National Library of Energy BETA

Sample records for distributed generation technologies

  1. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  2. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  3. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudor GardensTechnologies DGT Jump

  4. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  5. Distributed generation

    SciTech Connect (OSTI)

    Ness, E.

    1999-09-02

    Distributed generation, locating electricity generators close to the point of consumption, provides some unique benefits to power companies and customers that are not available from centralized electricity generation. Photovoltaic (PV) technology is well suited to distributed applications and can, especially in concert with other distributed resources, provide a very close match to the customer demand for electricity, at a significantly lower cost than the alternatives. In addition to augmenting power from central-station generating plants, incorporating PV systems enables electric utilities to optimize the utilization of existing transmission and distribution.

  6. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity, US Data. 6. Distributed Generation: Standby Generation and Cogeneration Ozz Energy Solutions, Inc. February 28 th , 2005. For more information about...

  7. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis of Hydrogen-Powered Fuel-Cell Systems with the GREET Model Lessons Learned from SOFCSOEC Development Solid Oxide Fuel Cell (SOFC) Technology for Greener Airplanes...

  8. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  9. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  10. Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets 

    E-Print Network [OSTI]

    Rastler, D. M.

    1997-01-01

    the defUlition given above. It can be a corporate strategic tool in the newly competitive electric business. It can be part of an offensive strategy to capture new retail markets. It can be used to optimize support of a capacity-stretched distribution... system. It can be used defensively to retain existing customers. Example strategies include: Meet existing customers' growing local peak demands without adding long-payback T&D upgrades and/or new central station generation investments. Serve new...

  11. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  12. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    distributed energy resource technology characterizations, National Renewable EnergyEfficiency and Renewable Energy, Office of Distributed

  13. DISTRIBUTED GENERATION AND COGENERATION POLICY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration and cogeneration. Additionally, this report describes long-term strategies, pathways, and milestones to take

  14. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May...

  15. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  16. MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES *

    E-Print Network [OSTI]

    Bowker, Geoffrey C.

    MODELLING DISTRIBUTED KNOWLEDGE PROCESSES IN NEXT GENERATION MULTIDISCIPLINARY ALLIANCES * Alaina G and industrial dollars are invested in establishing academic-industry alliances and building infrastructures and technology in distributed, multidisciplinary scientific teams in the National Computational Science Alliance

  17. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  18. Regulatory Considerations for Developing Distributed Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Distributed Generation Projects Webinar May 23, 2012 Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 Document covers the Regulatory...

  19. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM...

  20. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively use

  1. Overview of Thermoelectric Power Generation Technologies in Japan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Discusses thermoelectric power generation technologies as...

  2. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  3. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Distributed Generation with Heat Recovery and Storage AfzalGeneration with Heat Recovery and Storage Manuscript Numberhere in order to focus on heat recovery and storage) utility

  4. Agent Technology: Enabling Next Generation Computing

    E-Print Network [OSTI]

    Luck, Michael

    Agent Technology: Enabling Next Generation Computing A Roadmap for Agent Based Computing MichaelTechnology:ARoadmapLuck,McBurney&PreistAgentLink #12;i AgentLink Roadmap Agent Technology: Enabling Next Generation Computing A Roadmap for Agent, Peter McBurney and Chris Preist Agent Technology: Enabling Next Generation Computing A Roadmap for Agent

  5. Distributed Generation in Buildings (released in AEO2005)

    Reports and Publications (EIA)

    2008-01-01

    Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The Annual Energy Outlook 2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

  6. Distributed Generation and Renewable Energy in

    E-Print Network [OSTI]

    Distributed Generation and Renewable Energy in the Electric Cooperative Sector Ed Torrero generation (non-renewable) $6.4M CRN dollars over 10 years Renewable energy $1.6M CRN dollars over 10

  7. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation,...

  8. Distributed Generation Operational Reliability, Executive Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability, Executive Summary Report, January 2004 Distributed Generation Operational Reliability, Executive Summary Report, January 2004 This report summarizes the results of the...

  9. Distributed Generation Operational Reliability and Availability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability and Availability Database, Final Report, January 2004 Distributed Generation Operational Reliability and Availability Database, Final Report, January 2004 This final...

  10. Distributed Energy Technology Simulator: Microturbine Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Simulator: Microturbine Demonstration, October 2001 Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001 This 2001 paper discusses the National Rural...

  11. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Environmental Management (EM)

    technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide...

  12. Utility Generation and Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    This statute establishes the state's support and incentives for the development of new energy production and generating facilities implementing advanced clean coal technology, such as coal...

  13. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    option on natural gas generation, which increases in valueL ABORATORY Distributed Generation Investment by a MicrogridORMMES’06 Distributed Generation Investment by a Microgrid

  14. Integration of Demand Side Management, Distributed Generation...

    Open Energy Info (EERE)

    United States. Annex 8 provides a list of software tools for analysing various aspects of demand response, distributed generation, smart grid and energy storage. Annex 9 is a list...

  15. Voltage Management of Networks with Distributed Generation

    E-Print Network [OSTI]

    O'Donnell, James

    2008-01-01

    At present there is much debate about the impacts and benefits of increasing the amount of generation connected to the low voltage areas of the electricity distribution network. The UK government is under political ...

  16. Microgrids: distributed on-site generation

    E-Print Network [OSTI]

    Watson, Andrew

    of the study is a microgrid of domestic users powered by small Combined Heat and Power generators and energy storage in the microgrid. It is found that a microgrid consisting of around 1.4 kWp PV array perMicrogrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross

  17. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  18. Entropy Generation Analysis of Desalination Technologies

    E-Print Network [OSTI]

    Mistry, Karan Hemant

    Increasing global demand for fresh water is driving the development and implementation of a wide variety of seawater desalination technologies. Entropy generation analysis, and specifically, Second Law efficiency, is an ...

  19. Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir

    E-Print Network [OSTI]

    Keller, Arturo A.

    Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society water use2 . ·Pumping ·Distribution ·Treatment 4% of the nation's electricity use goes towards moving

  20. Distributed utility technology cost, performance, and environmental characteristics

    SciTech Connect (OSTI)

    Wan, Y.; Adelman, S.

    1995-06-01

    Distributed Utility (DU) is an emerging concept in which modular generation and storage technologies sited near customer loads in distribution systems and specifically targeted demand-side management programs are used to supplement conventional central station generation plants to meet customer energy service needs. Research has shown that implementation of the DU concept could provide substantial benefits to utilities. This report summarizes the cost, performance, and environmental and siting characteristics of existing and emerging modular generation and storage technologies that are applicable under the DU concept. It is intended to be a practical reference guide for utility planners and engineers seeking information on DU technology options. This work was funded by the Office of Utility Technologies of the US Department of Energy.

  1. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets,...

  2. The Potential Benefits of Distributed Generation and the Rate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

  3. An Investigation of the Utilization of Smart Meter Data to Adapt Overcurrent Protection for Radial Distribution Systems with a High Penetration of Distributed Generation 

    E-Print Network [OSTI]

    Douglin, Richard Henry

    2012-07-16

    The future of electric power distribution systems (DSs) is one that incorporates extensive amounts of advanced metering, distribution automation, and distributed generation technologies. Most DSs were designed to be radial ...

  4. Energy Storage and Distributed Energy Generation Project, Final Project Report

    SciTech Connect (OSTI)

    Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

    2008-03-31

    This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

  5. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  6. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  7. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  8. Avoiding Distribution System Upgrade Costs Using Distributed Generation

    SciTech Connect (OSTI)

    Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

    2004-01-20

    PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

  9. On modeling pollution-generating technologies July 22, 2010 On modeling pollution-generating technologies.

    E-Print Network [OSTI]

    Bandyopadhyay, Antar

    On modeling pollution-generating technologies July 22, 2010 On modeling pollution modeling pollution-generating technologies July 22, 2010 Abstract We distinguish between intended with respect to inputs and intended outputs that cause pollution. We derive implications from the phenomenon

  10. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  11. A reliability assessment methodology for distribution systems with distributed generation 

    E-Print Network [OSTI]

    Duttagupta, Suchismita Sujaya

    2006-08-16

    is associated 11 Fig. 1. Sample Distribution Network with the network response to dynamic and transient failures caused from faults and other disturbances, which could result in widespread cascading outages and loss of stability [11]. This research will focus... and maintain reliable power systems because cost of interruptions and power outages can have severe economic impact on the utility and its customers. At present, the deregulated electric power utilities are being restructured and operated as distinct generation...

  12. Physical Effects of Distributed PV Generation on California's Distribution System

    E-Print Network [OSTI]

    Cohen, Michael A

    2015-01-01

    Deployment of high-penetration photovoltaic (PV) power is expected to have a range of effects -- both positive and negative -- on the distribution grid. The magnitude of these effects may vary greatly depending upon feeder topology, climate, PV penetration level, and other factors. In this paper we present a simulation study of eight representative distribution feeders in three California climates at PV penetration levels up to 100\\%, supported by a unique database of distributed PV generation data that enables us to capture the impact of PV variability on feeder voltage and voltage regulating equipment. When comparing the influence of feeder location (i.e. climate) versus feeder type on outcomes, we find that location more strongly influences the incidence of reverse power flow, reductions in peak loading and the presence of voltage excursions. On the other hand, we find that feeder characteristics more strongly influence the magnitude of loss reduction and changes in voltage regulator operations. We find th...

  13. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop -...

  14. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Environmental Management (EM)

    Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and Summary Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Agenda and...

  15. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  16. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    Distributed Generation Power Projects , National Renewable EnergyDistributed Energy Program, under the Assistant Secretary of Energy Efficiency and Renewable Energy

  17. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01

    energy commission representatives, and other users of cold air distribution technology. The contact list

  18. Voltage Control of Distribution Networks with Distributed Generation using Reactive Power

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , photovoltaics, and synchronous generators. I. INTRODUCTION Penetration of DG into distribution network in terms of voltage profile improvement, line-loss reduction, and environmental impact reductionVoltage Control of Distribution Networks with Distributed Generation using Reactive Power

  19. Distributed Key Generation in the Wild Aniket Kate1

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    Distributed Key Generation in the Wild Aniket Kate1 Yizhou Huang2 Ian Goldberg2 1 Max Planck of Waterloo, Canada aniket@mpi-sws.org, {y226huan, iang}@uwaterloo.ca Abstract Distributed key generation (DKG communication model. computational setting. distributed key generation. uniform randomness. implementation 1

  20. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

  1. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Weekday Total Electricity Generation (Storage AdoptionWeekday Total Electricity Generation (Storage Adoptionrecovery and storage) utility electricity and natural gas

  2. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGEProjects/DefinitionsOrchidxOsCompOstOther

  3. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  4. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why Plan Treatment In the plan Technology & resource description (Very!) preliminary cost projections & Veatch. (2012) Cost and Performance Data for Power Generation Technologies. Prepared for National

  5. Reducing the Cost of Generating APH-distributed Random Numbers

    E-Print Network [OSTI]

    Telek, Miklós

    Reducing the Cost of Generating APH-distributed Random Numbers Philipp Reinecke1 , Mikl´os Telek2 from PH distributions and propose two algorithms for reducing the cost associated with generating representation that minimises the cost associated with generating random numbers. In this paper we study

  6. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  7. Emissions Benefits of Distributed Generation in the Texas Market

    SciTech Connect (OSTI)

    Hadley, SW

    2005-06-16

    One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

  8. GENERATING TEXT DESCRIPTIONS FOR GEOGRAPHICALLY DISTRIBUTED SENSORS

    E-Print Network [OSTI]

    Molina, Martín

    of work. KEYWORDS Multimedia presentation system, natural language generation, geographic information method uses two information sources: an online server for geographic names (Geonames) and a specific confirm that online geographic information resources such as Geonames are useful to generate names

  9. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Only Load Electricity Generation By Fuel in the U.S.electricity generation from most sources, except oil, is growing to meet the growing demand and that fossil fuels

  10. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    Delivery and Energy Reliability, Renewable and DistributedDistributed Energy Program, under the Assistant Secretary of Energy Efficiency and Renewable Energydistributed generation power projects, report NREL/SR-200-28053. Golden, CO, USA: National Renewable Energy

  11. A Model of U.S. Commercial Distributed Generation Adoption

    SciTech Connect (OSTI)

    LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

    2006-01-10

    Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

  12. Distributed Sustainable Generation Dispatch via Evolutionary Games

    E-Print Network [OSTI]

    Kundur, Deepa

    and solar panels are sustainable but unreliable as these have inherently variable generation capacities The power grid is composed of a diverse mix of energy generation systems designed to provision for all types such as wind and solar power generators are green en- ergy sources with lower levelized costs [4

  13. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Environmental Management (EM)

    on Oahu High Penetration Solar Distributed Generation Study on Oahu The rooftop solar PV on Hawai'i's Mauna Lani Bay Hotel generates 75 kW of electricity. Photo from...

  14. Distributed Generation Study/Patterson Farms CHP System Using...

    Open Energy Info (EERE)

    Patterson Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study...

  15. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    L, editor. 11 th Annual Real Options Conference, Berkeley,from its utility. Using the real options approach, we find aDistributed Generation; Real Options; Optimal Investment;

  16. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    utility. Using the real options approach, we find naturalDistributed Generation; Real Options; Optimal Investment. 1.based microgrid via the real options approach to determine

  17. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Generation with Heat Recovery and Storage ‡ Afzal Sgeneration unit with heat recovery for space and watergeneration unit with heat recovery for space and water

  18. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  19. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Guillas, Serge

    for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via.maribu@ensmp.fr 1 #12;Investment and Upgrade under Uncertainty in Distributed Generation 2 Keywords: Combined heat heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower

  20. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  1. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  2. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    power generation with combined heat and power applications,”of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

  3. Distributed Medium Access Control for Next Generation CDMA Wireless Networks

    E-Print Network [OSTI]

    Zhuang, Weihua

    Distributed Medium Access Control for Next Generation CDMA Wireless Networks Hai Jiang, Princeton wireless networks are expected to have a simple infrastructure with distributed control. In this article, we consider a generic distributed network model for future wireless multi- media communications

  4. A Distributed Generation Control Architecture for Islanded AC Microgrids

    E-Print Network [OSTI]

    Dominguez-Garcia, Alejandro

    1 A Distributed Generation Control Architecture for Islanded AC Microgrids Stanton T. Cady, Student in islanded ac microgrids with both synchronous generators and inverter-interfaced power supplies. Although they are smaller and have lower ratings, the generation control objectives for an islanded microgrid are similar

  5. Operation of Distributed Generation Under Stochastic Prices

    SciTech Connect (OSTI)

    Siddiqui, Afzal S.; Marnay, Chris

    2005-11-30

    We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

  6. Generation IV International Forum Updates Technology Roadmap...

    Broader source: Energy.gov (indexed) [DOE]

    strengthen future collaboration. As part of the decadal planning, the GIF technology roadmap was updated to reflect revised schedule projections for the deployment of advanced...

  7. Summary of New Generation Technologies and Resources

    SciTech Connect (OSTI)

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  8. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Sulc, Petr; Backhaus, Scott; Chertkov, Michael

    2010-01-01

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

  9. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

    2009-08-15

    Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

  10. Generation IV International Forum Updates Technology Roadmap...

    Energy Savers [EERE]

    also provided by members on the technical status of the Lead Fast Reactor and Sodium Fast Reactor (SFR) Generation IV concepts, development of SFR safety design criteria and...

  11. III. Commercial viability of second generation biofuel technology27

    E-Print Network [OSTI]

    29 III. Commercial viability of second generation biofuel technology27 The previous chapters focused on first generation biofuels. In this chapter we focus on second generation biofuels, specifically biofuels derived from cellulosic or lignocellulosic conversion. Advocates for the development of cellulosic

  12. Fault Current Issues for Market Driven Power Systems with Distributed Generation

    E-Print Network [OSTI]

    1 Fault Current Issues for Market Driven Power Systems with Distributed Generation Natthaphob of installing distributed generation (DG) to electric power systems. The proliferation of new generators creates Terms--Distributed / dispersed generation, power distri- bution, power system protection, fault

  13. The Potential Benefits of Distributed Generation and the Rate...

    Broader source: Energy.gov (indexed) [DOE]

    The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The...

  14. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  15. Reliability Improvement Programs in Steam Distribution and Power Generation Systems 

    E-Print Network [OSTI]

    Petto, S.

    1987-01-01

    can be found in power generation. steam distribution, and in all types of durable and non-durable Industrial productions. I 300 " 0 " 200 C " ? ? ~ 'DO ?~ 50 ' .. '7. '70 '75 '50 '.2 The cost to maintain steam systems. namely...

  16. Heat Transfer Enhancement: Second Generation Technology 

    E-Print Network [OSTI]

    Bergles, A. E.; Webb, R. L.

    1984-01-01

    This paper reviews current activity in the field of enhanced heat transfer, with the aim of illustrating the technology and typical applications. Guidelines for application of enhanced surfaces are given, and practical concerns and economics...

  17. Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation

    E-Print Network [OSTI]

    Sanders, Seth

    Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation Mike He on the design of a Stirling engine for distributed solar thermal ap- plications. In particular, we design for experimentation. Stirling engines can have broad significance and technological advantages for distributed

  18. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Broader source: Energy.gov (indexed) [DOE]

    - Carl Imhoff, PNNL More Documents & Publications Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations Estimating the...

  19. Estimating the Benefits and Costs of Distributed Energy Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 Presentations Estimating the Benefits and Costs of Distributed Energy Technologies Workshop - Day 1 Presentations On September 30 and October 1, 2014, the Department of Energy...

  20. Cape Peninsula University of Technology - Centre for Distributed...

    Open Energy Info (EERE)

    Page Edit with form History Cape Peninsula University of Technology - Centre for Distributed Power and Electronic Systems Jump to: navigation, search Name: Cape Peninsula...

  1. Distributed Hydrogen Fueling Station Based on GEGR SCPO Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fueling Station Based on GEGR SCPO Technology (Presentation) Presented at the 2007 Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group held November 6, 2007 in...

  2. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  3. Random variate generation for the generalized inverse gaussian distribution

    E-Print Network [OSTI]

    Devroye, Luc

    ;Introduction The two-parameter form of the generalized inverse gaussian distribution (or gig) has density does not quite work for gig variate generation, but it is almost possible to do so. Indeed gaussian law--see, e.g., Lesosky and Horrocks (2003). -- 2 -- #12;A transformed gig distribution

  4. Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui

    E-Print Network [OSTI]

    Guillas, Serge

    1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University, CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity

  5. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  6. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14

    .twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However, the intermittent nature of output from wind turbines and solar panels... . This intermittency discount is not a market failure but simply reflects the value of electricity provided by different technologies. Building on this base case the paper assesses the impact of monopolist and strategic behaviour of conventional generation companies...

  7. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  8. Options for Control of Reactive Power by Distributed Photovoltaic Generators

    E-Print Network [OSTI]

    Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

    2010-08-04

    High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

  9. Fuel Cycle Comparison for Distributed Power Technologies

    Fuel Cell Technologies Publication and Product Library (EERE)

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microtur

  10. Cascade Failures from Distributed Generation in Power Grids

    E-Print Network [OSTI]

    Scala, Antonio; Scoglio, Caterina

    2012-01-01

    Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

  11. A planning scheme for penetrating embedded generation in power distribution grids

    E-Print Network [OSTI]

    Wang, Jiankang, Ph. D. Massachusetts Institute of Technology

    2013-01-01

    Penetrating Embedded Generation, or Distributed Generation (DG), in power distribution grids presents great benefits and substantial positive social impacts to utilities, system operators and electricity consumers. Existing ...

  12. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  13. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  14. Distribution of the Number of Generations in Flux Compactifications

    E-Print Network [OSTI]

    Andreas P. Braun; Taizan Watari

    2014-12-10

    Flux compactification of string theory generates an ensemble with a large number of vacua called the landscape. By using the statistics of various properties of low-energy effective theories in the string landscape, one can therefore hope to provide a scientific foundation to the notion of naturalness. This article discusses how to answer such questions of practical interest by using flux compactification of F-theory. It is found that the distribution is approximately in a factorized form given by the distribution of the choice of 7-brane gauge group, that of the number of generations $N_{\\rm gen}$ and that of effective coupling constants. The distribution of $N_{\\rm gen}$ is approximately Gaussian for the range $|N_{\\rm gen}| \\lesssim 10$. The statistical cost of higher-rank gauge groups is also discussed.

  15. Generation technologies for a carbon-constrained world

    SciTech Connect (OSTI)

    Douglas, J.

    2006-07-01

    Planning future generation investments can be difficult in the context of today's high fuel costs and regulatory uncertainties. Of particular concern are sharp changes in the price of natural gas and the possibility of future mandatory limits on the atmospheric release of CO{sub 2}. Research on advanced coal, nuclear, natural gas and renewable energy technologies promises to substantially increase the deployment of low and non-carbon-emitting generation options over the next two decades. The article looks in turn at developments in these technologies. Prudent power provides are likely to invest in a number of these advanced technologies, weighing the advantages and risks of each option to build a strategically balanced generation portfolio. 12 figs.

  16. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  17. Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings

    SciTech Connect (OSTI)

    Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

    2009-09-01

    The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

  18. ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Singh, Ruchi

    2011-08-09

    Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

  19. Performance Analysis of Dynamic Web Page Generation Technologies \\Lambda

    E-Print Network [OSTI]

    Claypool, Mark

    Performance Analysis of Dynamic Web Page Generation Technologies \\Lambda Bhupesh Kothari and Mark on Web servers. Today's Web servers also process an increasing number of requests for dynamic pages, making server load even more critical. The performance of Web servers delivering static pages is well

  20. Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Agent-Based Simulation of Distribution Systems with High Penetration of Photovoltaic Generation- tems, photovoltaic generation, power distribution, power system economics, smart grids. I. INTRODUCTION study of electric distribution systems with high penetration of photovoltaic (PV) panels within

  1. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  2. A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations 

    E-Print Network [OSTI]

    Ituzaro, Fred Agyekum

    2012-07-16

    Smart radial distribution grids will include advanced metering infrastructure (AMI) and significant distributed generators (DGs) connected close to loads. DGs in these radial distribution systems (RDS) introduce bidirectional power flows (BPFs...

  3. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  4. A Multi-Agent Solution to Distribution System Management by Considering Distributed Generators

    E-Print Network [OSTI]

    Zhang, Minjie

    has both advantages and disadvantages [7]. On one hand, DGs can supply power to the network near such as solar and wind, the distribution network may perform differently from the conventionally ex- pected]. Typically, the bulk generation is the only energy resource to a DN, and the direction of the power flow

  5. Incorporating distributed generation into distribution network planning: the challenges and opportunities for distribution network operators 

    E-Print Network [OSTI]

    Wang, David Tse-Chi

    2010-01-01

    Diversification of the energy mix is one of the main challenges in the energy agenda of governments worldwide. Technology advances together with environmental concerns have paved the way for the increasing integration ...

  6. The Value of Distributed Generation under Different Tariff Structures

    E-Print Network [OSTI]

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-01-01

    Efficiency and Renewable Energy, Distributed Energy ProgramRenewable Energy Laboratory, Golden, CO by Distributed

  7. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

  8. Distributed Temperature Sensing: Review of Technology and Applications

    E-Print Network [OSTI]

    Ukil, A; Krippner, P

    2015-01-01

    Distributed temperature sensors (DTS) measure temperatures by means of optical fibers. Those optoelectronic devices provide a continuous profile of the temperature distribution along the cable. Initiated in the 1980s, DTS systems have undergone significant improvements in the technology and the application scenario over the last decades. The main measuring principles are based on detecting the back-scattering of light, e.g., detecting via Rayleigh, Raman, Brillouin principles. The application domains span from traditional applications in the distributed temperature or strain sensing in the cables, to the latest smart grid initiative in the power systems, etc. In this paper, we present comparative reviews of the different DTS technologies, different applications, standard and upcoming, different manufacturers.

  9. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    Efficiency and Renewable Energy, former Distributed EnergyEfficiency and Renewable Energy, former Distributed EnergyEfficiency and Renewable Energy, former Distributed Energy

  10. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  11. A New Approach to Mitigate the Impact of Distributed Generation on the Overcurrent Protection Scheme of Radial Distribution Feeders 

    E-Print Network [OSTI]

    Funmilayo, Hamed

    2010-01-14

    Increased Distributed Generation (DG) presence on radial distribution feeders is becoming a common trend. The existing Overcurrent Protection (OCP) scheme on such feeders consists mainly of overcurrent protection devices ...

  12. Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

  13. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    the long-term natural gas generation cost is stochastic, wethe consideration of generation cost threshold that triggersthat of natural gas generation cost delays investment while

  14. Modeling the Impacts of Solar Distributed Generation on U.S. Water Resources

    SciTech Connect (OSTI)

    Amanda, Smith; Omitaomu, Olufemi A; Jaron, Peck

    2015-01-01

    Distributed electric power generation technologies typically use little or no water per unit of electrical energy produced; in particular, renewable energy sources such as solar PV systems do not require cooling systems and present an opportunity to reduce water usage for power generation. Within the US, the fuel mix used for power generation varies regionally, and certain areas use more water for power generation than others. The need to reduce water usage for power generation is even more urgent in view of climate change uncertainties. In this paper, we present an example case within the state of Tennessee, one of the top four states in water consumption for power generation and one of the states with little or no potential for developing centralized renewable energy generations. The potential for developing PV generation within Knox County, Tennessee, is studied, along with the potential for reducing water withdrawal and consumption within the Tennessee Valley stream region. Electric power generation plants in the region are quantified for their electricity production and expected water withdrawal and consumption over one year, where electrical generation data is provided over one year and water usage is modeled based on the cooling system(s) in use. Potential solar PV electrical production is modeled based on LiDAR data and weather data for the same year. Our proposed methodology can be summarized as follows: First, the potential solar generation is compared against the local grid demand. Next, electrical generation reductions are specified that would result in a given reduction in water withdrawal and a given reduction in water consumption, and compared with the current water withdrawal and consumption rates for the existing fuel mix. The increase in solar PV development that would produce an equivalent amount of power, is determined. In this way, we consider how targeted local actions may affect the larger stream region through thoughtful energy development. This model can be applied to other regions, other types of distributed generation, and used as a framework for modeling alternative growth scenarios in power production capacity in addition to modeling adjustments to existing capacity.

  15. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  16. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    potential contribution of this “new” generation of clean recycled energy supply technologies to the power supply of the United States.

  17. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  18. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  19. Air Quality Impact of Distributed Generation of Electricity

    E-Print Network [OSTI]

    Jing, Qiguo

    2011-01-01

    of the near source air quality impact of distributedDabdub, D. , 2003. Urban Air quality impacts of distributedDabdub, D. , 2004. Urban Air quality impacts of distributed

  20. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012distributedwindtechnologiesdata.xls More Documents & Publications 2014 Distributed Wind Market...

  1. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    Cost of Natural Gas Generation, p Figure 6. Normalised NetCost of Natural Gas Generation, p Figure 7. Wait InvestCost of Natural Gas Generation (US$/kWh e ), C Figure 8.

  2. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    the long-term natural gas generation cost is stochastic, weterm natural gas generation cost, C (US$/kWh) 1 , evolvesonly if the natural gas generation cost decreases to US$

  3. Method and apparatus for anti-islanding protection of distributed generations

    DOE Patents [OSTI]

    Ye, Zhihong; John, Vinod; Wang, Changyong; Garces, Luis Jose; Zhou, Rui; Li, Lei; Walling, Reigh Allen; Premerlani, William James; Sanza, Peter Claudius; Liu, Yan; Dame, Mark Edward

    2006-03-21

    An apparatus for anti-islanding protection of a distributed generation with respect to a feeder connected to an electrical grid is disclosed. The apparatus includes a sensor adapted to generate a voltage signal representative of an output voltage and/or a current signal representative of an output current at the distributed generation, and a controller responsive to the signals from the sensor. The controller is productive of a control signal directed to the distributed generation to drive an operating characteristic of the distributed generation out of a nominal range in response to the electrical grid being disconnected from the feeder.

  4. Waste generation process modeling and analysis for fuel reprocessing technologies

    SciTech Connect (OSTI)

    Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

    2002-01-01

    Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

  5. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies 

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01

    -sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure reliable long-term power for critical... source of emergency power available with new building-sited combined heat and power (CHP) electric generation technologies (see US Department of Energy, 2000 and 2002 for descriptions of these technologies). Instead of traditional emergency...

  6. ARPA-E Announces $30 Million for Distributed Generation Technologies |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (BillionProvedTravel Travel ThePresidentialofSubsurfacetoDepartment ofEnergyAMIARIDepartment of

  7. Fuel Cell Comparison of Distributed Power Generation Technologies |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool Fits the Bill Financing Tool Fits theSunShot Prize: Race toFt. CarsonBuses

  8. List of Other Distributed Generation Technologies Incentives | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressed airGeothermalList ofListInformation

  9. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015ExecutiveFluorescentDanKathy Loftus Global Leader, Sustainable4 Fuel

  10. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  11. Atmospheric Environment 41 (2007) 56185635 Air quality impacts of distributed power generation in the

    E-Print Network [OSTI]

    Dabdub, Donald

    2007-01-01

    analysis; Spatial sensitivity 1. Introduction Distributed energy resources (DER) have the potential is expected. The use of these distributed generation (DG) resources results in multiple stationary powerAtmospheric Environment 41 (2007) 5618­5635 Air quality impacts of distributed power generation

  12. Impact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D. Novosel

    E-Print Network [OSTI]

    benefits also include loss reduction, avoided costs of energy production, generation capacity, distributionImpact of Renewable Distributed Generation on Power Systems M. Begovi, A. Pregelj, A. Rohatgi D, eliminating the unnecessary transmission and distribution costs. In addition, it can reduce fossil fuel

  13. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    SciTech Connect (OSTI)

    Lacommare, Kristina S H; Stadler, Michael; Aki, Hirohisa; Firestone, Ryan; Lai, Judy; Marnay, Chris; Siddiqui, Afzal

    2008-05-15

    The addition of storage technologies such as flow batteries, conventional batteries, and heat storage can improve the economic as well as environmental attractiveness of on-site generation (e.g., PV, fuel cells, reciprocating engines or microturbines operating with or without CHP) and contribute to enhanced demand response. In order to examine the impact of storage technologies on demand response and carbon emissions, a microgrid's distributed energy resources (DER) adoption problem is formulated as a mixed-integer linear program that has the minimization of annual energy costs as its objective function. By implementing this approach in the General Algebraic Modeling System (GAMS), the problem is solved for a given test year at representative customer sites, such as schools and nursing homes, to obtain not only the level of technology investment, but also the optimal hourly operating schedules. This paper focuses on analysis of storage technologies in DER optimization on a building level, with example applications for commercial buildings. Preliminary analysis indicates that storage technologies respond effectively to time-varying electricity prices, i.e., by charging batteries during periods of low electricity prices and discharging them during peak hours. The results also indicate that storage technologies significantly alter the residual load profile, which can contribute to lower carbon emissions depending on the test site, its load profile, and its adopted DER technologies.

  14. Connecting to the Grid: A Guide to Distributed Generation Interconnection Issues, 6th Edition, 2009

    Office of Energy Efficiency and Renewable Energy (EERE)

    This guide addresses issues relevant to all DG technologies, including net excess generation, third-party ownership, energy storage and networks

  15. The Value of Distributed Generation under Different Tariff Structures

    E-Print Network [OSTI]

    Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

    2006-01-01

    economic analysis of combined heat and power technologies inT. Bourgeois. 2002. Combined Heat and Power Market Potential

  16. GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012

    SciTech Connect (OSTI)

    Curran, Scott; Theiss, Timothy J; Bunce, Michael

    2012-01-01

    Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

  17. Dynamic equivalencing of distribution network with embedded generation 

    E-Print Network [OSTI]

    Feng, Xiaodan Selina

    2012-06-25

    Renewable energy generation will play an important role in solving the climate change problem. With renewable electricity generation increasing, there will be some significant changes in electric power systems, ...

  18. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  19. Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters

    E-Print Network [OSTI]

    Lindner, Douglas K.

    tolerant, autonomously controlled electrical power system to deliver high quality power from the sources electronics, fault tolerant electrical power distribution systems and electrically driven primary flight1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram

  20. Micro-grid operation of inverter based distributed generation with voltage and frequency dependent loads

    E-Print Network [OSTI]

    Zeineldin, H. H.

    Distribution systems are experiencing increasing penetration of distributed generation (DG). One attractive option is to use the available DG capacity during utility outages by forming planned micro-grids. Load sharing ...

  1. Machine Learning Approach to Islanding Detection for Inverter-Based Distributed Generation 

    E-Print Network [OSTI]

    Matic Cuka, Biljana

    2014-12-17

    Despite a number of economic and environmental benefits that integration of renewable distributed generation (DG) into the distribution grid brings, there are many technical challenges that arise as well. One of the most important issues concerning...

  2. A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function

    E-Print Network [OSTI]

    Boyer, Edmond

    renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working of the renewable generator (e.g. solar generator, wind turbine, and electrical vehicle aggregation) State value Multiplication operator of u-functions Wind speed Total number of discretized wind speed states Discretized wind

  3. A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database over TCP/IP Network

    E-Print Network [OSTI]

    Borissova, Daniela

    4 8 A Technology for Electronic Energy Meters Intelligent Accounting Using Distributed Database processing to allow the adequate information integration and resource control in the energy distribution the energy distribution enterprise information. Reading the electronic energy meters is made through

  4. On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    On the Distribution of the Subset Sum Pseudorandom Number Generator on Elliptic Curves Simon R a previous result in this direction due to E. El Mahassni. 1 Introduction The knapsack generator or subset sum generator is a pseudorandom number generator introduced by Rueppel and Massey [14] and studied

  5. Providing Clean, Low-Cost, Onsite Distributed Generation at Very...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    gas-fired burner (ULNB) to develop a combined heat and power (CHP) assembly called the Boiler Burner Energy System Technology (BBEST). Introduction CHP systems can achieve...

  6. High Penetration Solar Distributed Generation Study on Oahu ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Study: Summary Report, NREL (National Renewable Energy Laboratory) Hawai'i's Evolution: Hawai'i Powered. Technology Driven. Energy Transition Initiative: Islands Playbook...

  7. Scalable Database Access Technologies for ATLAS Distributed Computing

    E-Print Network [OSTI]

    A. Vaniachine; for the ATLAS Collaboration

    2009-10-02

    ATLAS event data processing requires access to non-event data (detector conditions, calibrations, etc.) stored in relational databases. The database-resident data are crucial for the event data reconstruction processing steps and often required for user analysis. A main focus of ATLAS database operations is on the worldwide distribution of the Conditions DB data, which are necessary for every ATLAS data processing job. Since Conditions DB access is critical for operations with real data, we have developed the system where a different technology can be used as a redundant backup. Redundant database operations infrastructure fully satisfies the requirements of ATLAS reprocessing, which has been proven on a scale of one billion database queries during two reprocessing campaigns of 0.5 PB of single-beam and cosmics data on the Grid. To collect experience and provide input for a best choice of technologies, several promising options for efficient database access in user analysis were evaluated successfully. We present ATLAS experience with scalable database access technologies and describe our approach for prevention of database access bottlenecks in a Grid computing environment.

  8. Future of Distributed Generation and IEEE 1547 (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-06-01

    This presentation discusses the background on IEEE 1547, including its purpose, changes, new boundary issues and requirements, islanding issues, and how it impacts distributed wind.

  9. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    electricity markets , PhD thesis, University of California, Berkeley, CA, USA,USA, 1994. Joskow PL, Productivity growth and technical change in the generation of electricity,

  10. Distributed Generation Investment by a Microgrid Under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris

    2006-01-01

    DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

  11. Smoothing the Eects of Renewable Generation on the Distribution Grid

    E-Print Network [OSTI]

    Naud, Paul S.

    2014-01-01

    to Grid by Paul Naud Renewable electrical power sourcessystem based on various renewable energy resources. InCRUZ Smoothing the Effects of Renewable Generation on the

  12. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    data available and used to generate random solar radiationResource Data Center], The Solar Radiation Resourcedata were collected from [16]. The stochastic model of solar radiation

  13. Updated greenhouse gas and criteria air pollutant emission factors and their probability distribution functions for electricity generating units

    SciTech Connect (OSTI)

    Cai, H.; Wang, M.; Elgowainy, A.; Han, J.

    2012-07-06

    Greenhouse gas (CO{sub 2}, CH{sub 4} and N{sub 2}O, hereinafter GHG) and criteria air pollutant (CO, NO{sub x}, VOC, PM{sub 10}, PM{sub 2.5} and SO{sub x}, hereinafter CAP) emission factors for various types of power plants burning various fuels with different technologies are important upstream parameters for estimating life-cycle emissions associated with alternative vehicle/fuel systems in the transportation sector, especially electric vehicles. The emission factors are typically expressed in grams of GHG or CAP per kWh of electricity generated by a specific power generation technology. This document describes our approach for updating and expanding GHG and CAP emission factors in the GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model developed at Argonne National Laboratory (see Wang 1999 and the GREET website at http://greet.es.anl.gov/main) for various power generation technologies. These GHG and CAP emissions are used to estimate the impact of electricity use by stationary and transportation applications on their fuel-cycle emissions. The electricity generation mixes and the fuel shares attributable to various combustion technologies at the national, regional and state levels are also updated in this document. The energy conversion efficiencies of electric generating units (EGUs) by fuel type and combustion technology are calculated on the basis of the lower heating values of each fuel, to be consistent with the basis used in GREET for transportation fuels. On the basis of the updated GHG and CAP emission factors and energy efficiencies of EGUs, the probability distribution functions (PDFs), which are functions that describe the relative likelihood for the emission factors and energy efficiencies as random variables to take on a given value by the integral of their own probability distributions, are updated using best-fit statistical curves to characterize the uncertainties associated with GHG and CAP emissions in life-cycle modeling with GREET.

  14. Analysis of Third-Generation HF ALE Technologies Eric E. Johnson

    E-Print Network [OSTI]

    Johnson, Eric E.

    Analysis of Third-Generation HF ALE Technologies Eric E. Johnson New Mexico State University · Higher throughput for short and long data messages · Better support for Internet protocols

  15. THIRD-GENERATION TECHNOLOGIES FOR HF RADIO NETWORKING Eric E. Johnson

    E-Print Network [OSTI]

    Johnson, Eric E.

    THIRD-GENERATION TECHNOLOGIES FOR HF RADIO NETWORKING Eric E. Johnson New Mexico State University for Internet protocols and applications This new generation of open standards is the result of ideas

  16. Partnerships for Clean Development and Climate: Business and Technology Cooperation Benefits

    E-Print Network [OSTI]

    Sathaye, Jayant A.; Price, Lynn; Kumar, Satish; de la Rue du Can, Stephane; Warfield, Corina; Padmanabhan, S.

    2006-01-01

    many of the distributed and renewable energy technologiesESCOs). The Renewable Energy and Distributed Generation TaskDelhi). e. Renewable Energy and Distributed Generation (DG)

  17. Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Aalborg Universitet Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid., & Vasquez, J. C. (2015). Economic Power Dispatch of Distributed Generators in a Grid-Connected Microgrid-Connected Microgrid Adriana C. Luna, Nelson L. Diaz, Fabio Andrade, Mois`es Graells§, Josep M. Guerrero, and Juan C

  18. Aalborg Universitet Influence of Resolution of the Input Data on Distributed Generation Integration Studies

    E-Print Network [OSTI]

    Sera, Dezso

    concerning large penetration of the renewable energy based generators on the distribution network is related on Distributed Generation Integration Studies Catalin I. Ciontea, Dezso Sera, Florin Iov Department of Energy in order to obtain realistic results. I. INTRODUCTION The interest in renewable energy is a result

  19. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01

    Field Evaluation of Cold Air Distribution Systems. EPRIand J.S. Elleson. 1988. Cold Air Distribution Design Guide.Field Evaluation of a Cold Air Distribution System. EPRI

  20. EK 408 Introduction to Clean Energy Generation and Storage Technologies

    E-Print Network [OSTI]

    Batteries Other storage technologies #12;7. Energy from the sun 2 weeks Solar radiation Solar collectors

  1. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  2. Distributed Generation Investment by a Microgrid under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01

    power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

  3. Using Multi-user Distributed Virtual Environments in Education Computer Technology Institute

    E-Print Network [OSTI]

    Using Multi-user Distributed Virtual Environments in Education Ch. Bouras Computer Technology and distributed virtual environments. The communicative character of the distributed virtual environments would and tutorials. Such technologies may mitigate some of the problems of isolation that distance learning brings

  4. Energy Generation by State and Technology (2009) - Datasets ...

    Open Energy Info (EERE)

    2009, reported in MWh. Also includes facility-level data (directly from EIA Form 923). Data and Resources Energy Generation by Fuel Source and State, 2009XLS Energy Generation by...

  5. WormShield: Fast Worm Signature Generation with Distributed Fingerprint Aggregation

    E-Print Network [OSTI]

    Papadopoulos, Christos

    WormShield: Fast Worm Signature Generation with Distributed Fingerprint Aggregation Min Cai, Member, IEEE Abstract--Fast and accurate generation of worm signatures is essential to contain zero-day worms at the Internet scale. Recent work has shown that signature generation can be automated by analyzing

  6. AMO Industrial Distributed Energy: Industrial Distributed Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in owning and operating costs, thereby improving the economics of distributed power generation using reciprocating gas engines. Caterpillar's Phase I technologies have...

  7. The distributional effects of new technology under risk

    E-Print Network [OSTI]

    Zilberman, David D.; Just, Richard E.; Rausser, Gordon C.

    1981-01-01

    and the Adoption of New Technology Unl:! el' Unc:el'tainty,'Farm Size and Ad~Ption of New Technology Under Uncertainty,,familiar witll toe new technology. Considering tllis factor,

  8. The distributional effects of new technology under risk

    E-Print Network [OSTI]

    Zilberman, David D.; Just, Richard E.; Rausser, Gordon C.

    1981-01-01

    and the Adoption of New Technology Unl:! el' Unc:el'tainty,'Farm Size and Ad~Ption of New Technology Under Uncertainty,,to the adoption of new technologies h.ave been identified.

  9. Distributed Power Generation: Requirements and Recommendations for an ICT Architecture

    E-Print Network [OSTI]

    Appelrath, Hans-Jürgen

    . In the future of energy markets, the distributed energy production through wind and hydroelectric power plants. Some of these are sustainable (wind and hydroelectric power plants, solar cells), some are controllable, one has to distinguish between two in principle different products: consumption power and balance

  10. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    -piston Stirling engine devices incorporating integrated electric generation. We target concentrator- collector design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

  11. City of San Marcos- Distributed Generation Rebate Program

    Broader source: Energy.gov [DOE]

    Qualifying Solar PV systems are eligible for a $2.50 per Watt (W) rebate up to $5,000. Qualifying Wind Generation systems are eligible for a $1.00 per W rebate up to $5,000. Neither rebate amount...

  12. Optimal distributed power generation under network load constraints

    E-Print Network [OSTI]

    Utrecht, Universiteit

    , small wind turbine or central heating power units) can be inserted into any transmission line, mainly because of the development of novel components for decentral power generation (solar panels, small wind turbines and heat pumps). This gives rise to the question how many units of each type (solar panel

  13. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect (OSTI)

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these systems have been most commonly installed in open-plan office buildings in which they provide supply air and (in some cases) radiant heating directly into workstations. TAC systems can be classified into the following two major categories: (1) furniture-based, and (2) floor-based, underfloor air distribution (UFAD). A large majority of these systems include a raised floor system with which underfloor plenums are used to deliver conditioned air to the space through floor grills, or in conjunction with the workstation furniture and partitions.

  14. Distributed Dynamic State Estimator, Generator Parameter Estimation and Stability Monitoring Demonstration

    SciTech Connect (OSTI)

    Meliopoulos, Sakis; Cokkinides, George; Fardanesh, Bruce; Hedrington, Clinton

    2013-12-31

    This is the final report for this project that was performed in the period: October1, 2009 to June 30, 2013. In this project, a fully distributed high-fidelity dynamic state estimator (DSE) that continuously tracks the real time dynamic model of a wide area system with update rates better than 60 times per second is achieved. The proposed technology is based on GPS-synchronized measurements but also utilizes data from all available Intelligent Electronic Devices in the system (numerical relays, digital fault recorders, digital meters, etc.). The distributed state estimator provides the real time model of the system not only the voltage phasors. The proposed system provides the infrastructure for a variety of applications and two very important applications (a) a high fidelity generating unit parameters estimation and (b) an energy function based transient stability monitoring of a wide area electric power system with predictive capability. Also the dynamic distributed state estimation results are stored (the storage scheme includes data and coincidental model) enabling an automatic reconstruction and “play back” of a system wide disturbance. This approach enables complete play back capability with fidelity equal to that of real time with the advantage of “playing back” at a user selected speed. The proposed technologies were developed and tested in the lab during the first 18 months of the project and then demonstrated on two actual systems, the USVI Water and Power Administration system and the New York Power Authority’s Blenheim-Gilboa pumped hydro plant in the last 18 months of the project. The four main thrusts of this project, mentioned above, are extremely important to the industry. The DSE with the achieved update rates (more than 60 times per second) provides a superior solution to the “grid visibility” question. The generator parameter identification method fills an important and practical need of the industry. The “energy function” based transient stability monitoring opens up new ways to protect the power grid, better manage disturbances, confine their impact and in general improve the reliability and security of the system. Finally, as a by-product of the proposed research project, the developed system is able to “play back” disturbances by a click of a mouse. The importance of this by-product is evident by considering the tremendous effort exerted after the August 2003 blackout to piece together all the disturbance recordings, align them and recreate the sequence of events. This project has moved the state of art from fault recording by individual devices to system wide disturbance recording with “play back” capability.

  15. PhotoVoltaic distributed generation for Lanai power grid real-time simulation and control integration scenario.

    SciTech Connect (OSTI)

    Robinett, Rush D., III; Kukolich, Keith; Wilson, David Gerald; Schenkman, Benjamin L.

    2010-06-01

    This paper discusses the modeling, analysis, and testing in a real-time simulation environment of the Lanai power grid system for the integration and control of PhotoVoltaic (PV) distributed generation. The Lanai Island in Hawaii is part of the Hawaii Clean Energy Initiative (HCEI) to transition to 30% renewable green energy penetration by 2030. In Lanai the primary loads come from two Castle and Cook Resorts, in addition to residential needs. The total peak load profile is 12470 V, 5.5 MW. Currently there are several diesel generators that meet these loading requirements. As part of the HCEI, Lanai has initially installed 1.2 MW of PV generation. The goal of this study has been to evaluate the impact of the PV with respect to the conventional carbon-based diesel generation in real time simulation. For intermittent PV distributed generation, the overall stability and transient responses are investigated. A simple Lanai 'like' model has been developed in the Matlab/Simulink environment (see Fig. 1) and to accommodate real-time simulation of the hybrid power grid system the Opal-RT Technologies RT-Lab environment is used. The diesel generators have been modelled using the SimPowerSystems toolbox swing equations and a custom Simulink module has been developed for the High level PV generation. All of the loads have been characterized primarily as distribution lines with series resistive load banks with one VAR load bank. Three-phase faults are implemented for each bus. Both conventional and advanced control architectures will be used to evaluate the integration of the PV onto the current power grid system. The baseline numerical results include the stable performance of the power grid during varying cloud cover (PV generation ramping up/down) scenarios. The importance of assessing the real-time scenario is included.

  16. Are distributed energy technologies a viable alternative for institutional settings? : lessons from MIT Cogeneration Plant

    E-Print Network [OSTI]

    Tapia-Ahumada, Karen de los Angeles

    2005-01-01

    During the last decades, distributed energy (DE) resources received considerable attention and support because of the confluence of technology development - particularly gas turbines - and deregulation - which would allow ...

  17. The Value of Distributed Solar Electric Generation to San Antonio

    SciTech Connect (OSTI)

    Jones, Nic; Norris, Ben; Meyer, Lisa

    2013-02-14

    This report presents an analysis of value provided by grid-connected, distributed PV in San Antonio from a utility perspective. The study quantified six value components, summarized in Table ES- 1. These components represent the benefits that accrue to the utility, CPS Energy, in accepting solar onto the grid. This analysis does not treat the compensation of value, policy objectives, or cost-effectiveness from the retail consumer perspective.

  18. FEMTOSECOND TIMING DISTRIBUTION AND CONTROL FOR NEXT GENERATION ACCELERATORS AND LIGHT SOURCES

    SciTech Connect (OSTI)

    Chen, Li-Jin

    2014-03-31

    Femtosecond Timing Distribution At LCLS Free-electron-lasers (FEL) have the capability of producing high photon flux from the IR to the hard x-ray wavelength range and to emit femtosecond and eventually even at-tosecond pulses. This makes them an ideal tool for fundamental as well as applied re-search. Timing precision at the Stanford Linear Coherent Light Source (LCLS) between the x-ray FEL (XFEL) and ultrafast optical lasers is currently no better than 100 fs RMS. Ideally this precision should be much better and could be limited only by the x-ray pulse duration, which can be as short as a few femtoseconds. An increasing variety of science problems involving electron and nuclear dynamics in chemical and material systems will become accessible as the timing improves to a few femtoseconds. Advanced methods of electron beam conditioning or pulse injection could allow the FEL to achieve pulse durations less than one femtosecond. The objec-tive of the work described in this proposal is to set up an optical timing distribution sys-tem based on modelocked Erbium doped fiber lasers at LCLS facility to improve the timing precision in the facility and allow time stamping with a 10 fs precision. The primary commercial applications for optical timing distributions systems are seen in the worldwide accelerator facilities and next generation light sources community. It is reasonable to expect that at least three major XFELs will be built in the next decade. In addition there will be up to 10 smaller machines, such as FERMI in Italy and Maxlab in Sweden, plus the market for upgrading already existing facilities like Jefferson Lab. The total market is estimated to be on the order of a 100 Million US Dollars. The company owns the exclusive rights to the IP covering the technology enabling sub-10 fs synchronization systems. Testing this technology, which has set records in a lab environment, at LCLS, hence in a real world scenario, is an important corner stone of bringing the technology to market.

  19. Motion-to-Energy (M2Eâ?˘) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  20. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  1. Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies

    Broader source: Energy.gov [DOE]

    2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT).

  2. Study and Development of Anti-Islanding Control for Synchronous Machine-Based Distributed Generators: November 2001--March 2004

    SciTech Connect (OSTI)

    Ye, Z.

    2006-03-01

    This report summarizes the study and development of new active anti-islanding control schemes for synchronous machine-based distributed generators, including engine generators and gas turbines.

  3. Distributed Generation Study/Floyd Bennett | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)Displacement TransferBennett < Distributed

  4. Distributed Generation Study/Tudor Gardens | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (UtilityInstrumentsArea (DOE GTP)DisplacementTudor Gardens < Distributed

  5. Property:Distributed Generation/Site Description | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation, search Property NameDefinition JumpShore (m)Generation/Site

  6. Applying epoch-era analysis for homeowner selection of distributed generation power systems

    E-Print Network [OSTI]

    Pińa, Alexander L

    2014-01-01

    The current shift from centralized energy generation to a more distributed model has opened a number of choices for homeowners to provide their own power. While there are a number of systems to purchase, there are no tools ...

  7. Distributed generation and demand side management : applications to transmission system operation 

    E-Print Network [OSTI]

    Hayes, Barry Patrick

    2013-07-01

    Electricity networks are undergoing a period of rapid change and transformation, with increased penetration levels of renewable-based distributed generation, and new influences on electricity end-use patterns from ...

  8. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  9. Impact of distributed generation of solar photovoltaic (PV) generation on the Massachusetts transmission system

    E-Print Network [OSTI]

    Simhadri, Arvind

    2015-01-01

    After reaching 250 megawatt direct current (MW dc) of solar photovoltaic (PV) generation installed in Massachusetts (MA) in 2013, four years ahead of schedule, Governor Deval Patrick in May of 2013 announced an increase ...

  10. Cold Air Distribution in Office Buildings: Technology Assessment for California

    E-Print Network [OSTI]

    Bauman, F.S.

    2008-01-01

    Proceedings: International Load Management Conference. EPRIto have significant load management benefits for utilitycan further promote load management technology by supporting

  11. Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units with

    E-Print Network [OSTI]

    Chaudhary, Sanjay

    Power Flow Analysis Algorithm for Islanded LV Microgrids Including Distributed Generator Units power system. Being able to operate in both grid-connected and islanded mode, a microgrid manages and controls distributed energy resources, energy storage systems and loads, most of them are power electronic

  12. Abstract--Distributed generation (DG) has brought great attention from the power community, especially

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    generation and DFACTS (distribution network Flexible AC Transmission System). In these researches and penetration of DG is affecting power flow of the networks and Distributed FACTS (DFACTS) devices and centralized power stations connected to high and extra- high voltage networks, which in turn, supply power

  13. Optimal Placement and Sizing of Distributed Generator Units using Genetic Optimization

    E-Print Network [OSTI]

    and electricity in the distribution grid. A group of DG units can form a virtual power plant, being centrally controlled and behaving as a single power plant towards the grid. The extreme case is an energy island to conventional power plants distributed generation units such as PV cells (depending on solar illumination

  14. SYSTEM WIDE ECONOMIC BENEFITS OF DISTRIBUTED GENERATION IN THE NEW ENGLAND

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Numbers With Location · Substation Capacities and Installed Loads Without this information, the study that would be useful is: Cost and location of all planned transmission and distribution upgrades was to evaluate the benefits and costs associated with a distributed generation unit from the perspectives

  15. Historical and Current U.S. Strategies for Boosting Distributed Generation

    SciTech Connect (OSTI)

    Lowder, Travis; Schwabe, Paul; Zhou, Ella; Arent, Douglas J.

    2015-10-29

    This report seeks to introduce a variety of top-down and bottom-up practices that, in concert with the macro-environment of cost-reduction globally and early adoption in Europe, helped boost the distributed generation photovoltaic market in the United States. These experiences may serve as a reference in China's quest to promote distributed renewable energy.

  16. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  17. Stability analysis of weak rural electrification microgrids with droop-controlled rotational and electronic distributed generators

    E-Print Network [OSTI]

    Lemmon, Michael

    Stability analysis of weak rural electrification microgrids with droop-controlled rotational--Droop-controlled distributed generation (DG) units are widely used in microgrids for rural electrification applica- tions. In these microgrids, power quality is vulnerable to voltage and frequency instabilities due to limited generation

  18. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  19. Cost trajectories of low carbon electricity generation technologies: A study of cost uncertainty

    E-Print Network [OSTI]

    Levi, Peter; Pollitt, Michael

    2015-08-03

    for three important electricity generation technologies for the UK; nuclear, offshore wind and coal with carbon capture and storage. The first analysis composes LCOE estimate trajectories from previous years' DECC estimates and presents them alongside...

  20. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  1. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward

    SciTech Connect (OSTI)

    John Collins

    2009-01-01

    This document presents the Next Generation Nuclear Plant (NGNP) Systems, Subsystems, and Components, establishes a baseline for the current technology readiness status, and provides a path forward to achieve increasing levels of technical maturity.

  2. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  3. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  4. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  5. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A. [Illinois Commerce Commission, Springfield, IL (United States); Bailey, K.A.; South, D.W. [Argonne National Lab., IL (United States). Environmental Assessment and Information Sciences Div.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  6. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  7. General equilibrium, electricity generation technologies and the cost of carbon abatement: A structural sensitivity analysis

    E-Print Network [OSTI]

    General equilibrium, electricity generation technologies and the cost of carbon abatement Institute of Technology, USA a b s t r a c ta r t i c l e i n f o Article history: Received 25 February 2011: C61 C68 D58 Q43 Keywords: Carbon policy Energy modeling Electric power sector Bottom-up Top

  8. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  9. Combustion technology developments in power generation in response to environmental challenges

    E-Print Network [OSTI]

    Kammen, Daniel M.

    and clean coal-fired systems. The most promising of these include pulverized coal combustionCombustion technology developments in power generation in response to environmental challenges J.M. Bee´r* Department of Chemical Engineering, Room 66-548, Massachusetts Institute of Technology

  10. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  11. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK Technologies JumpDuck

  12. MHK Technologies/Gyroscopic wave power generation system | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar < MHK TechnologiesCat WaveGyroWaveGen

  13. Distributed Energy Technology Simulator: Microturbine Demonstration, October 2001

    Broader source: Energy.gov [DOE]

    results of a demonstration of a microturbine simulator used to mimic the behavior of a distributed energy resource on an electrical system

  14. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenarios Towards 2050Enermar <OMIS D ESurgeWECHydraulic Generators THG

  15. Abstract--Application of individual distributed generators can cause as many problems as it may solve. A better way to

    E-Print Network [OSTI]

    , microturbines, photovoltaic, fuel cells and wind- power. Most emerging technologies such as micro-turbines, photovoltaic, fuel cells and gas internal combustion engines with permanent magnet generator require generation technologies permits generators to be placed optimally in relation to heat loads allowing for use

  16. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalentLaboratory |

  17. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  18. On Building Parallel & Grid Applications: Component Technology and Distributed Services

    E-Print Network [OSTI]

    Krishnan, Sriram

    of Science of the U.S. Department of Energy and it has grown to be a consortium of researchers from about 15 Frameworks are well known in the commercial business application world and now this technology is being to work in large teams of specialists. Though slower to change than the rest of the software world

  19. Geographically-Distributed Databases: A Big Data Technology for Production Analysis in the Oil & Gas Industry

    E-Print Network [OSTI]

    SPE 167844 Geographically-Distributed Databases: A Big Data Technology for Production Analysis advances in the scientific field of "big-data" to the world of Oil & Gas upstream industry. These off-of-the-start IT technologies currently employed in the data management of Oil & Gas production operations. Most current

  20. Delft University of Technology Parallel and Distributed Systems Report Series

    E-Print Network [OSTI]

    of high churn and high-load scenario's. The versatility and good performance of Dispersy is shown positive rates. . . . . . . . . . . . . 11 6 Comparing the distribution of shortest paths between a random and our overlay. 13 7 Success-rate of connections between nodes in the NAT traversal experiment. . . . 15

  1. Proceedings of Power Systems 03: Distributed Generation and Advanced Metering 2002 Wichita State University

    E-Print Network [OSTI]

    Proceedings of Power Systems 03: Distributed Generation and Advanced Metering © 2002 Wichita State are critically dependent on the fuel quality and supply parameters for optimal power delivery and overall System Friction Losses (kW) PBearing Total System Bearing Losses (kW) PCon Electrical Conversion Losses

  2. Aalborg Universitet Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid

    E-Print Network [OSTI]

    Vasquez, Juan Carlos

    Microgrid Aldana, Nelson Leonardo Diaz; Wu, Dan; Dragicevic, Tomislav; Quintero, Juan Carlos Vasquez). Stored Energy Balance for Distributed PV-Based Active Generators in an AC Microgrid. In Proceedings Microgrid Nelson L. Diaz, Dan Wu, Tomislav Dragicevic, Juan C. Vasquez, and Josep M. Guerrero Abstract

  3. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions

    E-Print Network [OSTI]

    Kandlikar, Satish

    3D phase-differentiated GDL microstructure generation with binder and PTFE distributions Michael M of gas diffusion layer (GDL) materials with localized binder and poly- tetrafluoroethylene (PTFE mimics manufacturing processes and produces complete phase-differentiated (void, fiber, binder, and PTFE

  4. Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal Distributions

    E-Print Network [OSTI]

    Wang, Jin

    Modeling and Generating Daily Changes in Market Variables Using A Multivariate Mixture of Normal of the normal distribution for modeling of daily changes in market variables with fatter-than-normal tails is to transform (linearly) a multivariate normalwith an input covariance matrix into the desired multivariate

  5. Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study

    E-Print Network [OSTI]

    Li, Baochun

    Fuel Cell Generation in Geo-Distributed Cloud Services: A Quantitative Study Zhi Zhou1 Fangming Liu of fuel cell energy in cloud computing, yet it is unclear what and how much benefit it may bring. This paper, for the first time, attempts to quantitatively examine the benefits brought by fuel cell

  6. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  7. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M. [University of Mah, Trabzon (Turkey)

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  8. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  9. HPI Future SOC Lab: Call for Projects Next generation technology, such as multicore CPUs as well as increasing

    E-Print Network [OSTI]

    Weske, Mathias

    - Memory Computing Technology (SAP HANA). The SAP Business ByDesign systemHPI Future SOC Lab: Call for Projects Next generation technology, such as multicore, developers of service-oriented computing systems have to understand

  10. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  11. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  12. The Future of Combustion Turbine Technology for Industrial and Utility Power Generation 

    E-Print Network [OSTI]

    Karp, A. D.; Simbeck, D. R.

    1994-01-01

    Low capital cost and ample low-cost natural gas supplies will make natural gas-fired combustion turbine systems the power generation technology of choice over the next decade. Against the background of earlier use by electric utilities, this paper...

  13. A novel technique that creates electricity using the sun and generation technology

    E-Print Network [OSTI]

    Bristol, University of

    unlimited, if the electricity is transported from the world's solar belts to areas of high demand. DiamondA novel technique that creates electricity using the sun and generation technology from space solar heat to produce electricity in devices called thermionic energy converters (TECs) for which

  14. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    SciTech Connect (OSTI)

    Khanna, Madhu

    2010-03-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  15. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  16. Laboratory Glass Columns "Next Generation" technology for high-performance preparative chromatography

    E-Print Network [OSTI]

    Lebendiker, Mario

    SNAP ® Laboratory Glass Columns "Next Generation" technology for high-performance preparative lesiones graves o la muerte! WARNING Glass SNAP® columns are intended for use in a liquid environment disassembly or cleaning for scratches, chips or defects, particularly on the glass surfaces. DO NOT use column

  17. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Khanna, Madhu

    2011-04-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  18. Ionic Liquids for Utilization of Waste Heat from Distributed Power Generation Systems

    SciTech Connect (OSTI)

    Joan F. Brennecke; Mihir Sen; Edward J. Maginn; Samuel Paolucci; Mark A. Stadtherr; Peter T. Disser; Mike Zdyb

    2009-01-11

    The objective of this research project was the development of ionic liquids to capture and utilize waste heat from distributed power generation systems. Ionic Liquids (ILs) are organic salts that are liquid at room temperature and they have the potential to make fundamental and far-reaching changes in the way we use energy. In particular, the focus of this project was fundamental research on the potential use of IL/CO2 mixtures in absorption-refrigeration systems. Such systems can provide cooling by utilizing waste heat from various sources, including distributed power generation. The basic objectives of the research were to design and synthesize ILs appropriate for the task, to measure and model thermophysical properties and phase behavior of ILs and IL/CO2 mixtures, and to model the performance of IL/CO2 absorption-refrigeration systems.

  19. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume II. Final report, Appendix A: selected DSG technologies and their general control requirements

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. The purpose of this survey and identification of DSG technologies is to present an understanding of the special characteristics of each of these technologies in sufficient detail so that the physical principles of their operation and the internal control of each technology are evident. In this way, a better appreciation can be obtained of the monitoring and control requirements for these DSGs from a remote distribution dispatch center. A consistent approach is being sought for both hardware and software which will handle the monitoring and control necessary to integrate a number of different DSG technologies into a common distribution dispatch network. From this study it appears that the control of each of the DSG technologies is compatible with a supervisory control method of operation that lends itself to remote control from a distribution dispatch center.

  20. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect (OSTI)

    Longrigg, P.

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  1. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  2. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    SciTech Connect (OSTI)

    M.A. Ebadian, Ph.D.; S.K. Dua, Ph.D., C.H.P.; Hillol Guha, Ph.D.

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 {micro}m) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 {micro}m, arising from condensation of vaporized material and subsequent rapid formation of aggregates. Particles of larger size, resulting from ejection of melted material or fragments from the cutting zone, were also observed. This study presents data regarding the metal cutting rate, particle size distribution, and their generation rate, while using different cutting tools and metals. The study shows that respirable particles constitute only a small fraction of the released kerf.

  3. 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation

    E-Print Network [OSTI]

    Search 11.11.2004 08:48:00 GMT China aims to employ nuclear fusion technology in power generation to employ nuclear fusion technologies in power generation by 2050. China will adopt a three-step strategy-2% to 60-70%; and third step is the employment of nuclear fusion. However, a report by Zhongguo Dianli Wang

  4. Ultrashort laser ablation of bulk copper targets: Dynamics and size distribution of the generated nanoparticles

    SciTech Connect (OSTI)

    Tsakiris, N.; Gill-Comeau, M.; Lewis, L. J.; Anoop, K. K.; Ausanio, G.; Bruzzese, R.; Amoruso, S.

    2014-06-28

    We address the role of laser pulse fluence on expansion dynamics and size distribution of the nanoparticles produced by irradiating a metallic target with an ultrashort laser pulse in a vacuum, an issue for which contrasting indications are present in the literature. To this end, we have carried out a combined theoretical and experimental analysis of laser ablation of a bulk copper target with ?50 fs, 800?nm pulses, in an interval of laser fluencies going from few to several times the ablation threshold. On one side, molecular dynamics simulations, with two-temperature model, describe the decomposition of the material through the analysis of the evolution of thermodynamic trajectories in the material phase diagram, and allow estimating the size distribution of the generated nano-aggregates. On the other side, atomic force microscopy of less than one layer nanoparticles deposits on witness plates, and fast imaging of the nanoparticles broadband optical emission provide the corresponding experimental characterization. Both experimental and numerical findings agree on a size distribution characterized by a significant fraction (?90%) of small nanoparticles, and a residual part (?10%) spanning over a rather large size interval, evidencing a weak dependence of the nanoparticles sizes on the laser pulse fluence. Numerical and experimental findings show a good degree of consistency, thus suggesting that modeling can realistically support the search for experimental methods leading to an improved control over the generation of nanoparticles by ultrashort laser ablation.

  5. Optimizing Geographic Allotment of Photovoltaic Capacity in a Distributed Generation Setting: Preprint

    SciTech Connect (OSTI)

    Urquhart, B.; Sengupta, M.; Keller, J.

    2012-09-01

    A multi-objective optimization was performed to allocate 2MW of PV among four candidate sites on the island of Lanai such that energy was maximized and variability in the form of ramp rates was minimized. This resulted in an optimal solution set which provides a range of geographic allotment alternatives for the fixed PV capacity. Within the optimal set, a tradeoff between energy produced and variability experienced was found, whereby a decrease in variability always necessitates a simultaneous decrease in energy. A design point within the optimal set was selected for study which decreased extreme ramp rates by over 50% while only decreasing annual energy generation by 3% over the maximum generation allocation. To quantify the allotment mix selected, a metric was developed, called the ramp ratio, which compares ramping magnitude when all capacity is allotted to a single location to the aggregate ramping magnitude in a distributed scenario. The ramp ratio quantifies simultaneously how much smoothing a distributed scenario would experience over single site allotment and how much a single site is being under-utilized for its ability to reduce aggregate variability. This paper creates a framework for use by cities and municipal utilities to reduce variability impacts while planning for high penetration of PV on the distribution grid.

  6. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    SciTech Connect (OSTI)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-15

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  7. 668 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 9, MAY 1, 2007 Photonic Generation of Microwave Signals Based

    E-Print Network [OSTI]

    Yao, Jianping

    668 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 19, NO. 9, MAY 1, 2007 Photonic Generation of Microwave, IEEE Abstract--A novel approach to generating microwave signals based on optical pulse shaping generation is developed. Experimental results agree well with the theoretical analysis. Index Terms--Microwave

  8. Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid

    E-Print Network [OSTI]

    Gong, Shuping; Lai, Lifeng; Qiu, Robert C

    2010-01-01

    The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

  9. Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report

    SciTech Connect (OSTI)

    Greenberg, S.; Cooley, C.

    2005-01-01

    This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

  10. Distributed Wireless Multi-Sensor Technologies, A Novel Approach to Reduce Motor Energy Usage

    SciTech Connect (OSTI)

    Daniel Sexton

    2008-03-28

    This report is the final report for the General Electric Distributed Wireless Multi-Sensor Technologies project. The report covers the research activities and benefits surrounding wireless technology used for industrial sensing applications. The main goal of this project was to develop wireless sensor technology that would be commercialized and adopted by industry for a various set of applications. Many of these applications will yield significant energy savings. One application where there was significant information to estimate a potential energy savings was focused on equipment condition monitoring and in particular electric motor monitoring. The results of the testing of the technology developed are described in this report along with the commercialization activities and various new applications and benefits realized.

  11. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  12. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  13. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  14. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O. [Korea Hydro and Nuclear Power Company Central Research Institue, 70, 1312 -gil Yuseong-daero Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  15. Abstract--This paper presents the consequences and operating limitations of installing distributed generation (DG) to electric

    E-Print Network [OSTI]

    enhances certain aspects of the power quality of the owners significantly by mitigat- ing the voltage sag distributed generation (DG) to electric power systems. The proliferation of new generators creates new are discussed. A technique used to evaluate fault current in the system after installing DGs is ana- lyzed

  16. Evaluating shortfalls in mixed-integer programming approaches for the optimal design and dispatch of distributed generation systems

    E-Print Network [OSTI]

    heat and power Fuel cells Building energy a b s t r a c t The distributed generation (DG) of combined Wisconsin, retrofitted with solid-oxide fuel cells (SOFCs) and a hot water storage tank. The simpler model of renewable or non- renewable sources of power generation (e.g., photovoltaic (PV) cells, fuel cells

  17. The effects of technological change, experience and environmental regulation on the construction of coal-burning generating units

    E-Print Network [OSTI]

    Joskow, Paul L.

    1984-01-01

    This paper provides an empirical analysis of the technological, regulatory and organizational factors that have influenced the costs of building coal-burning steam-electric generating units over the past twenty year. We ...

  18. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  19. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  20. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  1. Generation and distribution of PAHs in the process of medical waste incineration

    SciTech Connect (OSTI)

    Chen, Ying; Zhao, Rongzhi; Xue, Jun; Li, Jinhui

    2013-05-15

    Highlights: ? PAHs generation and distribution features of medical waste incineration are studied. ? More PAHs were found in fly ash than that in bottom ash. ? The highest proportion of PAHs consisted of the seven most carcinogenic ones. ? Increase of free oxygen molecule and burning temperature promote PAHs degradation. ? There is a moderate positive correlation between total PCDD/Fs and total PAHs. - Abstract: After the deadly earthquake on May 12, 2008 in Wenchuan county of China, several different incineration approaches were used for medical waste disposal. This paper investigates the generation properties of polycyclic aromatic hydrocarbons (PAHs) during the incineration. Samples were collected from the bottom ash in an open burning slash site, surface soil at the open burning site, bottom ash from a simple incinerator, bottom ash generated from the municipal solid waste (MSW) incinerator used for medical waste disposal, and bottom ash and fly ash from an incinerator exclusively used for medical waste. The species of PAHs were analyzed, and the toxicity equivalency quantities (TEQs) of samples calculated. Analysis results indicate that the content of total PAHs in fly ash was 1.8 × 10{sup 3} times higher than that in bottom ash, and that the strongly carcinogenic PAHs with four or more rings accumulated sensitively in fly ash. The test results of samples gathered from open burning site demonstrate that Acenaphthylene (ACY), Acenaphthene (ACE), Fluorene (FLU), Phenanthrene (PHE), Anthracene (ANT) and other PAHs were inclined to migrate into surrounding environment along air and surface watershed corridors, while 4- to 6-ring PAHs accumulated more likely in soil. Being consistent with other studies, it has also been confirmed that increases in both free oxygen molecules and combustion temperatures could promote the decomposition of polycyclic PAHs. In addition, without the influence of combustion conditions, there is a positive correlation between total PCDD/Fs and total PAHs, although no such relationship has been found for TEQ.

  2. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  3. Learning and cost reductions for generating technologies in the national energy modeling system (NEMS)

    E-Print Network [OSTI]

    Gumerman, Etan; Marnay, Chris

    2004-01-01

    of International Learning on Technology Cost. In Issues ofbetween initial new technology cost estimates and actualthe revolutionary technologies have cost reductions beyond

  4. Treatment technologies for hazardous ashes generated from possible incineration of navy waste. Technical note

    SciTech Connect (OSTI)

    Torres, T.

    1990-10-01

    The Navy recognizes that thermal treatment of Navy hazardous wastes (HW) should, under the terms of the Resource Conservation and Recovery Act of 1976, be avoided. Combustion waste disposal may nonetheless become unavoidable in certain cases, even after all possible process enhancements that avoid HW production are implemented. Even then, some toxic constituents that may be present in the waste will not be destroyed by incineration and will persist in the ash residue produced by incineration. Such incinerator ashes will have to be disposed of in HW landfills. The Navy is thus evaluating methods of treatment of such ash to remove or immobilize the toxic constituents that persist following incineration in order to render the waste treatment residue nonhazardous. Appropriate technology identified in this work can be applied to ash produced by HW combuster operated by the Navy, if any, or be required for ash produced by commercial generators handling Navy HWs.

  5. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  6. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  7. Central power generation versus distributed generation e An air quality assessment in the South Coast Air Basin of California

    E-Print Network [OSTI]

    Dabdub, Donald

    , central generation concentrates emissions in a small area, whereas DG spreads emissions throughout an urban air basin. In contrast, conventional, centralized power plants tend to be located in remote areas by the year 2020. The intermittent nature of renewable sources like wind and solar power may require

  8. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  9. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  10. The Case for Natural Gas Fueled Solid Oxide Fuel Cell Power Systems for Distributed Generation

    SciTech Connect (OSTI)

    Chick, Lawrence A.; Weimar, Mark R.; Whyatt, Greg A.; Powell, Michael R.

    2015-02-01

    Natural-gas-fueled solid oxide fuel cell (NGSOFC) power systems yield electrical conversion efficiencies exceeding 60% and may become a viable alternative for distributed generation (DG) if stack life and manufacturing economies of scale can be realized. Currently, stacks last approximately 2 years and few systems are produced each year because of the relatively high cost of electricity from the systems. If mass manufacturing (10,000 units per year) and a stack life of 15 years can be reached, the cost of electricity from an NGSOFC system is estimated to be about 7.7 ˘/kWh, well within the price of commercial and residential retail prices at the national level (9.9-10˘/kWh and 11-12 ˘/kWh, respectively). With an additional 5 ˘/kWh in estimated additional benefits from DG, NGSOFC could be well positioned to replace the forecasted 59-77 gigawatts of capacity loss resulting from coal plant closures due to stricter emissions regulations and low natural gas prices.

  11. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  12. The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson

    E-Print Network [OSTI]

    Dobson, Ian

    The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A on the robustness of the power transmission grid using a dynamic model of the power transmission system (OPA of the transmission grid. This intuitive improvement comes simply from the realization that less power would need

  13. Abstract--The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the

    E-Print Network [OSTI]

    Perreault, Dave

    1 Abstract--The penetration of plug-in electric vehicles and renewable distributed generation, power grids I. INTRODUCTION ROWING concern for climate change and energy security has renewed interest legislative effort to mandate, or incentivize, large scale integration of renewable energy resources

  14. The Sensitivity of DPF Performance to the Spatial Distribution of Ash Generated from Six Lubricant Formulations

    Broader source: Energy.gov [DOE]

    Discusses potential of DPF pressure drop reduction by optimizing the spatial distribution of ash inside DPF inlet channel

  15. THE GALACTIC SPATIAL DISTRIBUTION OF OB ASSOCIATIONS AND THEIR SURROUNDING SUPERNOVA-GENERATED SUPERBUBBLES

    SciTech Connect (OSTI)

    Higdon, J. C. [W. M. Keck Science Center, Claremont Colleges, Claremont, CA 91711-5916 (United States); Lingenfelter, R. E., E-mail: jhigdon@kecksci.claremont.edu, E-mail: rlingenfelter@ucsd.edu [Center for Astrophysics and Space Sciences, University of California San Diego, La Jolla, CA 92093 (United States)

    2013-10-01

    The Galactic spatial distribution of OB associations and their surrounding superbubbles (SBs) reflect the distribution of a wide range of important processes in our Galaxy. In particular, it can provide a three-dimensional measure not only of the major source distribution of Galactic cosmic rays, but also the Galactic star formation distribution, the Lyman continuum ionizing radiation distribution, the core-collapse supernova distribution, the neutron star and stellar black hole production distribution, and the principal source distribution of freshly synthesized elements. Thus, we construct a three-dimensional spatial model of the massive-star distribution based primarily on the emission of the H II envelopes that surround the giant SBs and are maintained by the ionizing radiation of the embedded O stars. The Galactic longitudinal distribution of the 205 ?m N II radiation, emitted by these H II envelopes, is used to infer the spatial distribution of SBs. We find that the Galactic SB distribution is dominated by the contribution of massive-star clusters residing in the spiral arms.

  16. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water rea

  17. A model-based approach to regulating electricity distribution under new operating conditions

    E-Print Network [OSTI]

    Yap, Xiang Ling

    2012-01-01

    New technologies such as distributed generation and electric vehicles are connecting to the electricity distribution grid, a regulated natural monopoly. Existing regulatory schemes were not designed for these new technologies ...

  18. HYDROGEN GENERATION FROM PLASMATRON REFORMERS: A PROMISING TECHNOLOGY FOR NOX ADSORBER REGENERATION AND OTHER AUTOMOTIVE APPLICATIONS

    SciTech Connect (OSTI)

    Bromberg, L.; Crane, S; Rabinovich, A.; Kong, Y; Cohn, D; Heywood, J; Alexeev, N.; Samokhin, A.

    2003-08-24

    Plasmatron reformers are being developed at MIT and ArvinMeritor [1]. In these reformers a special low power electrical discharge is used to promote partial oxidation conversion of hydrocarbon fuels into hydrogen and CO. The partial oxidation reaction of this very fuel rich mixture is difficult to initiate. The plasmatron provides continuous enhanced volume initiation. To minimize electrode erosion and electrical power requirements, a low current, high voltage discharge with wide area electrodes is used. The reformers operate at or slightly above atmospheric pressure. Plasmatron reformers provide the advantages of rapid startup and transient response; efficient conversion of the fuel to hydrogen rich gas; compact size; relaxation or elimination of reformer catalyst requirements; and capability to process difficult to reform fuels, such as diesel and bio-oils. These advantages facilitate use of onboard hydrogen-generation technology for diesel exhaust after-treatment. Plasma-enhanced reformer technology can provide substantial conversion even without the use of a catalyst. Recent progress includes a substantial decrease in electrical power consumption (to about 200 W), increased flow rate (above 1 g/s of diesel fuel corresponding to approximately 40 kW of chemical energy), soot suppression and improvements in other operational features.. Plasmatron reformer technology has been evaluated for regeneration of NOx adsorber after-treatment systems. At ArvinMeritor tests were performed on a dual-leg NOx adsorber system using a Cummins 8.3L diesel engine both in a test cell and on a vehicle. A NOx adsorber system was tested using the plasmatron reformer as a regenerator and without the reformer i.e., with straight diesel fuel based regeneration as the baseline case. The plasmatron reformer was shown to improve NOx regeneration significantly compared to the baseline diesel case. The net result of these initial tests was a significant decrease in fuel penalty, roughly 50% at moderate adsorber temperatures. This fuel penalty improvement is accompanied by a dramatic drop in slipped hydrocarbon emissions, which decreased by 90% or more. Significant advantages are demonstrated across a wide range of engine conditions and temperatures. The study also indicated the potential to regenerate NOx adsorbers at low temperatures where diesel fuel based regeneration is not effective, such as those typical of idle conditions. Two vehicles, a bus and a light duty truck, have been equipped for plasmatron reformer NOx adsorber regeneration tests.

  19. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  20. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,and J.L. Edwards, “Distributed Energy Resources CustomerN ATIONAL L ABORATORY Distributed Energy Resources On-Site

  1. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  2. Integration of Renewables Via Demand Management: Highly Dispatchable and Distributed Demand Response for the Integration of Distributed Generation

    SciTech Connect (OSTI)

    2012-02-11

    GENI Project: AutoGrid, in conjunction with Lawrence Berkeley National Laboratory and Columbia University, will design and demonstrate automated control software that helps manage real-time demand for energy across the electric grid. Known as the Demand Response Optimization and Management System - Real-Time (DROMS-RT), the software will enable personalized price signal to be sent to millions of customers in extremely short timeframes—incentivizing them to alter their electricity use in response to grid conditions. This will help grid operators better manage unpredictable demand and supply fluctuations in short time-scales —making the power generation process more efficient and cost effective for both suppliers and consumers. DROMS-RT is expected to provide a 90% reduction in the cost of operating demand response and dynamic pricing Projects in the U.S.

  3. Next Generation Radioisotope Generators | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generators Next Generation Radioisotope Generators Advanced Stirling Radioisotope Generator (ASRG) - The ASRG is currently being developed as a high-efficiency RPS technology...

  4. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    electricity from biogas and they have the same rate of electrical generationbiogas can be used as a supplemental energy source for thermal energy loads and the generation of electricity.generation of electricity. Anaerobic digestion destroys pathogens and this method is used to generate biogas

  5. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    with Electric and Thermal Storage Technologies Michaelwith Electric and Thermal Storage Technologies 1 Michael2006). Electrical and thermal storage is added as an option

  6. Medium Frequency Power Distribution Architectures for Next Generation Photovoltaic Farms and Data Centers 

    E-Print Network [OSTI]

    Hafez, Bahaa Eldeen

    2015-08-06

    scale PV structure is shown to increase power density and improves system modularity while maintaining high efficiency levels. The PV panels power standard three phase voltage source inverters to generate MF ac voltage. Various voltage source inverter...

  7. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  8. Vehicle Technologies Office Merit Review 2015: Next Generation SCR-Dosing System Investigation

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  9. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    of biomass integrated-gasifier/gas turbine combined cyclefarms to large integrated gasifiers at petroleum refineries.BLGCC). The black liquor gasifier technology will produce a

  10. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  11. Nuclear Instruments and Methods in Physics Research A 566 (2006) 598608 The number distribution of neutrons and gamma photons generated in a

    E-Print Network [OSTI]

    Pázsit, Imre

    2006-01-01

    of neutrons and gamma photons generated in a multiplying sample Andreas Enqvista,�, Imre Pa´ zsita , Sara is an analytical derivation of the full probability distribution of the number of neutrons and photons generated. With the introduction of a modified factorial moment of the number of neutrons and gamma photons generated in fission

  12. Copyright 2001, 2002 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and

    E-Print Network [OSTI]

    Copyright © 2001, 2002 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and unmodified. Baltimore ACCE Family 010387 FIPS 140-1 Security Policy #12;#12;Table of Contents 3 Baltimore ACCE Family - 010387 FIPS 140-1 Security Policy - 2

  13. Copyright 2001 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and

    E-Print Network [OSTI]

    Copyright © 2001 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and unmodified. Baltimore ACCE Family 010387 FIPS 140-1 Security Policy #12;#12;Table of Contents 3 Baltimore ACCE Family - 010387 FIPS 140-1 Security Policy - 2

  14. Copyright 2000 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and

    E-Print Network [OSTI]

    Copyright © 2000 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and unmodified. Baltimore ACCE SP Security Policy 1447 SD0122 4.0 #12;#12;Table of Contents 3 Baltimore ACCE SP - Security Policy 1447 SD0122 - 4.0 Copyright © 2000

  15. Copyright 2000 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and

    E-Print Network [OSTI]

    Copyright © 2000 Baltimore Technologies Ltd. This document may be reproduced and distributed providing such a reproduction is complete and unmodified. Baltimore ACCE 010387 FIPS 140-1 Security Policy #12;#12;Table of Contents 3 Baltimore ACCE - 010387 FIPS 140-1 Security Policy - 1.2 Copyright © 2000

  16. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    Gas-Fired Distributed Energy Resource Characterizations”,National Renewable Energy Resource Laboratory, Golden, CO,Edwards, “Distributed Energy Resources Customer Adoption

  17. Distributional and Efficiency Impacts of Clean and Renewable Energy Standards

    E-Print Network [OSTI]

    Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity on recycled paper #12;Distributional and Efficiency Impacts of Clean and Renewable Energy Standards supply and demand, including renewable energy resources and generating technologies, while representing

  18. Converting Limbo Lands to Energy-Generating Stations: Renewable Energy Technologies on Underused, Formerly Contaminated Sites

    SciTech Connect (OSTI)

    Mosey, G.; Heimiller, D.; Dahle, D.; Vimmerstedt, L.; Brady-Sabeff, L.

    2007-10-01

    This report addresses the potential for using 'Limbo Lands' (underused, formerly contaminated sites, landfills, brownfields, abandoned mine lands, etc. ) as sites for renewable energy generating stations.

  19. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  20. 1170 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 Independent Distributed Generation Planning

    E-Print Network [OSTI]

    Mohsenian-Rad, Hamed

    . Hosseinian, M. Abedi, and Hamed Mohsenian-Rad, Member, IEEE Abstract--Most current regulations allow small investors into DG contracts that can significantly benefit the utility network. In this regard, a new contracts for committed-type DG projects to offset distribution network investment costs. On one hand

  1. Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian auto industries.

  2. Entrepreneurial Tech-Ed. : using technology to fuel income generation education in rural Ghana/

    E-Print Network [OSTI]

    Rossman, Breanna Faye

    2014-01-01

    This thesis investigates how decentralization of development occurs through merging small-scale technology hubs into the rural West African fabric by integrating with the secondary school system. This model redefines the ...

  3. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  4. Unnatural landscapes in ecology: Generating the spatial distribution of brine spills

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Efroymson, Rebecca Ann [ORNL; Sublette, K. [University of Tulsa; Ashwood, Tom L [ORNL

    2005-01-01

    Quantitative tools are needed to evaluate the ecological effects of increasing petroleum production. In this article, we describe two stochastic models for simulating the spatial distribution of brine spills on a landscape. One model uses general assumptions about the spatial arrangement of spills and their sizes; the second model distributes spills by siting rectangular well complexes and conditioning spill probabilities on the configuration of pipes. We present maps of landscapes with spills produced by the two methods and compare the ability of the models to reproduce a specified spill area. A strength of the models presented here is their ability to extrapolate from the existing landscape to simulate landscapes with a higher (or lower) density of oil wells.

  5. General Equilibrium, Electricity Generation Technologies and the Cost of Carbon Abatement

    E-Print Network [OSTI]

    Lanz, Bruno, 1980-

    Electricity generation is a major contributor to carbon dioxide emissions, and a key determinant of abatement costs. Ex-ante assessments of carbon policies mainly rely on either of two modeling paradigms: (i) partial ...

  6. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  7. Regulatory Review and Barriers for the Electricity Supply System for Distributed

    E-Print Network [OSTI]

    , Technology assessment. I. INTRODUCTION In recent years, distributed generation (DG) has received increasing from renewable energy sources (RES) and combined heat and power (CHP) should be considered

  8. A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System

    E-Print Network [OSTI]

    Norwood, Zachary Mills

    2011-01-01

    12] Kalogirou, S. A. (2004). Solar thermal collectors andD. (2004). Advances in solar thermal electricity technology.December). Distributed solar-thermal/electric generation.

  9. Distributively generated near rings on the dihedral group of order eight 

    E-Print Network [OSTI]

    Willhite, Mary Lynn

    1970-01-01

    (~ ~@mbezeb Decemh. -. 1970 ABSTRACT Distributively Gene' ated Near Rings on the Dihedral Group of Order Eight. (December 1)70) Mary lynn Willhite, B. A. , Texas Christian University; Directed by: Dr. J. J. Malone, Jr. In this thesis, observations... OF TABLES TABLE 1 . THE DIHEDRAL GROUP D 2. THE ENDONORPHTSNS OF D Page 9 10 POSSIBLE KJLTIPLICATIONS FOR P=~ O, bi. . . 1$ 4-. POSSIBLE IIULTIPLICATIONS FOR P={ 0, 2a] . . . 18 5. AS OCIATIUE KH TIPLICATIONS FOR P=f0, 2a, b, 2a+b...

  10. DOE 2012 Market Report on U.S. Wind Technologies for Distributed...

    Broader source: Energy.gov (indexed) [DOE]

    connected on the customer side of the meter or directly to the distribution grid or microgrids. This year's distributed wind report has been expanded to include a finer breakdown...

  11. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  12. Jini technology as a solution to develop distributed instrumentation network in Engineering

    E-Print Network [OSTI]

    Libre de Bruxelles, Université

    -distributed applications like CORBA, LabVIEW or GPIB-ENET.5 2. VIRTUAL INSTRUMENTATION The term virtual instrumentation

  13. Illuminating Solar Decathlon Homes: Exploring Next Generation Lighting Technology - Light Emitting Diodes

    SciTech Connect (OSTI)

    Gordon, Kelly L.; Gilbride, Theresa L.

    2008-05-22

    This report was prepared by PNNL for the US Department of Energy Building Technologies Program, Solid-State Lighting Program. The report will be provided to teams of university students who are building houses for the 2009 Solar Decathlon, a home design competition sponsored in part by DOE, to encourage teams to build totally solar powered homes. One aspect of the competition is lighting. This report provides the teams with information about LED lighting that can help them determine how they incorporate LED lighting into their homes. The report provides an overview of LED technology, a status of where LED technology is today, questions and answers about lighting quality, efficiency, lifetime etc.; numerous examples of LED products; and several weblinks for further research.

  14. Quantum information technology with Sagnac interferometer: Interaction-free measurement, quantum key distribution and quantum secret sharing

    E-Print Network [OSTI]

    Wellington Alves de Brito; Rubens Viana Ramos

    2007-06-08

    The interferometry of single-photon pulses has been used to implement quantum technology systems, like quantum key distribution, interaction-free measurement and some other quantum communication protocols. In most of these implementations, Mach-Zehnder, Michelson and Fabry-Perot interferometers are the most used. In this work we present optical setups for interaction-free measurement, quantum key distribution and quantum secret sharing using the Sagnac interferometer. The proposed setups are described as well the quantum protocols using them are explained.

  15. Developing and Implementing the Foundation for a Renewable Energy-Based "Distribution Generation Micro-grid": A California Energy Commission Public Interest Energy Research Co-Funded Program 

    E-Print Network [OSTI]

    Lilly, P.; Sebold, F. D.; Carpenter, M.; Kitto, W.

    2002-01-01

    The California Energy Commission has been implementing its Public Interest Energy Research (PIER) and Renewable Energy Programs since early 1998. In the last two years, the demand for renewable distributed generation systems has increased rapidly...

  16. Magnetic field distribution in the plasma flow generated by a plasma focus discharge

    SciTech Connect (OSTI)

    Mitrofanov, K. N.; Krauz, V. I. Myalton, V. V.; Velikhov, E. P.; Vinogradov, V. P.; Vinogradova, Yu. V.

    2014-11-15

    The magnetic field in the plasma jet propagating from the plasma pinch region along the axis of the chamber in a megajoule PF-3 plasma focus facility is studied. The dynamics of plasma with a trapped magnetic flow is analyzed. The spatial sizes of the plasma jet region in which the magnetic field concentrates are determined in the radial and axial directions. The magnetic field configuration in the plasma jet is investigated: the radial distribution of the azimuthal component of the magnetic field inside the jet is determined. It is shown that the magnetic induction vector at a given point in space can change its direction during the plasma flight. Conclusions regarding the symmetry of the plasma flow propagation relative to the chamber axis are drawn.

  17. AMO Industrial Distributed Energy: Immediate Deployment of Waste Energy Technologies at Multiple Sites

    Broader source: Energy.gov [DOE]

    Fact sheet overviewing Verso Paper Corp. project that will deploy industrial technologies to recover and reuse water and steam at pulp and paper facilities.

  18. Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies

    E-Print Network [OSTI]

    Stadler, Michael

    2008-01-01

    fired reciprocating engines, gas turbines, microturbines,engines are the most dominant technologies. Investigations show that no fuel cell or micro turbine

  19. GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION TECHNOLOGIES AND

    E-Print Network [OSTI]

    Kockelman, Kara M.

    1 GREENHOUSE GAS EMISSION CONTROL OPTIONS: ASSESSING TRANSPORTATION AND ELECTRICITY GENERATION, Environmental and Ecological Effects," August 2013. KEY WORDS: Greenhouse gases, transportation energy, electric options is an important step in formulating a cohesive strategy to abate U.S. greenhouse gas (GHG

  20. Development and Testing of a 6-Cylinder HCCI Engine for Distributed Generation

    SciTech Connect (OSTI)

    Flowers, D L; Martinez-Frias, J; Espinosa-Loza, F; Killingsworth, N; Aceves, S M; Dibble, R; Kristic, M; Bining, A

    2005-07-12

    This paper describes the technical approach for converting a Caterpillar 3406 natural gas spark ignited engine into HCCI mode. The paper describes all stages of the process, starting with a preliminary analysis that determined that the engine can be operated by preheating the intake air with a heat exchanger that recovers energy from the exhaust gases. This heat exchanger plays a dual role, since it is also used for starting the engine. For start-up, the heat exchanger is preheated with a natural gas burner. The engine is therefore started in HCCI mode, avoiding the need to handle the potentially difficult transition from SI or diesel mode to HCCI. The fueling system was modified by replacing the natural gas carburetor with a liquid petroleum gas (LPG) carburetor. This modification sets an upper limit for the equivalence ratio at {phi} {approx} 0.4, which is ideal for HCCI operation and guarantees that the engine will not fail due to knock. Equivalence ratio can be reduced below 0.4 for low load operation with an electronic control valve. Intake boosting has been a challenge, as commercially available turbochargers are not a good match for the engine, due to the low HCCI exhaust temperature. Commercial introduction of HCCI engines for stationary power will therefore require the development of turbochargers designed specifically for this mode of operation. Considering that no appropriate off-the-shelf turbocharger for HCCI engines exists at this time, we are investigating mechanical supercharging options, which will deliver the required boost pressure (3 bar absolute intake) at the expense of some reduction in the output power and efficiency. An appropriate turbocharger can later be installed for improved performance when it becomes available or when a custom turbocharger is developed. The engine is now running in HCCI mode and producing power in an essentially naturally aspirated mode. Current work focuses on developing an automatic controller for obtaining consistent combustion in the 6 cylinders. The engine will then be tested for 1000 hours to demonstrate durability. This paper presents intermediate progress towards development of an HCCI engine for stationary power generation and next steps towards achieving the project goals.

  1. Evaluating the Performance of Virtual Teams in a Highly Distributed Information Technology Organization

    E-Print Network [OSTI]

    Simeonov, Svetoslav (Svet)

    2012-12-14

    are based on interviews conducted at Cerner Corporation, a global healthcare information technology organization, relevant literature review, and the author’s own experience and observations. While Cerner employs a full set of performance evaluation tools...

  2. Fiber Bragg Grating Sensor as Valuable Technological Platform for New Generation of Superconducting Magnets

    E-Print Network [OSTI]

    Chiuchiolo, A; Cusano, A; Bajko, M; Perez, J C; Bajas, H; Viret, P; Giordano, M; Breglio, G

    2014-01-01

    New generation of superconducting magnets for high energy applications designed, manufactured and tested at the European Organization for Nuclear Research (CERN) require the implementation of reliable sensors able to monitor the mechanical stresses affecting the winding from fabrication to operation in magnetic field of 13 T. This work deals with the embedding of Fiber Bragg Grating sensors in a short model Nb3Sn dipole magnet in order to monitor the strain developed in the coil during the cool down to 1.9 K, the powering up to 15.8 kA and the warm up, offering perspectives for the replacement of standard strain gauges.

  3. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    An annual report on U.S. wind power in distributed applications--expanded to include small, mid-size, and utility-scale installations--including key statistics, economic data,...

  4. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  5. Collaborative National Program for the Development and Performance Testing of Distributed Power Technologies with Emphasis on Combined Heat and Power Applications

    SciTech Connect (OSTI)

    Soinski, Arthur; Hanson, Mark

    2006-06-28

    A current barrier to public acceptance of distributed generation (DG) and combined heat and power (CHP) technologies is the lack of credible and uniform information regarding system performance. Under a cooperative agreement, the Association of State Energy Research and Technology Transfer Institutions (ASERTTI) and the U.S. Department of Energy have developed four performance testing protocols to provide a uniform basis for comparison of systems. The protocols are for laboratory testing, field testing, long-term monitoring and case studies. They have been reviewed by a Stakeholder Advisory Committee made up of industry, public interest, end-user, and research community representatives. The types of systems covered include small turbines, reciprocating engines (including Stirling Cycle), and microturbines. The protocols are available for public use and the resulting data is publicly available in an online national database and two linked databases with further data from New York State. The protocols are interim pending comments and other feedback from users. Final protocols will be available in 2007. The interim protocols and the national database of operating systems can be accessed at www.dgdata.org. The project has entered Phase 2 in which protocols for fuel cell applications will be developed and the national and New York databases will continue to be maintained and populated.

  6. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  7. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    focuses on multi-scale, multiphysics approaches to understanding natural systems, "engineering the earth" with sensing and drilling technologies and characterizing geomaterials...

  8. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  9. Ultracompact Accelerator Technology for a Next-Generation Gamma-Ray Source

    SciTech Connect (OSTI)

    Marsh, R A; Albert, F; Anderson, S G; Gibson, D J; Wu, S S; Hartemann, F V; Barty, C J

    2012-05-14

    This presentation reported on the technology choices and progress manufacturing and testing the injector and accelerator of the 250 MeV ultra-compact Compton Scattering gamma-ray Source under development at LLNL for homeland security applications. This paper summarizes the status of various facets of current accelerator activities at LLNL. The major components for the X-band test station have been designed, fabricated, and await installation. The XL-4 klystron has been delivered, and will shortly be dressed and installed in the ScandiNova modulator. High power testing of the klystron into RF loads will follow, including adjustment of the modulator for the klystron load as necessary. Assembly of RF transport, test station supports, and accelerator components will follow. Commissioning will focus on processing the RF gun to full operating power, which corresponds to 200 MV/m peak electric field on the cathode surface. Single bunch benchmarking of the Mark 1 design will provide confidence that this first structure operates as designed, and will serve as a solid starting point for subsequent changes, such as a removable photocathode, and the use of various cathode materials for enhanced quantum efficiency. Charge scaling experiments will follow, partly to confirm predictions, as well as to identify important causes of emittance growth, and their scaling with charge. Multi-bunch operation will conclude testing of the Mark 1 RF gun, and allow verification of code predictions, direct measurement of bunch-to-bunch effects, and initial implementation compensation mechanisms. Modeling will continue and focus on supporting the commissioning and experimental program, as well as seeking to improve all facets of linac produced Compton gamma-rays.

  10. Complaint Behaviors of the Millennial Generation 

    E-Print Network [OSTI]

    Philmon, Brittany Diane

    2011-02-22

    providing the opportunity for complaints to go directly to the service provider before negative word-of-mouth is distributed through emails, blogs, social networks, etc. (Mattila and Wirtz, 2004; Tyrrell and Woods, 2004). Technology Adoption Although... Customer satisfaction and word-of-mouth ........................................... 1 Generations and technology use ........................................................... 3 Organization of research...

  11. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  12. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  13. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect (OSTI)

    Durrell, Patrick R.; Accetta, Katharine [Department of Physics and Astronomy, Youngstown State University, Youngstown, OH 44555 (United States); Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen [Herzberg Astronomy and Astrophysics, National Research Council, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Peng, Eric W.; Zhang, Hongxin [Department of Astronomy, Peking University, Beijing 100871 (China); Mihos, J. Christopher [Department of Astronomy, Case Western Reserve University, Cleveland, OH 44106 (United States); Puzia, Thomas H.; Jordán, Andrés [Institute of Astrophysics, Pontificia Universidad Catolica, Av. Vicu'a Mackenna 4860, Macul 7820436, Santiago (Chile); Lançon, Ariane [Observatoire astronomique de Strasbourg, Université de Strasbourg, CNRS, UMR 7550, 11 rue de l'Université, F-67000 Strasbourg (France); Liu, Chengze [Center for Astronomy and Astrophysics, Department of Physics and Astronomy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240 (China); Cuillandre, Jean-Charles [Canada-France-Hawaii Telescope Corporation, Kamuela, HI 96743 (United States); Boissier, Samuel; Boselli, Alessandro [Aix Marseille Université, CNRS, LAM (Laboratoire d'Astrophysique de Marseille) UMR 7326, F-13388 Marseille (France); Courteau, Stéphane [Department of Physics, Engineering Physics and Astronomy, Queen's University, Kingston, ON K7L 3N6 (Canada); Duc, Pierre-Alain [AIM Paris Saclay, CNRS/INSU, CEA/Irfu, Université Paris Diderot, Orme des Merisiers, F-91191 Gif sur Yvette cedex (France); Emsellem, Eric [Université de Lyon 1, CRAL, Observatoire de Lyon, 9 av. Charles André, F-69230 Saint-Genis Laval (France); CNRS, UMR 5574, ENS de Lyon (France); and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ?}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ?} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (?215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ? {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ? {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values slightly lower than but consistent with those derived for individual galactic halos. Taken as a whole, our results show that the production of the complex structures in the unrelaxed Virgo cluster core (including the production of the diffuse intracluster light) is an ongoing and continuing process.

  14. Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16-18, 2007 San Antonio Abstract--Application of individual distributed generators can

    E-Print Network [OSTI]

    Panel on Microgrids Systems International Conference on System of Systems Engineering, April 16 a system approach which views generation and associated loads as a subsystem or a "microgrid". The sources verification of the Consortium for Electric Reliability Technology Solutions (CERTS) microgrid control concepts

  15. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This report was

  16. 2012 Underlying Data for Wind Technologies Market Report for Distributed Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMERserves

  17. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar Fuel ProductionRecoverable15/2008Technologies Technologies

  18. Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired Solar FuelTechnology /newsroom/_assets/images/s-icon.png Technology

  19. The Role of Distribution Network Operators in Promoting Cost-Effective Distributed Generation: Lessons from the United States of America for Europe

    E-Print Network [OSTI]

    Anaya, Karim L.; Pollitt, Michael G.

    2015-06-19

    was looking for proposals for 280 MW of new, on-island, renewable capacity and energy [27]. Proposal submissions were expected by end of March 2014. Among the technologies accepted are solar PV, wind, biomass, fuel cells, hydroelectric, tidal and wave...

  20. Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter and Technologies R&D

  1. A Feasibility Study of Sustainable Distributed Generation Technologies to Improve the electrical System on the Duck Valley Reservation

    SciTech Connect (OSTI)

    Herman Atkins, Shoshone-Paiute; Mark Hannifan, New West Technologies

    2005-06-30

    A range of sustainable energy options were assessed for feasibility in addressing chronic electric grid reliability problems at Duck Valley IR. Wind power and building energy efficiency were determined to have the most merit, with the Duck Valley Tribes now well positioned to pursue large scale wind power development for on- and off-reservation sales.

  2. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  3. Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment of Carbon Capture and Storage Technologies

    E-Print Network [OSTI]

    Scope for Future CO2 Emission Reductions from Electricity Generation through the Deployment-emission electricity within one or two decades. Renewable generation is also planned to increase over similar time, it is therefore possible that large (~45%) reductions in CO2 emissions from UK electricity generation could

  4. Space-based solar power generation using a distributed network of satellites and methods for efficient space power transmission

    E-Print Network [OSTI]

    McLinko, Ryan M.

    Space-based solar power (SSP) generation is being touted as a solution to our ever-increasing energy consumption and dependence on fossil fuels. Satellites in Earth's orbit can capture solar energy through photovoltaic ...

  5. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  6. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  7. Next-generation transcriptome assembly

    E-Print Network [OSTI]

    Martin, Jeffrey A.

    2012-01-01

    technologies - the next generation. Nat Rev Genet 11, 31-algorithms for next-generation sequencing data. Genomicsassembly from next- generation sequencing data. Genome Res

  8. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01

    Distributed Energy Resource Technology Characterizations. ”ABORATORY Distributed Energy Resources for Carbon Emissions5128 Distributed Energy Resources for Carbon Emissions

  9. 882 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 20, NO. 11, JUNE 1, 2008 Photonic Generation of Chirped Microwave Pulses

    E-Print Network [OSTI]

    Yao, Jianping

    Microwave Pulses Using Superimposed Chirped Fiber Bragg Gratings Chao Wang, Student Member, IEEE, and Jianping Yao, Senior Member, IEEE Abstract--A novel approach to generating linearly chirped microwave or decreased free spectral range is generated. A chirped microwave pulse with the pulse shape identical

  10. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15, 2014 3573 Generation of Linearly Chirped Microwave

    E-Print Network [OSTI]

    Yao, Jianping

    Chirped Microwave Waveform With an Increased Time-Bandwidth Product Based on a Tunable Optoelectronic, Fellow, OSA Abstract--Photonic generation of a linearly chirped microwave waveform with an increased time to the tunable OEO to generate a frequency-tunable microwave signal and the other is intensity

  11. 660 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 17, NO. 3, MARCH 2005 Optical Generation of Linearly Chirped Microwave

    E-Print Network [OSTI]

    Horowitz, Moshe

    Chirped Microwave Pulses Using Fiber Bragg Gratings Avi Zeitouny, Sander Stepanov, Oren Levinson, and Moshe Horowitz Abstract--We demonstrate a new method to generate broad spectrum chirped microwave pulses to generate pulses with a linear frequency chirp. The bandwidth of the microwave pulses can be significantly

  12. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 22, NO. 10, MAY 15, 2010 715 Optical Arbitrary Waveform Generation-Based

    E-Print Network [OSTI]

    Kolner, Brian H.

    -bit 40-Gb/s label in nonreturn-to-zero and return-to- zero on­off keying formats indicate Generation-Based Packet Generation and All-Optical Separation for Optical-Label Switching Tingting He--This letter introduces a versatile modulation-format transparent optical-label switching (OLS) transmitter

  13. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 7, JULY 2006 2663 Broadband Arbitrary Waveform Generation Based on

    E-Print Network [OSTI]

    Fischer, Baruch

    Generation Based on Microwave Frequency Upshifting in Optical Fibers José Azańa, Member, IEEE, Naum K. Berger, Boris Levit, and Baruch Fischer Abstract--An interesting method for broadband arbitrary waveform generation is based on the frequency upshifting of a narrowband microwave signal. In this technique

  14. Net Metering Policy Development and Distributed Solar Generation in Minnesota: Overview of Trends in Nationwide Policy Development and Implications of Increasing the Eligible System Size Cap

    SciTech Connect (OSTI)

    Doris, E.; Busche, S.; Hockett, S.

    2009-12-01

    The goal of the Minnesota net metering policy is to give the maximum possible encouragement to distributed generation assets, especially solar electric systems (MN 2008). However, according to a published set of best practices (NNEC 2008) that prioritize the maximum development of solar markets within states, the Minnesota policy does not incorporate many of the important best practices that may help other states transform their solar energy markets and increase the amount of grid-connected distributed solar generation assets. Reasons cited include the low system size limit of 40kW (the best practices document recommends a 2 MW limit) and a lack of language protecting generators from additional utility fees. This study was conducted to compare Minnesota's policies to national best practices. It provides an overview of the current Minnesota policy in the context of these best practices and other jurisdictions' net metering policies, as well as a qualitative assessment of the impacts of raising the system size cap within the policy based on the experiences of other states.

  15. International Energy Agency Implementing Agreements and Annexes: A Guide for Building Technologies Program Managers

    E-Print Network [OSTI]

    Evans, Meredydd

    2008-01-01

    Efficiency, Distributed Generation and Renewable Energyefficiency, distributed generation and renewable energy Efficiency, Distributed Generation and Renewable Energy 

  16. LINE: a code which simulates spectral line shapes for fusion reaction products generated by various speed distributions

    SciTech Connect (OSTI)

    Slaughter, D.

    1985-03-01

    A computer code is described which estimates the energy spectrum or ''line-shape'' for the charged particles and ..gamma..-rays produced by the fusion of low-z ions in a hot plasma. The simulation has several ''built-in'' ion velocity distributions characteristic of heated plasmas and it also accepts arbitrary speed and angular distributions although they must all be symmetric about the z-axis. An energy spectrum of one of the reaction products (ion, neutron, or ..gamma..-ray) is calculated at one angle with respect to the symmetry axis. The results are shown in tabular form, they are plotted graphically, and the moments of the spectrum to order ten are calculated both with respect to the origin and with respect to the mean.

  17. Letter Report on Testing of Distributed Energy Resource, Microgrid, and End-Use

    E-Print Network [OSTI]

    potential renewable, distributed energy resource, and micro-grid technology initiatives. Specific activities renewable generation technologies. The more energy storage available on the grid, the more intermittent renewables such as wind and solar that can be added to the grid. Currently grids use backup power generators

  18. Evaluation on double-wall-tube residual stress distribution of sodium-heated steam generator by neutron diffraction and numerical analysis

    SciTech Connect (OSTI)

    Kisohara, N. [Advanced Nuclear System Research and Development Directorate, Japan Atomic Energy Agency (Japan); Suzuki, H.; Akita, K. [Quantum Beam Science Directorate, Japan Atomic Energy Agency (Japan); Kasahara, N. [Dept. of Nuclear Engineering and Management, Univ. of Tokyo (Japan)

    2012-07-01

    A double-wall-tube is nominated for the steam generator heat transfer tube of future sodium fast reactors (SFRs) in Japan, to decrease the possibility of sodium/water reaction. The double-wall-tube consists of an inner tube and an outer tube, and they are mechanically contacted to keep the heat transfer of the interface between the inner and outer tubes by their residual stress. During long term SG operation, the contact stress at the interface gradually falls down due to stress relaxation. This phenomenon might increase the thermal resistance of the interface and degrade the tube heat transfer performance. The contact stress relaxation can be predicted by numerical analysis, and the analysis requires the data of the initial residual stress distributions in the tubes. However, unclear initial residual stress distributions prevent precious relaxation evaluation. In order to resolve this issue, a neutron diffraction method was employed to reveal the tri-axial (radius, hoop and longitudinal) initial residual stress distributions in the double-wall-tube. Strain gauges also were used to evaluate the contact stress. The measurement results were analyzed using a JAEA's structural computer code to determine the initial residual stress distributions. Based on the stress distributions, the structural computer code has predicted the transition of the relaxation and the decrease of the contact stress. The radial and longitudinal temperature distributions in the tubes were input to the structural analysis model. Since the radial thermal expansion difference between the inner (colder) and outer (hotter) tube reduces the contact stress and the tube inside steam pressure contributes to increasing it, the analytical model also took these effects into consideration. It has been conduced that the inner and outer tubes are contacted with sufficient stresses during the plant life time, and that effective heat transfer degradation dose not occur in the double-wall-tube SG. (authors)

  19. Temporal and spatial distribution of fishes in the upper Galveston Bay System with particular reference to the cooling water system of Cedar Bayou Generating Station 

    E-Print Network [OSTI]

    Holt, Scott Allen

    1976-01-01

    1I:MPORAL AND SPATIAL DISTRIBUTION OF FISHES IN THE UPPER GALVESTON BAY SYSTEM WITH PARTICULAR REFERENCE TO THE COOLING WATER SYSTEM OF CEDAR BAYOU GENERATING STATION A Thesis by SCOTT ALLEN HOLT Submitted to the Graduate College of Texas A... This research was made possible by a grant from Hou-ton Lighting 6 Power Company to the Department of Wildlife and Fisheries Scier. es and the Texas Agricultural Experiment Station (Project 1869-2781) . I would like to express my appreciation to Dr. Kirk...

  20. Fuel Cell Power Model Version 2: Startup Guide, System Designs, and Case Studies. Modeling Electricity, Heat, and Hydrogen Generation from Fuel Cell-Based Distributed Energy Systems

    SciTech Connect (OSTI)

    Steward, D.; Penev, M.; Saur, G.; Becker, W.; Zuboy, J.

    2013-06-01

    This guide helps users get started with the U.S. Department of Energy/National Renewable Energy Laboratory Fuel Cell Power (FCPower) Model Version 2, which is a Microsoft Excel workbook that analyzes the technical and economic aspects of high-temperature fuel cell-based distributed energy systems with the aim of providing consistent, transparent, comparable results. This type of energy system would provide onsite-generated heat and electricity to large end users such as hospitals and office complexes. The hydrogen produced could be used for fueling vehicles or stored for later conversion to electricity.

  1. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  2. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 11, NOVEMBER 2006 4263 PLC-Based Pulse-Train Generators

    E-Print Network [OSTI]

    Purdue University

    JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 24, NO. 11, NOVEMBER 2006 4263 PLC-Based Pulse to the fab- rication of optical devices [1]­[3]. PLC-based fabrication is frequently employed in a wide range the range of applications utilizing PLC- based devices is enormous, the focus of this paper

  3. The Flare-energy Distributions Generated by Kink-unstable Ensembles of Zero-net-current Coronal Loops

    E-Print Network [OSTI]

    Bareford, M R; Van der Linden, R A M

    2011-01-01

    It has been proposed that the million degree temperature of the corona is due to the combined effect of barely-detectable energy releases, so called nanoflares, that occur throughout the solar atmosphere. Alas, the nanoflare density and brightness implied by this hypothesis means that conclusive verification is beyond present observational abilities. Nevertheless, we investigate the plausibility of the nanoflare hypothesis by constructing a magnetohydrodynamic (MHD) model that can derive the energy of a nanoflare from the nature of an ideal kink instability. The set of energy-releasing instabilities is captured by an instability threshold for linear kink modes. Each point on the threshold is associated with a unique energy release and so we can predict a distribution of nanoflare energies. When the linear instability threshold is crossed, the instability enters a nonlinear phase as it is driven by current sheet reconnection. As the ensuing flare erupts and declines, the field transitions to a lower energy sta...

  4. Optimal Design of Grid-Connected PEV Charging Systems With Integrated Distributed Resources

    E-Print Network [OSTI]

    Perreault, David J.

    The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the next few decades. Large scale unregulated deployment of either technology can have a detrimental impact on ...

  5. Science Centric -Science, health and technology, breaking news [PDA version] New tool for next-generation cancer treatments using nanodiamonds

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    for next-generation cancer treatments using nanodiamonds Science Centric | 19 May 2009 15:50 GMT A research different ways: in one mode, the probe acts like a fountain pen, wherein drug-coated nanodiamonds serve and nanoparticles,' says Espinosa. Using the Nanofountain Probe, the group injected tiny doses of nanodiamonds

  6. IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 25, NO. 10, MAY 15, 2013 899 Photonic Generation of a Phase-Coded Microwave

    E-Print Network [OSTI]

    Yao, Jianping

    -Coded Microwave Waveform With Ultrawide Frequency Tunable Range Liang Gao, Student Member, IEEE, Xiangfei Chen-coded microwave waveform with ultrawide frequency tunable range using two polarization modulators (Pol signal with a switching voltage of V to PolM1, a phase-coded microwave waveform is generated. The key

  7. JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 32, NO. 20, OCTOBER 15 2014 3637 Photonic Generation of Microwave Waveforms Based

    E-Print Network [OSTI]

    Yao, Jianping

    of Microwave Waveforms Based on a Polarization Modulator in a Sagnac Loop Weilin Liu, Student Member, IEEE, and Jianping Yao, Fellow, IEEE, Fellow, OSA Abstract--An optical microwave waveform generator using a polarization modulator (PolM) in a Sagnac loop is proposed and experimentally demonstrated. Microwave waveforms

  8. Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

  9. Distribution, volume, and depositional origin of Upper Eocene bolide-generated sediments along the U. S. East Coast

    SciTech Connect (OSTI)

    Poag, C.W.; Poppe, L.J. (Geological Survey, Woods Hole, MA (United States)); Powars, D.S.; Mixon, R.B. (Geological Survey, Reston, VA (United States))

    1992-01-01

    Upper Eocene bolidites (bolide-generated sedimentary deposits) appear to form a continuous coastwise band, 600 km long and 30--100 km wide, from North Carolina to New Jersey (> 65,000 km[sup 2]). The authors sampled these deposits in 14 boreholes (cores and rotary cuttings) and identified them on 36 offshore seismic-reflection profiles. Cores from the bolidites contain allogenic phenoclasts and fossils, as well as shock-altered minerals and tektite glass. On seismic profiles, the bolidites commonly exhibit interrupted, chaotic reflections and fill elongate or ovate excavations. Maximum bolidite thickness offshore is 500m in the presumed impact crater (New Jersey Continental Shelf); maximum thickness onshore is > 60m (southeastern Virginia). Estimated bolidite volume is at least 1,700km[sup 3]. Disparate depositional processes formed four types of bolidites: (1) chaotic fill within the impact crater; (2) stratified( ) ejecta around the crater; (3) ejecta-bearing debrite at Deep Sea Drilling Project Site 612 (New Jersey slope); and (4) impact tsunamiite in North Carolina, Virginia, Maryland, and New Jersey.

  10. MHK Technologies/Oregon State University Columbia Power Technologies...

    Open Energy Info (EERE)

    OSU Project(s) where this technology is utilized *MHK ProjectsOSU Direct Drive Power Generation Buoys Technology Resource Click here Wave Technology Type Click here Point...

  11. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  12. National Energy Technology Laboratory Office of Fossil Energy

    E-Print Network [OSTI]

    - Kentucky Clean Coal #12;SECA 4/15/03 SECA Program Status · SECA and SECA Hybrids and Zero Emission SystemsNational Energy Technology Laboratory Office of Fossil Energy DOE Coordination Meeting DOE FE DG: Ensure the widespread deployment of clean distributed generation fuel cells, hybrid and novel generation

  13. WAIVER OF INVENTOR'S SHARE OF LICENSING INCOME Cornell University's policy on the distribution of technology transfer licensing revenues

    E-Print Network [OSTI]

    Chen, Tsuhan

    WAIVER OF INVENTOR'S SHARE OF LICENSING INCOME Cornell University's policy on the distribution faculty who are inventors or developers ("inventors") of the licensed intellectual property. Occasionally, a Cornell inventor will desire to waive the inventor's personal share of revenues. The Internal Revenue

  14. Assessing business models arising from the integration of distributed energy systems in the Chilean electric power system

    E-Print Network [OSTI]

    Le Dantec, Jorge I. (Jorge Ignacio)

    2014-01-01

    Electric power systems are more than just networks of generation, transmission and distribution assets. They are socio-technical systems, involving regulation, markets and technology availability. Presently, the dynamic ...

  15. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  16. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Bibliometric analysis of distributed generation

    E-Print Network [OSTI]

    Woon, Wei Lee

    This paper presents an application of term frequency (TF) as a means of identifying useful trends from text documents. Of particular interest is the relationship between publication patterns, as characterized by TF, and ...

  18. EIA - Distributed Generation in Buildings

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1 Table272/S TheEnergyEnergy Markets 9,

  19. Assessment of Distributed Energy Adoption in Commercial Buildings: Part 1: An Analysis of Policy, Building Loads, Tariff Design, and Technology Development

    E-Print Network [OSTI]

    Zhou, Nan; Nishida, Masaru; Gao, Weijun; Marnay, Chris

    2005-01-01

    Assessment of Distributed Energy Adoption in Commercialand Renewable Energy, Distributed Energy Program of the U.S.Assessment of Distributed Energy Adoption in Commercial

  20. Distributed Energy Resources for Carbon Emissions Mitigation

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2008-01-01

    2003. “Gas-Fired Distributed Energy Resource TechnologyATIONAL L ABORATORY Distributed Energy Resources for CarbonFirestone 5128 Distributed Energy Resources for Carbon

  1. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  2. Development of Thermoelectric Technology for Automotive Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at...

  3. Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy Considerations At Microsoft, we see information technology (IT) as a key tool to help address the daunting en-

    E-Print Network [OSTI]

    Narasayya, Vivek

    Energy Efficient IT IT for Energy Efficiency Clean Energy Generation Emissions Accounting Policy in energy conservation and integration of more renewable and zero-carbon energy sources into our economy. Microsoft envisions a clean energy ecosystem where information technology: · Empowers people

  4. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM's CleanupPowerJanuary 2004 |

  5. Technologies and Policies to Improve Energy Efficiency in Industry

    E-Print Network [OSTI]

    Price, Lynn

    2008-01-01

    from electricity generation, transmission, and distributionMtce equivalent of electricity generation, transmission, and

  6. Overview of current and future energy storage technologies for electric power applications

    E-Print Network [OSTI]

    Bahrami, Majid

    Overview of current and future energy storage technologies for electric power applications Ioannis September 2008 Keywords: Power generation Distributed generation Energy storage Electricity storage A B energy sources (RES). The extensive use of such energy sources in today's electricity networks can

  7. 2008 Solar Technologies Market Report

    E-Print Network [OSTI]

    Price, S.

    2010-01-01

    which uses solar energy to generate electricity." Like otherwhich uses solar energy to generate electricity” qualifiesenergy technologies, solar PV creates the most jobs per unit of electricity

  8. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  9. Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003. auto-id center massachusetts institute of technology, 400 technology sq, building ne46, 6th floor, cambridge, ma 02139-4307, usa

    E-Print Network [OSTI]

    Brock, David

    Program in Logistics at the Massachusetts Institute of Technology and is currently working on MIT Auto corporate logistics and operations management positions. He has a Bachelors of Science in food technology massachusetts institute of technology, 400 technology sq, building ne46, 6th floor, cambridge, ma 02139

  10. INTEGRATED CONTROL OF NEXT GENERATION POWER SYSTEM

    SciTech Connect (OSTI)

    2010-02-28

    Control methodologies provide the necessary data acquisition, analysis and corrective actions needed to maintain the state of an electric power system within acceptable operating limits. These methods are primarily software-based algorithms that are nonfunctional unless properly integrated with system data and the appropriate control devices. Components of the control of power systems today include protective relays, supervisory control and data acquisition (SCADA), distribution automation (DA), feeder automation, software agents, sensors, control devices and communications. Necessary corrective actions are still accomplished using large electromechanical devices such as vacuum, oil and gas-insulated breakers, capacitor banks, regulators, transformer tap changers, reclosers, generators, and more recently FACTS (flexible AC transmission system) devices. The recent evolution of multi-agent system (MAS) technologies has been reviewed and effort made to integrate MAS into next generation power systems. A MAS can be defined as ��a loosely-coupled network of problem solvers that work together to solve problems that are beyond their individual capabilities��. These problem solvers, often called agents, are autonomous and may be heterogeneous in nature. This project has shown that a MAS has significant advantages over a single, monolithic, centralized problem solver for next generation power systems. Various communication media are being used in the electric power system today, including copper, optical fiber and power line carrier (PLC) as well as wireless technologies. These technologies have enabled the deployment of substation automation (SA) at many facilities. Recently, carrier and wireless technologies have been developed and demonstrated on a pilot basis. Hence, efforts have been made by this project to penetrate these communication technologies as an infrastructure for next generation power systems. This project has thus pursued efforts to use specific MAS methods as well as pertinent communications protocols to imbed and assess such technologies in a real electric power distribution system, specifically the Circuit of the Future (CoF) developed by Southern California Edison (SCE). By modeling the behavior and communication for the components of a MAS, the operation and control of the power distribution circuit have been enhanced. The use of MAS to model and integrate a power distribution circuit offers a significantly different approach to the design of next generation power systems. For example, ways to control a power distribution circuit that includes a micro-grid while considering the impacts of thermal constraints, and integrating voltage control and renewable energy sources on the main power system have been pursued. Both computer simulations and laboratory testbeds have been used to demonstrate such technologies in electric power distribution systems. An economic assessment of MAS in electric power systems was also performed during this project. A report on the economic feasibility of MAS for electric power systems was prepared, and particularly discusses the feasibility of incorporating MAS in transmission and distribution (T&D) systems. Also, the commercial viability of deploying MAS in T&D systems has been assessed by developing an initial case study using utility input to estimate the benefits of deploying MAS. In summary, the MAS approach, which had previously been investigated with good success by APERC for naval shipboard applications, has now been applied with promising results for enhancing an electric power distribution circuit, such as the Circuit of the Future developed by Southern California Edison. The results for next generation power systems include better ability to reconfigure circuits, improve protection and enhance reliability.

  11. Office of Inspector General audit report on the U.S. Department of Energy`s funds distribution and control system at the Federal Energy Technology Center

    SciTech Connect (OSTI)

    NONE

    1999-04-01

    In Fiscal Year 1998, the Federal Energy Technology Center (FETC) was responsible for managing about $723 million in budgetary resources. The objective of this audit was to determine if FETC had a funds distribution and control system to ensure appropriated funds were managed in accordance with congressional intent and applicable policies and procedures. Improvements are needed in FETC`s administration of budgetary and accounting transactions. FETC did not have a comprehensive system to allocate indirect costs to funding programs and work-for-others projects. In addition, FETC did not completely adhere to Headquarters Clean Coal budget direction. The Office of Inspector General (OIG) reached its conclusions despite a scope impairment. Written documentation was not always available, and the audit team did not have ready access to key personnel who could explain certain transactions and management practices and procedures. In order to strengthen the FETC financial management system, the OIG recommended (1) the development of policies, procedures, and practices to accurately collect and allocate indirect costs and (2) improvements in internal control procedures. The OIG also recommended that the Chief Financial Officer conduct a detailed for cause review of the financial management practices at FETC and work with the Office of Field Management to develop a schedule for reviewing the financial management systems of all Departmental elements.

  12. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  13. Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) with an Integrated Experimental and Simulation Approach

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  14. UNIVERSITY of STRATHCLYDE TECHNOLOGY &

    E-Print Network [OSTI]

    Mottram, Nigel

    electricity networks and distribution systems, through to using smart grid technologies for more effective of dynamic collaborations delivering productive outcomes. #12;#12;LOW CARBON POWER AND ENERGY FUTURE CITIES Advanced Manufacturing Future Cities Health Technologies Working collaboratively, programmes within

  15. Distribution ICategory: General Reactor Technology

    E-Print Network [OSTI]

    Shlyakhter, Ilya

    Abdul-Rahman Fahmy St., Garden City, 11SJll, Cairo, Egypt. #12;I. INTRODUCTION From the earliest times can build houses to avoid radon gas or to trap it; by being careless with fluorocarbons we can allow

  16. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    E-Print Network [OSTI]

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-01-01

    photovoltaic PURPA Public Utilities Regulatory Policies Act QFs qualifying facilities SBC system benefits charge SC Shading

  17. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    E-Print Network [OSTI]

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-01-01

    shows how the necessary useful energy loads can be providedtotal energy output is in the form of useful thermal energy.Where useful thermal energy results from power production,

  18. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    E-Print Network [OSTI]

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-01-01

    systems, estimates of energy consumption intensities of various building types are typically obtained from the Natural Gas Cogeneration

  19. Technology development productivity : case studies in technology transition

    E-Print Network [OSTI]

    Taplett, Amanda Kingston

    2007-01-01

    Development of new technology is critical to the growth and success of technology-driven companies. New technology is generated in a number of ways, one of the most important being the company's own internal research and ...

  20. Theory and technology for computational narrative : an approach to generative and interactive narrative with bases in algebraic semiotics and cognitive linguistics

    E-Print Network [OSTI]

    Harrell, Douglas Alan

    2007-01-01

    is that conceptual blending (the generative component) andstructural blending (the media composition component) can bein the blending literature and explicitly designs components

  1. Co-evolution of an emerging mobile technology and mobile services : a study of the distributed governance of technological innovation through the case of WiBro in South Korea 

    E-Print Network [OSTI]

    Suh, Jee Hyun

    2014-11-26

    This thesis is a study of the development and uptake of an emerging infrastructural technology: the mobile Wireless Broadband technology and service known as WiBro in South Korea, and Mobile WiMAX internationally. WiBro ...

  2. Published June 1, 2003. Distribution restricted to Sponsors until September 1, 2003. auto-id center massachusetts institute of technology, 400 technology sq, building ne46, 6th floor, cambridge, ma 02139-4307, usa

    E-Print Network [OSTI]

    Brock, David

    management for the last six years. He was Product Manager at Optimum Logistics, Director of Global Logistics a Master of Engineering in Logistics from the Massachusetts Institute of Technology and a PhD in Solid massachusetts institute of technology, 400 technology sq, building ne46, 6th floor, cambridge, ma 02139

  3. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  4. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  5. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  6. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee February 27, 2014 Steven Simmons and Gillian Charles Upcoming Symposium 9:15 am Natural Gas Peaking Technologies Technology Trends Proposed reference plant Costing, Economies of Scale, Normalizations Reference Plants 12:30 pm Discussion of Next GRAC Meetings

  7. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

  8. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    SciTech Connect (OSTI)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

  9. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2002-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  10. Ultrasonic generator and detector using an optical mask having a grating for launching a plurality of spatially distributed, time varying strain pulses in a sample

    DOE Patents [OSTI]

    Maris, Humphrey J. (Barrington, RI)

    2003-01-01

    A method and a system are disclosed for determining at least one characteristic of a sample that contains a substrate and at least one film disposed on or over a surface of the substrate. The method includes a first step of placing a mask over a free surface of the at least one film, where the mask has a top surface and a bottom surface that is placed adjacent to the free surface of the film. The bottom surface of the mask has formed therein or thereon a plurality of features for forming at least one grating. A next step directs optical pump pulses through the mask to the free surface of the film, where individual ones of the pump pulses are followed by at least one optical probe pulse. The pump pulses are spatially distributed by the grating for launching a plurality of spatially distributed, time varying strain pulses within the film, which cause a detectable change in optical constants of the film. A next step detects a reflected or a transmitted portion of the probe pulses, which are also spatially distributed by the grating. A next step measures a change in at least one characteristic of at least one of reflected or transmitted probe pulses due to the change in optical constants, and a further step determines the at least one characteristic of the sample from the measured change in the at least one characteristic of the probe pulses. An optical mask is also disclosed herein, and forms a part of these teachings.

  11. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh...

  12. U.S. Department of Energy Geothermal Electricity Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spreadsheet model developed by the Geothermal Technologies Program to assess power generation costs and the potential for technology improvements to impact those generation...

  13. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  14. Species composition, distribution, and seasonal abundance of macro-zooplankton in intake and discharge areas before and during early operation of the Cedar Bayou generating station 

    E-Print Network [OSTI]

    Kalke, Richard D

    1972-01-01

    on the aquatic organisms when water is used for cooling by a steam electric generating station. Countant (1970) and Markowski (1959) state that the principle changes are: (1) increase in pressure caused by the pumps, (2) elevation in temperature, (3... proper use of a 0. 5 m plankton net (Figure 2). Stations too shallow for sampling were 3, 6, 9, 12-14, 18-21, and 24 and these are omitted from this report. Tabbs Bay Plankton Stations I and 2 were located in lower Tabbs Bay near the intake canal...

  15. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    Fuel Cell Technologies Publication and Product Library (EERE)

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  16. Hydrogen Pathways: Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, M.; Laffen, M.; Timbario, T. A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  17. Hydrogen Pathways. Cost, Well-to-Wheels Energy Use, and Emissions for the Current Technology Status of Seven Hydrogen Production, Delivery, and Distribution Scenarios

    SciTech Connect (OSTI)

    Ruth, Mark; Laffen, Melissa; Timbario, Thomas A.

    2009-09-01

    Report of levelized cost in 2005 U.S. dollars, energy use, and GHG emission benefits of seven hydrogen production, delivery, and distribution pathways.

  18. Diophantine Generation,

    E-Print Network [OSTI]

    Shlapentokh, Alexandra

    Diophantine Generation, Horizontal and Vertical Problems, and the Weak Vertical Method Alexandra Shlapentokh Diophantine Sets, Definitions and Generation Diophantine Sets Diophantine Generation Properties of Diophantine Generation Diophantine Family of Z Diophantine Family of a Polynomial Ring Going Down Horizontal

  19. Ductless Hydronic Distribution Systems

    Broader source: Energy.gov (indexed) [DOE]

    Buildings Technologies Program Date: November 8, 2011 Ductless Hydronic Distribution Systems Welcome to the Webinar We will start at 1:00 PM Eastern Time Be sure that you are...

  20. Modern Grid Initiative Distribution Taxonomy Final Report

    SciTech Connect (OSTI)

    Schneider, Kevin P.; Chen, Yousu; Chassin, David P.; Pratt, Robert G.; Engel, David W.; Thompson, Sandra E.

    2008-11-01

    This is the final report for the development of a toxonomy of prototypical electrical distribution feeders. Two of the primary goals of the Department of Energy's (DOE) Modern Grid Initiative (MGI) are 'to accelerate the modernization of our nation's electricity grid' and to 'support demonstrations of systems of key technologies that can serve as the foundation for an integrated, modern power grid'. A key component to the realization of these goals is the effective implementation of new, as well as existing, 'smart grid technologies'. Possibly the largest barrier that has been identified in the deployment of smart grid technologies is the inability to evaluate how their deployment will affect the electricity infrastructure, both locally and on a regional scale. The inability to evaluate the impacts of these technologies is primarily due to the lack of detailed electrical distribution feeder information. While detailed distribution feeder information does reside with the various distribution utilities, there is no central repository of information that can be openly accessed. The role of Pacific Northwest National Laboratory (PNNL) in the MGI for FY08 was to collect distribution feeder models, in the SynerGEE{reg_sign} format, from electric utilities around the nation so that they could be analyzed to identify regional differences in feeder design and operation. Based on this analysis PNNL developed a taxonomy of 24 prototypical feeder models in the GridLAB-D simulations environment that contain the fundamental characteristics of non-urban core, radial distribution feeders from the various regions of the U.S. Weighting factors for these feeders are also presented so that they can be used to generate a representative sample for various regions within the United States. The final product presented in this report is a toolset that enables the evaluation of new smart grid technologies, with the ability to aggregate their effects to regional and national levels. The distribution feeder models presented in this report are based on actual utility models but do not contain any proprietary or system specific information. As a result, the models discussed in this report can be openly distributed to industry, academia, or any interested entity, in order to facilitate the ability to evaluate smart grid technologies.

  1. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  2. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Environmental Management (EM)

    2: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next...

  3. Hardware simulation of diesel generator and microgrid stability

    E-Print Network [OSTI]

    Zieve, Michael M

    2012-01-01

    Over the last few years, people have begun to depend less on large power plants with extensive distribution systems, and more on local distributed generation sources. A microgrid, a local collection of distributed generators, ...

  4. Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems

    E-Print Network [OSTI]

    1 LBNL-43724 Distribution Effectiveness and Impacts on Equipment Sizing for Residential Thermal Distribution Systems Walker, I., Sherman, M., and Siegel, J. Environmental Energy Technologies Division Energy

  5. A design approach to a risk review for fuel cell-based distributed cogeneration systems 

    E-Print Network [OSTI]

    Luthringer, Kristin Lyn

    2004-09-30

    A risk review of a fuel cell-based distributed co-generation (FC-Based DCG) system was conducted to identify and quantify the major technological system risks in a worst-case scenario. A risk review entails both a risk assessment and a risk...

  6. Technology Assessment TECHNOLOGY ASSESSMENT

    E-Print Network [OSTI]

    Rock, Chris

    Technology Assessment 10/14/2004 1 TECHNOLOGY ASSESSMENT STRATEGIC PLAN MISSION STATEMENT Support the Mission of Texas Tech University and the TTU Information Technology Division by providing timely and relevant information and assistance in current and emerging technologies and their practical applications

  7. Bioscience Technology Bioscience Technology

    E-Print Network [OSTI]

    Vertes, Akos

    Bioscience Technology Bioscience Technology Advantage Business Media 100 Enterprise Drive Rockaway, co-director of George Washington University's Institute for Proteomics Technology and Applications-by-point. Manufacturers have stampeded to offer the new technology. Applied Biosystems got out in front in 2004 when

  8. Distribution Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    distributed generation Electric vehicle charging and electrolyzers Energy storage Building and industrial loads and demand response Smart grid sensing, automation, and...

  9. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  10. Innovative Self- Generating Projects 

    E-Print Network [OSTI]

    Kelly, L.

    2013-01-01

    ? All rights reserved. Case Studies on Canadian Customer Generation Projects Innovative Self-Generation Projects Liam Kelly, M.A.Sc, CMVP Energy Engineer Willis Energy Services A CLEAResult company ESL-IE-13-05-06 Proceedings of the Thrity...-05-06 Proceedings of the Thrity-Fifth Industrial Energy Technology Conference New Orleans, LA. May 21-24, 2013 ? 2013 CLEAResult ? All rights reserved. Overcoming Challenges ? Look for innovative opportunities ? Leverage available incentives ? Quantify other...

  11. Integrated Transmission and Distribution Control

    SciTech Connect (OSTI)

    Kalsi, Karanjit; Fuller, Jason C.; Tuffner, Francis K.; Lian, Jianming; Zhang, Wei; Marinovici, Laurentiu D.; Fisher, Andrew R.; Chassin, Forrest S.; Hauer, Matthew L.

    2013-01-16

    Distributed, generation, demand response, distributed storage, smart appliances, electric vehicles and renewable energy resources are expected to play a key part in the transformation of the American power system. Control, coordination and compensation of these smart grid assets are inherently interlinked. Advanced control strategies to warrant large-scale penetration of distributed smart grid assets do not currently exist. While many of the smart grid technologies proposed involve assets being deployed at the distribution level, most of the significant benefits accrue at the transmission level. The development of advanced smart grid simulation tools, such as GridLAB-D, has led to a dramatic improvement in the models of smart grid assets available for design and evaluation of smart grid technology. However, one of the main challenges to quantifying the benefits of smart grid assets at the transmission level is the lack of tools and framework for integrating transmission and distribution technologies into a single simulation environment. Furthermore, given the size and complexity of the distribution system, it is crucial to be able to represent the behavior of distributed smart grid assets using reduced-order controllable models and to analyze their impacts on the bulk power system in terms of stability and reliability. The objectives of the project were to: • Develop a simulation environment for integrating transmission and distribution control, • Construct reduced-order controllable models for smart grid assets at the distribution level, • Design and validate closed-loop control strategies for distributed smart grid assets, and • Demonstrate impact of integrating thousands of smart grid assets under closed-loop control demand response strategies on the transmission system. More specifically, GridLAB-D, a distribution system tool, and PowerWorld, a transmission planning tool, are integrated into a single simulation environment. The integrated environment allows the load flow interactions between the bulk power system and end-use loads to be explicitly modeled. Power system interactions are modeled down to time intervals as short as 1-second. Another practical issue is that the size and complexity of typical distribution systems makes direct integration with transmission models computationally intractable. Hence, the focus of the next main task is to develop reduced-order controllable models for some of the smart grid assets. In particular, HVAC units, which are a type of Thermostatically Controlled Loads (TCLs), are considered. The reduced-order modeling approach can be extended to other smart grid assets, like water heaters, PVs and PHEVs. Closed-loop control strategies are designed for a population of HVAC units under realistic conditions. The proposed load controller is fully responsive and achieves the control objective without sacrificing the end-use performance. Finally, using the T&D simulation platform, the benefits to the bulk power system are demonstrated by controlling smart grid assets under different demand response closed-loop control strategies.

  12. New information technologies such as distributed computing systems and the National Information Infrastructure have brought the integration for global enterprises closer to

    E-Print Network [OSTI]

    Hsu, Cheng

    efforts to define standards which will enable data exchange between systems from different vendors. These technologies and standards alone, however, are not sufficient to effect scalability, adaptability manufacturing enterprises. The problem, the model and an application solution are described for this domain. #12

  13. Digital Technology and Culture Program

    E-Print Network [OSTI]

    Collins, Gary S.

    Digital Technology and Culture Program College of Arts and Sciences Degree Options Bachelor of Arts in Digital Technology and Culture Minors Digital Technology and Culture Program Strengths · Demonstrate competency with technology for designing and distributing digital works in various mediums. · Demonstrate

  14. Wireless Communications and Networking Technologies for Smart Grid: Paradigms and Challenges

    E-Print Network [OSTI]

    Fang, Xi; Xue, Guoliang

    2011-01-01

    Smart grid, regarded as the next generation power grid, uses two-way flows of electricity and information to create a widely distributed automated energy delivery network. In this work we present our vision on smart grid from the perspective of wireless communications and networking technologies. We present wireless communication and networking paradigms for four typical scenarios in the future smart grid and also point out the research challenges of the wireless communication and networking technologies used in smart grid

  15. Accepted for the 2nd Intl Conf on Parallel and Distributed Computing, Applications and Technologies Taipei, Taiwan, July 9-11, 2001

    E-Print Network [OSTI]

    Power, James

    3209, South Africa. Email: karsten@alpha.futurenet.co.za b Dept of Computer Science, NUI, Maynooth of an SPMD architecture (Single Program, Multiple Data). The need for this research arose out of showing that DCL met its design goals. keywords: Distributed Architecture 1: Introduction Research

  16. Clean Coal Technology (Indiana)

    Broader source: Energy.gov [DOE]

    A public utility may not use clean coal technology at a new or existing electric generating facility without first applying for and obtaining from the Utility Regulatory Commission a certificate...

  17. Quadrennial Technology Review 2015

    Broader source: Energy.gov (indexed) [DOE]

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  18. Generating Resources Advisory Committee

    E-Print Network [OSTI]

    Generating Resources Advisory Committee May 28, 2014 Steve Simmons Gillian Charles #12;2 9:30 AM plants 10:45 AM Break 11:00 AM Peaking Technologies Continued... 11:30 AM Combined Cycle Combustion Turbine and Utility Scale Solar PV Reference plant updates Levelized cost of energy 12:00 PM Lunch

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    of wind and conventional energy technologies, transmission,wind versus the displaced conventional energy technologies,wind energy I. I NTRODUCTION Generating electricity from wind technology

  20. Entanglement Distribution in Optical Networks

    E-Print Network [OSTI]

    Alex Ciurana; Vicente Martin; Jesus Martinez-Mateo; Bernhard Schrenk; Momtchil Peev; Andreas Poppe

    2014-09-21

    The ability to generate entangled photon-pairs over a broad wavelength range opens the door to the simultaneous distribution of entanglement to multiple users in a network by using centralized sources and flexible wavelength-division multiplexing schemes. Here we show the design of a metropolitan optical network consisting of tree-type access networks whereby entangled photon-pairs are distributed to any pair of users, independent of their location. The network is constructed employing commercial off-the-shelf components and uses the existing infrastructure, which allows for moderate deployment costs. We further develop a channel plan and a network-architecture design to provide a direct optical path between any pair of users, thus allowing classical and one-way quantum communication as well as entanglement distribution. This allows the simultaneous operation of multiple quantum information technologies. Finally, we present a more flexible backbone architecture that pushes away the load limitations of the original network design by extending its reach, number of users and capabilities.

  1. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI...

  2. Next Generation Library Systems Convenient, Connected, User-Centric, Ubiquitous

    E-Print Network [OSTI]

    Myers, Lawrence C.

    & Engineering Library; Digital Library Technologies Group 5 Barb Sagraves, Head Next Generation Library Systems Convenient, Connected, User-Centric, Ubiquitous Next Generation Library Taskforce

  3. PACCAR/Hi-Z Thermoelectric Generator Project | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PACCARHi-Z Thermoelectric Generator Project PACCARHi-Z Thermoelectric Generator Project 2002 DEER Conference Presentation: Hi-Z Technology, Inc. 2002deerbergstrand.pdf More...

  4. Engaging the Next Generation of Automotive Engineers through...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle...

  5. Hypermodular Distributed Solar Power Satellites -- Exploring a Technology Option for Near-Term LEO Demonstration and GLPO Full-Scale Plants

    E-Print Network [OSTI]

    Leitgab, Martin

    2013-01-01

    This paper presents a new and innovative design for scaleable space solar power systems based on satellite self-assembly and microwave spatial power combination. Lower system cost of utility-scale space solar power is achieved by independence of yet-to-be-built in-space assembly and transportation infrastructure. Using current and expected near-term technology, this study explores a design for near-term space solar power low-Earth orbit demonstrators and for mid-term utility-scale power plants in geosynchronous Laplace plane orbits. High-level economic considerations in the context of current and expected future launch costs are given as well.

  6. Abatement of Air Pollution: Distributed Generators (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    Savings Category Fuel Cells Photovoltaics Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection For the...

  7. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Space-Heating Supply Hour Load (kW) Storage CHP NG Fig. 14Space-Heating Supply Load (kW) Storage Hour CHP NG Fig. 15Supply Load (kW) Storage CHP NG Hour Fig. 16 July Weekday

  8. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    tiles for thermal energy storage,” working paper, Colorado1991). Wallboard with latent heat storage for passive solarR. (2000). Thermal energy storage for space cooling, Pacific

  9. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    Mercantile Education Office Fig. 3 January Electricity LoadEducation Small Large Office Small Large Table 5. PG&E Electricity and

  10. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2008-01-01

    of thermal storage in building CHP systems key to theirFlows in a Commercial Building CHP Installation Figure 3. Ausing CHP in typical commercial buildings are daunting and

  11. Distributed Generation with Heat Recovery and Storage

    E-Print Network [OSTI]

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-01-01

    Carbon emissions rate from burning natural gas to meet heating and cooling loads (kg/kWh) Natural gas price

  12. Distributed Key Generation for Secure Encrypted Deduplication

    E-Print Network [OSTI]

    International Association for Cryptologic Research (IACR)

    , China duan@rd.netease.com Abstract. Large-scale storage systems often attempt to achieve two seemingly Deduplication is a very important technique that many storage systems use to reduce cost. It exploits- plication has seen wide-spread use and been built into many production cloud storage systems such as Dropbox

  13. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing Tool FitsProject Developsfor UCNIEnvironmentalAHRI Regulatory Burden

  14. Regulatory Considerations for Developing Distributed Generation Projects

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7,DOERTI |Service2010)RegionalRegulation-1Webinar May

  15. Advanced Distributed Generation LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin: Energy Resources JumpAdelan UK LtdWisconsin:Missouri:LLC Jump

  16. Distributed Generation Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queriesWind FarmAreaDiscussionSystems

  17. Distributed Generation Financial Incentives and Programs Resources |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of Energy2EM's CleanupPowerJanuary 2004

  18. Modeling distributed generation in the buildings sectors

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices1Markets See(STEO), 19992, 19999,33.0Modeling

  19. BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES Volume 15, No 5

    E-Print Network [OSTI]

    Borissova, Daniela

    121 BULGARIAN ACADEMY OF SCIENCES CYBERNETICS AND INFORMATION TECHNOLOGIES · Volume 15, No 5-centric organization. 1. Introduction Distributed simulation technologies are a paradigm to model dynamic as strategic technologies for linking simulation components of various types [1]. Distributed technologies can

  20. Distributed H{sub 2} Supply for Fuel Cell Utility Vehicles Year 6 - Activity 3.5 - Development fo a National Center for Hydrogen Technology

    SciTech Connect (OSTI)

    Almlie, Jay

    2012-04-15

    The Energy & Environmental Research Center (EERC) has developed a high-pressure hydrogen production system that reforms a liquid organic feedstock and water at operating pressures up to 800 bar (~12,000 psig). The advantages of this system include the elimination of energy-intensive hydrogen compression, a smaller process footprint, and the elimination of gaseous or liquid hydrogen transport. This system could also potentially enable distributed hydrogen production from centralized coal. Processes have been investigated to gasify coal and then convert the syngas into alcohol or alkanes. These alcohols and alkanes could then be easily transported in bulk to distributed high-pressure water-reforming (HPWR)-based systems to deliver hydrogen economically. The intent of this activity was to utilize the EERC’s existing HPWR hydrogen production process, previously designed and constructed in a prior project phase, as a basis to improve operational and production performance of an existing demonstration unit. Parameters to be pursued included higher hydrogen delivery pressure, higher hydrogen production rates, and the ability to refill within a 5-minute time frame.

  1. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    selected to achieve a cost-optimal generation mix over a 20-Conventional Generation Technology Cost and Performancethe future cost and performance of conventional generation

  2. HEMISPHERIC CENTER FOR ENVIRONMENTAL TECHNOLOGY

    SciTech Connect (OSTI)

    M.A. Ebadian

    2000-01-31

    The Online Measurement of Decontamination project team received a commitment for a demonstration in May from the Sacramento (California) Municipal Utility District (SMUD) Rancho Seco site. Since this site is a member of the DOE Commercial Utilities Consortium, the demonstration will fulfill the DOE and commercial technology demonstration requirements. Discussion on deployment of the Integrated Vertical and Overhead Decontamination (IVOD) System at Rancho Seco was conducted; date for deployment tentatively scheduled for early spring. Based upon fictional requirements from SRS for a shiny monitor in a high-level waste tank, FIU-HCET developed and delivered a draft slurry monitor design and draft test plan. Experiments measuring slurry settling time for SRS slurry simulant at 10 wt% have been completed on FIU-HCET'S flow loop with SRS dip. The completed design package of the test mockup for evaluating Non-Intrusive Location of Buried Items Technologies was sent to Fluor Fernald and the Operating Engineers National Hazmat Program for review. Comments are due at the end of January. Preliminary experiments to determine size distribution of aerosols generated during metal cutting were performed. A 1/4-inch-thick iron plate was cut using a plasma arc torch, and the size distribution of airborne particles was measured using a multistage impactor. Per request of DOE-Ohio, FIU-HCET participated in a weeklong value engineering study for the characterization, decontamination, and dismantlement of their critical path facility.

  3. Distributed Estimation Distributed Estimation

    E-Print Network [OSTI]

    Gupta, Vijay

    with a Star Topology 2 2.1 Static Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Combining Estimators . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Static Sensor Fusion for Star Topology;Distributed Estimation 3 Non-Ideal Networks with Star Topology 10 3.1 Sensor Fusion in Presence of Message

  4. Exploring Distributed Energy Alternatives to Electrical Distribution Grid Expansion in Souhern California Edison Service Territory

    SciTech Connect (OSTI)

    Stovall, Therese K [ORNL; Kingston, Tim [Gas Technology Institute

    2005-12-01

    Distributed energy (DE) technologies have received much attention for the energy savings and electric power reliability assurances that may be achieved by their widespread adoption. Fueling the attention have been the desires to globally reduce greenhouse gas emissions and concern about easing power transmission and distribution system capacity limitations and congestion. However, these benefits may come at a cost to the electric utility companies in terms of lost revenue and concerns with interconnection on the distribution system. This study assesses the costs and benefits of DE to both consumers and distribution utilities and expands upon a precursory study done with Detroit Edison (DTE)1, by evaluating the combined impact of DE, energy-efficiency, photovoltaics (a use of solar energy), and demand response that will shape the grid of the future. This study was funded by the U.S. Department of Energy (DOE), Gas Research Institute (GRI), American Electric Power (AEP), and Gas Technology Institute's (GTI) Distributed Energy Collaborative Program (DECP). It focuses on two real Southern California Edison (SCE) circuits, a 13 MW suburban circuit fictitiously named Justice on the Lincoln substation, and an 8 MW rural circuit fictitiously named Prosper on the Washington Substation. The primary objectives of the study were threefold: (1) Evaluate the potential for using advanced energy technologies, including DE, energy-efficiency (EE), demand response, electricity storage, and photovoltaics (PV), to reshape electric load curves by reducing peak demand, for real circuits. (2) Investigate the potential impact on guiding technology deployment and managing operation in a way that benefits both utilities and their customers by: (a) Improving grid load factor for utilities; (b) Reducing energy costs for customers; and (c) Optimizing electric demand growth. (3) Demonstrate benefits by reporting on a recently installed advanced energy system at a utility customer site. This study showed that advanced energy technologies are economical for many customers on the two SCE circuits analyzed, providing certain customers with considerable energy cost savings. Using reasonable assumptions about market penetration, the study showed that adding distributed generation would reduce peak demand on the two circuits enough to defer the need to upgrade circuit capacity. If the DE is optimally targeted, the deferral could economically benefit SCE, with cost savings that outweigh the lost revenues due to lower sales of electricity. To a lesser extent, economically justifiable energy-efficiency, photovoltaic technologies, and demand response could also help defer circuit capacity upgrades by reducing demand.

  5. Distributed Wind Diffusion Model Overview (Presentation)

    SciTech Connect (OSTI)

    Preus, R.; Drury, E.; Sigrin, B.; Gleason, M.

    2014-07-01

    Distributed wind market demand is driven by current and future wind price and performance, along with several non-price market factors like financing terms, retail electricity rates and rate structures, future wind incentives, and others. We developed a new distributed wind technology diffusion model for the contiguous United States that combines hourly wind speed data at 200m resolution with high resolution electricity load data for various consumer segments (e.g., residential, commercial, industrial), electricity rates and rate structures for utility service territories, incentive data, and high resolution tree cover. The model first calculates the economics of distributed wind at high spatial resolution for each market segment, and then uses a Bass diffusion framework to estimate the evolution of market demand over time. The model provides a fundamental new tool for characterizing how distributed wind market potential could be impacted by a range of future conditions, such as electricity price escalations, improvements in wind generator performance and installed cost, and new financing structures. This paper describes model methodology and presents sample results for distributed wind market potential in the contiguous U.S. through 2050.

  6. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  7. Modeling and Technologies of Ultrafast Fiber Lasers Brandon G. Bale, Oleg G. Okhitnikov, and Sergei K. Turitsyn

    E-Print Network [OSTI]

    Turitsyn, Sergei K.

    for simplicity, maintenance, and reliability, however, have not been met by conventional ultrafast technology with reliable and cost- effective components, which makes suitably designed fiber lasers real contenders many alignment issues, it also distributes heat generated by optical pumping over the length

  8. Faience Technology

    E-Print Network [OSTI]

    Nicholson, Paul

    2009-01-01

    by Joanne Hodges. Faience Technology, Nicholson, UEE 2009Egyptian materials and technology, ed. Paul T. Nicholson,Nicholson, 2009, Faience Technology. UEE. Full Citation:

  9. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01

    2003. “Distributed Energy Resources in Practice: A Case2004. “Distributed Energy Resources Customer Adoption ModelDistributed Energy Resource Technology Characterizations”

  10. DISTRIBUTED ENERGY SYSTEMS IN CALIFORNIA'S FUTURE: A PRELIMINARY REPORT, VOLUME I

    E-Print Network [OSTI]

    Authors, Various

    2010-01-01

    DOCU[viENTS SECTION DISTRIBUTED ENERGY SYSTEMS STUDY GROUPIMPLICATIONS OF UTILIZING DISTRIBUTED ENERGY TECHNOLOGIES .to implement a distributed energy future. RECENT TRENDS IN

  11. Distributed Energy Resources at Naval Base Ventura County Building 1512: A Sensitivity Analysis

    E-Print Network [OSTI]

    Bailey, Owen C.; Marnay, Chris

    2005-01-01

    February 2003. “Distributed Energy Resources in Practice: ARyan. January 2004. “Distributed Energy Resources Customer2003. “Gas-Fired Distributed Energy Resource Technology

  12. On-Site Generation Simulation with EnergyPlus for Commercial Buildings

    E-Print Network [OSTI]

    Stadler, Michael; Firestone, Ryan; Curtil, Dimitri; Marnay, Chris

    2006-01-01

    L ABORATORY On-Site Generation Simulation with EnergyPlusemployer. On-Site Generation Simulation with EnergyPlus forin modeling distributed generation (DG), including DG with

  13. identification Distributed

    E-Print Network [OSTI]

    Schenato, Luca

    Networked Control Systems Clock Sync Channel identification in WSN Distributed control of Smart. Sandro Zampieri #12;Networked Control Systems Clock Sync Channel identification in WSN Distributed Systems Clock Sync Channel identification in WSN Distributed control of Smart Grids Conclusions Issues

  14. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    truss design Larger aperture (15% ) 2x as long (100 meters) Lower tolerance pieces (lower cost) Alignment jig required for assembly Inadequate torsion stiffness Cost...

  15. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  16. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  17. Quadrennial Technology Review's Alternative Generation Workshop Slides |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct. 7, 2011 |1 DOE HydrogenDepartment ofNG-1Department

  18. Power Generation Technologies | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono

  19. OpenEI Community - Power Generation Technologies

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorjaenAdministration'sWorkshop at GRChttp

  20. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState of Pennsylvania U.S.The FirstEnergyDepartment of