecting Intelligent Distributed Power Grids Against Cyber...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distribution, IT networks, and control systems-that use automated data analysis and demand response capabilities to increase system functionality, efficiency, and reliability. ...

  6. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Carbide Thyristors Read More Permalink ECIS-Princeton Power Systems, Inc.: Demand Response Inverter DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, ...

  7. Protecting Intelligent Distributed Power Grids against Cyber Attacks

    SciTech Connect (OSTI)

    Dong Wei; Yan Lu; Mohsen Jafari; Paul Skare; Kenneth Rohde

    2010-12-31

    Like other industrial sectors, the electrical power industry is facing challenges involved with the increasing demand for interconnected operations and control. The electrical industry has largely been restructured due to deregulation of the electrical market and the trend of the Smart Grid. This moves new automation systems from being proprietary and closed to the current state of Information Technology (IT) being highly interconnected and open. However, while gaining all of the scale and performance benefits of IT, existing IT security challenges are acquired as well. The power grid automation network has inherent security risks due to the fact that the systems and applications for the power grid were not originally designed for the general IT environment. In this paper, we propose a conceptual layered framework for protecting power grid automation systems against cyber attacks. The following factors are taken into account: (1) integration with existing, legacy systems in a non-intrusive fashion; (2) desirable performance in terms of modularity, scalability, extendibility, and manageability; (3) alignment to the 'Roadmap to Secure Control Systems in the Energy Sector' and the future smart grid. The on-site system test of the developed prototype security system is briefly presented as well.

  8. GridLab Power Distribution System Simulation | Open Energy Information

    Open Energy Info (EERE)

    Pathways analysis User Interface: Desktop Application Website: www.gridlabd.org Cost: Free OpenEI Keyword(s): EERE tool Language: English References: GridLAB-D Simulation...

  9. NREL: Distributed Grid Integration - Power Systems Modeling Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems Modeling Projects Photo of power block prototype and advanced controller inside a power inverter cabinet. Power block prototype and advanced controller. Photo by Joshua Bauer, NREL NREL researchers work with industry and stakeholders to create power systems models. Modeling power systems is important for product research and development. For example, researchers have developed renewable energy inverters which convert energy from sources such as photovoltaic arrays and flywheels and

  10. Distribution Grid Integration

    Broader source: Energy.gov [DOE]

    The DOE Systems Integration team funds distribution grid integration research and development (R&D) activities to address the technical issues that surround distribution grid planning,...

  11. NREL: Distributed Grid Integration - Solar Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Solar Distributed Grid Integration Projects Photo of a man working on a solar photovoltaic array outdoors. NREL's solar distributed grid integration research finds solutions to enable greater penetration of solar electricity on the power grid. Photo by Dennis Schroeder, NREL Energy System Basics Video Series Learn the essential facts on energy systems in this six-part video series sponsored by the DOE SunShot Initiative and hosted by Dr. Ravel Ammerman. NREL provides grid

  12. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  13. Dynamic Power Grid Simulation

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    GridDyn is a part of power grid simulation toolkit. The code is designed using modern object oriented C++ methods utilizing C++11 and recent Boost libraries to ensure compatibility with multiple operating systems and environments.

  14. Agent Concept for Intelligent Distributed Coordination in the Electric Power Grid

    SciTech Connect (OSTI)

    SMATHERS, DOUGLAS C.; GOLDSMITH, STEVEN Y.

    2001-03-01

    Intelligent agents and multi-agent systems promise to take information management for real-time control of the power grid to a new level. This report presents our concept for intelligent agents to mediate and coordinate communications between Control Areas and Security Coordinators for real-time control of the power grid. An appendix describes the organizations and publications that deal with agent technologies.

  15. Innovative Distributed Power Grid Interconnection and Control Systems: Final Report, December 11, 2000 - August 30, 2005

    SciTech Connect (OSTI)

    DePodesta, K.; Birlingmair, D.; West, R.

    2006-03-01

    The contract goal was to further advance distributed generation in the marketplace by making installations more cost-effective and compatible with existing systems. This was achieved by developing innovative grid interconnection and control systems.

  16. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  17. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  19. PROJECT PROFILE: Stabilizing the Power System in 2035 and Beyond: Evolving from Grid-Following to Grid-Forming Distributed Inverter Controllers (SuNLaMP)

    Broader source: Energy.gov [DOE]

    Adding large amounts of photovoltaic (PV) solar energy onto the grid creates significant challenges for future grid operations, since the electric power grid currently operates with rotational inertia from fossil fuel-driven machines. However, PV inverters are power-electronic devices with no inherent inertia. This project will develop a suite of inverter controllers to ensure the long-term viability of electric power grid infrastructure and address the large reductions in system-wide inertia with high penetrations of PV. These grid-forming inverter controllers will allow each inverter to act as a controllable voltage source that dynamically adjusts its output to ensure system-level stability, synchronization, and voltage regulation.

  20. Building the Distribution Grid

    Broader source: Energy.gov (indexed) [DOE]

    2013 * Industry leader in renewable energy procurement, electric transportation, demand response, energy efficiency and Smart Grid * Significant system investments 2014 - 2017 ...

  1. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for enhancing the resilience of electric distribution grids to natural disasters. ... PDF icon Electric Power Distribution System Resilience: Federal Government and National ...

  2. NREL: Distributed Grid Integration - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Photo of a man in safety glasses working with laboratory equipment. NREL's distributed grid integration researchers conduct testing and evaluation at the one-of-a-kind Energy Systems Integration Facility. NREL researchers work on advanced approaches to grid interconnection and control technologies, energy management, and grid support applications by performing testing, data visualization, modeling and analysis, and developing standards and codes. Through these efforts, NREL helps

  3. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    2014-06-02

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  4. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  5. NREL: Distributed Grid Integration - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff NREL's distributed grid integration research staff work to strengthen and diversify the electric power system through NREL's Power Systems Engineering Center. Photo of James Cale James Cale, Distributed Energy Systems Integration Group Manager Ph.D., Electrical Engineering, Purdue University M.S., Electrical Engineering, Purdue University B.S., Electrical Engineering, MS&T Dr. James Cale is an expert in the field of power electronics and electrical machine modeling and

  6. Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering ...

  7. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Specific...

  8. Reinventing the National Power Grid

    Broader source: Energy.gov [DOE]

    America’s power grid – while reliable today – needs a 21st century facelift, not only to accommodate the nation’s unfolding economic and security needs, but to achieve U.S. clean energy goals for a...

  9. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  10. NREL: Distributed Grid Integration - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working with Us Two men and two women in safety glasses stand near outdoor electric power equipment. Collaborate with NREL's world-class distributed grid integration research staff at the Energy Systems Integration Facility. NREL's electric infrastructure systems research involves industry, academia, other national laboratories, and various standards organizations through collaborative work and the use of our facilities. Collaborative Work To engage in collaborative work for NREL's distributed

  11. Parallel Power Grid Simulation Toolkit

    Energy Science and Technology Software Center (OSTI)

    2015-09-14

    ParGrid is a 'wrapper' that integrates a coupled Power Grid Simulation toolkit consisting of a library to manage the synchronization and communication of independent simulations. The included library code in ParGid, named FSKIT, is intended to support the coupling multiple continuous and discrete even parallel simulations. The code is designed using modern object oriented C++ methods utilizing C++11 and current Boost libraries to ensure compatibility with multiple operating systems and environments.

  12. NREL: Distributed Grid Integration - Vehicle-to-Grid Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-to-Grid Project NREL engineers test and analyze electrical vehicle charging and discharging to the electric grid, known as Vehicle-to-Grid (V2G). Testing is conducted at NREL's Distributed Energy Resources Test Facility, where researchers connect, instrument, and test V2G platforms. NREL provides calibrated, high-resolution data acquisition, grid simulation, and 240 volt alternating current residential transformer connect-ability for real world analysis. NREL is currently working with

  13. NREL: Distributed Grid Integration - Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes and Standards NREL works with the Institute of Electrical and Electronics Engineers (IEEE) to create consensus standards with participation from industry, utilities, government, and others. These standards guide the integration of renewable and other small electricity generation and storage sources (or "distributed resources," a key aspect of the Smart Grid) into the electric power system. There are two main groups, or families, of standards that NREL works with: IEEE 1547 Family

  14. Visual Analytics for Power Grid Contingency Analysis

    SciTech Connect (OSTI)

    Wong, Pak C.; Huang, Zhenyu; Chen, Yousu; Mackey, Patrick S.; Jin, Shuangshuang

    2014-01-20

    Contingency analysis is the process of employing different measures to model scenarios, analyze them, and then derive the best response to remove the threats. This application paper focuses on a class of contingency analysis problems found in the power grid management system. A power grid is a geographically distributed interconnected transmission network that transmits and delivers electricity from generators to end users. The power grid contingency analysis problem is increasingly important because of both the growing size of the underlying raw data that need to be analyzed and the urgency to deliver working solutions in an aggressive timeframe. Failure to do so may bring significant financial, economic, and security impacts to all parties involved and the society at large. The paper presents a scalable visual analytics pipeline that transforms about 100 million contingency scenarios to a manageable size and form for grid operators to examine different scenarios and come up with preventive or mitigation strategies to address the problems in a predictive and timely manner. Great attention is given to the computational scalability, information scalability, visual scalability, and display scalability issues surrounding the data analytics pipeline. Most of the large-scale computation requirements of our work are conducted on a Cray XMT multi-threaded parallel computer. The paper demonstrates a number of examples using western North American power grid models and data.

  15. NREL: Distributed Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Distributed Grid Integration Home Capabilities Projects Research Staff Working with Us Did you find what you needed? Yes 1 No 0 Thank you for your feedback. Would you like to take a

  16. November 2014 PSERC Webinar: Transforming the Grid from the Distribution

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System Out | Department of Energy 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out November 2014 PSERC Webinar: Transforming the Grid from the Distribution System Out October 13, 2014 - 5:57pm Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar presenting the challenges and opportunities associated with dynamic distribution system architecture. This new dynamic distribution system connects central and local

  17. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  18. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  19. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy

    Energy Savers [EERE]

    and Logistical Challenges | Department of Energy Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges Dairyland Power Cooperative is a generation and transmission cooperative (G&T) that provides the wholesale electrical requirements and other services for 25 electric distribution cooperatives and 16 municipal utilities in the Upper Midwest. PDF icon Smart Grid RFI:

  20. Application Note: Power Grid Modeling With Xyce.

    SciTech Connect (OSTI)

    Sholander, Peter E.

    2015-06-01

    This application note describes how to model steady-state power flows and transient events in electric power grids with the SPICE-compatible Xyce TM Parallel Electronic Simulator developed at Sandia National Labs. This application notes provides a brief tutorial on the basic devices (branches, bus shunts, transformers and generators) found in power grids. The focus is on the features supported and assumptions made by the Xyce models for power grid elements. It then provides a detailed explanation, including working Xyce netlists, for simulating some simple power grid examples such as the IEEE 14-bus test case.

  1. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28

    AbstractElectric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  2. GridPACK Toolkit for Developing Power Grid Simulations on High Performance Computing Platforms

    SciTech Connect (OSTI)

    Palmer, Bruce J.; Perkins, William A.; Glass, Kevin A.; Chen, Yousu; Jin, Shuangshuang; Callahan, Charles D.

    2013-11-30

    This paper describes the GridPACK framework, which is designed to help power grid engineers develop modeling software capable of running on todays high performance computers. The framework contains modules for setting up distributed power grid networks, assigning buses and branches with arbitrary behaviors to the network, creating distributed matrices and vectors, using parallel linear and non-linear solvers to solve algebraic equations, and mapping functionality to create matrices and vectors based on properties of the network. In addition, the framework contains additional functionality to support IO and to manage errors.

  3. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  4. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  5. Geographic Visualization of Power-Grid Dynamics

    SciTech Connect (OSTI)

    2015-06-18

    The visualization enables the simulation analyst to see changes in the frequency through time and space. With this technology, the analyst has a bird's eye view of the frequency at loads and generators as the simulated power system responds to the loss of a generator, spikes in load, and other contingencies. The significance of a contingency to the operation of an electrical power system depends critically on how the resulting tansients evolve in time and space. Consequently, these dynamic events can only be understood when seen in their proper geographic context. this understanding is indispensable to engineers working on the next generation of distributed sensing and control systems for the smart grid. By making possible a natural and intuitive presentation of dynamic behavior, our new visualization technology is a situational-awareness tool for power-system engineers.

  6. Geographic Visualization of Power-Grid Dynamics

    Energy Science and Technology Software Center (OSTI)

    2015-06-18

    The visualization enables the simulation analyst to see changes in the frequency through time and space. With this technology, the analyst has a bird's eye view of the frequency at loads and generators as the simulated power system responds to the loss of a generator, spikes in load, and other contingencies. The significance of a contingency to the operation of an electrical power system depends critically on how the resulting tansients evolve in time andmore » space. Consequently, these dynamic events can only be understood when seen in their proper geographic context. this understanding is indispensable to engineers working on the next generation of distributed sensing and control systems for the smart grid. By making possible a natural and intuitive presentation of dynamic behavior, our new visualization technology is a situational-awareness tool for power-system engineers.« less

  7. Connecting to the Grid: A Guide to Distributed Generation Interconnect...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 Connecting to the Grid: A Guide to Distributed Generation Interconnection...

  8. Enhanced INL Power Grid Test Bed Infrastructure – Phase I

    SciTech Connect (OSTI)

    Reid, Carol Ann; West, Grayson Shawn; McBride, Scott Alan

    2014-06-01

    Idaho National Laboratory (INL), a Department of Energy (DOE) laboratory, owns, operates, and maintains transmission and distribution power grid infrastructure to support the INL multi program mission. Sections of this power infrastructure, known as the INL Power Grid Test Bed, have been and are being used by government and industry to develop, demonstrate, and validate technologies for the modern grid, including smart grid, on a full scale utility test bed. INL’s power grid includes 61 miles of 140 MW, 138 kV rated electrical power transmission supplying seven main substations, each feeding a separate facility complex (or ‘city’) within the INL’s 890 square mile Site. This power grid is fed by three commercial utilities into the INL’s main control substation, but is operated independently from the commercial utility through its primary substation and command and control center. Within the INL complex, one of the seven complexes, the Critical Infrastructure Test Range Complex (CITRC), has been designated as the INL complex for supporting critical infrastructure research and testing. This complex includes its own substation and 13.8kV distribution network, all configurable and controlled by the INL research and development programs. Through investment partnership with the DOE Office of Electricity Delivery and Energy Reliability (DOE OE), INL is enhancing its existing distribution infrastructure to expand the types of testing that can be conducted and increase flexibility for testing configurations. The enhancement of the INL Power Grid Test Bed will enable development and full scale testing of smart-grid-related technologies and smart devices including testing interoperability, operational performance, reliability, and resiliency contribution at multiple distribution voltage classes, specifically 15kV, 25kV, and 35kV. The expected time frame for completion of the Phase I portion of the enhancement would be 4th quarter fiscal year (FY) 2015.

  9. Interoperable PKI Data Distribution in Computational Grids

    SciTech Connect (OSTI)

    Pala, Massimiliano; Cholia, Shreyas; Rea, Scott A.; Smith, Sean W.

    2008-07-25

    One of the most successful working examples of virtual organizations, computational grids need authentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures(PKIs) provide sufficient flexibility to allow resource managers to securely grant access to their systems in such distributed environments. However, as PKIs grow and services are added to enhance both security and usability, users and applications must struggle to discover available resources-particularly when the Certification Authority (CA) is alien to the relying party. This article presents how to overcome these limitations of the current grid authentication model by integrating the PKI Resource Query Protocol (PRQP) into the Grid Security Infrastructure (GSI).

  10. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01

    In today's electricity generation system, different resources make different contributions to the electricity grid. This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity system. The advantages of a diversified mix of power generation systems are highlighted.

  11. NREL: Water Power Research - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration High-voltage transmission lines and towers silouetted against a blue sky with the first glow of the rising sun on the horizon behind them. The national need for transmission improvements will have a direct impact on the effective use of renewable energy sources. For marine and hydrokinetic technologies to play a larger role in supplying the nation's energy needs, integration into the U.S. power grid is an important challenge to address. Efficient integration of variable power

  12. Foundational Report Series. Advanced Distribution management Systems for Grid Modernization (Importance of DMS for Distribution Grid Modernization)

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    Grid modernization is transforming the operation and management of electric distribution systems from manual, paper-driven business processes to electronic, computer-assisted decisionmaking. At the center of this business transformation is the distribution management system (DMS), which provides a foundation from which optimal levels of performance can be achieved in an increasingly complex business and operating environment. Electric distribution utilities are facing many new challenges that are dramatically increasing the complexity of operating and managing the electric distribution system: growing customer expectations for service reliability and power quality, pressure to achieve better efficiency and utilization of existing distribution system assets, and reduction of greenhouse gas emissions by accommodating high penetration levels of distributed generating resources powered by renewable energy sources (wind, solar, etc.). Recent “storm of the century” events in the northeastern United States and the lengthy power outages and customer hardships that followed have greatly elevated the need to make power delivery systems more resilient to major storm events and to provide a more effective electric utility response during such regional power grid emergencies. Despite these newly emerging challenges for electric distribution system operators, only a small percentage of electric utilities have actually implemented a DMS. This paper discusses reasons why a DMS is needed and why the DMS may emerge as a mission-critical system that will soon be considered essential as electric utilities roll out their grid modernization strategies.

  13. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Imhoff, Carl; Vaishnav, Dave

    2014-07-01

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid. This technology provides the energy industry and the nation with a reliable, stable, safe, and low-cost storage alternative for a cleaner, efficient energy future.

  14. DA (Distribution Automation) (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    DA (Distribution Automation) (Smart Grid Project) Jump to: navigation, search Project Name DA (Distribution Automation) Country Netherlands Coordinates 52.132633, 5.291266...

  15. Distributed connected wind farms (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Distributed connected wind farms (Smart Grid Project) Jump to: navigation, search Project Name Distributed connected wind farms Country Ireland Headquarters Location Kerry, Ireland...

  16. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya; Dimitrovski, Aleksandar D; Fernandez, Steven J; Groer, Christopher S; Nutaro, James J; Olama, Mohammed M; Omitaomu, Olufemi A; Shankar, Mallikarjun; Spafford, Kyle L; Vacaliuc, Bogdan

    2012-11-01

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  17. Resilient Electric Distribution Grid R&D Workshop - June 11,...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 Microgrid Workshop Report August 2011 2014 Smart Grid R&D Peer Review - Day One, ...

  18. Burbank Water and Power Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    Water and Power Smart Grid Project Jump to: navigation, search Project Lead Burbank Water and Power Country United States Headquarters Location Burbank, California Recovery Act...

  19. Smart Grid Update: Delivering More Reliable and Efficient Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Update: Delivering More Reliable and Efficient Power to the Nation's Capital Smart Grid Update: Delivering More Reliable and Efficient Power to the Nation's Capital March 6, 2014 - ...

  20. Distributed Smart Grid Asset Control Strategies for Providing Ancillary Services

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Zhang, Wei; Lian, Jianming; Marinovici, Laurentiu D.; Moya, Christian; Dagle, Jeffery E.

    2013-10-30

    With large-scale plans to integrate renewable generation driven mainly by state-level renewable portfolio requirements, more resources will be needed to compensate for the uncertainty and variability associated with intermittent generation resources. Distributed assets can be used to mitigate the concerns associated with renewable energy resources and to keep costs down. Under such conditions, performing primary frequency control using only supply-side resources becomes not only prohibitively expensive but also technically difficult. It is therefore important to explore how a sufficient proportion of the loads could assume a routine role in primary frequency control to maintain the stability of the system at an acceptable cost. The main objective of this project is to develop a novel hierarchical distributed framework for frequency based load control. The framework involves two decision layers. The top decision layer determines the optimal gain for aggregated loads for each load bus. The gains are computed using decentralized robust control methods, and will be broadcast to the corresponding participating loads every control period. The second layer consists of a large number of heterogeneous devices, which switch probabilistically during contingencies so that aggregated power change matches the desired amount according to the most recently received gains. The simulation results show great potential to enable systematic design of demand-side primary frequency control with stability guarantees on the overall power system. The proposed design systematically accounts for the interactions between the total load response and bulk power system frequency dynamics. It also guarantees frequency stability under a wide range of time varying operating conditions. The local device-level load response rules fully respect the device constraints (such as temperature setpoint, compressor time delays of HVACs, or arrival and departure of the deferrable loads), which are crucial for implementing real load control programs. The promise of autonomous, Grid Friendly response by smart appliances in the form of under-frequency load shedding was demonstrated in the GridWise Olympic Peninsula Demonstration in 2006. Each controller monitored the power grid voltage signal and requested that electrical load be shed by its appliance whenever electric power-grid frequency fell below 59.95 Hz. The controllers and their appliances responded reliably to each shallow under-frequency event, which was an average of one event per day and shed their loads for the durations of these events. Another objective of this project was to perform extensive simulation studies to investigate the impact of a population of Grid Friendly Appliances (GFAs) on the bulk power system frequency stability. The GFAs considered in this report are represented as demonstration units with water heaters individually modeled.

  1. Distribution System planning for Smart Grids, ForskEL (Smart...

    Open Energy Info (EERE)

    Name Distribution System planning for Smart Grids, ForskEL Country Denmark Coordinates 56.26392, 9.501785 Loading map... "minzoom":false,"mappingservice":"googlemaps3","type...

  2. Power Grid Optimization | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that have heightened attention on the reliability and functionality of electric grids. ... See how a grid works in Smarter Technology for a Smart Grid. You Might Also Like lightning ...

  3. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) (Salzburg...

    Open Energy Info (EERE)

    "EU Smart Grid Projects Map" Retrieved from "http:en.openei.orgwindex.php?titleEMPORA1%2B2EMobilePowerAustria(SmartGridProject)(Salzburg,Austria)&oldid405637...

  4. EMPORA 1 + 2 EMobile Power Austria (Smart Grid Project) (Graz...

    Open Energy Info (EERE)

    "EU Smart Grid Projects Map" Retrieved from "http:en.openei.orgwindex.php?titleEMPORA1%2B2EMobilePowerAustria(SmartGridProject)(Graz,Austria)&oldid405636...

  5. Power Jobs: The Smart Grid Workforce | Department of Energy

    Energy Savers [EERE]

    Power Jobs: The Smart Grid Workforce Power Jobs: The Smart Grid Workforce September 20, 2011 - 4:46pm Addthis Developing a smarter electrical system also involves investment in training programs to build the workforce we need to successfully design, implement and sell these technologies. The Energy Department funds Smart Grid Workforce Training programs across the country, as pictured above. Find out more about the exciting career opportunities smart grid technology is enabling. Developing a

  6. The Relationship between Competitive Power Markets and Grid Reliability. |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Relationship between Competitive Power Markets and Grid Reliability. The Relationship between Competitive Power Markets and Grid Reliability. The U.S. Department of Energy and Natural Resources Canada should commission an independent study of the relationships among industry restructuring, competition in power markets, and grid reliability, and how those relationships should be managed to best serve the public interest. PDF icon The Relationship between Competitive

  7. Some characteristics of emerging distribution systems considering the smart grid initiative

    SciTech Connect (OSTI)

    Brown, Hilary E.; Suryanarayanan, Siddharth; Heydt, Gerald T.

    2010-06-15

    Modernization of the electric power system in the United States is driven by the Smart Grid Initiative. Many changes are planned in the coming years to the distribution side of the U.S. electricity delivery infrastructure to embody the idea of ''smart distribution systems.'' However, no functional or technical definition of a smart distribution system has yet been accepted by all. (author)

  8. Case Study - Minnesota Power - Accelerating Grid Modernization in Minnesota - November 2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study-Minnesota Power November 2012 1 SGIG Accelerates Grid Modernization in Minnesota Headquartered in Duluth, Minnesota Power (MP) serves approximately 144,000 customers and manages almost 9,000 miles of power lines and over 160 substations. Grid modernization is a top corporate priority and is driven by needs to upgrade the company's electric distribution and metering systems, load control programs, and customer engagement strategies for improved reliability and energy efficiency, lower

  9. Increasing Reliability of the Nation's Power Grid through Greater...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Reliability of the Nation's Power Grid through Greater Visibility March 22, 2016 - 10:15am Addthis Patricia A. Hoffman Patricia A. Hoffman Assistant Secretary, Office of ...

  10. Dairyland Power Cooperative Comments on Smart Grid RFI: Addressing...

    Broader source: Energy.gov (indexed) [DOE]

    National Consumer Law Center, and Public Citizen Comments to:DEPARTMENT OF ENERGY Smart Grid RFI: Addressing Policy and Logistical Challenges Florida Power and Light Comments on...

  11. Prediction and Control of Network Cascade: Example of Power Grid...

    Office of Scientific and Technical Information (OSTI)

    Conference: Prediction and Control of Network Cascade: Example of Power Grid or Networking ... Citation Details In-Document Search Title: Prediction and Control of Network Cascade: ...

  12. Workshop Outline Resilient Electric Distribution Grid R&D

    Broader source: Energy.gov (indexed) [DOE]

    Ver: 6 June 2014 Workshop Outline Resilient Electric Distribution Grid R&D Office of Electricity Delivery and Energy Reliability (OE) U.S. Department of Energy (DOE) Purpose  To identify key R&D activities for enhancing resilience of electric distribution grids to natural disasters: - Share current practices by distribution utilities - Share ongoing activities on resilient electric distribution grid R&D - Define R&D gaps - Identify key R&D activities to fill the gaps

  13. Connecting to the Grid: A Guide to Distributed Generation Interconnection

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues, 6th Edition, 2009 | Department of Energy Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009 The sixth edition of this guide addresses new and lingering issues relevant to all distributed generation technologies, including net excess generation, third-party ownership, energy storage and networks. This publication also discusses standards.

  14. Prepping Power Engineers for the Smart Grid | Department of Energy

    Energy Savers [EERE]

    Prepping Power Engineers for the Smart Grid Prepping Power Engineers for the Smart Grid June 19, 2012 - 4:01pm Addthis This video examines electrostatic induction, a phenomenon that means a conductive object in the vicinity of a power line may have energy coupled to it even if it's not connected to the line. Check out the other videos created by the partnership Bonneville Power Administration, Washington State University and the Northwest Workforce Training Center for Electric Power Engineering

  15. Impact of network topology on synchrony of oscillatory power grids

    SciTech Connect (OSTI)

    Rohden, Martin; Sorge, Andreas; Witthaut, Dirk; Timme, Marc; Faculty of Physics, Georg August Universitt Gttingen, Gttingen

    2014-03-15

    Replacing conventional power sources by renewable sources in current power grids drastically alters their structure and functionality. In particular, power generation in the resulting grid will be far more decentralized, with a distinctly different topology. Here, we analyze the impact of grid topologies on spontaneous synchronization, considering regular, random, and small-world topologies and focusing on the influence of decentralization. We model the consumers and sources of the power grid as second order oscillators. First, we analyze the global dynamics of the simplest non-trivial (two-node) network that exhibit a synchronous (normal operation) state, a limit cycle (power outage), and coexistence of both. Second, we estimate stability thresholds for the collective dynamics of small network motifs, in particular, star-like networks and regular grid motifs. For larger networks, we numerically investigate decentralization scenarios finding that decentralization itself may support power grids in exhibiting a stable state for lower transmission line capacities. Decentralization may thus be beneficial for power grids, regardless of the details of their resulting topology. Regular grids show a specific sharper transition not found for random or small-world grids.

  16. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  17. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    SciTech Connect (OSTI)

    2014-11-03

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data cant be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  18. electricity supplied by Hickam's solar-powered electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    supplied by Hickam's solar-powered electric grid - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste

  19. Proposed methodologies for evaluating grid benefits of distributed generation

    SciTech Connect (OSTI)

    Skowronski, M.J.

    1999-11-01

    As new Distributed Generation technologies are brought to the market, new hurdles to successful commercialization of these promising forms of on-site generation are becoming apparent. The impetus to commercialize these technologies has, up to now, been the value and benefits that the end user derives from the installation of Distributed Generation. These benefits are primarily economic as Distributed Generation is normally installed to reduce the customer utility bill. There are, however, other benefits of Distributed Generation other than the reduction in the cost of electric service, and these benefits normally accrue to the system or system operator. The purpose of this paper is to evaluate and suggest methodologies to quantify these ancillary benefits that the grid and/or connecting utility derive from customer on-site generation. Specifically, the following are discussed: reliability in service; transmission loss reduction; spinning and non-spinning reserve margin; peak shaving and interruptible loads; transmission and distribution deferral; VAR support/power quality; cogeneration capability; improvement in utility load factor fuel diversity; emission reductions; and qualitative factors -- reduced energy congestion, less societal disruption, faster response time, black start capability, system operation benefits.

  20. Software-Based Challenges of Developing the Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles

    2014-06-01

    The software that the utility industry currently uses may be insufficient to analyze the distribution grid as it rapidly modernizes to include active resources such as distributed generation, switch and voltage control, automation, and increasingly complex loads. Although planners and operators have traditionally viewed the distribution grid as a passive load, utilities and consultants increasingly need enhanced analysis that incorporates active distribution grid loads in order to ensure grid reliability. Numerous commercial and open-source tools are available for analyzing distribution grid systems. These tools vary in complexity from providing basic load-flow and capacity analysis under steady-state conditions to time-series analysis and even geographical representations of dynamic and transient events. The need for each type of analysis is not well understood in the industry, nor are the reasons that distribution analysis requires different techniques and tools both from those now available and from those used for transmission analysis. In addition, there is limited understanding of basic capability of the tools and how they should be practically applied to the evolving distribution system. The study reviews the features and state of the art capability of current tools, including usability and visualization, basic analysis functionality, advanced analysis including inverters, and renewable generation and load modeling. We also discuss the need for each type of distribution grid system analysis. In addition to reviewing basic functionality current models, we discuss dynamics and transient simulation in detail and draw conclusions about existing software?s ability to address the needs of the future distribution grid as well as the barriers to modernization of the distribution grid that are posed by the current state of software and model development. Among our conclusions are that accuracy, data transfer, and data processing abilities are key to future distribution grid modeling, and measured data sources are a key missing element . Modeling tools need to be calibrated based on measured grid data to validate their output in varied conditions such as high renewables penetration and rapidly changing topology. In addition, establishing a standardized data modeling format would enable users to transfer data among tools to take advantage of different analysis features. ?

  1. Power Africa's Beyond the Grid Increasing Access through Small- Scale

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions | Department of Energy Power Africa's Beyond the Grid Increasing Access through Small- Scale Energy Solutions Power Africa's Beyond the Grid Increasing Access through Small- Scale Energy Solutions June 3, 2014 - 9:04am Addthis NEWS MEDIA CONTACT (202) 586-4940 Today, the U.S. Government is formally launching an innovative framework under President Obama's Power Africa initiative to increase energy access for underserved populations across sub-Saharan Africa. Over an initial

  2. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  3. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments...

  4. DOE Explores Potential of Wind Power to Stabilize Electric Grids

    Broader source: Energy.gov [DOE]

    A team at DOE's National Renewable Energy Laboratory is exploring the capability of wind energy to stabilize the nation's electrical grid when conventional power plants shut down. A 1.5 megawatt wind turbine, connected to a cutting edge grid simulator, is being tested at the National Wind Technology Center.

  5. NREL: Transmission Grid Integration - Active Power Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Active Power Controls NREL has teamed with a number of organizations, including the Electric Power Research Institute and the University of Colorado, to research the potential of wind power plants to provide active power control (also known as real power or frequency control) to the electric power system. Released January 2014 Active Power Controls from Wind Power: Bridging the Gaps Project study report explores how wind power can support power system reliability, and do so economically with

  6. NREL: Distributed Grid Integration Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL is working to modernize the electric power system by making it more resilient to outages and disturbances ... includes detailed electrical modeling and simulation, ...

  7. Offshore Wind and Vehicle to Grid Power | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11, 2013, 4:30pm to 6:00pm Princeton University Computer Science Auditorium 104 Offshore Wind and Vehicle to Grid Power Professor Willett Kempton University of Delaware Professor...

  8. Transforming Power Grid Operations via High Performance Computing

    SciTech Connect (OSTI)

    Huang, Zhenyu; Nieplocha, Jarek

    2008-07-31

    Past power grid blackout events revealed the adequacy of grid operations in responding to adverse situations partially due to low computational efficiency in grid operation functions. High performance computing (HPC) provides a promising solution to this problem. HPC applications in power grid computation also become necessary to take advantage of parallel computing platforms as the computer industry is undergoing a significant change from the traditional single-processor environment to an era for multi-processor computing platforms. HPC applications to power grid operations are multi-fold. HPC can improve todays grid operation functions like state estimation and contingency analysis and reduce the solution time from minutes to seconds, comparable to SCADA measurement cycles. HPC also enables the integration of dynamic analysis into real-time grid operations. Dynamic state estimation, look-ahead dynamic simulation and real-time dynamic contingency analysis can be implemented and would be three key dynamic functions in future control centers. HPC applications call for better decision support tools, which also need HPC support to handle large volume of data and large number of cases. Given the complexity of the grid and the sheer number of possible configurations, HPC is considered to be an indispensible element in the next generation control centers.

  9. Distributed Energy Alternative to Electrical Distribution Grid Expansion in Consolidated Edison Service Territory

    SciTech Connect (OSTI)

    Kingston, Tim; Kelly, John

    2008-08-01

    The nation's power grid, specifically the New York region, faces burgeoning energy demand and suffers from congested corridors and aging equipment that cost New York consumers millions of dollars. Compounding the problem is high-density buildup in urban areas that limits available space to expand grid capacity. Coincidently, these urban areas are precisely where additional power is required. DER in this study refers to combined heat and power (CHP) technology, which simultaneously generates heat and electricity at or near the point where the energy will be consumed. There are multiple CHP options available that, combined with a portfolio of other building energy efficiency (EE) strategies, can help achieve a more efficient supply-demand balance than what the grid can currently provide. As an alternative to expanding grid capacity, CHP and EE strategies can be deployed in a flexible manner at virtually any point on the grid to relieve load. What's more, utilities and customers can install them in a variety of potentially profitable applications that are more environmentally friendly. Under the auspices of the New York State Energy Research and Development Authority (NYSERDA) and the Oak Ridge National Laboratory representing the Office of Electricity of the U.S. Department of Energy, Gas Technology Institute (GTI) conducted this study in cooperation with Consolidated Edison to help broaden the market penetration of EE and DER. This study provides realistic load models and identifies the impacts that EE and DER can have on the electrical distribution grid; specifically within the current economic and regulatory environment of a high load growth area of New York City called Hudson Yards in Midtown Manhattan. These models can be used to guide new policies that improve market penetration of appropriate CHP and EE technologies in new buildings. The following load modeling scenarios were investigated: (1) Baseline: All buildings are built per the Energy Conservation Construction Code of New York State (No CHP applied and no EE above the code); (2) Current Policy: This is a business-as-usual (BAU) scenario that incorporates some EE and DER based on market potential in the current economic and regulatory environment; (3) Modified Rate 14RA: This economic strategy is meant to decrease CHP payback by removing the contract demand from, and adding the delivery charge to the Con Edison Standby Rate PSC2, SC14-RA; (4) Carbon Trade at $20/metric tonne (mt): This policy establishes a robust carbon trading system in NY that would allow building owners to see the carbon reduction resulting from CHP and EE.

  10. First Experiences with LHC Grid Computing and Distributed Analysis

    SciTech Connect (OSTI)

    Fisk, Ian

    2010-12-01

    In this presentation the experiences of the LHC experiments using grid computing were presented with a focus on experience with distributed analysis. After many years of development, preparation, exercises, and validation the LHC (Large Hadron Collider) experiments are in operations. The computing infrastructure has been heavily utilized in the first 6 months of data collection. The general experience of exploiting the grid infrastructure for organized processing and preparation is described, as well as the successes employing the infrastructure for distributed analysis. At the end the expected evolution and future plans are outlined.

  11. NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability - News Releases | NREL Study: Active Power Control of Wind Turbines Can Improve Power Grid Reliability January 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL), along with partners from the Electric Power Research Institute and the University of Colorado have completed a comprehensive study to understand how wind power technology can assist the power grid by controlling the active power output being placed onto the system. The rest of the power

  12. NREL: Distributed Grid Integration - Energy System Basics Video...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation...

  13. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Environmental Management (EM)

    Tips: Smart Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and...

  14. Application of smart grid in photovoltaic power systems, ForskEL...

    Open Energy Info (EERE)

    smart grid in photovoltaic power systems, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Application of smart grid in photovoltaic power systems, ForskEL...

  15. Wide-area situation awareness in electric power grid

    SciTech Connect (OSTI)

    Greitzer, Frank L.

    2010-04-28

    Two primary elements of the US energy policy are demand management and efficiency and renewable sources. Major objectives are clean energy transmission and integration, reliable energy transmission, and grid cyber security. Development of the Smart Grid seeks to achieve these goals by lowering energy costs for consumers, achieving energy independence and reducing greenhouse gas emissions. The Smart Grid is expected to enable real time wide-area situation awareness (SA) for operators. Requirements for wide-area SA have been identified among interoperability standards proposed by the Federal Energy Regulatory Commission and the National Institute of Standards and Technology to ensure smart-grid functionality. Wide-area SA and enhanced decision support and visualization tools are key elements in the transformation to the Smart Grid. This paper discusses human factors research to promote SA in the electric power grid and the Smart Grid. Topics that will be discussed include the role of human factors in meeting US energy policy goals, the impact and challenges for Smart Grid development, and cyber security challenges.

  16. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The newly automated feeder is now able to respond to faults by rerouting power Case Study-Minnesota Power November 2012 2 Automated feeder switches being installed by Minnesota ...

  17. Electric Power Industry Needs for Grid-Scale Storage Applications |

    Energy Savers [EERE]

    Department of Energy Industry Needs for Grid-Scale Storage Applications Electric Power Industry Needs for Grid-Scale Storage Applications Stationary energy storage technologies will address the growing limitations of the electricity infrastructure and meet the increasing demand for renewable energy use. Widespread integration of energy storage devices offers many benefits, including the following: Alleviating momentary electricity interruptions Meeting peak demand Postponing or avoiding

  18. Grid Interconnection and Performance Testing Procedures for Vehicle-To-Grid (V2G) Power Electronics: Preprint

    SciTech Connect (OSTI)

    Kramer, W.; Chakraborty, S.; Kroposki, B.; Hoke, A.; Martin, G.; Markel, T.

    2012-03-01

    Bidirectional power electronics can add vehicle-to-grid (V2G) capability in a plug-in vehicle, which then allows the vehicle to operate as a distributed resource (DR). The uniqueness of the battery-based V2G power electronics requires a test procedure that will not only maintain IEEE interconnection standards, but can also evaluate the electrical performance of the vehicle working as a DR. The objective of this paper is to discuss a recently published NREL technical report that provides interim test procedures for V2G vehicles for their integration into the electrical distribution systems and for their performance in terms of continuous output power, efficiency, and losses. Additionally, some other test procedures are discussed that are applicable to a V2G vehicle that desires to provide power reserve functions. A few sample test results are provided based on testing of prototype V2G vehicles at NREL.

  19. Is the Distribution Grid Ready to Accept Large Scale Photovoltaic Deployment? - State of the Art, Progress and Future Prospects

    SciTech Connect (OSTI)

    Braun, M.; Stetz, T.; Brundlinger, R.; Mayr, C.; Hatta, H.; Kobayashi, H.; Ogimoto, K.; Kroposki, B.; Mather, B.; Coddington, M.; Lynn, K.; Graditi, G.; Woyte, A.; MacGill, I.

    2011-01-01

    The installed capacity of photovoltaic systems has recently increased at a much faster rate than the development of grid codes to effectively and efficiently manage high penetrations of PV within the distribution system. In a number of countries, PV penetrations in some regions are now raising growing concerns regarding integration. Management strategies vary considerably by country - some still have an approach that photovoltaic systems should behave as passive as possible while others demand an active participation in grid control. This variety of grid codes also causes challenges in learning from 'best practice'. This paper provides a review of current grid codes in some countries with high PV penetrations. In addition, the paper presents a number of country-specific case studies on different approaches for improved integration of photovoltaic systems in the distribution grid. In particular, we consider integration approaches using active and reactive power control that can reduce or defer expensive grid reinforcement while supporting higher PV penetrations.

  20. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect (OSTI)

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

  1. Provably secure time distribution for the electric grid

    SciTech Connect (OSTI)

    Smith IV, Amos M; Evans, Philip G; Williams, Brian P; Grice, Warren P

    2015-01-01

    We demonstrate a quantum time distribution (QTD) method that combines the precision of optical timing techniques with the integrity of quantum key distribution (QKD). Critical infrastructure is dependent on microprocessor- and programmable logic-based monitoring and control systems. The distribution of timing information across the electric grid is accomplished by GPS signals which are known to be vulnerable to spoofing. We demonstrate a method for synchronizing remote clocks based on the arrival time of photons in a modifed QKD system. This has the advantage that the signal can be veried by examining the quantum states of the photons similar to QKD.

  2. GridOPTICS(TM) A Novel Software Framework for Integrating Power Grid Data Storage, Management and Analysis

    SciTech Connect (OSTI)

    Gorton, Ian; Yin, Jian; Akyol, Bora A.; Ciraci, Selim; Critchlow, Terence; Liu, Yan; Gibson, Tara D.; Purohit, Sumit; Sharma, Poorva; Vlachopoulou, Maria

    2013-01-09

    This paper describes the architecture and design of GridOPTICSTM, a novel software framework to integrate a collection of software tools developed by PNNLs Future Power Grid Initiative (FPGI) into a coherent, powerful operations and planning tool for the power grid of the future. GridOPTICSTM enables plug-and-play of various analysis, modeling and visualization software tools for fast and accurate control of the power grid. To bridge the data access for different control purposes, GridOPTICSTM provides a scalable and thin layer of event processing that hides the complexity of data storage and management. The initial prototype of GridOPTICSTM was demonstrated with several use cases from PNNLs FPGI.

  3. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou; Jones, Perry T; Onar, Omer C; Starke, Michael R

    2014-01-01

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  4. Ultrafast Power Processor for Smart Grid Power Module Development

    SciTech Connect (OSTI)

    MAITRA, ARINDAM; LITWIN, RAY; lai, Jason; Syracuse, David

    2012-12-30

    This project’s goal was to increase the switching speed and decrease the losses of the power semiconductor devices and power switch modules necessary to enable Smart Grid energy flow and control equipment such as the Ultra-Fast Power Processor. The primary focus of this project involves exploiting the new silicon-based Super-GTO (SGTO) technology and build on prototype modules already being developed. The prototype super gate-turn-off thyristor (SGTO) has been tested fully under continuously conducting and double-pulse hard-switching conditions for conduction and switching characteristics evaluation. The conduction voltage drop measurement results indicate that SGTO has excellent conduction characteristics despite inconsistency among some prototype devices. Tests were conducted with two conditions: (1) fixed gate voltage and varying anode current condition, and (2) fixed anode current and varying gate voltage condition. The conduction voltage drop is relatively a constant under different gate voltage condition. In terms of voltage drop as a function of the load current, there is a fixed voltage drop about 0.5V under zero current condition, and then the voltage drop is linearly increased with the current. For a 5-kV voltage blocking device that may operate under 2.5-kV condition, the projected voltage drop is less than 2.5 V under 50-A condition, or 0.1%. If the device is adopted in a converter operating under soft-switching condition, then the converter can achieve an ultrahigh efficiency, typically above 99%. The two-pulse switching test results indicate that SGTO switching speed is very fast. The switching loss is relatively low as compared to that of the insulated-gate-bipolar-transistors (IGBTs). A special phenomenon needs to be noted is such a fast switching speed for the high-voltage switching tends to create an unexpected Cdv/dt current, which reduces the turn-on loss because the dv/dt is negative and increases the turn-off loss because the dv/dt is positive. As a result, the turn-on loss at low current is quite low, and the turn-off loss at low current is relatively high. The phenomenon was verified with junction capacitance measurement along with the dv/dt calculation. Under 2-kV test condition, the turn-on and turn-off losses at 25-A is about 3 and 9 mJ, respectively. As compared to a 4.5-kV, 60-A rated IGBT, which has turn-on and turn-off losses about 25 and 20 mJ under similar test condition, the SGTO shows significant switching loss reduction. The switching loss depends on the switching frequency, but under hard-switching condition, the SGTO is favored to the IGBT device. The only concern is during low current turn-on condition, there is a voltage bump that can translate to significant power loss and associated heat. The reason for such a current bump is not known from this study. It is necessary that the device manufacturer perform though test and provide the answer so the user can properly apply SGTO in pulse-width-modulated (PWM) converter and inverter applications.

  5. Recovery Act-SmartGrid regional demonstration transmission and distribution (T&D) Infrastructure

    SciTech Connect (OSTI)

    Hedges, Edward T.

    2015-01-31

    This document represents the Final Technical Report for the Kansas City Power & Light Company (KCP&L) Green Impact Zone SmartGrid Demonstration Project (SGDP). The KCP&L project is partially funded by Department of Energy (DOE) Regional Smart Grid Demonstration Project cooperative agreement DE-OE0000221 in the Transmission and Distribution Infrastructure application area. This Final Technical Report summarizes the KCP&L SGDP as of April 30, 2015 and includes summaries of the project design, implementation, operations, and analysis performed as of that date.

  6. Distributed Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Distributed Power Inc Place: Lime Rock, Connecticut Zip: 6039 Product: Focused on distributed generation power technology. References: Distributed Power Inc1 This article is a...

  7. NREL: Distributed Grid Integration - Hawaii Clean Energy Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hawaii Clean Energy Initiative The Hawai'i Clean Energy Initiative (HCEI) is a partnership between the state of Hawaii and the U.S. Department of Energy to achieve the most aggressive clean energy goals in the nation. To support this important initiative, NREL conducts research and development in the following distributed energy areas: Solar resource assessment Perform analysis of measured data and model development Supply output data sets for photovoltaic (PV) grid integration studies Deploy

  8. Large-Scale Data Challenges in Future Power Grids

    SciTech Connect (OSTI)

    Yin, Jian; Sharma, Poorva; Gorton, Ian; Akyol, Bora A.

    2013-03-25

    This paper describes technical challenges in supporting large-scale real-time data analysis for future power grid systems and discusses various design options to address these challenges. Even though the existing U.S. power grid has served the nation remarkably well over the last 120 years, big changes are in the horizon. The widespread deployment of renewable generation, smart grid controls, energy storage, plug-in hybrids, and new conducting materials will require fundamental changes in the operational concepts and principal components. The whole system becomes highly dynamic and needs constant adjustments based on real time data. Even though millions of sensors such as phase measurement units (PMUs) and smart meters are being widely deployed, a data layer that can support this amount of data in real time is needed. Unlike the data fabric in cloud services, the data layer for smart grids must address some unique challenges. This layer must be scalable to support millions of sensors and a large number of diverse applications and still provide real time guarantees. Moreover, the system needs to be highly reliable and highly secure because the power grid is a critical piece of infrastructure. No existing systems can satisfy all the requirements at the same time. We examine various design options. In particular, we explore the special characteristics of power grid data to meet both scalability and quality of service requirements. Our initial prototype can improve performance by orders of magnitude over existing general-purpose systems. The prototype was demonstrated with several use cases from PNNL’s FPGI and was shown to be able to integrate huge amount of data from a large number of sensors and a diverse set of applications.

  9. Power Grid Data Analysis with R and Hadoop

    SciTech Connect (OSTI)

    Hafen, Ryan P.; Gibson, Tara D.; Kleese van Dam, Kerstin; Critchlow, Terence J.

    2014-01-01

    This book chapter presents an approach to analysis of large-scale time-series sensor information based on our experience with power grid data. We use the R-Hadoop Integrated Programming Environment (RHIPE) to analyze a 2TB data set and present code and results for this analysis.

  10. Using Micro-Synchrophasor Data for Advanced Distribution Grid Planning and Operations Analysis

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila; McParland, Charles; Roberts, Ciaran

    2014-07-01

    This report reviews the potential for distribution-grid phase-angle data that will be available from new micro-synchrophasors (µPMUs) to be utilized in existing distribution-grid planning and operations analysis. This data could augment the current diagnostic capabilities of grid analysis software, used in both planning and operations for applications such as fault location, and provide data for more accurate modeling of the distribution system. µPMUs are new distribution-grid sensors that will advance measurement and diagnostic capabilities and provide improved visibility of the distribution grid, enabling analysis of the grid’s increasingly complex loads that include features such as large volumes of distributed generation. Large volumes of DG leads to concerns on continued reliable operation of the grid, due to changing power flow characteristics and active generation, with its own protection and control capabilities. Using µPMU data on change in voltage phase angle between two points in conjunction with new and existing distribution-grid planning and operational tools is expected to enable model validation, state estimation, fault location, and renewable resource/load characterization. Our findings include: data measurement is outstripping the processing capabilities of planning and operational tools; not every tool can visualize a voltage phase-angle measurement to the degree of accuracy measured by advanced sensors, and the degree of accuracy in measurement required for the distribution grid is not defined; solving methods cannot handle the high volumes of data generated by modern sensors, so new models and solving methods (such as graph trace analysis) are needed; standardization of sensor-data communications platforms in planning and applications tools would allow integration of different vendors’ sensors and advanced measurement devices. In addition, data from advanced sources such as µPMUs could be used to validate models to improve/ensure accuracy, providing information on normally estimated values such as underground conductor impedance, and characterization of complex loads. Although the input of high-fidelity data to existing tools will be challenging, µPMU data on phase angle (as well as other data from advanced sensors) will be useful for basic operational decisions that are based on a trend of changing data.

  11. Statistical analysis of cascading failures in power grids

    SciTech Connect (OSTI)

    Chertkov, Michael; Pfitzner, Rene; Turitsyn, Konstantin

    2010-12-01

    We introduce a new microscopic model of cascading failures in transmission power grids. This model accounts for automatic response of the grid to load fluctuations that take place on the scale of minutes, when optimum power flow adjustments and load shedding controls are unavailable. We describe extreme events, caused by load fluctuations, which cause cascading failures of loads, generators and lines. Our model is quasi-static in the causal, discrete time and sequential resolution of individual failures. The model, in its simplest realization based on the Directed Current description of the power flow problem, is tested on three standard IEEE systems consisting of 30, 39 and 118 buses. Our statistical analysis suggests a straightforward classification of cascading and islanding phases in terms of the ratios between average number of removed loads, generators and links. The analysis also demonstrates sensitivity to variations in line capacities. Future research challenges in modeling and control of cascading outages over real-world power networks are discussed.

  12. NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL Teams with SolarCity to Maximize Solar Power on Electrical Grids Both are working together with the Hawaiian Electric Companies to analyze and enable higher penetrations of distributed solar energy systems in Hawaii November 20, 2014 The Energy Department's National Renewable Energy Laboratory (NREL) and SolarCity have entered into a cooperative research agreement to address the operational issues associated with large amounts of distributed solar energy on electrical

  13. The power grid of the future is a platform that

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    power grid of the future is a platform that delivers reliable, affordable, and clean electricity to American consumers where they want it, when they want it, and how they want it. To jump start the modernization of our nation's aging energy infrastructure, the American Recovery and Reinvestment Act invested $4.5 billion in the electric sector -matched by private funding to reach a total of about $9.5 billion- so that Americans could start experiencing the benefits of the future grid sooner. Over

  14. An integrated security framework for GOSS power grid analytics platform

    SciTech Connect (OSTI)

    Gibson, Tara D.; Ciraci, Selim; Sharma, Poorva; Allwardt, Craig H.; Rice, Mark J.; Akyol, Bora A.

    2014-06-23

    In power grid operations, security is an essential component for any middleware platform. Security protects data against unwanted access as well as cyber attacks. GridOpticsTM Software System (GOSS) is an open source power grid analytics platform that facilitates ease of access between applications and data sources and promotes development of advanced analytical applications. GOSS contains an API that abstracts many of the difficulties in connecting to various heterogeneous data sources. A number of applications and data sources have already been implemented to demonstrate functionality and ease of use. A security framework has been implemented which leverages widely accepted, robust JavaTM security tools in a way such that they can be interchanged as needed. This framework supports the complex fine-grained, access control rules identified for the diverse data sources already in GOSS. Performance and reliability are also important considerations in any power grid architecture. An evaluation is done to determine the overhead cost caused by security within GOSS and ensure minimal impact to performance.

  15. NREL + SolarCity: Maximizing Solar Power on Electrical Grids

    SciTech Connect (OSTI)

    Hannegan, Bryan; Hanley, Ryan; Symko-Davies, Martha

    2015-06-03

    Learn how NREL is partnering with SolarCity to study how to better integrate rooftop solar onto the grid. The work includes collaboration with the Hawaiian Electric Companies (HECO) to analyze high-penetration solar scenarios using advanced modeling and inverter testing at the Energy Systems Integration Facility (ESIF) on NREL’s campus. Results to date have been so promising that HECO has more than doubled the amount of rooftop solar it allows on its grid, showing utilities across the country that distributed solar is not a liability for reliability—and can even be an asset.

  16. TCIP: Trustworthy CyberInfrastructure for the Power Grid | Department of

    Energy Savers [EERE]

    Energy TCIP: Trustworthy CyberInfrastructure for the Power Grid TCIP: Trustworthy CyberInfrastructure for the Power Grid The TCIP, or Trustworthy CyberInfrastructure for the Power Grid, project's vision is to provide the fundamental science and technology to create an intelligent, adaptive power grid which survives malicious adversaries, provides continuous delivery of power, and supports dynamically varying trust requirements. This goal may be reached by creating the cyber building blocks,

  17. ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    " ","Next Update: October 2007" ,"Table 3a. January Monthly Peak Hour Demand, Actual by North American Electric Reliability Council Region, 1996 through 2004 " ,"(Megawatts)" ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  18. ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2008" ,"Next Update: Not applicable for this table format" ,"Table 1a. Historical Net Energy For Load, Actual by North American Electric Reliability Council Region, 1990 through 2004. " ,"(Thousands of Megawatthours)" ,"Net Energy For Load (Annual)",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  19. ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    ","Table 3a. January Monthly Peak Hour Demand, Actual and Projected by North American Electric Reliability Council Region, " ,"1996 through 2004 and Projected 2005 through 2006 " ,"(Megawatts and 2004 Base Year)" ,"Projected Monthly Base","Year","Contiguous U.S.","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  20. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    2005 and 2006 through 2010 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"FRCC",,,"MRO",,,"NPCC",,,"RFC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" " ",,,"Net Internal Demand

  1. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2006 and 2007 through 2011 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S."

  2. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    March 2009" ,"Next Update: October 2009" ,"Table 4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2007 and 2008 through 2012 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

  3. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Summer Historic and Projected Net Internal Demand, Capacity Resources, and Capacity Margins by North American Electric Reliability Corporation Region, 2008 and 2009 through 2013 " " ","(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"FRCC",,,"MRO

  4. ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    7, 2008" ,"Next Update: Not applicable for this table format" ,"Table 2c. Historical Noncoincident Summer Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts)" ,,,,," " ,"Summer Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

  5. Tools for Enhanced Grid Operation and Optimized PV Penetration Utilizing Highly Distributed Sensor Data.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Peppanen, Jouni; Seuss, John; Lave, Matthew Samuel; Broderick, Robert Joseph; Grijalva, Santiago

    2015-11-01

    Increasing number s of PV on distribution systems are creating more grid impacts , but it also provides more opportunities for measurement, sensing, and control of the grid in a distributed fashion. This report demonstrates three software tools for characterizing and controlling distribution feeders by utilizing large numbers of highly distributed current, voltage , and irradiance sensors. Instructions and a user manual is presented for each tool. First, the tool for distribution system secondary circuit parameter estimation is presented. This tool allows studying distribution system parameter estimation accuracy with user-selected active power, reactive power, and voltage measurements and measurement error levels. Second, the tool for multi-objective inverter control is shown. Various PV inverter control strategies can be selected to objectively compare their impact on the feeder. Third, the tool for energy storage for PV ramp rate smoothing is presented. The tool allows the user to select different storage characteristics (power and energy ratings) and control types (local vs. centralized) to study the tradeoffs between state-of-charge (SOC) management and the amount of ramp rate smoothing.

  6. Wind power interconnection into the power system: a review of grid code requirements

    SciTech Connect (OSTI)

    Singh, Bharat; Singh, S.N.

    2009-06-15

    The burgeoning wind sector, and its increasing influence on the operation and control of power systems, has made grid integration a key recent concern. Different countries are taking different approaches in setting up new grid codes to address this issue. (author)

  7. A Novel Visualization Technique for Electric Power Grid Analytics

    SciTech Connect (OSTI)

    Wong, Pak C.; Schneider, Kevin P.; Mackey, Patrick S.; Foote, Harlan P.; Chin, George; Guttromson, Ross T.; Thomas, James J.

    2009-05-01

    The application of information visualization holds tremendous promise for the electric power industry, and yet its potential has not been sufficiently exploited by the visualization community. Prior work on visualizing electric power systems has been limited to depicting raw or processed information on top of a geographic layout. Little effort has been devoted to maximize the analytical strengths naturally gained by the visualization itself. This paper introduces a visualization system prototype, known as GreenGrid, that explores the planning and monitoring of the North American Electricity Infrastructure. For the purposes of visualization, the power infrastructure can be described as a network of nodes and links. The nodes represent the electrical buses where generators and loads are connected, while the links represent the transmission lines that interconnect the buses. This paper focuses mainly on a customized technique within GreenGrid that is designed to visually identify abnormal characteristics of the electricity infrastructure. In particular, we examine an extreme event that occurred within the Western United States power grid on August 10, 1996. We compare our study results with the conclusion of the post-disturbance analysis and find that many of the disturbance characteristics can be readily identified with the proper form of visualization. The paper includes a lessons learned discussion to evaluate the visualization application.

  8. Economic evaluation of distribution system smart grid investments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipmentmore » investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.« less

  9. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed “hard dollar” benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  10. Economic evaluation of distribution system smart grid investments

    SciTech Connect (OSTI)

    Onen, Ahmet; Cheng, Danling; Broadwater, Robert P.; Scirbona, Charlie; Cocks, George; Hamilton, Stephanie; Wang, Xiaoyu; Roark, Jeffrey

    2014-12-31

    This paper investigates economic benefits of smart grid automation investments. A system consisting of 7 substations and 14 feeders is used in the evaluation. Here benefits that can be quantified in terms of dollar savings are considered, termed hard dollar benefits. Smart Grid investment evaluations to be considered include investments in improved efficiency, more cost effective use of existing system capacity with automated switches, and coordinated control of capacitor banks and voltage regulators. These Smart Grid evaluations are sequentially ordered, resulting in a series of incremental hard dollar benefits. Hard dollar benefits come from improved efficiency, delaying large capital equipment investments, shortened storm restoration times, and reduced customer energy use. Analyses used in the evaluation involve hourly power flow analysis over multiple years and Monte Carlo simulations of switching operations during storms using a reconfiguration for restoration algorithm. The economic analysis uses the time varying value of the Locational Marginal Price. Algorithms used include reconfiguration for restoration involving either manual or automated switches and coordinated control involving two modes of control. Field validations of phase balancing and capacitor design results are presented. The evaluation shows that investments in automation can improve performance while at the same time lowering costs.

  11. Cuming County Public Power District Smart Grid Project | Open...

    Open Energy Info (EERE)

    devices for the Cuming County Public Power District (CCPPD) are being upgraded, enhancing demand response and peak load reduction capabilities.3 Equipment Distribution Automation...

  12. South Mississippi Electric Power Association (SMEPA) Smart Grid...

    Open Energy Info (EERE)

    Network Targeted Benefits Reduced Meter Reading Costs Improved Electric Service Reliability and Power Quality Reduced Costs from Distribution Line Losses and Theft Reduced...

  13. Solar Power and the Electric Grid, Energy Analysis (Fact Sheet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This fact sheet illustrates the roles of distributed and centralized renewable energy technologies, particularly solar power, and how they will contribute to the future electricity ...

  14. Category:Smart Grid Projects - Electric Distributions Systems...

    Open Energy Info (EERE)

    Systems" The following 13 pages are in this category, out of 13 total. A Atlantic City Electric Company Smart Grid Project Avista Utilities Smart Grid Project C...

  15. Progress on Our 21st Century Grid: Powering Our Country and Our Economy |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Progress on Our 21st Century Grid: Powering Our Country and Our Economy Progress on Our 21st Century Grid: Powering Our Country and Our Economy June 3, 2013 - 11:43am Addthis Investments in the nation's electric power grid are delivering significant benefits to consumers and businesses. | Photo courtesy of Pacific Northwest National Laboratory. Investments in the nation's electric power grid are delivering significant benefits to consumers and businesses. | Photo

  16. AutoGrid - Turning Big Data Into Power with the Energy Data Platform and Apps

    SciTech Connect (OSTI)

    Narayan, Amit; Dresselhuys, Eric; Kulp, Yann; Buseman, Greg; Piette, Mary Ann; Tang, Andrew; Dailey, Karla; Knudsen, Chris

    2014-03-25

    AutoGrid personnel discuss how they are turning big data into power with the energy data platform and apps.

  17. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    SciTech Connect (OSTI)

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-03-01

    This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

  18. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. Workshop attendees met to share current practices by distribution utilities and ongoing activities on resilient electric distribution grid R&D,

  19. A Stochastic Power Network Calculus for Integrating Renewable Energy Sources into the Power Grid

    SciTech Connect (OSTI)

    Wang, K; Ciucu, F; Lin, C; Low, SH

    2012-07-01

    Renewable energy such as solar and wind generation will constitute an important part of the future grid. As the availability of renewable sources may not match the load, energy storage is essential for grid stability. In this paper we investigate the feasibility of integrating solar photovoltaic (PV) panels and wind turbines into the grid by also accounting for energy storage. To deal with the fluctuation in both the power supply and demand, we extend and apply stochastic network calculus to analyze the power supply reliability with various renewable energy configurations. To illustrate the validity of the model, we conduct a case study for the integration of renewable energy sources into the power system of an island off the coast of Southern California. In particular, we asses the power supply reliability in terms of the average Fraction of Time that energy is Not-Served (FTNS).

  20. US Recovery Act Smart Grid Projects - Electric Distributions...

    Open Energy Info (EERE)

    York New York 136,170,899 272,341,798 New Jersey El Paso Electric Smart Grid Project El Paso Texas 1,014,414 2,085,095 New Mexico Hawaii Electric Co. Inc. Smart Grid Project Oahu...

  1. Structure Learning in Power Distribution Networks (Technical...

    Office of Scientific and Technical Information (OSTI)

    Structure Learning in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks You are accessing a document from...

  2. Demand Side Management in the Smart Grid: Information Processing for the Power Switch

    SciTech Connect (OSTI)

    Alizadeh, Mahnoosh; LI, Xiao; Wang, Zhifang; Scagilone, Anna; Melton, Ronald B.

    2012-09-01

    In this article we discuss the most recent developments in the area of load management, and consider possible interaction schemes of novel architectures with distributed energy resources (DER). In order to handle the challenges faced by tomorrow’s smart grid, which are caused by volatile load and generation profiles (from the large number of plug-in EVs and from renewable integration), the conventional grid operating principle of load-following needs to be changed into load-shaping or generation-following. Demand Side Management will be a most promising and powerful solution to the above challenges. However, many other issues such as load forecasting, pricing structure, market policy, renewable integration interface, and even the AC/DC implementation at the distribution side, need to be taken into the design in order to search for the most effective and applicable solution.

  3. Fiber optic sensors for monitoring sodium circuits and power grid cables

    SciTech Connect (OSTI)

    Kasinathan, M.; Sosamma, S.; Pandian, C.; Vijayakumar, V.; Chandramouli, S.; Nashine, B. K.; Rao, C. B.; Murali, N.; Rajan, K. K.; Jayakumar, T.

    2011-07-01

    At Kalpakkam, India, a programme on development of Raman Distributed Temperature sensor (RDTS) for Fast Breeder Reactors (FBR) application is undertaken. Leak detection in sodium circuits of FBR is critical for the safety and performance of the reactors. It is demonstrated that RDTS can be usefully employed in monitoring sodium circuits and in tracking the percolating sodium in case of any leak. Aluminum Conductor Steel Reinforced (ACSR) cable is commonly used as overhead power transmission cable in power grid. A second application demonstrates the suitability of using RDTS to monitor this transmission cable for any defect. (authors)

  4. INL and NREL Demonstrate Power Grid Simulation at a Distance - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL INL and NREL Demonstrate Power Grid Simulation at a Distance Capability makes national laboratory assets accessible to grid researchers worldwide May 4, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) and Idaho National Laboratory (INL) have successfully demonstrated the capability to connect grid simulations at their two labs for real time interaction via the Internet. This new inter-lab capability enables the modeling of power grids in greater

  5. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meters and a Smarter Power Grid Tips: Smart Meters and a Smarter Power Grid The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing

  6. Large Power Transformers and the U.S. Electric Grid Report Update (April

    Energy Savers [EERE]

    2014) | Department of Energy Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) Large Power Transformers and the U.S. Electric Grid Report Update (April 2014) The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical steel supply conditions and discusses the increased domestic production of large power

  7. ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    3a. January Monthly Peak Hour Demand, Actual by North American Electric Reliability Corporation Region, 2005 through 2009 " ,"(Megawatts)",,," " " " ,"Month","Year","Contiguous U.S.","Eastern Power Grid",,,,,,"Texas Power Grid","Western Power Grid" ,,,,"FRCC"," MRO (U.S.)","NPCC (U.S.)","RFC","SERC","SPP","TRE (ERCOT)","WECC

  8. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    3 and 2004 through 2008 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"ECAR",,,"FRCC",,,"MAAC",,,"MAIN",,,"MAPP/MRO",,,"NPCC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" "

  9. ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    4 and 2005 through 2009 " ,"(Megawatts and Percent)" ,"Projected Year Base","Year","Summer",,,"Eastern Power Grid",,,,,,,,,,,,,,,,,,,,,,,,"Texas Power Grid",,,"Western Power Grid" ,,,"Contiguous U.S." ,,,,,,"ECAR",,,"FRCC",,,"MAAC",,,"MAIN",,,"MAPP/MRO",,,"NPCC",,,"SERC",,,"SPP",,,"ERCOT",,,"WECC" "

  10. ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid"

    U.S. Energy Information Administration (EIA) Indexed Site

    d. Historical Noncoincident Winter Peak Load, Actual by North American Electric Reliability Council Region, 1990 through 2004 " ,"(Megawatts)" ,"Winter Noncoincident Peak Load",,"Contiguous U.S. ","Eastern Power Grid",,,,,,,,"Texas Power Grid","Western Power Grid" ,,"Year",,"ECAR","FRCC","MAAC","MAIN","MAPP/MRO (U.S.) ","NPCC (U.S.)

  11. Utility-Scale Power Router: Dynamic Control of Grid Assets Using Direct AC Converter Cells

    SciTech Connect (OSTI)

    2010-09-01

    ADEPT Project: Georgia Tech is developing a cost-effective, utility-scale power router that uses an enhanced transformer to more efficiently direct power on the grid. Existing power routing technologies are too expensive for widespread use, but the ability to route grid power to match real-time demand and power outages would significantly reduce energy costs for utilities, municipalities, and consumers. Georgia Tech is adding a power converter to an existing grid transformer to better control power flows at about 1/10th the cost of existing power routing solutions. Transformers convert the high-voltage electricity that is transmitted through the grid into the low-voltage electricity that is used by homes and businesses. The added converter uses fewer steps to convert some types of power and eliminates unnecessary power storage, among other improvements. The enhanced transformer is more efficient, and it would still work even if the converter fails, ensuring grid reliability.

  12. Intelligent sensor and controller framework for the power grid

    DOE Patents [OSTI]

    Akyol, Bora A.; Haack, Jereme Nathan; Craig, Jr., Philip Allen; Tews, Cody William; Kulkarni, Anand V.; Carpenter, Brandon J.; Maiden, Wendy M.; Ciraci, Selim

    2015-07-28

    Disclosed below are representative embodiments of methods, apparatus, and systems for monitoring and using data in an electric power grid. For example, one disclosed embodiment comprises a sensor for measuring an electrical characteristic of a power line, electrical generator, or electrical device; a network interface; a processor; and one or more computer-readable storage media storing computer-executable instructions. In this embodiment, the computer-executable instructions include instructions for implementing an authorization and authentication module for validating a software agent received at the network interface; instructions for implementing one or more agent execution environments for executing agent code that is included with the software agent and that causes data from the sensor to be collected; and instructions for implementing an agent packaging and instantiation module for storing the collected data in a data container of the software agent and for transmitting the software agent, along with the stored data, to a next destination.

  13. A High Performance Computing Network and System Simulator for the Power Grid: NGNS^2

    SciTech Connect (OSTI)

    Villa, Oreste; Tumeo, Antonino; Ciraci, Selim; Daily, Jeffrey A.; Fuller, Jason C.

    2012-11-11

    Designing and planing next generation power grid sys- tems composed of large power distribution networks, monitoring and control networks, autonomous generators and consumers of power requires advanced simulation infrastructures. The objective is to predict and analyze in time the behavior of networks of systems for unexpected events such as loss of connectivity, malicious attacks and power loss scenarios. This ultimately allows one to answer questions such as: What could happen to the power grid if .... We want to be able to answer as many questions as possible in the shortest possible time for the largest possible systems. In this paper we present a new High Performance Computing (HPC) oriented simulation infrastructure named Next Generation Network and System Simulator (NGNS2 ). NGNS2 allows for the distribution of a single simulation among multiple computing elements by using MPI and OpenMP threads. NGNS2 provides extensive configuration, fault tolerant and load balancing capabilities needed to simulate large and dynamic systems for long periods of time. We show the preliminary results of the simulator running approximately two million simulated entities both on a 64-node commodity Infiniband cluster and a 48-core SMP workstation.

  14. Distributed connected wind farms (Smart Grid Project) (Limerick...

    Open Energy Info (EERE)

    address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Display map Period Ma y 2009 Apr 2012 References EU Smart Grid Projects Map1 Overview This project comprises...

  15. Elforsk Smart grid programme (Smart Grid Project) | Open Energy...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution Smart Grid Projects...

  16. Electrical vehicles impacts on the grids (Smart Grid Project...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  17. Florida Power and Light Comments on Smart Grid Request For Information

    Energy Savers [EERE]

    (RFI): Addressing Policy & Logistical Challenges. | Department of Energy Florida Power and Light Comments on Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges. Florida Power and Light Comments on Smart Grid Request For Information (RFI): Addressing Policy & Logistical Challenges. Florida Power and Light (FPL) believes the Smart Grid represents an important new technology platform for the electric utility industry and its customers. This platform,

  18. Modeling Framework and Validation of a Smart Grid and Demand Response System for Wind Power Integration

    SciTech Connect (OSTI)

    Broeer, Torsten; Fuller, Jason C.; Tuffner, Francis K.; Chassin, David P.; Djilali, Ned

    2014-01-31

    Electricity generation from wind power and other renewable energy sources is increasing, and their variability introduces new challenges to the power system. The emergence of smart grid technologies in recent years has seen a paradigm shift in redefining the electrical system of the future, in which controlled response of the demand side is used to balance fluctuations and intermittencies from the generation side. This paper presents a modeling framework for an integrated electricity system where loads become an additional resource. The agent-based model represents a smart grid power system integrating generators, transmission, distribution, loads and market. The model incorporates generator and load controllers, allowing suppliers and demanders to bid into a Real-Time Pricing (RTP) electricity market. The modeling framework is applied to represent a physical demonstration project conducted on the Olympic Peninsula, Washington, USA, and validation simulations are performed using actual dynamic data. Wind power is then introduced into the power generation mix illustrating the potential of demand response to mitigate the impact of wind power variability, primarily through thermostatically controlled loads. The results also indicate that effective implementation of Demand Response (DR) to assist integration of variable renewable energy resources requires a diversity of loads to ensure functionality of the overall system.

  19. Software Based Barriers To Integration Of Renewables To The Future Distribution Grid

    SciTech Connect (OSTI)

    Stewart, Emma; Kiliccote, Sila

    2014-06-01

    The future distribution grid has complex analysis needs, which may not be met with the existing processes and tools. In addition there is a growing number of measured and grid model data sources becoming available. For these sources to be useful they must be accurate, and interpreted correctly. Data accuracy is a key barrier to the growth of the future distribution grid. A key goal for California, and the United States, is increasing the renewable penetration on the distribution grid. To increase this penetration measured and modeled representations of generation must be accurate and validated, giving distribution planners and operators confidence in their performance. This study will review the current state of these software and modeling barriers and opportunities for the future distribution grid.

  20. Argonne OutLoud: Renewing Our Grid - Power for the 21st Century (Sept. 19,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013) | Argonne National Laboratory Renewing Our Grid - Power for the 21st Century (Sept. 19, 2013) Share Guenter Conzelmann

  1. Power Authority of the State of New York Smart Grid Demonstration...

    Open Energy Info (EERE)

    Authority of the State of New York Smart Grid Demonstration Project Jump to: navigation, search Project Lead Power Authority of the State of New York Country United States...

  2. Update to Large Power Transformers and the U.S. Electric Grid Report Now Available

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report.

  3. Update to Large Power Transformers and the U.S. Electric Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Delivery and Energy Reliability has released an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information...

  4. GridLAB-D/SG

    Energy Science and Technology Software Center (OSTI)

    2011-08-30

    GridLAB-D is a new power system simulation tool that provides valuable information to users who design and operate electric power transmission and distribution systems, and to utilities that wish to take advantage of the latest smart grid technology. This special release of GridLAB-D was developed to study the proposed Smart Grid technology that is used by Battelle Memorial Institute in the AEP gridSMART demonstration project in Northeast Columbus, Ohio.

  5. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Transmission Grid Integration Transmission Grid...

  6. Foundational Report Series: Advanced Distribution Management Systems for Grid Modernization

    SciTech Connect (OSTI)

    Wang, Jianhui

    2015-09-01

    This report describes the application functions for distribution management systems (DMS). The application functions are those surveyed by the IEEE Power and Energy Society’s Task Force on Distribution Management Systems. The description of each DMS application includes functional requirements and the key features and characteristics in current and future deployments, as well as a summary of the major benefits provided by each function to stakeholders — from customers to shareholders. Due consideration is paid to the fact that the realizable benefits of each function may differ by type of utility, whether investor-owned, cooperative, or municipal. This report is sufficient to define the functional requirements of each application for system procurement (request-for-proposal [RFP]) purposes and for developing preliminary high-level use cases for those functions. However, it should not be considered a design document that will enable a vendor or software developer to design and build actual DMS applications.

  7. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Imagine a grid where utilities and consumers work together to alleviate congestion and meet growing energy demands. RDSI is working to facilitate this reality by focusing on the integration of on...

  8. Maui Smart Grid Demonstration Project Managing Distribution System Resources for Improved Service Quality and Reliability, Transmission Congestion Relief, and Grid Support Functions

    SciTech Connect (OSTI)

    none,

    2014-09-30

    The Maui Smart Grid Project (MSGP) is under the leadership of the Hawaii Natural Energy Institute (HNEI) of the University of Hawaii at Manoa. The project team includes Maui Electric Company, Ltd. (MECO), Hawaiian Electric Company, Inc. (HECO), Sentech (a division of SRA International, Inc.), Silver Spring Networks (SSN), Alstom Grid, Maui Economic Development Board (MEDB), University of Hawaii-Maui College (UHMC), and the County of Maui. MSGP was supported by the U.S. Department of Energy (DOE) under Cooperative Agreement Number DE-FC26-08NT02871, with approximately 50% co-funding supplied by MECO. The project was designed to develop and demonstrate an integrated monitoring, communications, database, applications, and decision support solution that aggregates renewable energy (RE), other distributed generation (DG), energy storage, and demand response technologies in a distribution system to achieve both distribution and transmission-level benefits. The application of these new technologies and procedures will increase MECO’s visibility into system conditions, with the expected benefits of enabling more renewable energy resources to be integrated into the grid, improving service quality, increasing overall reliability of the power system, and ultimately reducing costs to both MECO and its customers.

  9. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Energy Savers [EERE]

    1 Smart Grid Savings and Grid Integration of Renewables in Idaho Idaho Power Company (IPC) serves more than 495,000 customers in southern Idaho and eastern Oregon. IPC is vertically-integrated and manages power generation, transmission, distribution, and demand-side resources. Faced with grid modernization challenges from new wind power capacity, rising summer peak demands, and aging electricity delivery infrastructure, IPC's Smart Grid Investment Grant (SGIG) project is multi-faceted and

  10. Advanced Grid Integration (AGI) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mission » Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) Advanced Grid Integration (AGI) The Advanced Grid Integration (AGI) Division leads the federal government's efforts to accelerate modernization of the U.S. electric power grid. By enabling the two-way flow of electricity and information, a Smart Grid will increase the reliability, efficiency, and security of electric transmission, distribution, and use. A modern grid provides the foundation for a strong economy by

  11. Agent based control of power systems, ForskEL (Smart Grid Project...

    Open Energy Info (EERE)

    Agent based control of power systems, ForskEL (Smart Grid Project) Jump to: navigation, search Project Name Agent based control of power systems, ForskEL Country Denmark...

  12. 220 kV SSSC device for power flow control (Smart Grid Project...

    Open Energy Info (EERE)

    20 kV SSSC device for power flow control (Smart Grid Project) Jump to: navigation, search Project Name 220 kV SSSC device for power flow control Country Spain Headquarters Location...

  13. TRANSMISSION AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED...

    Office of Scientific and Technical Information (OSTI)

    AND DISTRIBUTION; POWER SUBSTATIONS; CAPITALIZED COST; CALCULATION METHODS; PLANNING; COST ESTIMATION; MATHEMATICAL MODELS The displacement or deferral of substation...

  14. Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle

  15. Power Africa's Beyond the Grid Increasing Access through Small...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Energiya Global Fenix International Global Off-Grid Lighting Association Gray Ghost Ventures Invested Development Khosla Impact LGT Venture Philanthropy Liberia Energy Network Low ...

  16. Smart Grid: Powering Our Way to a Greener Future | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grid: Powering Our Way to a Greener Future Smart Grid: Powering Our Way to a Greener Future April 25, 2013 - 9:28am Addthis Eric Lightner Eric Lightner Director of the Federal Smart Grid Task Force in the Office of Electricity Delivery and Energy Reliability Learning how to be smarter and more efficient about reducing our energy consumption is on the minds of everyone this week. The smart grid, with its improved efficiency and performance, is helping consumers conserve energy and save money

  17. In the OSTI Collections: Keeping Power Grids Stable | OSTI, US Dept of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Office of Scientific and Technical Information Keeping Power Grids Stable (plus, an update on the Mars Science Laboratory "Curiosity" and its ChemCam) The Relation of Grid Stability to the "Smart Grid" Concept Update: the Mars Science Laboratory's ChemCam References Additional References Research Organizations Reports Available through OSTI's SciTech Connect Figure 1. The Continental U.S. power transmission grid consists of about 300,000 km of lines operated by

  18. March 15 PSERC Webinar: Synthetic Power Grid Models: What are They. How

    Energy Savers [EERE]

    They're Made, and Why They Matter | Department of Energy March 15 PSERC Webinar: Synthetic Power Grid Models: What are They. How They're Made, and Why They Matter March 15 PSERC Webinar: Synthetic Power Grid Models: What are They. How They're Made, and Why They Matter March 3, 2016 - 11:10am Addthis The DOE-funded Power Systems Engineering Research Center (PSERC) is offering a free public webinar that will address the problems with obtaining data from power grid models, and the inadequacies

  19. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 -

    Energy Savers [EERE]

    Breakout Sessions Notes and Reports | Department of Energy Breakout Sessions Notes and Reports Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Breakout Sessions Notes and Reports On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. Notes and presentations from two concurrent breakout sessions are available for download, below. The final

  20. Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary

    Energy Savers [EERE]

    Presentations | Department of Energy Plenary Presentations Resilient Electric Distribution Grid R&D Workshop - June 11, 2014 - Plenary Presentations On June 11, 2014, the Department of Energy held a half-day workshop to identify key R&D activities for enhancing the resilience of electric distribution grids to natural disasters. The four presentations from the opening plenary session are available for download, below. The final agenda and notes and reports from two concurrent breakout

  1. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  2. Towards Effective Clustering Techniques for the Analysis of Electric Power Grids

    SciTech Connect (OSTI)

    Hogan, Emilie A.; Cotilla Sanchez, Jose E.; Halappanavar, Mahantesh; Wang, Shaobu; Mackey, Patrick S.; Hines, Paul; Huang, Zhenyu

    2013-11-30

    Clustering is an important data analysis technique with numerous applications in the analysis of electric power grids. Standard clustering techniques are oblivious to the rich structural and dynamic information available for power grids. Therefore, by exploiting the inherent topological and electrical structure in the power grid data, we propose new methods for clustering with applications to model reduction, locational marginal pricing, phasor measurement unit (PMU or synchrophasor) placement, and power system protection. We focus our attention on model reduction for analysis based on time-series information from synchrophasor measurement devices, and spectral techniques for clustering. By comparing different clustering techniques on two instances of realistic power grids we show that the solutions are related and therefore one could leverage that relationship for a computational advantage. Thus, by contrasting different clustering techniques we make a case for exploiting structure inherent in the data with implications for several domains including power systems.

  3. Simultaneous distribution of AC and DC power

    DOE Patents [OSTI]

    Polese, Luigi Gentile

    2015-09-15

    A system and method for the transport and distribution of both AC (alternating current) power and DC (direct current) power over wiring infrastructure normally used for distributing AC power only, for example, residential and/or commercial buildings' electrical wires is disclosed and taught. The system and method permits the combining of AC and DC power sources and the simultaneous distribution of the resulting power over the same wiring. At the utilization site a complementary device permits the separation of the DC power from the AC power and their reconstruction, for use in conventional AC-only and DC-only devices.

  4. Smart Grid Update: Delivering More Reliable and Efficient Power to the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nation's Capital | Department of Energy Update: Delivering More Reliable and Efficient Power to the Nation's Capital Smart Grid Update: Delivering More Reliable and Efficient Power to the Nation's Capital March 6, 2014 - 1:37pm Addthis Ryan Egidi Ryan Egidi Energy Delivery Technologies Technical Project Officer Smart grid investments are transforming power delivery in the nation's Capital and nearby states. I saw this first-hand when I visited Pepco Holdings Inc. (PHI) last month to mark the

  5. Final Scientific/ Technical Report. Playas Grid Reliability and Distributed Energy Research

    SciTech Connect (OSTI)

    Romero, Van; Weinkauf, Don; Khan, Mushtaq; Helgeson, Wes; Weedeward, Kevin; LeClerc, Corey; Fuierer, Paul

    2012-06-30

    The future looks bright for solar and renewable energies in the United States. Recent studies claim that by 2050, solar power could supply a third of all electricity demand in the country’s western states. Technology advances, soft policy changes, and increased energy consciousness will all have to happen to achieve this goal. But the larger question is, what would it take to do more throughout the United States? The studies tie future solar and renewable growth in the United States to programs that aim to lower the soft costs of solar adoption, streamline utility interconnections, and increase technology advances through research and development. At the state and local levels, the most important steps are; Net metering: Net metering policies lets customers offset their electric bills with onsite solar and receive reliable and fair compensation for the excess electricity they provide to the grid. Not surprisingly, what utilities consider fair is not necessarily a rate that’s favorable to solar customers; Renewable portfolio standards (RPS): RPS policies require utilities to provide a certain amount of their power from renewable sources; some set specific targets for solar and other renewables. California’s aggressive RPS of 33% renewable energy by 2020 is not bankrupting the state, or its residents; Strong statewide interconnection policies: Solar projects can experience significant delays and hassles just to get connected to the grid. Streamlined feasibility and impact analysis are needed. Good interconnection policies are crucial to the success of solar or renewable energy development; Financing options: Financing is often the biggest obstacle to solar adoption. Those obstacles can be surmounted with policies that support creative financing options like third-party ownership (TPO) and property assessed clean energy (PACE). Attesting to the significance of TPO is the fact that in Arizona, it accounted for 86% of all residential photovoltaic (PV) installations in Q1 2013. Policies beyond those at the state level are also important for solar. The federal government must play a role including continuation of the federal Investment tax credit, responsible development of solar resources on public lands, and support for research and development (R&D) to reduce the cost of solar and help incorporate large amounts of solar into the grid. The local level can’t be ignored. Local governments should support: solar rights laws, feed-in tariffs (FITs), and solar-friendly zoning rules. A great example of how effective local policies can be is a city like Gainesville, Florida , whose FIT policy has put it on the map as a solar leader. This is particularly noteworthy because the Sunshine State does not appear anywhere on the list of top solar states, despite its abundant solar resource. Lancaster, California, began by streamlining the solar permitting process and now requires solar on every new home. Cities like these point to the power of local policies, and the ability of local governments to get things done. A conspicuously absent policy is Community Choice energy, also called community choice aggregation (CCA). This model allows local governments to pool residential, business, and municipal electricity loads and to purchase or generate on their behalf. It provides rate stability and savings and allows more consumer choice and local control. The model need not be focused on clean energy, but it has been in California, where Marin Clean Energy, the first CCA in California, was enabled by a state law -- highlighting the interplay of state and local action. Basic net metering8 has been getting a lot of attention. Utilities are attacking it in a number of states, claiming it’s unfair to ratepayers who don’t go solar. On the other hand, proponents of net metering say utilities’ fighting stance is driven by worries about their bottom line, not concern for their customers. Studies in California, Vermont , New York and Texas have found that the benefits of net metering (like savings on investments in infrastructure and on meeting state renewables requirements) outweigh the costs (like the lowered revenue to cover utility infrastructure costs). Many are eagerly awaiting a California Public Utilities Commission study due later this year, in the hopes that it will provide a relatively unbiased look at the issue. Meanwhile, some states continue to pursue virtual net metering policies. Under Colorado’s Solar Gardens Act, for example, utility customers can subscribe to power generated somewhere other than their own homes. The program allowed by that bill sold out in 30 minutes, evidence of the pent-up demand for this kind of arrangement. And California solar advocates are hoping for passage of a “shared renewables” bill in that state, which would provide for similar solar are significant in bringing solar power to the estimated 75% (likely a conservative number) of can’t put solar on our own roof. As great a resource as the sun is, when it comes to actually implementing solar or other renewables, technology advances, policy changes, bureaucratic practices, and increased energy consciousness will all have to happen to achieve a 30% by 2050 national goal. This project incorporated research activities focused on addressing each of these challenges. First, the project researchers evaluated several leading edge solar technologies by actually implementing these technologies at Playas, New Mexico, a remote town built in the 1970s by Phelps Dodge Mining Company for the company’s employees. This town was purchased by the New Mexico Institute of Mining and Technology in 2005 and converted to a training and research center. Playas is an all-electric town served by a substation about seven miles away. The town is the last user on a 240 kV utility transmission line owned by the Columbus Electric Cooperative (CEC) making it easy to isolate for experiment purposes. The New Mexico Institute of Mining and Technology (NMT) and the Department of Homeland Security (DHS) perform various training and research activities at this site. Given its unique nature, Playas was chosen to test Micro-Grids and other examples of renewable distributed energy resources (DER). Several proposed distributed energy sources (DERs) were not implemented as planned including the Micro-Grid. However, Micro-Grid design and computer modeling were completed and these results are included in this report. As part of this research, four PV (solar) generating systems were installed with remote Internet based communication and control capabilities. These systems have been integrated into and can interact with the local grid So that (for example) excess power produced by the solar arrays can be exported to the utility grid. Energy efficient LED lighting was installed in several buildings to further reduce consumption of utility-supplied power. By combining reduced lighting costs; lowering HVAC loads; and installing smart PV generating equipment with energy storage (battery banks) these systems can greatly reduce electrical usage drawn from an older rural electrical cooperative (Co-Op) while providing clean dependable power. Several additional tasks under this project involved conducting research to develop methods of producing electricity from organic materials (i.e. biofuels, biomass. etc.), the most successful being the biodiesel reactor. Improvements with Proton Exchange Membranes (PEM) for fuels cells were demonstrated and advances in Dye Sensitized Solar Cells (DSSC) were also shown. The specific goals of the project include; Instrumentation of the power distribution system with distributed energy resources, demand-side control and intelligent homes within the town of Playas, NM; Creation of models (power flow and dynamic) of the Playas power distribution system; Validation of the models through comparison of predicted behavior to data collected from instrumentation; and Utilization of the models and test grid to characterize the impact of new devices and approaches (e.g., distributed generation and load management) on the local distribution system as well as the grid at large. In addition to the above stated objectives, the research also focused on three critical challenges facing renewable distributed energy platforms: 1) hydrogen from biomass, 2) improved catalyst support systems for electrolysis membranes and fuel cell systems, and 3) improved manufacturing methodologies of low cost photovoltaics. The following sections describe activities performed during this project. The various tasks were focused on establishing Playas as a “…theoretical and experimental test bed…” through which components of a modern/smart grid could be characterized. On a broader scale, project efforts were aimed at development of tools and gathering of experience/expertise that would accelerate progress toward implementation of a modern grid.

  6. The power grid of the future is a platform that

    Broader source: Energy.gov (indexed) [DOE]

    grid of the future is a platform that delivers reliable, affordable, and clean electricity to American consumers where they want it, when they want it, and how they want it. To...

  7. Towards risk-based management of critical infrastructures : enabling insights and analysis methodologies from a focused study of the bulk power grid.

    SciTech Connect (OSTI)

    Richardson, Bryan T.; LaViolette, Randall A.; Cook, Benjamin Koger

    2008-02-01

    This report summarizes research on a holistic analysis framework to assess and manage risks in complex infrastructures, with a specific focus on the bulk electric power grid (grid). A comprehensive model of the grid is described that can approximate the coupled dynamics of its physical, control, and market components. New realism is achieved in a power simulator extended to include relevant control features such as relays. The simulator was applied to understand failure mechanisms in the grid. Results suggest that the implementation of simple controls might significantly alter the distribution of cascade failures in power systems. The absence of cascade failures in our results raises questions about the underlying failure mechanisms responsible for widespread outages, and specifically whether these outages are due to a system effect or large-scale component degradation. Finally, a new agent-based market model for bilateral trades in the short-term bulk power market is presented and compared against industry observations.

  8. A Novel Application of Parallel Betweenness Centrality to Power Grid Contingency Analysis

    SciTech Connect (OSTI)

    Jin, Shuangshuang; Huang, Zhenyu; Chen, Yousu; Chavarra-Miranda, Daniel; Feo, John T.; Wong, Pak C.

    2010-04-19

    In Energy Management Systems, contingency analysis is commonly performed for identifying and mitigating potentially harmful power grid component failures. The exponentially increasing combinatorial number of failure modes imposes a significant computational burden for massive contingency analysis. It is critical to select a limited set of high-impact contingency cases within the constraint of computing power and time requirements to make it possible for real-time power system vulnerability assessment. In this paper, we present a novel application of parallel betweenness centrality to power grid contingency selection. We cross-validate the proposed method using the model and data of the western US power grid, and implement it on a Cray XMT system - a massively multithreaded architecture - leveraging its advantages for parallel execution of irregular algorithms, such as graph analysis. We achieve a speedup of 55 times (on 64 processors) compared against the single-processor version of the same code running on the Cray XMT. We also compare an OpenMP-based version of the same code running on an HP Superdome shared-memory machine. The performance of the Cray XMT code shows better scalability and resource utilization, and shorter execution time for large-scale power grids. This proposed approach has been evaluated in PNNLs Electricity Infrastructure Operations Center (EIOC). It is expected to provide a quick and efficient solution to massive contingency selection problems to help power grid operators to identify and mitigate potential widespread cascading power grid failures in real time.

  9. Quantifiably secure power grid operation, management, and evolution : a study of uncertainties affecting the grid integration of renewables.

    SciTech Connect (OSTI)

    Gray, Genetha Anne; Watson, Jean-Paul; Silva Monroy, Cesar Augusto; Gramacy, Robert B.

    2013-09-01

    This report summarizes findings and results of the Quantifiably Secure Power Grid Operation, Management, and Evolution LDRD. The focus of the LDRD was to develop decisionsupport technologies to enable rational and quantifiable risk management for two key grid operational timescales: scheduling (day-ahead) and planning (month-to-year-ahead). Risk or resiliency metrics are foundational in this effort. The 2003 Northeast Blackout investigative report stressed the criticality of enforceable metrics for system resiliency - the grid's ability to satisfy demands subject to perturbation. However, we neither have well-defined risk metrics for addressing the pervasive uncertainties in a renewable energy era, nor decision-support tools for their enforcement, which severely impacts efforts to rationally improve grid security. For day-ahead unit commitment, decision-support tools must account for topological security constraints, loss-of-load (economic) costs, and supply and demand variability - especially given high renewables penetration. For long-term planning, transmission and generation expansion must ensure realized demand is satisfied for various projected technological, climate, and growth scenarios. The decision-support tools investigated in this project paid particular attention to tailoriented risk metrics for explicitly addressing high-consequence events. Historically, decisionsupport tools for the grid consider expected cost minimization, largely ignoring risk and instead penalizing loss-of-load through artificial parameters. The technical focus of this work was the development of scalable solvers for enforcing risk metrics. Advanced stochastic programming solvers were developed to address generation and transmission expansion and unit commitment, minimizing cost subject to pre-specified risk thresholds. Particular attention was paid to renewables where security critically depends on production and demand prediction accuracy. To address this concern, powerful filtering techniques for spatio-temporal measurement assimilation were used to develop short-term predictive stochastic models. To achieve uncertaintytolerant solutions, very large numbers of scenarios must be simultaneously considered. One focus of this work was investigating ways of reasonably reducing this number.

  10. Florida Power and Light Comments on Smart Grid Request For Information...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    it continues to be developed and deployed, can be an enabler for better and more reliable control of the electric power system, enhanced management and monitoring of the grid, and...

  11. "Large Power Transformers and the U.S. Electric Grid" Report (June 2012)

    Broader source: Energy.gov [DOE]

    The Office of Electricity Delivery and Energy Reliability has released the "Large Power Transformers and the U.S. Electric Grid" report, an assessment of the procurement and supply environment of...

  12. Large Power Transformers and the U.S. Electric Grid Report Update...

    Broader source: Energy.gov (indexed) [DOE]

    an update to its 2012 Large Power Transformers and the U.S. Electric Grid report. The new report includes updated information about global electrical steel supply conditions and...

  13. Long Island Power Authority Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    distribution and consumer systems, such as smart meters, distribution automation, distributed energy resources, and electric vehicle charging stations. The projecct will also...

  14. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power systems...

  15. Prediction and Control of Network Cascade: Example of Power Grid or

    Office of Scientific and Technical Information (OSTI)

    Networking Adaptability from WMD Disruption and Cascading Failures (Conference) | SciTech Connect Conference: Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures Citation Details In-Document Search Title: Prediction and Control of Network Cascade: Example of Power Grid or Networking Adaptability from WMD Disruption and Cascading Failures The goal of the DTRA project is to develop a mathematical framework that

  16. Top 9 Things You Didn't Know About America's Power Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy America's Power Grid Top 9 Things You Didn't Know About America's Power Grid November 20, 2014 - 10:07am Addthis Electrical transmission lines cross a snow-covered field in Dalles Dam, Oregon. | Energy Department photo. Electrical transmission lines cross a snow-covered field in Dalles Dam, Oregon. | Energy Department photo. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs How can I participate? Check out our Infographic on Understanding

  17. NREL Study Shows Power Grid can Accommodate Large Increase in Wind and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Generation - News Releases | NREL Study Shows Power Grid can Accommodate Large Increase in Wind and Solar Generation Increased Coordination Over Wider Areas and More Frequent Scheduling Needed; Wind and Solar Significantly Reduce Carbon and Fuel Costs May 20, 2010 The National Renewable Energy Laboratory (NREL) today released an initial study assessing the operational impacts and economics of increased contributions from wind and solar energy producers on the power grid. The Western

  18. Modern Smart Grid Offers Consumers the Power of Choice | Department of

    Office of Environmental Management (EM)

    Energy Modern Smart Grid Offers Consumers the Power of Choice Modern Smart Grid Offers Consumers the Power of Choice February 7, 2011 - 9:19am Addthis Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs Home energy assessments are a practical, straightforward way to improve the overall efficiency of your home. Learning how to better manage home energy use can lead to significant cost savings. You may have enlisted the help of a professional

  19. New Battery Design Could Help Solar and Wind Power the Grid | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Battery Design Could Help Solar and Wind Power the Grid New Battery Design Could Help Solar and Wind Power the Grid April 24, 2013 - 4:20pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Researchers from the U.S. Department of Energy's (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life "flow" battery that could enable solar and wind energy to become major suppliers to the electrical grid. The research, led by Yi

  20. Eprice (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Transmission Smart Grid Projects - Grid Automation Distribution...

  1. Distributed Power Flow Control: Distributed Power Flow Control using Smart Wires for Energy Routing

    SciTech Connect (OSTI)

    2012-04-24

    GENI Project: Smart Wire Grid is developing a solution for controlling power flow within the electric grid to better manage unused and overall transmission capacity. The 300,000 miles of high-voltage transmission line in the U.S. today are congested and inefficient, with only around 50% of all transmission capacity utilized at any given time. Increased consumer demand should be met in part with more efficient and an economical power flow. Smart Wire Grid’s devices clamp onto existing transmission lines and control the flow of power within—much like how internet routers help allocate bandwidth throughout the web. Smart wires could support greater use of renewable energy by providing more consistent control over how that energy is routed within the grid on a real-time basis. This would lessen the concerns surrounding the grid’s inability to effectively store intermittent energy from renewables for later use.

  2. Impact of Increasing Distributed Wind Power and Wind Turbine Siting on Rural Distribution Feeder Voltage Profiles: Preprint

    SciTech Connect (OSTI)

    Allen, A.; Zhang, Y. C.; Hodge, B. M.

    2013-09-01

    Many favorable wind energy resources in North America are located in remote locations without direct access to the transmission grid. Building transmission lines to connect remotely-located wind power plants to large load centers has become a barrier to increasing wind power penetration in North America. By connecting utility-sized megawatt-scale wind turbines to the distribution system, wind power supplied to consumers could be increased greatly. However, the impact of including megawatt-scale wind turbines on distribution feeders needs to be studied. The work presented here examined the impact that siting and power output of megawatt-scale wind turbines have on distribution feeder voltage. This is the start of work to present a general guide to megawatt-scale wind turbine impact on the distribution feeder and finding the amount of wind power that can be added without adversely impacting the distribution feeder operation, reliability, and power quality.

  3. Large Power Transformers and the U.S. Electric Grid

    Broader source: Energy.gov (indexed) [DOE]

    ... gas, and electric power, except for hydroelectric and commercial nuclear power facilities. ... being Japan, Germany, United States, France, Korea, and China (see Figure 5). 50 ...

  4. Potomac Electric Power Company (PEPCO) Smart Grid Project | Open...

    Open Energy Info (EERE)

    automated distribution circuit switches and transformer monitors that improve the reliability of the distribution system while decreasing operations and maintenance costs.3...

  5. Potomac Electric Power Company (PEPCO) Smart Grid Project (Maryland...

    Open Energy Info (EERE)

    distribution circuit switches and transformer monitors that can improve the reliability of the distribution system while decreasing the cost of operations and...

  6. NREL Establishes New Center for Distributed Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Establishes New Center for Distributed Power Changing Electricity Market Demands Greater Flexibility, New Solutions For more information contact: Gary Schmitz, 303-275-4050 email: Gary Schmitz Golden, Colo., Jan. 8, 2001 - The nation's straining electrical generation system can be enhanced by moving away from an historic reliance on "mega" power plants and toward a network of dispersed, smaller-scale generation facilities. That concept, known as "distributed power," will be

  7. PROJECT PROFILE: An Integrated Tool for Improving Grid Performance and Reliability of Combined Transmission-Distribution with High Solar Penetration (SuNLaMP)

    Broader source: Energy.gov [DOE]

    High penetration of solar photovoltaics (PV) in electric power grids has created a need for changes to power system planning and operations analysis. Important technical issues such as two-way power flow, coordination of protection devices, transmission-distribution interaction, and reduction in inertia need to be resolved to enable a greater deployment of solar generation. To overcome these technical barriers, this project will develop a suite of software tools that creates a holistic understanding of the steady-state and transient behavior of transmission-distribution networks’ interaction under high PV penetration levels, along with the capability of real-time monitoring of the distribution systems and integration of system protection.

  8. NREL: Transmission Grid Integration - Solar Power Data for Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studies Power Data for Integration Studies The Solar Power Data for Integration Studies are synthetic solar photovoltaic (PV) power plant data points for the United States for the year 2006. The data are intended for use by energy professionals such as transmission planners, utility planners, project developers, and university researchers who perform solar integration studies and need to estimate power production from hypothetical solar plants. Alert! The solar power datasets are modeled

  9. Co-Simulation of Detailed Whole Building with the Power System to Study Smart Grid Applications

    SciTech Connect (OSTI)

    Makhmalbaf, Atefe; Fuller, Jason C.; Srivastava, Viraj; Ciraci, Selim; Daily, Jeffrey A.

    2014-12-24

    Modernization of the power system in a way that ensures a sustainable energy system is arguably one of the most pressing concerns of our time. Buildings are important components in the power system. First, they are the main consumers of electricity and secondly, they do not have constant energy demand. Conventionally, electricity has been difficult to store and should be consumed as it is generated. Therefore, maintaining the demand and supply is critical in the power system. However, to reduce the complexity of power models, buildings (i.e., end-use loads) are traditionally modeled and represented as aggregated dumb nodes in the power system. This means we lack effective detailed whole building energy models that can support requirements and emerging technologies of the smart power grid. To gain greater insight into the relationship between building energy demand and power system performance, it is important to constitute a co-simulation framework to support detailed building energy modeling and simulation within the power system to study capabilities promised by the modern power grid. This paper discusses ongoing work at Pacific Northwest National Laboratory and presents underlying tools and framework needed to enable co-simulation of building, building energy systems and their control in the power system to study applications such as demand response, grid-based HVAC control, and deployment of buildings for ancillary services. The optimal goal is to develop an integrated modeling and simulation platform that is flexible, reusable, and scalable. Results of this work will contribute to future building and power system studies, especially those related to the integrated smart grid. Results are also expected to advance power resiliency and local (micro) scale grid studies where several building and renewable energy systems transact energy directly. This paper also reviews some applications that can be supported and studied using the framework introduced to understand their implications before they can be successfully implemented in the power system.

  10. High Penetration of Photovoltaic (PV) Systems into the Distribution Grid, Workshop Report, February 24-25, 2009

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Outcomes from the EERE Solar Energy Technologies Program workshop on high penetration of photovoltaic (PV) systems into the distribution grid, Feb. 24-25, 2009, Ontario, Calif.

  11. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization Consortium Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Grid Modernization...

  12. NREL: Distributed Grid Integration - Data Collection and Visualization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Data Collection and Visualization Projects NREL researchers work with utilities and other organizations, such as the Sacramento Municipal Utility District and the U.S. Army, to create data collection and visualization scenarios that help them to understand and effectively manage distributed energy integration systems. Sacramento Municipal Utility District As part of a larger project with the Sacramento Municipal Utility District (SMUD), NREL is using its data collection and

  13. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen Reliability and Services - July 2012.pdf

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Florida Power & Light July 2012 1 Smart devices have been installed on 78 substation transformer banks. Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida With 4.6 million customers, nearly 70,000 miles of power lines and 16 power plants, Florida Power and Light Company (FPL) is one of the nation's largest electric utilities. FPL says maintaining reliable service while keeping rates affordable is "Job One." While pursuing its mission, FPL is

  14. NREL Confirms Large Potential for Grid Integration of Wind, Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    To fully harvest the nation's bountiful wind and solar resources, it is critical to know how much electrical power from these renewable resources could be integrated reliably into the grid. To inform the discussion about the potential of such variable sources, the National Renewable Energy Laboratory (NREL) launched two key regional studies, examining the east and west sections of the U.S. power grid. The studies show that it is technically possible for U.S. power systems to integrate 20%-35% renewable electricity if infrastructure and operational improvements can be made.

  15. DG Demonet Smart LV Grid (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Integrated System Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  16. Dynamic Wireless Power Transfer - Grid Impacts Analysis (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dynamic Wireless Power Transfer Grid Impacts Analysis Tony Markel, Andrew Meintz, and Jeff Gonder EPRI EV IWC Meeting Atlanta, GA November 19, 2015 NREL/PR-5400-65449 2 Electrified Roadways Implementation Benefits * Electrified Roadways Opportunity o Expand vehicle utility and value o Integrate with renewable resources and grid operations * Electric Vehicles (EVs) o Roadway electrification extends operable range * Plug-In Hybrid Electric Vehicles (PHEVs) o Fully electrified operation possible

  17. Method and system for managing power grid data

    SciTech Connect (OSTI)

    Yin, Jian; Akyol, Bora A.; Gorton, Ian

    2015-11-10

    A system and method of managing time-series data for smart grids is disclosed. Data is collected from a plurality of sensors. An index is modified for a newly created block. A one disk operation per read or write is performed. The one disk operation per read includes accessing and looking up the index to locate the data without movement of an arm of the disk, and obtaining the data. The one disk operation per write includes searching the disk for free space, calculating an offset, modifying the index, and writing the data contiguously into a block of the disk the index points to.

  18. Applications for Coal and Natural Gas Power Plants in a Smart Grid Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrics and Benefits Analysis for Smart Grid Field Projects Steve Bossart Energy Tech 2011 Cleveland, Ohio 2 Smart Grid Metrics & Benefits Topics * Value proposition * Field projects * Functions & applications * Metrics * Benefits * Metrics and benefits methodology * Non-metric results * Challenges 3 Value Proposition Cost to Modernize * $338-$476B over 20 years - $ 82-90 B for transmission - $232-$339 B for distribution - $24-46 B for consumer * $17-24 B per year Benefit of

  19. Synchronization Algorithms for Co-Simulation of Power Grid and Communication Networks

    SciTech Connect (OSTI)

    Ciraci, Selim; Daily, Jeffrey A.; Agarwal, Khushbu; Fuller, Jason C.; Marinovici, Laurentiu D.; Fisher, Andrew R.

    2014-09-11

    The ongoing modernization of power grids consists of integrating them with communication networks in order to achieve robust and resilient control of grid operations. To understand the operation of the new smart grid, one approach is to use simulation software. Unfortunately, current power grid simulators at best utilize inadequate approximations to simulate communication networks, if at all. Cooperative simulation of specialized power grid and communication network simulators promises to more accurately reproduce the interactions of real smart grid deployments. However, co-simulation is a challenging problem. A co-simulation must manage the exchange of informa- tion, including the synchronization of simulator clocks, between all simulators while maintaining adequate computational perfor- mance. This paper describes two new conservative algorithms for reducing the overhead of time synchronization, namely Active Set Conservative and Reactive Conservative. We provide a detailed analysis of their performance characteristics with respect to the current state of the art including both conservative and optimistic synchronization algorithms. In addition, we provide guidelines for selecting the appropriate synchronization algorithm based on the requirements of the co-simulation. The newly proposed algorithms are shown to achieve as much as 14% and 63% im- provement, respectively, over the existing conservative algorithm.

  20. Statistical Analysis of Abnormal Electric Power Grid Behavior

    SciTech Connect (OSTI)

    Ferryman, Thomas A.; Amidan, Brett G.

    2010-10-30

    Pacific Northwest National Laboratory is developing a technique to analyze Phasor Measurement Unit data to identify typical patterns, atypical events and precursors to a blackout or other undesirable event. The approach combines a data-driven multivariate analysis with an engineering-model approach. The method identifies atypical events, provides a plane English description of the event, and the capability to use drill-down graphics for detailed investigations. The tool can be applied to the entire grid, individual organizations (e.g. TVA, BPA), or specific substations (e.g., TVA_CUMB). The tool is envisioned for (1) event investigations, (2) overnight processing to generate a Morning Report that characterizes the previous days activity with respect to previous activity over the previous 10-30 days, and (3) potentially near-real-time operation to support the grid operators. This paper presents the current status of the tool and illustrations of its application to real world PMU data collected in three 10-day periods in 2007.

  1. Potential for Distributed and Central Electrolysis to Provide Grid Support Services (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-07-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes how NREL operated both commercially available low-temperature electrolyzer technologies (PEM and alkaline) to evaluate their response to commands to increase and decrease stack power that shorten frequency disturbances on an alternating current (AC) mini-grid. Results show that both the PEM and alkaline electrolyzers are capable of adding or removing stack power to provide sub-second response that reduced the duration of frequency disturbances.

  2. Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)

    SciTech Connect (OSTI)

    Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

    2014-06-01

    The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

  3. NREL: Transmission Grid Integration - NREL Power Systems Engineering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Publish 33 Articles in Last Year Power Systems Engineering Researchers Publish 33 Articles in Last Year February 18, 2016 NREL's Power Systems Engineering Center published 33 journal and magazine articles in the past year highlighting recent research in integrating renewable energy into power systems. NREL would like to acknowledge the U.S. Department of Energy for the funding support that made this research possible. Integrated Devices and Systems Research Lab Tests: Verifying

  4. Mini Berlin powered by Vattenfall (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search Project Name Mini Berlin powered by Vattenfall Country Germany Headquarters Location Berlin, Germany Coordinates 52.523403, 13.4114 Loading...

  5. Florida Power & Light Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    will have the knowledge and skills to design, plan, construct, operate, and maintain a modern electricity delivery system, including power system infrastructure and information...

  6. The power grid of the future is a platform that

    Broader source: Energy.gov (indexed) [DOE]

    of workers in the utility and electrical manufacturing industries and six ... and that the number of customer-minutes lost to power outages has decreased by 50 percent. ...

  7. Guam Power Authority Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    can install devices that assist in managing electricity use and costs, including in-home displays and home area networks. The new AMI and distribution automation technologies...

  8. Kansas City Power & Light Company Smart Grid Demonstration Project...

    Open Energy Info (EERE)

    will include advanced renewable generation, storage resources, distribution system automation, in-home customer systems and digital technologies, and innovative rate structures....

  9. Wisconsin Power and Light Company Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    automation project is designed to improve distribution system efficiency and reliability while lowering operations and maintenance costs. WPL is deploying a new centralized...

  10. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  11. Optimization Strategies for the Vulnerability Analysis of the Electric Power Grid

    SciTech Connect (OSTI)

    Pinar, A.; Meza, J.; Donde, V.; Lesieutre, B.

    2007-11-13

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (MINLP) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  12. Optimization strategies for the vulnerability analysis of the electric power grid.

    SciTech Connect (OSTI)

    Meza, Juan C.; Pinar, Ali; Lesieutre, Bernard; Donde, Vaibhav

    2009-03-01

    Identifying small groups of lines, whose removal would cause a severe blackout, is critical for the secure operation of the electric power grid. We show how power grid vulnerability analysis can be studied as a mixed integer nonlinear programming (minlp) problem. Our analysis reveals a special structure in the formulation that can be exploited to avoid nonlinearity and approximate the original problem as a pure combinatorial problem. The key new observation behind our analysis is the correspondence between the Jacobian matrix (a representation of the feasibility boundary of the equations that describe the flow of power in the network) and the Laplacian matrix in spectral graph theory (a representation of the graph of the power grid). The reduced combinatorial problem is known as the network inhibition problem, for which we present a mixed integer linear programming formulation. Our experiments on benchmark power grids show that the reduced combinatorial model provides an accurate approximation, to enable vulnerability analyses of real-sized problems with more than 10,000 power lines.

  13. Grid Impacts of Wind Power Variability: Recent Assessments from a Variety of Utilities in the United States (Presentation)

    SciTech Connect (OSTI)

    Parsons, B.

    2006-03-01

    Presentation for the European Wind Energy Conference held February 27--March 2, 2006, in Athens, Greece, showing grid impacts of wind power variability.

  14. Cathode power distribution system and method of using the same for power distribution

    DOE Patents [OSTI]

    Williamson, Mark A; Wiedmeyer, Stanley G; Koehl, Eugene R; Bailey, James L; Willit, James L; Barnes, Laurel A; Blaskovitz, Robert J

    2014-11-11

    Embodiments include a cathode power distribution system and/or method of using the same for power distribution. The cathode power distribution system includes a plurality of cathode assemblies. Each cathode assembly of the plurality of cathode assemblies includes a plurality of cathode rods. The system also includes a plurality of bus bars configured to distribute current to each of the plurality of cathode assemblies. The plurality of bus bars include a first bus bar configured to distribute the current to first ends of the plurality of cathode assemblies and a second bus bar configured to distribute the current to second ends of the plurality of cathode assemblies.

  15. J.S. 24 POWER TRANSMISSION AND DISTRIBUTION; VECTORS; ELECTRIC...

    Office of Scientific and Technical Information (OSTI)

    power and power factor of instantaneous phasors Hsu, J.S. 24 POWER TRANSMISSION AND DISTRIBUTION; VECTORS; ELECTRIC CURRENTS; ELECTRIC POTENTIAL; MONITORING; POWER SYSTEMS;...

  16. Urban Electric Power Takes Energy Storage from Startup to Grid-Scale |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Urban Electric Power Takes Energy Storage from Startup to Grid-Scale Urban Electric Power Takes Energy Storage from Startup to Grid-Scale June 25, 2013 - 12:42pm Addthis Learn how the CUNY Energy Institute is creating safe, low cost, rechargeable, long lifecycle batteries that could be used to store renewable energy. | Video courtesy of the Energy Department. Alexa McClanahan Communications Support Contractor to ARPA-E What are the key facts? The CUNY Energy Institute

  17. Stanton County Public Power District Smart Grid Project | Open...

    Open Energy Info (EERE)

    The project extends smart meter coverage from 453 to 2,768 meters and uses existing radio frequency and power-line-carrier communications networks for data collection.3...

  18. Case Study - Florida Power & Light - Smart Grid Solutions Strengthen...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The TPDC is also monitoring the battery banks that provide power to 500 FPL substations. The battery banks are monitored for both high and low voltage levels, and high impedance. ...

  19. Electric Power Board of Chattanooga Smart Grid Project | Open...

    Open Energy Info (EERE)

    Customer Web Portal Up to 5,000 Direct Load Control Devices Up to 5,000 In-Home DisplaysEnergy Management Systems Up to 5,000 Programmable Communicating Thermostats Distribution...

  20. IEEE 1547 and 2030 Standards for Distributed Energy Resources Interconnection and Interoperability with the Electricity Grid

    SciTech Connect (OSTI)

    Basso, T.

    2014-12-01

    Public-private partnerships have been a mainstay of the U.S. Department of Energy and the National Renewable Energy Laboratory (DOE/NREL) approach to research and development. These partnerships also include technology development that enables grid modernization and distributed energy resources (DER) advancement, especially renewable energy systems integration with the grid. Through DOE/NREL and industry support of Institute of Electrical and Electronics Engineers (IEEE) standards development, the IEEE 1547 series of standards has helped shape the way utilities and other businesses have worked together to realize increasing amounts of DER interconnected with the distribution grid. And more recently, the IEEE 2030 series of standards is helping to further realize greater implementation of communications and information technologies that provide interoperability solutions for enhanced integration of DER and loads with the grid. For these standards development partnerships, for approximately $1 of federal funding, industry partnering has contributed $5. In this report, the status update is presented for the American National Standards IEEE 1547 and IEEE 2030 series of standards. A short synopsis of the history of the 1547 standards is first presented, then the current status and future direction of the ongoing standards development activities are discussed.

  1. EDISON (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Smart Meter and AMI...

  2. Reducing the Vulnerability of Electric Power Grids to Terrorist Attacks

    SciTech Connect (OSTI)

    Ross Baldick; Thekla Boutsika; Jin Hur; Manho Joung; Yin Wu; Minqi Zhong

    2009-01-31

    This report describes the development of a cascading outage analyzer that, given an initial disturbance on an electric power system, checks for thermal overloads, under-frequency and over-frequency conditions, and under-voltage conditions that would result in removal of elements from the system. The analyzer simulates the successive tripping of elements due to protective actions until a post-event steady state or a system blackout is reached.

  3. Distribution: Sonya Baskerville, Bonneville Power Administration, Liaison

    Office of Environmental Management (EM)

    Distribution: Sonya Baskerville, Bonneville Power Administration, Liaison Karen Boardman, Health Safety and Security, Director, National Training Center Robert Corbin, Fossil Energy, DAS, FE-4 Gordon Fox, Office of Science, Director, SC-31.2 Mark Gilbertson, Environmental Management, DAS, Site Restoration Larry Harp, Division of Engineering and Planning, South Western Power Administration Joshua Hill, Federal Energy Regulatory Commission, Acting Director, Logistics Mgmt. Div. Doug Hooker, Energy

  4. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

  5. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levelseliminating the need for large transformers. Transformers step up the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually stepped down to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcons new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcons modular devices are designed to ensure reliabilityif one device fails it can be bypassed and the system can continue to run.

  6. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  7. Development of Innovative Distributed Power Interconnection and Control Systems: Annual Report, December 2000-December 2001

    SciTech Connect (OSTI)

    Liss, W.; Dybel, M.; West, R.; Adams, L.

    2002-11-01

    This report covers the first year's work performed by the Gas Technology Institute and Encorp Inc. under subcontract to the National Renewable Energy Laboratory. The objective of this three-year contract is to develop innovative grid interconnection and control systems. This supports the advancement of distributed generation in the marketplace by making installations more cost-effective and compatible across the electric power and energy management systems. Specifically, the goals are: (1) To develop and demonstrate cost-effective distributed power grid interconnection products and software and communication solutions applicable to improving the economics of a broad range of distributed power systems, including existing, emerging, and other power generation technologies. (2) To enhance the features and capabilities of distributed power products to integrate, interact, and provide operational benefits to the electric power and advanced energy management systems. This includes features and capabilities for participating in resource planning, the provision of ancillary services, and energy management. Specific topics of this report include the development of an advanced controller, a power sensing board, expanded communication capabilities, a revenue-grade meter interface, and a case study of an interconnection distributed power system application that is a model for demonstrating the functionalities of the design of the advanced controller.

  8. Demonstration project Smart Charging (Smart Grid Project) | Open...

    Open Energy Info (EERE)

    Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  9. Belgium east loop active network management (Smart Grid Project...

    Open Energy Info (EERE)

    Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Grid Automation Transmission...

  10. The Emerging Interdependence of the Electric Power Grid & Information and Communication Technology

    SciTech Connect (OSTI)

    Taft, Jeffrey D.; Becker-Dippmann, Angela S.

    2015-08-01

    This paper examines the implications of emerging interdependencies between the electric power grid and Information and Communication Technology (ICT). Over the past two decades, electricity and ICT infrastructure have become increasingly interdependent, driven by a combination of factors including advances in sensor, network and software technologies and progress in their deployment, the need to provide increasing levels of wide-area situational awareness regarding grid conditions, and the promise of enhanced operational efficiencies. Grid operators’ ability to utilize new and closer-to-real-time data generated by sensors throughout the system is providing early returns, particularly with respect to management of the transmission system for purposes of reliability, coordination, congestion management, and integration of variable electricity resources such as wind generation.

  11. Probability-Based Software for Grid Optimization: Improved Power System Operations Using Advanced Stochastic Optimization

    SciTech Connect (OSTI)

    2012-02-24

    GENI Project: Sandia National Laboratories is working with several commercial and university partners to develop software for market management systems (MMSs) that enable greater use of renewable energy sources throughout the grid. MMSs are used to securely and optimally determine which energy resources should be used to service energy demand across the country. Contributions of electricity to the grid from renewable energy sources such as wind and solar are intermittent, introducing complications for MMSs, which have trouble accommodating the multiple sources of price and supply uncertainties associated with bringing these new types of energy into the grid. Sandia’s software will bring a new, probability-based formulation to account for these uncertainties. By factoring in various probability scenarios for electricity production from renewable energy sources in real time, Sandia’s formula can reduce the risk of inefficient electricity transmission, save ratepayers money, conserve power, and support the future use of renewable energy.

  12. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric power system was designed for efficiency, reliability, ease of operation, and to meet consumer needs at minimum cost. The grid of the future must maintain these characteristics while meeting a number of new requirements: supporting the

  13. PROJECT PROFILE: CyDER: A Cyber Physical Co-simulation Platform for Distributed Energy Resources in Smart Grids (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project focuses on developing a modular, scalable, and interoperable tool for power system planning and operation that will seamlessly integrate with utilities’ existing tools to enable analysis of high penetration of distributed energy resources. The tool, Cyber Physical Co-simulation Platform for Distributed Energy Resources in Smart Grids (CyDER), will enhance current utility tools by providing a computationally efficient platform that will be capable of quasi-static time series simulation and smart PV inverter controls with in-feed data from real-time distribution sensor measurements.

  14. NREL's Cybersecurity Initiative Aims to Wall Off the Smart Grid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL's Cybersecurity Initiative Aims to Wall Off the Smart Grid from Hackers January 4, ... Although the test bed was designed to handle power distribution grids, it can be applied ...

  15. PVUSA experience with power conversion for grid-connected photovoltaic systems

    SciTech Connect (OSTI)

    Stolte, W.

    1995-11-01

    The Photovoltaics for Utility Scale Application (PVUSA) project was established to demonstrate photovoltaic (PV) systems in grid-connected utility applications. One of PVUSA`s key objectives is to evaluate the performance, reliability, and cost of the PV balance of system (BOS). Power conditioning units (PCUs) are the interface between the dc PV arrays and the ac utility lines, and have proved to be the most critical element in grid-connected PV systems. There are five different models of PCUs at PVUSA`s Davis and Kerman sites. This report describes the design, testing, performance characteristics, and maintenance history of each of these PCUs. PVUSA required PCUs in the power range 25 kW to 500 kW which could operate automatically and reliably under changing conditions of sunlight and changing conditions on the utility grid. Although a number of manufacturers can provide PCUs in this power range, none of these PCUs have been produced in sufficient quantity to allow refinement of a particular model into the highly reliable unit needed for long-term, unattended operation. Factory tests were useful but limited by the inability to test under full power and changing power conditions. The inability to completely test PCUs at the factory resulted in difficulty during startup, field testing, and subsequent operation. PVUSA has made significant progress in understanding the requirements for PCUs in grid-connected PV applications and improving field performance. This record of PVUSA`s experience with a variety of PCUs is intended to help utilities and their suppliers identify and retain the good performance characteristics of PCUs, and to make improvements where necessary to meet the needs of utilities.

  16. Distributed Solar Power Ltd Di S P | Open Energy Information

    Open Energy Info (EERE)

    Solar Power Ltd Di S P Jump to: navigation, search Name: Distributed Solar Power Ltd (Di.S.P) Place: Yokneam, Israel Zip: 20692 Sector: Solar Product: Distributed Solar Power...

  17. Installation of the first Distributed Energy Storage System (DESS) at American Electric Power (AEP).

    SciTech Connect (OSTI)

    Nourai, Ali

    2007-06-01

    AEP studied the direct and indirect benefits, strengths, and weaknesses of distributed energy storage systems (DESS) and chose to transform its entire utility grid into a system that achieves optimal integration of both central and distributed energy assets. To that end, AEP installed the first NAS battery-based, energy storage system in North America. After one year of operation and testing, AEP has concluded that, although the initial costs of DESS are greater than conventional power solutions, the net benefits justify the AEP decision to create a grid of DESS with intelligent monitoring, communications, and control, in order to enable the utility grid of the future. This report details the site selection, construction, benefits and lessons learned of the first installation, at Chemical Station in North Charleston, WV.

  18. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  19. Tutorial of Wind Turbine Control for Supporting Grid Frequency through Active Power Control: Preprint

    SciTech Connect (OSTI)

    Aho, J.; Buckspan, A.; Laks, J.; Fleming, P.; Jeong, Y.; Dunne, F.; Churchfield, M.; Pao, L.; Johnson, K.

    2012-03-01

    As wind energy becomes a larger portion of the world's energy portfolio and wind turbines become larger and more expensive, wind turbine control systems play an ever more prominent role in the design and deployment of wind turbines. The goals of traditional wind turbine control systems are maximizing energy production while protecting the wind turbine components. As more wind generation is installed there is an increasing interest in wind turbines actively controlling their power output in order to meet power setpoints and to participate in frequency regulation for the utility grid. This capability will be beneficial for grid operators, as it seems possible that wind turbines can be more effective at providing some of these services than traditional power plants. Furthermore, establishing an ancillary market for such regulation can be beneficial for wind plant owner/operators and manufacturers that provide such services. In this tutorial paper we provide an overview of basic wind turbine control systems and highlight recent industry trends and research in wind turbine control systems for grid integration and frequency stability.

  20. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  1. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  2. El Paso Electric Smart Grid Project | Open Energy Information

    Open Energy Info (EERE)

    distribution management software platform. El Paso expects these upgrades to improve reliability and power quality and reduce truck rolls for grid maintenance, operating costs, and...

  3. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power ... required utility communication links to capture the full value of distributed PV plants. ...

  4. Sandia Energy - Second Annual Electric Power Research Institute...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium Home Renewable Energy Energy Facilities Grid Integration News Distribution Grid Integration...

  5. Using System Dynamics to Define, Study, and Implement Smart Control Strategies on the Electric Power Grid

    SciTech Connect (OSTI)

    Lyle G. Roybal; Robert F Jeffers

    2013-07-01

    The United States electric power grid is the most complex and expansive control system in the world. Local generation control occurs at individual units based on response time and unit economics, larger regional control coordinates unit response to error conditions, and high level large-area regional control is ultimately administered by a network of humans guided by economic and resiliency related factors. Under normal operating conditions, the grid is a relatively slow moving entity that exhibits high inertia to outside stimuli, and behaves along repeatable diurnal and seasonal patterns. However, that paradigm is quickly changing because of the increasing implementation of renewable generation sources. Renewable generators by nature cannot be tightly controlled or scheduled. They appear like a negative load to the system with all of the variability associated with load on a larger scale. Also, grid-reactive loads (i.e. smart devices) can alter their consumption based on price or demand rules adding more variability to system behavior. This paper demonstrates how a systems dynamic modeling approach capable of operating over multiple time scales, can provide valuable insight into developing new “smart-grid” control strategies and devices needed to accommodate renewable generation and regulate the frequency of the grid.

  6. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  7. PROJECT PROFILE: Combined PV/Battery Grid Integration with High Frequency Magnetics Enabled Power Electronics (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project will develop new power electronics devices, systems, and materials to address power electronic and dispatchability challenges that result from connecting hundreds of gigawatts of solar energy onto the electricity grid. These devices will incorporate advanced high-frequency (HF) magnetics along with the latest wide bandgap silicon carbide (SiC) switches. This design enables cost-effective grid integration of PV while increasing its dispatchability.

  8. Distributed Power Electronics for PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2011-12-01

    An overview of the benefits and applications of microinverters and DC power optimizers in residential systems. Some conclusions from this report are: (1) The impact of shade is greater than just the area of shade; (2) Additional mismatch losses include panel orientation, panel distribution, inverter voltage window, soiling; (3) Per-module devices can help increase performance, 4-12% or more depending on the system; (4) Value-added benefits (safety, monitoring, reduced design constraints) are helping their adoption; and (5) The residential market is growing rapidly. Efficiency increases, cost reductions are improving market acceptance. Panel integration will further reduce price and installation cost. Reliability remains an unknown.

  9. Wide-Area Situational Awareness of Power Grids with Limited Phasor Measurements

    SciTech Connect (OSTI)

    Zhou, Ning; Huang, Zhenyu; Nieplocha, Jarek; Nguyen, Tony B.

    2006-09-30

    Lack of situational awareness has been identified as one of root causes for the August 14, 2003 Northeast Blackout in North America. To improve situational awareness, the Department of Energy (DOE) launched several projects to deploy Wide Area Measurement Systems (WAMS) in different interconnections. Compared to the tens of thousands of buses, the number of Phasor Measurement Units (PMUs) is quite limited and not enough to achieve the observability for the whole interconnections. To utilize the limited number of PMU measurements to improve situational awareness, this paper proposes to combine PMU measurement data and power flow equations to form a hybrid power flow model. Technically, a model which combines the concept of observable islands and modeling of power flow conditions, is proposed. The model is called a Hybrid Power Flow Model as it has both PMU measurements and simulation assumptions, which describes prior knowledge available about whole power systems. By solving the hybrid power flow equations, the proposed method can be used to derive power system states to improve the situational awareness of a power grid.

  10. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2013-07-02

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  11. Grid regulation services for energy storage devices based on grid frequency

    DOE Patents [OSTI]

    Pratt, Richard M; Hammerstrom, Donald J; Kintner-Meyer, Michael C.W.; Tuffner, Francis K

    2014-04-15

    Disclosed herein are representative embodiments of methods, apparatus, and systems for charging and discharging an energy storage device connected to an electrical power distribution system. In one exemplary embodiment, a controller monitors electrical characteristics of an electrical power distribution system and provides an output to a bi-directional charger causing the charger to charge or discharge an energy storage device (e.g., a battery in a plug-in hybrid electric vehicle (PHEV)). The controller can help stabilize the electrical power distribution system by increasing the charging rate when there is excess power in the electrical power distribution system (e.g., when the frequency of an AC power grid exceeds an average value), or by discharging power from the energy storage device to stabilize the grid when there is a shortage of power in the electrical power distribution system (e.g., when the frequency of an AC power grid is below an average value).

  12. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate smart-grid ready inverters with

  13. OpenEI Community - Smart Grid

    Open Energy Info (EERE)

    p> http:en.openei.orgcommunityblogwhat-do-you-know-about-gridcomments black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  14. Estimating the Spatial Distribution of Population without Power during Extreme Weather Events

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Fernandez, Steven J; Bhaduri, Budhendra L

    2010-01-01

    One challenge in emergency preparedness and response during extreme weather events such as hurricanes and ice storms is estimating how many people may be without power and how long they could be without power. In this presentation, we will discuss a method for estimating the spatial distribution of people without power during extreme weather events. The method is based on a directional nearest-neighbor approach in which grid cells representing substation locations acquire other grid cells representing customers/population demand with respect to the capacity of each substation. We also present a method for estimating restoration time in case of an outage. The application of these methods during the 2008 hurricane season will also be discussed.

  15. Test report light duty utility arm power distribution system (PDS)

    SciTech Connect (OSTI)

    Clark, D.A.

    1996-03-04

    The Light Duty Utility Arm (LDUA) Power Distribution System has completed vendor and post-delivery acceptance testing. The Power Distribution System has been found to be acceptable and is now ready for integration with the overall LDUA system.

  16. Real Power Regulation for the Utility Power Grid via Responsive Loads

    Energy Innovation Portal (Marketing Summaries) [EERE]

    2011-10-25

    A new methodology for dynamically managing an electrical system was invented by researchers at ORNL. Balancing power generation with load demand is critical to ensuring a stable and reliable power supply. This invention provides a new solution to power regulation that can eliminate operational inefficiencies and potentially save the utility industry significant energy generation costs each year....

  17. The Development of a Smart Distribution Grid Testbed for Integrated Information Management Systems

    SciTech Connect (OSTI)

    Lu, Ning; Du, Pengwei; Paulson, Patrick R.; Greitzer, Frank L.; Guo, Xinxin; Hadley, Mark D.

    2011-07-28

    This paper presents a smart distribution grid testbed to test or compare designs of integrated information management systems (I2MSs). An I2MS extracts and synthesizes information from a wide range of data sources to detect abnormal system behaviors, identify possible causes, assess the system status, and provide grid operators with response suggestions. The objective of the testbed is to provide a modeling environment with sufficient data sources for the I2MS design. The testbed includes five information layers and a physical layer; it generates multi-layer chronological data based on actual measurement playbacks or simulated data sets produced by the physical layer. The testbed models random hardware failures, human errors, extreme weather events, and deliberate tampering attempts to allow users to evaluate the performance of different I2MS designs. Initial results of I2MS performance tests showed that the testbed created a close-to-real-world environment that allowed key performance metrics of the I2MS to be evaluated.

  18. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  19. An advanced power distribution automation model system

    SciTech Connect (OSTI)

    Niwa, Shigeharu; Kanoi, Minoru; Nishijima, Kazuo; Hayami, Mitsuo

    1995-12-31

    An advanced power distribution automation (APDA) model system has been developed on the present basis of the automated distribution systems in Japan, which have been used for remote switching operations and for urgent supply restorations during faults. The increased use of electronic apparatuses sensitive to supply interruption requires very high supply reliability, and the final developed system is expected to be useful for this purpose. The developed model system adopts pole circuit breakers and remote termination units connected through 64kbps optical fibers to the computer of the automated system in the control center. Immediate switching operations for supply restorations during faults are possible through the restoration procedures, prepared beforehand, by the computer and by fast telecommunications using optical fibers. So, protection by the feeder circuit breaker in the substation can be avoided, which would otherwise cause the blackout of the whole distribution line. The test results show the effectiveness of model the system: successful fault locations and reconfiguration for supply restoration including separation of the fault sections (without blackout for the ground faults and with a short period (within 1 s) of blackout for the short-circuit faults).

  20. GridOPTICS Software System

    Energy Science and Technology Software Center (OSTI)

    2014-02-24

    GridOPTICS Software System (GOSS) is a middleware that facilitates creation of new, modular and flexible operational and planning platforms that can meet the challenges of the next generation power grid. GOSS enables Department of Energy, power system utilities, and vendors to build better tools faster. GOSS makes it possible to integrate Future Power Grid Initiative software products/prototypes into existing power grid software systems, including the PNNL PowerNet and EIOC environments. GOSS is designed to allowmore » power grid applications developed for different underlying software platforms installed in different utilities to communicate with ease. This can be done in compliance with existing security and data sharing policies between the utilities. GOSS not only supports one-to-one data transfer between applications, but also publisher/subscriber scheme. To support interoperability requirements of future EMS, GOSS is designed for CIM compliance. In addition to this, it supports authentication and authorization capabilities to protect the system from cyber threats. In summary, the contributions of the GOSS middleware are as follows: • A platform to support future EMS development. • A middleware that promotes interoperability between power grid applications. • A distributed architecture that separates data sources from power grid applications. • Support for data exchange with either one-to-one or publisher/subscriber interfaces. • An authentication and authorization scheme for limiting the access to data between utilities.« less

  1. Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Grid-Friendly Controls Demonstration Project for Utility-Scale PV Power Plants Vahan Gevorgian and Barbara O'Neill National Renewable Energy Laboratory Technical Report NREL/TP-5D00-65368 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL) at www.nrel.gov/publications.

  2. AVTA: Vehicle to Grid Power Flow Regulations and Building Codes Review

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following report is a review of Vehicle-to-Grid power flow regulations and building codes, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. Microsoft PowerPoint - Grid Meeting Team Presentation 01 26 2012 (NARUC)

    Broader source: Energy.gov (indexed) [DOE]

    Plugging America into Clean Energy Clean Energy U. S. Department of Energy U. S. Department of Energy Future Needs of the Electricity Grid Future Needs of the Electricity Grid DOE Grid Tech Team 26 January 2012 1 The Grid Tech Team The Grid Tech Team (GTT), with DOE-wide representation, is responsible for leadership within and outside DOE on grid modernization through strategic thinking and improved communication, coordination, and collaboration. Establish and maintain a Identify high priority

  4. Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) |

    Office of Environmental Management (EM)

    Department of Energy Tsinghua Slideshow final for distribution (2) Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) PDF icon Microsoft PowerPoint - Tsinghua Slideshow final for distribution (2) More Documents & Publications Microsoft PowerPoint - Final translated version of Tsinghua Speech Idaho Operations AMWTP Fact Sheet Methane Hydrate R&D

  5. Assessment of grid-friendly collective optimization framework for distributed energy resources

    SciTech Connect (OSTI)

    Pensini, Alessandro; Robinson, Matthew; Heine, Nicholas; Stadler, Michael; Mammoli, Andrea

    2015-11-04

    Distributed energy resources have the potential to provide services to facilities and buildings at lower cost and environmental impact in comparison to traditional electric-gridonly services. The reduced cost could result from a combination of higher system efficiency and exploitation of electricity tariff structures. Traditionally, electricity tariffs are designed to encourage the use of ‘off peak’ power and discourage the use of ‘onpeak’ power, although recent developments in renewable energy resources and distributed generation systems (such as their increasing levels of penetration and their increased controllability) are resulting in pressures to adopt tariffs of increasing complexity. Independently of the tariff structure, more or less sophisticated methods exist that allow distributed energy resources to take advantage of such tariffs, ranging from simple pre-planned schedules to Software-as-a-Service schedule optimization tools. However, as the penetration of distributed energy resources increases, there is an increasing chance of a ‘tragedy of the commons’ mechanism taking place, where taking advantage of tariffs for local benefit can ultimately result in degradation of service and higher energy costs for all. In this work, we use a scheduling optimization tool, in combination with a power distribution system simulator, to investigate techniques that could mitigate the deleterious effect of ‘selfish’ optimization, so that the high-penetration use of distributed energy resources to reduce operating costs remains advantageous while the quality of service and overall energy cost to the community is not affected.

  6. Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Consolidated Edison's (Con Edison) Smart Grid Investment Grant (SGIG) project focuses on the modernization of

  7. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Troxell, Wade

    2011-12-22

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSU's overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratory's focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  8. CET2001 Customer Led Network Revolution (Smart Grid Project)...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Home application Smart Grid Projects - Customer...

  9. Stockholm Royal seaport prestudy phase (Smart Grid Project) ...

    Open Energy Info (EERE)

    in Europe Smart Grid Projects - Smart Meter and AMI Smart Grid Projects - Grid Automation Distribution Smart Grid Projects - Integrated System Smart Grid Projects - Home...

  10. Dynamic interaction between an OTEC power plant and a power grid. Final report

    SciTech Connect (OSTI)

    Not Available

    1982-08-31

    The objectives of the research reported are: to identify and resolve potential technical problems that may arise from the incorporation of an OTEC power plant in the existing generation mix of Puerto Rico and to develop the tools and to identify the technical resources needed for dynamic analysis of island power systems to which OTEC power plants provide a substantial portion of the load demand. The issues addressed are system modelling and data gathering, network simplification, selection of OTEC plant site and power system, stability analysis, and economic dispatch when OTEC power plants contribute substantially to the island's load. The slow dynamics of the OTEC plant make it a reference for the rest of the power system during a transient, but this slowness is a drawback in terms of system recovery from fault-induced transients. It is found that simple dynamic models can, in most instances, describe the transient behavior of both the OTEC plant and the island's power system, but it was not possible to reduce the non-OTEC portion of the power system to a single generation point and a single load. (LEW)

  11. A High Performance Computing Platform for Performing High-Volume Studies With Windows-based Power Grid Tools

    SciTech Connect (OSTI)

    Chen, Yousu; Huang, Zhenyu

    2014-08-31

    Serial Windows-based programs are widely used in power utilities. For applications that require high volume simulations, the single CPU runtime can be on the order of days or weeks. The lengthy runtime, along with the availability of low cost hardware, is leading utilities to seriously consider High Performance Computing (HPC) techniques. However, the vast majority of the HPC computers are still Linux-based and many HPC applications have been custom developed external to the core simulation engine without consideration for ease of use. This has created a technical gap for applying HPC-based tools to todays power grid studies. To fill this gap and accelerate the acceptance and adoption of HPC for power grid applications, this paper presents a prototype of generic HPC platform for running Windows-based power grid programs on Linux-based HPC environment. The preliminary results show that the runtime can be reduced from weeks to hours to improve work efficiency.

  12. Real power regulation for the utility power grid via responsive loads

    DOE Patents [OSTI]

    McIntyre, Timothy J [Knoxville, TN; Kirby, Brendan J [Knoxville, TN; Kisner, Roger A

    2009-05-19

    A system for dynamically managing an electrical power system that determines measures of performance and control criteria for the electric power system, collects at least one automatic generation control (AGC) input parameter to at least one AGC module and at least one automatic load control (ALC) input parameter to at least one ALC module, calculates AGC control signals and loads as resources (LAR) control signals in response to said measures of performance and control criteria, propagates AGC control signals to power generating units in response to control logic in AGC modules, and propagates LAR control signals to at least one LAR in response to control logic in ALC modules.

  13. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  14. Final report for %22High performance computing for advanced national electric power grid modeling and integration of solar generation resources%22, LDRD Project No. 149016.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Riehm, Andrew Charles; Hoekstra, Robert John; Munoz-Ramirez, Karina; Stamp, Jason Edwin; Phillips, Laurence R.; Adams, Brian M.; Russo, Thomas V.; Oldfield, Ron A.; McLendon, William Clarence, III; Nelson, Jeffrey Scott; Hansen, Clifford W.; Richardson, Bryan T.; Stein, Joshua S.; Schoenwald, David Alan; Wolfenbarger, Paul R.

    2011-02-01

    Design and operation of the electric power grid (EPG) relies heavily on computational models. High-fidelity, full-order models are used to study transient phenomena on only a small part of the network. Reduced-order dynamic and power flow models are used when analysis involving thousands of nodes are required due to the computational demands when simulating large numbers of nodes. The level of complexity of the future EPG will dramatically increase due to large-scale deployment of variable renewable generation, active load and distributed generation resources, adaptive protection and control systems, and price-responsive demand. High-fidelity modeling of this future grid will require significant advances in coupled, multi-scale tools and their use on high performance computing (HPC) platforms. This LDRD report demonstrates SNL's capability to apply HPC resources to these 3 tasks: (1) High-fidelity, large-scale modeling of power system dynamics; (2) Statistical assessment of grid security via Monte-Carlo simulations of cyber attacks; and (3) Development of models to predict variability of solar resources at locations where little or no ground-based measurements are available.

  15. Grid Performance and Reliability | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Grid Performance and Reliability Grid Performance and Reliability 2 way power flow orange2.png As the solar industry moves towards achieving the SunShot Initiative goals, the electric power system must evolve to handle large-scale changes in transmission and distribution (T&D) planning and operations in order to accommodate increasing penetrations of distributed PV systems. Effectively interconnecting variable PV generation requires forward thinking and dynamic

  16. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  17. Industrial Distributed Energy: Combined Heat & Power

    Broader source: Energy.gov [DOE]

    Information about the Department of Energy’s Industrial Technologies Program and its Combined Heat and Power program.

  18. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geospatial Data

    SciTech Connect (OSTI)

    Ananthakrishnan, Rachana; Bell, Gavin; Cinquini, Luca; Crichton, Daniel; Danvil, Sebastian; Drach, Bob; Fiore, Sandro; Gonzalez, Estanislao; Harney, John F; Mattmann, Chris; Kershaw, Philip; Morgan, Mark; Pascoe, Stephen; Shipman, Galen M; Wang, Feiyi

    2013-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  19. The Earth System Grid Federation: An Open Infrastructure for Access to Distributed Geo-Spatial Data

    SciTech Connect (OSTI)

    Cinquini, Luca; Crichton, Daniel; Miller, Neill; Mattmann, Chris; Harney, John F; Shipman, Galen M; Wang, Feiyi; Bell, Gavin; Drach, Bob; Ananthakrishnan, Rachana; Pascoe, Stephen; Fiore, Sandro; Schweitzer, Roland; Danvil, Sebastian; Morgan, Mark

    2012-01-01

    The Earth System Grid Federation (ESGF) is a multi-agency, international collaboration that aims at developing the software infrastructure needed to facilitate and empower the study of climate change on a global scale. The ESGF s architecture employs a system of geographically distributed peer nodes, which are independently administered yet united by the adoption of common federation protocols and application programming interfaces (APIs). The cornerstones of its interoperability are the peer-to-peer messaging that is continuously exchanged among all nodes in the federation; a shared architecture and API for search and discovery; and a security infrastructure based on industry standards (OpenID, SSL, GSI and SAML). The ESGF software is developed collaboratively across institutional boundaries and made available to the community as open source. It has now been adopted by multiple Earth science projects and allows access to petabytes of geophysical data, including the entire model output used for the next international assessment report on climate change (IPCC-AR5) and a suite of satellite observations (obs4MIPs) and reanalysis data sets (ANA4MIPs).

  20. Naturalistic Decision Making in Power Grid Operations: Implications for Dispatcher Training and Usability Testing

    SciTech Connect (OSTI)

    Greitzer, Frank L.; Podmore, Robin

    2008-11-17

    The focus of the present study is on improved training approaches to accelerate learning and improved methods for analyzing effectiveness of tools within a high-fidelity power grid simulated environment. A theory-based model has been developed to document and understand the mental processes that an expert power system operator uses when making critical decisions. The theoretical foundation for the method is based on the concepts of situation awareness, the methods of cognitive task analysis, and the naturalistic decision making (NDM) approach of Recognition Primed Decision Making. The method has been systematically explored and refined as part of a capability demonstration of a high-fidelity real-time power system simulator under normal and emergency conditions. To examine NDM processes, we analyzed transcripts of operator-to-operator conversations during the simulated scenario to reveal and assess NDM-based performance criteria. The results of the analysis indicate that the proposed framework can be used constructively to map or assess the Situation Awareness Level of the operators at each point in the scenario. We can also identify the mental models and mental simulations that the operators employ at different points in the scenario. This report documents the method, describes elements of the model, and provides appendices that document the simulation scenario and the associated mental models used by operators in the scenario.

  1. ITP Industrial Distributed Energy: Combined Heat and Power -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future Overview of CHP, DOE's CHP program, accomplishments, progress, technology ...

  2. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, ...

  3. Renewable and Distributed Power in California Simplifying the...

    Open Energy Info (EERE)

    institutional structures and discussing whether these are sufficient to support the transition to renewable and distributed power development (focusing on California). Essay...

  4. SGIP Smart Grid Interoperabilty Panel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle to Grid Distributed Renewables, Generation & Storage Wireless Comm - 02 Energy Storage Interconnect - 07 Distribution Grid Mgmt - 08 Standard DR & DER Signals - 09 Map IEEE ...

  5. Applications for Coal and Natural Gas Power Plants in a Smart Grid Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Policies, Regulations & Standards Steve Bossart Project Management Center February 15, 2011 2 2 Discussion Topics Smart Grid Policies, Regulations, & Standards Stakeholders U.S. Department of Energy National Institute of Standards and Testing Federal Energy Regulatory Commission National Association of Regulatory Utility Commissioners National Electricity Reliability Corporation Other Thoughts, Other Organizations, Other Efforts Foreign Smart Grid Policy, Regulations,

  6. ITP Industrial Distributed Energy: Powering Microturbines With...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    releasing heat that causes the combustion gas to expand. * The expanding gas powers the gas turbine that in turn operates the gen- erator; the generator then produces...

  7. Microsoft Word - Honeywell comments_DOE RFI_Smart Grid Policy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and controls layers on top of the nation's power grid to enable optimization of the entire energy value chain from generation, transmission, distribution to consumption. ...

  8. Systems Using Hardware-in-the-Loop: Part III -- Grid Interconnection...

    Office of Scientific and Technical Information (OSTI)

    B.; Shirazi, M.; Coddington, M.; Kroposki, B. 24 POWER TRANSMISSION AND DISTRIBUTION; 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION ELECTRICITY; GRID; ICS; INTERCONNECTION;...

  9. A Bidirectional High-Power-Quality Grid Interface With a Novel Bidirectional Noninverted Buck Boost Converter for PHEVs

    SciTech Connect (OSTI)

    Onar, Omer C

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) will play a vital role in future sustainable transportation systems due to their potential in terms of energy security, decreased environmental impact, improved fuel economy, and better performance. Moreover, new regulations have been established to improve the collective gas mileage, cut greenhouse gas emissions, and reduce dependence on foreign oil. This paper primarily focuses on two major thrust areas of PHEVs. First, it introduces a grid-friendly bidirectional alternating current/direct current ac/dc dc/ac rectifier/inverter for facilitating vehicle-to-grid (V2G) integration of PHEVs. Second, it presents an integrated bidirectional noninverted buck boost converter that interfaces the energy storage device of the PHEV to the dc link in both grid-connected and driving modes. The proposed bidirectional converter has minimal grid-level disruptions in terms of power factor and total harmonic distortion, with less switching noise. The integrated bidirectional dc/dc converter assists the grid interface converter to track the charge/discharge power of the PHEV battery. In addition, while driving, the dc/dc converter provides a regulated dc link voltage to the motor drive and captures the braking energy during regenerative braking.

  10. grid history | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  11. electricity grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  12. future grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  13. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  14. Connecting Distributed Energy Resources to the Grid: Their Benefits to the DER Owner etc.

    SciTech Connect (OSTI)

    Poore, WP

    2003-07-09

    The vision of the Distributed Energy Research Program (DER) program of the U.S. Department of Energy (DOE) is that the United States will have the cleanest and most efficient and reliable energy system in the world by maximizing the use of affordable distributed energy resources. Electricity consumers will be able to choose from a diverse number of efficient, cost-effective, and environmentally friendly distributed energy options and easily connect them into the nation's energy infrastructure while providing benefits to their owners and other stakeholders. The long-term goal of this vision is that DER will achieve a 20% share of new electric capacity additions in the United States by 2010, thereby helping to make the nation's electric power generation and delivery system more efficient, reliable, secure, clean, economical, and diverse in terms of fuel use (oil, natural gas, solar, hydroelectric, etc.) and prime mover resource (solar, wind, gas turbines, etc.). Near- and mid-term goals are to develop new technologies for implementing and operating DER and address barriers associated with DER usage and then to reduce costs and emissions and improve the efficiency and reliability of DER. Numerous strategies for meeting these goals have been developed into a research, development, and demonstration (RD&D) program that supports generation and delivery systems architecture, including modeling and simulation tools. The benefits associated with DER installations are often significant and numerous. They almost always provide tangible economic benefits, such as energy savings or transmission and distribution upgrade deferrals, as well as intangible benefits, such as power quality improvements that lengthen maintenance or repair intervals for power equipment. Also, the benefits routinely are dispersed among end users, utilities, and the public. For instance, an end user may use the DER to reduce their peak demand and save money due to lower demand charges. Reduced end user peak demand, in turn, may lower a distribution system peak load such that upgrades are deferred or avoided. This could benefit other consumers by providing them with higher reliability and power quality as well as avoiding their cost share of a distribution system upgrade. In this example, the costs of the DER may be born by the end user, but that user reaps only a share of the benefits. This report, the first product of a study to quantify the value of DER, documents initial project efforts to develop an assessment methodology. The focus of currently available site-specific DER assessment techniques are typically limited to two parties, the owner/user and the local utility. Rarely are the impacts on other stakeholders, including interconnected distribution utilities, transmission system operators, generating system operators, other local utility customers, local and regional industry and business, various levels of government, and the environment considered. The goal of this assessment is to quantify benefits and cost savings that accrue broadly across a region, recognizing that DER installations may have local, regional, or national benefits.

  15. Solar Energy Grid Integration Systems. Final Report of the Princeton Power Systems Development of the 100kW Demand Response Inverter.

    SciTech Connect (OSTI)

    Bower, Ward Isaac; Heavener, Paul; Sena-Henderson, Lisa; Hammell, Darren; Holveck, Mark; David, Carolyn; Akhil, Abbas Ali; Gonzalez, Sigifredo

    2012-01-01

    Initiated in 2008, the Solar Energy Grid Integration (SEGIS) program is a partnership involving the U.S. Department of Energy, Sandia National Laboratories, electric utilities, academic institutions and the private sector. Recognizing the need to diversify the nation's energy portfolio, the SEGIS effort focuses on specific technologies needed to facilitate the integration of large-scale solar power generation into the nation's power grid Sandia National Laboratories (SNL) awarded a contract to Princeton Power Systems, Inc., (PPS) to develop a 100kW Advanced AC-link SEGIS inverter prototype under the Department of Energy Solar Energy Technologies Program for near-term commercial applications. This SEGIS initiative emphasizes the development of advanced inverters, controllers, communications and other balance-of-system components for photovoltaic (PV) distributed power applications. The SEGIS Stage 3 Contract was awarded to PPS on July 28, 2010. PPS developed and implemented a Demand Response Inverter (DRI) during this three-stage program. PPS prepared a 'Site Demonstration Conference' that was held on September 28, 2011, to showcase the cumulative advancements. This demo of the commercial product will be followed by Underwriters Laboratories, Inc., certification by the fourth quarter of 2011, and simultaneously the customer launch and commercial production sometime in late 2011 or early 2012. This final report provides an overview of all three stages and a full-length reporting of activities and accomplishments in Stage 3.

  16. Inverter power module with distributed support for direct substrate cooling

    DOE Patents [OSTI]

    Miller, David Harold (San Pedro, CA); Korich, Mark D. (Chino Hills, CA); Ward, Terence G. (Redondo Beach, CA); Mann, Brooks S. (Redondo Beach, CA)

    2012-08-21

    Systems and/or methods are provided for an inverter power module with distributed support for direct substrate cooling. An inverter module comprises a power electronic substrate. A first support frame is adapted to house the power electronic substrate and has a first region adapted to allow direct cooling of the power electronic substrate. A gasket is interposed between the power electronic substrate and the first support frame. The gasket is configured to provide a seal between the first region and the power electronic substrate. A second support frame is adapted to house the power electronic substrate and joined to the first support frame to form the seal.

  17. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  18. Microsoft PowerPoint - MACRUC Smart Grid School_rev 2A_NETL.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... operators have new resource options p p - Reduce peak load and prices through demand response - Improve grid reliability - Access to ancillary services y Today Tomorrow Little ...

  19. Feasibility of Hybrid Retrofits to Off-Grid Diesel Power Plants in the Philippines

    SciTech Connect (OSTI)

    Barley, C. D.; Flowers, L. T.; Benavidez, P. J.; Abergas, R. L.; Barruela, R. B.

    1999-08-01

    The Strategic Power Utilities Group (SPUG) of the National Power Corporation (NPC) in the Philippines owns and operates about 100 power plants, mostly fueled by diesel, ranging in energy production from about 15 kilowatt-hours (kWh)/day to 106,000 kWh/day. Reducing the consumption of diesel fuel in these plants, along with the associated financial losses, is a priority for SPUG. The purpose of this study is to estimate the potential fuel and cost savings that might be achieved by retrofitting hybrid power systems to these existing diesel plants. As used in this report, the term ''hybrid system'' refers to any combination of wind turbine generators (WTGs), photovoltaic (PV) modules, lead-acid batteries, and an AC/DC power converter (either an electronic inverter or a rotary converter), in addition to the existing diesel gensets. The resources available for this study did not permit a detailed design analysis for each of the plants. Instead, the following five-step process was used: (1) Tabulate some important characteristics of all the plants. (2) Group the plants into categories (six classes) with similar characteristics. (3) For each class of system, identify one plant that is representative of the class. (4) For each representative plant, perform a moderately detailed prefeasibility analysis of design options. (5) Summarize and interpret the results. The analysis of each representative plant involved the use of time-series computer simulation models to estimate the fuel usage, maintenance expenses, and cash flow resulting from various designs, and to search the domain of possible designs for the one leading to the lowest life-cycle cost. Cost items that would be unaffected by the retrofit, such as operator salaries and the capital cost of existing equipment, were not included in the analysis. Thus, the results are reported as levelized cost of energy (COE) savings: the difference between the cost of the existing diesel-only system and that of an optimized hybrid system, expressed in units of U.S. dollars per kWh (US$/kWh) of energy production. This analysis is one phase of a study entitled ''Analysis of Renewable Energy Retrofit Options to Existing Diesel Mini-Grids,'' funded by the Asia-Pacific Economic Cooperation (APEC) and the U.S. Department of Energy (DOE), and performed jointly by NPC, the U.S. National Renewable Energy Laboratory (NREL), and Sustainable Energy Solutions in New York, New York (Morris et al. 1998). A more detailed version of this paper is included in that report.

  20. Co-optimizing Generation and Transmission Expansion with Wind Power in Large-Scale Power Grids Implementation in the US Eastern Interconnection

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    You, Shutang; Hadley, Stanton W.; Shankar, Mallikarjun; Liu, Yilu

    2016-01-12

    This paper studies the generation and transmission expansion co-optimization problem with a high wind power penetration rate in the US Eastern Interconnection (EI) power grid. In this paper, the generation and transmission expansion problem for the EI system is modeled as a mixed-integer programming (MIP) problem. Our paper also analyzed a time series generation method to capture the variation and correlation of both load and wind power across regions. The obtained series can be easily introduced into the expansion planning problem and then solved through existing MIP solvers. Simulation results show that the proposed planning model and series generation methodmore » can improve the expansion result significantly through modeling more detailed information of wind and load variation among regions in the US EI system. Moreover, the improved expansion plan that combines generation and transmission will aid system planners and policy makers to maximize the social welfare in large-scale power grids.« less

  1. Towards Real-Time High Performance Computing For Power Grid Analysis

    SciTech Connect (OSTI)

    Hui, Peter SY; Lee, Barry; Chikkagoudar, Satish

    2012-11-16

    Real-time computing has traditionally been considered largely in the context of single-processor and embedded systems, and indeed, the terms real-time computing, embedded systems, and control systems are often mentioned in closely related contexts. However, real-time computing in the context of multinode systems, specifically high-performance, cluster-computing systems, remains relatively unexplored. Imposing real-time constraints on a parallel (cluster) computing environment introduces a variety of challenges with respect to the formal verification of the system's timing properties. In this paper, we give a motivating example to demonstrate the need for such a system--- an application to estimate the electromechanical states of the power grid--- and we introduce a formal method for performing verification of certain temporal properties within a system of parallel processes. We describe our work towards a full real-time implementation of the target application--- namely, our progress towards extracting a key mathematical kernel from the application, the formal process by which we analyze the intricate timing behavior of the processes on the cluster, as well as timing measurements taken on our test cluster to demonstrate use of these concepts.

  2. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Safety, Security & Resilience of Energy Infrastructure Grid Modernization Renewable Energy Integration Smart Grid Tools and...

  3. DG Demonetz Validierung (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    Missing content Broken link Other Additional Comments Cancel Submit Categories: Smart Grid Projects Smart Grid Projects in Europe Smart Grid Projects - Grid Automation Distribution...

  4. Materials Research for Smart Grid Applications Steven J Bossart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research for Smart Grid Applications Steven J Bossart Ryan Egidi U.S. Department of Energy National Energy Technology Laboratory Our nation is transitioning to a Smart Grid which can sense and more optimally control the transmission, distribution, and delivery of electric power. The control of the electric power system is becoming more challenging with the addition of distributed renewable power sources, energy storage systems, electric vehicle charging, building and home energy management

  5. DOE Announces Webinars on the Distributed Wind Power Market,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Energy Service Contracts, and More DOE Announces Webinars on the Distributed Wind Power Market, Utility Energy Service Contracts, and More August 21, 2013 - 12:00pm Addthis ...

  6. ITP Industrial Distributed Energy: Combined Heat and Power: Effective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Solutions for a Sustainable Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the four key areas where CHP has proven its effectiveness and holds promise for the future PDF icon chp_report_12-08.pdf More Documents & Publications CHP: A Clean Energy Solution,

  7. Structure Learning in Power Distribution Networks (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect in Power Distribution Networks Citation Details In-Document Search Title: Structure Learning in Power Distribution Networks Authors: Deka, Deepjyoti [1] ; Chertkov, Michael [2] ; Backhaus, Scott N. [2] + Show Author Affiliations Electrical & Computer Engineering, University of Texas at Austin Los Alamos National Laboratory Publication Date: 2015-01-13 OSTI Identifier: 1167238 Report Number(s): LA-UR-15-20213 DOE Contract Number: AC52-06NA25396 Resource Type: Technical

  8. Integrated Grid Modeling System (IGMS) for Combined Transmission and Distribution Simulation

    SciTech Connect (OSTI)

    Palmintier, Bryan

    2015-07-28

    This presentation discusses the next-generation analysis framework for full-scale transmission and distribution modeling that supports millions of highly distributed energy resources, and also discusses future directions for transmission and distribution.

  9. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    July 27, 2014 - 8:13pm Addthis The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home --...

  10. City of Glendale Water and Power Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    20 million in funding by the U.S. Department of Energy to develop a smart-grid energy management system. The City of Glendale is one of 100 companies selected nationwide to...

  11. Tips: Smart Meters and a Smarter Power Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. The Smart Grid will consist of controls, computers, automation, and new technologies and equipment -- including a smart meter at your home -- working together to respond digitally to our quickly changing electric demand. Millions of smart meters have been installed across the

  12. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  13. Autonomous, Decentralized Grid Architecture: Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Networks

    SciTech Connect (OSTI)

    2012-01-11

    GENI Project: Georgia Tech is developing a decentralized, autonomous, internet-like control architecture and control software system for the electric power grid. Georgia Techs new architecture is based on the emerging concept of electricity prosumerseconomically motivated actors that can produce, consume, or store electricity. Under Georgia Techs architecture, all of the actors in an energy system are empowered to offer associated energy services based on their capabilities. The actors achieve their sustainability, efficiency, reliability, and economic objectives, while contributing to system-wide reliability and efficiency goals. This is in marked contrast to the current one-way, centralized control paradigm.

  14. SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  15. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  16. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  19. Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  20. Powering a Home with Just 25 Watts of Solar PV. Super-Efficient Appliances Can Enable Expanded Off-Grid Energy Service Using Small Solar Power Systems

    SciTech Connect (OSTI)

    Phadke, Amol A.; Jacobson, Arne; Park, Won Young; Lee, Ga Rick; Alstone, Peter; Khare, Amit

    2015-04-01

    Highly efficient direct current (DC) appliances have the potential to dramatically increase the affordability of off-grid solar power systems used for rural electrification in developing countries by reducing the size of the systems required. For example, the combined power requirement of a highly efficient color TV, four DC light emitting diode (LED) lamps, a mobile phone charger, and a radio is approximately 18 watts and can be supported by a small solar power system (at 27 watts peak, Wp). Price declines and efficiency advances in LED technology are already enabling rapidly increased use of small off-grid lighting systems in Africa and Asia. Similar progress is also possible for larger household-scale solar home systems that power appliances such as lights, TVs, fans, radios, and mobile phones. When super-efficient appliances are used, the total cost of solar home systems and their associated appliances can be reduced by as much as 50%. The results vary according to the appliances used with the system. These findings have critical relevance for efforts to provide modern energy services to the 1.2 billion people worldwide without access to the electrical grid and one billion more with unreliable access. However, policy and market support are needed to realize rapid adoption of super-efficient appliances.

  1. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2011-12-06

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  2. Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices

    DOE Patents [OSTI]

    Chassin, David P.; Donnelly, Matthew K.; Dagle, Jeffery E.

    2006-12-12

    Electrical power distribution control methods, electrical energy demand monitoring methods, and power management devices are described. In one aspect, an electrical power distribution control method includes providing electrical energy from an electrical power distribution system, applying the electrical energy to a load, providing a plurality of different values for a threshold at a plurality of moments in time and corresponding to an electrical characteristic of the electrical energy, and adjusting an amount of the electrical energy applied to the load responsive to an electrical characteristic of the electrical energy triggering one of the values of the threshold at the respective moment in time.

  3. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    SciTech Connect (OSTI)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological response to an increase in energy demands from membrane transporters, required for cell division, growth, and migration. This work is supported by the NIH Physical Sciences in Oncology Center grant 1U54CA143970-03 and NIH R01 CA077575-10.

  4. A Power Hardware-in-the-Loop Platform with Remote Distribution Circuit Cosimulation

    SciTech Connect (OSTI)

    Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta; Williams, Tess L.; Schneider, Kevin P.; Chassin, David P.

    2015-04-01

    This paper demonstrates the use of a novel cosimulation architecture that integrates hardware testing using Power Hardware-in-the-Loop (PHIL) with larger-scale electric grid models using off-the-shelf, non-PHIL software tools. This architecture enables utilities to study the impacts of emerging energy technologies on their system and manufacturers to explore the interactions of new devices with existing and emerging devices on the power system, both without the need to convert existing grid models to a new platform or to conduct in-field trials. The paper describes an implementation of this architecture for testing two residential-scale advanced solar inverters at separate points of common coupling. The same hardware setup is tested with two different distribution feeders (IEEE 123 and 8500 node test systems) modeled using GridLAB-D. In addition to simplifying testing with multiple feeders, the architecture demonstrates additional flexibility with hardware testing in one location linked via the Internet to software modeling in a remote location. In testing, inverter current, real and reactive power, and PCC voltage are well captured by the co-simulation platform. Testing of the inverter advanced control features is currently somewhat limited by the software model time step (1 sec) and tested communication latency (24 msec). Overshoot induced oscillations are observed with volt/VAR control delays of 0 and 1.5 sec, while 3.4 sec and 5.5 sec delays produced little or no oscillation. These limitations could be overcome using faster modeling and communication within the same co-simulation architecture.

  5. Category:Smart Grid Projects - Advanced Metering Infrastructure...

    Open Energy Info (EERE)

    Central Maine Power Company Smart Grid Project Cheyenne Light, Fuel and Power Company Smart Grid Project City of Fulton, Missouri Smart Grid Project City of Glendale Water and...

  6. US Recovery Act Smart Grid Regional Demonstration Projects |...

    Open Energy Info (EERE)

    CompanySmartGridDemonstrationProject" title"Kansas City Power & Light Company Smart Grid Demonstration Project">Kansas City Power & Light Company Smart Grid...

  7. Probabilistic Vulnerability Assessment Based on Power Flow and Voltage Distribution

    SciTech Connect (OSTI)

    Ma, Jian; Huang, Zhenyu; Wong, Pak C.; Ferryman, Thomas A.

    2010-04-30

    Risk assessment of large scale power systems has been an important problem in power system reliability study. Probabilistic technique provides a powerful tool to solve the task. In this paper, we present the results of a study on probabilistic vulnerability assessment on WECC system. Cumulant based expansion method is applied to obtain the probabilistic distribution function (PDF) and cumulative distribution function (CDF) of power flows on transmission lines and voltage. Overall risk index based on the system vulnerability analysis is calculated using the WECC system. The simulation results based on WECC system is used to demonstrate the effectiveness of the method. The methodology can be applied to the risk analysis on large scale power systems.

  8. Buildings-to-Grid Technical Opportunities: From the Grid Perspective |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Grid Perspective Buildings-to-Grid Technical Opportunities: From the Grid Perspective To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. This report outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current

  9. Parallel Computing Environments and Methods for Power Distribution System Simulation

    SciTech Connect (OSTI)

    Lu, Ning; Taylor, Zachary T.; Chassin, David P.; Guttromson, Ross T.; Studham, Scott S.

    2005-11-10

    The development of cost-effective high-performance parallel computing on multi-processor super computers makes it attractive to port excessively time consuming simulation software from personal computers (PC) to super computes. The power distribution system simulator (PDSS) takes a bottom-up approach and simulates load at appliance level, where detailed thermal models for appliances are used. This approach works well for a small power distribution system consisting of a few thousand appliances. When the number of appliances increases, the simulation uses up the PC memory and its run time increases to a point where the approach is no longer feasible to model a practical large power distribution system. This paper presents an effort made to port a PC-based power distribution system simulator (PDSS) to a 128-processor shared-memory super computer. The paper offers an overview of the parallel computing environment and a description of the modification made to the PDSS model. The performances of the PDSS running on a standalone PC and on the super computer are compared. Future research direction of utilizing parallel computing in the power distribution system simulation is also addressed.

  10. Microsoft PowerPoint - 02.11.2010_Smart Grid Conference.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BPL Project Summary Prepared by Bruce Renz, Smart Grid Implement Strategy Team February 11, 2010 Smart Grid and Overhead Reliability Conference - Columbus, OH Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability This material is based upon work supported by the Department of Energy under Award Number DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

  11. Top 10 Things You Didn't Know About Distributed Wind Power |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Power Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW...

  12. New Battery Design Could Help Solar and Wind Power the Grid

    Broader source: Energy.gov [DOE]

    Researchers from the U.S. Department of Energy’s (DOE) SLAC National Accelerator Laboratory and Stanford University have designed a low-cost, long-life “flow” battery that could enable solar and wind energy to become major suppliers to the electrical grid.

  13. Smart Grid | OpenEI Community

    Open Energy Info (EERE)

    all rely on it but what do you really know about our electricity grid? Tags: black out, brown out, bulk power system, electricity grid, future grid, grid history, security, Smart...

  14. System-wide power management control via clock distribution network

    DOE Patents [OSTI]

    Coteus, Paul W.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Reed, Don D.

    2015-05-19

    An apparatus, method and computer program product for automatically controlling power dissipation of a parallel computing system that includes a plurality of processors. A computing device issues a command to the parallel computing system. A clock pulse-width modulator encodes the command in a system clock signal to be distributed to the plurality of processors. The plurality of processors in the parallel computing system receive the system clock signal including the encoded command, and adjusts power dissipation according to the encoded command.

  15. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy, Office of Scientific and Technical Information - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

  16. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  17. What is Distributed Wind?

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind? Distributed wind energy systems are commonly installed on residential, agricultural, commercial, institutional, and industrial sites connected either physically or virtually on the customer side of the meter (to serve on-site load) or directly to the local distribution or micro grid (to support local grid operations or offset nearby loads). Because the definition is based on a wind project's location relative to end-use and power-distribution infrastructure, rather than on

  18. Top 9 Things You Didn't Know About America's Power Grid | Department...

    Broader source: Energy.gov (indexed) [DOE]

    power plants and transformers connected by more than 450,000 miles of high-voltage transmission lines. The basic process: Electric power is generated at power plants and then...

  19. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    SciTech Connect (OSTI)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polish grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.

  20. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: II. Solutions and applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-01

    In a companion manuscript, we developed a novel optimization method for placement, sizing, and operation of Flexible Alternating Current Transmission System (FACTS) devices to relieve transmission network congestion. Specifically, we addressed FACTS that provide Series Compensation (SC) via modification of line inductance. In this manuscript, this heuristic algorithm and its solutions are explored on a number of test cases: a 30-bus test network and a realistically-sized model of the Polish grid (~ 2700 nodes and ~ 3300 lines). The results on the 30-bus network are used to study the general properties of the solutions including non-locality and sparsity. The Polishmore » grid is used as a demonstration of the computational efficiency of the heuristics that leverages sequential linearization of power flow constraints and cutting plane methods that take advantage of the sparse nature of the SC placement solutions. Using these approaches, the algorithm is able to solve an instance of Polish grid in tens of seconds. We explore the utility of the algorithm by analyzing transmission networks congested by (a) uniform load growth, (b) multiple overloaded configurations, and (c) sequential generator retirements.« less

  1. A Distributed Cooperative Power Allocation Method for Campus Buildings

    SciTech Connect (OSTI)

    Hao, He; Sun, Yannan; Carroll, Thomas E.; Somani, Abhishek

    2015-09-01

    We propose a coordination algorithm for cooperative power allocation among a collection of commercial buildings within a campus. We introduced thermal and power models of a typical commercial building Heating, Ventilation, and Air Conditioning (HVAC) system, and utilize model predictive control to characterize their power flexibility. The power allocation problem is formulated as a cooperative game using the Nash Bargaining Solution (NBS) concept, in which buildings collectively maximize the product of their utilities subject to their local flexibility constraints and a total power limit set by the campus coordinator. To solve the optimal allocation problem, a distributed protocol is designed using dual decomposition of the Nash bargaining problem. Numerical simulations are performed to demonstrate the efficacy of our proposed allocation method

  2. Key Challenges in the North American Power Grid | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Journey Inside the Complex and Powerful World of Industrial Circuit Breakers Bringing Technology to Life Photovoltaic Power Generation in Flagstaff Subscribe to Future Posts...

  3. Microsoft PowerPoint - E_forum_1_What is a Smart Grid_Miller...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... all types and sizes of electrical generation and storage ... play" Large central power plants including ... Meets PQ Needs Focus on outages not power quality PQ a ...

  4. Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Certificates Grid Certificates Grid certificates allow you to access NERSC (and other Grid enabled computing facilities) via grid interfaces. Grid certificates are credentials that must be initialized for use with grid tools. Once a certificate is initialized it is automatically used by the grid tools to authenticate the user to the grid resource. Getting a Short Lived NERSC CA Certificate The NERSC Online CA now offers a quick and painless way to obtain grid certificates. You can obtain a

  5. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  6. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, operations center visibility and management, and optimized coordination of smart PV inverters with existing distribution control devices. Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL / ELECTRIC POWER RESEARCH INSTITUTE The proposed project will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required utility communication links to capture the

  7. Grid Engineering for Accelerated Renewable Energy Deployment | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Photovoltaics » Grid Engineering for Accelerated Renewable Energy Deployment Grid Engineering for Accelerated Renewable Energy Deployment GEARED-color-250x70.jpg The SunShot Grid Engineering for Accelerated Renewable Energy Deployment (GEARED) program supports increased power system research, development, and analytical capacity while simultaneously growing the expertise of electric utility sector professionals for high penetrations of solar and other distributed energy

  8. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, J.W.; O`Brien, D.W.

    1996-07-09

    An apparatus and method are disclosed for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: (1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and (2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1,000 {micro}m (1 mm or larger), compared to the 250 {micro}m diameter of laser drilling. 5 figs.

  9. Electron beam machining using rotating and shaped beam power distribution

    DOE Patents [OSTI]

    Elmer, John W. (Pleasanton, CA); O'Brien, Dennis W. (Livermore, CA)

    1996-01-01

    An apparatus and method for electron beam (EB) machining (drilling, cutting and welding) that uses conventional EB guns, power supplies, and welding machine technology without the need for fast bias pulsing technology. The invention involves a magnetic lensing (EB optics) system and electronic controls to: 1) concurrently bend, focus, shape, scan, and rotate the beam to protect the EB gun and to create a desired effective power-density distribution, and 2) rotate or scan this shaped beam in a controlled way. The shaped beam power-density distribution can be measured using a tomographic imaging system. For example, the EB apparatus of this invention has the ability to drill holes in metal having a diameter up to 1000 .mu.m (1 mm or larger), compared to the 250 .mu.m diameter of laser drilling.

  10. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2030 Distributed Electricity Environment - independent, sustainable, and sassy International Student Energy Summit Presented by Steve Pullins, Modern Grid Team June 2009 Funded by the U.S. Department of Energy, Office of Electricity Delivery and Energy Reliability Conducted by the National Energy Technology Laboratory Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 2 Powering the 21 st Century Economy This material is based upon work supported by the Department

  11. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Sandia's larger portfolio of renewable energy technology programs (Wind, Solar Power, Geothermal, and Energy Systems Analysis). Transmission Grid Integration The goal of...

  12. Grid Software and Services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Services Grid Software and Services Overview Grid computing can include a broad range of technologies. At NERSC we are interested in new computational and data-centric services which enhance the productivity of science teams. The grid infrastructure we support (described below) can be used to manage jobs and data in ways that are otherwise difficult from the comamnd line. Grid services enable remote job management, file transfer and distributed computing workflows through the Globus Toolkit. Web

  13. Microsoft PowerPoint - MACRUC Smart Grid School_rev 2A_NETL.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School MACRUC 15 th Annual Education Conference Joe Miller - Smart Grid Implementation Strategy Team Lead June 28-29, 2010 This material is based upon work supported by the Department of Energy under Award Number p gy DE-AC26-04NT41817 This presentation was prepared as an account of work sponsored by an f th U it d St t G t N ith th U it d St t agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty,

  14. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 /> ASPEN Plus Simulation of CO2 Recovery Process Charles

  15. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  16. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981)

  17. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  18. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 /> Wet cooling towers: rule-of-thumb design and simulation Leeper,

  19. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 /> Wet

  20. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  1. Most Viewed Documents for Power Generation and Distribution: December 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Power Generation and Distribution: December 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 84 Load flow analysis: Base cases, data,

  2. Most Viewed Documents for Power Generation and Distribution: September 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  3. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Power Generation And Distribution Science Subject Feed ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 112 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 /> Seventh Edition Fuel Cell Handbook NETL (2004) 68 /> Load flow

  4. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  5. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  6. Grid Integration | Department of Energy

    Energy Savers [EERE]

    You are here Home » Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express

  7. Interactive Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educational Resources » Interactive Grid Interactive Grid Each time you flick a light switch or press a power button, you enjoy the benefits of the nation's incredible electric grid. The grid is a complex network of people and machinery working around the clock to produce and deliver electricity to millions of homes across the nation. The electric grid works so well, Americans often think about it only when they receive their electric bills, or in those rare instances when there is a power

  8. Cybersecurity and the Smarter Grid

    Office of Environmental Management (EM)

    Cybersecurity and the Smarter Grid Reliability remains a fundamental principle of grid modernization efforts, but in today's world, reliability requires cybersecurity. This article discusses energy sector partnerships that are designing cybersecurity into the smart grid with the vision of surviving a cyber-incident while sustaining critical energy delivery functions. Carol Hawk and Akhlesh Kaushiva I. The Power Grid: Beyond Smart The power grid is already smart, if ''smart'' can describe an

  9. Grid Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Grid Integration Grid Integration Grid Integration The Wind Program works with electric grid operators, utilities, regulators, and industry to create new strategies for incorporating increasing amounts of wind energy into the power system while maintaining economic and reliable operation of the grid. Utilities have been increasingly deploying wind power to provide larger portions of electricity generation. However, many utilities also express concerns about wind

  10. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  11. Pseudodynamic planning for expansion of power distribution sytems

    SciTech Connect (OSTI)

    Ramirez-Rosado, I.J. ); Gonen, T. )

    1991-02-01

    This paper presents basic and extended planning models, based on a pseudodynamic methodology, to solve the global expansion problem (sizing, locating, and timing) of distribution substations and feeders throughout the planning time period. The objective functions, that represent the expansion costs, are minimized by successive concatenated optimizations subject to the Kirchhoff's current law, power capacity limits and logical constraints, in the basic model. It also presents an extended model that is obtained by including the voltage drop constraints in the basic model.

  12. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep test: A promising methodology for high temperature plant components life evaluation Tettamanti, S. [CISE SpA, Milan (Italy)]; Crudeli, R. [ENEL SpA, Milan (Italy)] Failure analyses and weld repair of boiler feed water pumps Vulpen, R. van

  13. DOE Announces Webinars on the Distributed Wind Power Market, Lighting

    Office of Environmental Management (EM)

    Retrofits Financial Analysis Tool, and More | Department of Energy Lighting Retrofits Financial Analysis Tool, and More DOE Announces Webinars on the Distributed Wind Power Market, Lighting Retrofits Financial Analysis Tool, and More August 16, 2013 - 12:00pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced

  14. and Control of Power Systems Using Distributed Synchrophasors

    Broader source: Energy.gov (indexed) [DOE]

    a Multi-User Network Testbed for Wide-Area Monitoring and Control of Power Systems Using Distributed Synchrophasors Principal Investigator: Aranya Chakrabortty FREEDM System Center, North Carolina State University Co-Principal Investigators: Mesut Baran and Pam Carpenter, FREEDM Systems Center, North Carolina State University Collaborators: Duke Energy (utility), Southern California Edison (utility), ABB Inc. (vendor), Renaissance Computing Institute at UNC Chapel Hill (network provider) Contact

  15. High-Power Zinc-Air Energy Storage: Enhanced Metal-Air Energy Storage System with Advanced Grid-Interoperable Power Electronics Enabling Scalability and Ultra-Low Cost

    SciTech Connect (OSTI)

    2010-10-01

    GRIDS Project: Fluidic is developing a low-cost, rechargeable, high-power module for Zinc-air batteries that will be used to store renewable energy. Zinc-air batteries are traditionally found in small, non-rechargeable devices like hearing aids because they are well-suited to delivering low levels of power for long periods of time. Historically, Zinc-air batteries have not been as useful for applications which require periodic bursts of power, like on the electrical grid. Fluidic hopes to fill this need by combining the high energy, low cost, and long run-time of a Zinc-air battery with new chemistry providing high power, high efficiency, and fast response. The battery module could allow large grid-storage batteries to provide much more power on very short demandthe most costly kind of power for utilitiesand with much more versatile performance.

  16. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  17. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  18. Request for Information on the Electric Grid Resilience Self-Assessment Tool for Distribution Systems: Federal Register Notice, Volume 80, No. 126- Jul. 1, 2015

    Broader source: Energy.gov [DOE]

    The Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability (OE) is seeking comments and information from interested parties to inform the development of a pilot project concerning an interactive self-assessment tool to understand the relative resilience level of national electric grid distribution systems to extreme weather events.

  19. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polishmore » Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.« less

  20. Efficient algorithm for locating and sizing series compensation devices in large power transmission grids: I. Model implementation

    SciTech Connect (OSTI)

    Frolov, Vladimir; Backhaus, Scott; Chertkov, Misha

    2014-10-24

    We explore optimization methods for planning the placement, sizing and operations of Flexible Alternating Current Transmission System (FACTS) devices installed to relieve transmission grid congestion. We limit our selection of FACTS devices to Series Compensation (SC) devices that can be represented by modification of the inductance of transmission lines. Our master optimization problem minimizes the l1 norm of the inductance modification subject to the usual line thermal-limit constraints. We develop heuristics that reduce this non-convex optimization to a succession of Linear Programs (LP) which are accelerated further using cutting plane methods. The algorithm solves an instance of the MatPower Polish Grid model (3299 lines and 2746 nodes) in 40 seconds per iteration on a standard laptop—a speed up that allows the sizing and placement of a family of SC devices to correct a large set of anticipated congestions. We observe that our algorithm finds feasible solutions that are always sparse, i.e., SC devices are placed on only a few lines. In a companion manuscript, we demonstrate our approach on realistically-sized networks that suffer congestion from a range of causes including generator retirement. In this manuscript, we focus on the development of our approach, investigate its structure on a small test system subject to congestion from uniform load growth, and demonstrate computational efficiency on a realistically-sized network.

  1. Sandia Energy - Solar Energy Grid Integration Systems (SEGIS...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Grid Integration Systems (SEGIS) Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Grid Integration Solar Energy Grid Integration Systems...

  2. Grid Friendly(tm) Charger Controller - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... developed at PNNL, that protects the electrical grid during high grid stress ... This sensitivity to grid stress may be critical in preventing power outages. Benefits ...

  3. A Preliminary Analysis of the Economics of Using Distributed Energy as a Source of Reactive Power Supply

    SciTech Connect (OSTI)

    Li, Fangxing; Kueck, John D; Rizy, D Tom; King, Thomas F

    2006-04-01

    A major blackout affecting 50 million people in the Northeast United States, where insufficient reactive power supply was an issue, and an increased number of filings made to the Federal Energy Regulatory Commission by generators for reactive power has led to a closer look at reactive power supply and compensation. The Northeastern Massachusetts region is one such area where there is an insufficiency in reactive power compensation. Distributed energy due to its close proximity to loads seems to be a viable option for solving any present or future reactive power shortage problems. Industry experts believe that supplying reactive power from synchronized distributed energy sources can be 2 to 3 times more effective than providing reactive support in bulk from longer distances at the transmission or generation level. Several technology options are available to supply reactive power from distributed energy sources such as small generators, synchronous condensers, fuel cells or microturbines. In addition, simple payback analysis indicates that investments in DG to provide reactive power can be recouped in less than 5 years when capacity payments for providing reactive power are larger than $5,000/kVAR and the DG capital and installation costs are lower than $30/kVAR. However, the current institutional arrangements for reactive power compensation present a significant barrier to wider adoption of distributed energy as a source of reactive power. Furthermore, there is a significant difference between how generators and transmission owners/providers are compensated for reactive power supplied. The situation for distributed energy sources is even more difficult, as there are no arrangements to compensate independent DE owners interested in supplying reactive power to the grid other than those for very large IPPs. There are comparable functionality barriers as well, as these smaller devices do not have the control and communications requirements necessary for automatic operation in response to local or system operators. There are no known distributed energy asset owners currently receiving compensation for reactive power supply or capability. However, there are some cases where small generators on the generation and transmission side of electricity supply have been tested and have installed the capability to be dispatched for reactive power support. Several concerns need to be met for distributed energy to become widely integrated as a reactive power resource. The overall costs of retrofitting distributed energy devices to absorb or produce reactive power need to be reduced. There needs to be a mechanism in place for ISOs/RTOs to procure reactive power from the customer side of the meter where distributed energy resides. Novel compensation methods should be introduced to encourage the dispatch of dynamic resources close to areas with critical voltage issues. The next phase of this research will investigate in detail how different options of reactive power producing DE can compare both economically and functionally with shunt capacitor banks. Shunt capacitor banks, which are typically used for compensating reactive power consumption of loads on distribution systems, are very commonly used because they are very cost effective in terms of capital costs. However, capacitor banks can require extensive maintenance especially due to their exposure to lightning at the top of utility poles. Also, it can be problematic to find failed capacitor banks and their maintenance can be expensive, requiring crews and bucket trucks which often requires total replacement. Another shortcoming of capacitor banks is the fact that they usually have one size at a location (typically sized as 300, 600, 900 or 1200kVAr) and thus don't have variable range as do reactive power producing DE, and cannot respond to dynamic reactive power needs. Additional future work is to find a detailed methodology to identify the hidden benefit of DE for providing reactive power and the best way to allocate the benefit among customers, utilities, transmission companies or RTOs.

  4. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  5. Efficient Switches for Solar Power Conversion: Four Quadrant GaN Switch Enabled Three Phase Grid-Tied Microinverters

    SciTech Connect (OSTI)

    2012-02-13

    Solar ADEPT Project: Transphorm is developing power switches for new types of inverters that improve the efficiency and reliability of converting energy from solar panels into useable electricity for the grid. Transistors act as fast switches and control the electrical energy that flows in an electrical circuit. Turning a transistor off opens the circuit and stops the flow of electrical current; turning it on closes the circuit and allows electrical current to flow. In this way a transistor can be used to convert DC from a solar panel into AC for use in a home. Transphorms transistors will enable a single semiconductor device to switch electrical currents at high-voltage in both directionsmaking the inverter more compact and reliable. Transphorm is using Gallium Nitride (GaN) as a semiconductor material in its transistors instead of silicon, which is used in most conventional transistors, because GaN transistors have lower losses at higher voltages and switching frequencies.

  6. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  7. Framework for Modeling High-Impact, Low-Frequency Power Grid Events to Support Risk-Informed Decisions

    SciTech Connect (OSTI)

    Veeramany, Arun; Unwin, Stephen D.; Coles, Garill A.; Dagle, Jeffery E.; Millard, W. David; Yao, Juan; Glantz, Clifford S.; Gourisetti, Sri Nikhil Gup

    2015-12-03

    Natural and man-made hazardous events resulting in loss of grid infrastructure assets challenge the electric power grid’s security and resilience. However, the planning and allocation of appropriate contingency resources for such events requires an understanding of their likelihood and the extent of their potential impact. Where these events are of low likelihood, a risk-informed perspective on planning can be problematic as there exists an insufficient statistical basis to directly estimate the probabilities and consequences of their occurrence. Since risk-informed decisions rely on such knowledge, a basis for modeling the risk associated with high-impact low frequency events (HILFs) is essential. Insights from such a model can inform where resources are most rationally and effectively expended. The present effort is focused on development of a HILF risk assessment framework. Such a framework is intended to provide the conceptual and overarching technical basis for the development of HILF risk models that can inform decision makers across numerous stakeholder sectors. The North American Electric Reliability Corporation (NERC) 2014 Standard TPL-001-4 considers severe events for transmission reliability planning, but does not address events of such severity that they have the potential to fail a substantial fraction of grid assets over a region, such as geomagnetic disturbances (GMD), extreme seismic events, and coordinated cyber-physical attacks. These are beyond current planning guidelines. As noted, the risks associated with such events cannot be statistically estimated based on historic experience; however, there does exist a stable of risk modeling techniques for rare events that have proven of value across a wide range of engineering application domains. There is an active and growing interest in evaluating the value of risk management techniques in the State transmission planning and emergency response communities, some of this interest in the context of grid modernization activities. The availability of a grid HILF risk model, integrated across multi-hazard domains which, when interrogated, can support transparent, defensible and effective decisions, is an attractive prospect among these communities. In this report, we document an integrated HILF risk framework intended to inform the development of risk models. These models would be based on the systematic and comprehensive (to within scope) characterization of hazards to the level of detail required for modeling risk, identification of the stressors associated with the hazards (i.e., the means of impacting grid and supporting infrastructure), characterization of the vulnerability of assets to these stressors and the probabilities of asset compromise, the grid’s dynamic response to the asset failures, and assessment of subsequent severities of consequence with respect to selected impact metrics, such as power outage duration and geographic reach. Specifically, the current framework is being developed to;1. Provide the conceptual and overarching technical paradigms for the development of risk models; 2. Identify the classes of models required to implement the framework - providing examples of existing models, and also identifying where modeling gaps exist; 3. Identify the types of data required, addressing circumstances under which data are sparse and the formal elicitation of informed judgment might be required; and 4. Identify means by which the resultant risk models might be interrogated to form the necessary basis for risk management.

  8. WINDExchange: Selling Wind Power

    Wind Powering America (EERE)

    Market Sectors Printable Version Bookmark and Share Utility-Scale Wind Distributed Wind Motivations for Buying Wind Power Buying Wind Power Selling Wind Power Selling Wind Power Owners of wind turbines interconnected directly to the transmission or distribution grid, or that produce more power than the host consumes, can sell wind power as well as other generation attributes. Wind-Generated Electricity Electricity generated by wind turbines can be used to cover on-site energy needs

  9. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, Alan T. (Livermore, CA); Elmer, John W. (Pleasanton, CA)

    1996-01-01

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process.

  10. Tomographic determination of the power distribution in electron beams

    DOE Patents [OSTI]

    Teruya, A.T.; Elmer, J.W.

    1996-12-10

    A tomographic technique for determining the power distribution of an electron beam using electron beam profile data acquired from a modified Faraday cup to create an image of the current density in high and low power beams is disclosed. A refractory metal disk with a number of radially extending slits is placed above a Faraday cup. The beam is swept in a circular pattern so that its path crosses each slit in a perpendicular manner, thus acquiring all the data needed for a reconstruction in one circular sweep. Also, a single computer is used to generate the signals actuating the sweep, to acquire that data, and to do the reconstruction, thus reducing the time and equipment necessary to complete the process. 4 figs.

  11. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  12. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  13. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MGS is an "Independent Broker" for the Smart Grid Office of Electricity Delivery and ... 2-way power flow into operations Micro-grids and dynamic islanding Adaptive protective ...

  15. Waukesha Electric Systems Smart Grid Demonstration Project |...

    Open Energy Info (EERE)

    transformer, lower power consumption through reduction of losses, and increase the reliability of the electrical grid. References ARRA Smart Grid Demonstration Projects...

  16. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    2010-09-01

    GRIDS Project: The 12 projects that comprise ARPA-Es GRIDS Project, short for Grid-Scale Rampable Intermittent Dispatchable Storage, are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  17. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    2011 References EU Smart Grid Projects Map1 Overview The GROWDERS project (Grid Reliability and Operability with Distributed Generation using Flexible Storage) investigates...

  18. Low Insertion HVDC Circuit Breaker: Magnetically Pulsed Hybrid Breaker for HVDC Power Distribution Protection

    SciTech Connect (OSTI)

    2012-01-09

    GENI Project: General Atomics is developing a direct current (DC) circuit breaker that could protect the grid from faults 100 times faster than its alternating current (AC) counterparts. Circuit breakers are critical elements in any electrical system. At the grid level, their main function is to isolate parts of the grid where a fault has occurredsuch as a downed power line or a transformer explosionfrom the rest of the system. DC circuit breakers must interrupt the system during a fault much faster than AC circuit breakers to prevent possible damage to cables, converters and other grid-level components. General Atomics high-voltage DC circuit breaker would react in less than 1/1,000th of a second to interrupt current during a fault, preventing potential hazards to people and equipment.

  19. Capturing Dynamics in the Power Grid: Formulation of Dynamic State Estimation through Data Assimilation

    SciTech Connect (OSTI)

    Zhou, Ning; Huang, Zhenyu; Meng, Da; Elbert, Stephen T.; Wang, Shaobu; Diao, Ruisheng

    2014-03-31

    With the increasing complexity resulting from uncertainties and stochastic variations introduced by intermittent renewable energy sources, responsive loads, mobile consumption of plug-in vehicles, and new market designs, more and more dynamic behaviors are observed in everyday power system operation. To operate a power system efficiently and reliably, it is critical to adopt a dynamic paradigm so that effective control actions can be taken in time. The dynamic paradigm needs to include three fundamental components: dynamic state estimation; look-ahead dynamic simulation; and dynamic contingency analysis (Figure 1). These three components answer three basic questions: where the system is; where the system is going; and how secure the system is against accidents. The dynamic state estimation provides a solid cornerstone to support the other 2 components and is the focus of this study.

  20. The interconnection of photovoltaic power systems with the utility grid: An overview for utility engineers

    SciTech Connect (OSTI)

    Wills, R.H.

    1994-06-01

    Utility-interactive (UI) photovoltaic power systems mounted on residences and commercial buildings are likely to become a small, but important source of electric generation in the next century. This is a new concept in utility power production--a change from large-scale central generation to small-scale dispersed generation. As such, it requires a re-examination of many existing standards and practices to enable the technology to develop and emerge into the marketplace. Much work has been done over the last 20 years to identify and solve the potential problems associated with dispersed power generation systems. This report gives an overview of these issues and also provides a guide to applicable codes, standards and other related documents. The main conclusion that can be drawn from this work is that there are no major technical barriers to the implementation of dispersed PV generating systems. While more technical research is needed in some specific areas, the remaining barriers are fundamentally price and policy.

  1. Investigation of a family of power conditioners integrated into a utility grid: final report Category I

    SciTech Connect (OSTI)

    Wood, P.; Putkovich, R.P.

    1981-07-01

    A study was conducted of the requirements for and technologies applicable to power conditioning equipment in residential solar photovoltaic systems. A survey of companies known or thought to manufacture power conditioning equipment was conducted to asses the technology. Technical issues regarding ac and dc interface requirements were studied. A baseline design was selected to be a good example of existing technology which would not need significant development effort for its implementation. Alternative technologies are evaluated to determine which meet the baseline specification, and their costs and losses are evaluated. Areas in which cost improvements can be obtained are studied, and the three best candidate technologies--the current-sourced converter, the HF front end converter, and the programmed wave converter--are compared. It is concluded that the designs investigated will meet, or with slight improvement could meet, short term efficiency goals. Long term efficiency goals could be met if an isolation transformer were not required in the power conditioning equipment. None of the technologies studied can meet cost goals unless further improvements are possible. (LEW)

  2. Top 10 Things You Didn't Know About Distributed Wind Power | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Wind Power Top 10 Things You Didn't Know About Distributed Wind Power August 10, 2015 - 8:20am Addthis Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Small-Scale Distributed Wind: Northern Power Systems 100 kW turbine at the top of Burke Mountain in East Burke, Vermont. | Photo courtesy of Northern Power Systems. Mid-Sized Distributed Wind: Two mid-sized

  3. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Argonne researchers are working to create new, more powerful technology for ... Researchers will use an ARPA-E award to construct data sets to model electric grids ...

  4. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  5. Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Saudi Arabia 2-22-10 final for distribution.pptx Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx PDF icon Microsoft PowerPoint - Saudi Arabia 2-22-10 final for distribution.pptx More Documents & Publications Microsoft PowerPoint - UAE Masdar 2-24

  6. Microsoft PowerPoint - UAE Masdar 2-24-10 final for distribution.pptx |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy UAE Masdar 2-24-10 final for distribution.pptx Microsoft PowerPoint - UAE Masdar 2-24-10 final for distribution.pptx PDF icon Microsoft PowerPoint - UAE Masdar 2-24-10 final for distribution.pptx More Documents & Publications Microsoft PowerPoint - Saudi Arabia 2-22

  7. Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MODERN GRID S T R A T E G Y 28 Smart Grid Key Technology Areas Smart meters Smart sensors Demand Response DG dispatch Distribution automation Micro-grids Markets Work force ...

  9. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  10. Electric power grid control using a market-based resource allocation system

    DOE Patents [OSTI]

    Chassin, David P.

    2015-07-21

    Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

  11. Electric power grid control using a market-based resource allocation system

    DOE Patents [OSTI]

    Chassin, David P

    2014-01-28

    Disclosed herein are representative embodiments of methods, apparatus, and systems for distributing a resource (such as electricity) using a resource allocation system. In one exemplary embodiment, a plurality of requests for electricity are received from a plurality of end-use consumers. The requests indicate a requested quantity of electricity and a consumer-requested index value indicative of a maximum price a respective end-use consumer will pay for the requested quantity of electricity. A plurality of offers for supplying electricity are received from a plurality of resource suppliers. The offers indicate an offered quantity of electricity and a supplier-requested index value indicative of a minimum price for which a respective supplier will produce the offered quantity of electricity. A dispatched index value is computed at which electricity is to be supplied based at least in part on the consumer-requested index values and the supplier-requested index values.

  12. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  13. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  14. Case Study - EPB Smart Grid Investment Grant

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EPB Smart Grid Investment Grant 1 Smart switches installed in EPB service territory A Smarter Electric Circuit: Electric Power Board of Chattanooga Makes the Switch EPB of Chattanooga, Tennessee, is one of the largest publicly owned providers of electric power in the country. Established in 1935, EPB covers about 600 square miles and serves about 170,000 customers in Tennessee and Georgia. Chattanooga is making its distribution system more robust while improving operations with the deployment of

  15. A Micro-Grid Simulator Tool (SGridSim) using Effective Node-to-Node Complex Impedance (EN2NCI) Models

    SciTech Connect (OSTI)

    Udhay Ravishankar; Milos manic

    2013-08-01

    This paper presents a micro-grid simulator tool useful for implementing and testing multi-agent controllers (SGridSim). As a common engineering practice it is important to have a tool that simplifies the modeling of the salient features of a desired system. In electric micro-grids, these salient features are the voltage and power distributions within the micro-grid. Current simplified electric power grid simulator tools such as PowerWorld, PowerSim, Gridlab, etc, model only the power distribution features of a desired micro-grid. Other power grid simulators such as Simulink, Modelica, etc, use detailed modeling to accommodate the voltage distribution features. This paper presents a SGridSim micro-grid simulator tool that simplifies the modeling of both the voltage and power distribution features in a desired micro-grid. The SGridSim tool accomplishes this simplified modeling by using Effective Node-to-Node Complex Impedance (EN2NCI) models of components that typically make-up a micro-grid. The term EN2NCI models means that the impedance based components of a micro-grid are modeled as single impedances tied between their respective voltage nodes on the micro-grid. Hence the benefit of the presented SGridSim tool are 1) simulation of a micro-grid is performed strictly in the complex-domain; 2) faster simulation of a micro-grid by avoiding the simulation of detailed transients. An example micro-grid model was built using the SGridSim tool and tested to simulate both the voltage and power distribution features with a total absolute relative error of less than 6%.

  16. Effect on the condition of the metal in A K-300-3.5 turbine owing to multicycle fatigue from participation of a power generating unit in grid frequency and power regulation

    SciTech Connect (OSTI)

    Lebedeva, A. I.; Zorchenko, N. V.; Prudnikov, A. A.

    2011-09-15

    The effect on the condition of the rotor material owing to multicycle fatigue caused by variable stresses during participation of a power generating unit in grid frequency and power regulation is evaluated using the K-300-23.5 steam turbine as an example. It is shown that during normalized primary frequency regulation the safety factor is at least 50, while during automatic secondary regulation of frequency and power there is essentially no damage to the metal.

  17. C -parameter distribution at N 3 LL ' including power corrections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hoang, André H.; Kolodrubetz, Daniel W.; Mateu, Vicent; Stewart, Iain W.

    2015-05-15

    We compute the e⁺e⁻ C-parameter distribution using the soft-collinear effective theory with a resummation to next-to-next-to-next-to-leading-log prime accuracy of the most singular partonic terms. This includes the known fixed-order QCD results up to O(α3s), a numerical determination of the two-loop nonlogarithmic term of the soft function, and all logarithmic terms in the jet and soft functions up to three loops. Our result holds for C in the peak, tail, and far tail regions. Additionally, we treat hadronization effects using a field theoretic nonperturbative soft function, with moments Ωn. To eliminate an O(ΛQCD) renormalon ambiguity in the soft function, we switchmore » from the MS¯ to a short distance “Rgap” scheme to define the leading power correction parameter Ω1. We show how to simultaneously account for running effects in Ω1 due to renormalon subtractions and hadron-mass effects, enabling power correction universality between C-parameter and thrust to be tested in our setup. We discuss in detail the impact of resummation and renormalon subtractions on the convergence. In the relevant fit region for αs(mZ) and Ω1, the perturbative uncertainty in our cross section is ≅ 2.5% at Q=mZ.« less

  18. Optimization and Analysis of High-Power Hydrogen/Bromine-Flow Batteries for Grid-Scale Energy Storage

    SciTech Connect (OSTI)

    Cho, KT; Albertus, P; Battaglia, V; Kojic, A; Srinivasan, V; Weber, AZ

    2013-10-07

    For storage of grid-scale electrical energy, redox-flow batteries (RFBs) are considered promising technologies. This paper explores the influence of electrolyte composition and ion transport on cell performance by using an integrated approach of experiments and cost modeling. In particular, the impact of the area-specific resistance on system capability is elucidated for the hydrogen/bromine RFB. The experimental data demonstrate very good performance with 1.46 W cm(-2) peak power and 4 A cm(-2) limiting current density at ambient conditions for an optimal cell design and reactant concentrations. The data and cost model results show that higher concentrations of RFB reactants do not necessarily result in lower capital cost as there is a tradeoff between cell performance and storage (tank) requirements. In addition, the discharge time and overall efficiency demonstrate nonlinear effects on system cost, with a 3 to 4 hour minimum discharge time showing a key transition to a plateau in terms of cost for typical RFB systems. The presented results are applicable to many different RFB chemistries and technologies and highlight the importance of ohmic effects and associated area-specific resistance on RFB viability.

  19. US Recovery Act Smart Grid Projects - Integrated and Crosscutting...

    Open Energy Info (EERE)

    ygons":,"circles":,"rectangles":,"locations":"text":"PowerSmartGridProject" title"Burbank Water and Power Smart Grid Project...

  20. Kick-Off Meeting Smart Grid Ready Inverters DOE Project DE-EE0005337

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Grid Integration Workshop April 19, 2012 Tucson, AZ 2 © 2012 Electric Power Research Institute, Inc. All rights reserved. Our work program has been to: * Better understand PV output variability * Apply feeder modeling and analysis tools * Consider screening method for connection * Promote a standard communication btw inverter and distribution * Investigate distribution "Hosting Capacity" for variable generation * Provide a forecast to grid operators 3 © 2012 Electric Power

  1. Challenges facing production grids

    SciTech Connect (OSTI)

    Pordes, Ruth; /Fermilab

    2007-06-01

    Today's global communities of users expect quality of service from distributed Grid systems equivalent to that their local data centers. This must be coupled to ubiquitous access to the ensemble of processing and storage resources across multiple Grid infrastructures. We are still facing significant challenges in meeting these expectations, especially in the underlying security, a sustainable and successful economic model, and smoothing the boundaries between administrative and technical domains. Using the Open Science Grid as an example, I examine the status and challenges of Grids operating in production today.

  2. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect (OSTI)

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  3. Smart Grid Demonstration Project

    SciTech Connect (OSTI)

    Miller, Craig; Carroll, Paul; Bell, Abigail

    2015-03-11

    The National Rural Electric Cooperative Association (NRECA) organized the NRECA-U.S. Department of Energy (DOE) Smart Grid Demonstration Project (DE-OE0000222) to install and study a broad range of advanced smart grid technologies in a demonstration that spanned 23 electric cooperatives in 12 states. More than 205,444 pieces of electronic equipment and more than 100,000 minor items (bracket, labels, mounting hardware, fiber optic cable, etc.) were installed to upgrade and enhance the efficiency, reliability, and resiliency of the power networks at the participating co-ops. The objective of this project was to build a path for other electric utilities, and particularly electrical cooperatives, to adopt emerging smart grid technology when it can improve utility operations, thus advancing the co-ops’ familiarity and comfort with such technology. Specifically, the project executed multiple subprojects employing a range of emerging smart grid technologies to test their cost-effectiveness and, where the technology demonstrated value, provided case studies that will enable other electric utilities—particularly electric cooperatives— to use these technologies. NRECA structured the project according to the following three areas: Demonstration of smart grid technology; Advancement of standards to enable the interoperability of components; and Improvement of grid cyber security. We termed these three areas Technology Deployment Study, Interoperability, and Cyber Security. Although the deployment of technology and studying the demonstration projects at coops accounted for the largest portion of the project budget by far, we see our accomplishments in each of the areas as critical to advancing the smart grid. All project deliverables have been published. Technology Deployment Study: The deliverable was a set of 11 single-topic technical reports in areas related to the listed technologies. Each of these reports has already been submitted to DOE, distributed to co-ops, and posted for universal access at www.nreca.coop/smartgrid. This research is available for widespread distribution to both cooperative members and non-members. These reports are listed in Table 1.2. Interoperability: The deliverable in this area was the advancement of the MultiSpeak™ interoperability standard from version 4.0 to version 5.0, and improvement in the MultiSpeak™ documentation to include more than 100 use cases. This deliverable substantially expanded the scope and usability of MultiSpeak, ™ the most widely deployed utility interoperability standard, now in use by more than 900 utilities. MultiSpeak™ documentation can be accessed only at www.multispeak.org. Cyber Security: NRECA’s starting point was to develop cyber security tools that incorporated succinct guidance on best practices. The deliverables were: cyber security extensions to MultiSpeak,™ which allow more security message exchanges; a Guide to Developing a Cyber Security and Risk Mitigation Plan; a Cyber Security Risk Mitigation Checklist; a Cyber Security Plan Template that co-ops can use to create their own cyber security plans; and Security Questions for Smart Grid Vendors.

  4. Aging Management Guideline for commercial nuclear power plants: Power and distribution transformers

    SciTech Connect (OSTI)

    Toman, G.; Gazdzinski, R.

    1994-05-01

    This Aging Management Guideline (AMG) provides recommended methods for effective detection and mitigation of age-related degradation mechanisms in power and distribution transformers important to license renewal in commercial nuclear power plants. The intent of this AMG to assist plant maintenance and operations personnel in maximizing the safe, useful life of these components. It also supports the documentation of effective aging management programs required under the License Renewal Rule 10 CFR Part 54. This AMG is presented in a manner which allows personnel responsible for performance analysis and maintenance to compare their plant-specific aging mechanisms (expected or already experienced) and aging management program activities to the more generic results and recommendations presented herein.

  5. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  6. Smart Grid Investments Improve Grid Reliability, Resilience, and Storm

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Responses (November 2014) | Department of Energy Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart grid technologies are helping utilities to speed outage restoration following major storm events, reduce the total number of affected customers, and improve overall service reliability to reduce customer losses from power disruptions. This report presents

  7. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BUILDING-TO-GRID TECHNICAL OPPORTUNITIES From the Grid Perspective 1 Ben Kroposki, National Renewable Energy Laboratory Rob Pratt, Pacific Northwest National Laboratory To successfully operate and deliver its promise of a seamlessly integrated buildings-grid infrastructure, a transactive energy ecosystem requires new approaches to planning and operating the power grid. These approaches include technological advances in the area of standards, measurements, control strategy, and theories so that

  8. Smart Grid Investments Improve Grid reliability, Resilience and...

    Broader source: Energy.gov (indexed) [DOE]

    ... Using Smart Grid Technologies to Modernize Distribution Infrastructure in New York, August 2014 x. Automated Demand Response Benefits California Utilities and Commercial & ...

  9. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Rows of battery racks at the <a href="/node/657906">Salem Smart Power Center</a> in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid Demonstration Project, will use the center’s 5-megawatt energy storage system to test several smart grid technologies and approaches. | Photo courtesy of Portland General Electric. Rows of battery racks at the Salem Smart Power Center in Salem, Oregon. The Battelle-led Pacific Northwest Smart Grid

  10. Environmental Impact of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pollutants * Evaluate impact from Smart Grid on reducing pollutants through: - Demand Response - Electric Vehicles - Demand Side Management - Renewables and Distributed Energy ...

  11. What do you know about the grid? | OpenEI Community

    Open Energy Info (EERE)

    Grid Dc's picture Submitted by Dc(266) Contributor 31 October, 2014 - 10:58 black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  12. April 2013 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 70 Instantaneous reactive power and power factor of instantaneous phasors Hsu, J.S. ...

  13. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  14. smart grid | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart grid smart-grid.jpg The U.S. electric power grid provides electricity to over three hundred million people every day. This electricity powers some of the most advanced technologies in the world but is surprisingly delivered through a mostly aging, outmoded and over-stressed network. A need exists for greater consumer participation, greater reliability and power quality, and affordability-all critical components for the stable, secure electric power grid of the future. Currently, NETL is

  15. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation Micro-grids Interface with RTO's Dynamic Ratings Wide area ...

  16. Modernizing the Grid: Getting More out of America's Energy | Department

    Office of Environmental Management (EM)

    of Energy Modernizing the Grid: Getting More out of America's Energy Modernizing the Grid: Getting More out of America's Energy February 10, 2012 - 4:37pm Addthis A crew from Electric Power Board (EPB) of Chattanooga, TN, install an S&C IntelliRupter PulseCloser on its distribution network. EPB is installing more than 1,000 of the smart switches which can detect customer outages remotely, isolate damaged sections of the power lines and quickly restore power to customers. | Photo courtesy

  17. Advanced Power Electronics Interfaces for Distributed Energy Workshop Summary: August 24, 2006, Sacramento, California

    SciTech Connect (OSTI)

    Treanton, B.; Palomo, J.; Kroposki, B.; Thomas, H.

    2006-10-01

    The Advanced Power Electronics Interfaces for Distributed Energy Workshop, sponsored by the California Energy Commission Public Interest Energy Research program and organized by the National Renewable Energy Laboratory, was held Aug. 24, 2006, in Sacramento, Calif. The workshop provided a forum for industry stakeholders to share their knowledge and experience about technologies, manufacturing approaches, markets, and issues in power electronics for a range of distributed energy resources. It focused on the development of advanced power electronic interfaces for distributed energy applications and included discussions of modular power electronics, component manufacturing, and power electronic applications.

  18. Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing

    Office of Scientific and Technical Information (OSTI)

    and Frequency Regulation Under Voltage Constraints (Journal Article) | SciTech Connect Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints Citation Details In-Document Search Title: Distributed Control of Inverter-Based Lossy Microgrids for Power Sharing and Frequency Regulation Under Voltage Constraints This paper presents a new distributed control framework to coordinate inverter-interfaced distributed energy resources

  19. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  20. Simultaneous distribution of AC and DC power - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    buildings has significant energy savings potential through the elimination of inverters necessary to convert DC source power into AC (Alternating Current) as well as the...

  1. PROJECT PROFILE: Opportunistic Hybrid Communications Systems for Distributed PV Coordination (SuNLaMP)

    Broader source: Energy.gov [DOE]

    As more distributed solar power is added to the electric power grid and becomes an increasing proportion of total energy generation, the grid must support more stringent requirements to ensure continued reliable and cost-effective grid operations. New communications systems are needed to allow for bidirectional information exchange between distributed photovoltaic (PV) generators and various information and controls systems of the electric power grid. This project at the National Renewable Energy Laboratory (NREL) will develop a hybrid communications system to meet the needs of monitoring and controlling millions of distributed PV generators, while taking advantage of existing communications infrastructure, which will greatly reduce the costs necessary to provide these services.

  2. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  3. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in the infographic above, our power grid is a network of power plants, substations, transformers, wires, sensors and poles that carry electricity sometimes hundreds of miles to be...

  4. March 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 18 > Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power ...

  5. ITP Industrial Distributed Energy: Combined Heat and Power Market...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Successful Utility-Sector Projects. Washingtion, D.C., August 1994. www.nrelinfo.nrel.govdocumentsprofiles.html 36 R.L. Brain, R.P. Overend and K.R. Craig, Biomass-Fired Power ...

  6. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Integration Group (UVIG) and IEEE JEDI Model Version W1.09.03e 6 | Wind and ... on SWCC board * Support UVIG and IEEE in distributed generation-related ...

  7. A High Power Density DC-DC Converter for Distributed PV Architectures

    SciTech Connect (OSTI)

    Mohammed S. Agamy; Song Chi; Ahmed Elasser; Maja Harfman-Todorovic; Yan Jiang; Frank Mueller; Fengfeng Tao

    2012-06-01

    In order to maximize solar energy harvesting capabilities, power converters have to be designed for high efficiency and good MPPT and voltage/current performance. When many converters are used in distributed systems, power density also becomes an important factor as it allows for simpler system integration. In this paper a high power density string dc-dc converter suitable for distributed medium to large scale PV installation is presented. A simple partial power processing topology, implemented with all silicon carbide devices provides high efficiency as well as high power density. A 3.5kW, 100kHz converter is designed and tested to verify the proposed methods.

  8. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  9. Scalable Real Time Data Management for Smart Grid

    SciTech Connect (OSTI)

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  10. WINDExchange: Distributed Wind

    Wind Powering America (EERE)

    Distributed Wind Photo of a small wind turbine next to a farm house with a colorful sunset in the background. The distributed wind market includes wind turbines and projects of many sizes, from small wind turbines less than 1 kilowatt (kW) to multi-megawatt wind farms. The term "distributed wind" describes off-grid or grid-connected wind turbines at homes, farms and ranches, businesses, public and industrial facilities, and other sites. The turbines can provide all of the power used at

  11. Category:Smart Grid Projects - Regional Demonstrations | Open...

    Open Energy Info (EERE)

    L cont. Los Angeles Department of Water and Power Smart Grid Demonstration Project N National Rural Electric Cooperative Association Smart Grid Demonstration Project NSTAR...

  12. SMART GRID:

    Energy Savers [EERE]

    SMART GRID: an introduction. Exploring the imperative of revitalizing America's electric infrastructure. How a smarter grid works as an enabling engine for our economy, our environment and our future. prepared for the U.S. Department of Energy by Litos Strategic Communication under contract No. DE-AC26-04NT41817, Subtask 560.01.04 the SMART GRID: an introduction. the SMART GRID: an introduction. DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

  13. Southern Company Services, Inc. Smart Grid Project | Open Energy...

    Open Energy Info (EERE)

    Company) Smart Grid project involves integrated upgrades of the distribution, transmission, and grid management systems throughout their large service territory. Major...

  14. Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  15. A Test Bed for Self-regulating Distribution Systems: Modeling Intergrated Renewable Energy and Demand Response in the GridLAB-D/MATLAB Environment

    SciTech Connect (OSTI)

    Wang, Dan; de Wit, Braydon; Parkinson, Simon; Fuller, Jason C.; Chassin, David P.; Crawford, Curran; Djilali, Ned

    2012-01-16

    This paper discusses the development of a simulation test bed permitting the study of integrated renewable energy generators and controlled distributed heat pumps operating within distribution systems. The test bed is demonstrated in this paper by addressing the important issue of the self-regulating effect of consumer-owned air-source heat pumps on the variability induced by wind power integration, particularly when coupled with increased access to demand response realized through a centralized load control strategy.

  16. Anode-cathode power distribution systems and methods of using the same for electrochemical reduction

    DOE Patents [OSTI]

    Koehl, Eugene R; Barnes, Laurel A; Wiedmeyer, Stanley G; Williamson, Mark A; Willit, James L

    2014-01-28

    Power distribution systems are useable in electrolytic reduction systems and include several cathode and anode assembly electrical contacts that permit flexible modular assembly numbers and placement in standardized connection configurations. Electrical contacts may be arranged at any position where assembly contact is desired. Electrical power may be provided via power cables attached to seating assemblies of the electrical contacts. Cathode and anode assembly electrical contacts may provide electrical power at any desired levels. Pairs of anode and cathode assembly electrical contacts may provide equal and opposite electrical power; different cathode assembly electrical contacts may provide different levels of electrical power to a same or different modular cathode assembly. Electrical systems may be used with an electrolyte container into which the modular cathode and anode assemblies extend and are supported above, with the modular cathode and anode assemblies mechanically and electrically connecting to the respective contacts in power distribution systems.

  17. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  18. Vids4Grids- Controls, Connectors & Surge Protectors

    Broader source: Energy.gov [DOE]

    Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

  19. Cybersecurity and the Smarter Grid (October 2014)

    Broader source: Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  20. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  1. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    before and after Smart Grid Projected Total Complaints after Smart Grid A 'Business Case' model has been developed as part of the WV SGIP Project. This electric power grid model...

  2. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) ...

  3. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  4. Survey of Emissions Models for Distributed Combined Heat and Power Systems,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 | Department of Energy Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models surveyed in this study vary in design, scope, and detail, but they all seek to capture the functions of an energy economy and use knowledge of economic interactions to simulate the effects of economic and policy changes. In this 2007 document, Integrated Planning Model (IPM), Average Displaced

  5. ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of

    Office of Environmental Management (EM)

    Progress, A Vision for the Future | Department of Energy ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future Overview of CHP, DOE's CHP program, accomplishments, progress, technology R&D, marketplace transformation, partnerships, strategies, future goals PDF icon chp_accomplishments_booklet.pdf More Documents & Publications

  6. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Understanding the Grid INFOGRAPHIC: Understanding the Grid November 17, 2014 - 2:05pm Addthis Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by <a href="/node/379579">Sarah Gerrity</a>, Energy Department. Our #GridWeek infographic shows how electricity is generated, transmitted and distributed for use in our homes. | Graphic by Sarah Gerrity, Energy Department. Sarah Gerrity Sarah Gerrity Former

  7. Switching coordination of distributed dc-dc converters for highly efficient photovoltaic power plants

    DOE Patents [OSTI]

    Agamy, Mohammed; Elasser, Ahmed; Sabate, Juan Antonio; Galbraith, Anthony William; Harfman Todorovic, Maja

    2014-09-09

    A distributed photovoltaic (PV) power plant includes a plurality of distributed dc-dc converters. The dc-dc converters are configured to switch in coordination with one another such that at least one dc-dc converter transfers power to a common dc-bus based upon the total system power available from one or more corresponding strings of PV modules. Due to the coordinated switching of the dc-dc converters, each dc-dc converter transferring power to the common dc-bus continues to operate within its optimal efficiency range as well as to optimize the maximum power point tracking in order to increase the energy yield of the PV power plant.

  8. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-11-01

    The work presented in the paper corresponding to this presentation aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This presentation is an overview of a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool

  9. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    ... Physical and financial exchanges between these separately regulated entities may involve ... 4.21 Architectural Insight 7 In the chaos theory view of grid stability, the seeds of wide ...

  10. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  11. Smart Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Smart Grid Smart Grid "Smart grid" generally refers to a class of technology people are using to bring utility electricity delivery systems into the 21st century, using computer-based remote control and automation. These systems are made possible by two-way communication technology and computer processing that has been used for decades in other industries. They are beginning to be used on electricity networks, from the power plants and wind farms all the way to the consumers

  12. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    SciTech Connect (OSTI)

    Kropski, Ben; Pratt, Rob

    2014-03-28

    This paper outlines the nature of the power grid, lists challenges and barriers to the implementation of a transactive energy ecosystem, and provides concept solutions to current technological impediments.

  13. bulk power system | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  14. GridStat Cyber Security and Regional Deployment Project Report

    SciTech Connect (OSTI)

    Clements, Samuel L.

    2009-02-18

    GridStat is a developing communication technology to provide real-time data delivery services to the electric power grid. It is being developed in a collaborative effort between the Electrical Power Engineering and Distributed Computing Science Departments at Washington State University. Improving the cyber security of GridStat was the principle focus of this project. A regional network was established to test GridStats cyber security mechanisms in a realistic environment. The network consists of nodes at Pacific Northwest National Laboratory, Idaho National Laboratory, and Washington State University. Idaho National Laboratory (INL) was tasked with performing the security assessment, the results of which detailed a number or easily resolvable and previously unknown issues, as well as a number of difficult and previously known issues. Going forward we recommend additional development prior to commercialization of GridStat. The development plan is structured into three domains: Core Development, Cyber Security and Pilot Projects. Each domain contains a number of phased subtasks that build upon each other to increase the robustness and maturity of GridStat.

  15. Identifying emerging smart grid impacts to upstream and midstream natural gas operations.

    SciTech Connect (OSTI)

    McIntyre, Annie

    2010-09-01

    The Smart Grid has come to describe a next-generation electrical power system that is typified by the increased use of communications and information technology in the generation, delivery and consumption of electrical energy. Much of the present Smart Grid analysis focuses on utility and consumer interaction. i.e. smart appliances, home automation systems, rate structures, consumer demand response, etc. An identified need is to assess the upstream and midstream operations of natural gas as a result of the smart grid. The nature of Smart Grid, including the demand response and role of information, may require changes in upstream and midstream natural gas operations to ensure availability and efficiency. Utility reliance on natural gas will continue and likely increase, given the backup requirements for intermittent renewable energy sources. Efficient generation and delivery of electricity on Smart Grid could affect how natural gas is utilized. Things that we already know about Smart Grid are: (1) The role of information and data integrity is increasingly important. (2) Smart Grid includes a fully distributed system with two-way communication. (3) Smart Grid, a complex network, may change the way energy is supplied, stored, and in demand. (4) Smart Grid has evolved through consumer driven decisions. (5) Smart Grid and the US critical infrastructure will include many intermittent renewables.

  16. Impact of Distributed Wind on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Hodge, B. M.; Palchak, D.; Miettinen, J.

    2014-09-01

    The work presented in this paper aims to study the impact of a range of penetration levels of distributed wind on the operation of the electric power system at the transmission level. This paper presents a case study on the power system in Independent System Operator New England. It is analyzed using PLEXOS, a commercial power system simulation tool. The results show that increasing the integration of distributed wind reduces total variable electricity generation costs, coal- and gas-fired electricity generation, electricity imports, and CO2 emissions, and increases wind curtailment. The variability and uncertainty of wind power also increases the start-up and shutdown costs and ramping of most conventional power plants.

  17. Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate

    Energy Savers [EERE]

    Variable Renewable Energy | Department of Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy This report summarizes the challenges to integrating increasing amounts of variable renewable energy (RE), identifies emerging practices in power system planning and operation that can facilitate grid integration, and proposes a unifying

  18. High-Performance Computing for Real-Time Grid Analysis and Operation

    SciTech Connect (OSTI)

    Huang, Zhenyu; Chen, Yousu; Chavarría-Miranda, Daniel

    2013-10-31

    Power grids worldwide are undergoing an unprecedented transition as a result of grid evolution meeting information revolution. The grid evolution is largely driven by the desire for green energy. Emerging grid technologies such as renewable generation, smart loads, plug-in hybrid vehicles, and distributed generation provide opportunities to generate energy from green sources and to manage energy use for better system efficiency. With utility companies actively deploying these technologies, a high level of penetration of these new technologies is expected in the next 5-10 years, bringing in a level of intermittency, uncertainties, and complexity that the grid did not see nor design for. On the other hand, the information infrastructure in the power grid is being revolutionized with large-scale deployment of sensors and meters in both the transmission and distribution networks. The future grid will have two-way flows of both electrons and information. The challenge is how to take advantage of the information revolution: pull the large amount of data in, process it in real time, and put information out to manage grid evolution. Without addressing this challenge, the opportunities in grid evolution will remain unfulfilled. This transition poses grand challenges in grid modeling, simulation, and information presentation. The computational complexity of underlying power grid modeling and simulation will significantly increase in the next decade due to an increased model size and a decreased time window allowed to compute model solutions. High-performance computing is essential to enable this transition. The essential technical barrier is to vastly increase the computational speed so operation response time can be reduced from minutes to seconds and sub-seconds. The speed at which key functions such as state estimation and contingency analysis are conducted (typically every 3-5 minutes) needs to be dramatically increased so that the analysis of contingencies is both comprehensive and real time. An even bigger challenge is how to incorporate dynamic information into real-time grid operation. Today’s online grid operation is based on a static grid model and can only provide a static snapshot of current system operation status, while dynamic analysis is conducted offline because of low computational efficiency. The offline analysis uses a worst-case scenario to determine transmission limits, resulting in under-utilization of grid assets. This conservative approach does not necessarily lead to reliability. Many times, actual power grid scenarios are not studied, and they will push the grid over the edge and resulting in outages and blackouts. This chapter addresses the HPC needs in power grid analysis and operations. Example applications such as state estimation and contingency analysis are given to demonstrate the value of HPC in power grid applications. Future research directions are suggested for high performance computing applications in power grids to improve the transparency, efficiency, and reliability of power grids.

  19. Vehicle to Micro-Grid: Leveraging Existing Assets for Reliable Energy Management (Poster)

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.; O'Keefe, M.

    2010-12-01

    Fort Carson, a United States Army installation located south of Colorado Springs, Colorado, is seeking to be a net-zero energy facility. As part of this initiative, the base will be constructing a micro-grid that ties to various forms of renewable energy. To reduce petroleum consumption, Fort Carson is considering grid-connected vehicles (GCVs) such as pure electric trucks to replace some of its on-base truck fleet. As the availability and affordability of distributed renewable energy generation options increase, so will the GCV options (currently, three all-electric trucks are available on the GSA schedule). The presence of GCVs on-base opens up the possibility to utilize these vehicles to provide stability to the base micro-grid. This poster summarizes work to estimate the potential impacts of three electric vehicle grid interactions between the electric truck fleet and the Fort Carson micro-grid: 1) full-power charging without management, 2) full-power charging capability controlled by the local grid authority, and 3) full-power charge and discharge capability controlled by the local grid authority. We found that even at relatively small adoption rates, the control of electric vehicle charging at Fort Carson will aid in regulation of variable renewable generation loads and help stabilize the micro-grid.

  20. Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sharing Smart Grid Experiences through Performance Feedback" An Article for Smart Grid News The Smart Grid Transition-Getting Started We are on the ground floor of a Smart Grid transition that is leading us out of a centralized, information- limited infrastructure into an intelligent, modernized electric system. Simply put, our aim is to achieve a smarter grid, one that is merged with ubiquitous information and communication technologies that support a balance of centralized and distributed