National Library of Energy BETA

Sample records for distributed generators connecticut

  1. Abatement of Air Pollution: Distributed Generators (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Fuel Cells Photovoltaics Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection For the...

  2. Next Generation Connecticut & Other Capital Projects

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Next Generation Connecticut & Other Capital Projects Planning, Architectural & Engineering Services September 18, 2014 #12;Agenda Project Updates · Next Generation Connecticut · Master Plan · Projects OF CONNECTICUT | CAMPUS MASTER PLAN SEPT. 12, 2014 7 #12;Master Planning Principles UNIVERSITY OF CONNECTICUT

  3. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  4. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  5. Registration of Electric Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

  6. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity, US Data. 6. Distributed Generation: Standby Generation and Cogeneration Ozz Energy Solutions, Inc. February 28 th , 2005. For more information about...

  7. Distributed generation

    SciTech Connect (OSTI)

    Ness, E.

    1999-09-02

    Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.

  8. THIS FORM IS FOR THE EXCLUSIVE USE OF UNIVERSITY OF CONNECTICUT HEALTH CENTER AND SHOULD NOT BE DISCLOSED OR DISTRIBUTED TO OUTSIDE PARTIES. Revised 7/8/05

    E-Print Network [OSTI]

    Oliver, Douglas L.

    THIS FORM IS FOR THE EXCLUSIVE USE OF UNIVERSITY OF CONNECTICUT HEALTH CENTER AND SHOULD NOT BE DISCLOSED OR DISTRIBUTED TO OUTSIDE PARTIES. Revised 7/8/05 University of Connecticut Health Center Alien withholding and reporting purposes only. This information will allow the University of Connecticut Health

  9. THIS FORM IS FOR THE EXCLUSIVE USE OF UNIVERSITY OF CONNECTICUT HEALTH CENTER AND SHOULD NOT BE DISCLOSED OR DISTRIBUTED TO OUTSIDE PARTIES. Revised 1/6/05

    E-Print Network [OSTI]

    Oliver, Douglas L.

    THIS FORM IS FOR THE EXCLUSIVE USE OF UNIVERSITY OF CONNECTICUT HEALTH CENTER AND SHOULD NOT BE DISCLOSED OR DISTRIBUTED TO OUTSIDE PARTIES. Revised 1/6/05 University of Connecticut Health Center Alien withholding and reporting purposes only. This information will allow the University of Connecticut Health

  10. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  11. Connecticut Nuclear Profile - Power Plants

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut nuclear power plants, summer capacity and net generation, 2010" "Plant nametotal reactors","Summer capacity (mw)","Net generation (thousand mwh)","Share of State...

  12. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  13. University of Connecticut Storrs, Connecticut

    E-Print Network [OSTI]

    Chandy, John A.

    University of Connecticut Storrs, Connecticut Regional: Avery Point, Greater Hartford, Stamford #12;Financial Report For the Year Ended June 30, 2010 #12;#12;University of Connecticut June 30, 2010 Message from the Vice President and Chief Financial Officer Founded in 1881, the University of Connecticut

  14. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration and cogeneration. Additionally, this report describes long-term strategies, pathways, and milestones to take

  15. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May...

  16. Connecticut Massachusetts

    E-Print Network [OSTI]

    Summary California Connecticut Florida Maine Maryland Massachusetts Missouri New Hampshire New for Network Implementation Academic Partners for Excellence Tulane University University of California, Berkeley University of Pittsburgh University of Medicine and Dentistry of New Jersey University of Medicine

  17. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory...

  18. Connecticut Why Change?

    E-Print Network [OSTI]

    Chandy, John A.

    The New Connecticut PR-1 Why Change? Why Now? Connecticut's PR-1 was last updated in 1995. Over.D. Associate Research Professor Director, Connecticut Transportation Safety Research Center Connecticut Transportation Institute University of Connecticut 270 Middle Turnpike, Unit 5202 Storrs, CT 06269 860-486-8426 e

  19. Census Snapshot: Connecticut

    E-Print Network [OSTI]

    Romero, Adam P; Rosky, Clifford J; Badgett, M.V. Lee; Gates, Gary J

    2008-01-01

    CONNECTICUT Adam P. Romero, Public Policy Fellow Clifford J.raising children in Connecticut. We compare same-sex “sex married couples in Connecticut. 1 APRIL 2008 In many

  20. Participating University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Participating Schools University of Connecticut Trinity College Yale University University of Bridgeport Southern Connecticut State University Participating Corporations United Technologies Research Coherent-DEOS JDS-Uniphase C-Cor ASML Jetek, LLC Connecticut Symposium on Microelectronics

  1. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  2. Guilford, Connecticut -- The Guildford Green

    E-Print Network [OSTI]

    Bloomer, Nona

    1994-01-01

    New England: Guilford, Connecticut," Yankee Magazine (MayTown Planning in Colonial Connecticut (New Haven, CT: Yaleof Guilford, Connecticut (Guilford, CT: Guilford

  3. Connecticut v. AEP" (2( )")821 :Connecticut v. AEP

    E-Print Network [OSTI]

    Wintner, Shuly

    " : : Connecticut v. AEP" (2( )")821 : :Connecticut v. AEP . . . 8. 8 " , . , , " -2.2% . - , , . , . , .1 , " " ". 1 Connecticut v. American Elec. Power Co., Inc., 406 F.Supp.2d 265 #12; " : : Connecticut v. AEP" (2( )")821 921

  4. UNIVERSITY OF CONNECTICUT UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    Kim, Duck O.

    UNIVERSITY OF CONNECTICUT UNIVERSITY OF CONNECTICUT HEALTH CENTER HUMAN STEM CELL RESEARCH COST.....................................................................................12 #12;University of Connecticut and the University of Connecticut Health Center Human Stem Cell that is ineligible for federal support. The University of Connecticut and the University of Connecticut Health Center

  5. Distributed Generation and Renewable Energy in

    E-Print Network [OSTI]

    Distributed Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero generation (non-renewable) $6.4M CRN dollars over 10 years Renewable energy $1.6M CRN dollars over 10

  6. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation,...

  7. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the...

  8. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final...

  9. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES’06 Distributed Generation Investment by a Microgrid

  10. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    United States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list...

  11. Voltage Management of Networks with Distributed Generation

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01

    At present there is much debate about the impacts and benefits of increasing the amount of generation connected to the low voltage areas of the electricity distribution network. The UK government is under political ...

  12. Microgrids: distributed on-site generation

    E-Print Network [OSTI]

    Watson, Andrew

    of the study is a microgrid of domestic users powered by small Combined Heat and Power generators and energy storage in the microgrid. It is found that a microgrid consisting of around 1.4 kWp PV array perMicrogrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross

  13. Flat Lining: Connecticut's Disappearing Economic Growth The Connecticut Economic Outlook: June 2015

    E-Print Network [OSTI]

    Chandy, John A.

    Flat Lining: Connecticut's Disappearing Economic Growth The Connecticut Economic Outlook: June 2015 William E. Waite, Managing Director, Semnia LLC Connecticut

  14. UNIVERSITY OF CONNECTICUT STORRS CAMPUS

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UNIVERSITY OF CONNECTICUT STORRS CAMPUS FREIGHT DELIVERY CENTRAL STORES Disclaimer for Freight Delivery of Large Items Your signature below authorizes the University of Connecticut (UConn) to accept

  15. Recovery Act State Memos Connecticut

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Clean Cities. These Clean Cities coalitions support efforts to facilitate the adoption of alternate fuels and petroleum-reducing technologies in Connecticut. Connecticut is also...

  16. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets,...

  17. The Potential Benefits of Distributed Generation and the Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

  18. Avoiding Distribution System Upgrade Costs Using Distributed Generation

    SciTech Connect (OSTI)

    Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

    2004-01-20

    PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

  19. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  20. A reliability assessment methodology for distribution systems with distributed generation 

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16

    is associated 11 Fig. 1. Sample Distribution Network with the network response to dynamic and transient failures caused from faults and other disturbances, which could result in widespread cascading outages and loss of stability [11]. This research will focus... and maintain reliable power systems because cost of interruptions and power outages can have severe economic impact on the utility and its customers. At present, the deregulated electric power utilities are being restructured and operated as distinct generation...

  1. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  2. University of Connecticut School of Medicine

    E-Print Network [OSTI]

    Oliver, Douglas L.

    University of Connecticut School of Medicine Department of Psychiatry University of Connecticut Health Center, John Dempsey Hospital, Farmington CT University of Connecticut School of Medicine, Department of Psychiatry, UHP Outpatient Clinic, West Hartford CT University of Connecticut School

  3. Connecticut State Historic Preservation Programmatic Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut State Historic Preservation Programmatic Agreement Connecticut State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE,...

  4. Connecticut New Hampshire

    E-Print Network [OSTI]

    Summary Connecticut Maine Maryland Montana Nevada New Hampshire New Mexico Oregon Pennsylvania Utah CITIES: Houston, TX New York City, NY Washington, D.C. Planning & Capacity Building Activities California Illinois Massachusetts Missouri New York Washington Wisconsin Infrastructure Enhancement & Data Linkage

  5. Majors Available Connecticut

    E-Print Network [OSTI]

    Thomas, Andrew

    Technology Sustainable Agriculture Wildlife Ecology Zoology New Hampshire Bioengineering ConstructionMajors Available Connecticut Bioengineering Electrical Engineering Technology Forest Operations, Bioproducts and Bioenergy Forestry Marine Science New Media Pulp and Paper Technology* Surveying Engineering

  6. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    Distributed Generation Power Projects , National Renewable EnergyDistributed Energy Program, under the Assistant Secretary of Energy Efficiency and Renewable Energy

  7. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    distributed energy resource technology characterizations, National Renewable EnergyEfficiency and Renewable Energy, Office of Distributed

  8. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  9. Voltage Control of Distribution Networks with Distributed Generation using Reactive Power

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , photovoltaics, and synchronous generators. I. INTRODUCTION Penetration of DG into distribution network in terms of voltage profile improvement, line-loss reduction, and environmental impact reductionVoltage Control of Distribution Networks with Distributed Generation using Reactive Power

  10. Distributed Key Generation in the Wild Aniket Kate1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Distributed Key Generation in the Wild Aniket Kate1 Yizhou Huang2 Ian Goldberg2 1 Max Planck of Waterloo, Canada aniket@mpi-sws.org, {y226huan, iang}@uwaterloo.ca Abstract Distributed key generation (DKG communication model. computational setting. distributed key generation. uniform randomness. implementation 1

  11. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  12. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Weekday Total Electricity Generation (Storage AdoptionWeekday Total Electricity Generation (Storage Adoptionrecovery and storage) utility electricity and natural gas

  13. Occupational Disease in Connecticut, 2014

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Occupational Disease in Connecticut, 2014 This report covers data for 2012 and was prepared under contract for the State of Connecticut Workers' Compensation Commission, John A. Mastropietro, Chairman, as part of the Occupational Disease Surveillance Program, operated in cooperation with the Connecticut

  14. The University of Connecticut Foundation,

    E-Print Network [OSTI]

    Chandy, John A.

    The University of Connecticut Foundation, Incorporated Consolidated Financial Statements June 30, 2014 and 2013 #12;The University of Connecticut Foundation, Incorporated Index June 30, 2014 and 2013 of The University of Connecticut Foundation, Incorporated: We have audited the accompanying consolidated financial

  15. Reducing the Cost of Generating APH-distributed Random Numbers

    E-Print Network [OSTI]

    Telek, Miklós

    Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 from PH distributions and propose two algorithms for reducing the cost associated with generating representation that minimises the cost associated with generating random numbers. In this paper we study

  16. GUARANTEED ADMISSION AGREEMENT THE UNIVERSITY OF CONNECTICUT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    1 GUARANTEED ADMISSION AGREEMENT BETWEEN THE UNIVERSITY OF CONNECTICUT COLLEGE OF LIBERAL ARTS AND SCIENCES, COLLEGE OF AGRICULTURE AND NATURAL RESOURCES, AND SCHOOL OF BUSINESS AND THE CONNECTICUT to the State of Connecticut and to students within the state, the University of Connecticut and the Connecticut

  17. Electric & Gas Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers 

    E-Print Network [OSTI]

    Sermakekian, E.

    2011-01-01

    Conservation Programs Connecticut Energy Efficiency Fund Programs for Commercial & Industrial Customers Presented by: CL&P?s Conservation and Load Management Department 2 ? Connecticut Energy Efficiency Fund (CEEF) was created... in 1998 by CT State Legislature ? Energy efficiency is a valuable resource for Connecticut, it: ? Reduces air pollutants and greenhouse gases ? Creates monetary savings for customers ? Reduces need for more energy generation ? Creates jobs ? Money...

  18. GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS

    E-Print Network [OSTI]

    Molina, Martín

    of work. KEYWORDS Multimedia presentation system, natural language generation, geographic information method uses two information sources: an online server for geographic names (Geonames) and a specific confirm that online geographic information resources such as Geonames are useful to generate names

  19. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Only Load Electricity Generation By Fuel in the U.S.electricity generation from most sources, except oil, is growing to meet the growing demand and that fossil fuels

  20. MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES *

    E-Print Network [OSTI]

    Bowker, Geoffrey C.

    MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES * Alaina G and industrial dollars are invested in establishing academic-industry alliances and building infrastructures and technology in distributed, multidisciplinary scientific teams in the National Computational Science Alliance

  1. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    Delivery and Energy Reliability, Renewable and DistributedDistributed Energy Program, under the Assistant Secretary of Energy Efficiency and Renewable Energydistributed generation power projects, report NREL/SR-200-28053. Golden, CO, USA: National Renewable Energy

  2. Distributed Sustainable Generation Dispatch via Evolutionary Games

    E-Print Network [OSTI]

    Kundur, Deepa

    and solar panels are sustainable but unreliable as these have inherently variable generation capacities The power grid is composed of a diverse mix of energy generation systems designed to provision for all types such as wind and solar power generators are green en- ergy sources with lower levelized costs [4

  3. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Environmental Management (EM)

    on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from...

  4. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    Patterson Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study...

  5. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    L, editor. 11 th Annual Real Options Conference, Berkeley,from its utility. Using the real options approach, we find aDistributed Generation; Real Options; Optimal Investment;

  6. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    utility. Using the real options approach, we find naturalDistributed Generation; Real Options; Optimal Investment. 1.based microgrid via the real options approach to determine

  7. University of Connecticut Information Technology Security

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Information Technology Security Incident Response Plan #12;- i - Revision management issue for all organizations, including the University of Connecticut. Furthermore, as more or framework within which University of Connecticut incident handlers can work to ensure a complete

  8. UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE

    E-Print Network [OSTI]

    UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE SCHOOL OF DENTAL MEDICINE Summer Fellowship Program Application The University of Connecticut Health Center Office of Student Affairs Farmington Connecticut 06030-1905 Deadline for application: March 15th #12;College Undergraduate

  9. THE UNIVERSITY OF CONNECTICUT WATERBURY CAMPUS

    E-Print Network [OSTI]

    Alpay, S. Pamir

    1 THE UNIVERSITY OF CONNECTICUT WATERBURY CAMPUS ACADEMIC PLAN Submitted February 2007 Revised. Mission Statement The University of Connecticut's Waterbury campus promotes the personal growth programs available at the University of Connecticut. The Waterbury regional campus is committed

  10. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  11. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Generation with Heat Recovery and Storage ‡ Afzal Sgeneration unit with heat recovery for space and watergeneration unit with heat recovery for space and water

  12. University of Connecticut Women's Studies Program

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Women's Studies Program College of Liberal Arts and Sciences An Equal Opportunity Employer 354 Mansfield Road Unit Storrs, Connecticut 06269-2181 Telephone: (860) 486

  13. Connecticut's Health Impact Study Rapidly Increasing Weatherization...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts Connecticut's Health Impact Study Rapidly Increasing Weatherization Efforts June 18, 2014 - 10:49am...

  14. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Guillas, Serge

    for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via.maribu@ensmp.fr 1 #12;Investment and Upgrade under Uncertainty in Distributed Generation 2 Keywords: Combined heat heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower

  15. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  16. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

  17. Distributed Medium Access Control for Next Generation CDMA Wireless Networks

    E-Print Network [OSTI]

    Zhuang, Weihua

    Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

  18. A Distributed Generation Control Architecture for Islanded AC Microgrids

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    1 A Distributed Generation Control Architecture for Islanded AC Microgrids Stanton T. Cady, Student in islanded ac microgrids with both synchronous generators and inverter-interfaced power supplies. Although they are smaller and have lower ratings, the generation control objectives for an islanded microgrid are similar

  19. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  20. Connecticut's Landscape:p Past, Present and Future

    E-Print Network [OSTI]

    Skelly, David Kiernan

    Connecticut's Landscape:p Past, Present and Future #12;Connecticut: 20 000 Years Before PresentConnecticut: 20,000 Years Before Present Glacial Maximum #12;Connecticut: 20 000 Years Before PresentConnecticut;Glacial Advance and Retreat #12;The Return of Life to Connecticut #12;The Return of Life to Connecticut

  1. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  2. Veteran's Affairs Health Care System, West Haven, Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Veteran's Affairs Health Care System, West Haven, Connecticut Veteran's Affairs Health Care System, West Haven, Connecticut Overview The West Haven (Connecticut) Campus of the...

  3. Connecticut Summary of Reported Data | Department of Energy

    Energy Savers [EERE]

    Summary of Reported Data Connecticut Summary of Reported Data Summary of data reported by Better Buildings Neighborhood Program partner Connecticut. Connecticut Summary of Reported...

  4. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  5. The Potential Benefits of Distributed Generation and the Rate...

    Broader source: Energy.gov (indexed) [DOE]

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The...

  6. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  7. Reliability Improvement Programs in Steam Distribution and Power Generation Systems 

    E-Print Network [OSTI]

    Petto, S.

    1987-01-01

    can be found in power generation. steam distribution, and in all types of durable and non-durable Industrial productions. I 300 " 0 " 200 C " ? ? ~ 'DO ?~ 50 ' .. '7. '70 '75 '50 '.2 The cost to maintain steam systems. namely...

  8. School of Engineering, University of Connecticut www.engr.uconn.edu Summer 2005 Connecticut Global Fuel

    E-Print Network [OSTI]

    Chandy, John A.

    School of Engineering, University of Connecticut www.engr.uconn.edu Summer 2005 Connecticut Global Connecticut citizens. The numbers speak volumes: in just six years, the School of Engineering has increased

  9. University of Connecticut, Office of the Registrar, Transcript Request Form Transcript Request Form -University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut, Office of the Registrar, Transcript Request Form Transcript Request Form - University of Connecticut Office of the Registrar, Unit 4077T, Storrs, CT 06269-4077T Forms of Connecticut under other names, please indicate them here

  10. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  11. Random variate generation for the generalized inverse gaussian distribution

    E-Print Network [OSTI]

    Devroye, Luc

    ;Introduction The two-parameter form of the generalized inverse gaussian distribution (or gig) has density does not quite work for gig variate generation, but it is almost possible to do so. Indeed gaussian law--see, e.g., Lesosky and Horrocks (2003). -- 2 -- #12;A transformed gig distribution

  12. Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui

    E-Print Network [OSTI]

    Guillas, Serge

    1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University, CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity

  13. Numerical Modeling of Eastern Connecticut's Visual Resources1

    E-Print Network [OSTI]

    Numerical Modeling of Eastern Connecticut's Visual Resources1 Daniel L. Civco 2/ l Submitted Conservation, The University of Connecticut, Storrs, Connecticut. / Abstract: A numerical model capable of accurately predicting the preference for landscape photographs of selected points in eastern Connecticut

  14. A Green Cleaning Program for Connecticut Facilities Legislation

    E-Print Network [OSTI]

    Oliver, Douglas L.

    A Green Cleaning Program for Connecticut Facilities Legislation Connecticut law requires state antimicrobial products are not currently regulated under this law. Purchasing Connecticut's Department the "Environmentally Preferrable Purchasing (EPP) Program." Connecticut DAS currently has contracts with vendors

  15. Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut)

    Broader source: Energy.gov [DOE]

    No person shall operate a source which has a significant impact on air quality in such a manner as to cause or contribute to a violation of ambient air quality standards. Connecticut primary and...

  16. Moratorium on Construction of Nuclear Power Facilities (Connecticut...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Moratorium on Construction of Nuclear Power Facilities (Connecticut) Moratorium on Construction of Nuclear Power Facilities (Connecticut) < Back Eligibility Agricultural Commercial...

  17. University of Connecticut Health Center School of Dental Medicine

    E-Print Network [OSTI]

    Oliver, Douglas L.

    University of Connecticut Health Center School of Dental Medicine Application for Admission of Connecticut School of Dental Medicine

  18. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  19. Cascade Failures from Distributed Generation in Power Grids

    E-Print Network [OSTI]

    Scala, Antonio; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  20. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  1. Actuarial Science Program University of Connecticut

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    !"""!" " " Actuarial Science Program at the University of Connecticut #12;- 2 - What is an actuary of Connecticut Actuarial Science Program began in 1976 with the creation of two new courses ­ Theory of Interest

  2. ASSISTANT DEANS Connecticut Children's Medical Center

    E-Print Network [OSTI]

    Page 12 ASSISTANT DEANS Connecticut Children's Medical Center Dr. Andrea Benin, Assistant Dean@stranciscare.org 860-714-5967 The Hospital of Central Connecticut Dr. Steven Hanks, Vice President Med. Affairs

  3. University of Connecticut Department of Chemistry

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    University of Connecticut Department of Chemistry NSF Research Experience for Undergraduates (REUREU@uconn.edu Fax: (860) 486-2981 Mail: REU Site Coordinator Department of Chemistry, University of Connecticut

  4. University of Connecticut Office of Travel Services,

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Office of Travel Services, Accounts Payable Department New Central Warehouse Building, 3 North Hillside Road, Unit 6220 Storrs, CT 06269-6220 The University of Connecticut

  5. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  6. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  7. Distribution of the Number of Generations in Flux Compactifications

    E-Print Network [OSTI]

    Andreas P. Braun; Taizan Watari

    2014-12-10

    Flux compactification of string theory generates an ensemble with a large number of vacua called the landscape. By using the statistics of various properties of low-energy effective theories in the string landscape, one can therefore hope to provide a scientific foundation to the notion of naturalness. This article discusses how to answer such questions of practical interest by using flux compactification of F-theory. It is found that the distribution is approximately in a factorized form given by the distribution of the choice of 7-brane gauge group, that of the number of generations $N_{\\rm gen}$ and that of effective coupling constants. The distribution of $N_{\\rm gen}$ is approximately Gaussian for the range $|N_{\\rm gen}| \\lesssim 10$. The statistical cost of higher-rank gauge groups is also discussed.

  8. CAUSES OF FLUCTUATIONS IN ABUNDANCE OF CONNECTICUT

    E-Print Network [OSTI]

    CAUSES OF FLUCTUATIONS IN ABUNDANCE OF CONNECTICUT ·RIVER .SHAD BY REYNOLD A. FREDIN FISHERY effort, and tagging data which was used t.o estimate the size of the shad runs in the Connecticut River. effect on the" size of the runs entering the river," Investigation of the Connecticut River shad fishery

  9. UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions Special Program in Dental Medicine. The University of Connecticut does not require that you sign such a waiver as a condition for admission or award of Connecticut Office of Undergraduate Admissions 2131 Hillside Road, Unit-3088 Storrs, CT 06269-3088 Please

  10. State of Connecticut Single Audit Report

    E-Print Network [OSTI]

    Alpay, S. Pamir

    State of Connecticut Single Audit Report For the Fiscal Year Ended June 30, 2014 AUDITORS OF PUBLIC ACCOUNTS JOHN C. GERAGOSIAN ROBERT M. WARD #12;STATE OF CONNECTICUT Single Audit Report For the Year Ended ..................................................................................................1 State of Connecticut Financial Statements Independent Auditors' Report

  11. UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions Special Program in Law Recommendation persons making such recommendations on her or his behalf. The University of Connecticut does not require of recommendation along with the completed form to: Special Program in Law University of Connecticut Office

  12. UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE FACULTY MERIT PLAN Revised and Approved by the Merit with the By-Laws of the University of Connecticut and with the traditional rights and privileges of faculty to intimidate, or otherwise constrain academic freedoms expressed in By-Laws of the University of Connecticut

  13. Final version 11 April 1997 Connecticut

    E-Print Network [OSTI]

    Pollard, David

    Final version 11 April 1997 Connecticut Juror Selection East Hartford Hartford West Hartford Avon, and the whole of Section 7 and Appendix B need major revision. Report to the Connecticut Public Defender The questionnaire data 12 3 Measures of disparity 17 4 The JIS data 19 5 Federal data 26 6 Connecticut population

  14. THE UNIVERSITY OF CONNECTICUT UConn Health

    E-Print Network [OSTI]

    Kim, Duck O.

    THE UNIVERSITY OF CONNECTICUT UConn Health 2013 ANNUAL CAMPUS SECURITY & SAFETY REPORT Published and graduates of the Connecticut Police Officer Standards and Training Academy. In addition, each officer undergoes required annual in- service training, well above the minimum requirements mandated by Connecticut

  15. UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UNIVERSITY OF CONNECTICUT Office of Undergraduate Admissions Special Program in Medicine. The University of Connecticut does not require that you sign such a waiver as a condition for admission or award of Connecticut Office of Undergraduate Admissions 2131 Hillside Road, Unit-3088 Storrs, CT 06269-3088 Please

  16. Commendations The University of Connecticut Police

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Commendations The University of Connecticut Police Department expects a very high level of a department uniform medal. Complaints The University of Connecticut Police Department policy is to emphasize declaration may be a violation of the law. The University of Connecticut Police Department welcomes

  17. A Connecticut jury array challenge David Pollard

    E-Print Network [OSTI]

    Pollard, David

    A Connecticut jury array challenge by David Pollard Yale University david.pollard@yale.edu http a detailed statistical study of the system used for summon- sing jurors to serve in the State of Connecticut's Superior Courts. The study was made at the request of the Connecticut Public Defender's Office, to provide

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  19. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  20. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation- tems, photovoltaic generation, power distribution, power system economics, smart grids. I. INTRODUCTION study of electric distribution systems with high penetration of photovoltaic (PV) panels within

  1. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  2. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  3. A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations 

    E-Print Network [OSTI]

    Ituzaro, Fred Agyekum

    2012-07-16

    Smart radial distribution grids will include advanced metering infrastructure (AMI) and significant distributed generators (DGs) connected close to loads. DGs in these radial distribution systems (RDS) introduce bidirectional power flows (BPFs...

  4. A Multi-Agent Solution to Distribution System Management by Considering Distributed Generators

    E-Print Network [OSTI]

    Zhang, Minjie

    has both advantages and disadvantages [7]. On one hand, DGs can supply power to the network near such as solar and wind, the distribution network may perform differently from the conventionally ex- pected]. Typically, the bulk generation is the only energy resource to a DN, and the direction of the power flow

  5. UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    #12;1 UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT 2011-2012 TABLE OF CONTENTS FOR CLEAN ENERGY ENGINEERING...................................................... 24 CONNECTICUT Energy Engineering (C2E2). The installation was funded by a federal stimulus grant from Connecticut

  6. UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    #12;1 UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT 2007-08 TABLE OF CONTENTS Center for Advanced Technology.................................. 217 Connecticut Global Fuel Cell Center......................................................219 Connecticut Transportation Institute...................................................... 223

  7. UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    #12;1 UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT 2008-2009 (amended 6 Center for Advanced Technology.................................. 208 Connecticut Global Fuel Cell Center......................................................210 Connecticut Transportation Institute...................................................... 215

  8. Market Transformation in Connecticut: Integrating Home Performance Into Existing Trades

    Broader source: Energy.gov [DOE]

    Market Transformation in Connecticut: Integrating Home Performance Into Existing Trades, Evolving to Whole Home Success, Session 2: Sustainable Business Models presentation. Provides an overview of Connecticut's various home energy programs, the Connecticut Energy Efficiency Fund, and contractor involvement.

  9. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  10. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  11. Poetry Inspired by Mathematics: a Brief Journey through History Department of Mathematics, University of Connecticut, Storrs, Connecticut, USA

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    of Mathematics, University of Connecticut, Storrs, Connecticut, USA Correspondence details: Sarah Glaz E-3009 University of Connecticut Storrs, CT 06269-3009 (Received XX February 2011; final version received

  12. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Preliminary Evaluation Results This...

  13. Connecticut Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecticut Recovery Act State Memo Connecticut Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful downpayment on the nation's energy...

  14. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION June 30, 2014. REVIEW AND APPROVAL OF LEASES: CONNECTICUT CHILDREN'S MEDICAL CENTER* HARVEY AND LEWIS OPTICIANS

  15. Connecticut launches nation's first statewide Home Energy Score...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    launches nation's first statewide Home Energy Score Program Connecticut launches nation's first statewide Home Energy Score Program May 19, 2015 - 5:21pm Addthis Connecticut...

  16. Clean Cities: Connecticut Southwestern Area Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and...

  17. Connecticut Fuel Cell Activities: Markets, Programs, and Models...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Activities: Markets, Programs, and Models Connecticut Fuel Cell Activities: Markets, Programs, and Models Presented by the Connecticut Center for Advanced Technology, Inc. at the...

  18. Statement on Plagiarism 1 University of Connecticut Freshman English Program

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    Statement on Plagiarism 1 University of Connecticut Freshman English Program Statement on Plagiarism KEY TERMS AT A GLANCE Academic Misconduct: The University of Connecticut Division of Student

  19. Clean Cities: Capitol Clean Cities of Connecticut coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders...

  20. UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    #12;1 UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT 2009-2010 TABLE OF CONTENTS...................................................... 244 CONNECTICUT TRANSPORTATION INSTITUTE......................................................250

  1. UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT

    E-Print Network [OSTI]

    Alpay, S. Pamir

    #12;1 UNIVERSITY OF CONNECTICUT SCHOOL OF ENGINEERING ANNUAL REPORT 2010-2011 TABLE OF CONTENTS CENTER FOR CLEAN ENERGY ENGINEERING...................................................... 252 CONNECTICUT

  2. The Value of Distributed Generation under Different Tariff Structures

    E-Print Network [OSTI]

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-01-01

    Efficiency and Renewable Energy, Distributed Energy ProgramRenewable Energy Laboratory, Golden, CO by Distributed

  3. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  4. Connecticut Nuclear Profile - Millstone

    U.S. Energy Information Administration (EIA) Indexed Site

    Millstone" "Unit","Summer capacity (mw)","Net generation (thousand mwh)","Summer capacity factor (percent)","Type","Commercial operation date","License expiration date"...

  5. ,"Connecticut Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  6. ,"Connecticut Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  7. Connecticut Weatherization Project Improves Lives, Receives National...

    Broader source: Energy.gov (indexed) [DOE]

    Several energy-efficient improvements made to a senior care center in New Milford, Connecticut, are helping residents live healthier and more comfortable lifestyles. The upgrade...

  8. Southbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Southbury, Connecticut: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 41.4814847, -73.2131693 Show Map Loading map... "minzoom":false,"mappin...

  9. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    Efficiency and Renewable Energy, former Distributed EnergyEfficiency and Renewable Energy, former Distributed EnergyEfficiency and Renewable Energy, former Distributed Energy

  10. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  11. A New Approach to Mitigate the Impact of Distributed Generation on the Overcurrent Protection Scheme of Radial Distribution Feeders 

    E-Print Network [OSTI]

    Funmilayo, Hamed

    2010-01-14

    Increased Distributed Generation (DG) presence on radial distribution feeders is becoming a common trend. The existing Overcurrent Protection (OCP) scheme on such feeders consists mainly of overcurrent protection devices ...

  12. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    the long-term natural gas generation cost is stochastic, wethe consideration of generation cost threshold that triggersthat of natural gas generation cost delays investment while

  13. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  14. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  15. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2006 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports. It works with all of Connecticut's water resource professionals, managers and academics to resolve state

  16. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2009 Connecticut Institute of Water Resources Annual Technical Report FY 2009 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports to the head of the Department

  17. UNIVERSITY OF CONNECTICUT Published in the Year 2013

    E-Print Network [OSTI]

    Chandy, John A.

    UNIVERSITY OF CONNECTICUT Published in the Year 2013 PRIDE INTEGRITY COMMUNITY Division of Public Safety University of Connecticut #12;University of Connecticut 1 Introduction The University of Connecticut prepares this report in compliance with the Jeanne Clery Disclosure of Campus Security Policy

  18. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2004 Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports. It works with all of Connecticut's water resource professionals, managers and academics to resolve state

  19. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2012 Connecticut Institute of Water Resources Annual Technical Report FY 2012 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports to the head of the Department

  20. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2011 Connecticut Institute of Water Resources Annual Technical Report FY 2011 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports to the head of the Department

  1. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2008 Connecticut Institute of Water Resources Annual Technical Report FY 2008 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports to the head of the Department

  2. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2007 Connecticut Institute of Water Resources Annual Technical Report FY 2007 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN)and reports to the head of the Department

  3. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2013 Connecticut Institute of Water Resources Annual Technical Report FY 2013 1 #12;Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports to the head of the Department

  4. INVESTIGATOR'S MANUAL FOR THE CONNECTICUT MMUCC V4 CRASH REPORT

    E-Print Network [OSTI]

    Chandy, John A.

    INVESTIGATOR'S MANUAL FOR THE CONNECTICUT MMUCC V4 CRASH REPORT CONNECTICUT DEPARTMENT by contacting the Crash Data and Analysis Section of the Connecticut Department of Transportation at (860) 594-2095. Completed Reports Per Chapter 246 Section 14-108a of the Connecticut General Statutes, copies of completed

  5. 8 Connecticut Wildlife March/April 2012 "How suddenly they

    E-Print Network [OSTI]

    Skelly, David Kiernan

    8 Connecticut Wildlife March/April 2012 "How suddenly they awake! Yesterday, as it were, asleep ­ Connecticut Science Center ; photos by Jonathan Richardson Filling occurs once leaves have fallen from in southern Connecticut to breed in March. Two images from the same vernal pond in central Connecticut

  6. Connecticut Institute of Water Resources Annual Technical Report

    E-Print Network [OSTI]

    Connecticut Institute of Water Resources Annual Technical Report FY 2005 Introduction The Connecticut Institute of Water Resources is located at the University of Connecticut (UCONN) and reports. It works with all of Connecticut's water resource professionals, managers and academics to resolve state

  7. THE UNIVERSITY OF CONNECTICUT FOUNDATION, INC. BOARD OF DIRECTORS

    E-Print Network [OSTI]

    Chandy, John A.

    THE UNIVERSITY OF CONNECTICUT FOUNDATION, INC. BOARD OF DIRECTORS Statement Regarding Conflicts of Connecticut Foundation, Inc. is a non-stock, private corporation organized under Connecticut State law, corporations and philanthropic foundations) for the benefit of the University of Connecticut, the State

  8. Climate Change Action in Connecticut: Linking Energy, the Environment and the Economy

    E-Print Network [OSTI]

    Farrell, Paul E.

    2009-01-01

    Climate Change Action in Connecticut: Linking Energy, theII. BACKGROUND III. V . CONNECTICUT'S SUCCESS WITH THECLIMATE INITIATIVES IN CONNECTICUT A . B. C. D. E.

  9. The Labor Market in the 1890s: Evidence from Connecticut Manufacturing

    E-Print Network [OSTI]

    Carter, Susan B.; Sutch, Richard

    1989-01-01

    the 1890s: Evidence from Connecticut Manufacturing." ' Susanthe 1890s: Evidence from Connecticut Manufacturing Susan B.data collected by the Connecticut Bureau of Labor Statistics

  10. Air Quality Impact of Distributed Generation of Electricity

    E-Print Network [OSTI]

    Jing, Qiguo

    2011-01-01

    of the near source air quality impact of distributedDabdub, D. , 2003. Urban Air quality impacts of distributedDabdub, D. , 2004. Urban Air quality impacts of distributed

  11. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

  12. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    the long-term natural gas generation cost is stochastic, weterm natural gas generation cost, C (US$/kWh) 1 , evolvesonly if the natural gas generation cost decreases to US$

  13. University of Connecticut Cooperative Corporation 2075 Hillside Road Unit 1019 Storrs, Connecticut 06269-1019 UConn Co-op

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Cooperative Corporation 2075 Hillside Road Unit 1019 Storrs, Connecticut 06269-1019 UConn Co-op University of Connecticut Cooperative Corporation 2015 Board of Directors: . · A student candidate must be enrolled in a degree program at the University of Connecticut. · A faculty

  14. Solar Connecticut | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter Battery TechnologySocovoltaic Systems JumpSolanaInc JumpConnecticut

  15. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  16. Atmospheric Environment 41 (2007) 56185635 Air quality impacts of distributed power generation in the

    E-Print Network [OSTI]

    Dabdub, Donald

    2007-01-01

    analysis; Spatial sensitivity 1. Introduction Distributed energy resources (DER) have the potential is expected. The use of these distributed generation (DG) resources results in multiple stationary powerAtmospheric Environment 41 (2007) 5618­5635 Air quality impacts of distributed power generation

  17. Impact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D. Novosel

    E-Print Network [OSTI]

    benefits also include loss reduction, avoided costs of energy production, generation capacity, distributionImpact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D, eliminating the unnecessary transmission and distribution costs. In addition, it can reduce fossil fuel

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  19. Collaborating for Quality and Safety: Implementing Therapeutic Phlebotomy in Connecticut Correctional Facility Infirmaries

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Collaborating for Quality and Safety: Implementing Therapeutic Phlebotomy in Connecticut to be performed in Connecticut Correctional facility medical unit infirmaries, and improve the patient care in Connecticut Correctional Managed Heath Care (CMHC)Connecticut Correctional Managed Heath Care (CMHC) medical

  20. Connecticut Green Bank's Residential Solar Investment Program: Economic Impact Analysis of Existing Commitments and Future

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Connecticut Green Bank's Residential Solar Investment Program: Economic Impact Analysis and Chief Operating Officer, Connecticut Green Bank February 9, 2015 #12;Connecticut Center for Economic Analysis Page 2 of 15 University of Connecticut TABLE OF CONTENTS Table of Contents

  1. Dynamic equivalencing of distribution network with embedded generation 

    E-Print Network [OSTI]

    Feng, Xiaodan Selina

    2012-06-25

    Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, ...

  2. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  3. Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters

    E-Print Network [OSTI]

    Lindner, Douglas K.

    tolerant, autonomously controlled electrical power system to deliver high quality power from the sources electronics, fault tolerant electrical power distribution systems and electrically driven primary flight1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram

  4. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  5. Machine Learning Approach to Islanding Detection for Inverter-Based Distributed Generation 

    E-Print Network [OSTI]

    Matic Cuka, Biljana

    2014-12-17

    Despite a number of economic and environmental benefits that integration of renewable distributed generation (DG) into the distribution grid brings, there are many technical challenges that arise as well. One of the most important issues concerning...

  6. On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic Curves Simon R a previous result in this direction due to E. El Mahassni. 1 Introduction The knapsack generator or subset sum generator is a pseudorandom number generator introduced by Rueppel and Massey [14] and studied

  7. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  8. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    electricity markets , PhD thesis, University of California, Berkeley, CA, USA,USA, 1994. Joskow PL, Productivity growth and technical change in the generation of electricity,

  9. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

  10. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  11. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    data available and used to generate random solar radiationResource Data Center], The Solar Radiation Resourcedata were collected from [16]. The stochastic model of solar radiation

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Other Distributed Generation Technologies Tax Credits, Rebates & Savings Tax Credits, Rebates & Savings Connecticut Clean Energy Fund Connecticut's 1998 electric restructuring...

  13. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Connecticut Clean Energy Fund Connecticut's 1998...

  14. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Hydroelectric (Small), Anaerobic Digestion, Fuel Cells using Renewable Fuels, Other Distributed Generation Technologies Connecticut Clean Energy Fund Connecticut's 1998 electric...

  15. Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid., & Vasquez, J. C. (2015). Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid-Connected Microgrid Adriana C. Luna, Nelson L. Diaz, Fabio Andrade, Mois`es Graells§, Josep M. Guerrero, and Juan C

  16. Aalborg Universitet Influence of Resolution of the Input Data on Distributed Generation Integration Studies

    E-Print Network [OSTI]

    Sera, Dezso

    concerning large penetration of the renewable energy based generators on the distribution network is related on Distributed Generation Integration Studies Catalin I. Ciontea, Dezso Sera, Florin Iov Department of Energy in order to obtain realistic results. I. INTRODUCTION The interest in renewable energy is a result

  17. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

  18. University of Connecticut Lecture Notes for ME5507 Fall 2014

    E-Print Network [OSTI]

    Chandy, John A.

    University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part II: Matrix of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu #12;Xu Chen Matrix, Linear Algebra

  19. COLLECTIVE BARGAINING AGREEMENT The University of Connecticut Board of Trustees

    E-Print Network [OSTI]

    Alpay, S. Pamir

    COLLECTIVE BARGAINING AGREEMENT Between The University of Connecticut Board of Trustees And The University of Connecticut Chapter of the American Association of University Professors July 1, 2007 - June 30

  20. DEAN'S OFFICE CONTACT INFORMATION University of Connecticut School of Medicine

    E-Print Network [OSTI]

    Page 8 DEAN'S OFFICE CONTACT INFORMATION University of Connecticut School of Medicine 263@uchc.edu ______________________________________________________________________________ University of Connecticut School of Medicine 263 Farmington Avenue, AG050 Farmington, CT 06030-1912 Phone

  1. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION Monday March FOR BIOSCIENCE CONNECTICUT - AMBULATORY CARE CENTER.* 3. REVIEW AND APPROVAL OF A CONTRACT WITH NUANCE, INC

  2. University of Connecticut Part-Time MBA Program

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    University of Connecticut Part-Time MBA Program MBA Program Fees $825 per credit or $2,475 per 3: The University of Connecticut offers a variety of payment options. Please visit the Office of the Bursar website

  3. University of Connecticut Lecture Notes for ME5507 Fall 2014

    E-Print Network [OSTI]

    Chandy, John A.

    University of Connecticut Lecture Notes for ME5507 Fall 2014 Engineering Analysis I Part I of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu #12;Xu Chen Ordinary Differential

  4. WormShield: Fast Worm Signature Generation with Distributed Fingerprint Aggregation

    E-Print Network [OSTI]

    Papadopoulos, Christos

    WormShield: Fast Worm Signature Generation with Distributed Fingerprint Aggregation Min Cai, Member, IEEE Abstract--Fast and accurate generation of worm signatures is essential to contain zero-day worms at the Internet scale. Recent work has shown that signature generation can be automated by analyzing

  5. Confirmatory Survey Results for the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant, Haddam, Connecticut

    SciTech Connect (OSTI)

    W. C. Adams

    2007-07-03

    The U.S. Nuclear Regulatory Commission (NRC) requested that the Oak Ridge Institute for Science and Education (ORISE) perform a confirmatory survey on the Emergency Operations Facility (EOF) at the Connecticut Yankee Haddam Neck Plant (HNP) in Haddam, Connecticut

  6. Distributed Power Generation: Requirements and Recommendations for an ICT Architecture

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    . In the future of energy markets, the distributed energy production through wind and hydroelectric power plants. Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable, one has to distinguish between two in principle different products: consumption power and balance

  7. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION Monday, March. REVIEW AND APPROVAL OF THE CONTRACT RENEWAL WITH CONNECTICUT CARDIOTHORACIC SURGICAL ASSOCIATES, LLC 1, 2007 ­ FEBRUARY 29, 2008 15. DISCUSSION ITEM - CONNECTICUT ACADEMY OF SCIENCE AND ENGINEERING

  8. UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: C 1.00 Page 1 of 1 UCHC/CMHC EMPLOYEES: ACCESSING E-MAIL Effective Date: 07/30/07 POLICY: University of Connecticut Health Center (UCHC

  9. UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: B 1.01 Page 1 of 2 INFECTION CONTROL of Connecticut Health Center (UCHC), Correctional Managed Health Care (CMHC) shall establish and maintain

  10. UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: F 1.01 Page 1 of 1 HEALTHY LIFESTYLE PROMOTION Effective Date: 04/01/01 POLICY: University of Connecticut Health Center (UCHC), Correctional

  11. UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: P 1.01 Page 1 of 1 PATIENT SAFETY SYSTEM, Daniel Bannish PsyD _______________________________________ #12;UNIVERSITY OF CONNECTICUT HEALTH CENTER

  12. UCL Criteria, p. 1 UNIVERSITY OF CONNECTICUT LIBRARIES

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UCL Criteria, p. 1 UNIVERSITY OF CONNECTICUT LIBRARIES CRITERIA FOR APPOINTMENT AND PROMOTION cultivate new skills and knowledge for the betterment of the University of Connecticut Libraries and the University of Connecticut. Summary of Promotional Process Professional librarians participate in a voluntary

  13. University of Connecticut Reasonable Accommodation Request Form For Employees

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Reasonable Accommodation Request Form For Employees Revised 10/13 All and federal law. Instructions: Individuals who are employed at the University of Connecticut of Connecticut 241 Glenbrook Road - Unit 4175 Telephone - (860) 486-2943 Facsimile - (860) 486-6771 Email - ode

  14. Public Support for Farmland Preservation Programs: Empirical Evidence from Connecticut

    E-Print Network [OSTI]

    Foltz, Jeremy D.

    Public Support for Farmland Preservation Programs: Empirical Evidence from Connecticut by Jeremy D University of Connecticut Abstract: This paper investigates the determinants of household support for a purchase of development rights (PDR) program in Connecticut. A weighted probit model is used to explain

  15. UNIVERSITY OF CONNECTICUT HEALTH CENTER UNIVERSITY HEALTH PROFESSIONALS (UHP)

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER UNIVERSITY HEALTH PROFESSIONALS (UHP) TUITION REIMBURSEMENT is permitted under the following conditions: 1. According to the University of Connecticut Laws and By of Connecticut Health Center will benefit from participation in this program (i.e., that the course work

  16. UNIVERSITY OF CONNECTICUT HEALTH CENTER TRAINING AND DEVELOPMENT

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER TRAINING AND DEVELOPMENT TUITION REIMBURSEMENT PROGRAM to the University of Connecticut Laws and By-Laws, Article XV.0.: "No full-time member of the professional staff may at fully accredited Connecticut colleges or universities. Exceptions to the requirement

  17. UNIVERSITY OF CONNECTICUT HEALTH CENTER TUITION REIMBURSEMENT GUIDELINES

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER TUITION REIMBURSEMENT GUIDELINES Faculty Reimbursement. 2. All courses must be taken at fully accredited Connecticut colleges or universities. Exceptions to the requirement that the institution be in Connecticut will be considered only if the employee shows good cause

  18. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION MINUTES WITH CONNECTICUT CHILDREN'S MEDICAL CENTER ON BEHALF OF THE DENTAL CLINICS OF THE SCHOOL OF DENTAL MEDICINE #12 Medicine began to provide services on-site at Connecticut Children's Medical Center. The University

  19. University of Connecticut School of Dental Medicine Space Policy

    E-Print Network [OSTI]

    Kim, Duck O.

    University of Connecticut School of Dental Medicine Space Policy Introduction Space, whether laboratory, office or teaching-related, is a valuable resource of the University of Connecticut Health Center and its School of Dental Medicine (SDM). The University of Connecticut Health Center Space Management

  20. Vol. 15, No. 2 January 2011 University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Vol. 15, No. 2 January 2011 University of Connecticut Institute of Materials Science IMS Associates around $1,340 per ounce, manufac turers across the globe, including Connecticut's UTC, are scrambling of Connecticut Photo by Peter Morenus INSIDE THIS ISSUE MURI Award to Develop Advanced Ca- pacitors (p. 2) Hemp

  1. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION Monday, 2012 SPECIAL MEETING. * 2. REVIEW AND APPROVAL OF RESOLUTIONS TO CREATE A UNIVERSITY OF CONNECTICUT CONNECTICUT - AMBULATORY CARE CENTER.* 7. APPROVAL OF THE WRITE-OFF OF UNCOLLECTIBLE ACCOUNTS FOR THE JOHN

  2. Vol. 14, No. 2 August 2010 University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Vol. 14, No. 2 August 2010 University of Connecticut Institute of Materials Science Dr. Samuel J film From the University of Connecticut School of Engineering, emaginations, by Kate Kurtin it and process it can't charge enough to make a profit. Only two Connecticut companies produce bio- diesel fuel

  3. BOARD OF DIRECTORS UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    BOARD OF DIRECTORS OF THE UNIVERSITY OF CONNECTICUT HEALTH CENTER FINANCE CORPORATION Monday June WITH CONNECTICUT CHILDREN'S MEDICAL CENTER ON BEHALF OF THE SCHOOL OF DENTAL MEDICINE*. 9. REVIEW AND APPROVAL OF THE DESIGN BUDGET FOR BIOSCIENCE CONNECTICUT - AMBULATORY CARE CENTER.* 10. APPROVAL OF THE WRITE

  4. Vol. # 12, No. #2 August 2008 University of Connecticut

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Vol. # 12, No. #2 August 2008 University of Connecticut Institute of Materials Science Polymer Morenus (Continued Page 8) The Connecticut General Assembly recently consid- ered bills which proposed the creation of partner- ships between Connecticut universities and industry. Funding of this program would

  5. University of Connecticut MRS University Chapter Institute of Materials Science

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut MRS University Chapter Institute of Materials Science 97 N. Eagleville for the University of Connecticut MRS University Chapter for 2007 ­ 2008. As this is our first year as a chapter, weGuinness Garofano President, UConn MRS University Chapter #12;University of Connecticut MRS University Chapter

  6. UNIVERSITY OF CONNECTICUT HEALTH CENTER UNIVERSAL WASTE PROCEDURES

    E-Print Network [OSTI]

    Kim, Duck O.

    UNIVERSITY OF CONNECTICUT HEALTH CENTER UNIVERSAL WASTE PROCEDURES 10/29/02 1. DEFINITION OF UNIVERSAL WASTE The United States Environmental Protection Agency and the State of Connecticut Department removed. The University of Connecticut Health Center also identifies common batteries such as D cells, C

  7. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    -piston Stirling engine devices incorporating integrated electric generation. We target concentrator- collector design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

  8. City of San Marcos- Distributed Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Qualifying Solar PV systems are eligible for a $2.50 per Watt (W) rebate up to $5,000. Qualifying Wind Generation systems are eligible for a $1.00 per W rebate up to $5,000. Neither rebate amount...

  9. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , small wind turbine or central heating power units) can be inserted into any transmission line, mainly because of the development of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel

  10. Bylaws of the University of Connecticut School of Medicine March, 2014 1/44 Bylaws of the University of Connecticut School of Medicine1

    E-Print Network [OSTI]

    Kim, Duck O.

    Bylaws of the University of Connecticut School of Medicine March, 2014 1/44 Bylaws of the University of Connecticut School of Medicine1 Outline I. Preamble....................................................43 Acronyms AAC: Academic Advancement Committee. BOD: University of Connecticut Health Center Board

  11. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  12. An Investigation of the Utilization of Smart Meter Data to Adapt Overcurrent Protection for Radial Distribution Systems with a High Penetration of Distributed Generation 

    E-Print Network [OSTI]

    Douglin, Richard Henry

    2012-07-16

    The future of electric power distribution systems (DSs) is one that incorporates extensive amounts of advanced metering, distribution automation, and distributed generation technologies. Most DSs were designed to be radial ...

  13. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  14. Distributed Generation Study/Floyd Bennett | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)Displacement TransferBennett < Distributed

  15. Distributed Generation Study/Tudor Gardens | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudor Gardens < Distributed

  16. Property:Distributed Generation/Site Description | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation, search Property NameDefinition JumpShore (m)Generation/Site

  17. Applying epoch-era analysis for homeowner selection of distributed generation power systems

    E-Print Network [OSTI]

    Piña, Alexander L

    2014-01-01

    The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

  18. Distributed generation and demand side management : applications to transmission system operation 

    E-Print Network [OSTI]

    Hayes, Barry Patrick

    2013-07-01

    Electricity networks are undergoing a period of rapid change and transformation, with increased penetration levels of renewable-based distributed generation, and new influences on electricity end-use patterns from ...

  19. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  20. Impact of distributed generation of solar photovoltaic (PV) generation on the Massachusetts transmission system

    E-Print Network [OSTI]

    Simhadri, Arvind

    2015-01-01

    After reaching 250 megawatt direct current (MW dc) of solar photovoltaic (PV) generation installed in Massachusetts (MA) in 2013, four years ahead of schedule, Governor Deval Patrick in May of 2013 announced an increase ...

  1. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages and controls distributed energy resources, energy storage systems and loads, most of them are power electronic

  2. Abstract--Distributed generation (DG) has brought great attention from the power community, especially

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    generation and DFACTS (distribution network Flexible AC Transmission System). In these researches and penetration of DG is affecting power flow of the networks and Distributed FACTS (DFACTS) devices and centralized power stations connected to high and extra- high voltage networks, which in turn, supply power

  3. Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization

    E-Print Network [OSTI]

    and electricity in the distribution grid. A group of DG units can form a virtual power plant, being centrally controlled and behaving as a single power plant towards the grid. The extreme case is an energy island to conventional power plants distributed generation units such as PV cells (depending on solar illumination

  4. SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Numbers With Location · Substation Capacities and Installed Loads Without this information, the study that would be useful is: Cost and location of all planned transmission and distribution upgrades was to evaluate the benefits and costs associated with a distributed generation unit from the perspectives

  5. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect (OSTI)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  6. Stability analysis of weak rural electrification microgrids with droop-controlled rotational and electronic distributed generators

    E-Print Network [OSTI]

    Lemmon, Michael

    Stability analysis of weak rural electrification microgrids with droop-controlled rotational--Droop-controlled distributed generation (DG) units are widely used in microgrids for rural electrification applica- tions. In these microgrids, power quality is vulnerable to voltage and frequency instabilities due to limited generation

  7. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  8. University of Connecticut Information Technology Security

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Information Technology Security Incident Response Plan #12;- i - Revision requirements for the protection of that information on the University. The University has had security of the University. The Information Technology Security Office has created this Incident Response Plan to assist

  9. UNIVERSITY OF CONNECTICUT Department of Music

    E-Print Network [OSTI]

    Alpay, S. Pamir

    UNIVERSITY OF CONNECTICUT Department of Music Undergraduate Student Handbook A. Introduction and programs, people, events, and activities in the Department of Music. While some of the information is extracted directly from the department's website at music.uconn.edu, the document also contains links back

  10. CONNECTICUT CONSUMER HEALTH INFORMATI0N

    E-Print Network [OSTI]

    Oliver, Douglas L.

    CONNECTICUT CONSUMER HEALTH INFORMATI0N NETWORK RECOMMENDED BOOKS FOR A CONSUMER HEALTH LIBRARY many different types of consumer health questions. Titles marked with a double asterisk (**) are considered essential for a basic collection in any size public library. A single asterisk (*) indicates

  11. UNIVERSITY OF CONNECTICUTUNIVERSITY OF CONNECTICUT STUDENT LABOR PAYROLL REQUEST TO HIRE A NON-UNIVERSITY OF CONNECTICUT STUDENTSTUDENT LABOR PAYROLL REQUEST TO HIRE A NON-UNIVERSITY OF CONNECTICUT STUDENT

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    UNIVERSITY OF CONNECTICUTUNIVERSITY OF CONNECTICUT STUDENT LABOR PAYROLL REQUEST TO HIRE A NON-UNIVERSITY OF CONNECTICUT STUDENTSTUDENT LABOR PAYROLL REQUEST TO HIRE A NON-UNIVERSITY OF CONNECTICUT STUDENT University of Connecticut students receive first priority for student labor jobs. If the Office of Student Financial Aid

  12. Losing Jobs, Losing Income, and Worsening the Deficit? The Economic Impact of Connecticut's Hospital Tax

    E-Print Network [OSTI]

    Alpay, S. Pamir

    ? The Economic Impact of Connecticut's Hospital Tax & Reimbursement Policies? The Economic Impact of Connecticut's Hospital Tax & Reimbursement Policies Summary This brief analysis looks at the impact of the State of Connecticut progressively

  13. Connecticut – Sexual Orientation and Gender Identity Law and Documentation of Discrimination

    E-Print Network [OSTI]

    Sears, Brad

    2009-01-01

    See Daniela Altimari, Connecticut to Consider TransgenderConn. H.B. 6452 (State Net). CONNECTICUT Williams Institute§ 46a-58(a). Id. § 46a-58(d). CONNECTICUT Williams Institute

  14. Merguerian, Charles, 1979, Dismembered ophiolite along Cameron's Line, West Torrington, Connecticut.

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles, 1979, Dismembered ophiolite along Cameron's Line, West Torrington, Connecticut. Cameron's Line is a zone of ductile deformation in northwestern Connecticut that's separates highly Torrington, Connecticut (abs.): Geological Society of America Abstracts with Programs, v. 11, p. 45. Filename

  15. School of Engineering | University of Connecticut Annual Report School of Engineering Annual Report 1

    E-Print Network [OSTI]

    Alpay, S. Pamir

    2000 2001 School of Engineering | University of Connecticut Annual Report #12;School of Engineering Annual Report 1 University of ConnecticutUniversity of Connecticut School of Engineering Annual Report

  16. Counting on Couples: Fiscal Savings From Allowing Same-Sex Couple to Marry in Connecticut

    E-Print Network [OSTI]

    Badgett, M.V. Lee; Sears, Brad; Curtis, Patrice; Kukura, Elizabeth

    2005-01-01

    visited Oct. 30, 2004). Connecticut General Assembly, OfficeSame-Sex Partners In Connecticut, 2002-R- 0834, 10/05/2002,visited Dec. 17, 2004). Connecticut General Assembly, Office

  17. The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation

    E-Print Network [OSTI]

    Trisolini, Katherine A.

    2012-01-01

    Am. Elec. Power Co. v. Connecticut, 131 S. Ct. 2527, 2532,50. Id. at 2540. 51. Connecticut v. Am. Elec. Power Co. ,Electric Power Co. v. Connecticut and Federal Greenhouse Gas

  18. Beyond Density: Measuring Neighborhood Form in New England's Upper Connecticut River Valley

    E-Print Network [OSTI]

    Owens, Peter Marshall

    2005-01-01

    in New England’s Upper Connecticut River Valley by Peterin New England’s Upper Connecticut River Valley by Peterof New England’s Upper Connecticut River Valley encompassing

  19. BASIC CONTROL FOR FOUR ROTOR AUTONOMOUS AERIAL AGENT JONATHAN MCLEAN, CONNECTICUT COLLEGE, USA,

    E-Print Network [OSTI]

    Parker, Gary B.

    BASIC CONTROL FOR FOUR ROTOR AUTONOMOUS AERIAL AGENT JONATHAN MCLEAN, CONNECTICUT COLLEGE, USA, JMMCL2@CONNCOLL.EDU GARY PARKER, CONNECTICUT COLLEGE, USA, PARKER@CONNCOLL.EDU NEWELL SEAL, CONNECTICUT

  20. Neighborhood Healthy Homes Project The University of Connecticut Center for Indoor Environments and

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Neighborhood Healthy Homes Project The University of Connecticut Center for Indoor Environments and Health is a partner on the Connecticut Children's Medical Center's Neighborhood Healthy Healthy Housing Inspection Manual Center for Indoor Environments and Health, University of Connecticut

  1. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |

  2. C:\\Users\\Jessica\\Desktop\\Application.docx University of Connecticut, School of Engineering

    E-Print Network [OSTI]

    Chandy, John A.

    C:\\Users\\Jessica\\Desktop\\Application.docx University of Connecticut, School of Engineering Pre of Connecticut during (Parent/Guardian) my son/daughter _____________________________ participation in the Pre

  3. Connecticut Nuclear Profile - All Fuels

    U.S. Energy Information Administration (EIA) Indexed Site

    total electric power industry, summer capacity and net generation, by energy source, 2010" "Primary energy source","Summer capacity (mw)","Share of State total (percent)","Net...

  4. U.S. hydropower resource assessment for Connecticut

    SciTech Connect (OSTI)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydro-power potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of Connecticut.

  5. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second...

    Broader source: Energy.gov (indexed) [DOE]

    Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. 45670-2.pdf More Documents & Publications...

  6. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third...

    Broader source: Energy.gov (indexed) [DOE]

    describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype...

  7. CONNECTICUT CHALLENGES TOWNS TO REDUCE ENERGY USE | Department...

    Energy Savers [EERE]

    Displays of Efficiency" N2N YouTube Channel PAPERS & PRESENTATIONS "Small Changes, Big Results, With the Connecticut Neighbor to Neighbor Energy Challenge" (April 19, 2011)...

  8. University of Connecticut Request to Change Undergraduate Requirement Catalog

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    University of Connecticut Request to Change Undergraduate Requirement Catalog University policy the University and then return must meet the requirements as they were when they returned. However, all

  9. ,"Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Connecticut Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. Willimantic, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy Resources Jump to: navigation, searchConnecticut:

  11. Woodstock, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard Power Pty LtdWoodlawnWoodshedConnecticut: Energy

  12. Yalesville, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois:Wizard PowerWyandanch, New1991)Yalesville, Connecticut:

  13. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  14. Stratford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) JumpandStereoNew York:Wisconsin:Connecticut: Energy

  15. Hartland, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio: Energy Resources Jump to: navigation,Connecticut:

  16. Granby, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County, Georgia: EnergyGorlitz AGGranby, Connecticut: Energy

  17. Ridgefield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, New York:Virginia: Energy ResourcesConnecticut: Energy Resources

  18. Monroe, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec(Pritchett, 2004) |Monee,MonroePennsylvania:WestConnecticut:

  19. Plainfield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) | OpenBethlehem BiomassMassachusetts:PiuteConnecticut: Energy

  20. Proceedings of Power Systems 03: Distributed Generation and Advanced Metering 2002 Wichita State University

    E-Print Network [OSTI]

    Proceedings of Power Systems 03: Distributed Generation and Advanced Metering © 2002 Wichita State are critically dependent on the fuel quality and supply parameters for optimal power delivery and overall System Friction Losses (kW) PBearing Total System Bearing Losses (kW) PCon Electrical Conversion Losses

  1. Aalborg Universitet Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Microgrid Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez). Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid. In Proceedings Microgrid Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero Abstract

  2. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    3D phase-differentiated GDL microstructure generation with binder and PTFE distributions Michael M of gas diffusion layer (GDL) materials with localized binder and poly- tetrafluoroethylene (PTFE mimics manufacturing processes and produces complete phase-differentiated (void, fiber, binder, and PTFE

  3. Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions

    E-Print Network [OSTI]

    Wang, Jin

    Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal of the normal distribution for modeling of daily changes in market variables with fatter-than-normal tails is to transform (linearly) a multivariate normalwith an input covariance matrix into the desired multivariate

  4. Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study

    E-Print Network [OSTI]

    Li, Baochun

    Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

  5. Forest Fragmentation in Connecticut: 1985 2006 Research Summary

    E-Print Network [OSTI]

    Alpay, S. Pamir

    in 2009, based on research done by Vogt et al. The Landscape Fragmentation Tool maps the types Forest Fragmentation in Connecticut: 1985 ­ 2006 Research Summary About the Project Forest for the fragmentation of Connecticut's forests, and how fragmentation has progressed over time, CLEAR researchers

  6. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  7. Punctuated Anytime Learning for Hexapod Gait Generation Gary B. Parker

    E-Print Network [OSTI]

    Parker, Gary B.

    Punctuated Anytime Learning for Hexapod Gait Generation Gary B. Parker Connecticut College, New of gait generation for a hexapod robot with changing capa­ bilities. 1. Introduction In order to explore

  8. Punctuated Anytime Learning for Hexapod Gait Generation Gary B. Parker

    E-Print Network [OSTI]

    Parker, Gary B.

    Punctuated Anytime Learning for Hexapod Gait Generation Gary B. Parker Connecticut College, New of gait generation for a hexapod robot with changing capa- bilities. 1. Introduction In order to explore

  9. Director of Dissertation Committees (Ph.D.) 1. Mai Hamdalla, University of Connecticut (June 2014)

    E-Print Network [OSTI]

    Rajasekaran, Sanguthevar

    Director of Dissertation Committees (Ph.D.) 1. Mai Hamdalla, University of Connecticut (June 2014) 2. Tian Mi, University of Connecticut (June 2013) 3. Samir A. Mohamed Elsayed, University of Connecticut (June 2013) 4. Rania Kilany, University of Connecticut (June 2013) 5. Hieu Dinh, University

  10. School of Engineering, University of Connecticut www.engr.uconn.edu Winter 2006 Professor Pattipati Establishes

    E-Print Network [OSTI]

    Chandy, John A.

    School of Engineering, University of Connecticut www.engr.uconn.edu Winter 2006 Professor Pattipati to the bottom. How is this relevant to Connecticut? The U.S. Department of Labor ranks Connecticut, with 10 in the nation. The cumulative payroll of engineers and computer scientists in Connecticut is huge

  11. Proceedings of the School of Engineering & University of Connecticut Health Center

    E-Print Network [OSTI]

    Chandy, John A.

    #12;Proceedings of the School of Engineering & University of Connecticut Health Center Bio Office of Technology Commercialization Beacon Connecticut Innovations Sponsors April 22, 2008 University of Connecticut Storrs, CT, USA Published by School of Engineering The University of Connecticut, Storrs, USA

  12. School of Engineering, University of Connecticut Winter 2004 www.engr.uconn.edu

    E-Print Network [OSTI]

    Chandy, John A.

    School of Engineering, University of Connecticut Winter 2004 www.engr.uconn.edu Also In this Issue the programmable switching industry. After graduating from the University of Connecticut, he worked for a Cambridge of the University of Connecticut Foundation Board of Directors and the University of Connecticut Foundation

  13. Merguerian, Charles; Mose, D. G., and Nagel, Susan, 1984, Late syn-orogenic Taconian plutonism along Cameron's Line, West Torrington, Connecticut.

    E-Print Network [OSTI]

    Merguerian, Charles

    along Cameron's Line, West Torrington, Connecticut. Near Torrington, Connecticut a deformed composite, 1984, Late syn- orogenic Taconian plutonism along Cameron's Line, West Torrington, Connecticut (abs

  14. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  15. Haddam, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynn County,SolarFERCInformation 3.1 -HachijojimaHaddam, Connecticut:

  16. Georgetown, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway1997) | OpenRaftGeorge County,Connecticut:

  17. Durham, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsAreafor GeothermalNorth Dakota: EnergyDuquesneConnecticut:

  18. Eastford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island: EnergySparta,Eastford, Connecticut:

  19. Easton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, Rhode Island:Connecticut: Energy Resources Jump

  20. Farmington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbHFarinello Geothermal Power Station Jump to:Mutual ElectricConnecticut:

  1. Middlefield, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: Energy ResourcesDec 2005 WindPRO isMickeyWest EnergyMiddlefield, Connecticut:

  2. Moodus, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland: EnergyInformation MontanaOhio: EnergyMoodus, Connecticut: Energy Resources

  3. Madison, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHKMHK5 <Kentucky: EnergyConnecticut: Energy Resources

  4. Kensington, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,NewKeith County,Kenduskeag,KenoshaConnecticut: Energy

  5. Newtown, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire: Energy Resources Jump to: navigation,Connecticut:

  6. Chaplin, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World Technologies JumpChaplin, Connecticut:

  7. Salisbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD Wind Farm JumpSMUDSaintSakti3Connecticut:

  8. Stamford, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford, Connecticut: Energy Resources

  9. Avon, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria Geothermal Region JumpFacility |Alabama:Connecticut:

  10. Bethlehem, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformation BeaufortBentMichigan: EnergyCensus Area,Bethel,Connecticut:

  11. Brooklyn, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine: EnergyEnergy Information Bronze BootConnecticut: Energy

  12. Clinton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) JumpIowa: Energy Resources Jump to:New York:Connecticut:

  13. Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)| Open(Evans, Et Al.,Information 3rdConnecticut: Energy

  14. Chester, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine:West Virginia: Energy Resources JumpSouthConnecticut:

  15. Wilton, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: Energy Resources Jump to:

  16. Connecticut Light and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower Ventures JumpCommercialRenewable Services GmbH JumpConneautConnecticut

  17. Categorical Exclusion Determinations: Connecticut | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a lCaribElectric powerMeasures to reduce migrationConnecticut.

  18. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect (OSTI)

    Longrigg, P.

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  19. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  20. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  1. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  2. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  3. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  4. Aquatic habitat enhancements for Mad River and Beaver Pond Brook in conjunction with the reconstruction of I-84, Waterbury, Connecticut

    E-Print Network [OSTI]

    Nyman, David, C.

    2003-01-01

    for state agencies in Connecticut and Maine. References ASCEOF I-84, WATERBURY, CONNECTICUT David C. Nyman, P.E. (Phone:for I-84 in Waterbury, Connecticut, reaches of Mad River and

  5. University of Connecticut Health Center STUDENT HEALTH INSURANCE ENROLLMENT FORM

    E-Print Network [OSTI]

    by the University of Connecticut through Consolidated Health Plans (CHP)/Cigna. I acknowledge that the charge ************************************************************************************************** BAILEY AGENCIES USE ONLY Sent to Enrollment/CHP Confirmed by CHP Logged Bailey List- master Logged Epic

  6. Preparations for Meeting New York and Connecticut MTBE Bans

    Reports and Publications (EIA)

    2003-01-01

    In response to a Congressional request, the Energy Information Administration examined the progress being made to meet the bans on the use of methyl tertiary butyl ether (MTBE) being implemented in New York and Connecticut at the end of 2003.

  7. Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    E-Print Network [OSTI]

    Gong, Shuping; Lai, Lifeng; Qiu, Robert C

    2010-01-01

    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

  8. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  9. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01

    the defUlition given above. It can be a corporate strategic tool in the newly competitive electric business. It can be part of an offensive strategy to capture new retail markets. It can be used to optimize support of a capacity-stretched distribution... system. It can be used defensively to retain existing customers. Example strategies include: Meet existing customers' growing local peak demands without adding long-payback T&D upgrades and/or new central station generation investments. Serve new...

  10. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  11. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  12. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  13. Abstract--This paper presents the consequences and operating limitations of installing distributed generation (DG) to electric

    E-Print Network [OSTI]

    enhances certain aspects of the power quality of the owners significantly by mitigat- ing the voltage sag distributed generation (DG) to electric power systems. The proliferation of new generators creates new are discussed. A technique used to evaluate fault current in the system after installing DGs is ana- lyzed

  14. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems

    E-Print Network [OSTI]

    heat and power Fuel cells Building energy a b s t r a c t The distributed generation (DG) of combined Wisconsin, retrofitted with solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model of renewable or non- renewable sources of power generation (e.g., photovoltaic (PV) cells, fuel cells

  15. Rev. 6/15 Summer & Winter Programs | UNIVERSITY OF CONNECTICUT Office of Summer & Winter Programs

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    Rev. 6/15 Summer & Winter Programs | UNIVERSITY OF CONNECTICUT Office of Summer & Winter Programs/15 Summer & Winter Programs | UNIVERSITY OF CONNECTICUT Summer/Winter Term Appeal Form Additional

  16. Counterfeit IC Detection and Challenges Ahead Ujjwal Guin, University of Connecticut

    E-Print Network [OSTI]

    Tehranipoor, Mohammad

    Counterfeit IC Detection and Challenges Ahead Ujjwal Guin, University of Connecticut Mohammad Tehranipoor, University of Connecticut Dan DiMase, Chairman - SAE G-19A, Test Laboratory Standards Development

  17. PROFESSIONAL LIABILITY LETTER All physicians in residency/fellowship programs sponsored by the University of Connecticut

    E-Print Network [OSTI]

    /fellowship programs sponsored by the University of Connecticut School of Medicine are fully protected by state statute. Rotations at approved sites outside of Connecticut are contained within this category. Notwithstanding

  18. CONSENT AND RELEASE FORM I, (student)_________________ hereby authorize the University of Connecticut and those

    E-Print Network [OSTI]

    Chandy, John A.

    of Connecticut and those acting pursuant to its authority ( "University") to record my likeness and/or voice

  19. A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function

    E-Print Network [OSTI]

    Boyer, Edmond

    renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working of the renewable generator (e.g. solar generator, wind turbine, and electrical vehicle aggregation) State value Multiplication operator of u-functions Wind speed Total number of discretized wind speed states Discretized wind

  20. DESCRIPTION OF HOSPITALS IN THE GREATER HARTFORD AREA Connecticut Children's Medical Center

    E-Print Network [OSTI]

    Page 27 DESCRIPTION OF HOSPITALS IN THE GREATER HARTFORD AREA Connecticut Children's Medical Center Connecticut Children's Medical Center (CCMC) is a nationally recognized, 187-bed not-for- profit children's hospital serving as the primary teaching hospital for the University of Connecticut School of Medicine

  1. Revision Date: 06/16/04 UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Revision Date: 06/16/04 UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION NUMBER: A 1.01 Page 1 of 1 ACCESS TO HEALTH CARE Effective Date: 04/01/01 POLICY: University of Connecticut Health Center (UCHC

  2. Don't Let Connecticut's Trash Plants Go Private April 19, 2006

    E-Print Network [OSTI]

    Columbia University

    Don't Let Connecticut's Trash Plants Go Private April 19, 2006 JONATHAN BILMES In 1998, the Connecticut General Assembly passed legislation deregulating the electric industry. While the move toward consumers a choice of affordable electricity providers - virtually everyone acknowledges, in Connecticut

  3. the average weight of Connecticut River fish was considerably less (Table 1). The difference in average

    E-Print Network [OSTI]

    the average weight of Connecticut River fish was considerably less (Table 1). The difference in the Connecticut River basin. Fisheries (Bethesda) 7(6): 2-11. POTTER. I. C.· F. W. H. BEAMISH, AND B. G. H. Freshwater fishes of Connecticut. State Geol. Nat. Hist. Servo Conn.· Dep. Environ. Prot., Bull. 101, 134 p

  4. 263 Farmington Avenue Farmington, Connecticut 06030-2806 An Equal Opportunity Employer

    E-Print Network [OSTI]

    263 Farmington Avenue · Farmington, Connecticut 06030-2806 · An Equal Opportunity Employer@adp.uchc.edu COOPERATING INSTITUTION CONSORTIUM STATEMENT The University of Connecticut Health Center proposes-GRANTEE: University of Connecticut Health Center UCHC Principal Investigator: Department and Org. #: Phone: Email

  5. University of Connecticut Authorization for Disclosure and Release of Medical Information Form

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut Authorization for Disclosure and Release of Medical Information Form Revised 10/13 As required by Connecticut law, the Office of Diversity and Equity may not use or disclose of Connecticut 241 Glenbrook Road - Unit 4175 Storrs, CT 06269-4175 Telephone - (860) 486-2943 Facsimile - (860

  6. TIPS FOR TAKING MEDICINE SAFELY FROM THE CONNECTICUT POISON CONTROL CENTER

    E-Print Network [OSTI]

    Oliver, Douglas L.

    TIPS FOR TAKING MEDICINE SAFELY FROM THE CONNECTICUT POISON CONTROL CENTER Follow the 5 rights when ingestion, don't wait for symptoms to appear; call the Connecticut Poison Control Center at 1-800-222-1222. For more poison prevention tips go to the Connecticut Poison Control website at http

  7. Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Early Jurassic eolian dune field, Pomperaug basin, Connecticut and related synrift deposits eolian sandstone in the Pomperaug basin, Connecticut is noteworthy because it is the most significant from the Hartford (Connecticut, USA), Fundy (Nova Scotia, Canada), and Argana (Morocco) basins. Using

  8. Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    Great Spaces of Rock: The Traprock Ridgelands of the Central Connecticut Valley Photography Ridgelands of the Central Connecticut Valley Photography by Robert Pagini With essays by Peter M. Le and bad, to the beauty, joy, and solace of the Traprock Ridgelands of the central Connecticut Valley. Born

  9. GEOLOGY IN THE VICINITY OF THE HODGES COMPLEX AND THE TYLER LAKE GRANITE, WEST TORRINGTON, CONNECTICUT

    E-Print Network [OSTI]

    Merguerian, Charles

    , CONNECTICUT Charles Merguerian, Geology Department 114 Hofstra University, Hempstead, NY 11549 Email: Charles workers in western Connecticut have noted the abundance of Proterozoic Y gneiss and autochthonous lower Torrington, Connecticut, the Hodges mafic- ultramafic complex and the Tyler Lake granite are the products

  10. WELCOME TO GRADUATE MEDICAL EDUCATION AT THE UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE

    E-Print Network [OSTI]

    Page 21 WELCOME TO GRADUATE MEDICAL EDUCATION AT THE UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE. The University Of Connecticut School Of Medicine is committed to excellence in education, medical care with the goal of providing safe and appropriate patient care. The University Of Connecticut School Of Medicine

  11. Introduction Connecticut has a wealth of resources and services that can assist all students

    E-Print Network [OSTI]

    Oliver, Douglas L.

    July 2013 Introduction Connecticut has a wealth of resources and services that can assist all: A Comprehensive Guide to Resources and Services in Connecticut is an opportunity for educators, students and families throughout Connecticut to identify and access these secondary transition planning resources

  12. UNIVERSITY OF CONNECTICUT PEDIATRIC RESIDENCY PROGRAM Policy on Eligibility of Pediatric Residents

    E-Print Network [OSTI]

    Oliver, Douglas L.

    UNIVERSITY OF CONNECTICUT PEDIATRIC RESIDENCY PROGRAM Policy on Eligibility of Pediatric Residents In order to be eligible to be a pediatric resident in the University of Connecticut program, applicants a full unrestricted license to practice medicine in Connecticut. 4. Graduate of medical schools outside

  13. The Lichens of Aton Forest, Connecticut Author(s): Mason E. Hale, Jr.

    E-Print Network [OSTI]

    LeTourneau, Peter M.

    The Lichens of Aton Forest, Connecticut Author(s): Mason E. Hale, Jr. Source: The Bryologist, Vol OF ATON FOREST THE LICHENS OF ATON FOREST, CONNECTICUT MASONE. HALE, JR. INTRODUCTION During the summer, CONNECTICUT MASONE. HALE, JR. INTRODUCTION During the summer of 1949 the author studied the lichens of Aton

  14. 116 American Entomologist Summer 2005 Ground Beetles of Connecticut (Coleoptera: Carabidae,

    E-Print Network [OSTI]

    Sikes, Derek S.

    116 American Entomologist · Summer 2005 Ground Beetles of Connecticut (Coleoptera: Carabidae and Natural History Survey, Connecticut Depart- ment of Environmental Protection, Hartford 2001, 308 pp. Price, William Krinsky and Michael Oliver treat this diverse group for the state of Connecticut, providing

  15. University of Connecticut Provost Dr. Peter Nicholls, along with a delegation of

    E-Print Network [OSTI]

    Chandy, John A.

    University of Connecticut Provost Dr. Peter Nicholls, along with a delegation of university with the University of Connecticut. The DITE partnership is one component of the Middle East Partnership Initiative exceptional students who have a demonstrat- ed financial need. Dr. Pattipati is a University of Connecticut

  16. University of Connecticut School of Nursing, 231 Glenbrook Road, Storrs, CT 062692026 NEWS RELEASE

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut School of Nursing, 231 Glenbrook Road, Storrs, CT 062692026 NEWS, 2015 Storrs, CT - The University of Connecticut School of Nursing jumped 36 spots from a No. 79 ranking, students, community partners and alumni at the University of Connecticut's School of Nursing," said Dean

  17. OLENDER REPORTING, INC. 1100 Connecticut Avenue NW, #810, Washington, DC 20036

    E-Print Network [OSTI]

    1 OLENDER REPORTING, INC. 1100 Connecticut Avenue NW, #810, Washington, DC 20036 Washington: 202 Avenue17 Washington, D.C.18 19 20 21 22 #12;2 OLENDER REPORTING, INC. 1100 Connecticut Avenue NW, #810 #12;3 OLENDER REPORTING, INC. 1100 Connecticut Avenue NW, #810, Washington, DC 20036 Washington: 202

  18. UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE Pediatric Surgical Subspecialities Annual Report 2010-2011

    E-Print Network [OSTI]

    Kim, Duck O.

    UNIVERSITY OF CONNECTICUT SCHOOL OF MEDICINE Pediatric Surgical Subspecialities Annual Report 2010 the Department of Pediatric Surgical Subspecialties of Connecticut Children's Medical Center. Over the last year the children of our community. Connecticut Children's Medical Center remains the exclusive site for pediatric

  19. Directions to the University of Connecticut Storrs Campus From Bradley International Airport

    E-Print Network [OSTI]

    Olshevsky, Vadim

    Directions to the University of Connecticut ­ Storrs Campus From Bradley International Airport on Connecticut Route 195 about 6 miles to the University. (You will come to the intersection of Rt. 195 and Rt of the exit ramp. Travel south on Connecticut Route 195 about 6 miles to the University. (You will come

  20. University of Connecticut Stem Cell Core Registration Application for Human Embryonic Stem Cell Culture Training

    E-Print Network [OSTI]

    University of Connecticut Stem Cell Core Registration Application for Human Embryonic Stem Cell: (required) Date: #12;University of Connecticut Stem Cell Core Registration Application for Human Embryonic copy to: Internal Mail: MC-3301 OR Mail: UConn Stem Cell Core University of Connecticut Health Center

  1. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    using Renewable Fuels, Other Distributed Generation Technologies Connecticut Clean Energy Fund Connecticut's 1998 electric restructuring legislation (Public Act 98-28) created...

  2. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  3. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  4. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  5. APPLICATION FOR IN-STATE TUITION Instate tuition rates are a privilege authorized by the Connecticut General Statutes and are

    E-Print Network [OSTI]

    Kim, Duck O.

    by the Connecticut General Statutes and are awarded only upon successful application for instate tuition. Generally, as defined by Connecticut law, their parents or guardian) must be domiciled in the state of Connecticut. This means that Connecticut must be the individual's true, fixed and permanent home and place of habitation

  6. APPLICATION FOR In-state tuition rates are a privilege authorized by the Connecticut General Statutes and are

    E-Print Network [OSTI]

    Alpay, S. Pamir

    APPLICATION FOR In-state tuition rates are a privilege authorized by the Connecticut General is eligible for in-state tuition emancipated student who is domiciled in Connecticut; (2) as an unemancipated student whose parents are domiciled in Connecticut; (3) as a Connecticut resident who attended four years

  7. Geological Society of America Centennial Field Guide--Northeastern Section, 1987 The Geology of Cameron's Line, West Torrington, Connecticut

    E-Print Network [OSTI]

    Merguerian, Charles

    of Cameron's Line, West Torrington, Connecticut Charles Merguerian, Geology Department, Hofstra University, Connecticut, and consists of two stops in the West Torrington 7 ½-minute quadrangle (Fig. 1). They can be reached from Exit 44 of Connecticut 8 by traveling southwestward on Connecticut 202 (East Main Street

  8. Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million Cubic Feet)

  9. Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul AugAdditions (Million (Million Cubic

  10. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  11. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    , central generation concentrates emissions in a small area, whereas DG spreads emissions throughout an urban air basin. In contrast, conventional, centralized power plants tend to be located in remote areas by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

  12. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  13. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  14. The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson

    E-Print Network [OSTI]

    Dobson, Ian

    The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A on the robustness of the power transmission grid using a dynamic model of the power transmission system (OPA of the transmission grid. This intuitive improvement comes simply from the realization that less power would need

  15. Abstract--The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the

    E-Print Network [OSTI]

    Perreault, Dave

    1 Abstract--The penetration of plug-in electric vehicles and renewable distributed generation, power grids I. INTRODUCTION ROWING concern for climate change and energy security has renewed interest legislative effort to mandate, or incentivize, large scale integration of renewable energy resources

  16. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  17. WHAT CONNECTICUT COULD FACE Bracing for Climate Change

    E-Print Network [OSTI]

    by the Energy Foundation and the Emily Hall Tremaine Foundation. We gratefully acknowledge the comments and all staff at Connecticut Fund for the Environment (CFE), Madeline Weil (New Haven Community Clean Air Initiative), Haider Taha (Lawrence Berkeley National Laboratory), and Jim Marston, Eric Haxthausen, and Tim

  18. The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations

    Broader source: Energy.gov [DOE]

    Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

  19. THE GALACTIC SPATIAL DISTRIBUTION OF OB ASSOCIATIONS AND THEIR SURROUNDING SUPERNOVA-GENERATED SUPERBUBBLES

    SciTech Connect (OSTI)

    Higdon, J. C. [W. M. Keck Science Center, Claremont Colleges, Claremont, CA 91711-5916 (United States); Lingenfelter, R. E., E-mail: jhigdon@kecksci.claremont.edu, E-mail: rlingenfelter@ucsd.edu [Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-10-01

    The Galactic spatial distribution of OB associations and their surrounding superbubbles (SBs) reflect the distribution of a wide range of important processes in our Galaxy. In particular, it can provide a three-dimensional measure not only of the major source distribution of Galactic cosmic rays, but also the Galactic star formation distribution, the Lyman continuum ionizing radiation distribution, the core-collapse supernova distribution, the neutron star and stellar black hole production distribution, and the principal source distribution of freshly synthesized elements. Thus, we construct a three-dimensional spatial model of the massive-star distribution based primarily on the emission of the H II envelopes that surround the giant SBs and are maintained by the ionizing radiation of the embedded O stars. The Galactic longitudinal distribution of the 205 ?m N II radiation, emitted by these H II envelopes, is used to infer the spatial distribution of SBs. We find that the Galactic SB distribution is dominated by the contribution of massive-star clusters residing in the spiral arms.

  20. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

  1. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  2. Copyright 2013 University of Connecticut, All rights reserved. S. Demurjian and R. Saripalle. Supplemental Information for "A Software Modeling Approach to Ontology Design via

    E-Print Network [OSTI]

    Demurjian, Steven A.

    Copyright © 2013 University of Connecticut, All rights reserved. S. Demurjian and R. Saripalle ontology #12; Copyright © 2013 University of Connecticut, All rights reser

  3. The Sweet Taste of Defeat: American Electric Power Co v. Connecticut and Federal Greenhouse Gas Regulation

    E-Print Network [OSTI]

    Trisolini, Katherine A.

    2012-01-01

    contribute findings for greenhouse gases under section 202(Connecticut and Federal Greenhouse Gas Regulation KatherineWHAT NEXT? REDUCING GREENHOUSE GASES THROUGH STATE PUBLIC

  4. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location.

  5. Medium Frequency Power Distribution Architectures for Next Generation Photovoltaic Farms and Data Centers 

    E-Print Network [OSTI]

    Hafez, Bahaa Eldeen

    2015-08-06

    scale PV structure is shown to increase power density and improves system modularity while maintaining high efficiency levels. The PV panels power standard three phase voltage source inverters to generate MF ac voltage. Various voltage source inverter...

  6. West Simsbury, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy Resources JumpChicago,Islip,PointSimsbury, Connecticut:

  7. Westbrook Center, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia: Energy ResourcesTurin, New York:Westbrook Center, Connecticut:

  8. Glastonbury Center, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky:BoreOpenGilliam County,Glastonbury Center, Connecticut:

  9. Sandy Hook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources JumpDimas,Rey,Sanctuary,Sandown,Hook, Connecticut:

  10. South Windsor, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston,Windsor, Connecticut: Energy Resources

  11. South Woodstock, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergyHouston,Windsor, Connecticut: EnergyWoodstock,

  12. Southwood Acres, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to: navigation,Southwood Acres, Connecticut: Energy

  13. Connecticut Fuel Cell Programs - From Demonstration to Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE1 Connecticut

  14. CHOOSING A CHARGING STATION USING SOUND IN COLONY ROBOTICS GARY PARKER, CONNECTICUT COLLEGE, USA, PARKER@CONNCOLL.EDU

    E-Print Network [OSTI]

    Parker, Gary B.

    CHOOSING A CHARGING STATION USING SOUND IN COLONY ROBOTICS GARY PARKER, CONNECTICUT COLLEGE, USA, PARKER@CONNCOLL.EDU OZGUR IZMIRLI, CONNECTICUT COLLEGE, USA, OIZM@CONNCOLL.EDU ABSTRACT This research

  15. Nuclear Instruments and Methods in Physics Research A 566 (2006) 598608 The number distribution of neutrons and gamma photons generated in a

    E-Print Network [OSTI]

    Pázsit, Imre

    2006-01-01

    of neutrons and gamma photons generated in a multiplying sample Andreas Enqvista,�, Imre Pa´ zsita , Sara is an analytical derivation of the full probability distribution of the number of neutrons and photons generated. With the introduction of a modified factorial moment of the number of neutrons and gamma photons generated in fission

  16. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  17. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  18. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  19. Merguerian, Charles, 1996a, Cameron's Line mylonite zone in Connecticut and New York City -evidence for Taconian accretionary tectonics.

    E-Print Network [OSTI]

    Merguerian, Charles

    Merguerian, Charles, 1996a, Cameron's Line mylonite zone in Connecticut and New York City, Charles, 1996a, Cameron's Line mylonite zone in Connecticut and New York City - evidence for Taconian miogeoclinal basement-cover rocks. Based on surface- and subsurface mapping in the New York-Connecticut segment

  20. PRIVACY AND CONFIDENTIALITY OF PATIENT INFORMATION The University of Connecticut School of Medicine (UConn SOM) and affiliated sites establish

    E-Print Network [OSTI]

    Page 148 ` PRIVACY AND CONFIDENTIALITY OF PATIENT INFORMATION The University of Connecticut School patient information that is protected from disclosure by both Connecticut and federal laws in all respects with both Connecticut and federal laws, such as HIPAA. For the UConn Health's full policy

  1. Public Accessibility Form (Version 9/27/2012) Page 1 of 1 University of Connecticut Health Center (UCHC)

    E-Print Network [OSTI]

    Public Accessibility Form (Version 9/27/2012) Page 1 of 1 University of Connecticut Health Center of Connecticut Health Center or you may mail the completed form to: Dr. Gustavo Fernandez, University of Connecticut Health Center, 263 Farmington Ave., MC3505, Farmington, CT 06030-3505 . *All information must

  2. DESCRIPTION OF SPONSORING INSTITUTION The University of Connecticut School of Medicine (UConn SOM) is the sponsoring institution for

    E-Print Network [OSTI]

    Page 26 DESCRIPTION OF SPONSORING INSTITUTION The University of Connecticut School of Medicine/fellows. These hospitals include Connecticut Children's Medical Center, Hartford Hospital/Institute of Living, Hospital Connecticut, and the Veteran's Hospital-Newington campus. These seven hospitals make up the Capital Area

  3. School of Engineering, University of Connecticut www.engr.uconn.edu Winter 2005 Also In this Issue

    E-Print Network [OSTI]

    Chandy, John A.

    School of Engineering, University of Connecticut www.engr.uconn.edu Winter 2005 Also In this Issue: Engineering Jobs and Engineering Education in Connecticut see page 2 The Stanley Works Establishes see page 6 #12;The state of engineering education made recent headline news in Connecticut when

  4. School of Engineering, University of Connecticut www.engr.uconn.edu Summer 2004 Also In this Issue

    E-Print Network [OSTI]

    Chandy, John A.

    School of Engineering, University of Connecticut www.engr.uconn.edu Summer 2004 Also In this Issue Their Stuff 21ST Annual Connecticut Invention Convention Held in Storrs see page 9 #12;INTHISISSUE Professor by the Office of the Dean, School of Engineering at the University of Connecticut. 261 Glenbrook Road, Unit 2237

  5. Connecticut Controlled Substance Number (CSR) The State Department of Consumer Protection mandates that all residents/fellows (with or

    E-Print Network [OSTI]

    Page 55 Connecticut Controlled Substance Number (CSR) The State Department of Consumer Protection of Connecticut must be registered to prescribe any controlled substance to any patient. This is different than of Connecticut when renewal is required. Residents/fellows are required to renew their biennial registration

  6. 1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed Generation Planning

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . Hosseinian, M. Abedi, and Hamed Mohsenian-Rad, Member, IEEE Abstract--Most current regulations allow small investors into DG contracts that can significantly benefit the utility network. In this regard, a new contracts for committed-type DG projects to offset distribution network investment costs. On one hand

  7. University of Connecticut / Jason Pufahl, CISSP, CISM 1 INFORMATION SECURITY STRATEGIC

    E-Print Network [OSTI]

    Alpay, S. Pamir

    University of Connecticut / Jason Pufahl, CISSP, CISM 1 1 INFORMATION SECURITY STRATEGIC PLAN, CISSP, CISM 2 2 MISSION STATEMENT The mission of the Information Security Office (ISO) is to design ­ IMPLEMENTATION CYCLE #12;University of Connecticut / Jason Pufahl, CISSP, CISM 3 3 GOVERNANCE In recognition

  8. University of Connecticut Health Center Policy for Transporting, Shipping, Importing / Exporting Hazardous Materials

    E-Print Network [OSTI]

    Kim, Duck O.

    Hazardous Materials Policy The University of Connecticut Health Center requires that all materials classified as "hazardous materials" by the U.S. Department of Transportation and/or the State of Connecticut be transported in approved containers and in compliance with all transportation regulations. Hazardous materials

  9. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Efroymson, Rebecca Ann [ORNL; Sublette, K. [University of Tulsa; Ashwood, Tom L [ORNL

    2005-01-01

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their ability to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.

  10. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  11. FRONTIERSSPRING03Volume 14, Number 1 A Publication for the Alumni and Friends of the School of Engineering, University of Connecticut

    E-Print Network [OSTI]

    Chandy, John A.

    of Engineering, University of Connecticut www.engr.uconn.edu Engineering Establishes Homeland Security Center in Connecticut Construction Career Days 15 School Welcomes New Faculty and Staff 16 Faculty Test in Zero-G 19 DOE, School of Engineering at the University of Connecticut. 261 Glenbrook Road, Unit 2237 Storrs, Connecticut

  12. frontiersA Publication for the Alumni and Friends of the School of Engineering, University of Connecticut www.engr.uconn.edu

    E-Print Network [OSTI]

    Chandy, John A.

    of Connecticut www.engr.uconn.edu School of Engineering, University of Connecticut Winter 2002 Volume 13, Number the University of Connecticut. Another important development has been our creation of a new center of excellence dedicated to fuel cell research and applications, the Connecticut Global Fuel Cell Center (see page 4

  13. frontiersA Publication for the Alumni and Friends of the School of Engineering, University of Connecticut www.engr.uconn.edu

    E-Print Network [OSTI]

    Chandy, John A.

    of Connecticut www.engr.uconn.edu School of Engineering, University of Connecticut Summer 2001 Volume 13, Number 1 Engineering Honors Top Alumni & Friends frontiers Connecticut School Children Flex Creative Muscles at Invention Convention Connecticut School Children Flex Creative Muscles at Invention Convention

  14. Distributively generated near rings on the dihedral group of order eight 

    E-Print Network [OSTI]

    Willhite, Mary Lynn

    1970-01-01

    (~ ~@mbezeb Decemh. -. 1970 ABSTRACT Distributively Gene' ated Near Rings on the Dihedral Group of Order Eight. (December 1)70) Mary lynn Willhite, B. A. , Texas Christian University; Directed by: Dr. J. J. Malone, Jr. In this thesis, observations... OF TABLES TABLE 1 . THE DIHEDRAL GROUP D 2. THE ENDONORPHTSNS OF D Page 9 10 POSSIBLE KJLTIPLICATIONS FOR P=~ O, bi. . . 1$ 4-. POSSIBLE IIULTIPLICATIONS FOR P={ 0, 2a] . . . 18 5. AS OCIATIUE KH TIPLICATIONS FOR P=f0, 2a, b, 2a+b...

  15. Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program 

    E-Print Network [OSTI]

    Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

    2002-01-01

    The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

  16. Connecticut - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Informationmonthly gasoline price to fall toUranium MarketingYear Jan Feb MarYearX I AYear JanConnecticut

  17. East Brooklyn, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to: navigation, searchEarthcare ProductsBrooklyn, Connecticut:

  18. New Britain, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: Energy Resources JumpBritain, Connecticut: Energy

  19. New Haven County, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: EnergyHaven County, Connecticut: Energy Resources

  20. New Haven, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures LtdNeville, Ohio: EnergyHaven County, Connecticut: Energy

  1. North Granby, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNew Hampshire:source History View New PagesGranby, Connecticut:

  2. Old Saybrook, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI VenturesNewSt. Louis,EnergyOctillionEdisonOkmulgeeSaybrook, Connecticut:

  3. Constellation NewEnergy, Inc (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,CoalConcordia Electric Coop,ConsolidatedEnergyConnecticut) Jump

  4. City of Norwich, Connecticut (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler, Iowa (UtilityIowa PhoneNewfolden,Nixa,Norwich, Connecticut

  5. South Jersey Energy Company (Connecticut) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:SolkarSectorCompany (Connecticut) Jump to:

  6. Connecticut Fuel Cell Activities: Markets, Programs, and Models

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|ProgramsLake Paiute ReservationResourcesMarch2 DOE1 Connecticut Fuel

  7. Canton Valley, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,Cammack Village, Arkansas: EnergyCounty, Tennessee:Valley, Connecticut:

  8. Blue Hills, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental JumpInformationBio-GasIllinois: EnergyHills, Connecticut: Energy Resources Jump

  9. Covanta Mid-Connecticut Energy Biomass Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama: Energy Resources Jump to:|BabylonMid-Connecticut

  10. Windsor Locks, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:WindLuhrs GmbH Co

  11. New Canaan, Connecticut: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National MarineUSAIDCanaan, Connecticut: Energy Resources

  12. Connecticut Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalterOptimizing Photovoltaic MaterialsColoradoConnecticut

  13. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  14. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect (OSTI)

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12

    This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  15. Cost Effectiveness of ASHRAE Standard 90.1-2010 for the State of Connecticut

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-29

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in teh State of Connecticut.

  16. Vision for the University of Connecticut Technology Park Materials Discovery, Product Design & Development

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    · Additive Manufacturing and Nanoscale Processing · Fuel Cells, Sustainable Energy & Energy Management & Development and Advanced Manufacturing: Partnering with Industry to Accelerate Manufacturing Innovation for the Tech Park which will house the Connecticut Collaboratory for Materials & Manufacturing (C2M2

  17. Connecticut State University System Initiative for Nanotechnology-Related Equipment, Faculty Development and Curriculum Development

    SciTech Connect (OSTI)

    Broadbridge, Christine C.

    2013-03-28

    DOE grant used for partial fulfillment of necessary laboratory equipment for course enrichment and new graduate programs in nanotechnology at the four institutions of the Connecticut State University System (CSUS). Equipment in this initial phase included variable pressure scanning electron microscope with energy dispersive x-ray spectroscopy elemental analysis capability [at Southern Connecticut State University]; power x-ray diffractometer [at Central Connecticut State University]; a spectrophotometer and spectrofluorimeter [at Eastern Connecticut State University; and a Raman Spectrometer [at Western Connecticut State University]. DOE's funding was allocated for purchase and installation of this scientific equipment and instrumentation. Subsequently, DOE funding was allocated to fund the curriculum, faculty development and travel necessary to continue development and implementation of the System's Graduate Certificate in Nanotechnology (GCNT) program and the ConnSCU Nanotechnology Center (ConnSCU-NC) at Southern Connecticut State University. All of the established outcomes have been successfully achieved. The courses and structure of the GCNT program have been determined and the program will be completely implemented in the fall of 2013. The instrumentation has been purchased, installed and has been utilized at each campus for the implementation of the nanotechnology courses, CSUS GCNT and the ConnSCU-NC. Additional outcomes for this grant include curriculum development for non-majors as well as faculty and student research.

  18. PRE-DATED TIME SHEET -SUMMER 2015 THE UNIVERSITY OF CONNECTICUT IN OUT IN OUT IN OUT IN OUT

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    PRE-DATED TIME SHEET - SUMMER 2015 A.M. P.M. Daily Total Hours THE UNIVERSITY OF CONNECTICUT IN OUT TO: THE UNIVERSITY OF CONNECTICUT, OFFICE OF STUDENT FINANCIAL AID SERVICES, 233 GLENBROOK ROAD, U OF CONNECTICUT IN OUT IN OUT IN OUT IN OUT STUDENT PAYROLL-TIME SHEET FRI 05-29-15 SAT 05-30-15 Pay Period: 05

  19. Community Energy Systems and the Law of Public Utilities. Volume Nine. Connecticut

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01

    A detailed description of the laws and programs of the State of Connecticut governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  20. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect (OSTI)

    Durrell, Patrick R.; Accetta, Katharine [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen [Herzberg Astronomy and Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng, Eric W.; Zhang, Hongxin [Department of Astronomy, Peking University, Beijing 100871 (China); Mihos, J. Christopher [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Puzia, Thomas H.; Jordán, Andrés [Institute of Astrophysics, Pontificia Universidad Catolica, Av. Vicu'a Mackenna 4860, Macul 7820436, Santiago (Chile); Lançon, Ariane [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg (France); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cuillandre, Jean-Charles [Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743 (United States); Boissier, Samuel; Boselli, Alessandro [Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6 (Canada); Duc, Pierre-Alain [AIM Paris Saclay, CNRS/INSU, CEA/Irfu, Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Emsellem, Eric [Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval (France); CNRS, UMR 5574, ENS de Lyon (France); and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ?}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ?} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (?215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ? {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ? {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values slightly lower than but consistent with those derived for individual galactic halos. Taken as a whole, our results show that the production of the complex structures in the unrelaxed Virgo cluster core (including the production of the diffuse intracluster light) is an ongoing and continuing process.

  1. GRADUATION/SEPARATION REQUIREMENTS In order to graduate from a residency/fellowship program at the University of Connecticut School of

    E-Print Network [OSTI]

    at the University of Connecticut School of Medicine, a resident/fellow must: have passed USMLE Step 3, COMLEX Step program at the University of Connecticut School of Medicine. If a resident/fellow leaves a residency

  2. New England Real Estate Journal February 21 -27, 2014 11BVisit the paper online nerej.com Connecticut MetroHartford Alliance/Greater Hartford County

    E-Print Network [OSTI]

    Oliver, Douglas L.

    .com Connecticut MetroHartford Alliance/Greater Hartford County MetroHartford Alliance Sandra Johnson Metro Connecticut-Israel Technology Summit. Thiseventbroughttogether CEO's from Israel who interfaced with Connecticut leaders, venture capitalists, academia and business. These attendees not only flew in from Israel

  3. 112 BULLETIN O F THE UNITED STATES FISH COMMIBSION. SI.--OATCR O F SHAD I N CONNECTICUT P O R 1897.

    E-Print Network [OSTI]

    112 BULLETIN O F THE UNITED STATES FISH COMMIBSION. SI.--OATCR O F SHAD I N CONNECTICUT P O R 1897 ...................................................... 27 Connecticut River and tributaries : Hauling. The first shad was caught April 18 in the Connecticut River, 5 miles from the mouth. The mason closed

  4. A Publication of the Haskins Literacy Initiative Volume 1, Number 1 Summer 2007 ore than half of 4th graders in Connecticut read below grade level,

    E-Print Network [OSTI]

    of 4th graders in Connecticut read below grade level, whatever their race, means or gender, and economically. In Connecticut, forecasts for future prison construction are based on Grade 3 reading failure is being delivered in a growing number of schools in Connecticut--with promising results. Understanding how

  5. Revised Dates: 12/20/01, 6/11/02, 01/15/03; 07/25/12 UNIVERSITY OF CONNECTICUT HEALTH CENTER

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Revised Dates: 12/20/01, 6/11/02, 01/15/03; 07/25/12 UNIVERSITY OF CONNECTICUT HEALTH CENTER CORRECTIONAL MANAGED HEALTH CARE POLICY AND PROCEDURES FOR USE WITHIN THE CONNECTICUT DEPARTMENT OF CORRECTION and maintained by University of Connecticut Health Center (UCHC), Correctional Managed Health Care (CMHC

  6. Abstract--Application of individual distributed generators can cause as many problems as it may solve. A better way to

    E-Print Network [OSTI]

    , microturbines, photovoltaic, fuel cells and wind- power. Most emerging technologies such as micro-turbines, photovoltaic, fuel cells and gas internal combustion engines with permanent magnet generator require generation technologies permits generators to be placed optimally in relation to heat loads allowing for use

  7. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    E-Print Network [OSTI]

    McLinko, Ryan M.

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

  8. Will Connecticut Thrive in an Uncertain World: Exchange Volatility, Shifting Labor Markets,

    E-Print Network [OSTI]

    Alpay, S. Pamir

    , And Collapsing Oil Prices The Connecticut Economic Outlook: February 2015 Peter E. Gunther, Senior Research of the monetary union itself--a stunning fall in not just oil prices, but most commodities, and nearly and memory, as well as medical treatments to extend life, all providing consumers with manifold choices

  9. CONTINUOUS POWER SUPPLY FOR A ROBOT COLONY GARY PARKER, CONNECTICUT COLLEGE, USA, parker@conncoll.edu

    E-Print Network [OSTI]

    Parker, Gary B.

    -prey issues). A continuous power supply offers the benefit of reducing possible human intervention in the lifeCONTINUOUS POWER SUPPLY FOR A ROBOT COLONY GARY PARKER, CONNECTICUT COLLEGE, USA, parker, kanor@conncoll.edu ABSTRACT A continuous power supply for the robots of a colony is presented

  10. Abbott, Albert G., Professor, Genetics and Biochemistry. BS, University of Connecticut, 1976; PhD, Brown

    E-Print Network [OSTI]

    Stuart, Steven J.

    of Connecticut, 1976; PhD, Brown University, 1980 Abbott, Sherrie Wilder, Lecturer, School of Nursing. BSN, Emory Abramovitch, Rudolph A., Professor, Chemistry. BS, Alexandria University (Egypt), 1950; PhD, 1953, DSc, 1964 (England), 1962; MS, Clemson University, 1963; PhD, Nottingham Trent University (England), 1967 Adams

  11. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Second Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2009-05-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The evaluation period in this report (January 2008 through February 2009) has been chosen to coincide with a UTC Power propulsion system changeout that occurred on January 15, 2008.

  12. THE UNIVERSITY OF CONNECTICUT HEALTH CENTER JOHN DEMPSEY HOSPITAL, UMG/UCHP

    E-Print Network [OSTI]

    Oliver, Douglas L.

    residents whose household income does not exceed 250% of the Federal Income Poverty Guidelines for a family of Connecticut legal residents whose household income does not exceed 250% of the Federal Income Poverty of income to qualify for charity care. Federal Income Poverty Guidelines will be adjusted annually based

  13. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  14. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect (OSTI)

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  15. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    SciTech Connect (OSTI)

    Kisohara, N. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (Japan); Suzuki, H.; Akita, K. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Kasahara, N. [Dept. of Nuclear Engineering and Management, Univ. of Tokyo (Japan)

    2012-07-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  16. Temporal and spatial distribution of fishes in the upper Galveston Bay System with particular reference to the cooling water system of Cedar Bayou Generating Station 

    E-Print Network [OSTI]

    Holt, Scott Allen

    1976-01-01

    1I:MPORAL AND SPATIAL DISTRIBUTION OF FISHES IN THE UPPER GALVESTON BAY SYSTEM WITH PARTICULAR REFERENCE TO THE COOLING WATER SYSTEM OF CEDAR BAYOU GENERATING STATION A Thesis by SCOTT ALLEN HOLT Submitted to the Graduate College of Texas A... This research was made possible by a grant from Hou-ton Lighting 6 Power Company to the Department of Wildlife and Fisheries Scier. es and the Texas Agricultural Experiment Station (Project 1869-2781) . I would like to express my appreciation to Dr. Kirk...

  17. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  18. The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    E-Print Network [OSTI]

    Bareford, M R; Van der Linden, R A M

    2011-01-01

    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy sta...

  19. Update of Summer Reformulated Gasoline Supply Assessment for New York and Connecticut

    Reports and Publications (EIA)

    2004-01-01

    In October 2003, the Energy Information Administration (EIA) published a review of the status of the methyl tertiary butyl ether (MTBE) ban transition in New York (NY) and Connecticut (CT) that noted significant uncertainties in gasoline supply for those states for the summer of 2004. To obtain updated information, EIA spoke to major suppliers to the two states over the past several months as the petroleum industry began the switch from winter- to summer-grade gasoline.

  20. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  1. Distribution, volume, and depositional origin of Upper Eocene bolide-generated sediments along the U. S. East Coast

    SciTech Connect (OSTI)

    Poag, C.W.; Poppe, L.J. (Geological Survey, Woods Hole, MA (United States)); Powars, D.S.; Mixon, R.B. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Upper Eocene bolidites (bolide-generated sedimentary deposits) appear to form a continuous coastwise band, 600 km long and 30--100 km wide, from North Carolina to New Jersey (> 65,000 km[sup 2]). The authors sampled these deposits in 14 boreholes (cores and rotary cuttings) and identified them on 36 offshore seismic-reflection profiles. Cores from the bolidites contain allogenic phenoclasts and fossils, as well as shock-altered minerals and tektite glass. On seismic profiles, the bolidites commonly exhibit interrupted, chaotic reflections and fill elongate or ovate excavations. Maximum bolidite thickness offshore is 500m in the presumed impact crater (New Jersey Continental Shelf); maximum thickness onshore is > 60m (southeastern Virginia). Estimated bolidite volume is at least 1,700km[sup 3]. Disparate depositional processes formed four types of bolidites: (1) chaotic fill within the impact crater; (2) stratified( ) ejecta around the crater; (3) ejecta-bearing debrite at Deep Sea Drilling Project Site 612 (New Jersey slope); and (4) impact tsunamiite in North Carolina, Virginia, Maryland, and New Jersey.

  2. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  3. Seminar Series2014-2015 ACADEMIC YEAR Friday 2:00 p.m. to 3:00 p.m.* UConn Health Low Auditorium Video Conference to Connecticut Children's Conference Room & Jackson Labs, Bar Harbor, ME

    E-Print Network [OSTI]

    Kim, Duck O.

    Auditorium · Video Conference to Connecticut Children's Conference Room & Jackson Labs, Bar Harbor, ME WWW.CONNECTICUTCHILDRENS.ORG 282 Washington Street, Hartford, CT 06106, © 2015 Connecticut Children's Medical Center. All rights, Division of Pain and Palliative Medicine Persistent Bowel UConn Health Connecticut Children's Medical

  4. School of Dental Medicine Academic Plan As an integral member at the University of Connecticut, the School of Dental Medicine is committed to

    E-Print Network [OSTI]

    Oliver, Douglas L.

    as the University of Connecticut's Academic Plan. The SDM Academic Plan includes six major Goals or domains, relatedSchool of Dental Medicine Academic Plan 2011-2016 As an integral member at the University of Connecticut, the School of Dental Medicine is committed to fulfillment of both its unique aspirations

  5. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  6. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

  7. Bibliometric analysis of distributed generation

    E-Print Network [OSTI]

    Woon, Wei Lee

    This paper presents an application of term frequency (TF) as a means of identifying useful trends from text documents. Of particular interest is the relationship between publication patterns, as characterized by TF, and ...

  8. EIA - Distributed Generation in Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S TheEnergyEnergy Markets 9,

  9. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    Broader source: Energy.gov [DOE]

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  10. Connecticut Transit (CTTRANSIT) Fuel Cell Transit Bus: Third Evaluation Report and Appendices

    SciTech Connect (OSTI)

    Chandler, K.; Eudy, L.

    2010-01-01

    This report describes operations at Connecticut Transit (CTTRANSIT) in Hartford for one prototype fuel cell bus and three new diesel buses operating from the same location. The prototype fuel cell bus was manufactured by Van Hool and ISE Corp. and features an electric hybrid drive system with a UTC Power PureMotion 120 Fuel Cell Power System and ZEBRA batteries for energy storage. The fuel cell bus started operation in April 2007, and evaluation results through October 2009 are provided in this report.

  11. AMO Industrial Distributed Energy: Industrial Distributed Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in owning and operating costs, thereby improving the economics of distributed power generation using reciprocating gas engines. Caterpillar's Phase I technologies have...

  12. The New York Stem Cell Foundation Requests Applications from researchers in New York, New Jersey, and Connecticut for

    E-Print Network [OSTI]

    The New York Stem Cell Foundation Requests Applications from researchers in New York, New Jersey invites applications from postdoctoral fellows at institutions within New York, New Jersey at an academic institution in New York, New Jersey, or Connecticut Be a U.S. citizen, U.S. legal resident

  13. Return to poisonmaterials@uchc.edu Page 1 Connecticut Poison Control Center 2014 Video Contest Entry Form

    E-Print Network [OSTI]

    Kim, Duck O.

    Return to poisonmaterials@uchc.edu Page 1 Connecticut Poison Control Center 2014 Video Contest Poison Control Center 2014 Video Contest. I have reviewed and agree to abide by the contest rules and requirements. By signing, I acknowledge that all video submissions become property of the CT Poison Control

  14. Lender Selection Policy The University of Connecticut maintains a list of suggested alternative (private loan) lenders that we

    E-Print Network [OSTI]

    Lender Selection Policy The University of Connecticut maintains a list of suggested alternative (private loan) lenders that we believe offer competitive pricing, easy loan processing, and strong customer service. You may choose one of our suggested lenders or any other lender who participates in the private

  15. CONFIRMATORY SURVEY RESULTS FOR PORTIONS OF THE ABB COMBUSTION ENGINEERING SITE IN WINDSOR, CONNECTICUT DURING THE FALL OF 2011

    SciTech Connect (OSTI)

    Wade C. Adams

    2011-12-09

    From the mid-1950s until mid-2000, the Combustion Engineering, Inc. (CE) site in Windsor, Connecticut (Figure A-1) was involved in the research, development, engineering, production, and servicing of nuclear fuels, systems, and services. The site is currently undergoing decommissioning that will lead to license termination and unrestricted release in accordance with the requirements of the License Termination Rule in 10 CFR Part 20, Subpart E. Asea Brown Boveri Incorporated (ABB) has been decommissioning the CE site since 2001.

  16. INSTRUCTIONS: Complete this form if you wish to establish, change, or cancel a direct deposit account with the State of Connecticut. Please note that this form will affect payments issued from all State payrolls regardless of agency. If you have any quest

    E-Print Network [OSTI]

    Lozano-Robledo, Alvaro

    account with the State of Connecticut. Please note that this form will affect payments issued from all the University of Connecticut Payroll Department at (860) 486-2423. SECTION I EMPLOYEE INFORMATION SECTION II OF CONNECTICUT ("STATE") TO ELECTRONICALLY DEPOSIT ALL DEDUCTION MONIES OWED TO ME TO THE BANK NAMED ABOVE

  17. Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16-18, 2007 San Antonio Abstract--Application of individual distributed generators can

    E-Print Network [OSTI]

    Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16 a system approach which views generation and associated loads as a subsystem or a "microgrid". The sources verification of the Consortium for Electric Reliability Technology Solutions (CERTS) microgrid control concepts

  18. Performance House: A Cold Climate Challenge Home, Old Greenwich, Connecticut (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-11-01

    By working with builder partners on test homes, researchers from the U.S. Department of Energy's Building America program can vet whole-house building strategies and avoid potential unintended consequences of implementing untested solution packages on a production scale. To support this research, Building America team Consortium for Advanced Residential Buildings (CARB) partnered with Preferred Builders Inc. on a high-performance test home in Old Greenwich, Connecticut. The philosophy and science behind the 2,700 ft2 "Performance House" was based on the premise that homes should be safe, healthy, comfortable, durable, efficient, and adaptable to the needs of homeowners. The technologies and strategies used in the "Performance House" were best practices rather than cutting edge, with a focus on simplicity in construction, maintenance, and operation. Achieving 30% source energy savings compared with a home built to the 2009 International Energy Conservation Code in the cold climate zone requires that nearly all components and systems be optimized. Careful planning and design are critical. The end result was a DOE Challenge Home that achieved a Home Energy Rating System (HERS) Index Score of 20 (43 without photovoltaics [PV]).

  19. Radiological survey results at the former Bridgeport Brass Company facility, Seymour, Connecticut

    SciTech Connect (OSTI)

    Foley, R.D.; Carrier, R.F.

    1993-06-01

    At the request of the US Department of Energy (DOE), a team from Oak Ridge National Laboratory conducted a radiological survey of the former Bridgeport Brass Company facility, Seymour, Connecticut. The survey was performed in May 1992. The purpose of the survey was to determine if the facility had become contaminated with residuals containing radioactive materials during the work performed in the Ruffert building under government contract in the 1960s. The survey included a gamma scanning over a circumscribed area around the building, and gamma and beta-gamma scanning over all indoor surfaces as well as the collection of soil and other samples for radionuclide analyses. Results of the survey demonstrated radionuclide concentrations in indoor and outdoor samples, and radiation measurements over floor and wall surfaces, in excess of the DOE Formerly Utilized Sites Remedial Action Program guidelines. Elevated uranium concentrations outdoors were limited to several small, isolated spots. Radiation measurements exceeded guidelines indoors over numerous spots and areas inside the building, mainly in Rooms 1--6 that had been used in the early government work.

  20. Evidence for old crust in the provenance of the Trap Falls Formation, southwestern Connecticut

    SciTech Connect (OSTI)

    McDaniel, D.K.; Sevigny, J.H.; Bock, B.; Hanson, G.N.; McLennan, S.M. . Dept. of Earth and Space Sciences)

    1993-03-01

    The Trap Fall Formation is a multiply deformed, amphibolite facies metasedimentary sequence in southwestern Connecticut. It contains interlayered pelitic schists and lesser quartzites, and may represent turbidites. The major element compositions of 3 schists are compatible with a shale protolith. Their aluminous nature (CIA = 68--70) suggests a weathering history in the source, but may in part be a result of metamorphic processes. High SiO[sub 2] (85--91%) and Zr (305--370 ppm) concentrations in the quartzites are consistent with a significant component of recycled sediment in the source. A single abraded detrital zircon from a quartzite gives a concordant U-Pb age of 1,009 [plus minus] 6 Ma and suggests a source in Grenville-aged crust. E[sub Nd] at 450 Ma of [minus] 9.2 for one schist sample is also consistent with older crust. REE patterns for 2 pelitic schists and a quartzite (Fig.) are parallel to PAAS (post-Archean average shale). Thus the authors suggest that recycled sediment derived from older cratonic sources dominates the source for the Trap Falls Formation. Models for the tectonic setting of deposition should be consistent with these observations.

  1. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  2. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  3. Species composition, distribution, and seasonal abundance of macro-zooplankton in intake and discharge areas before and during early operation of the Cedar Bayou generating station 

    E-Print Network [OSTI]

    Kalke, Richard D

    1972-01-01

    on the aquatic organisms when water is used for cooling by a steam electric generating station. Countant (1970) and Markowski (1959) state that the principle changes are: (1) increase in pressure caused by the pumps, (2) elevation in temperature, (3... proper use of a 0. 5 m plankton net (Figure 2). Stations too shallow for sampling were 3, 6, 9, 12-14, 18-21, and 24 and these are omitted from this report. Tabbs Bay Plankton Stations I and 2 were located in lower Tabbs Bay near the intake canal...

  4. Diophantine Generation,

    E-Print Network [OSTI]

    Shlapentokh, Alexandra

    Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

  5. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  6. Hardware simulation of diesel generator and microgrid stability

    E-Print Network [OSTI]

    Zieve, Michael M

    2012-01-01

    Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

  7. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and...

  8. National incinerator testing and evaluation program: The environmental characterization of refuse-derived fuel (RDF) Combustion Technology, Mid-Connecticut Facility, Hartford, Connecticut. Final report, June 1987-March 1993

    SciTech Connect (OSTI)

    Finklestein, A.; Klicius, R.D.

    1994-12-01

    The report gives results of an environmental characterization of refuse-derived (RDF) semi-suspension burning technology at a facility in Hartford, Connecticut, that represents state-of-the-art technology, including a spray dryer/fabric filter flue-gas cleaning (FGC) system for each unit. Results were obtained for a variety of steam production rates, combustion conditions, flue gas temperatures, and acid gas removal efficiencies. All incoming wastes and residue streams were weighed, sampled, and analyzed. Key combustor and FGC system operating variables were monitored on a real time basis. A wide range of analyses for acid gases, trace organics, and heavy metals was carried out on gas emissions and all ash residue discharges.

  9. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

  10. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  11. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Mercantile Education Office Fig. 3 January Electricity LoadEducation Small Large Office Small Large Table 5. PG&E Electricity and

  12. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    of thermal storage in building CHP systems key to theirFlows in a Commercial Building CHP Installation Figure 3. Ausing CHP in typical commercial buildings are daunting and

  13. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Carbon emissions rate from burning natural gas to meet heating and cooling loads (kg/kWh) Natural gas price

  14. Distributed Key Generation for Secure Encrypted Deduplication

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    , China duan@rd.netease.com Abstract. Large-scale storage systems often attempt to achieve two seemingly Deduplication is a very important technique that many storage systems use to reduce cost. It exploits- plication has seen wide-spread use and been built into many production cloud storage systems such as Dropbox

  15. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudor GardensTechnologies DGT Jump

  16. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmentalAHRI Regulatory Burden

  17. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service2010)RegionalRegulation-1Webinar May

  18. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchidxOsCompOstOther

  19. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK LtdWisconsin:Missouri:LLC Jump

  20. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind FarmAreaDiscussionSystems