National Library of Energy BETA

Sample records for distributed generation technology

  1. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  2. Distributed generation: Early markets for emerging technologies

    SciTech Connect (OSTI)

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  3. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  4. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Solar Electric Power

  5. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  6. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems ... or UChicago Argonne, LLC. ANLESD08-4 Fuel Cycle Comparison of Distributed Power ...

  7. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  8. NREL: Energy Analysis - Distributed Generation Energy Technology Capital

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Costs Bookmark and Share Distributed Generation Energy Technology Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific

  9. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates: 39.93746, -84.553194 Show Map Loading...

  10. Technology for distributed generation in a global marketplace

    SciTech Connect (OSTI)

    Leeper, J.D.; Barich, J.T.

    1998-12-31

    During the last 20 years, great strides have been made in the development and demonstration of distributed generation technologies. Wind, phosphoric acid fuel cells, and photovoltaic systems are now competitive in selected niche markets. Other technologies such as MTG, higher temperature fuel cells, and fuel cell hybrids are expected to become competitive in selected applications in the next few years. As the electric utility industry moves toward restructuring and increasing demand in emerging countries, one can expect even greater demand for environmentally friendly distributed generation technologies.

  11. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  12. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  13. ARPA-E Announces $30 Million for Distributed Generation Technologies

    Broader source: Energy.gov [DOE]

    REBELS Program Aims to Develop Innovative Intermediate-Temperature Fuel Cells for Low-Cost Stationary Power Generation

  14. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  15. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  16. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  17. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  18. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  19. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  20. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  1. Quadrennial Technology Review's Alternative Generation Workshop Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Review's Alternative Generation Workshop Slides Quadrennial Technology Review's Alternative Generation Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power, Wind Power, Water Power, Geothermal Energy, and Fuel Cells for Distributed Generation. PDF icon Quadrennial Technology Review's Alternative Generation Workshop Slides More Documents & Publications Department of Energy Quadrennial

  2. Fuel cells in distributed generation

    SciTech Connect (OSTI)

    O'Sullivan, J.B.

    1999-07-01

    In the past the vertically integrated electric utility industry has not utilized Distributed Generation (DG) because it was viewed as competition to central station power production. Gas utilities have been heavily and aggressively involved in the promotion of gas fired DG because for them it is additional load that may also balance the winter load. With deregulation and restructuring of the electricity industry DG is now viewed in a different light. For those utilities that have sold their generation assets DG can be a new retail service to provide to their customers. For those who are still vertically integrated, DG can be an asset management tool at the distribution level. DG can be utilized to defer capital investments involving line and substation upgrades. Coupled to this new interest in DG technologies and their performance characteristics are the associated interests in implementation issues. These range from the codes and standards requirements and hardware for interfacing to the grid as well as C{sup 3}-I (command, control, communication--intelligence) issues. The latter involves dispatching on-grid or customer sited resources, monitoring their performance and tracking the economic transactions. Another important aspect is the impact of DG resources (size, number and location) on service area dynamic behavior (power quality, reliability, stability, etc.). EPRI has ongoing programs addressing all these aspects of DG and the distribution grid. Since fuel cells can be viewed as electrochemical engines, and as with thermomechanical engines, there doesn't have to be a best fuel cell. Each engine can serve many markets and some will be better suited than others in a specific market segment (e.g. spark ignition in cars and turbines in planes). This paper will address the status of developing fuel cell technologies and their application to various market areas within the context of Distributed Generation.

  3. Distributed generation - the fuel processing example

    SciTech Connect (OSTI)

    Victor, R.A.; Farris, P.J.; Maston, V.

    1996-12-31

    The increased costs of transportation and distribution are leading many commercial and industrial firms to consider the on-site generation for energy and other commodities used in their facilities. This trend has been accelerated by the development of compact, efficient processes for converting basic raw materials into finished services at the distributed sites. Distributed generation with the PC25{trademark} fuel cell power plant is providing a new cost effective technology to meet building electric and thermal needs. Small compact on-site separator systems are providing nitrogen and oxygen to many industrial users of these gases. The adaptation of the fuel processing section of the PC25 power plant for on-site hydrogen generation at industrial sites extends distributed generation benefits to the users of industrial hydrogen.

  4. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  5. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  6. Capturing the benefits of distributed generation

    SciTech Connect (OSTI)

    Coles, L.R.

    1999-11-01

    Existing and future distributed generation (DG) can provide significant benefits to customers, utilities and other service providers. For the customer, these benefits could include improved reliability, better power quality and lower costs. For the utility distribution company, these benefits could include deferral of costly distribution upgrades and local voltage support. For the region`s generation and transmission suppliers, DG can provide dependable capacity supply, relief from transmission constraints, and ancillary transmission services such as reactive supply and supplemental reserves. The promise of DG technologies is strong. The technical hurdles to capturing these benefits are being met with improved generators and with enhanced command, control, and communications technologies. However, institutional and regulatory hurdles to capturing these distributed generation benefits appear to be significant. Restructuring for retail access and the delamination of utilities into wires companies and generation companies may make it difficult to capture many of the multiple benefits of DG. Policy-makers should be aware of these factors and strive to craft policies and rules that give DG a fair change to deliver these strong benefits.

  7. Stationary/Distributed Generation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Stationary/Distributed Generation Projects Stationary/Distributed Generation Projects Stationary power is the most mature application for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation (in which excess thermal energy from electricity generation is used for heat). Approximately, 600 systems that produce 10 kilowatts or more

  8. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, ...

  9. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory ...

  10. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory Considerations for Developing Distributed Generation Projects. PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for

  11. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Webinar May 23, 2012 | Department of Energy Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects PDF icon regulatory_considerations_052312.pdf More Documents & Publications Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory

  12. Distributed Generation: Challenges and Opportunities, 7. edition

    SciTech Connect (OSTI)

    2007-10-15

    The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

  13. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle ...

  14. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  15. Distributed Generation Operational Reliability, Executive Summary Report,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the project, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center (ESC), New York State Energy Research and Development Authority

  16. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. ...

  17. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of ...

  18. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  19. Distributed Generation Operational Reliability and Availability Database,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Report, January 2004 | Department of Energy Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final report documents the results of an 18-month project entitled, "Distributed Generation Market Transformation Tools: Distributed Generation Reliability and Availability Database," sponsored by Oak Ridge National Laboratory (ORNL), Energy Solutions Center

  20. Modeling Distributed Generation in the Buildings Sectors

    Reports and Publications (EIA)

    2013-01-01

    This report focuses on how the Energy Information Administrationmodels residential and commercial sector distributed generation, including combined heat and power, for the Annual Energy Outlook.

  1. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the ...

  2. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final ...

  3. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list of pilot programs and case studies, with links to those...

  4. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural ...

  5. NREL: Distributed Grid Integration - Technology Development Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Development Projects NREL works on several distributed energy integration technology development projects, including the following: High Penetration Photovoltaics Hydrogen Systems Research Metering Solutions Mobile Electric Power Printable Version Distributed Grid Integration Home Capabilities Projects Codes & Standards Data Collection & Visualization Hawaii Clean Energy Initiative Microgrids Power Systems Modeling Solar Distributed Grid Integration Technology Development High

  6. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  7. NiSource Energy Technologies Inc.: System Integration of Distributed Power for Complete Building Systems

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

  8. Elimination of direct current distribution systems from new generating stations

    SciTech Connect (OSTI)

    Jancauskas, J.R.

    1996-12-31

    This paper advances the concept that it may be both possible and advantageous to eliminate the traditional direct current distribution system from a new generating station. The latest developments in uninterruptible power supply (UPS) technology are what have made this option technically feasible. A traditional dc distribution system will be compared to an ac distribution system supplied by a UPS to investigate the merits of the proposed approach.

  9. Next-Generation Wind Technology | Department of Energy

    Energy Savers [EERE]

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase ...

  10. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2006-06-16

    Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

  11. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified

  12. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet

  13. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  14. Proposed methodologies for evaluating grid benefits of distributed generation

    SciTech Connect (OSTI)

    Skowronski, M.J.

    1999-11-01

    As new Distributed Generation technologies are brought to the market, new hurdles to successful commercialization of these promising forms of on-site generation are becoming apparent. The impetus to commercialize these technologies has, up to now, been the value and benefits that the end user derives from the installation of Distributed Generation. These benefits are primarily economic as Distributed Generation is normally installed to reduce the customer utility bill. There are, however, other benefits of Distributed Generation other than the reduction in the cost of electric service, and these benefits normally accrue to the system or system operator. The purpose of this paper is to evaluate and suggest methodologies to quantify these ancillary benefits that the grid and/or connecting utility derive from customer on-site generation. Specifically, the following are discussed: reliability in service; transmission loss reduction; spinning and non-spinning reserve margin; peak shaving and interruptible loads; transmission and distribution deferral; VAR support/power quality; cogeneration capability; improvement in utility load factor fuel diversity; emission reductions; and qualitative factors -- reduced energy congestion, less societal disruption, faster response time, black start capability, system operation benefits.

  15. A Bio-Based Fuel Cell for Distributed Energy Generation

    SciTech Connect (OSTI)

    Anthony Terrinoni; Sean Gifford

    2008-06-30

    The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

  16. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  17. Gas-Fired Distributed Energy Resource Technology Characterizations

    SciTech Connect (OSTI)

    Goldstein, L.; Hedman, B.; Knowles, D.; Freedman, S. I.; Woods, R.; Schweizer, T.

    2003-11-01

    The U. S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) is directing substantial programs in the development and encouragement of new energy technologies. Among them are renewable energy and distributed energy resource technologies. As part of its ongoing effort to document the status and potential of these technologies, DOE EERE directed the National Renewable Energy Laboratory to lead an effort to develop and publish Distributed Energy Technology Characterizations (TCs) that would provide both the department and energy community with a consistent and objective set of cost and performance data in prospective electric-power generation applications in the United States. Toward that goal, DOE/EERE - joined by the Electric Power Research Institute (EPRI) - published the Renewable Energy Technology Characterizations in December 1997.As a follow-up, DOE EERE - joined by the Gas Research Institute - is now publishing this document, Gas-Fired Distributed Energy Resource Technology Characterizations.

  18. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  19. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, ...

  20. Property:Distributed Generation System Enclosure | Open Energy...

    Open Energy Info (EERE)

    + Outdoor + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Dedicated Shelter + Distributed Generation StudySUNY Buffalo + Outdoor +...

  1. Property:Distributed Generation Prime Mover | Open Energy Information

    Open Energy Info (EERE)

    G3508 + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Caterpillar G379 + Distributed Generation StudySUNY Buffalo + Capstone C60 +...

  2. Advanced Distributed Generation LLC ADG | Open Energy Information

    Open Energy Info (EERE)

    Distributed Generation LLC ADG Jump to: navigation, search Name: Advanced Distributed Generation LLC (ADG) Place: Toledo, Ohio Zip: OH 43607 Product: ADG is a general contracting...

  3. Distributive Distillation Enabled by Microchannel Process Technology

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: Distributive Distillation Enabled by Microchannel Process Technology Citation Details In-Document Search Title: Distributive Distillation Enabled by Microchannel Process Technology × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  4. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  5. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE)...

  6. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells ...

  7. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  8. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  9. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in ...

  10. Category:Electricity Generating Technologies | Open Energy Information

    Open Energy Info (EERE)

    Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

  11. Renewable Energy: Distributed Generation Policies and Programs | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Distributed Generation Policies and Programs Renewable Energy: Distributed Generation Policies and Programs Distributed generation is the term used when electricity is generated from sources, often renewable energy sources, near the point of use instead of centralized generation sources from power plants. State and local governments can implement policies and programs regarding distributed generation and its use to help overcome market and regulatory barriers to implementation.

  12. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop -...

  13. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Environmental Management (EM)

    Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and ...

  14. MHK Technologies/Platform generators | Open Energy Information

    Open Energy Info (EERE)

    homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating...

  15. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  16. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  17. Assessment of Distributed Generation Potential in JapaneseBuildings

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

    2005-05-25

    To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

  18. Caterpillar`s advanced reciprocating engine for distributed generation markets

    SciTech Connect (OSTI)

    Gerber, G.; Brandes, D.; Reinhart, M.; Nagel, G.; Wong, E.

    1999-11-01

    Competition in energy markets and federal and state policy advocating clean, advanced technologies as means to achieve environmental and global climate change goals are clear drivers to original equipment manufacturers of prime movers. Underpinning competition are the principle of consumer choice to facilitate retail competition, and the desire to improve system and grid reliability. Caterpillar`s Gas Engine Division is responding to the market`s demand for a more efficient, lower lifecycle cost engine with reduced emissions. Cat`s first generation TARGET engine will be positioned to effectively serve distributed generation and combined heat and power (CHP) applications. TARGET (The Advanced Reciprocating Gas Engine Technology) will embody Cat`s product attributes: durability, reliability, and competitively priced life cycle cost products. Further, Caterpillar`s nationwide, fully established dealer sales and service ensure continued product support subsequent to the sale and installation of the product.

  19. Feasibility Study of Sustainable Distributed Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction to Duck Valley * High Desert * Very Remote * Primary Industries - Ranching - Fishing and Hunting - Agriculture - Tribal Government - Indian Health Services Feasibility ...

  20. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  1. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  2. Property:Distributed Generation Function | Open Energy Information

    Open Energy Info (EERE)

    Function Jump to: navigation, search Property Name Distributed Generation Function Property Type Page Description A description of the function(s) for which the Distributed...

  3. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012_distributed_wind_technologies_market_report.pdf More Documents & Publications

  4. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications The 2012 Market Report on U.S. Wind Technologies in Distributed Applications is an annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012

  5. Distributed generation capabilities of the national energy modeling system

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

    2003-01-01

    This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

  6. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station Based on GEGR SCPO Technology (Presentation) Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived ...

  7. Clean distributed generation performance and cost analysis

    SciTech Connect (OSTI)

    None, None

    2004-04-01

    This assessment examined the performance, cost, and timing of ultra-low emissions CHP technologies driven by certain air quality regions in the U.S.

  8. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to an average of 33% today, up from

  9. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  10. Dispatchable Distributed Generation: Manufacturing's Role in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing Presentation.pdf PDF icon Adams ERCOTDOE DER.PDF PDF icon WASHOM Austin ... 10 2016.pdf More Documents & Publications R&D For Dispatchable Distributed Energy ...

  11. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 43607 Sector: Solar Product: Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone Number: 419-725-3401...

  12. Overview of Thermoelectric Power Generation Technologies in Japan |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  13. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  14. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... responsible for a required UFLS program, UVLS program, Special Protection System or Transmission Protection System. Generator OwnerOperator Individual Plant > 20 MVA ...

  15. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80228 Region: Rockies Area Sector: Wind energy Product: Developer of electricity generation wind power facilities Website: www.disgenonline.com Coordinates:...

  16. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  17. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  18. Overview of the Distributed Generation Interconnection Collaborative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 17, 2013 Overview presentation for group call, 1:00-2:30EST 2 October 21,2013 NREL and EPRI facilitated workshop of electric utilities, PV developers, PUCs, and other stakeholders to discuss the formulation of a collaborative effort focused on distributed PV interconnection: - Data and informational gaps/needs - Persistent challenges - Replicable innovation - Informed decision making and planning for anticipated rise in distributed PV interconnection Based on stakeholder input and

  19. Poland - Economic and Financial Benefits of Distributed Generation...

    Open Energy Info (EERE)

    Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP AgencyCompany Organization Argonne National Laboratory Sector Energy...

  20. The Value of Distributed Generation (DG) under Different Tariff...

    Open Energy Info (EERE)

    URI: cleanenergysolutions.orgcontentvalue-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible...

  1. High Penetration Solar Distributed Generation Study on Oahu

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Penetration Solar Distributed Generation Study on Oahu In 2008, the Hawaii Clean Energy Initiative (HCEI) set a ... to understand the impact on the entire electric power system. ...

  2. The Potential Benefits of Distributed Generation and the Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits ...

  3. Distributed Generation Systems Inc DISGEN | Open Energy Information

    Open Energy Info (EERE)

    Systems Inc DISGEN Jump to: navigation, search Name: Distributed Generation Systems Inc (DISGEN) Place: Lakewood, Colorado Zip: 80228 Sector: Wind energy Product: Developer of...

  4. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  5. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  6. Overview of Progress in Thermoelectric Power Generation Technologies in

    Broader source: Energy.gov (indexed) [DOE]

    Japan | Department of Energy Presents progress in government- and private-funded thermoelectric power generation R&D in Japan PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in Thermoelectrics

  7. Distributed Energy Resources Program Technology Overview

    SciTech Connect (OSTI)

    Not Available

    2001-11-01

    New fact sheets for the DOE Office of Power Technologies (OPT) that provide technology overviews, description of DOE programs, and market potential for each OPT program area.

  8. High Penetration Solar Distributed Generation Study on Oahu | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy High Penetration Solar Distributed Generation Study on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. <em>Photo from SunPower, NREL 06430</em> The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from SunPower, NREL 06430 To complement energy efficiency targets in Hawai'i, the state developed requirements for generating 40% of its

  9. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface ...

  10. Next Generation Battery Technology - Joint Center for Energy Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research April 6, 2015, Videos Next Generation Battery Technology Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C. Jeff Chamberlain spoke with Steve LeVine about the development of next generation lithium-ion battery technology, covered live on C-SPAN at the Atlantic Council in Washington D.C.

  11. The Effect of Distributed Energy Resource Competition with Central Generation

    SciTech Connect (OSTI)

    Hadley, SW

    2003-12-10

    Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

  12. Summary of New Generation Technologies and Resources

    SciTech Connect (OSTI)

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  13. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife The Biodiversity Research Institute's (BRI) new report on a...

  14. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  15. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  16. Generation IV International Forum Updates Technology Roadmap...

    Energy Savers [EERE]

    status of the Lead Fast Reactor and Sodium Fast Reactor (SFR) Generation IV concepts, ... Agency's International Project on Innovative Nuclear Reactors and Fuel Cycles (INPRO). ...

  17. Estimating the Benefits and Costs of Distributed Energy Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop - Agenda and Summary | Department of Energy Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary On September 30 and October 1, 2014, the Department of Energy hosted a 2-day workshop on "Estimating the Benefits and Costs of Distributed Energy Technologies." The purpose of the workshop was to foster discussion about the analytic challenges

  18. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  19. Addressing Climate Change with Next Generation Energy Storage Technology -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Joint Center for Energy Storage Research March 19, 2015, Videos Addressing Climate Change with Next Generation Energy Storage Technology George Crabtree gives keynote at Loyola University In March 2015, George Crabtree gave the keynote address, "Addressing Climate Change with Next Generation Energy Storage Technology" at the Institute of Environmental Sustainability Climate Change Conference at Loyola University

  20. Notice of Study Availability - Potential Benefits of Distributed Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 | Department of Energy Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 -

  1. Distributed Generation System Characteristics and Costs in the Buildings Sector

    Gasoline and Diesel Fuel Update (EIA)

    Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and

  2. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE) Wind Program. March 28, 2016 DOE's 1.5-MW wind turbine at the National Wind Technology Center is being used to demonstrate that wind farms can provide the frequency-responsive back-up or "ancillary services" currently supplied to the electrical grid by conventional power plants. (Photo by Dennis

  3. The Industrialization of Thermoelectric Power Generation Technology

    Broader source: Energy.gov [DOE]

    Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability

  4. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  5. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  6. Distributed Energy Technology Characterization (Desiccant Technologies), January 2004

    Broader source: Energy.gov [DOE]

    Desiccant technology and applications, and designing them for utilization of available thermal energy in a combined heat and power (CHP) system.

  7. A New Generation of Parabolic Trough Technology | Department of Energy

    Energy Savers [EERE]

    A New Generation of Parabolic Trough Technology A New Generation of Parabolic Trough Technology This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042513_price.pdf More Documents & Publications Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants POLYMERIC MIRROR FILMS: DURABILITY IMPROVEMENT AND IMPLEMENTATION IN NEW COLLECTOR

  8. Generation IV International Forum Updates Technology Roadmap and Builds

    Energy Savers [EERE]

    Future Collaboration | Department of Energy Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration December 31, 2013 - 12:14pm Addthis GIF Policy Group Meeting in Brussels, Belgium, November 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear Reactor Technologies The Generation

  9. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  10. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  11. Electricity Transmission and Distribution Technologies - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Technology Marketing Summaries Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Marketing Summaries (72) Success Stories (2) Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success

  12. DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manufacturing | Department of Energy Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing DOE Seeking Proposals to Advance Distributed Wind Turbine Technology and Manufacturing December 30, 2014 - 11:04am Addthis On December 29, the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) released a third round of Requests for Proposals (RFPs) under DOE's Distributed Wind Competitiveness Improvement Project (CIP). The CIP aims to help U.S.

  13. MHK Technologies/Under Bottom Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator Technology...

  14. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  15. Next-Generation Subsea Technology |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future | Department of Energy Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future Next-Generation Power Electronics: Reducing Energy Waste and Powering the Future January 15, 2014 - 3:53pm Addthis Watch the video above to learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department Marina Sofos Marina Sofos Sensors and Controls Technology Manager From your laptop

  16. A methodology for technical and financial assessment of distributed generation in the US

    SciTech Connect (OSTI)

    Curtiss, P.; Kreider, J.; Cohen, D.

    1999-07-01

    Traditionally, distributed power generation technologies have been considered to help reduce or eliminate the need for grid-connected electricity. It has been difficult, however, to assess the economic benefits of such technologies due to a lack of computer tools and data related to operating characteristics. This paper discusses a method for performing such as assessment based on electrical and thermal building loads, existing utility rate structures, standard economic parameters, tangible benefits from distributed resource and T and D benefits, and different control techniques. The paper concludes with an example showing the dependency of the internal rate of return on some of the input parameters.

  17. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  18. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect (OSTI)

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  19. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  20. Laying the Groundwork: Lessons Learned from the Telecommunications Industry for Distributed Generation; Preprint

    SciTech Connect (OSTI)

    Wise, A. L.

    2008-05-01

    The telecommunications industry went through growing pains in the past that hold some interesting lessons for the growing distributed generation (DG) industry. The technology shifts and stakeholders involved with the historic market transformation of the telecommunications sector mirror similar factors involved in distributed generation today. An examination of these factors may inform best practices when approaching the conduits necessary to accelerate the shifting of our nation's energy system to cleaner forms of generation and use. From a technical perspective, the telecom industry in the 1990s saw a shift from highly centralized systems that had no capacity for adaptation to highly adaptive, distributed network systems. From a management perspective, the industry shifted from small, private-company structures to big, capital-intensive corporations. This presentation will explore potential correlation and outline the lessons that we can take away from this comparison.

  1. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  2. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  3. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  4. Industrial Use of Distributed Generation in Real-Time Energy and Ancillary Service Markets

    SciTech Connect (OSTI)

    Hudson, C.R.

    2001-10-24

    Industrial consumers of energy now have the opportunity to participate directly in electricity generation. This report seeks to give the reader (1) insights into the various types of generation services that distributed generation (DG) units could provide, (2) a mechanism to evaluate the economics of using DG, (3) an overview of the status of DG deployment in selected states, and (4) a summary of the communication technologies involved with DG and what testing activities are needed to encourage industrial application of DG. Section 1 provides details on electricity markets and the types of services that can be offered. Subsequent sections in the report address the technical requirements for participating in such markets, the economic decision process that an industrial energy user should go through in evaluating distributed generation, the status of current deployment efforts, and the requirements for test-bed or field demonstration projects.

  5. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  6. Generation technologies for a carbon-constrained world

    SciTech Connect (OSTI)

    Douglas, J.

    2006-07-01

    Planning future generation investments can be difficult in the context of today's high fuel costs and regulatory uncertainties. Of particular concern are sharp changes in the price of natural gas and the possibility of future mandatory limits on the atmospheric release of CO{sub 2}. Research on advanced coal, nuclear, natural gas and renewable energy technologies promises to substantially increase the deployment of low and non-carbon-emitting generation options over the next two decades. The article looks in turn at developments in these technologies. Prudent power provides are likely to invest in a number of these advanced technologies, weighing the advantages and risks of each option to build a strategically balanced generation portfolio. 12 figs.

  7. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  8. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  9. NREL: dGen: Distributed Generation Market Demand Model - Documentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Documentation The Distributed Generation Market Demand (dGen) model documentation summarizes the default data inputs and assumptions for the model. Input data for the model are regularly updated and include recent EIA Annual Energy Outlook projections, state-level net metering and incentive policies, and utility-level retail electricity rates. Note that the dGen model builds on, extends, and provides significant advances over NREL's deprecated SolarDS model. Documentation Outline Introduction

  10. January 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information January 2013 Most Viewed Documents for Power Generation And Distribution Lessons from Large-Scale Renewable Energy Integration Studies: Preprint Bird, L.; Milligan, M. Small punch creep test: A promising methodology for high temperature plant components life evaluation Tettamanti, S. [CISE SpA, Milan (Italy)]; Crudeli, R. [ENEL SpA, Milan (Italy)] Failure analyses and weld repair of boiler feed water pumps Vulpen, R. van

  11. Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept

    Office of Scientific and Technical Information (OSTI)

    of Energy, Office of Scientific and Technical Information - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993

  12. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  13. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications Office spreadsheet icon 2012_distributed_wind_technologies_data.xls More Documents & Publications 2014 Distributed Wind Market Report 2013 Distributed Wind Market Report Data 2012 Market Report on U.S. Wind Technologies in Distributed Applications

  14. Advancements in Distributed Generation Issues: Interconnection, Modeling, and Tariffs

    SciTech Connect (OSTI)

    Thomas, H.; Kroposki, B.; Basso, T.; Treanton, B. G.

    2007-01-01

    The California Energy Commission is cost-sharing research with the Department of Energy through the National Renewable Energy Laboratory to address distributed energy resources (DER) topics. These efforts include developing interconnection and power management technologies, modeling the impacts of interconnecting DER with an area electric power system, and evaluating possible modifications to rate policies and tariffs. As a result, a DER interconnection device has been developed and tested. A workshop reviewed the status and issues of advanced power electronic devices. Software simulations used validated models of distribution circuits that incorporated DER, and tests and measurements of actual circuits with and without DER systems are being conducted to validate these models. Current policies affecting DER were reviewed and rate making policies to support deployment of DER through public utility rates and policies were identified. These advancements are expected to support the continued and expanded use of DER systems.

  15. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, Rick; Bluestein, Joel; Rodriguez, Nick; Knoke, Stu

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  16. March 2016 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 942 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 310 Electric power substation capital costs Dagle, J.E.; Brown, D.R. (1997) 247 Load flow analysis: Base cases, data, diagrams, and

  17. April 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and

  18. NREL: dGen: Distributed Generation Market Demand Model - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications The following are publications-including technical reports, journal articles, conference papers, and posters-focusing on the Distributed Generation Market Demand Model (dGen) and its predecessor, the Solar Deployment System (SolarDS) model. Cole, Wesley, Haley Lewis, Ben Sigrin, and Robert Margolis. 2016. "Interactions of rooftop PV deployment with the capacity expansion of the bulk power system." Applied Energy 168 (April 2016) 473-81. doi:10.1016/j.apenergy.2016.02.004

  19. September 2013 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 /> Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 /> ASPEN Plus Simulation of CO2 Recovery Process Charles

  20. September 2015 Most Viewed Documents for Power Generation And Distribution

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information September 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 700 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 190 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky,

  1. July 2013 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information July 2013 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 535 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 165 /> Wet cooling towers: rule-of-thumb design and simulation Leeper,

  2. June 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2014 Most Viewed Documents for Power Generation And Distribution Science Subject Feed Seventh Edition Fuel Cell Handbook NETL (2004) 118 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 89 /> ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 85 /> Wet

  3. June 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information June 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 504 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 240 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 160 Load flow

  4. March 2014 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 4 Most Viewed Documents for Power Generation And Distribution Science Subject Feed ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 112 /> Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 83 /> Seventh Edition Fuel Cell Handbook NETL (2004) 68 /> Load flow

  5. March 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information 5 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 317 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 254 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 234 Load flow analysis: Base

  6. Most Viewed Documents for Power Generation and Distribution: December 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information Most Viewed Documents for Power Generation and Distribution: December 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 133 Seventh Edition Fuel Cell Handbook NETL (2004) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 84 Load flow analysis: Base cases, data,

  7. Most Viewed Documents for Power Generation and Distribution: September 2014

    Office of Scientific and Technical Information (OSTI)

    | OSTI, US Dept of Energy, Office of Scientific and Technical Information for Power Generation and Distribution: September 2014 Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 96 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 73 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 70 Seventh Edition Fuel Cell Handbook

  8. December 2015 Most Viewed Documents for Power Generation And Distribution |

    Office of Scientific and Technical Information (OSTI)

    OSTI, US Dept of Energy, Office of Scientific and Technical Information December 2015 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 740 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 224 Wet cooling towers: rule-of-thumb

  9. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  10. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    Distributed Applications 2012 Market Report on U.S. Wind Technologies in Distributed Applications Deployment Barriers to Distributed Wind Energy: Workshop Report, October 28, 2010

  11. New Generating Technology to Reduce Greenhouse Gas Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    Generating Technology to Reduce Greenhouse Gas Emissions ENERGY INFORMATION ADMINISTRATION 30 TH BIRTHDAY CONFERENCE April 7, 2008 Linda G. Stuntz Stuntz, Davis & Staffier, P.C. Stuntz, Davis & Staffier, P.C. 2 The Target * Energy related emissions of CO2 will increase by about 16% in AEO 2008 Reference Case between 2006 and 2030 (5,890 MM metric tons to 6,859 MM metric tons). (#s from Caruso Senate Energy testimony of 3/4/08). * Last year, emissions from electricity generation were 40%

  12. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Broader source: Energy.gov (indexed) [DOE]

    Waste Heat at GM | Department of Energy Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems PDF icon meisner.pdf More Documents & Publications Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Electrical and Thermal Transport Optimization of High Efficient n-type Skutterudites Electrical and Thermal

  13. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  14. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  15. Technologies for the new millennium: Photovoltaics as a distributed resource

    SciTech Connect (OSTI)

    Kroposki, B.; DeBlasio, R.

    2000-03-22

    Photovoltaics (PV) is emerging as an important distributed resource. PV gives both the benefits of a distributed resource and a clean power source. Because PV can be installed at both residential and commercial locations, it can be used to reduce peak demand when its output is properly matched with power demand. It can also improve asset utilization by requiring less large capital generation spending and delaying some equipment replacement. With the price of some grid-connected PV systems expected to reach $3/W in the next 5 years, PV will become an economical option for distributed power generation. One of the most important aspects of establishing PV as a distributed resource is standardizing the requirements for grid connection. IEEE Standards Coordinating Committee (SCC) 21 has recently published IEEE Std 929 ''Recommend Practice for Utility Interface of Photovoltaic Systems.'' This recommended practice details power quality, safety, and protection requirements for connection to the utility grid. This paper describes what types of PV systems are available, what the benefits are for PV systems, and what the interconnection issues and solutions are for using PV as a distributed resource.

  16. Investment and Upgrade in Distributed Generation under Uncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Maribu, Karl

    2008-08-18

    The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

  17. Providing Clean, Low-Cost, Onsite Distributed Generation at Very...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). ... in annual Boiler Burner Electrical System Technology (BBEST) for packaged boilers. ...

  18. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  19. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon fuelcyclecomparisonreport.pdf More Documents & Publications Fuel-Cycle Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Lessons Learned from SOFC...

  20. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Transmission and Distribution Components

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Enabling Modernization of the Electric Power System Technology Assessments Cyber and Physical Security Designs, Architectures, and Concepts Electric Energy Storage Flexible and Distributed Energy Resources Measurements, Communications, and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Transmission and Distribution Components Chapter 3: Technology Assessments Introduction Today's electric

  1. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  2. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  3. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  4. MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...

    Open Energy Info (EERE)

    Turbo Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

  5. The Potential Benefits of Distributed Generation and the Rate-Related

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Issues That May Impede Its Expansion | Department of Energy The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. PDF icon The Potential Benefits of Distributed

  6. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  7. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  8. Distributed Generation Study/SUNY Buffalo | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application...

  9. Distributed Generation Study/Hudson Valley Community College...

    Open Energy Info (EERE)

    G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter...

  10. Distributed Generation Study/Waldbaums Supermarket | Open Energy...

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application...

  11. Distributed Generation Study/VIP Country Club | Open Energy Informatio...

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System...

  12. Distributed Generation Study/Floyd Bennett | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System...

  13. Distributed Generation Study/Dakota Station (Minnegasco) | Open...

    Open Energy Info (EERE)

    Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System...

  14. Distributed Generation Study/Harbec Plastics | Open Energy Information

    Open Energy Info (EERE)

    Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System...

  15. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    OAHU Wind Integration And Transmission Study: Summary Report, NREL (National Renewable Energy Laboratory) Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Energy Transition ...

  16. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  17. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  18. Distributed Generation Potential of the U.S. CommercialSector

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman,Etan; Marnay, Chris

    2005-06-01

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems in developed countries over the next two decades. In the U.S., private and public expectations for this technology are heavily influenced by forecasts published by the Energy Information Administration (EIA), most notably the Annual Energy Outlook (AEO). EIA's forecasts are typically made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. Annual penetration is forecast by estimating the payback period for each technology, for each of a limited number of representative building types, for each of nine regions. This process results in an AEO2004 forecast deployment of about a total 3 GW of DG electrical generating capacity by 2025, which is only 0.25 percent of total forecast U.S. capacity. Analyses conducted using both the AEO2003 and AEO2004 versions of NEMS changes the baseline costs and performance characteristics of DG to reflect a world without U.S. Department of Energy (DOE) research into several thermal DG technologies, which is then compared to a case with enhanced technology representative of the successful achievement of DOE research goals. The net difference in 2025 DG penetration is dramatic using the AEO2003 version of NEMS, but much smaller in the AEO2004 version. The significance and validity of these contradictory results are discussed, and possibilities for improving estimates of commercial U.S. DG potential are explored.

  19. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  20. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  1. MHK Technologies/Sabella River Generator | Open Energy Information

    Open Energy Info (EERE)

    Organization Sabella Energy Project(s) where this technology is utilized *MHK ProjectsSR 01 Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow...

  2. June 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    of Geothermal Electric Projects Entingh, Daniel J. (1993) 35 > PYRAMID LAKE RENEWEABLE ENERGY PLAN HIGH DESERT GEOCULTURE, LLC (2009) 33 > Next Generation Geothermal Power ...

  3. March 2014 Most Viewed Documents for Power Generation And Distribution...

    Office of Scientific and Technical Information (OSTI)

    S.A. (1981) 48 > Employment Impacts of Geothermal Electric Projects Entingh, Daniel J. (1993) 27 > Next Generation Geothermal Power Plants Brugman, John; Hattar, Mai; ...

  4. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009

    Broader source: Energy.gov [DOE]

    This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

  5. Fostering the Next Generation of Nuclear Energy Technology |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    this draft solicitation would support advanced nuclear energy technologies that will catalyze the deployment of future projects that replicate or extend a technological innovation. ...

  6. MHK Technologies/The Linear Generator | Open Energy Information

    Open Energy Info (EERE)

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  7. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  8. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  9. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy...

    Open Energy Info (EERE)

    Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system,...

  10. Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  11. Distributed Generation Dispatch Optimization under VariousElectricity Tariffs

    SciTech Connect (OSTI)

    Firestone, Ryan; Marnay, Chris

    2007-05-01

    The on-site generation of electricity can offer buildingowners and occupiers financial benefits as well as social benefits suchas reduced grid congestion, improved energy efficiency, and reducedgreenhouse gas emissions. Combined heat and power (CHP), or cogeneration,systems make use of the waste heat from the generator for site heatingneeds. Real-time optimal dispatch of CHP systems is difficult todetermine because of complicated electricity tariffs and uncertainty inCHP equipment availability, energy prices, and system loads. Typically,CHP systems use simple heuristic control strategies. This paper describesa method of determining optimal control in real-time and applies it to alight industrial site in San Diego, California, to examine: 1) the addedbenefit of optimal over heuristic controls, 2) the price elasticity ofthe system, and 3) the site-attributable greenhouse gas emissions, allunder three different tariff structures. Results suggest that heuristiccontrols are adequate under the current tariff structure and relativelyhigh electricity prices, capturing 97 percent of the value of thedistributed generation system. Even more value could be captured bysimply not running the CHP system during times of unusually high naturalgas prices. Under hypothetical real-time pricing of electricity,heuristic controls would capture only 70 percent of the value ofdistributed generation.

  12. City of San Marcos- Distributed Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Qualifying Solar PV systems are eligible for a $2.50 per Watt (W) rebate up to $5,000. Qualifying Wind Generation systems are eligible for a $1.00 per W rebate up to $5,000. Neither rebate amount...

  13. Dispatchable Distributed Generation: Manufacturing's Role in Support of

    Broader source: Energy.gov (indexed) [DOE]

    Grid Modernization, FEBRUARY 10-11 | Department of Energy Advanced Manufacturing Office (AMO) held a workshop in Austin, Texas at the Embassy Suites Hotels on February 10-11, 2016. The topic of this 2 day workshop was the Role of the Manufacturing Sector in Grid Modernization. This workshop included discussions on the technological barriers of grid modernization in the industrial sector. Through this workshop, AMO aims to work with industry leaders to address barriers in an attempt to

  14. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  15. The use of software agents and distributed objects to integrate enterprises: Compatible or competing technologies?

    SciTech Connect (OSTI)

    Pancerella, C.M.

    1998-04-01

    Distributed object and software agent technologies are two integration methods for connecting enterprises. The two technologies have overlapping goals--interoperability and architectural support for integrating software components--though to date little or no integration of the two technologies has been made at the enterprise level. The primary difference between these two technologies is that distributed object technologies focus on the problems inherent in connecting distributed heterogeneous systems whereas software agent technologies focus on the problems involved with coordination and knowledge exchange across domain boundaries. This paper addresses the integration of these technologies in support of enterprise integration across organizational and geographic boundaries. The authors discuss enterprise integration issues, review their experiences with both technologies, and make recommendations for future work. Neither technology is a panacea. Good software engineering techniques must be applied to integrate an enterprise because scalability and a distributed software development team are realities.

  16. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  17. Energy Generation by State and Technology (2009) - Datasets ...

    Open Energy Info (EERE)

    2009, reported in MWh. Also includes facility-level data (directly from EIA Form 923). Data and Resources Energy Generation by Fuel Source and State, 2009XLS Energy Generation by...

  18. Technologies for Distributed Energy Resources. Federal Energy Management Program (FEMP) Technical Assistance Fact Sheet

    SciTech Connect (OSTI)

    Pitchford, P.; Brown, T.

    2001-07-16

    This four-page fact sheet describes distributed energy resources for Federal facilities, which are being supported by the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP). Distributed energy resources include both existing and emerging energy technologies: advanced industrial turbines and microturbines; combined heat and power (CHP) systems; fuel cells; geothermal systems; natural gas reciprocating engines; photovoltaics and other solar systems; wind turbines; small, modular biopower; energy storage systems; and hybrid systems. DOE FEMP is investigating ways to use these alternative energy systems in government facilities to meet greater demand, to increase the reliability of the power-generation system, and to reduce the greenhouse gases associated with burning fossil fuels.

  19. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  20. MHK Technologies/Brandl Generator | Open Energy Information

    Open Energy Info (EERE)

    direct connected magnets that induce an electrical current when they move through the induction coils. This drawing shows the basic idea. Technology Dimensions Width (m) 10 Height...

  1. MHK Technologies/Sub Surface Counter Rotation Current Generator...

    Open Energy Info (EERE)

    that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology...

  2. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  3. MHK Technologies/Water Current Generator Motor | Open Energy...

    Open Energy Info (EERE)

    Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for...

  4. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Broader source: Energy.gov (indexed) [DOE]

    2012 Market Report on U.S. Wind Technologies in Distributed Applications Office spreadsheet icon 2012distributedwindtechnologiesdata.xls More Documents & Publications 2014 ...

  5. Distributed Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Distributed Power Inc Place: Lime Rock, Connecticut Zip: 6039 Product: Focused on distributed generation power technology. References: Distributed Power Inc1 This article is a...

  6. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  7. Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  8. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  9. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Info (EERE)

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  10. MHK Technologies/Electric Generating Wave Pipe | Open Energy...

    Open Energy Info (EERE)

    Dimensions Technology Nameplate Capacity (MW) Potential 40 500KW 5MW per unit within cluster Cluster quantity unlimited Device Testing Date Submitted 56:42.6 << Return to the MHK...

  11. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  12. Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001

    Broader source: Energy.gov [DOE]

    results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

  13. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology (Presentation)

    Broader source: Energy.gov [DOE]

    Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in Laurel, Maryland.

  14. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Lab (NREL) Avoided Transmission & Distribution: Steven Fine, ICF International Social Costs & Benefits: Anne Hoskins, Maryland Public Service Commission PDF icon ...

  15. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    PDF icon Presentation - Robert Jeffers, Sandia PDF icon Presentation - Carl Imhoff, PNNL More Documents & Publications Estimating the Benefits and Costs of Distributed Energy ...

  16. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  17. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  18. Materials Innovation for Next Generation Transmission and Distribution Grid Components Workshop

    Broader source: Energy.gov [DOE]

    Applied R&D in advanced materials has the potential to improve the fundamental properties and capabilities of hardware for grid applications. The Materials Innovation for Next-Generation Transmission and Distribution Grid Components Workshop, held August 26-27, 2015 at Oak Ridge National Laboratory (ORNL), investigated various advanced materials and their potential application to next-generation transmission and distribution (T&D) components. The workshop materials are available below for downloading.

  19. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect (OSTI)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  20. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  1. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  2. NREL: Energy Analysis - dGen: Distributed Generation Market Demand Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Distributed Generation Market Demand (dGen) model is a geospatially rich, bottom-up, market-penetration model that simulates the potential adoption of distributed energy resources (DERs) for residential, commercial, and industrial entities in the continental United States through 2050. The dGen model builds on and provides significant advances over NREL's deprecated Solar Deployment System (SolarDS) model. The dGen model can help develop deployment forecasts for distributed resources,

  3. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  4. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... customers, especially in sectors like the health care industry where high quality, reliable power is important and floor space is limited. 4 Plus, the latest Energy Information ...

  5. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations may cause some voltage control challenges or overloading problems, respectively. But when combined, there at least intuitively could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  6. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  7. IPower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Andersen, Indiana Zip: 46013 Product: iPower Technologies provides advanced technologies and systems integration capabilities for the distributed generation market....

  8. DOE 2012 Market Report on U.S. Wind Technologies for Distributed

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy 2012 Market Report on U.S. Wind Technologies for Distributed Applications DOE 2012 Market Report on U.S. Wind Technologies for Distributed Applications April 1, 2013 - 1:10pm Addthis This is an excerpt from the First Quarter 2013 edition of the Wind Program R&D Newsletter. The U.S. Department of Energy (DOE) will soon release its annual 2012 Market Report on U.S. Wind Technologies in Distributed Applications. This report offers clear data-based market

  9. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  10. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  11. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  12. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  13. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  14. Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION

    Office of Scientific and Technical Information (OSTI)

    Marine & Hydrokinetic Technology Readiness Initiative TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Marine & Hydrokinetic Technology Readiness Initiative DE-EE0003636 TIDAL ENERGY SYSTEM FOR ON-SHORE POWER GENERATION Final Technical Report: June 26, 2012 Awardee: SUNLIGHT PHOTONICS INC. 600 Corporate Court South Plainfield, NJ 07080 Sub Awardee: NASA - JET PROPULSION LAB. 4800 Oak Grove Blvd. Pasadena, CA 91109 Principal Investigator: Dr. Allan J. Bruce, Sunlight Photonics Inc.

  15. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  16. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  17. Estimating the Benefits and Costs of Distributed Energy Technologies Workshop- Day 2 Presentations

    Broader source: Energy.gov [DOE]

    On September 30 and October 1, 2014, the Department of Energy hosted a 2-day workshop on “Estimating the Benefits and Costs of Distributed Energy Technologies.” Presentations from Day 2 are available here.

  18. Estimating the Benefits and Costs of Distributed Energy Technologies Workshop- Day 1 Presentations

    Broader source: Energy.gov [DOE]

    On September 30 and October 1, 2014, the Department of Energy hosted a 2-day workshop on “Estimating the Benefits and Costs of Distributed Energy Technologies.” Presentations from Day 1 are available here.

  19. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  20. Advanced Building Technologies: Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting, Berkeley CA August 14, 2007 Advanced Building Technologies Toward a New Generation of Net-Zero Energy, Carbon-Neutral Buildings Stephen Selkowitz Department Head, Building Technologies Department Lawrence Berkeley National Laboratory seselkowitz@lbl.gov 510/486-5064 Lawrence Berkeley National Laboratory Building Energy Demand Challenge: End Use Energy Consumption Buildings consume 39% of total U.S. energy * 71% of electricity and 54% of natural gas Lawrence Berkeley National Laboratory

  1. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  2. Energy Efficiency, Renewables, Advanced Transmission and Distribution

    Energy Savers [EERE]

    Technologies (2008) | Department of Energy Renewables, Advanced Transmission and Distribution Technologies (2008) Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) PDF icon Energy Efficiency, Renewables, Advanced Transmission and Distribution Technologies (2008) More Documents & Publications Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Nuclear Power Facilities (2008)

  3. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  4. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  5. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Khanna, Madhu

    2011-04-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  6. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energys (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  7. Making the Economic Case for Small-Scale Distributed Wind -- A Screening for Distributed Generation Wind Opportunities: Preprint

    SciTech Connect (OSTI)

    Kandt, A.; Brown, E.; Dominick, J.; Jurotich, T.

    2007-06-01

    This study was an offshoot of a previous assessment, which examined the potential for large-scale, greater than 50 MW, wind development on occupied federal agency lands. The study did not find significant commercial wind development opportunities, primarily because of poor wind resource on available and appropriately sized land areas or land use or aesthetic concerns. The few sites that could accommodate a large wind farm failed to have transmission lines in optimum locations required to generate power at competitive wholesale prices. The study did identify a promising but less common distributed generation (DG) development option. This follow-up study documents the NREL/Global Energy Concepts team efforts to identify economic DG wind projects at a select group of occupied federal sites. It employs a screening strategy based on project economics that go beyond quantity of windy land to include state and utility incentives as well as the value of avoided power purchases. It attempts to account for the extra costs and difficulties associated with small projects through the use of project scenarios that are more compatible with federal facilities and existing land uses. These benefits and barriers of DG are discussed, and the screening methodology and results are included. The report concludes with generalizations about the screening method and recommendations for improvement and other potential applications for this methodology.

  8. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  9. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  10. Parallel paving: An algorithm for generating distributed, adaptive, all-quadrilateral meshes on parallel computers

    SciTech Connect (OSTI)

    Lober, R.R.; Tautges, T.J.; Vaughan, C.T.

    1997-03-01

    Paving is an automated mesh generation algorithm which produces all-quadrilateral elements. It can additionally generate these elements in varying sizes such that the resulting mesh adapts to a function distribution, such as an error function. While powerful, conventional paving is a very serial algorithm in its operation. Parallel paving is the extension of serial paving into parallel environments to perform the same meshing functions as conventional paving only on distributed, discretized models. This extension allows large, adaptive, parallel finite element simulations to take advantage of paving`s meshing capabilities for h-remap remeshing. A significantly modified version of the CUBIT mesh generation code has been developed to host the parallel paving algorithm and demonstrate its capabilities on both two dimensional and three dimensional surface geometries and compare the resulting parallel produced meshes to conventionally paved meshes for mesh quality and algorithm performance. Sandia`s {open_quotes}tiling{close_quotes} dynamic load balancing code has also been extended to work with the paving algorithm to retain parallel efficiency as subdomains undergo iterative mesh refinement.

  11. DTE Energy Technologies With Detroit Edison Co. and Kinectrics Inc.: Distributed Resources Aggregation Modeling and Field Configuration Testing

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Summarizes the work of DTE Energy Technologies, Detroit Edison, and Kinectrics, under contract to DOE's Distribution and Interconnection R&D, to develop distributed resources aggregation modeling and field configuration testing.

  12. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  13. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    SciTech Connect (OSTI)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  14. Internal stress distribution for generating closure domains in laser-irradiated Fe3%Si(110) steels

    SciTech Connect (OSTI)

    Iwata, Keiji; Imafuku, Muneyuki; Orihara, Hideto; Sakai, Yusuke; Ohya, Shin-Ichi; Suzuki, Tamaki; Shobu, Takahisa; Akita, Koichi; Ishiyama, Kazushi

    2015-05-07

    Internal stress distribution for generating closure domains occurring in laser-irradiated Fe3%Si(110) steels was investigated using high-energy X-ray analysis and domain theory based on the variational principle. The measured triaxial stresses inside the specimen were compressive and the stress in the rolling direction became more dominant than stresses in the other directions. The calculations based on the variational principle of magnetic energy for closure domains showed that the measured triaxial stresses made the closure domains more stable than the basic domain without closure domains. The experimental and calculation results reveal that the laser-introduced internal stresses result in the occurrence of the closure domains.

  15. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  16. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    SciTech Connect (OSTI)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-15

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  17. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  18. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  19. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest i.e., within the next 10-15 years.

  20. Spectroscopic measurement of ion temperature and ion velocity distributions in the flux-coil generated FRC

    SciTech Connect (OSTI)

    Gupta, D.; Gota, H.; Hayashi, R.; Kiyashko, V.; Morehouse, M.; Primavera, S.; Bolte, N.; Marsili, P.; Roche, T.; Wessel, F.

    2010-10-15

    One aim of the flux-coil generated field reversed configuration at Tri Alpha Energy (TAE) is to establish the plasma where the ion rotational energy is greater than the ion thermal energy. To verify this, an optical diagnostic was developed to simultaneously measure the Doppler velocity-shift and line-broadening using a 0.75 m, 1800 groves/mm, spectrometer. The output spectrum is magnified and imaged onto a 16-channel photomultiplier tube (PMT) array. The individual PMT outputs are coupled to high-gain, high-frequency, transimpedance amplifiers, providing fast-time response. The Doppler spectroscopy measurements, along with a survey spectrometer and photodiode-light detector, form a suite of diagnostics that provide insights into the time evolution of the plasma-ion distribution and current when accelerated by an azimuthal-electric field.

  1. Raven Technology | Open Energy Information

    Open Energy Info (EERE)

    technology known as "AC-Direct," which seeks to overcome the limitations of inverters and synchronous generators for mobile, off-grid, and distributed power applications....

  2. Shekel Technologies | Open Energy Information

    Open Energy Info (EERE)

    solar concentrators with gas turbines and energy storage for medium and large scale distributed electricity generation. References: Shekel Technologies1 This article is a stub....

  3. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  4. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  5. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  6. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  7. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  8. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  9. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  10. United States Supports Distributed Wind Technology Improvements; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Sinclair, Karin

    2015-06-15

    This presentation provides information on the activities conducted through the Competitiveness Improvement Project (CIP), initiated in 2012 by the U.S. Department of Energy (DOE) and executed through the National Renewable Energy Laboratory (NREL) to support the distributed wind industry. The CIP provides research and development funding and technical support to improve distributed wind turbine technology and increase the competitiveness of U.S. small and midsize wind turbine manufacturers. Through this project, DOE/NREL assists U.S. manufacturers to lower the levelized cost of energy of wind turbines through component improvements, manufacturing process upgrades, and turbine testing. Ultimately, this support is expected to lead to turbine certification through testing to industry-recognized wind turbine performance and safety standards.

  11. Vehicle Technologies Office Merit Review 2015: ATP-LD; Cummins Next Generation Tier 2 Bin 2 Diesel Engine

    Broader source: Energy.gov [DOE]

    Presentation given by Cummins at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ATP-LD; Cummins next generation tier...

  12. Valuation-Based Framework for Considering Distributed Generation Photovoltaic Tariff Design: Preprint

    SciTech Connect (OSTI)

    Zinaman, O. R.; Darghouth, N. R.

    2015-02-01

    While an export tariff is only one element of a larger regulatory framework for distributed generation, we choose to focus on tariff design because of the significant impact this program design component has on the various flows of value among power sector stakeholders. In that context, this paper is organized into a series of steps that can be taken during the design of a DGPV export tariff design. To that end this paper outlines a holistic, high-level approach to the complex undertaking of DGPV tariff design, the crux of which is an iterative cost-benefit analysis process. We propose a multi-step progression that aims to promote transparent, focused, and informed dialogue on CBA study methodologies and assumptions. When studies are completed, the long-run marginal avoided cost of the DGPV program should be compared against the costs imposed on utilities and non-participating customers, recognizing that these can be defined differently depending on program objectives. The results of this comparison can then be weighed against other program objectives to formulate tariff options. Potential changes to tariff structures can be iteratively fed back into established analytical tools to inform further discussions.

  13. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ¢/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10¢/kWh and 11-12 ¢/kWh, respectively). With an additional 5 ¢/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  14. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  15. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  16. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  17. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  18. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  19. The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations

    Broader source: Energy.gov [DOE]

    Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

  20. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframesincentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  1. Parallel, distributed and GPU computing technologies in single-particle electron microscopy

    SciTech Connect (OSTI)

    Schmeisser, Martin; Heisen, Burkhard C.; Luettich, Mario; Busche, Boris; Hauer, Florian; Koske, Tobias; Knauber, Karl-Heinz; Stark, Holger

    2009-07-01

    An introduction to the current paradigm shift towards concurrency in software. Most known methods for the determination of the structure of macromolecular complexes are limited or at least restricted at some point by their computational demands. Recent developments in information technology such as multicore, parallel and GPU processing can be used to overcome these limitations. In particular, graphics processing units (GPUs), which were originally developed for rendering real-time effects in computer games, are now ubiquitous and provide unprecedented computational power for scientific applications. Each parallel-processing paradigm alone can improve overall performance; the increased computational performance obtained by combining all paradigms, unleashing the full power of todays technology, makes certain applications feasible that were previously virtually impossible. In this article, state-of-the-art paradigms are introduced, the tools and infrastructure needed to apply these paradigms are presented and a state-of-the-art infrastructure and solution strategy for moving scientific applications to the next generation of computer hardware is outlined.

  2. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750800C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750800C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  3. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  4. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  5. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  6. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    2010 Existing Capacity, by Energy Source (GW) Number of Generator Nameplate Net Summer Net Winter Plant Fuel Type Generators Capacity Capacity Capacity Coal Petroleum Natural Gas Other Gases Nuclear Hydroelectric Conventional Wind Solar Thermal and Photovoltaic Wood and Wood Derived Fuels Geothermal Other Biomass Pumped Storage Other Total Source(s): EIA, Electric Power Annual 2010, Feb. 2012, Table 1.2. 51 1.0 0.9 0.9 18,150 1,138.6 1,039.1 1,078.7 1,574 5.0 4.4 4.4 151 20.5 22.2 22.1 346 7.9

  7. Vehicle Technologies Office Merit Review 2015: Next Generation SCR-Dosing System Investigation

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  8. NREL: dGen: Distributed Generation Market Demand Model - Model Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A line chart showing the annual installed gigawatt capacity projected for 2015-2050 showing that a $10 carbon fee could result in having the greatest cost-to-impact compared to the reference and the $25 carbon fee options regarding new capacity and new capacity including rebuilds. Enlarge image Projected national annual DGPV deployment for two hypothetical carbon fees as compared to reference trajectory. A chart showing the projected impact on the installed capacity in megawatts for distributed

  9. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  10. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    7 Characteristics of New and Stock Generating Capacities, by Plant Type Total Capital Costs Size Overnight Costs (2) of Typical New Plant New Plant Type (MW) (2010 $/kW) ($2010 million) Scrubbed Coal 1300 2809 3652 Integrated Coal-Gasification Combined Cycle (IGCC) 1200 3182 3818 IGCC w/Carbon Sequestration 520 5287 2749 Conv. Gas/Oil Combined Cycle 540 967 522 Adv. Gas/Oil Combined Cycle 400 991 396 Conv. Combustion Turbine 85 961 82 Adv. Combustion Turbine 210 658 138 Fuel Cell 10 6752 68

  11. DOE Technology Validation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary/Distributed Generation Projects » DOE Technology Validation Projects DOE Technology Validation Projects Stationary fuel cells can be used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation of heat and power. The Fuel Cell Technologies Office has a number of demonstrations underway to develop and evaluate the performance of fuel cells for stationary applications. The status of DOE's

  12. Motion-to-Energy (M2Eâ?¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  13. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Office of Energy Efficiency and Renewable Energy (EERE)

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  14. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Broader source: Energy.gov [DOE]

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  15. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  16. Buildings Energy Data Book: 6.2 Electricity Generation, Transmission, and Distribution

    Buildings Energy Data Book [EERE]

    4 Electric Conversion Factors and Transmission and Distribution (T&D) Losses Average Utility Average Utility Growth Rate Delivery Efficiency (1, 2) Delivery Ratio (Btu/kWh) (2, 3) (2010-year) 1980 29.4% 1981 29.9% 1982 29.7% 1983 29.8% 1984 30.5% 1985 30.4% 1986 30.8% 1987 31.1% 1988 31.1% 1989 30.2% 1990 30.3% 1991 30.5% 1992 30.7% 1993 30.6% 1994 30.9% 1995 30.7% 1996 30.7% 1997 30.8% 1998 30.7% 1999 30.6% 2000 30.7% 2001 31.1% 2002 31.1% 2003 31.3% 2004 31.3% 2005 31.5% 2006 31.7% 2007

  17. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  18. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  19. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  20. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  1. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  2. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to include small, mid-size, and utility-scale installations--including key statistics, economic data, installation, capacity, and generation statistics, and more. ...

  3. Approach to market-penetration analysis for advanced electric-power-generation technologies

    SciTech Connect (OSTI)

    Lamontagne, J.; Love, P.; Queirolo, A.

    1980-12-01

    If commercialization of new technologies is the primary objective of the Department of Energy's Research, Development and Demonstration (RD and D) programs, the ultimate measure of benefit from RD and D programs is the extent of commercial acceptance of the developed technologies. Uncertainty about barriers to commercialization - government policy, fuel supply, etc. - make the task of estimating this acceptance very difficult. However, given that decisions must be made regarding allocation of RD and D funds, the best information available, with due regard for uncertainty, should serve as input to these decisions. An approach is presented for quantifying the range of market potential for new technologies (specifically in the utility sector) based on historical information and known plans for the future.

  4. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Technologies Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate-affect, detect, and neutralize & mitigate all types of explosive threats. v Technologies Since its inception in 1943, Los Alamos National Laboratory has been a driving force in explosives science. Scientists and engineers at Los Alamos have developed a variety of advanced technologies that anticipate, detect, and mitigate all types of explosive threats. ANDE:

  5. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect (OSTI)

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12

    This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  6. Appendix M - GPRA06 estimate of penetration of generating technologies into green power markets

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Green Power Market Model (GPMM or the model) identifies and analyzes the potential electric-generating capacity additions that will result from green power programs, which are not captured in the least-cost analyses performed by the National Energy Modeling System (NEMS) and the Market Allocation (MARKAL) model. The term "green power" is used to define power generated from renewable energy sources, such as wind, solar, geothermal, and various forms of biomass. The Green Power market is an increasingly important element of the national renewable energy contribution, with changes in the regulatory and legislative environment and the recent dramatic changes in natural gas prices slowly altering the size of this opportunity.

  7. Energy Storage Technologies: State of Development for Stationary...

    Broader source: Energy.gov (indexed) [DOE]

    Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development ...

  8. Reliability Improvements from the Application of Distribution Automation Technologies - Initial Results

    Energy Savers [EERE]

    U.S. Department of Energy | December 2012 Table of Contents Executive Summary ................................................................................................................. ii 1. Introduction ..................................................................................................................... 1 1.1 Purpose and Scope ....................................................................................................... 1 1.2 Background on Electric Distribution

  9. Department of Energy Awards $425 Million for Next Generation Supercomputing Technologies

    Broader source: Energy.gov [DOE]

    WASHINGTON — U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which will help to advance U.S. leadership in scientific research and promote America’s economic and national security.

  10. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  11. Maintaining a Technology-Neutral Approach to Hydrogen Production Process Development through Conceptual Design of the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    Michael W. Patterson

    2008-05-01

    The Next Generation Nuclear Plant (NGNP) project was authorized in the Energy Policy Act of 2005 (EPAct), tasking the U.S. Department of Energy (DOE) with demonstrating High Temperature Gas-Cooled Reactor (HTGR) technology. The demonstration is to include the technical, licensing, operational, and commercial viability of HTGR technology for the production of electricity and hydrogen. The Nuclear Hydrogen Initiative (NHI), a component of the DOE Hydrogen Program managed by the Office of Nuclear Energy, is also investigating multiple approaches to cost effective hydrogen production from nuclear energy. The objective of NHI is development of the technology and information basis for a future decision on commercial viability. The initiatives are clearly intertwined. While the objectives of NGNP and NHI are generally consistent, NGNP has progressed to the project definition phase and the project plan has matured. Multiple process applications for the NGNP require process heat, electricity and hydrogen in varied combinations and sizes. Coupling these processes to the reactor in multiple configurations adds complexity to the design, licensing and demonstration of both the reactor and the hydrogen production process. Commercial viability of hydrogen production may depend on the specific application and heat transport configuration. A component test facility (CTF) is planned by the NGNP to support testing and demonstration of NGNP systems, including those for hydrogen production, in multiple configurations. Engineering-scale demonstrations in the CTF are expected to start in 2012 to support scheduled design and licensing activities leading to subsequent construction and operation. Engineering-scale demonstrations planned by NHI are expected to start at least two years later. Reconciliation of these schedules is recommended to successfully complete both initiatives. Hence, closer and earlier integration of hydrogen process development and heat transport systems is sensible. For integration purposes, an analysis comparing the design, cost and schedule impact of maintaining a technology neutral approach through conceptual design or making an early hydrogen process technology selection was performed. Early selection does not specifically eliminate a technology, but rather selects the first hydrogen technology for demonstration. A systems-engineering approach was taken to define decision-making criteria for selecting a hydrogen technology. The relative technical, cost and schedule risks of each approach were analyzed and risk mitigation strategies were recommended, including provisions to maintain close collaboration with the NHI. The results of these analyses are presented here.

  12. 2013 DOE Bioenergy Technologies Office (BETO) Project Peer Review BIOMASS ENERGY GENERATION PROJECT

    Office of Environmental Management (EM)

    (BETO) Project Peer Review BIOMASS ENERGY GENERATION PROJECT 5/23/2013 Heat and Power Ed Olthoff Cedar Falls Utilities STREETER STATION Unit #6 - 1963 Stoker 16.5 MW Coal/Natural Gas Unit #7 - 1973 Pulverized 35.0 MW Coal/Natural Gas Goal Statement & Project Overview 3 * Densification process to mimic stoker coal - ¾" to 1 ¼" chunks of coal - Suitable for corn stover and other energy crops - Compatible with the existing fuel handling equipment and boiler - Validity determined by

  13. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  14. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  15. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology /newsroom/_assets/images/s-icon.png Technology Delivering science to the marketplace through commercialization, spinoffs and industry partnerships. Health Space Computing Energy Earth Materials Science Technology The Lab All Glen Wurden in the stellarator's vacuum vessel during camera installation in 2014. Innovative imaging systems on the Wendelstein 7-X bring steady-state fusion energy closer to reality Innovative new imaging systems designed at Los Alamos are helping physicists

  16. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow ... Basic research that challenges scientific assumptions ...

  17. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  18. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  19. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matter and Technologies R&D activities towards a future cw LINAC at GSI Winfried Barth Matter and Technologies Super Heavy Nuclei International Symposium, Texas A & M University, College Station TX, USA, March 31 - April 02, 2015 W. Barth, R&D activities towards a future cw LINAC at GSI 2 R&D activities towards a future cw LINAC at GSI 1. Introduction 2. Status of the Unilac High Current Performance 3. Cavity Development 4. General linac layout 5. R&D approach 6. Status of

  1. Technologies and tools for high-performance distributed computing. Final report

    SciTech Connect (OSTI)

    Karonis, Nicholas T.

    2000-05-01

    In this project we studied the practical use of the MPI message-passing interface in advanced distributed computing environments. We built on the existing software infrastructure provided by the Globus Toolkit{trademark}, the MPICH portable implementation of MPI, and the MPICH-G integration of MPICH with Globus. As a result of this project we have replaced MPICH-G with its successor MPICH-G2, which is also an integration of MPICH with Globus. MPICH-G2 delivers significant improvements in message passing performance when compared to its predecessor MPICH-G and was based on superior software design principles resulting in a software base that was much easier to make the functional extensions and improvements we did. Using Globus services we replaced the default implementation of MPI's collective operations in MPICH-G2 with more efficient multilevel topology-aware collective operations which, in turn, led to the development of a new timing methodology for broadcasts [8]. MPICH-G2 was extended to include client/server functionality from the MPI-2 standard [23] to facilitate remote visualization applications and, through the use of MPI idioms, MPICH-G2 provided application-level control of quality-of-service parameters as well as application-level discovery of underlying Grid-topology information. Finally, MPICH-G2 was successfully used in a number of applications including an award-winning record-setting computation in numerical relativity. In the sections that follow we describe in detail the accomplishments of this project, we present experimental results quantifying the performance improvements, and conclude with a discussion of our applications experiences. This project resulted in a significant increase in the utility of MPICH-G2.

  2. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. • Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. • Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. • Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind’s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  3. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  4. NREL: Technology Deployment - Electric Utility Assistance and Support

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Utility Assistance and Support NREL provides data-driven support, assistance, and tools to electric utilities to help further the integration of renewable energy and energy efficiency technologies into the electric grid. Distributed Generation Interconnection Collaborative The Distributed Generation Interconnection Collaborative aims to share knowledge on distributed photovoltaic interconnection practices and innovation. The collaborative hosts monthly informational meetings on

  5. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  6. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Variable distributed generation Dispatchable distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response ...

  7. NETL Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation

    Broader source: Energy.gov [DOE]

    The National Energy Technology Laboratory (NETL) has granted a license for two patented sorbent technologies that capture carbon dioxide (CO2) from streams of mixed gases and enable cleaner, more-efficient energy production from renewable fuels.

  8. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  9. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  10. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  11. Development of low-cost technology for the next generation of high efficiency solar cells composed of earth abundant elements

    SciTech Connect (OSTI)

    Agrawal, Rakesh

    2014-09-28

    The development of renewable, affordable, and environmentally conscious means of generating energy on a global scale represents a grand challenge of our time. Due to the “permanence” of radiation from the sun, solar energy promises to remain a viable and sustainable power source far into the future. Established single-junction photovoltaic technologies achieve high power conversion efficiencies (pce) near 20% but require complicated manufacturing processes that prohibit the marriage of large-scale throughput (e.g. on the GW scale), profitability, and quality control. Our approach to this problem begins with the synthesis of nanocrystals of semiconductor materials comprising earth abundant elements and characterized by material and optoelectronic properties ideal for photovoltaic applications, namely Cu2ZnSn(S,Se)4 (CZTSSe). Once synthesized, such nanocrystals are formulated into an ink, coated onto substrates, and processed into completed solar cells in such a way that enables scale-up to high throughput, roll-to-roll manufacturing processes. This project aimed to address the major limitation to CZTSSe solar cell pce’s – the low open-circuit voltage (Voc) reported throughout literature for devices comprised of this material. Throughout the project significant advancements have been made in fundamental understanding of the CZTSSe material and device limitations associated with this material system. Additionally, notable improvements have been made to our nanocrystal based processing technique to alleviate performance limitations due to the identified device limitations. Notably, (1) significant improvements have been made in reducing intra- and inter-nanoparticle heterogeneity, (2) improvements in device performance have been realized with novel cation substitution in Ge-alloyed CZTGeSSe absorbers, (3) systematic analysis of absorber sintering has been conducted to optimize the selenization process for large grain CZTSSe absorbers, (4) novel electrical characterization analysis techniques have been developed to identify significant limitations to traditional electrical characterization of CZTSSe devices, and (5) the developed electrical analysis techniques have been used to identify the role that band gap and electrostatic potential fluctuations have in limiting device performance for this material system. The device modeling and characterization of CZTSSe undertaken with this project have significant implications for the CZTSSe research community, as the identified limitations due to potential fluctuations are expected to be a performance limitation to high-efficiency CZTSSe devices fabricated from all current processing techniques. Additionally, improvements realized through enhanced absorber processing conditions to minimize nanoparticle and large-grain absorber heterogeneity are suggested to be beneficial processing improvements which should be applied to CZTSSe devices fabricated from all processing techniques. Ultimately, our research has indicated that improved performance for CZTSSe will be achieved through novel absorber processing which minimizes defect formation, elemental losses, secondary phase formation, and compositional uniformity in CZTSSe absorbers; we believe this novel absorber processing can be achieved through nanocrystal based processing of CZTSSe which is an active area of research at the conclusion of this award. While significant fundamental understanding of CZTSSe and the performance limitations associated with this material system, as well as notable improvements in the processing of nanocrystal based CZTSSe absorbers, have been achieved under this project, the limitation of two years of research funding towards our goals prevents further significant advancements directly identified through pce. improvements relative to those reported herein. As the characterization and modeling subtask of this project has been the main driving force for understanding device limitations, the conclusions of this analysis have just recently been applied to the processing of nanocrystal based CZTSSe absorbers -- with notable success. We expect the notable fundamental understanding of device limitations and absorber sintering achieved under this project will lead to significant improvements in device performance for CZTSSe devices in the near future for devices fabricated from a variety of processing techniques

  12. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  13. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  14. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (DBS) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  15. Hydrogen Pathways: Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Pathways Updated Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Ten Hydrogen Production, Delivery, and Distribution Scenarios T. Ramsden, M. Ruth, V. Diakov National Renewable Energy Laboratory M. Laffen, T.A. Timbario Alliance Technical Services, Inc. Technical Report NREL/TP-6A10-60528 March 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  16. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  17. Distribution, volume, and depositional origin of Upper Eocene bolide-generated sediments along the U. S. East Coast

    SciTech Connect (OSTI)

    Poag, C.W.; Poppe, L.J. (Geological Survey, Woods Hole, MA (United States)); Powars, D.S.; Mixon, R.B. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Upper Eocene bolidites (bolide-generated sedimentary deposits) appear to form a continuous coastwise band, 600 km long and 30--100 km wide, from North Carolina to New Jersey (> 65,000 km[sup 2]). The authors sampled these deposits in 14 boreholes (cores and rotary cuttings) and identified them on 36 offshore seismic-reflection profiles. Cores from the bolidites contain allogenic phenoclasts and fossils, as well as shock-altered minerals and tektite glass. On seismic profiles, the bolidites commonly exhibit interrupted, chaotic reflections and fill elongate or ovate excavations. Maximum bolidite thickness offshore is 500m in the presumed impact crater (New Jersey Continental Shelf); maximum thickness onshore is > 60m (southeastern Virginia). Estimated bolidite volume is at least 1,700km[sup 3]. Disparate depositional processes formed four types of bolidites: (1) chaotic fill within the impact crater; (2) stratified( ) ejecta around the crater; (3) ejecta-bearing debrite at Deep Sea Drilling Project Site 612 (New Jersey slope); and (4) impact tsunamiite in North Carolina, Virginia, Maryland, and New Jersey.

  18. NREL: Electric Infrastructure Systems Research - Distributed Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Test Facility Electricity Integration Research Printable Version Distributed Energy Resources Test Facility NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as electric power system equipment capable of simulating a real-world electric system. Photo of the Distributed Energy Resources Test

  19. Proceedings of the Technology Roadmap Workshop on Communication and Control Systems for Distributed Energy Implementation and Testing, May 2002

    Broader source: Energy.gov [DOE]

    This report presents the proceedings of a technical workshop on communication and control systems for the implementation and testing of distributed energy devises such as microturbines, fuel cells, and photovoltaic arrays.

  20. Magnetic Processing A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNLs unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNLs expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNLs Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  1. EIA - Distributed Generation in Buildings

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Glossary FAQS Overview Projection Data Monthly ... Major Topics Most popular Annual Energy Outlook related ... Residential Commercial Renewable Solar photovoltaic Wind ...

  2. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  3. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  4. Bioconversion Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  5. Ronald L. Schoff Senior Program Manager, Technology Innovation

    U.S. Energy Information Administration (EIA) Indexed Site

    Ronald L. Schoff Senior Program Manager, Technology Innovation EIA Energy Conference 2015 June 15, 2015 Value of the Integrated Grid Utility Integrated Distributed Resource Deployment 2 Electric Power Research Institute Our Mission... Safe Advancing safe, reliable, affordable and environmentally responsible electricity for society through global collaboration, thought leadership and science & technology innovation 3 The Traditional Electric Power System Central Generation Predictable

  6. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  7. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PROGRAM PROJECT PROFILE Distributed Energy Project Profile * Verizon System Technical Overview During ... to the grid-a connected generation limit of 3 MVA set by the ...

  8. Distributed Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Wind Distributed Wind The Wind Program's activities in wind technologies in distributed applications-or distributed wind-address the performance and reliability challenges associated with smaller turbines by focusing on technology development, testing, certification, and manufacturing. What is Distributed Wind? Photo of a turbine behind a school. The Wind Program defines distributed wind in terms of technology application, based on a wind plant's location relative to end-use and

  9. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  10. NREL: Technology Deployment - Microgrid Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid Design Photo of a microgrid test site at the National Wind Technology Center. NREL designs independent electrical generation and distribution systems called microgrids, which deliver energy that is reliable, economical, and sustainable. NREL experts work with military, government, industry, and other organizations that cannot afford to lose power to develop reliable and cost-effective microgrid systems. Expertise and Knowledge NREL offers microgrid technical expertise and project

  11. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit ...

  12. {sup 99m}Tc generators for clinical use based on zirconium molybdate gel and (n, gamma) produced {sup 99}Mo: Indian experience in the development and deployment of indigenous technology and processing facilities

    SciTech Connect (OSTI)

    Saraswathy, P.; Dey, A.C.; Sarkar, S.K.; Kothalkar, C.; Naskar, P.; Arjun, G.; Arora, S.S.; Kohli, A.K.; Meera, V.; Venugopal, V.; Ramamoorthy, N.

    2008-07-15

    The Indian pursuit of gel generator technology for {sup 99m}Tc was driven mainly by three considerations, namely, (i) well-established and ease of reliable production of (n, gamma)-based {sup 99}Mo in several tens of GBq quantities in the research reactors in Trombay/Mumbai, India, (ii) need for relatively low-cost alternate technology to replace the solvent (MEK) extraction generator system in use in India since 1970s and (iii) minimize dependency on weekly import of fission-produced {sup 99}Mo raw material required for alumina column generator. Extensive investigations on process standardisation for zirconium molybdate gel (ZMG) led to a steady progress, achieved both in terms of process technology and final performance of {sup 99m}Tc gel generators. The {sup 99m}Tc final product purity from the Indian gel system was comparable to that obtained from the gold-standard alumina column generators. Based on the feasibility established for reliable small-scale production, as well as satisfactory clinical experience with a number of gel generators used in collaborating hospital radiopharmacies, full-fledged mechanised processing facilities for handling up to 150 g of ZMG were set up. The indigenous design and development included setting up of shielded plant facilities with pneumatic-driven as well as manual controls and special gadgets such as, microwave heating of the zirconium molybdate cake, dispenser for gel granules, loading of gel columns into pre-assembled generator housing etc. Formal review of the safety features was carried out by the regulatory body and stage-wise clearance for processing low and medium level {sup 99}Mo activity was granted. Starting from around 70 GBq {sup 99}Mo handling, the processing facilities have since been successfully operated at a level of 740 GBq {sup 99}Mo, twice a month. In all 18 batches of gel have been processed and 156 generators produced. The individual generator capacity was 15 to 30 GBq with an elution yield of nearly 75%. 129 generators were supplied to 11 user hospitals and the estimated number of clinical studies done is well over 5000. The salient aspects of the Indian experience have been reported in many a forum and shared with the IAEA through the on-going CRP. The detailed process know-how is available for technology transfer from BRIT, India. (author)

  13. Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  15. Next Generation Inverter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  16. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  17. Next Generation Materials:

    Energy Savers [EERE]

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  18. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X.; Nakajima, K.; Sakanakura, H.; Matsubae, K.; Bai, H.; Nagasaka, T.

    2012-06-15

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  19. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  20. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  1. Effects of Distributed Energy Resources on Conservation Voltage Reduction (CVR)

    SciTech Connect (OSTI)

    Singh, Ruchi; Tuffner, Francis K.; Fuller, Jason C.; Schneider, Kevin P.

    2011-10-10

    Conservation Voltage Reduction (CVR) is one of the cheapest technologies which can be intelligently leveraged to provide considerable energy savings. The addition of renewables in the form of distributed resources can affect the entire power system, but more importantly, affects the traditional substation control schemes at the distribution level. This paper looks at the effect on energy consumption, peak load reduction, and voltage profile changes due to the addition of distributed generation in a distribution feeder using combinations of volt var control. An IEEE 13-node system is used to simulate the various cases. Energy savings and peak load reduction for different simulation scenarios are compared.

  2. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  3. Hydrogen Pathways. Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, Mark; Laffen, Melissa; Timbario, Thomas A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  4. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, M.; Laffen, M.; Timbario, T. A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  5. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Fuel Cell Technologies Publication and Product Library (EERE)

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  6. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Broader source: Energy.gov [DOE]

    Report of levelized cost in 2005 US dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  7. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  8. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    SciTech Connect (OSTI)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

  9. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

  10. VAR Support from Distributed Wind Energy Resources: Preprint

    SciTech Connect (OSTI)

    Romanowitz, H.; Muljadi, E.; Butterfield, C. P.; Yinger, R.

    2004-07-01

    As the size and quantity of wind farms and other distributed generation facilities increase, especially in relation to local grids, the importance of a reactive power compensator or VAR support from these facilities becomes more significant. Poorly done, it can result in cycling or inadequate VAR support, and the local grid could experience excessive voltage regulation and, ultimately, instability. Improved wind turbine and distributed generation power control technologies are creating VAR support capabilities that can be used to enhance the voltage regulation and stability of local grids. Locating VAR support near the point of consumption, reducing step size, and making the control active all improve the performance of the grid. This paper presents and discusses alternatives for improving the integration of VAR support from distributed generation facilities such as wind farms. We also examine the relative effectiveness of distributed VAR support on the local grid and how it can b e integrated with the VAR support of the grid operator.

  11. Quadrennial Technology Review Glossary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... A next generation reactor that uses lead-bismuth eutectic as a coolant and relies on high ... technologies that reduce nitrogen oxide and particulate emissions. lower heating ...

  12. TECHNOLOGY PROGRAM PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... the development of next-generation CO 2 injectionEOR technology, with the objective of ... Improved Flow Field Structures for Direct Methanol Fuel Cells * FE0000528 University ...

  13. Nanomaterials: Organic and Inorganic for Next-Generation Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies 2007 Diesel ...

  14. Thermoelectric Generator Development for Automotive Waste Heat...

    Broader source: Energy.gov (indexed) [DOE]

    Develop Thermoelectric Technology for Automotive Waste Heat Recovery Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric ...

  15. Department of Energy Announces 18 New Projects to Accelerate Technologies for Efficient Residential Combined Heat and Power Generation and Bioenergy Crop Development

    Broader source: Energy.gov [DOE]

    The Energy Department’s Advanced Research Projects Agency-Energy (ARPA-E) today announced $55 million in funding for 18 innovative projects as part of ARPA-E’s two newest programs: GENerators for Small Electrical and Thermal Systems (GENSETS) and Transportation Energy Resources from Renewable Agriculture (TERRA).

  16. Distributed Solar Photovoltaics for Electric Vehicle Charging...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an opportunity for market expansion of distributed solar technology. A major barrier to the current deployment of solar technology for EV charging is a lack of clear ...

  17. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  18. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  19. Chapter 3: Enabling Modernization of the Electric Power System Technology Assessment | Measurements, Communications, and Controls

    Energy Savers [EERE]

    and Controls Transmission and Distribution Components ENERGY U.S. DEPARTMENT OF Quadrennial Technology Review 2015 1 Quadrennial Technology Review 2015 Measurements, Communications, and Controls Chapter 3: Technology Assessments Introduction Grid operators are tasked with maintaining the generation-load balance and ensuring the safe, reliable, and cost-effective delivery of electric power. This role is of critical importance today and will continue to be so in the future. However, this task is

  20. Intelligent Generation | Open Energy Information

    Open Energy Info (EERE)

    Chicago, Illinois Zip: 60603 Sector: Renewable Energy Product: Chicago-based maker of software aimed at optimising distributed renewable energy generation and power storage....

  1. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  2. Magnetic field generator

    DOE Patents [OSTI]

    Krienin, Frank (Shoreham, NY)

    1990-01-01

    A magnetic field generating device provides a useful magnetic field within a specific retgion, while keeping nearby surrounding regions virtually field free. By placing an appropriate current density along a flux line of the source, the stray field effects of the generator may be contained. One current carrying structure may support a truncated cosine distribution, and it may be surrounded by a current structure which follows a flux line that would occur in a full coaxial double cosine distribution. Strong magnetic fields may be generated and contained using superconducting cables to approximate required current surfaces.

  3. Workshop Summary Report: R&D for Dispatchable Distributed Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Global Distributed Generation Deployment Forecast, December 2014. Distributed generation ... system operator's ability to accurately forecast load, a situation that could become ...

  4. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid ...

  5. Gas Storage Technology Consortium

    SciTech Connect (OSTI)

    Joel L. Morrison; Sharon L. Elder

    2006-07-06

    Gas storage is a critical element in the natural gas industry. Producers, transmission & distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1 to June 30, 2006. Key activities during this time period include: (1) Develop and process subcontract agreements for the eight projects selected for cofunding at the February 2006 GSTC Meeting; (2) Compiling and distributing the three 2004 project final reports to the GSTC Full members; (3) Develop template, compile listserv, and draft first GSTC Insider online newsletter; (4) Continue membership recruitment; (5) Identify projects and finalize agenda for the fall GSTC/AGA Underground Storage Committee Technology Transfer Workshop in San Francisco, CA; and (6) Identify projects and prepare draft agenda for the fall GSTC Technology Transfer Workshop in Pittsburgh, PA.

  6. Distributed Generation Financial Incentives and Programs Resources...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    clean energy financing, personal and corporate tax incentives (credits, ... Schools Renewable Energy Project Finance: Financing Renewable Energy at Government ...

  7. Distributed Generation Lead-by-Example Resources

    Broader source: Energy.gov [DOE]

    State governments can lead by example by promoting renewable energy programs and policies. Efforts to lead by example include using renewable energy resources (including alternative fuel for...

  8. Distributed Generation: Challenges and Opportunities, 7. edition...

    Office of Scientific and Technical Information (OSTI)

    ANALYSIS; CAPACITY; STIRLING ENGINES; PHOTOVOLTAIC POWER SUPPLIES; SOLAR ENERGY; WIND POWER; FUEL CELLS Word Cloud More Like This Full Text Miscellaneous Please see Document ...

  9. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    the value of the resources and alleviate problems arising from their intermittent nature. This report describes how information was collected, analysed and synthesized and...

  10. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  11. Distributed Energy Resources Market Diffusion Model

    SciTech Connect (OSTI)

    Maribu, Karl Magnus; Firestone, Ryan; Marnay, Chris; Siddiqui,Afzal S.

    2006-06-16

    Distributed generation (DG) technologies, such as gas-fired reciprocating engines and microturbines, have been found to be economically beneficial in meeting commercial-sector electrical, heating, and cooling loads. Even though the electric-only efficiency of DG is lower than that offered by traditional central stations, combined heat and power (CHP) applications using recovered heat can make the overall system energy efficiency of distributed energy resources (DER) greater. From a policy perspective, however, it would be useful to have good estimates of penetration rates of DER under various economic and regulatory scenarios. In order to examine the extent to which DER systems may be adopted at a national level, we model the diffusion of DER in the US commercial building sector under different technical research and technology outreach scenarios. In this context, technology market diffusion is assumed to depend on the system's economic attractiveness and the developer's knowledge about the technology. The latter can be spread both by word-of-mouth and by public outreach programs. To account for regional differences in energy markets and climates, as well as the economic potential for different building types, optimal DER systems are found for several building types and regions. Technology diffusion is then predicted via two scenarios: a baseline scenario and a program scenario, in which more research improves DER performance and stronger technology outreach programs increase DER knowledge. The results depict a large and diverse market where both optimal installed capacity and profitability vary significantly across regions and building types. According to the technology diffusion model, the West region will take the lead in DER installations mainly due to high electricity prices, followed by a later adoption in the Northeast and Midwest regions. Since the DER market is in an early stage, both technology research and outreach programs have the potential to increase DER adoption, and thus, shift building energy consumption to a more efficient alternative.

  12. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  13. Integrated Distribution Planning Concept Paper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Planning Concept Paper www.irecusa.org A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources May 2013 Integrated Distribution Planning Concept Paper A Proactive Approach for Accommodating High Penetrations of Distributed Generation Resources Tim Lindl and Kevin Fox Interstate Renewable Energy Council, Inc. Abraham Ellis and Robert Broderick Sandia National Laboratories May 2013 IREC enables greater use of clean energy in a sustainable way by

  14. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  15. Gaia Power Technologies | Open Energy Information

    Open Energy Info (EERE)

    Power Technologies Jump to: navigation, search Name: Gaia Power Technologies Place: New York, New York Zip: 10038 Sector: Efficiency Product: Provides distributed electrical power...

  16. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  17. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh ...

  18. U.S. Department of Energy Geothermal Electricity Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spreadsheet model developed by the Geothermal Technologies Program to assess power generation costs and the potential for technology improvements to impact those generation...

  19. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  20. Massively parallel mesh generation for physics codes

    SciTech Connect (OSTI)

    Hardin, D.D.

    1996-06-01

    Massively parallel processors (MPPs) will soon enable realistic 3-D physical modeling of complex objects and systems. Work is planned or presently underway to port many of LLNL`s physical modeling codes to MPPs. LLNL`s DSI3D electromagnetics code already can solve 40+ million zone problems on the 256 processor Meiko. However, the author lacks the software necessary to generate and manipulate the large meshes needed to model many complicated 3-D geometries. State-of-the-art commercial mesh generators run on workstations and have a practical limit of several hundred thousand elements. In the foreseeable future MPPs will solve problems with a billion mesh elements. The objective of the Parallel Mesh Generation (PMESH) Project is to develop a unique mesh generation system that can construct large 3-D meshes (up to a billion elements) on MPPs. Such a capability will remove a critical roadblock to unleashing the power of MPPs for physical analysis and will put LLNL at the forefront of mesh generation technology. PMESH will ``front-end`` a variety of LLNL 3-D physics codes, including those in the areas of electromagnetics, structural mechanics, thermal analysis, and hydrodynamics. The DSI3D and DYNA3D codes are already running on MPPs. The primary goal of the PMESH project is to provide the robust generation of large meshes for complicated 3-D geometries through the appropriate distribution of the generation task between the user`s workstation and the MPP. Secondary goals are to support the unique features of LLNL physics codes (e.g., unusual elements) and to minimize the user effort required to generate different meshes for the same geometry. PMESH`s capabilities are essential because mesh generation is presently a major limiting factor in simulating larger and more complex 3-D geometries. PMESH will significantly enhance LLNL`s capabilities in physical simulation by advancing the state-of-the-art in large mesh generation by 2 to 3 orders of magnitude.

  1. Hydrogain Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Hydrogain Technologies Inc Place: Florida Zip: FL 33069 Sector: Hydro, Hydrogen Product: Developers of hydrogen fuel generation and storage technology for...

  2. The distributed utility: A new electric utility planning and pricing paradigm

    SciTech Connect (OSTI)

    Feinstein, C.D.; Orans, R.; Chapel, S.W.

    1997-12-31

    The distributed utility concept provides an alternate approach to guide electric utility expansion. The fundamental idea within the distributed utility concept is that particular local load increases can be satisfied at least cost by avoiding or delaying the more traditional investments in central generation capacity, bulk transmission expansion, and local transmission and distribution upgrades. Instead of these investments, the distributed utility concept suggests that investments in local generation, local storage, and local demand-side management technologies can be designed to satisfy increasing local demand at lower total cost. Critical to installation of distributed assets is knowledge of a utility system`s area- and time-specific costs. This review introduces the distributed utility concept, describes an application of ATS costs to investment planning, discusses the various motivations for further study of the concept, and reviews relevant literature. Future research directions are discussed.

  3. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  4. NREL: Distributed Grid Integration - Energy System Basics Video Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Printable Version Energy System Basics Video Series Learn the essential facts on energy systems in this six-part video series sponsored by the DOE SunShot Initiative and hosted by Dr. Ravel Ammerman. Part 1: Electricity Grid Overview Part 2: Electricity Grid: Traditional Generation Technologies Part 3: Electricity Grid: Transmission Systems Part 4: Electricity Grid: Substation Overview Part 5: Electricity Grid: Distribution System Overview Part 6: Electricity Grid: Renewable Energy Resources

  5. EIS Distribution

    Broader source: Energy.gov [DOE]

    This DOE guidance presents a series of recommendations related to the EIS distribution process, which includes creating and updating a distribution list, distributing an EIS, and filing an EIS with the EPA.

  6. Lumificient Technologies | Open Energy Information

    Open Energy Info (EERE)

    Lumificient Technologies Place: Minnesota Zip: MN 55369 Product: Lumificient is a manufacturing and distribution firm that designs and develops solid state lighting or LED...

  7. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  8. QUADRENNIAL TECHNOLOGY REVIEW AN ASSESSMENT OF ENERGY TECHNOLOGIES...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... next-generation, game-changing technologies. ... that would enable a systematic progression toward ... 11, 2015: http:www.education.noaa.gov OceanandCoasts. 91 ...

  9. Quadrennial Technology Review 2015

    Broader source: Energy.gov (indexed) [DOE]

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  10. Oil & Natural Gas Technology

    Office of Scientific and Technical Information (OSTI)

    or any agency thereof. 3 ABSTRACT In our research, we are ... However, the first generation technologies have proven to be ... However, during the course of this project, CD-adapco ...

  11. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  12. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  13. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    ... m m e r Pro d u ct io n Pro file s Electricity demand (not scaled) Solar Radiation ... design f or parabolic t rough plant s Based on Solar Two molten-salt power tower experience. ...

  14. Articles about Next-Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is that most projections put the operation and maintenance (O&M) costs of offshore wind farms between 2 to 5 times the current average costs for land-based wind farms. One way...

  15. Advanced Thermoelectric Materials and Generator Technology for...

    Broader source: Energy.gov (indexed) [DOE]

    Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of ...

  16. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  17. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  18. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  19. Technology and energy supply

    U.S. Energy Information Administration (EIA) Indexed Site

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  20. Technology Reviews | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Reviews Technology Reviews Selecting a distributed energy (DE) technology for a specific application depends on many factors. Considerations include the amount of power needed, the duty cycle, space constraints, thermal needs, emission regulations, fuel availability, utility prices, and interconnection issues. The following technology reviews include descriptions of a variety of DE and combined heat and power (CHP) technologies, providing (when available) such parameters as

  1. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    Overseeing Organization Tidal Generation Ltd Project Technology *MHK TechnologiesDeep Gen Tidal Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See...

  2. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  3. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect (OSTI)

    Stovall, Therese K; Kingston, Tim

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

  4. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  5. Electricity Transmission and Distribution Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Transmission Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity ...

  6. Distributive Distillation Enabled by Microchannel Process Technology...

    Office of Scientific and Technical Information (OSTI)

    distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated...

  7. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional power generation. Innovation Abengoa is focusing on ...

  8. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  9. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle ...

  10. Title XVII Supplements on Distributed Energy Projects

    Energy Savers [EERE]

    Title XVII Supplements on Distributed Energy Projects Distributed Energy Projects are currently driving innovation and transforming U.S. energy markets. Technologies such as rooftop solar, energy storage, smart grid technology, and methane capture for oil and gas wells can modernize our energy infrastructure, enhance energy reliability, create economic opportunity, and reduce greenhouse gas emissions. However, many of these distributed technologies currently face market barriers since commercial

  11. NREL: Distributed Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects Photo of two men in safety glasses working with electric equipment in a laboratory. NREL's distributed grid integration projects develop and test technologies, systems, and methods to interconnect variable renewable energy with the electric power grid. NREL's distributed energy projects support the integration of new technologies into the electric power grid. This work involves industry, academia, other national laboratories, and various standards organizations. Learn more about our

  12. PROJECT PROFILE: Dynamic Building Load Control to Facilitate High Penetration of Solar Photovoltaic Generation (SuNLaMP)

    Broader source: Energy.gov [DOE]

    This project aims to develop, demonstrate, and validate a sensing and control mechanism for using power loads to address variable photovoltaic (PV) generation, which will reduce two-way power flow and mitigate voltage instability on distribution level circuits. The availability of this technology will enable increased penetration of renewables while weakening the challenges that arise due to their intermittency in generation by using flexibility on load side.

  13. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  14. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  15. Interconnection Standards for Small Generators | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    (FERC) adopted new "small generator" interconnection standards for distributed energy resources up to 20 megawatts (MW) in capacity in November 2013 and September 2014,...

  16. Technology Validation Fact Sheet | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation Fact Sheet Technology Validation Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts (September 2013). PDF icon Technology Validation More Documents & Publications Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA

  17. Distribution Workshop

    Broader source: Energy.gov [DOE]

    On September 24-26, 2012, the GTT presented a workshop on grid integration on the distribution system at the Sheraton Crystal City near Washington, DC.

  18. Properly Understanding the Impacts of Distributed Resources on Distribution Systems

    SciTech Connect (OSTI)

    Rizy, D Tom; Li, Fangxing; Li, Huijuan; Adhikari, Sarina; Kueck, John D

    2010-01-01

    The subject paper discusses important impacts of distributed resources on distribution networks and feeders. These include capacity, line losses, voltage regulation, and central system support (such as volt/var via central generators and substation) as the number, placement and penetration levels of distributed resources are varied. Typically, the impacts of distributed resources on the distribution system are studied by using steady-state rather than dynamic analysis tools. However, the response time and transient impacts of both system equipment (such as substation/feeder capacitors) and distributed resources needs to be taken into account and only dynamic analysis will provide the full impact results. ORNL is wrapping up a study of distributed resources interconnected to a large distribution system considering the above variables. A report of the study and its results will be condensed into a paper for this panel session. The impact of distributed resources will vary as the penetration level reaches the capacity of the distribution feeder/system. The question is how high of a penetration of distributed resource can be accommodated on the distribution feeder/system without any major changes to system operation, design and protection. The impacts most surely will vary depending upon load composition, distribution and level. Also, it is expected that various placement of distributed resources will impact the distribution system differently.

  19. Distributed Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Energy Distributed Energy Distributed energy consists of a range of smaller-scale and modular devices designed to provide electricity, and sometimes also thermal energy, in locations close to consumers. They include fossil and renewable energy technologies (e.g., photovoltaic arrays, wind turbines, microturbines, reciprocating engines, fuel cells, combustion turbines, and steam turbines); energy storage devices (e.g., batteries and flywheels); and combined heat and power systems.

  20. Electrical pulse generator

    DOE Patents [OSTI]

    Norris, Neil J.

    1979-01-01

    A technique for generating high-voltage, wide dynamic range, shaped electrical pulses in the nanosecond range. Two transmission lines are coupled together by resistive elements distributed along the length of the lines. The conductance of each coupling resistive element as a function of its position along the line is selected to produce the desired pulse shape in the output line when an easily produced pulse, such as a step function pulse, is applied to the input line.

  1. Fuels Technologies

    Energy Savers [EERE]

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  2. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental...

  3. Advanced Modular Inverter Technology Development

    SciTech Connect (OSTI)

    Adam Szczepanek

    2006-02-04

    Electric and hybrid-electric vehicle systems require an inverter to convert the direct current (DC) output of the energy generation/storage system (engine, fuel cells, or batteries) to the alternating current (AC) that vehicle propulsion motors use. Vehicle support systems, such as lights and air conditioning, also use the inverter AC output. Distributed energy systems require an inverter to provide the high quality AC output that energy system customers demand. Today's inverters are expensive due to the cost of the power electronics components, and system designers must also tailor the inverter for individual applications. Thus, the benefits of mass production are not available, resulting in high initial procurement costs as well as high inverter maintenance and repair costs. Electricore, Inc. (www.electricore.org) a public good 501 (c) (3) not-for-profit advanced technology development consortium assembled a highly qualified team consisting of AeroVironment Inc. (www.aerovironment.com) and Delphi Automotive Systems LLC (Delphi), (www.delphi.com), as equal tiered technical leads, to develop an advanced, modular construction, inverter packaging technology that will offer a 30% cost reduction over conventional designs adding to the development of energy conversion technologies for crosscutting applications in the building, industry, transportation, and utility sectors. The proposed inverter allows for a reduction of weight and size of power electronics in the above-mentioned sectors and is scalable over the range of 15 to 500kW. The main objective of this program was to optimize existing AeroVironment inverter technology to improve power density, reliability and producibility as well as develop new topology to reduce line filter size. The newly developed inverter design will be used in automotive and distribution generation applications. In the first part of this program the high-density power stages were redesigned, optimized and fabricated. One of the main tasks was to design and validate new gate drive circuits to provide the capability of high temp operation. The new power stages and controls were later validated through extensive performance, durability and environmental tests. To further validate the design, two power stages and controls were integrated into a grid-tied load bank test fixture, a real application for field-testing. This fixture was designed to test motor drives with PWM output up to 50kW. In the second part of this program the new control topology based on sub-phases control and interphase transformer technology was successfully developed and validated. The main advantage of this technology is to reduce magnetic mass, loss and current ripple. This report summarizes the results of the advanced modular inverter technology development and details: (1) Power stage development and fabrication (2) Power stage validation testing (3) Grid-tied test fixture fabrication and initial testing (4) Interphase transformer technology development

  4. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  5. Bosch Solar Sustainable Energy Technologies JV | Open Energy...

    Open Energy Info (EERE)

    Sustainable Energy Technologies JV Jump to: navigation, search Name: Bosch Solar & Sustainable Energy Technologies JV Place: Ontario, Canada Product: Canada-based JV to distribute...

  6. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  7. Voices of Experience | Advanced Distribution Management Systems...

    Office of Environmental Management (EM)

    ... and optimize the performance of the distribution grid. ... foundation that can support each component of an ADMS. ... renewable generation; * Analysis showing that enabling ...

  8. Distributed Energy Calculator | Open Energy Information

    Open Energy Info (EERE)

    ibutedenergycalculator.com OpenEI Keyword(s): Challenge Generated, Green Button Apps Language: English References: Apps for Energy1 The Distributed Energy Calculator allows you...

  9. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  10. ITP Industrial Distributed Energy: Distributed Energy Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ITP Industrial Distributed Energy: Distributed Energy Program Project Profile: Verizon Central Office Building ITP Industrial Distributed Energy: Distributed Energy Program Project ...

  11. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  12. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  13. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Licensing Agreements Technologies Available for Licensing...

  14. Distributed Wind Policy Comparison Tool

    Broader source: Energy.gov [DOE]

    DOE funded "Best Practices for Cost-Effective Distributed Wind" to identify distributed wind technology policy best practices and to help policymakers, utilities, advocates, and consumers examine their effectiveness using a pro forma model. Incorporating a customized feed from the Database of State Incentives for Renewables and Efficiency (DSIRE), the Web-based Distributed Wind Policy Comparison Tool is designed to assist state, local, and utility officials in understanding the financial impacts of different policy options to help reduce the cost of distributed wind technologies. The Tool can be used to evaluate the ways that a variety of federal and state policies and incentives impact the economics of distributed wind (and subsequently its expected market growth).

  15. Global Assessment of Hydrogen Technologies - Executive Summary

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan, Andrew J.

    2007-12-01

    This project was a collaborative effort involving researchers from the University of Alabama at Birmingham (UAB) and Argonne National Laboratory (ANL), drawing on the experience and expertise of both research organizations. The goal of this study was to assess selected hydrogen technologies for potential application to transportation and power generation. Specifically, this study evaluated scenarios for deploying hydrogen technologies and infrastructure in the Southeast. One study objective was to identify the most promising near-term and long-term hydrogen vehicle technologies based on performance, efficiency, and emissions profiles and compare them to traditional vehicle technologies. Hydrogen vehicle propulsion may take many forms, ranging from hydrogen or hythane fueled internal combustion engines (ICEs) to fuel cells and fuel cell hybrid systems. This study attempted to developed performance and emissions profiles for each type (assuming a light duty truck platform) so that effective deployment strategies can be developed. A second study objective was to perform similar cost, efficiency, and emissions analysis related to hydrogen infrastructure deployment in the Southeast. There will be many alternative approaches for the deployment of hydrogen fueling infrastructure, ranging from distributed hydrogen production to centralized production, with a similar range of delivery options. This study attempted to assess the costs and potential emissions associated with each scenario. A third objective was to assess the feasibility of using hydrogen fuel cell technologies for stationary power generation and to identify the advantages and limits of different technologies. Specific attention was given to evaluating different fuel cell membrane types. A final objective was to promote the use and deployment of hydrogen technologies in the Southeast. This effort was to include establishing partnerships with industry as well promoting educational and outreach efforts to public service providers. To accomplish these goals and objectives a work plan was developed comprising 6 primary tasks: • Task 1 - Technology Evaluation of Hydrogen Light-Duty Vehicles – The PSAT powertrain simulation software was used to evaluate candidate hydrogen-fueled vehicle technologies for near-term and long-term deployment in the Southeastern U.S. • Task 2 - Comparison of Performance and Emissions from Near-Term Hydrogen Fueled Light Duty Vehicles - An investigation was conducted into the emissions and efficiency of light-duty internal combustion engines fueled with hydrogen and compressed natural gas (CNG) blends. The different fuel blends used in this investigation were 0%, 15%, 30%, 50%, 80%, 95%, and ~100% hydrogen, the remainder being compressed natural gas. • Task 3 - Economic and Energy Analysis of Hydrogen Production and Delivery Options - Expertise in engineering cost estimation, hydrogen production and delivery analysis, and transportation infrastructure systems was used to develop regional estimates of resource requirements and costs for the infrastructure needed to deliver hydrogen fuels to advanced-technology vehicles. • Task 4 –Emissions Analysis for Hydrogen Production and Delivery Options - The hydrogen production and delivery scenarios developed in Task 3 were expanded to include analysis of energy and greenhouse gas emissions associated with each specific case studies. • Task 5 – Use of Fuel Cell Technology in Power Generation - The purpose of this task was to assess the performance of different fuel cell types (specifically low-temperature and high temperature membranes) for use in stationary power generation. • Task 6 – Establishment of a Southeastern Hydrogen Consortium - The goal of this task was to establish a Southeastern Hydrogen Technology Consortium (SHTC) whose purpose would be to promote the deployment of hydrogen technologies and infrastructure in the Southeast.

  16. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage 2012 DOE Hydrogen and Fuel Cells Program and Vehicle ...

  17. GreenChek Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    GreenChek Technology Inc Place: San Francisco, California Zip: 94111 Sector: Hydro, Hydrogen Product: Maker of onboard hydrogen generation and injection (OHGI) technology to...

  18. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2008-06-03

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  19. Distributed data transmitter

    DOE Patents [OSTI]

    Brown, Kenneth Dewayne; Dunson, David

    2006-08-08

    A distributed data transmitter (DTXR) which is an adaptive data communication microwave transmitter having a distributable architecture of modular components, and which incorporates both digital and microwave technology to provide substantial improvements in physical and operational flexibility. The DTXR has application in, for example, remote data acquisition involving the transmission of telemetry data across a wireless link, wherein the DTXR is integrated into and utilizes available space within a system (e.g., a flight vehicle). In a preferred embodiment, the DTXR broadly comprises a plurality of input interfaces; a data modulator; a power amplifier; and a power converter, all of which are modularly separate and distinct so as to be substantially independently physically distributable and positionable throughout the system wherever sufficient space is available.

  20. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  1. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  2. PLASMA GENERATOR

    DOE Patents [OSTI]

    Foster, J.S. Jr.

    1958-03-11

    This patent describes apparatus for producing an electricity neutral ionized gas discharge, termed a plasma, substantially free from contamination with neutral gas particles. The plasma generator of the present invention comprises a plasma chamber wherein gas introduced into the chamber is ionized by a radiofrequency source. A magnetic field is used to focus the plasma in line with an exit. This magnetic field cooperates with a differential pressure created across the exit to draw a uniform and uncontaminated plasma from the plasma chamber.

  3. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I.; Petrov, Ivan G.

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  4. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  5. MHK Technologies/Small power take off module | Open Energy Information

    Open Energy Info (EERE)

    module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Description The 18...

  6. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  7. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  8. Intelligent Grid Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Analysis Energy Analysis Electricity Transmission Electricity Transmission Find More Like This Return to Search Intelligent Grid Technologies Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (611 KB) Technology Marketing Summary With the increasing demand for new energy distribution methods including increased efficiency and alternative sources, Intelligent Grid technologies are on the cutting edge of demand. The

  9. Symmetric generalized binomial distributions

    SciTech Connect (OSTI)

    Bergeron, H.; Curado, E. M. F.; Instituto Nacional de Cincia e Tecnologia - Sistemas Complexos, Rua Xavier Sigaud 150, 22290-180 - Rio de Janeiro, RJ ; Gazeau, J. P.; APC, UMR 7164, Univ Paris Diderot, Sorbonne Paris Cit, 75205 Paris ; Rodrigues, Ligia M. C. S. E-mail: evaldo@cbpf.br E-mail: ligia@cbpf.br

    2013-12-15

    In two recent articles, we have examined a generalization of the binomial distribution associated with a sequence of positive numbers, involving asymmetric expressions of probabilities that break the symmetry win-loss. We present in this article another generalization (always associated with a sequence of positive numbers) that preserves the symmetry win-loss. This approach is also based on generating functions and presents constraints of non-negativeness, similar to those encountered in our previous articles.

  10. Business Talks at the Technology Showcase | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Business Talks at the Technology Showcase Business Talks at the Technology Showcase February 27, 2013 - 3:26pm Addthis The Technology Showcase: AC Kinetics 1 of 11 The Technology Showcase: AC Kinetics The Technology Showcase at the 2013 ARPA-E Energy Innovation Summit presents America's next generation of transformational energy technologies. In this photo, motor control company AC Kinetics, Inc. highlighted its next-generation motor control technology on the showcase floor. Image: Sarah

  11. Application experiences with distributed resources in the Midwest

    SciTech Connect (OSTI)

    O`Sullivan, J.B.; Jacobs, K.; Guzy, L.

    1998-12-31

    Distributed generation consists of the use of integrated or stand-alone natural gas or liquid fueled power generation equipment. These distributed resources (DR) may provide power in the 5-kW to 50-MW range and can provide power directly to the customer, thereby potentially deferring additional transmission and distribution systems upgrades by the utility and improving power quality and reliability for the customer. Compact, technically advanced units in a variety of technologies presently available include diesel engines, lean burning gas fired internal combustion engine generator sets, cogeneration packages, small microturbines, and fuel cells. This class of resources has the potential to provide a cost effective, reliable, addition to a utility`s generating resource mix and is once again gaining favor in era characterized both by uncertainty and opportunity. Strategic deployment of these resources can also eliminate or delay expensive central plant capacity additions. Installations may be tailored to meet customer technical and financial requirements with projects being developed by utilities on customer sites as well as by Independent Power Producers and others. Economic constraints as well as key environmental and operating issues must be understood and clarified for those seeking to capitalize on this approach. As the first phase of a project with the objective of developing a best practices approach to implementing DR, EPRI`s project Application Experiences with Distributed Resources in the Midwest examined these issues. This report contains the results of an in-depth technical survey, which was given to distributed resource sites throughout the Midwest. Aspects of DR projects involving electrical interconnection, siting and permitting, operations and maintenance and various operating practices are examined.

  12. Cobol Technologies | Open Energy Information

    Open Energy Info (EERE)

    Name: Cobol Technologies Place: New Delhi, Delhi (NCT), India Product: New Delhi-based thermal power and electricity distributer. The company is setting up a 5MW PV plant in...

  13. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    SciTech Connect (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology as well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.

  14. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmore » well as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.« less

  15. Distributed Energy Resources Customer Adoption Model (DER-CAM), Investment & Planing Version 3.10.5.m

    Energy Science and Technology Software Center (OSTI)

    2014-04-01

    Version 3.10.5 is a multi-year Decision Support tool for Distributed Generation (DG). DER-CAM was initially created as an exclusively economic energy model, able to find the cost minimizing combination and operation profile of a set of DER technologies that meet heat and electric loads of a single building or microgrid for a typical test year. Now, version 3.10.5.m solves for a multiple-year horizon the technology choice question, the appropriate capacity for each selected technology asmorewell as the operational and investment schedule. Optimized investment decisions are based on techno-economic criteria, along with site information such as energy loads, economic forecast, and technology characterization. Version 3.10.5 contains: 1. a PV and battery degradation model and 2. variable performance for technologies. Efficiency, investment costs, etc. can vary over time and model technology breakthroughs and advancements.less

  16. Composites Technology for Hydrogen Pipelines | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investigate application of composite, fiber-reinforced polymer pipeline technology for hydrogen transmission and distribution PDF icon pipelinegroupsmithms.pdf More Documents & ...

  17. Current Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    develop smart grid technology for delivering intelligent and distribution over power lines. These developments are also designed to increase the safety of the energy...

  18. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Silicon Nanowire Anodes for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for Next Generation Energy Storage Presentation ...

  19. MHK Technologies/hyWave | Open Energy Information

    Open Energy Info (EERE)

    column (OWC) is converted to electricity by a Wells generator and specially designed induction generators. Technology Dimensions Device Testing Date Submitted 922010 << Return...

  20. Fact Sheet: 2013 Distributed Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fact Sheet: 2013 Distributed Wind Market Report Fact Sheet: 2013 Distributed Wind Market Report This fact sheet summarizes findings from the forthcoming 2013 Distributed Wind Market Report, offering a snapshot of the distributed wind market based on 2013 data. PDF icon Fact Sheet: 2013 DISTRIBUTED WIND MARKET REPORT More Documents & Publications 2013 Distributed Wind Market Report 2014 Distributed Wind Market Report 2012 Market Report on U.S. Wind Technologies in Distributed Applications