Powered by Deep Web Technologies
Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

2

Decoding the `Nature Encoded' Messages for Distributed Energy Generation Control in Microgrid  

E-Print Network (OSTI)

The communication for the control of distributed energy generation (DEG) in microgrid is discussed. Due to the requirement of realtime transmission, weak or no explicit channel coding is used for the message of system state. To protect the reliability of the uncoded or weakly encoded messages, the system dynamics are considered as a `nature encoding' similar to convolution code, due to its redundancy in time. For systems with or without explicit channel coding, two decoding procedures based on Kalman filtering and Pearl's Belief Propagation, in a similar manner to Turbo processing in traditional data communication systems, are proposed. Numerical simulations have demonstrated the validity of the schemes, using a linear model of electric generator dynamic system.

Gong, Shuping; Lai, Lifeng; Qiu, Robert C

2010-01-01T23:59:59.000Z

3

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

4

Distribution Screening for Distributed Generation  

Science Conference Proceedings (OSTI)

As the deployment of renewable distributed generation increases, the need for traditional energy providers to interact with these resources increases. Detailed modeling and simulation of the distribution and distributed resources is a critical element to better analyze, understand and predict these interactions. EPRI has developed a tool for such analysis called OpenDSS. In addition, as part of the renewable integration program an applet was created for screening distributed generation (DG). This report ...

2009-12-23T23:59:59.000Z

5

Financing Distributed Generation  

DOE Green Energy (OSTI)

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

6

Financing Distributed Generation  

SciTech Connect

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

7

GASIFICATION FOR DISTRIBUTED GENERATION  

DOE Green Energy (OSTI)

A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

2000-05-01T23:59:59.000Z

8

Distributed Generation Heat Recovery  

Science Conference Proceedings (OSTI)

Economic and environmental drivers are promoting the adoption of combined heat and power (CHP) systems. Technology advances have produced new and improved distributed generation (DG) units that can be coupled with heat recovery hardware to create CHP systems. Performance characteristics vary considerably among DG options, and it is important to understand how these characteristics influence the selection of CHP systems that will meet both electric and thermal site loads.

2002-03-06T23:59:59.000Z

9

Distributed Generation Biofuel Testing  

Science Conference Proceedings (OSTI)

This Technical Update report documents testing performed to assess aspects of using biofuel as an energy source for distributed generation. Specifically, the tests involved running Caterpillar Power Module compression ignition engines on palm methyl ester (PME) biofuel and comparing the emissions to those of the same engines running on ultra-low-sulfur diesel fuel. Fuel consumption and energy efficiency were also assessed, and some relevant storage and handling properties of the PME were noted. The tests...

2011-12-06T23:59:59.000Z

10

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

L ABORATORY Distributed Generation with Heat Recovery andequal opportunity employer. Distributed Generation with Heatenergy resources (DER), distributed generation (DG), and

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

11

EIA - Distributed Generation in Buildings  

U.S. Energy Information Administration (EIA)

Modeling Distributed Generation in the Buildings Sectors . Supplement to the Annual Energy Outlook 2013 — Release date: August 29, 2013

12

Residential Power Systems for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

This report is an update to "Technology Assessment of Residential Power Systems for Distributed Generation Markets" (EPRIsolutions report 1000772). That previous report dealt with fuel cells, stirling engine generators, and reciprocating engine generators; this current report focuses on polymer electrolyte membrane fuel cells (PEMFCs) and solid oxide fuel cell (SOFC) power systems fueled with natural gas or propane and sized for residential loads.

2002-03-29T23:59:59.000Z

13

EIA - Distributed Generation in Buildings  

Gasoline and Diesel Fuel Update (EIA)

Previous reports Previous reports Distributed Generation in Buildings - AEO2005 Modeling Distributed Electricity Generation in the NEMS Buildings Models - July 2002 Modeling Distributed Generation in the Buildings Sectors Supplement to the Annual Energy Outlook 2013 - Release date: August 29, 2013 Distributed and dispersed generation technologies generate electricity near the particular load they are intended to serve, such as a residential home or commercial building. EIA defines distributed generation (DG) as being connected to the electrical grid and intended to directly offset retail sales, and dispersed generation as being off-grid and often used for remote applications where grid-connected electricity is cost-prohibitive. Dispersed generation in the buildings sector is not currently gathered by

14

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Distributed Generation with Heat Recovery and Storage ‡energy resources (DER), distributed generation (DG), andload of Figure 2. distributed generation of part or all of

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

15

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

Operation of Distributed Generation Under Stochastic PricesOPERATION OF DISTRIBUTED GENERATION UNDER STOCHASTIC PRICESwith either on-site distributed generation (DG) or purchases

Siddiqui, Afzal S.; Marnay, Chris

2005-01-01T23:59:59.000Z

16

CONSULTANT REPORT DISTRIBUTED GENERATION  

E-Print Network (OSTI)

, renewables, interconnection, integration, electricity, distribution, transmission, costs. Please use Coldwell Project Manager Ivin Rhyne Office Manager Electricity Analysis Office Sylvia Bender Deputy Director Electricity Supply Analysis Division Robert P. Oglesby Executive Director DISCLAIMER

17

DISTRIBUTED GENERATION AND COGENERATION POLICY  

E-Print Network (OSTI)

CALIFORNIA ENERGY COMMISSION DISTRIBUTED GENERATION AND COGENERATION POLICY ROADMAP FOR CALIFORNIA;ABSTRACT This report defines a year 2020 policy vision for distributed generation and cogeneration and cogeneration. Additionally, this report describes long-term strategies, pathways, and milestones to take

18

Distributed Generation Status Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 DOE Peer Review Presentation 0 DOE Peer Review Presentation © Chevron 2010 CERTS Microgrid Demonstration with Large scale Energy Storage & Renewable Generation November 5, 2010 Presented By: Craig Gee, Project Manager (for Mr. Eduardo Alegria - Principal Investigator) Energy Solutions November 2010 DOE Peer Review Presentation © Chevron 2010 Agenda * Introduction - Who we are * Project Team & Site * Project Purpose & Objectives * Project Impacts * System Elements * Project Status * Research Elements * Recent Developments in California * Questions & Comments November 2010 DOE Peer Review Presentation © Chevron 2010 Chevron Energy Solutions Designed & Implemented over 900 Projects in the U.S.  Chevron ES, a division of Chevron USA, Inc. is committed to delivering economically & environmentally advantageous green

19

Smooth distributions are finitely generated  

E-Print Network (OSTI)

A subbundle of variable dimension inside the tangent bundle of a smooth manifold is called a smooth distribution if it is the pointwise span of a family of smooth vector fields. We prove that all such distributions are finitely generated, meaning that the family may be taken to be a finite collection. Further, we show that the space of smooth sections of such distributions need not be finitely generated as a module over the smooth functions. Our results are valid in greater generality, where the tangent bundle may be replaced by an arbitrary vector bundle.

Drager, Lance D; Park, Efton; Richardson, Ken

2010-01-01T23:59:59.000Z

20

Economic feasibility analysis of distributed electric power generation based upon the natural gas-fired fuel cell. Final report  

DOE Green Energy (OSTI)

The final report provides a summary of results of the Cost of Ownership Model and the circumstances under which a distributed fuel cell is economically viable. The analysis is based on a series of micro computer models estimate the capital and operations cost of a fuel cell central utility plant configuration. Using a survey of thermal and electrical demand profiles, the study defines a series of energy user classes. The energy user class demand requirements are entered into the central utility plant model to define the required size the fuel cell capacity and all supporting equipment. The central plant model includes provisions that enables the analyst to select optional plant features that are most appropriate to a fuel cell application, and that are cost effective. The model permits the choice of system features that would be suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. Other applications are also practical; however, such applications have a higher relative demand for thermal energy, a characteristic that is well-suited to a fuel cell application with its free source of hot water or steam. The analysis combines the capital and operation from the preceding models into a Cost of Ownership Model to compute the plant capital and operating costs as a function of capacity and principal features and compares these estimates to the estimated operating cost of the same central plant configuration without a fuel cell.

Not Available

1994-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Protection of distributed generation interfaced networks.  

E-Print Network (OSTI)

??With the rapid increase in electrical energy demand, power generation in the form of distributed generation is becoming more important. However, the connections of distributed… (more)

Dewadasa, Jalthotage Manjula Dinesh

2010-01-01T23:59:59.000Z

22

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Electricity generated by distributed energy resources (DER)Energy, Office of Distributed Energy of the US Department ofdefined names including distributed energy resources (DER),

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

23

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

24

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

LBNL-54447. Distributed Generation Dispatch Optimizationrelated work. Distributed Generation Dispatch Optimization3 2.2 Distributed Generation

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

25

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

AS, Marnay, C. Distributed generation investment by aand Upgrade in Distributed Generation under Uncertaintyand Upgrade in Distributed Generation under Uncertainty ?

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

26

Air Quality Impact of Distributed Generation of Electricity  

E-Print Network (OSTI)

quality impact of distributed generation. California Energyquality impacts of distributed generation, Proceedings ofquality impacts of distributed generation, Proceedings of

Jing, Qiguo

2011-01-01T23:59:59.000Z

27

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Benefits of Distributed Generation. Unpublished draftto Establish a Distributed Generation Certification Program.Order: Establish a Distributed Generation Certification

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

28

Power Quality Impacts of Distributed Generation  

Science Conference Proceedings (OSTI)

Distribution systems are designed for one-way power flow and can accommodate only a limited amount of distributed generation (DG) without alterations. This project focused on the economics associated with upgrading and designing distribution systems to support widespread integration of distributed resources, especially distributed generation. Costs were determined in the area of protection requirements and voltage regulation requirements, two of the main areas where changes are required to accommodate DG.

2005-03-22T23:59:59.000Z

29

Hybrid distributed generation for power distribution systems planning  

Science Conference Proceedings (OSTI)

This paper presents planning models for hybrid distributed generation systems, as well as the results corresponding to a distribution systems planning problem obtained using a new computational tool based on a Geographic Information System, GIS. This ... Keywords: distributed generation (DG), geographical information systems (GIS), hybrid power systems, optimal planning

I. J. Ramírez-Rosado; P. J. Zorzano-Santamaría; L. A. Fernández-Jiménez; E. García-Garrido; P. Lara-Santillán; E. Zorzano-Alba; M. Mendoza-Villena

2006-02-01T23:59:59.000Z

30

Distributed Generation Investment by a Microgrid Under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation Investment by a Microgrid Under Uncertainty Distributed Generation Investment by a Microgrid Under Uncertainty Speaker(s): Afzal Siddiqui Date: July 24, 2006 - 12:00pm Location: 90-3122 This study examines a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastc, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generation cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an

31

Microgrids: distributed on-site generation  

E-Print Network (OSTI)

Microgrids: distributed on-site generation Suleiman Abu-Sharkh, Rachel Li, Tom Markvart, Neil Ross for Climate Change Research Technical Report 22 #12;1 Microgrids: distributed on-site generation Tyndall production by small scale generators in close proximity to the energy users, integrated into microgrids

Watson, Andrew

32

Generating Probability Distributions using Multivalued Stochastic Relay Circuits  

E-Print Network (OSTI)

The problem of random number generation dates back to von Neumann's work in 1951. Since then, many algorithms have been developed for generating unbiased bits from complex correlated sources as well as for generating arbitrary distributions from unbiased bits. An equally interesting, but less studied aspect is the structural component of random number generation as opposed to the algorithmic aspect. That is, given a network structure imposed by nature or physical devices, how can we build networks that generate arbitrary probability distributions in an optimal way? In this paper, we study the generation of arbitrary probability distributions in multivalued relay circuits, a generalization in which relays can take on any of N states and the logical 'and' and 'or' are replaced with 'min' and 'max' respectively. Previous work was done on two-state relays. We generalize these results, describing a duality property and networks that generate arbitrary rational probability distributions. We prove that these network...

Lee, David

2011-01-01T23:59:59.000Z

33

Natural Gas Transmission and Distribution Module  

Reports and Publications (EIA)

Documents the archived version of the Natural Gas Transmission and Distribution Model that was used to produce the natural gas forecasts used in support of the Annual Energy Outlook 2013.

Joe Benneche

2013-07-18T23:59:59.000Z

34

Islanded operation of a distribution feeder with distributed generation.  

E-Print Network (OSTI)

??A distribution system that is equipped with distributed generators, such as roof-mounted photovoltaic systems, can operate as a microgrid (i.e., separated from the grid) under… (more)

Venu, Chandu

2009-01-01T23:59:59.000Z

35

Distributed Generation and Resilience in Power Grids  

E-Print Network (OSTI)

We study the effects of the allocation of distributed generation on the resilience of power grids. We find that an unconstrained allocation and growth of the distributed generation can drive a power grid beyond its design parameters. In order to overcome such a problem, we propose a topological algorithm derived from the field of Complex Networks to allocate distributed generation sources in an existing power grid.

Scala, Antonio; Chessa, Alessandro; Caldarelli, Guido; Damiano, Alfonso

2012-01-01T23:59:59.000Z

36

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-08-07T23:59:59.000Z

37

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-12-17T23:59:59.000Z

38

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-06-22T23:59:59.000Z

39

Strategic Intelligence Update: Distributed Generation & Energy Storage  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2009-10-08T23:59:59.000Z

40

Solid oxide fuel cell distributed power generation  

SciTech Connect

Fuel cells are electrochemical devices that oxidize fuel without combustion to convert directly the fuel`s chemical energy into electricity. The solid oxide fuel cell (SOFC) is distinguished from other fuel cell types by its all solid state structure and its high operating temperature (1,000 C). The Westinghouse tubular SOFC stack is process air cooled and has integrated thermally and hydraulically within its structure a natural gas reformer that requires no fuel combustion and no externally supplied water. In addition, since the SOFC stack delivers high temperature exhaust gas and can be operated at elevated pressure, it can supplant the combustor in a gas turbine generator set yielding a dry (no steam) combined cycle power system of unprecedented electrical generation efficiency (greater 70% ac/LHV). Most remarkably, analysis indicates that efficiencies of 60 percent can be achieved at power plant capacities as low as 250 kWe, and that the 70 percent efficiency level should be achievable at the two MW capacity level. This paper describes the individual SOFC, the stack, and the power generation system and its suitability for distributed generation.

Veyo, S.E.

1997-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Generating multivariate extreme value distributions  

E-Print Network (OSTI)

We define in a probabilistic way a parametric family of multivariate extreme value distributions. We derive its copula, which is a mixture of several complete dependent copulas and total independent copulas, and the bivariate tail dependence and extremal coefficients. Based on the obtained results for these coefficients, we propose a method to built multivariate extreme value distributions with prescribed tail/extremal coefficients. We illustrate the results with examples of simulation of these distributions.

Ferreira, Helena

2012-01-01T23:59:59.000Z

42

Regulatory Considerations for Developing Distributed Generation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar...

43

Invariant generators for generalized distributions and applications  

E-Print Network (OSTI)

The existence of invariant generators for locally finitely generated distributions satisfying a mild compatibility condition with the symmetry algebra is proved. This is applied to regular standard Dirac reduction.

Jotz, Madeleine

2009-01-01T23:59:59.000Z

44

A California Distributed Generation Primer: Interconnection and...  

NLE Websites -- All DOE Office Websites (Extended Search)

California Distributed Generation Primer: Interconnection and Beyond Synopsis Speaker(s): Scott Tomashefsky Date: January 10, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint...

45

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:en.openei.orgw...

46

Integration of Demand Side Management, Distributed Generation...  

Open Energy Info (EERE)

Page Edit with form History Facebook icon Twitter icon Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages:...

47

Distributed Wind Power Generation - National Renewable Energy ...  

Technology breakthrough in roof-top distributed wind power generation Multi-billion $ market opportunity in next 10 years – recent venture capital investments

48

Impacts of distributed generation on Smart Grid.  

E-Print Network (OSTI)

??With the concept of Smart Grid, there are high possibilities that the interconnection of distributed generation issues can be solved and minimised. This thesis discusses… (more)

Hidayatullah, Nur Asyik

2011-01-01T23:59:59.000Z

49

Biogas-fueled Distributed Generation  

Science Conference Proceedings (OSTI)

This report is a case study of the use of digester gas produced at two wastewater treatment plants in Omaha, NE to fuel electric power generators.

2005-09-29T23:59:59.000Z

50

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

D’haeseleer W. Distributed generation: definition, benefitsand their impact on distributed generation power projects,R, Zhou N. Distributed generation with heat recovery and

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

51

The Value of Distributed Generation under Different Tariff Structures  

E-Print Network (OSTI)

Tariff Structure on Distributed Generation Adoption in NewThe Value of Distributed Generation under Different TariffThe Value of Distributed Generation under Different Tariff

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-01-01T23:59:59.000Z

52

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

Gas Abatement with Distributed Generation in California’sGAS ABATEMENT WITH DISTRIBUTED GENERATION IN CALIFORNIA’Sthe role of distributed generation (DG) in greenhouse gas

Stadler, Michael

2010-01-01T23:59:59.000Z

53

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

C. Marnay. 2003. Distributed Generation Capabilities of theImpact on the Deployment of Distributed Generation. PolicyIntegration of Distributed Generation and the Development of

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

54

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Capabilities ofemployer. LBNL-52432 Distributed Generation Capabilities of1.1 Definition of Distributed Generation and Interpretation

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

55

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

Gas Abatement with Distributed Generation in California'sGas Abatement with Distributed Generation in California scommercial buildings, distributed generation, microgrids

Marnay, Chris

2010-01-01T23:59:59.000Z

56

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

N ATIONAL L ABORATORY Distributed Generation Investment by aemployer. ORMMES’06 Distributed Generation Investment by ato invest in a distributed generation (DG) unit that

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

57

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed generating resources. Also provided is an  

E-Print Network (OSTI)

Cogeneration and Distributed Generation1 This appendix describes cogeneration and distributed of cogeneration and distributed generation in the Northwest. Cogeneration and distributed generation infrastructure requirements. In contrast, cogeneration and distributed generation are sited with respect to some

58

Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui  

E-Print Network (OSTI)

1 Distributed Generation Investment by a Microgrid under Uncertainty++++ Afzal Siddiqui University, CA 94720-8163, USA, c_marnay@lbl.gov ABSTRACT. This paper examines a California-based microgrid-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity

Guillas, Serge

59

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Data Series: Total Consumption Lease and Plant Fuel Consumption Pipeline & Distribution Use Volumes Delivered to Consumers Volumes Delivered to Residential...

60

Ris Energy Report 4 Distributed generation 1 What is distributed generation?  

E-Print Network (OSTI)

Risø Energy Report 4 Distributed generation 1 5 What is distributed generation? Distributed as distributed energy resources (DERs). It appears that there is no consensus on precise defi- nitions of DG. Wind energy is presently the fastest growing and largest contributor to distributed genera- tion from

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Distribution System Design for Strategic Use of Distributed Generation  

Science Conference Proceedings (OSTI)

This project was undertaken to identify distribution system design characteristics that limit widespread distributed generation (DG) penetration in utility distribution systems and to suggest new system design paths that increase strategic use of DG by distribution system operators. This work in 2005 was the first phase (requirements definition) of a multi-year project in the EPRI Advanced Distribution Automation (ADA) program plan. The multi-year project calls for design, implementation, and testing of ...

2005-12-19T23:59:59.000Z

62

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

-site DG installed by a microgrid in the presence of stochastic electricity and fuel prices. We proceed (natural gas generating cost) exceeds the natural gas generating cost (electricity price) by a significant fraction of energy conversion from primary fuels to electricity takes place closer to loads, i

63

Natural Gas Pipeline & Distribution Use  

Gasoline and Diesel Fuel Update (EIA)

3+ or Netscape Navigator 3+ Make sure that JavaScript is enabled in your browser Natural Gas Consumption by End Use (Million Cubic Feet) Data Series: Total Consumption Lease and...

64

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-05-24T23:59:59.000Z

65

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-03-20T23:59:59.000Z

66

Strategic Intelligence Update: Energy Storage & Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2012-07-31T23:59:59.000Z

67

Report on Distributed Generation Penetration Study  

Science Conference Proceedings (OSTI)

This report documents part of a multiyear research program dedicated to the development of requirements to support the definition, design, and demonstration of a distributed generation-electric power system interconnection interface concept. The report focuses on the dynamic behavior of power systems when a significant portion of the total energy resource is distributed generation. It also focuses on the near-term reality that the majority of new DG relies on rotating synchronous generators for energy conversion.

Miller, N.; Ye, Z.

2003-08-01T23:59:59.000Z

68

Most generator retirements over the past decade were older natural ...  

U.S. Energy Information Administration (EIA)

Older, less efficient natural gas-fired generators accounted for 64% of the total generator retirements between 2000-2010. However, natural gas-fired generators also ...

69

Heat distribution by natural convection  

DOE Green Energy (OSTI)

Natural convection between spaces in a building can play a major role in energy transfer. Two situations are investigated: convection through a single doorway into a remote room, and a convective loop in a two-story house with a south sunspace where a north stairway serves as the return path. A doorway-sizing equation is given for the single-door case. Detailed data are given from the monitoring of airflow in one two-story house and summary data are given for five others. Observations on the nature of the airflow and design guidelines are presented.

Balcomb, J.D.; Yamaguchi, K.

1983-01-01T23:59:59.000Z

70

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

page intentionally left blank page intentionally left blank 129 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2011 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through the regional interstate network, for both a peak (December through March) and off peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the pattern in the previous year, coupled

71

Natural Gas Transmission and Distribution Module This  

Gasoline and Diesel Fuel Update (EIA)

This This page inTenTionally lefT blank 127 U.S. Energy Information Administration | Assumptions to the Annual Energy Outlook 2012 Natural Gas Transmission and Distribution Module The NEMS Natural Gas Transmission and Distribution Module (NGTDM) derives domestic natural gas production, wellhead and border prices, end-use prices, and flows of natural gas through a regional interstate representative pipeline network, for both a peak (December through March) and off-peak period during each projection year. These are derived by solving for the market equilibrium across the three main components of the natural gas market: the supply component, the demand component, and the transmission and distribution network that links them. Natural gas flow patterns are a function of the

72

Abatement of Air Pollution: Distributed Generators (Connecticut) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Distributed Generators (Connecticut) Distributed Generators (Connecticut) Abatement of Air Pollution: Distributed Generators (Connecticut) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Connecticut Program Type Environmental Regulations Provider Department of Energy and Environmental Protection

73

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

to a put option on natural gas generation, which increasesgeneration (DG) unit that operates on natural gas.While the long-term natural gas generation cost is

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

74

Distributed Generation Investment by a Microgrid under Uncertainty  

Science Conference Proceedings (OSTI)

This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

2008-08-11T23:59:59.000Z

75

Distributed Generation Investment by a Microgrid UnderUncertainty  

Science Conference Proceedings (OSTI)

This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

Siddiqui, Afzal; Marnay, Chris

2006-06-16T23:59:59.000Z

76

Regulatory Considerations for Developing Distributed Generation Projects  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regulatory Considerations for Developing Distributed Generation Regulatory Considerations for Developing Distributed Generation Projects Webinar Regulatory Considerations for Developing Distributed Generation Projects Webinar May 23, 2012 11:30AM to 1:00PM MDT The purpose of this webinar is to educate NRECA and APPA members, Tribes, and federal energy managers about a few of the regulatory issues that should be considered in developing business plans for distributed generation projects. This webinar is sponsored by the DOE Office of Indian Energy Policy and Programs, DOE Energy Efficiency and Renewable Energy Tribal Energy Program, Western Area Power Administration, DOE Federal Energy Management Program, DOE Office of Electricity Delivery and Energy Reliability, National Rural Electric Cooperative Association, and the American Public Power

77

Modeling distributed generation in the buildings sectors  

Gasoline and Diesel Fuel Update (EIA)

Modeling distributed generation Modeling distributed generation in the buildings sectors August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. July 2013 U.S. Energy Information Administration | Modeling distributed generation in the buildings sectors 1

78

Distributed Generation Standard Contracts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rhode Island enacted legislation (H.B. 6104) in June 2011 establishing a feed-in tariff for new distributed renewable energy generators up to three megawatts (MW) in...

79

Generation, distribution and utilization of electrical energy  

SciTech Connect

An up-to-date account of electric power generation and distribution (including coverage of the use of computers in various components of the power system). Describes conventional and unconventional methods of electricity generation and its economics, distribution methods, substation location, electric drives, high frequency power for induction and heating, illumination engineering, and electric traction. Each chapter contains illustrative worked problems, exercises (some with answers), and a bibliography.

Wadhwa, C.L.

1989-01-01T23:59:59.000Z

80

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Existing distributed generation sources are more difficultfrom all electricity generation sources using a standarda co-located distributed generation source. It reads in text

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Economic feasibility analysis of distributed electric power generation based upon the natural gas fired fuel cell. Draft and final progress report for the period May 1, 1993--July 31, 1993  

SciTech Connect

This report is an account of the work performed from May 1, 1993 to July 30,1993 on the economic feasibility generating electrical power by natural gas-fired fuel cells. The study is comprised of a survey of energy users, the development of numeric models of an energy distribution system and a central plant utilities system that includes a fuel cell. A model of the capital cost of the hardware elements is combined with a series of ownership scenarios and an operations model that provide the necessary input for a model of the cost of ownership of a fuel cell-based power generation system. The primary model development tasks are complete. The remaining study emphasis is to perform an economic analysis of varied ownership scenarios using the model. This report outlines the progress to date.

1993-09-01T23:59:59.000Z

82

Power Quality Impacts of Distributed Generation: Guidelines  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. This report addresses the issue of integrating DG into the electric power system in a way that assures power quality in the grid and at end-use customer facilities.

2000-12-06T23:59:59.000Z

83

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

84

Consumption of Natural Gas for Electricity Generation by State...  

Open Energy Info (EERE)

Natural Gas for Electricity Generation by State by Sector, January 2011 and 2010 This dataset contains state by state comparisons of natural gas for electricity generation in the...

85

A Symplectic Method to Generate Multivariate Normal Distributions  

E-Print Network (OSTI)

The AMAS group at the Paul Scherrer Institute developed an object oriented library for high performance simulation of high intensity ion beam transport with space charge. Such particle-in-cell (PIC) simulations require a method to generate multivariate particle distributions as starting conditions. In a preceeding publications it has been shown that the generators of symplectic transformations in two dimensions are a subset of the real Dirac matrices (RDMs) and that few symplectic transformations are required to transform a quadratic Hamiltonian into diagonal form. Here we argue that the use of RDMs is well suited for the generation of multivariate normal distributions with arbitrary covariances. A direct and simple argument supporting this claim is that this is the "natural" way how such distributions are formed. The transport of charged particle beams may serve as an example: An uncorrelated gaussian distribution of particles starting at some initial position of the accelerator is subject to linear deformat...

Baumgarten, Christian

2012-01-01T23:59:59.000Z

86

Alternative Fuels Data Center: Natural Gas Production and Distribution  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Production Production and Distribution to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Production and Distribution on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Production and Distribution on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Production and Distribution on Google Bookmark Alternative Fuels Data Center: Natural Gas Production and Distribution on Delicious Rank Alternative Fuels Data Center: Natural Gas Production and Distribution on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Production and Distribution on AddThis.com... More in this section... Natural Gas Basics Production & Distribution Related Links Benefits & Considerations Stations Vehicles Laws & Incentives Natural Gas Production and Distribution

87

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

Price to Marginal Cost of Natural Gas Generation, p FigurePrice to Marginal Cost of Natural Gas Generation, p FigureP e Marginal Cost of Natural Gas Generation (US$/kWh e ), C

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

88

FCT Technology Validation: Stationary/Distributed Generation Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Stationary/Distributed Stationary/Distributed Generation Projects to someone by E-mail Share FCT Technology Validation: Stationary/Distributed Generation Projects on Facebook Tweet about FCT Technology Validation: Stationary/Distributed Generation Projects on Twitter Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Google Bookmark FCT Technology Validation: Stationary/Distributed Generation Projects on Delicious Rank FCT Technology Validation: Stationary/Distributed Generation Projects on Digg Find More places to share FCT Technology Validation: Stationary/Distributed Generation Projects on AddThis.com... Home Transportation Projects Stationary/Distributed Generation Projects DOE Projects Non-DOE Projects Integrated Projects Quick Links Hydrogen Production

89

An economic feasibility analysis of distributed electric power generation based upon the Natural Gas-Fired Fuel Cell: a model of the operations cost.  

DOE Green Energy (OSTI)

This model description establishes the revenues, expenses incentives and avoided costs of Operation of a Natural Gas-Fired Fuel Cell-Based. Fuel is the major element of the cost of operation of a natural gas-fired fuel cell. Forecasts of the change in the price of this commodity a re an important consideration in the ownership of an energy conversion system. Differences between forecasts, the interests of the forecaster or geographical areas can all have significant effects on imputed fuel costs. There is less effect on judgments made on the feasibility of an energy conversion system since changes in fuel price can affect the cost of operation of the alternatives to the fuel cell in a similar fashion. The forecasts used in this model are only intended to provide the potential owner or operator with the means to examine alternate future scenarios. The operations model computes operating costs of a system suitable for a large condominium complex or a residential institution such as a hotel, boarding school or prison. The user may also select large office buildings that are characterized by 12 to 16 hours per day of operation or industrial users with a steady demand for thermal and electrical energy around the clock.

Not Available

1993-06-30T23:59:59.000Z

90

LO Generation and Distribution for 60GHz Phased Array Transceivers  

E-Print Network (OSTI)

LO Generation and Distribution for 60GHz Phased ArrayFall 2011 LO Generation and Distribution for 60GHz PhasedAbstract LO Generation and Distribution for 60GHz Phased

Marcu, Cristian

2011-01-01T23:59:59.000Z

91

Nevada Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Nevada Natural Gas Pipeline and Distribution...

92

Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Idaho Natural Gas Pipeline and Distribution Use (Million Cubic...

93

Kansas Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Kansas Natural Gas Pipeline and Distribution...

94

California Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use (Million Cubic Feet) California Natural Gas Pipeline and Distribution Use...

95

Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nevada Natural Gas Pipeline and Distribution Use (Million Cubic...

96

Delaware Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million...

97

Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use (Million Cubic...

98

Minnesota Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Minnesota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use (Million...

99

Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use (Million Cubic...

100

Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kansas Natural Gas Pipeline and Distribution Use (Million Cubic...

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Utah Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Utah Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Utah Natural Gas Pipeline and Distribution Use (Million Cubic...

102

Washington Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Washington Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Washington Natural Gas Pipeline and Distribution Use...

103

Alabama Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Alabama Natural Gas Pipeline and Distribution Use (Million...

104

Massachusetts Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Massachusetts Natural Gas Pipeline and Distribution Use...

105

Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Kentucky Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use (Million...

106

Indiana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Indiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use (Million...

107

Virginia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use (Million...

108

Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Ohio Natural Gas Pipeline and Distribution Use (Million Cubic...

109

Texas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Texas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Texas Natural Gas Pipeline and Distribution Use (Million Cubic...

110

Louisiana Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Louisiana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use (Million...

111

Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Hawaii Natural Gas Pipeline and Distribution Use (Million Cubic...

112

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million...

113

Florida Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Florida Natural Gas Pipeline and Distribution Use (Million...

114

Vermont Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Vermont Natural Gas Pipeline and Distribution Use (Million...

115

Arizona Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Arizona Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use (Million...

116

Montana Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Montana Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Montana Natural Gas Pipeline and Distribution Use (Million...

117

Wisconsin Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wisconsin Natural Gas Pipeline and Distribution Use (Million...

118

Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Wyoming Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use (Million...

119

Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Nebraska Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use (Million...

120

Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Arkansas Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use (Million...

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pennsylvania Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Pennsylvania Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use...

122

Tennessee Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Tennessee Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use (Million...

123

Maine Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Maine Natural Gas Pipeline and Distribution...

124

Mississippi Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Mississippi Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use...

125

Connecticut Natural Gas Pipeline and Distribution Use (Million...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Connecticut Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use...

126

Maine Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Maine Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maine Natural Gas Pipeline and Distribution Use (Million Cubic...

127

Maryland Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Maryland Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use (Million...

128

Michigan Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Michigan Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use (Million...

129

Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Oklahoma Natural Gas Pipeline and Distribution Use (Million...

130

Colorado Natural Gas Pipeline and Distribution Use (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Colorado Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use (Million...

131

South Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) South Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) South Dakota Natural Gas Pipeline and Distribution Use...

132

Generating distributed entanglement from electron currents  

E-Print Network (OSTI)

Several recent experiments have demonstrated the viability of a passive device that can generate large spin-entangled currents in two separate leads. However, manipulation and measurement of flying qubits in a solid state system has never been achieved. In order to access such an entangled current resource, we therefore show how to use it to generate distributed, static entanglement. Our device is completely passive, and relies only on a weak interaction between static and flying spins. We show that the entanglement generated is robust to decoherence.

Ping, Yuting; Jefferson, John H; Lovett, Brendon W

2010-01-01T23:59:59.000Z

133

A Bibliography of Research in Natural Language Generation  

E-Print Network (OSTI)

This document contains a reasonably comprehensive bibliography of natural language generation. Corrections and additions are welcomed.

Robert Dale; G. Sabah; Advances Natural; Language Generation

1993-01-01T23:59:59.000Z

134

Distributed large-scale natural graph factorization  

Science Conference Proceedings (OSTI)

Natural graphs, such as social networks, email graphs, or instant messaging patterns, have become pervasive through the internet. These graphs are massive, often containing hundreds of millions of nodes and billions of edges. While some theoretical models ... Keywords: asynchronous algorithms, distributed optimization, graph algorithms, graph factorization, large-scale machine learning, matrix factorization

Amr Ahmed, Nino Shervashidze, Shravan Narayanamurthy, Vanja Josifovski, Alexander J. Smola

2013-05-01T23:59:59.000Z

135

The Potential Benefits of Distributed Generation and the Rate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related...

136

Property:Distributed Generation Function | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Function Jump to: navigation, search Property Name Distributed Generation Function Property Type Page Description A description of the function(s) for which...

137

City of San Marcos - Distributed Generation Rebate Program (Texas...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first-come...

138

Power Quality Impacts of Distributed Generation: Survey of Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

With the advent of deregulation, distributed generation (DG) will play an increasing role in electric distribution systems. Various new types of DG technologies, such as microturbines and fuel cells, now are being developed in addition to the more traditional solar and wind power. A common belief among developers is that DG will improve the local power quality. This potential for better quality is cited as one of the attributes that add value to the installation of distributed generators. In some cases, ...

2000-11-08T23:59:59.000Z

139

Distributed Generation Study/SUNY Buffalo | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study/SUNY Buffalo Distributed Generation Study/SUNY Buffalo < Distributed Generation Study Jump to: navigation, search Study Location Buffalo, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 600000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/12/11 Monitoring Termination Date 2004/08/11

140

Distributed Generation: Which technologies? How fast will they emerge?  

NLE Websites -- All DOE Office Websites (Extended Search)

Distributed Generation: Which technologies? How fast will they emerge? Distributed Generation: Which technologies? How fast will they emerge? Speaker(s): Tony DeVuono Date: March 16, 2000 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gas/electricity rate changes, new technologies, and several other key drivers are stimulating distributed generation globally. The technologies that have pushed ahead of the pack are micro turbines and fuel cells. Since Modine is a world leader in the manufacturing of heat transfer equipment, we are eager to play in this new, emerging market. Are the market drivers real? Will these technologies survive or even thrive? What are the pitfalls? If you had the responsibility in your company to spend millions and direct dozens of people down the DG path,

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Cascade Failures from Distributed Generation in Power Grids  

E-Print Network (OSTI)

Power grids are nowadays experiencing a transformation due to the introduction of Distributed Generation based on Renewable Sources. At difference with classical Distributed Generation, where local power sources mitigate anomalous user consumption peaks, Renewable Sources introduce in the grid intrinsically erratic power inputs. By introducing a simple schematic (but realistic) model for power grids with stochastic distributed generation, we study the effects of erratic sources on the robustness of several IEEE power grid test networks with up to 2000 buses. We find that increasing the penetration of erratic sources causes the grid to fail with a sharp transition. We compare such results with the case of failures caused by the natural increasing power demand.

Scala, Antonio; Scoglio, Caterina

2012-01-01T23:59:59.000Z

142

Avoiding Distribution System Upgrade Costs Using Distributed Generation  

Science Conference Proceedings (OSTI)

PNNL, in cooperation with three utilities, developed a database and methodology to analyze and characterize the avoided costs of Distributed Generation (DG) deployment as an alternative to traditional distribution system investment. After applying a number of screening criteria to the initial set of 307 cases, eighteen were selected for detailed analysis. Alternative DG investment scenarios were developed for these cases to permit capital, operation, maintenance, and fuel costs to be identified and incorporated into the analysis. The “customer-owned” backup power generator option was also investigated. The results of the analysis of the 18 cases show that none yielded cost savings under the alternative DG scenarios. However, the DG alternative systems were configured using very restrictive assumptions concerning reliability, peak rating, engine types and acceptable fuel. In particular it was assumed that the DG alternative in each case must meet the reliability required of conventional distribution systems (99.91% reliability). The analysis was further constrained by a requirement that each substation meet the demands placed upon it by a one in three weather occurrence. To determine if, by relaxing these requirements, the DG alternative might be more viable, one project was re-examined. The 99.91% reliability factor was still assumed for normal operating conditions but redundancy required to maintain reliability was relaxed for the relatively few hours every three years where extreme weather caused load to exceed present substation capacity. This resulted in the deferment of capital investment until later years and reduced the number of engines required for the project. The cost of both the conventional and DG alternative also dropped because the centralized power generation, variable O&M, and DG fuels costs were calculated based on present load requirements in combination with long-term forecasts of load growth, as opposed to load requirements plus a buffer based on predictions of extraordinary weather conditions. Application of the relaxed set of assumptions reduced the total cost of the DG alternative by roughly 57 percent from $7.0 million to $3.0 million. The reduction, however, did not change the overall result of the analysis, as the cost of the conventional distribution system upgrade alternative remained lower at $1.7 million. This paper also explores the feasibility of using a system of backup generators to defer investment in distribution system infrastructure. Rather than expanding substation capacity at substations experiencing slow load growth rates, PNNL considered a scenario where diesel generators were installed on location at customers participating in a program designed to offer additional power security and reliability to the customer and connection to the grid. The backup generators, in turn, could be used to meet peak demand for a limited number of hours each year, thus deferring distribution system investment. Data from an existing program at one of the three participating utilities was used to quantify the costs associated with the backup generator scenario. The results of the “customer owned” backup power generator analysis showed that in all cases the nominal cost of the DG scenario is more than the nominal cost of the base-case conventional distribution system upgrade scenario. However, in two of the cases the total present value costs of the alternative backup generator scenarios were between 15 and 22% less than those for the conventional scenarios. Overall, the results of the study offer considerable encouragement that the use of DG systems can defer conventional distribution system upgrades under the right conditions and when the DG configurations are intelligently designed. Using existing customer-owned DG to defer distribution system upgrades appears to be an immediate commercially-viable opportunity.

Schienbein, Lawrence A.; Balducci, Patrick J.; Nguyen, Tony B.; Brown, Daryl R.; DeSteese, John G.; Speer, Gregory A.

2004-01-20T23:59:59.000Z

143

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network (OSTI)

Reliability assessment is of primary importance in designing and planning distribution systems that operate in an economic manner with minimal interruption of customer loads. With the advances in renewable energy sources, Distributed Generation (DG), is forecasted to increase in distribution networks. The study of reliability evaluation of such networks is a relatively new area. This research presents a new methodology that can be used to analyze the reliability of such distribution systems and can be applied in preliminary planning studies for such systems. The method uses a sequential Monte Carlo simulation of the distribution systemÂ?s stochastic model to generate the operating behavior and combines that with a path augmenting Max flow algorithm to evaluate the load status for each state change of operation in the system. Overall system and load point reliability indices such as hourly loss of load, frequency of loss of load and expected energy unserved can be computed using this technique. On addition of DG in standby mode of operation at specific locations in the network, the reliability indices can be compared for different scenarios and strategies for placement of DG and their capacities can be determined using this methodology.

Duttagupta, Suchismita Sujaya

2003-05-01T23:59:59.000Z

144

Integrated Distributed Generation and Energy Storage Concepts  

Science Conference Proceedings (OSTI)

Distributed generation (DG) can provide users with versatile and cost effective solutions for many of their energy requirements. However, as these devices have begun to proliferate, there have been a number of load and power system compatibility concerns that have been identified. To better understand and address DG product improvement opportunities, this report details the capabilities and limitations of existing DG applications from the perspective of critical load starting and power quality support. I...

2003-01-20T23:59:59.000Z

145

A “natural” lexicalization model for language generation  

E-Print Network (OSTI)

We propose a general lexicalization model which accounts for how lexical units are selected and introduced in linguistic utterances during language generation. This model aims at “naturalness” by being based on actual lexical knowledge used in speech; consequently, it should be compatible with standard patterns of behavior shown by humans when they speak (flexibility in computing both content and form of linguistic utterances, prototypical types of mistakes and backtracking, etc.). The main advantage of our model, once implemented in automatic language generation, is that it takes into account fundamental differences that exist between lexical units, with regard to why and how they are used in texts. This is achieved by means of a stratificational approach to lexicalization, where each type of lexical unit is introduced at a proper level of representation, according to the role it plays in the enunciation. Section 1 offers a general characterization of the approach and makes explicit its main assumptions. Sections 2 to 4 successively examine the three levels of transition implied by the stratificational structuring of the model. Section 5 concludes with an examination of its relevance to the design of text generation systems. Keywords: language/text generation, lexicalization, lexical choice, Meaning-Text theory.

A. Polguère

2000-01-01T23:59:59.000Z

146

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

147

Pennsylvania's use of natural gas for power generation has grown ...  

U.S. Energy Information Administration (EIA)

Changes in relative fuel prices. Prices of coal and natural gas are key input costs at electric power ... Pennsylvania coal and natural gas generation additions were ...

148

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Historically, the average fuel cost of operating a combined-cycle natural gas generator exceeded that for a coal-fired generator. Until 2010, ...

149

Electricity generation from coal and natural gas both increased ...  

U.S. Energy Information Administration (EIA)

Coal generation shares declined in some regions ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

150

Two-stage approach for the assessment of distributed generation capacity mixture in active distribution networks  

Science Conference Proceedings (OSTI)

Distribution networks are limited with spare capacities to integrate increased volumes of distributed generation (DG). Network constraints and congestion

D. Jayaweera; S. Islam; S. Neduvelil

2013-01-01T23:59:59.000Z

151

Proceedings of the Fifth International Natural Language Generation Conference  

Science Conference Proceedings (OSTI)

We are pleased to introduce the technical program of the Fifth International Natural Language Generation Conference (INLG 2008), the Biennial Meeting of SIGGEN, the ACL Special Interest Group in Natural Language Generation. INLG is the leading international ...

Michael White; Crystal Nakatsu; David McDonald

2008-06-01T23:59:59.000Z

152

Proceedings of the Fourth International Natural Language Generation Conference  

Science Conference Proceedings (OSTI)

We are pleased to introduce the technical programme of the Fourth International Natural Language Generation Conference (INLG), the Biennial Meeting of SIGGEN, the ACL Special Interest Group in Natural Language Generation. INLG is the leading international ...

Nathalie Colineau; Cécile Paris; Stephen Wan; Robert Dale

2006-07-01T23:59:59.000Z

153

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

154

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

155

Atom-photon entanglement generation and distribution  

E-Print Network (OSTI)

We extend an earlier model by Law {\\it et al.} \\cite{law} for a cavity QED based single-photon-gun to atom-photon entanglement generation and distribution. We illuminate the importance of a small critical atom number on the fidelity of the proposed operation in the strong coupling limit. Our result points to a promisingly high purity and efficiency using currently available cavity QED parameters, and sheds new light on constructing quantum computing and communication devices with trapped atoms and high Q optical cavities.

B. Sun; M. S. Chapman; L. You

2003-08-31T23:59:59.000Z

156

Distributed Generation: Challenges and Opportunities, 7. edition  

Science Conference Proceedings (OSTI)

The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling Engines, Fuel Cells, Photovoltaics, Concentrating Solar, Wind, and Microgrids. Topics covered include: the key technologies being used or planned for DG; the uses of DG from utility, energy service provider, and customer viewpoints; the economics of DG; the benefits of DG from multiple perspectives; the barriers that exist to implementing DG; the government programs supporting the DG industry; and, an analysis of DG interconnection and net metering rules.

NONE

2007-10-15T23:59:59.000Z

157

Delaware Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and...

158

California Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) California Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) California Natural Gas Pipeline and...

159

Alabama Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Alabama Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Alabama Natural Gas Pipeline and...

160

Florida Natural Gas Pipeline and Distribution Use Price (Dollars...  

Gasoline and Diesel Fuel Update (EIA)

View History: Annual Download Data (XLS File) Florida Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Florida Natural Gas Pipeline and...

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Oklahoma Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Oklahoma Natural Gas Pipeline and...

162

Massachusetts Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Massachusetts Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Massachusetts Natural Gas Pipeline...

163

Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Annual Download Data (XLS File) Wisconsin Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Wisconsin Natural Gas Pipeline and...

164

Vermont Natural Gas Pipeline and Distribution Use Price (Dollars...  

Annual Energy Outlook 2012 (EIA)

View History: Annual Download Data (XLS File) Vermont Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Vermont Natural Gas Pipeline and...

165

Protection system design for power distribution systems in the presence of distributed generation.  

E-Print Network (OSTI)

??The increasing presence of distributed generation and the steady modernization of power distribution system equipment have presented new opportunities in power distribution system studies. This… (more)

Mao, Yiming

2005-01-01T23:59:59.000Z

166

Efficient hardware generation of random variates with arbitrary distributions  

E-Print Network (OSTI)

This paper presents a technique for efficiently generating random numbers from a given probability distribution. This is achieved by using a generic hardware architecture, which transforms uniform random numbers according to a distribution mapping stored in RAM, and a software approximation generator that creates distribution mappings for any given target distribution. This technique has many features not found in current non-uniform random number generators, such as the ability to adjust the target distribution while the generator is running, per-cycle switching between distributions, and the ability to generate distributions with discontinuities in the Probability Density Function. 1.

David B. Thomas; Wayne Luk

2006-01-01T23:59:59.000Z

167

Distributed Generation with Heat Recovery and Storage  

DOE Green Energy (OSTI)

Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-07-29T23:59:59.000Z

168

Distributed Generation Study/Sea Rise 2 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

169

Distributed Generation Study/Sea Rise 1 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

170

Distributed Generation Study/Harbec Plastics | Open Energy Information  

Open Energy Info (EERE)

< Distributed Generation Study < Distributed Generation Study Jump to: navigation, search Study Location Ontario, New York Site Description Industrial-Plastics Processing Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 25 Stand-alone Capability None Power Rating 750 kW0.75 MW 750,000 W 750,000,000 mW 7.5e-4 GW 7.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/10/06 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

171

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

electricity and natural gas usage. Cooling electricity loadspurchases of natural gas for direct end usage. Hence, unlikeof natural gas purchased for direct end usage. As a result,

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

172

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

electricity and natural gas usage. Cooling electricity loadspurchases of natural gas for direct end usage. Hence, unlikeof natural gas purchased for direct end usage. As a result,

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

173

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

fired natural gas absorption chiller (kW) Turnkey cost offired natural gas absorption chiller (US$) Annualized costfired natural gas absorption chiller (US$), where DCCap

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

174

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: therecovery and storage) utility electricity and natural gasbut no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

175

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

of New York State electricity and natural gas rates. DER_CAMElectricity Tariff Structure on Distributed Generation Adoption in New York State 4.4.1.2 RateElectricity Tariff Structure on Distributed Generation Adoption in New York State Standby rate

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

176

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of customer adoption of distributed energy resources, LBNLR. M. (2005). Distributed energy resources customer adoptionT. (2003). Gas-fired distributed energy resource technology

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

177

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

178

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

179

City of San Marcos- Distributed Generation Rebate Program (Texas)  

Energy.gov (U.S. Department of Energy (DOE))

The City of San Marcos offers a Distributed Generation Rebate Program for the installation of grid-tied renewable energy systems. The Distributed Generation Rebate Program is offered on a first...

180

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

On-site thermal power generation is typically less efficienthighly centralised power generation and delivery systemProduction from US Power Generation Note this is only the

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

selection of on-site power generation with combined heat andsingle-cycle thermal power generation is typically lesshighly centralized power generation and delivery system

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

182

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

183

Natural Gas Transmission and Distribution Module  

Gasoline and Diesel Fuel Update (EIA)

5, DOE/EIA-M062(2005) (Washington, DC, 2005). 5, DOE/EIA-M062(2005) (Washington, DC, 2005). Energy Information Administration/Assumptions to the Annual Energy Outlook 2006 101 Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Primary Flows Secondary Flows Pipeline Border Crossing Specific LNG Terminals Generic LNG Terminals Alaska Alaska MacKenzie W. Canada E. Canada Canada Offshore & LNG Pacific (9) Mountain (8) CA (12) AZ/NM (11) W. South Central (7) E. South Central (6) W. North Central (4) E. North Central (3) Mid Atlantic (2) New Engl. (1) S. Atlantic (5) FL (10) Bahamas Mexico Figure 8. Natural Gas Transmission and Distribution Model Regions Source: Energy Information Administration, Office of Integrated Analysis and Forecasting Report #:DOE/EIA-0554(2006) Release date: March 2006 Next release date: March 2007

184

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

LBNL-60592 Distributed Generation Investment by a Microgrid Under Uncertainty Afzal Siddiqui'06 1 Distributed Generation Investment by a Microgrid Under Uncertainty Afzal Siddiqui University a California-based microgrid's decision to invest in a distributed generation (DG) unit that operates

185

An enhanced load transfer scheme for power distribution systems connected with distributed generation sources  

Science Conference Proceedings (OSTI)

This paper presents an enhanced load transfer scheme for power distribution systems connected with distributed generation sources. Load transfer is an important approach to improve the reliability of power distribution systems. The proposed load transfer ... Keywords: distributed generation source, distribution feeder, distribution system, interconnection, load transfer

Wen-Chih Yang; Wei-Tzer Huang

2011-04-01T23:59:59.000Z

186

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

187

Distributed Generation with Heat Recovery and Storage  

SciTech Connect

Electricity produced by distributed energy resources (DER)located close to end-use loads has the potential to meet consumerrequirements more efficiently than the existing centralized grid.Installation of DER allows consumers to circumvent the costs associatedwith transmission congestion and other non-energy costs of electricitydelivery and potentially to take advantage of market opportunities topurchase energy when attractive. On-site, single-cycle thermal powergeneration is typically less efficient than central station generation,but by avoiding non-fuel costs of grid power and by utilizing combinedheat and power (CHP) applications, i.e., recovering heat from small-scaleon-site thermal generation to displace fuel purchases, DER can becomeattractive to a strictly cost-minimizing consumer. In previous efforts,the decisions facing typical commercial consumers have been addressedusing a mixed-integer linear program, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, andinformation (both technical and financial) on candidate DER technologies,DER-CAM minimizes the overall energy cost for a test year by selectingthe units to install and determining their hourly operating schedules. Inthis paper, the capabilities of DER-CAM are enhanced by the inclusion ofthe option to store recovered low-grade heat. By being able to keep aninventory of heat for use in subsequent periods, sites are able to lowercosts even further by reducing lucrative peak-shaving generation whilerelying on storage to meet heat loads. This and other effects of storageare demonstrated by analysis of five typical commercial buildings in SanFrancisco, California, USA, and an estimate of the cost per unit capacityof heat storage is calculated.

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2006-06-16T23:59:59.000Z

188

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

of electricity and natural gas DER No Heat Storage: thefired natural gas AC (a) Capacity of heat storage unit (but no heat storage, a 200 kW natural gas reciprocating

Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2005-01-01T23:59:59.000Z

189

Fuel cycle comparison of distributed power generation technologies.  

DOE Green Energy (OSTI)

The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

Elgowainy, A.; Wang, M. Q.; Energy Systems

2008-12-08T23:59:59.000Z

190

Distribution System Planning with Distributed Generation: Optimal versus Heuristic Approach.  

E-Print Network (OSTI)

??Distribution system design and planning is facing a major change in paradigm because of deregulation of the power industry and with rapid penetration of distributed… (more)

Bin Humayd, Abdullah

2011-01-01T23:59:59.000Z

191

Emissions Benefits of Distributed Generation in the Texas Market  

Science Conference Proceedings (OSTI)

One potential benefit of distributed generation (DG) is a net reduction in air emissions. While DG will produce emissions, most notably carbon dioxide and nitrogen oxides, the power it displaces might have produced more. This study used a system dispatch model developed at Oak Ridge National Laboratory to simulate the 2012 Texas power market with and without DG. This study compares the reduction in system emissions to the emissions from the DG to determine the net savings. Some of the major findings are that 85% of the electricity displaced by DG during peak hours will be simple cycle natural gas, either steam or combustion turbine. Even with DG running as baseload, 57% of electricity displaced will be simple cycle natural gas. Despite the retirement of some gas-fired steam units and the construction of many new gas turbine and combined cycle units, the marginal emissions from the system remain quite high (1.4 lb NO{sub x}/MWh on peak and 1.1 lb NO{sub x}/MWh baseload) compared to projected DG emissions. Consequently, additions of DG capacity will reduce emissions in Texas from power generation in 2012. Using the DG exhaust heat for combined heat and power provides an even greater benefit, since it eliminates further boiler emissions while adding none over what would be produced while generating electricity. Further studies are warranted concerning the robustness of the result with changes in fuel prices, demands, and mixes of power generating technology.

Hadley, SW

2005-06-16T23:59:59.000Z

192

Regulatory Considerations for Developing Distributed Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

solution 2 What size generator? What fuel or energy source? Does it include storage? Who pays the up-front cost of the generator? Who owns the generator? Who...

193

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

194

Operation of Distributed Generation Under Stochastic Prices  

E-Print Network (OSTI)

Generation Under Stochastic Prices Afzal S. Siddiqui andGENERATION UNDER STOCHASTIC PRICES AFZAL SIDDIQUI AND CHRIStransactions at stochastic prices. A stochastic dynamic

Siddiqui, Afzal S.; Marnay, Chris

2005-01-01T23:59:59.000Z

195

Figure 17. Electricity generation from natural gas in ...  

U.S. Energy Information Administration (EIA)

Sheet3 Sheet2 Sheet1 Figure 17. Electricity generation from natural gas in three cases, 2005-2040 (billion kilowatthours) Extended Policies No Sunset

196

NETL: Oil & Natural Gas Projects: Next Generation Surfactants...  

NLE Websites -- All DOE Office Websites (Extended Search)

Oil & Natural Gas Projects Exploration and Production Technologies Next Generation Surfactants for Improved Chemical Flooding Technology Last Reviewed 12152012 DE-FE0003537 Goal...

197

Cheaper natural gas alters generation dispatch in Southeast ...  

U.S. Energy Information Administration (EIA)

While coal-fired power plants continue to generate more than half of electricity in the region, ... and production from natural gas-fired plants has increased.

198

Electricity generation from coal and natural gas both ...  

U.S. Energy Information Administration (EIA)

Energy use in homes, commercial buildings, ... the share of natural gas-fired power generation is most influenced by the availability of hydroelectric power, ...

199

Unbalanced Load Flow for Weakly Meshed Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed Generation (DG) can bring support to distribution system, meanwhile, it bring unbalancedness in power source, load and line. Traditional load flow algorithms are not applicable to the weakly meshed distribution system with DGs. First, this ... Keywords: weakly meshed distribution system, distributed generation, unbalanced load flow, sensitivity compensation

Shao-Qiang Hu; Sen-Mao Li

2010-06-01T23:59:59.000Z

200

Investigating the electric power distribution system (EPDS) bus voltage in the presence of distributed generation (DG)  

Science Conference Proceedings (OSTI)

This paper investigates the Electric Power Distribution System (EPDS) bus voltage in the presence of Distributed Generation (DG). Distribution Company's (Discos) planner endeavor to develop new planning strategies for their network in order to serve ... Keywords: PSCAD, distributed generation, electric power distribution system, islanding, power quality, voltage stability

Hasham Khan; Mohammad Ahmad Choudhry; Tahir Mahmood; Aamir Hanif

2006-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Engineering Guide for Integration of Distributed Storage and Generation  

Science Conference Proceedings (OSTI)

This engineering guide for distributed storage and generation (DSG) is an update of a previous guide published by EPRI in 2004. It is intended for utility engineers facing integration of distributed generation and storage. The new guide considers higher penetration levels of DSG, particularly with the expansion of distribution connected photovoltaic power and the continued interest in distributed storage for grid support. Also, a distribution planning chapter for DSG has been added. Additional ...

2012-12-31T23:59:59.000Z

202

Slack bus modeling for distributed generation and its impacts on distribution system analysis, operation and planning.  

E-Print Network (OSTI)

??Distribution system operating environments are changing rapidly. Proper distributed generation placement and operating will bring benefits for supporting voltage, reducing system loss, enhancing system reliability,… (more)

Tong, Shiqiong

2007-01-01T23:59:59.000Z

203

Enhancing reliability in passive anti-islanding protection schemes for distribution systems with distributed generation.  

E-Print Network (OSTI)

??This thesis introduces a new approach to enhance the reliability of conventional passive anti-islanding protection scheme in distribution systems embedding distributed generation. This approach uses… (more)

Sheikholeslamzadeh, Mohsen

2012-01-01T23:59:59.000Z

204

Fuel Cycle Comparison of Distributed Power Generation Technologies  

E-Print Network (OSTI)

, as well as for coal and natural gas grid-generation technologies, are provided as baseline cases Cycle Power Plants 14.9 33.1 Natural Gas Turbine, Combined Cycle Power Plants 18.3 46.0 Coal comparable to the total energy use associated with the natural gas and coal grid-generation technologies

Argonne National Laboratory

205

Distributed control applied to combined electricity and natural gas infrastructures  

E-Print Network (OSTI)

Abstract — The optimization of combined electricity and natural gas systems is addressed in this paper. The two networks are connected via energy hubs. Using the energy hub concept, the interactions between the different infrastructures can be analyzed. A system consisting of several interconnected hubs forms a distributed power generation structure where each hub is controlled by its respective control agent. Recently, a distributed control method has been applied to such a system. The overall optimization problem including the entire system is decomposed into subproblems according to the control agents. In this paper, a parallel and serial version of that method is discussed. Simulation results are obtained through experiments on a three-hub benchmark system. I.

Michèle Arnold; Rudy R. Negenborn; Göran Andersson; Bart De Schutter

2008-01-01T23:59:59.000Z

206

Distributed Generation with Heat Recovery and Storage  

E-Print Network (OSTI)

Given the site’s energy loads, utility tariff structure, andgas tariffs, which reflect the current state of energy coststariff. Natural Gas Natural gas rates for San Francisco are obtained from the Annual Energy

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

207

Investment and Upgrade in Distributed Generation under Uncertainty  

Science Conference Proceedings (OSTI)

The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplatingthe installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find that the microgrid prefers a direct investment strategy for low levels of volatility and a sequential one for higher levels of volatility.

Siddiqui, Afzal; Maribu, Karl

2008-08-18T23:59:59.000Z

208

Investment and Upgrade in Distributed Generation under Uncertainty ?  

E-Print Network (OSTI)

The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only efficiency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attraction of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the natural gas price. Treatment of uncertainty via real options increases the value of the investment opportunity, which then delays the adoption decision as the opportunity cost of exercising the investment option increases as well. In this paper, we take the perspective of a microgrid that can proceed in a sequential manner with DG capacity and HX investment in order to reduce its exposure to risk from natural gas price volatility. In particular, with the availability of the HX, we find that the microgrid faces a tradeoff between reducing its exposure to the natural gas price and maximising its cost savings. By varying the volatility parameter, we find ranges over which direct and sequential investment strategies dominate. Keywords:

Afzal Siddiqui; Karl Maribu

2007-01-01T23:59:59.000Z

209

Impact of Distributed Generation and Series Compensation on Distribution Network  

E-Print Network (OSTI)

are investigated. A doubly-fed induction generator (DFIG)-based DG unit and a series capacitor (SC) and a thyristor DFIG units. The converter of the DFIG is modeled as an unbalanced harmonic-generating source

Pota, Himanshu Roy

210

,"Rhode Island Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet)",1,"Annual",2005...

211

Optimal Reactive Power Planning of Radial Distribution Systems with Distributed Generation  

Science Conference Proceedings (OSTI)

The paper analyzes reactive power optimization problem in distribution system with wind power and PV generators. Reactive power optimization mathematical model including the active power loss, reactive power compensation capacity and static voltage margin ... Keywords: Distributed generation, Distributed Generation, Immune Algorithm, Cluster Evolutionary

Li Shengqi, Zeng Lilin, Li Yongan, He Zhengping

2013-01-01T23:59:59.000Z

212

Strategic Intelligence Update: Distributed Generation & Energy Storage, 1st Newsletter  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-06-11T23:59:59.000Z

213

Strategic Intelligence Update: Distributed Generation & Energy Storage, December 2008  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Energy storage at megawatt-hour scales can be used to enable generators to better follow load and stabilize transmission voltage and frequency. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage e...

2008-12-12T23:59:59.000Z

214

Advanced Voltage Control Strategies for High Penetration of Distributed Generation  

Science Conference Proceedings (OSTI)

This research addresses advanced voltage control strategies for inverter-connected distributed generation. The emphasis is on photovoltaic (PV) generation, and results also apply to distributed wind, fuel cells, micro-turbines, and battery systems that are connected to the grid through an inverter. In related work, the Electric Power Research Institute (EPRI) identified a set of high-priority functions for distributed generation. These included reactive power control such as intelligent and autonomous vo...

2010-12-31T23:59:59.000Z

215

A Radical Distributed Architecture for Local Energy Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint...

216

On Optimization of Reliability of Distributed Generation-Enhanced Feeders  

Science Conference Proceedings (OSTI)

Placement of protection devices in a conventionalfeeder (without distributed generation) is often performedso as to minimize traditional reliability indices (SAIDI,SAIFI, MAIFIe...), assuming the sole source(s) of energyat substation(s). Distributed ...

A. Pregelj; M. Begovic; A. Rohatgi; D. Novosel

2003-01-01T23:59:59.000Z

217

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

218

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

2004-09-30T23:59:59.000Z

219

Implementation of Distributed Key Generation Algorithms using Secure Sockets  

Science Conference Proceedings (OSTI)

Distributed Key Generation (DKG) protocols are indispensable in the design of any cryptosystem used in communication networks. DKG is needed to generate public/private keys for signatures or more generally for encrypting/decrypting messages. One such ...

A. T. Chronopoulos; F. Balbi; D. Veljkovic; N. Kolani

2004-08-01T23:59:59.000Z

220

Distributed Generation: Issues Concerning a Changing Power Grid Paradigm.  

E-Print Network (OSTI)

??Distributed generation is becoming increasingly prevalent on power grids around the world. Conventional designs and grid operations are not always sufficient for handling the implementation… (more)

Therien, Scott G.M.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Next-Generation Distributed Power Management for Photovoltaic...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth...

222

Distributed Generation and Virtual Power Plants: Barriers and Solutions.  

E-Print Network (OSTI)

??The present technological and regulatory power system needs to adapt to the increase in the share of distributed generation. This research focuses on the applicability… (more)

Olejniczak, T.

2011-01-01T23:59:59.000Z

223

Distributed Generation Study/Patterson Farms CHP System Using...  

Open Energy Info (EERE)

Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field...

224

Distributed Renewable Energy Generation and Landscape Architecture: A Critical Review.  

E-Print Network (OSTI)

??Governments and utility organizations around the world have mandated and provided incentives for new distributed renewable energy generation (DREG) capacity, and market projections indicate strong… (more)

Beck, Osmer DeVon

2010-01-01T23:59:59.000Z

225

Voltage Stability Analysis with High Distributed Generation (DG) Penetration.  

E-Print Network (OSTI)

??Interest in Distributed Generation (DG) in power system networks has been growing rapidly. This increase can be explained by factors such as environmental concerns, the… (more)

Al-Abri, Rashid

2012-01-01T23:59:59.000Z

226

ARPA-E Announces $30 Million for Distributed Generation Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase...

227

Generating Multivariate Nonnormal Distribution Random Numbers Based on Copula Function  

E-Print Network (OSTI)

Abstract. Random numbers of multivariate nonnormal distribution are strongly requested by the area of theoretic research and application in practice. A new algorithm of generating multivariate nonnormal distribution random numbers is given based on the Copula function, and theoretic analysis suggests that the algorithm is suitable to be feasible. Furthermore, simulation shows that the empirical distribution which is formed by random numbers generating from the proposed algorithm can well approach the original distribution.

Xiaoping Hu; Jianmin He; Hongsheng Ly

2006-01-01T23:59:59.000Z

228

Strategic Intelligence Update - Energy Storage & Distributed Generation: December 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-12-14T23:59:59.000Z

229

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-08-05T23:59:59.000Z

230

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-10-15T23:59:59.000Z

231

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller scale distributed energy storage, on the order of a ...

2010-04-01T23:59:59.000Z

232

Worst Case Scenario for Large Distribution Networks with Distributed Generation  

E-Print Network (OSTI)

and distribution networks, finally to the electric energy consumers. The life style of a nation is measured) in distri- bution network has significant effects on voltage profile for both customers and distribution of this formula is checked by comparing with the existing power systems simulation software. Using the voltage

Pota, Himanshu Roy

233

The Effects of Electricity Tariff Structure on Distributed Generation Adoption in New York State  

E-Print Network (OSTI)

Tariff Structure on Distributed Generation Adoption in NewTariff Structure on Distributed Generation Adoption in NewTariff Structure on Distributed Generation Adoption in New

Firestone, Ryan; Marnay, Chris

2005-01-01T23:59:59.000Z

234

U.S. Distributed Generation Fuel Cell Program  

SciTech Connect

The Department of Energy (DOE) is the largest funder of fuel cell technology in the U.S. The DOE Office of Fossil Energy (FE) is developing high temperature fuel cells for distributed generation. It has funded the development of tubular solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC) power systems operating at up to 60% efficiency on natural gas. The remarkable environmental performance of these fuel cells makes them likely candidates to help mitigate pollution. DOE is now pursuing more widely applicable solid oxide fuel cells for 2010 and beyond. DOE estimates that a 5 kW solid oxide fuel cell system can reach $400/kW at reasonable manufacturing volumes. SECA - the Solid State Energy Conversion Alliance - was formed by the National Energy Technology Laboratory (NETL) and the Pacific Northwest National Laboratory (PNNL) to accelerate the commercial readiness of planar and other solid oxide fuel cell systems utilizing 3-10 kW size modules by taking advantage of the projected economies of production from a mass customization approach. In addition, if the modular 3-10 kW size units can be ganged or scaled up to larger sizes with no increase in cost, then commercial, microgrid and other distributed generation markets will become attainable. Further scale-up and hybridization of SECA SOFCs with gas turbines could result in penetration of the bulk power market. This paper reviews the current status of the solid oxide and molten carbonate fuel cells in the U.S.

Williams, Mark C.; Strakey, Joseph P.; Singhal, Subhash C.

2004-05-14T23:59:59.000Z

235

Distributed Generation Study/Arrow Linen | Open Energy Information  

Open Energy Info (EERE)

Study/Arrow Linen Study/Arrow Linen < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 300 kW0.3 MW 300,000 W 300,000,000 mW 3.0e-4 GW 3.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/03/01 Monitoring Termination Date 1969/12/31

236

Distributed Generation Study/Elgin Community College | Open Energy  

Open Energy Info (EERE)

Elgin Community College Elgin Community College < Distributed Generation Study Jump to: navigation, search Study Location Elgin, Illinois Site Description Institutional-School/University Study Type Case Study Technology Internal Combustion Engine Prime Mover Waukesha VHP5108GL Heat Recovery Systems Beaird Maxim Model TRP-12 Fuel Natural Gas System Installer Morse Electric Company System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 4 Stand-alone Capability Manual Power Rating 3220 kW3.22 MW 3,220,000 W 3,220,000,000 mW 0.00322 GW 3.22e-6 TW Nominal Voltage (V) 4160 Heat Recovery Rating (BTU/hr) 11200000 Cooling Capacity (Refrig/Tons) 550 Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 1997/05/01

237

Distributed Generation Study/Wyoming County Community Hospital | Open  

Open Energy Info (EERE)

Wyoming County Community Hospital Wyoming County Community Hospital < Distributed Generation Study Jump to: navigation, search Study Location Warsaw, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF L36GSID Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 560 kW0.56 MW 560,000 W 560,000,000 mW 5.6e-4 GW 5.6e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/09/26

238

Distributed Generation Study/Tudor Gardens | Open Energy Information  

Open Energy Info (EERE)

Tudor Gardens Tudor Gardens < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 150 kW0.15 MW 150,000 W 150,000,000 mW 1.5e-4 GW 1.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 980000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/01 Monitoring Termination Date 1969/12/31

239

Distributed Generation Study/Oakwood Health Care Center | Open Energy  

Open Energy Info (EERE)

Oakwood Health Care Center Oakwood Health Care Center < Distributed Generation Study Jump to: navigation, search Study Location Williamsville, New York Site Description Institutional-Hospital/Health Care Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha VGF 18GLD Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 600 kW0.6 MW 600,000 W 600,000,000 mW 6.0e-4 GW 6.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2800000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2001/12/20 Monitoring Termination Date 2003/01/03

240

Distributed Generation Study/VIP Country Club | Open Energy Information  

Open Energy Info (EERE)

VIP Country Club VIP Country Club < Distributed Generation Study Jump to: navigation, search Study Location New Rochelle, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 3 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/01/24 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Distributed Generation Study/Waldbaums Supermarket | Open Energy  

Open Energy Info (EERE)

Waldbaums Supermarket Waldbaums Supermarket < Distributed Generation Study Jump to: navigation, search Study Location Hauppauge, New York Site Description Commercial-Supermarket Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Unifin HX Fuel Natural Gas System Installer CDH Energy Corp. System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 60 kW0.06 MW 60,000 W 60,000,000 mW 6.0e-5 GW 6.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 500000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/08/02 Monitoring Termination Date 2006/07/21 Primary Power Application Based Load

242

Distributed Generation Study/Dakota Station (Minnegasco) | Open Energy  

Open Energy Info (EERE)

Station (Minnegasco) Station (Minnegasco) < Distributed Generation Study Jump to: navigation, search Study Location Burnsville, Minnesota Site Description Other Utility Study Type Case Study Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Unifin Fuel Natural Gas System Installer Capstone Turbine Corp System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 30 kW0.03 MW 30,000 W 30,000,000 mW 3.0e-5 GW 3.0e-8 TW Nominal Voltage (V) 0 Heat Recovery Rating (BTU/hr) 290000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2000/03/13 Monitoring Termination Date 2002/03/31 Primary Power Application Based Load

243

Distributed Generation Study/Hudson Valley Community College | Open Energy  

Open Energy Info (EERE)

Valley Community College Valley Community College < Distributed Generation Study Jump to: navigation, search Study Location Troy, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516, Caterpillar DM5498, Caterpillar DM7915 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Siemens Building Technologies System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 6 Stand-alone Capability Seamless Power Rating 7845 kW7.845 MW 7,845,000 W 7,845,000,000 mW 0.00785 GW 7.845e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 32500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Factory Integrated

244

Distributed Generation Study/Floyd Bennett | Open Energy Information  

Open Energy Info (EERE)

Bennett Bennett < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 230000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/21 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

245

Next Generation Natural Gas Vehicle Activity: Natural Gas Engine and Vehicle Research & Development (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the status of the Next Generation Natural Gas Vehicle (NGNGV) activity, including goals, R&D progress, NGV implementation, and the transition to hydrogen.

Not Available

2003-09-01T23:59:59.000Z

246

Application of Artificial Intelligence Technique in Distributed Generation System  

Science Conference Proceedings (OSTI)

This paper gives a brief description of current situation of distributed generation system, and points out that microgrid can run in two kinds of operation modes. The key problems which need to be cautiously considered exist in each operation mode are ... Keywords: Artificial intelligence, Artificial neural network, Distributed generation system, Fuzzy logic, Genetic algorithm, Multi-agent system

Guoqing Weng; Youbing Zhang; Yi Hu

2009-05-01T23:59:59.000Z

247

An integrated passive islanding detection method for distributed generators  

Science Conference Proceedings (OSTI)

This study proposes a new islanding detection method for use of grid-interconnected distributed generators (DG). The method is based on two indices: the rate of change of frequency (ROCOF) and the rate of change of voltage (ROCOV). When a DG is grid-interconnected, ... Keywords: distributed generator, islanding detection, rate of change of frequency, rate of change of voltage

Wen-Yeau Chang; Hong-Tzer Yang

2009-11-01T23:59:59.000Z

248

Matrix Element Distribution as a Signature of Entanglement Generation  

E-Print Network (OSTI)

We explore connections between an operator's matrix element distribution and its entanglement generation. Operators with matrix element distributions similar to those of random matrices generate states of high multi-partite entanglement. This occurs even when other statistical properties of the operators do not conincide with random matrices. Similarly, operators with some statistical properties of random matrices may not exhibit random matrix element distributions and will not produce states with high levels of multi-partite entanglement. Finally, we show that operators with similar matrix element distributions generate similar amounts of entanglement.

Yaakov S. Weinstein; C. Stephen Hellberg

2005-07-11T23:59:59.000Z

249

Distributed Generation in Buildings (released in AEO2005)  

Reports and Publications (EIA)

Currently, distributed generation provides a very small share of residential and commercial electricity requirements in the United States. The AEO2005 reference case projects a significant increase in electricity generation in the buildings sector, but distributed generation is expected to remain a small contributor to the sectors energy needs. Although the advent of higher energy prices or more rapid improvement in technology could increase the use of distributed generation relative to the reference case projection, the vast majority of electricity used in buildings is projected to continue to be purchased from the grid.

Information Center

2008-09-24T23:59:59.000Z

250

ARPA-E Announces $30 Million for Distributed Generation Technologies |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

30 Million for Distributed Generation 30 Million for Distributed Generation Technologies ARPA-E Announces $30 Million for Distributed Generation Technologies November 25, 2013 - 1:00pm Addthis NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Today, the Department of Energy announced up to $30 million in Advanced Research Projects Agency - Energy (ARPA-E) funding for a new program focused on the development of transformational electrochemical technologies to enable low-cost distributed power generation. ARPA-E's Reliable Electricity Based on ELectrochemical Systems (REBELS) program will develop fuel cell technology for distributed power generation to improve grid stability, increase energy security, and balance intermittent renewable technologies while reducing CO2 emissions associated with current

251

The Value of Distributed Generation (DG) under Different Tariff Structures  

Open Energy Info (EERE)

The Value of Distributed Generation (DG) under Different Tariff Structures The Value of Distributed Generation (DG) under Different Tariff Structures Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Value of Distributed Generation (DG) under Different Tariff Structures Focus Area: Renewable Energy Topics: Socio-Economic Website: eetd.lbl.gov/ea/emp/reports/60589.pdf Equivalent URI: cleanenergysolutions.org/content/value-distributed-generation-dg-under Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Utility/Electricity Service Costs This report examines the standby tariff structures recently implemented in New York as a result of utilities feelings toward distributed generation

252

Natural Gas Distributed Resource Fuel Pressure and Delivery Issues  

Science Conference Proceedings (OSTI)

Many emerging distributed resource (DR) technologies will be developed to operate on natural gas. However, increased reliance on natural gas as an energy source raises issues with regard to its availability and delivery capacity. In addition, some DR technologies may require specific pressure levels to operate properly. This report discusses the natural gas distribution infrastructure as well as the availability and suitability of DR gas booster technologies.

2000-10-17T23:59:59.000Z

253

Operation of Distributed Generation Under Stochastic Prices  

Science Conference Proceedings (OSTI)

We model the operating decisions of a commercial enterprisethatneeds to satisfy its periodic electricity demand with either on-sitedistributed generation (DG) or purchases from the wholesale market. Whilethe former option involves electricity generation at relatively high andpossibly stochastic costs from a set of capacity-constrained DGtechnologies, the latter implies unlimited open-market transactions atstochastic prices. A stochastic dynamic programme (SDP) is used to solvethe resulting optimisation problem. By solving the SDP with and withoutthe availability of DG units, the implied option values of the DG unitsare obtained.

Siddiqui, Afzal S.; Marnay, Chris

2005-11-30T23:59:59.000Z

254

Strategic Intelligence Update: Energy Storage & Distributed Generation, November 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-11-28T23:59:59.000Z

255

Strategic Intelligence Update: Energy Storage and Distributed Generation, June 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-06-28T23:59:59.000Z

256

Strategic Intelligence Update: Energy Storage & Distributed Generation, December 2011  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-12-14T23:59:59.000Z

257

Strategic Intelligence Update: Energy Storage & Distributed Generation — March 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-03-22T23:59:59.000Z

258

Strategic Intelligence Update: Energy Storage & Distributed Generation— May 2011  

Science Conference Proceedings (OSTI)

Energy Storage and Distributed Generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-05-26T23:59:59.000Z

259

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2011  

Science Conference Proceedings (OSTI)

Energy storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-10-03T23:59:59.000Z

260

Strategic Intelligence Update: Energy Storage & Distributed Generation, September 2012  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades.  Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2012-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Strategic Intelligence Update: Energy Storage and Distributed Generation, September 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy ...

2013-09-27T23:59:59.000Z

262

Strategic Intelligence Update: Energy Storage and Distributed Generation  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage and by ...

2011-08-08T23:59:59.000Z

263

Strategic Intelligence Update: Energy Storage and Distributed Generation, November 2013  

Science Conference Proceedings (OSTI)

Energy Storage and distributed generation technologies add value to a wide range of applications within the electric utility enterprise. Both energy storage and distributed generation systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage has the ability to improve the value of intermittent renewable resources and to provide multiple benefit streams through energy arbitrage ...

2013-11-25T23:59:59.000Z

264

Self-generated magnetic fields in q-distributed plasmas  

SciTech Connect

A quasi-steady magnetic field can be generated with high-frequency electromagnetic radiation through wave-wave and wave-particle interactions in astrophysical plasmas and laser-produced plasmas. Nonlinear coupling equations of self-generated magnetic fields are obtained in nonextensive distribution frame, as a generalization for the standard Maxwellian distribution frame. The numerical results show that self-generated magnetic fields may collapse and lead to various turbulent patterns with different index q.

Li Dingguo [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); School of Nuclear Engineering and Technology, East China Institute of Technology, Fuzhou 344000 (China); Liu Sanqiu [School of Materials Science and Engineering, Nanchang University, Nanchang 330047 (China); School of Science, Nanchang University, Nanchang 330047 (China); Li Xiaoqing [School of Science, Nanchang University, Nanchang 330047 (China)

2013-02-15T23:59:59.000Z

265

Next Generation Natural Gas Vehicle (NGNGV) Program Fact Sheet  

SciTech Connect

Fact sheet describing U. S. DOE and NREL's development of next generation natural gas vehicles (NGVs) as a key element in its strategy to reduce oil import and vehicle pollutants.

Walkowicz, K.

2002-05-01T23:59:59.000Z

266

Natural gas generation lower than last year because of differences ...  

U.S. Energy Information Administration (EIA)

Total natural gas use for power generation in the United States was down 14% during the first seven months of 2013 compared to the same period in 2012 (see chart ...

267

Optimal study of distributed generation impact on electrical distribution networks using GA and generalized reduced gradient  

Science Conference Proceedings (OSTI)

This paper presents the effect of Distributed Generators (DG) existence in the electrical power distribution networks taking IEEE 14 and IEEE 30 bus test feeders as proposed systems. The analysis is done to examine the effect on the overall system losses ... Keywords: IEEE 14 bus system, IEEE 30 bus system and optimization, distributed generator (DG), generalized reduced gradient (GRG), genetic algorithms (GA)

Samuel Raafat Fahim; Walid Helmy; Hany M. Hasanien; M. A. L. Badr

2011-03-01T23:59:59.000Z

268

Distributed systems – from natural to engineered: three phases of inspiration by nature  

Science Conference Proceedings (OSTI)

So far, most nature-inspired applications concern single components and non-distributed systems. However, distributed adaptive complex systems in nature also exhibit many properties which could be highly useful in engineered systems. The most ... Keywords: #, 42, CAS, autonomy, bio-inspiration, bio-inspired computation, complex adaptive systems, complexity theory, distributed systems, nature-inspired engineering, properties, self-&, self-organisation

R. Frei; J. Barata

2010-05-01T23:59:59.000Z

269

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling  

E-Print Network (OSTI)

Using Distributed Tri-generation Systems for Neighborhood Hydrogen Refueling Xuping Li and Joan: Xuping Li (Xupli@ucdavis.edu), Joan Ogden (jmogden@ucdavis.edu) INTRODUCTION TRI-GENERATION SYSTEM AND NEIGHBORHOOD REFUELING DESCRIPTION METHODS AND DATA CONCLUSIONS An engineering/economic model for H2 tri-generation

California at Davis, University of

270

Distributed Generation Source Stiffness and Its Impact on Voltage Distortion  

Science Conference Proceedings (OSTI)

Distributed generators with loads that create high harmonics can cause excessive voltage distortion. This report's objective was to evaluate under controlled laboratory conditions voltage distortion resulting from application of nonlinear load for three different types of rotary generators and one inverter-based generator. Test results also were used to verify the analytical model for predicting voltage distortion from nonlinear load application.

2001-11-27T23:59:59.000Z

271

Next Generation Natural Gas Vehicle (NGNGV) Program Brochure  

SciTech Connect

The Department of Energy's Office of Transportation Technologies is initiating the Next Generation Natural Gas Vehicle (NGNGV) Program to develop commercially viable medium- and heavy-duty natural gas vehicles. These new vehicles will incorporate advanced alternative fuel vehicle technologies that were developed by DOE and others.

Elling, J.

2000-10-26T23:59:59.000Z

272

Notice of Study Availability - Potential Benefits of Distributed Generation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Availability - Potential Benefits of Distributed Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Notice of Study Availability - Potential Benefits of Distributed Generation and Rate-Related Issues That May Impede Their Expansion: Federal Register Notice Volume 72, No. 40 - Mar. 1, 2007 Federal Register Notice of availability of a study of the potential benefits of distributed generation and rate-related issues that may impede their expansion, and request for public comment. Study of the Potential Benefits of Distributed Generation and Rate- Related Issues That May Impede Their Expansion More Documents & Publications Notice of inquiry and request for Information - Study of the potential

273

Planning Methodology to Determine Practical Circuit Limits for Distributed Generation  

Science Conference Proceedings (OSTI)

Utility distribution planners are increasingly faced with accommodating large sizes of distributed generation (DG) on their power distribution circuits. In many states, the renewable portfolio standards and incentives from various sources have resulted in larger solar PV installations than experienced previously. These are often located in parts of the distribution circuits where voltage is more difficult to regulate. This project investigated planning methodologies for determining practical limits for D...

2010-12-31T23:59:59.000Z

274

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design de...

Sulc, Petr; Backhaus, Scott; Chertkov, Michael

2010-01-01T23:59:59.000Z

275

Assessment of Microturbines as Distributed Generators  

Science Conference Proceedings (OSTI)

It has been suggested that microturbines will be the next major development in power generation technology. Just as industrial gas turbines are seen as having refuted the assumption that low cost power could only be produced by large power plants, there is a perception that small, mass-produced microturbines could produce grid-competitive power in kW-scale units. How realistic are the performance and cost claims of microturbine manufactures and what is the likely timeframe for the commercialization of th...

1999-12-13T23:59:59.000Z

276

Engineering Guide for Integration of Distributed Generation and Storage into Power Distribution Systems  

Science Conference Proceedings (OSTI)

Distributed resources (DR) hold great promise for improving the efficiency and reliability of electric power systems. The work described in this report focuses on distributed generation and storage, a subset of the larger family of DR technologies.

2000-12-11T23:59:59.000Z

277

Management of Active Distribution Networks with High Penetration of Distributed Generation.  

E-Print Network (OSTI)

??The penetration of distributed generation and wind power in particular is expected to increase significantly over the coming years, and a huge shift in control,… (more)

Arram, Ahmed

2012-01-01T23:59:59.000Z

278

South Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

279

District of Columbia Natural Gas Pipeline and Distribution Use...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

280

Iowa Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Iowa Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 11,309...

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

New Hampshire Natural Gas Pipeline and Distribution Use Price...  

Annual Energy Outlook 2012 (EIA)

Price (Dollars per Thousand Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

282

New Mexico Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New Mexico Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

283

North Carolina Natural Gas Pipeline and Distribution Use Price...  

Gasoline and Diesel Fuel Update (EIA)

Price (Dollars per Thousand Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

284

West Virginia Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) West Virginia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

285

New Jersey Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) New Jersey Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

286

District of Columbia Natural Gas Pipeline and Distribution Use...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) District of Columbia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

287

Rhode Island Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Rhode Island Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

288

New York Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New York Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

289

South Carolina Natural Gas Pipeline and Distribution Use Price...  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) South Carolina Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

290

North Carolina Natural Gas Pipeline and Distribution Use (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) North Carolina Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

291

New Hampshire Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) New Hampshire Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

292

Illinois Natural Gas Pipeline and Distribution Use (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

(Million Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

293

North Dakota Natural Gas Pipeline and Distribution Use (Million...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) North Dakota Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

294

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

295

Determining the Adequate Level of Distributed Generation Penetration...  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining the Adequate Level of Distributed Generation Penetration in Future Grids Speaker(s): Johan Driesen Date: March 18, 2004 - 12:00pm Location: Bldg. 90 Seminar HostPoint...

296

Optimization of distributed generation penetration based on particle filtering  

Science Conference Proceedings (OSTI)

Distributed generation is small scale power cogeneration within an integrated energy network, that provides system wide and environmental benefits. Network benefits include enhancements to reliability, reduction of peak power requirements, improved power ...

Nurcin Celik; Juan Pablo Sáenz; Xiaoran Shi

2012-12-01T23:59:59.000Z

297

Distributed Generation Case Study: Industrial Process Heating (Cogeneration)  

Science Conference Proceedings (OSTI)

This report details candidate distributed generation (DIS-GEN) options and the process used to select a cogeneration system for potential development at an industrial site. The local utility commissioned this evaluation to explore energy partnership opportunities with its customer.

1997-12-31T23:59:59.000Z

298

Distributed Renewable Energy Generation Impacts on Microgrid Operation and Reliability  

Science Conference Proceedings (OSTI)

Microgrids incorporating distributed generation, and particularly those incorporating renewable energy technologies, have the potential to improve electric power system efficiency and reliability while providing novel benefits to their owners, operators, and the system as a whole. This report focuses on the impact of renewable energy technologies on microgrids and on the larger question of the impact of distributed generation and microgrids on the electric power system.

2002-02-06T23:59:59.000Z

299

Local control of reactive power by distributed photovoltaic generators  

SciTech Connect

High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

Chertkov, Michael [Los Alamos National Laboratory; Turitsyn, Konstantin [Los Alamos National Laboratory; Sulc, Petr [Los Alamos National Laboratory; Backhaus, Scott [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

300

Automatic generation of water distribution systems based on GIS data  

Science Conference Proceedings (OSTI)

In the field of water distribution system (WDS) analysis, case study research is needed for testing or benchmarking optimisation strategies and newly developed software. However, data availability for the investigation of real cases is limited due to ... Keywords: Algorithmic network generation, GIS-data, Hydraulic simulation, Modular design system, Water distribution system

Robert Sitzenfrei, Michael MöDerl, Wolfgang Rauch

2013-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Study on Simulation of Distribution Generation on PSCAD/EMTDC  

Science Conference Proceedings (OSTI)

With the application of renewable energy, Distribution Generation (DG) will play a more important role in power systems in the near future. This paper describes the methods of modeling and simulation about photovoltaic cell, fuel cell and small aero ... Keywords: DG, photovoltaic cell, fuel cell, small aero generator, PSCAD/EMTDC

Ke-Ping Zhu; Dao-Zhuo Jiang; Yang Zhou

2012-07-01T23:59:59.000Z

302

Identifying distributed generation and demand side management investment opportunities  

SciTech Connect

Electric utilities have historically satisfied customer demand by generating electricity centrally and distributing it through an extensive transmission and distribution network. The author examines targeted demand side management programs as an alternative to system capacity investments once capacity is exceeded. The paper presents an evaluation method to determine how much a utility can afford to pay for distributed resources. 17 refs., 2 figs, 1 tab.

Hoff, T.E. [Stanford Univ., CA (United States)

1996-12-31T23:59:59.000Z

303

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

304

Investment and Upgrade in Distributed Generation under Uncertainty  

NLE Websites -- All DOE Office Websites (Extended Search)

Investment and Upgrade in Distributed Generation under Uncertainty Investment and Upgrade in Distributed Generation under Uncertainty Speaker(s): Afzal Siddiqui Karl Maribu Date: September 4, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The ongoing deregulation of electricity industries worldwide is providing incentives for microgrids to use small-scale distributed generation (DG) and combined heat and power (CHP) applications via heat exchangers (HXs) to meet local energy loads. Although the electric-only effciency of DG is lower than that of central-station production, relatively high tariff rates and the potential for CHP applications increase the attractiveness of on-site generation. Nevertheless, a microgrid contemplating the installation of gas-fired DG has to be aware of the uncertainty in the

305

A multistage model for distribution expansion planning with distributed generation in a deregulated electricity market  

Science Conference Proceedings (OSTI)

Distribution systems management is becoming an increasingly complicated issue due to the introduction of new technologies, new energy trading strategies and a new deregulated environment. In the new deregulated energy market and considering the incentives ... Keywords: GAMS-MATLAB interface, distributed generation (DG), distribution company (DISCO), investment payback time, microturbine, social welfare

S. Porkar; A. Abbaspour-Tehrani-Fard; P. Poure; S. Saadate

2010-06-01T23:59:59.000Z

306

Quantification of Regional Green House Gas Emission Impacts and Benefits for Distributed Generation  

Science Conference Proceedings (OSTI)

The electric power generation sector contributes about one-third of all green house gas (GHG) emissions in the United States. To curb green house gas emissions, all options in the electric power value chain must be considered and evaluated. More effective use of distributed photovoltaic (PV) systems and efficient use of natural gas via use in distributed combined heat, power (CHP), and cooling systems in the end-use sector may be options to mitigating GHG emissions. This research project quantitatively e...

2007-12-14T23:59:59.000Z

307

Interdependence of the Electricity Generation System and the Natural Gas System and Implications for Energy Security  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Lexington Massachusetts This page intentionally left blank. EXECUTIVE SUMMARY Concern about energy security on domestic Department of Defense installations has led to the possibility of using natural gas-fired electricity generators to provide power in the event of electric grid failures. As natural gas is an increasingly base-load fuel for electricity generation in the United States, the electricity generation system has become increasingly dependent on the operation of the natural gas system. However, as the natural gas system is also partly dependent on electricity for its ability to deliver natural gas from the well-head to the consumer, the question arises of whether, in the event of an electric grid failure, the natural gas would continue to flow. As the natural gas transmission system largely uses natural gas from the pipelines as a source of power, once the gas has been extracted from the ground, the system is less dependent on the electric grid. However, some of the drilling rigs, processing units, and pipeline compressors do depend on electric power, making the vulnerability to the system to a disruption in the national electricity supply network vary depending on the cause, breadth, and geographic location of the disruption. This is due to the large numbers of players in the natural gas production and

N. Judson; N. Judson

2013-01-01T23:59:59.000Z

308

SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS  

DOE Green Energy (OSTI)

Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

2003-11-21T23:59:59.000Z

309

Options for Control of Reactive Power by Distributed Photovoltaic Generators  

E-Print Network (OSTI)

High penetration levels of distributed photovoltaic(PV) generation on an electrical distribution circuit present several challenges and opportunities for distribution utilities. Rapidly varying irradiance conditions may cause voltage sags and swells that cannot be compensated by slowly responding utility equipment resulting in a degradation of power quality. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We discuss and compare via simulation various design options for control systems to manage the reactive power generated by these inverters. An important design decision that weighs on the speed and quality of communication required is whether the control should be centralized or distributed (i.e. local). In general, we find that local control schemes are capable for maintaining voltage within acceptable bounds. We consider the benefits of choosing different local variables on which to control and how the control system can be continuously tuned between robust voltage control, suitable for daytime operation when circuit conditions can change rapidly, and loss minimization better suited for nighttime operation.

Petr Sulc; Konstantin Turitsyn; Scott Backhaus; Michael Chertkov

2010-08-04T23:59:59.000Z

310

Distribution of Natural Gas: The Final Step in the Transmission Process  

U.S. Energy Information Administration (EIA) Indexed Site

June 2008 June 2008 1 Each day, close to 70 million customers in the United States depend upon the national natural gas distribution network, including natural gas distribution companies and pipelines, to deliver natural gas to their home or place of business (Figure 1). These customers currently consume approximately 20 trillion cubic feet (Tcf) of natural gas per annum, accounting for about 22 percent of the total energy consumed in the United States each year. This end- use customer base is 92 percent residential units, 7 percent commercial businesses, and 1 percent large industrial and electric power generation customers. 1 However, the large- volume users, though small in number, account for more than 60 percent of the natural gas used by end users.

311

Determining the Adequate Level of Distributed Generation Penetration in  

NLE Websites -- All DOE Office Websites (Extended Search)

Determining the Adequate Level of Distributed Generation Penetration in Determining the Adequate Level of Distributed Generation Penetration in Future Grids Speaker(s): Johan Driesen Date: March 18, 2004 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare In this talk, Johan will discuss the technical barriers met while deploying distributed generation (DG) technology in the grid. These are related to voltage quality, reliability, stability of the grid, but also safety, environmental and economic issues are important. Eventually, the question 'how far can you go ?' is addressed. The range from small-scale local DG such as photovoltaics to large-scale (off-shore) wind farms are dealt with, each with their specific issues. The talk is illustrated with examples from research projects at the KULeuven financied by national and European

312

Poland - Economic and Financial Benefits of Distributed Generation  

Open Energy Info (EERE)

Poland - Economic and Financial Benefits of Distributed Generation Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Jump to: navigation, search Name Poland - Economic and Financial Benefits of Distributed Generation Small-Scale, Gas-Fired CHP Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Background analysis Website http://www.dis.anl.gov/pubs/41 Country Poland Eastern Europe References http://www.dis.anl.gov/pubs/41763.pdf This article is a stub. You can help OpenEI by expanding it. The Polish energy markets have recently been restructured, opening the door to new players with access to new products and instruments. In response to this changed environment, the Government of Poland and the Polish Power Grid Company were interested in analyzing the competitiveness of

313

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 2, Annexes Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This report provides Annexes 1 through 7, which are country reports from

314

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

315

Integration of Demand Side Management, Distributed Generation, Renewable  

Open Energy Info (EERE)

Integration of Demand Side Management, Distributed Generation, Renewable Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Integration of Demand Side Management, Distributed Generation, Renewable Energy Sources, and Energy Storages: State-of-the-Art Report, Volume 1, Main Report Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: www.ieadsm.org/Files/Tasks/Task%20XVII%20-%20Integration%20of%20Demand Equivalent URI: cleanenergysolutions.org/content/integration-demand-side-management-di Language: English Policies: Regulations Regulations: Resource Integration Planning This task of the International Energy Agency's (IEA's) Demand-Side

316

List of Other Distributed Generation Technologies Incentives | Open Energy  

Open Energy Info (EERE)

Incentives Incentives Jump to: navigation, search The following contains the list of 123 Other Distributed Generation Technologies Incentives. CSV (rows 1 - 123) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active APS - Renewable Energy Incentive Program (Arizona) Utility Rebate Program Arizona Commercial Residential Anaerobic Digestion Biomass Daylighting Geothermal Electric Ground Source Heat Pumps Landfill Gas Other Distributed Generation Technologies Photovoltaics Small Hydroelectric Solar Pool Heating Solar Space Heat Solar Thermal Process Heat Solar Water Heat Wind energy Yes Alternative Energy Portfolio Standard (Pennsylvania) Renewables Portfolio Standard Pennsylvania Investor-Owned Utility Retail Supplier Building Insulation Ceiling Fan

317

Emission Control Options for Distributed Resource Generators: A White Paper  

Science Conference Proceedings (OSTI)

This report analyzes the performance and cost of conventional and emerging emission control technologies for distributed resource generators (combustion turbines, microturbines, and reciprocating engines). The performance is benchmarked against the proposed California Air Resources Board (CARB) small generator certification standards for 2007, the most stringent of several emissions certification standards adopted or being considered. The costs are provided as capital cost and cost of electricity for emi...

2005-03-23T23:59:59.000Z

318

Spectral Phase Distribution Retrieval through Coherent Control of Harmonic Generation  

SciTech Connect

The temporal intensity distribution of the third harmonic of a Ti:sapphire laser generated in Xe gas is fully reconstructed from its spectral phase and amplitude distributions. The spectral phases are retrieved by cross correlating the fundamental laser frequency field with that of the third harmonic, in a three laser versus one harmonic photon coupling scheme. The third harmonic spectral amplitude distribution is extracted from its field autocorrelation. The measured pulse duration is found to be in agreement with that expected from lowest order perturbation theory both for unstretched and chirped pulses.

Papalazarou, E.; Charalambidis, D. [Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, PO Box 1527, GR711 10 Heraklion (Crete) (Greece); Department of Physics, University of Crete, PO Box 2208, GR71003 Heraklion (Crete) (Greece); Kovacev, M.; Tzallas, P.; Benis, E.P.; Kalpouzos, C. [Foundation for Research and Technology - Hellas, Institute of Electronic Structure and Laser, PO Box 1527, GR711 10 Heraklion (Crete) (Greece); Tsakiris, G. D. [Max-Planck-Institut fuer Quantenoptik, D-85748 Garching (Germany)

2006-04-28T23:59:59.000Z

319

Generating electron cyclotron resonance plasma using distributed scheme  

Science Conference Proceedings (OSTI)

This study employs a distributed microwave input system and permanent magnets to generate large-area electron cyclotron resonance (ECR) plasma. ECR plasmas were generated with nitrogen gas, and the plasma density was measured by Langmuir probe. A uniform ECR plasma with the electron density fluctuation of {+-}9.8% over 500 mm Multiplication-Sign 500 mm was reported. The proposed idea of generating uniform ECR plasma can be scaled to a much larger area by using n Multiplication-Sign n microwave input array system together with well-designed permanent magnets.

Huang, C. C. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China); Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chang, T. H.; Chen, N. C.; Chao, H. W. [Department of Physics, National Tsing Hua University, Hsinchu, Taiwan (China); Chen, C. C. [Chung-Shan Institute of Science and Technology, Lung-Tan, Taoyuan, Taiwan (China); Chou, S. F. [Department of Mechanical Engineering, National Taiwan University, Taipei, Taiwan (China)

2012-08-06T23:59:59.000Z

320

Internal Combustion Engine Advances for Distributed Generation Markets  

Science Conference Proceedings (OSTI)

Internal combustion engines (ICEs) can play a potentially significant role as a distributed generation resource. This report provides intelligence on vendor programs and on advances in ICE technology that could lead to commercial offerings within a 2-5 year time frame.

1997-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Generation of Random Variates From a Relativistic Maxwellian Distribution  

E-Print Network (OSTI)

A procedure for generating random variates from a relativistic Maxwellian distribution with arbitrary temperature and drift velocity is presented. The algorithm is based on the rejection method and can be used to initialize particle velocities in kinetic simulations of plasmas and gases.

Swisdak, M

2013-01-01T23:59:59.000Z

322

Distributed Generation Implementation Guidelines: Siting, Environmental Permitting, and Licensing  

Science Conference Proceedings (OSTI)

In 1997, EPRI conducted a study of how distributed generation (DG) was implemented at approximately 125 facilities in California and throughout the Midwest. The results of that study, as well as subsequent interviews with key facilities done the following year, enabled EPRI to present guidelines representative of a "best practices" approach to implementing and operating a DG facility based on the experience of others.

1998-12-16T23:59:59.000Z

323

Modeling Distributed Electricity Generation in the NEMS Buildings Models  

Reports and Publications (EIA)

This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

Erin Boedecker

2011-01-25T23:59:59.000Z

324

Distributed Generation Market Study: Advanced Turbine System Program  

Science Conference Proceedings (OSTI)

The ultra high efficiency, environmental superiority, and cost competitiveness of advanced turbine systems (ATSs) makes them attractive candidates for use in the near future in distributed generation applications. This study found that ATS engines with the cost and performance characteristics provided by Allison Engine Company (Allison) could have a significant regional market in the 2000-2005 time period.

1999-03-10T23:59:59.000Z

325

Cascading Failures in Smart Grid -Benefits of Distributed Generation  

E-Print Network (OSTI)

Cascading Failures in Smart Grid - Benefits of Distributed Generation Xian Chen, Hieu Dinh, Bing reliability and reducing the risk of cascading blackouts is a critical issue. Smart grid is envisioned Wang Computer Science & Engineering Department, University of Connecticut, Storrs, CT 06269 Abstract--Smart

Wang, Bing

326

Distributed Generation Implementation Guidelines: Operations, Maintenance and Training  

Science Conference Proceedings (OSTI)

In 1997, EPRI conducted a study of how distributed generation (DG) was implemented at approximately 125 facilities in California and throughout the Midwest. Results of that study, as well as subsequent interviews with key facilities done the following year, enabled EPRI to develop guidelines representative of a "best practices" approach to implementing and operating a DG facility based on the experience of others.

1998-12-16T23:59:59.000Z

327

Hardware generation of arbitrary random number distributions from uniform distributions via the inversion method  

Science Conference Proceedings (OSTI)

We present an automated methodology for producing hardware-based random number generator (RNG) designs for arbitrary distributions using the inverse cumulative distribution function (ICDF). The ICDF is evaluated via piecewise polynomial approximation ... Keywords: Chebyshev approximation and theory, algorithms implemented in hardware, automatic synthesis, computer arithmetic, elementary function approximation, error analysis, gate arrays, piecewise polynomial approximation

Ray C. C. Cheung; Dong-U Lee; Wayne Luk; John D. Villasenor

2007-08-01T23:59:59.000Z

328

Energy Storage and Distributed Energy Generation Project, Final Project Report  

Science Conference Proceedings (OSTI)

This report serves as a Final Report under the “Energy Storage and Distribution Energy Generation Project” carried out by the Transportation Energy Center (TEC) at the University of Michigan (UM). An interdisciplinary research team has been working on fundamental and applied research on: -distributed power generation and microgrids, -power electronics, and -advanced energy storage. The long-term objective of the project was to provide a framework for identifying fundamental research solutions to technology challenges of transmission and distribution, with special emphasis on distributed power generation, energy storage, control methodologies, and power electronics for microgrids, and to develop enabling technologies for novel energy storage and harvesting concepts that can be simulated, tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

329

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

330

A Radical Distributed Architecture for Local Energy Generation,  

NLE Websites -- All DOE Office Websites (Extended Search)

A Radical Distributed Architecture for Local Energy Generation, A Radical Distributed Architecture for Local Energy Generation, Distribution, and Sharing Speaker(s): Randy Katz Date: April 25, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose The LoCal Project is developing Information Age solutions to the limiting resource of this century: energy. One hundred fifty years ago, humanity was transformed by harnessing energy for machinery and work. Toil by hand became routinely mechanized, inconceivable constructions became reality, and powered transport shrunk the world. A century later, computers brought an equally profound transformation, replacing mundane bookkeeping and obviating libraries, simulating the imperceptible, and placing knowledge at our fingertips. Information processing has sustained a 50-100% annualized

331

Introduction to Distributed Generation and the CERTS Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Introduction to Distributed Generation and the CERTS Microgrid Introduction to Distributed Generation and the CERTS Microgrid Speaker(s): Chris Marnay Date: December 3, 2002 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Kristina LaCommare This is a first in a series of at least 5 seminars around the winter break to survey Distributed Energy Resources (DER) research questions and various Berkeley capabilities available to address them. The electricity industry in industrialized countries may be about to reverse a century long trend towards ever larger scale, ever more centrally controlled power systems. The emergence of technologies that are competitive at small scales, close to loads, in large part because of the opportunities created to capture waste heat and locally control power quality might signal a radical

332

NREL: Energy Analysis - Distributed Generation Energy Technology Capital  

NLE Websites -- All DOE Office Websites (Extended Search)

Capital Costs Capital Costs Transparent Cost Database Button The following charts indicate recent capital cost estimates for distributed generation (DG) renewable energy technologies. The estimates are shown in dollars per installed kilowatt of generating capacity or thermal energy capacity for thermal technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology capital cost estimates, please visit the Transparent Cost Database website for NREL's information

333

NREL: Energy Analysis - Distributed Generation Energy Technology Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Operations and Maintenance Costs Operations and Maintenance Costs Transparent Cost Database Button The following charts indicate recent operations and maintenance (O&M) cost estimates for distributed generation (DG) renewable energy technologies. The charts provide a compilation of available national-level cost data from a variety of sources. Costs in your specific location will vary. The red horizontal lines represent the first standard deviation of the mean. The U.S. Department of Energy (DOE) Federal Energy Management Program (FEMP) sponsored the distributed generation data used within these charts. If you are seeking utility-scale technology operations and maintenance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation.

334

Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Michigan Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.27 0.27 0.27 1970's 0.27 0.28 0.29 0.35 0.46 0.56 0.71 0.98 1.67 1.60 1980's 2.98 3.73 3.63 3.86 3.95 3.54 2.95 2.64 2.39 2.03 1990's 1.86 0.50 0.57 0.26 0.20 0.54 1.04 0.95 0.69 0.78 2000's 1.32 1.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Michigan Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

335

Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Oregon Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.32 0.28 0.35 0.47 0.61 0.82 1.77 1.98 2.53 1980's 4.41 4.75 4.90 4.19 3.90 3.13 2.35 2.00 1.90 2.09 1990's 2.16 2.32 2.16 1.71 1.86 1.77 1.77 1.80 1.84 1.98 2000's 2.74 2.91 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Oregon Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

336

Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Missouri Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.21 0.23 0.25 0.26 0.29 0.39 0.48 0.80 0.87 1.20 1980's 1.71 2.12 2.81 3.04 2.92 2.86 2.61 2.41 2.78 1.94 1990's 1.77 2.05 2.31 2.01 0.91 1.19 2.34 2.43 2.02 2.14 2000's 2.48 4.86 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Missouri Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

337

Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Wyoming Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.16 0.16 1970's 0.17 0.17 0.18 0.24 0.24 0.51 0.65 0.69 1.36 1.59 1980's 2.05 2.51 2.91 3.05 2.99 2.76 2.56 2.36 2.06 1.88 1990's 1.95 1.85 2.48 1.92 1.52 1.31 1.54 1.84 1.86 1.87 2000's 3.21 3.04 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Wyoming Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

338

Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Alaska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 0.26 0.27 0.28 0.28 0.30 0.35 0.57 0.58 0.50 0.14 1980's 0.73 1.13 0.60 0.86 0.61 0.63 0.61 0.65 1.01 1.13 1990's 1.08 1.32 1.12 1.11 1.11 1.24 1.17 1.34 1.23 0.82 2000's 1.34 1.84 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Alaska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

339

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

340

Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Nebraska Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.14 0.15 0.15 1970's 0.16 0.16 0.18 0.19 0.24 0.32 0.42 0.57 0.73 1.10 1980's 1.36 1.81 2.35 2.56 2.55 2.51 2.40 2.20 1.77 1.86 1990's 1.70 1.43 1.54 1.79 1.34 1.33 2.10 2.54 2.01 1.96 2000's 2.81 3.56 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Nebraska Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Virginia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.27 0.28 0.31 0.38 0.53 0.81 1.49 1.40 1980's 2.09 2.81 3.33 3.59 3.49 3.35 3.37 2.68 2.59 2.63 1990's 2.05 1.86 1.93 2.27 2.14 1.83 2.60 3.22 2.59 2.20 2000's 2.66 5.05 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Virginia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

342

Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Indiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.21 0.21 1970's 0.21 0.23 0.25 0.27 0.28 0.38 0.45 0.81 0.86 1.21 1980's 1.73 2.18 2.91 3.21 3.02 3.11 2.78 2.52 2.69 2.17 1990's 2.17 2.46 2.51 1.38 1.03 1.05 2.47 2.58 2.27 2.16 2000's 3.69 4.18 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Indiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

343

Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Colorado Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.17 0.17 0.17 1970's 0.18 0.19 0.21 0.22 0.27 0.49 0.72 1.00 1.31 1.53 1980's 2.17 2.58 2.78 2.78 2.81 2.62 2.71 2.57 2.24 1.75 1990's 1.75 1.79 1.89 1.86 1.78 1.45 1.97 2.44 1.98 1.66 2000's 3.89 3.86 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Colorado Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

344

Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Kentucky Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.33 0.27 0.23 1970's 0.20 0.22 0.24 0.25 0.29 0.37 0.48 0.60 0.57 1.26 1980's 1.67 2.18 2.85 3.05 2.93 2.89 2.44 1.97 1.77 2.00 1990's 2.12 2.35 2.51 2.67 1.95 1.83 2.63 2.51 2.45 2.11 2000's 3.27 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Kentucky Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

345

Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Louisiana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.05 1970's 0.20 0.21 0.23 0.24 0.28 0.39 0.50 0.81 0.96 1.30 1980's 1.81 2.36 2.91 3.13 3.00 2.90 2.48 1.97 1.96 2.07 1990's 1.98 2.25 2.25 2.40 1.44 1.61 2.58 2.59 2.22 1.98 2000's 3.10 3.76 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Louisiana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

346

Montana Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Montana Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.12 0.11 0.11 1970's 0.11 0.12 0.17 0.21 0.23 0.42 0.46 0.73 0.83 1.16 1980's 1.29 1.90 2.87 3.00 3.04 2.51 2.28 1.86 1.65 1.57 1990's 1.75 1.76 1.63 2.15 1.53 1.16 1.44 1.77 1.72 2.12 2000's 2.96 2.48 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Montana Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

347

Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arizona Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.15 0.15 0.15 1970's 0.17 0.17 0.19 0.22 0.28 0.36 0.44 0.64 0.75 1.29 1980's 1.62 2.22 2.86 3.16 2.83 2.79 2.22 1.49 1.79 1.50 1990's 1.65 1.26 1.25 1.68 1.28 1.19 1.80 2.20 1.90 2.08 2000's 3.61 3.96 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arizona Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

348

Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Arkansas Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.18 0.18 0.18 1970's 0.19 0.22 0.24 0.26 0.30 0.43 0.52 0.71 0.86 1.12 1980's 1.78 2.12 2.63 2.94 2.97 2.78 2.46 2.64 2.07 2.30 1990's 2.17 2.06 1.78 1.64 1.61 1.45 2.41 2.42 1.58 1.38 2000's 2.41 4.09 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Arkansas Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

349

Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Maryland Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.19 0.19 1970's 0.19 0.22 0.24 0.25 0.27 0.38 0.50 0.69 0.84 1.25 1980's 2.41 2.74 3.08 3.28 3.29 3.17 3.19 2.37 2.27 2.72 1990's 2.15 1.94 1.94 2.08 2.01 1.81 2.48 2.98 2.41 2.30 2000's 3.30 4.75 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Maryland Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

350

Current distribution and nonuniformity effects in MHD disk generators  

DOE Green Energy (OSTI)

Results of an experimental and analytical study of current distribution and nonuniformity effects in combustion driven MHD disk generators are presented. The overall objective of the study was to investigate the importance of these phenomena to baseload power generation. The experimental work consisted of combustion-driven steady state experiments with a peg-wall channel operated in a superconducting magnet. The peg-wall construction allowed current and voltage distributions to be measured. The channel was operated with plasma temperatures up to 2750 K and magnetic field strengths up to 5.5 Tesla. The magnitudes of the currents and voltages were reduced by significant loss mechanisms, primarily electrode losses and current leakage through the wall caused by potassium seed penetration of the castable ceramic between the pegs. A simple circuit model accounting for these losses was developed enabling comparisons to be made with analytical calculations. Under normal uniform electrical loading the distributions measured in the channel were uniform as expected. Nonuniform electrical loading was used to produce and measure effects on the current distribution that occur only in the presence of high magnetic fields as required for MHD power generation.

Roseman, D.F.

1982-08-01T23:59:59.000Z

351

Distributed Electrical Power Generation: Summary of Alternative Available Technologies  

E-Print Network (OSTI)

Approved for public release; distribution is unlimited. Prepared for U.S. Army Corps of Engineers Washington, DC 20314-1000ABSTRACT: The Federal government is the greatest consumer of electricity in the nation. Federal procurement and installation of higher efficiency energy sources promises many benefits, in terms of economy, employment, export, and environment. While distributed generation (DG) technologies offer many of the benefits of alternative, efficient energy sources, few DG systems can currently be commercially purchased “off the shelf, ” and complicated codes and standards deter potential users. Federal use of distributed generation demonstrates the technology, can help drive down costs, and an help lead the general public to accept a changing energy scheme. This work reviews and describes various distributed generation technologies, including fuel cells, microturbines, wind turbines, photovoltaic arrays, and Stirling engines. Issues such as fuel availability, construction considerations, protection controls are addressed. Sources of further information are provided. DISCLAIMER: The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products. All product names and trademarks cited are the property of their respective owners. The findings of this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik; Sarah J. Scott; Franklin H. Holcomb; Nicholas M. Josefik

2003-01-01T23:59:59.000Z

352

Modeling and Verification of Distributed Generation and Voltage Regulation Equipment for Unbalanced Distribution Power Systems; Annual Subcontract Report, June 2007  

Science Conference Proceedings (OSTI)

This report summarizes the development of models for distributed generation and distribution circuit voltage regulation equipment for unbalanced power systems and their verification through actual field measurements.

Davis, M. W.; Broadwater, R.; Hambrick, J.

2007-07-01T23:59:59.000Z

353

Protecting the Modern Distribution Grid: EPRI Survey on Distribution Protection with Emphasis on Distributed Generation Integration Practices  

Science Conference Proceedings (OSTI)

The increasing penetration of distributed generation (DG) has created the need for changing protection practices for electric utility distribution systems. An assessment of current practice and experiences is provided. This report is to make utility engineers aware of potential issues and present protection practices for systems with DG.BackgroundDistributed resources have had significant impacts on electric utility power delivery systems. Greater impacts are ...

2013-12-19T23:59:59.000Z

354

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

The motivation and objective of this research is to determine the role of distributed generation (DG) in greenhouse gas reductions by: (1) applying the Distributed Energy Resources Customer Adoption Model (DER-CAM); (2) using the California Commercial End-Use Survey (CEUS) database for commercial buildings; (3) selecting buildings with electric peak loads between 100 kW and 5 MW; (4) considering fuel cells, micro-turbines, internal combustion engines, gas turbines with waste heat utilization, solar thermal, and PV; (5) testing of different policy instruments, e.g. feed-in tariff or investment subsidies.

Marnay, Chris; Stadler, Michael; Lipman, Tim; Lai, Judy; Cardoso, Goncalo; Megel, Olivier

2009-09-01T23:59:59.000Z

355

Installation, Operation, and Maintenance Costs for Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Distributed generation (DG) is a broad term that encompasses both mature and emerging onsite power generation technologies with power output as small as 1 kW and as large as 20 MW. While the equipment or purchase cost of a DG system is very important, installation, operation, and maintenance (IOM) costs also are significant and often overlooked. This report reviews IOM costs for both mature and emerging DG technologies. Some equipment cost data is included for reference, but is not the focus of this repo...

2003-02-03T23:59:59.000Z

356

ANALYSIS OF DISTRIBUTION FEEDER LOSSES DUE TO ADDITION OF DISTRIBUTED PHOTOVOLTAIC GENERATORS  

SciTech Connect

Distributed generators (DG) are small scale power supplying sources owned by customers or utilities and scattered throughout the power system distribution network. Distributed generation can be both renewable and non-renewable. Addition of distributed generation is primarily to increase feeder capacity and to provide peak load reduction. However, this addition comes with several impacts on the distribution feeder. Several studies have shown that addition of DG leads to reduction of feeder loss. However, most of these studies have considered lumped load and distributed load models to analyze the effects on system losses, where the dynamic variation of load due to seasonal changes is ignored. It is very important for utilities to minimize the losses under all scenarios to decrease revenue losses, promote efficient asset utilization, and therefore, increase feeder capacity. This paper will investigate an IEEE 13-node feeder populated with photovoltaic generators on detailed residential houses with water heater, Heating Ventilation and Air conditioning (HVAC) units, lights, and other plug and convenience loads. An analysis of losses for different power system components, such as transformers, underground and overhead lines, and triplex lines, will be performed. The analysis will utilize different seasons and different solar penetration levels (15%, 30%).

Tuffner, Francis K.; Singh, Ruchi

2011-08-09T23:59:59.000Z

357

April 2013 Most Viewed Documents for Power Generation And Distribution |  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Power Generation And Distribution April 2013 Most Viewed Documents for Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 719 Seventh Edition Fuel Cell Handbook NETL (2004) 628 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 343 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 290 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 248 Controlled low strength materials (CLSM), reported by ACI Committee 229 Rajendran, N. (1997) 106 Micro-CHP Systems for Residential Applications Timothy DeValve; Benoit Olsommer (2007)

358

September 2013 Most Viewed Documents for Power Generation And Distribution  

Office of Scientific and Technical Information (OSTI)

Power Generation And Distribution Power Generation And Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; Traczyk, P.A. (1994) 200 Wet cooling towers: rule-of-thumb design and simulation Leeper, S.A. (1981) 103 ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) 76 Feed-pump hydraulic performance and design improvement, Phase I: research program design. Final report Brown, W.H.; Gopalakrishnan, S.; Fehlau, R.; Thompson, W.E.; Wilson, D.G. (1982) 69 Seventh Edition Fuel Cell Handbook NETL (2004) 65 Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; Peerenboom, J.P. (1997) 52 Controlled low strength materials (CLSM), reported by ACI Committee

359

Most Viewed Documents - Power Generation and Distribution | OSTI, US Dept  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Power Generation and Distribution Most Viewed Documents - Power Generation and Distribution Electric power high-voltage transmission lines: Design options, cost, and electric and magnetic field levels Stoffel, J.B.; Pentecost, E.D.; Roman, R.D.; et al. (1994) ASPEN Plus Simulation of CO2 Recovery Process Charles W. White III (2003) Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Quarterly technical progress report, September 1993--December 1993 Benemann, J.R.; Oswald, W.J. (1994) Load flow analysis: Base cases, data, diagrams, and results Portante, E.C.; Kavicky, J.A.; VanKuiken, J.C.; et al. (1997) Multilevel converters -- A new breed of power converters Lai, J.S. [Oak Ridge National Lab., TN (United States). Engineering Technology Div.]; Peng, F.Z. [Univ. of Tennessee, Knoxville, TN (United

360

Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron Beam Distributions  

E-Print Network (OSTI)

Experimental Generation and Characterization of Uniformly Filled Ellipsoidal Electron Beam Distributions

Musumeci, P; Rosenzweig, J B; Scoby, C M

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Small Distributed Generation Applications in the Industrial Sector: A Screening Assessment  

Science Conference Proceedings (OSTI)

This report documents a screening assessment of small distributed generation applications in the industrial sector.

2001-12-04T23:59:59.000Z

362

Role of Distributed Generation in U.S. Energy Markets, The  

Reports and Publications (EIA)

Presentation on EIA's projections of energy markets with particular focus on distributed generation.

Information Center

2002-04-01T23:59:59.000Z

363

A Bio-Based Fuel Cell for Distributed Energy Generation  

DOE Green Energy (OSTI)

The technology we propose consists primarily of an improved design for increasing the energy density of a certain class of bio-fuel cell (BFC). The BFCs we consider are those which harvest electrons produced by microorganisms during their metabolism of organic substrates (e.g. glucose, acetate). We estimate that our technology will significantly enhance power production (per unit volume) of these BFCs, to the point where they could be employed as stand-alone systems for distributed energy generation.

Anthony Terrinoni; Sean Gifford

2008-06-30T23:59:59.000Z

364

Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Illinois Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.21 0.20 0.20 1970's 0.21 0.22 0.23 0.27 0.29 0.54 0.58 0.83 0.98 1.11 1980's 1.78 2.12 2.56 3.07 2.88 2.97 2.73 2.68 2.53 2.17 1990's 2.06 2.29 2.44 1.97 1.88 1.66 2.63 2.68 2.27 2.48 2000's 3.12 3.94 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use

365

Optimal Solar PV Arrays Integration for Distributed Generation  

SciTech Connect

Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

Omitaomu, Olufemi A [ORNL; Li, Xueping [University of Tennessee, Knoxville (UTK)

2012-01-01T23:59:59.000Z

366

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

367

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share of sustainable distributed generation in Europe  

E-Print Network (OSTI)

A policy letter. DG-GRID Improving distribution network regulation for enhancing the share-generation of electricity and heat (CHP). This drives the growth of distributed generation (DG) ­ generators connected to the distribution network ­ to significant levels. The DG-GRID project1 carried out by nine European universities

368

Year-to-date natural gas use for electric power generation is down ...  

U.S. Energy Information Administration (EIA)

Natural gas used to generate electricity so far this year is below the high level during the comparable 2012 period, when low natural gas prices led to significant ...

369

The Value of Distributed Generation under Different TariffStructures  

Science Conference Proceedings (OSTI)

Distributed generation (DG) may play a key role in a modern energy system because it can improve energy efficiency. Reductions in the energy bill, and therefore DG attractiveness, depend on the electricity tariff structure; a system created before widespread adoption of distributed generation. Tariffs have been designed to recover costs equitably amongst customers with similar consumption patterns. Recently, electric utilities began to question the equity of this electricity pricing structure for standby service. In particular, the utilities do not feel that DG customers are paying their fair share of transmission and distribution costs - traditionally recovered through a volumetric($/kWh) mechanism - under existing tariff structures. In response, new tariff structures with higher fixed costs for DG have been implemented in New York and in California. This work analyzes the effects of different electricity tariff structures on DG adoption. First, the effects of the new standby tariffs in New York are analyzed in different regions. Next generalized tariffs are constructed, and the sensitivity to varying levels of the volumetric and the demand ($/kW, i.e. maximum rate) charge component are analyzed on New York's standard and standby tariff as well as California's standby tariff. As expected, DG profitability is reduced with standby tariffs, but often marginally. The new standby structures tend to promote smaller base load systems. The amount of time-of-day variability of volumetric pricing seems to have little effect on DG economics.

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-05-31T23:59:59.000Z

370

Assessment of Distributed Generation Potential in JapaneseBuildings  

Science Conference Proceedings (OSTI)

To meet growing energy demands, energy efficiency, renewable energy, and on-site generation coupled with effective utilization of exhaust heat will all be required. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems (or microgrids). This research investigates a method of choosing economically optimal DER, expanding on prior studies at the Berkeley Lab using the DER design optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM finds the optimal combination of installed equipment from available DER technologies, given prevailing utility tariffs, site electrical and thermal loads, and a menu of available equipment. It provides a global optimization, albeit idealized, that shows how the site energy loads can be served at minimum cost by selection and operation of on-site generation, heat recovery, and cooling. Five prototype Japanese commercial buildings are examined and DER-CAM applied to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Based on the optimization results, energy and emission reductions are evaluated. Furthermore, a Japan-U.S. comparison study of policy, technology, and utility tariffs relevant to DER installation is presented. Significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the DER-CAM results. Savings were most noticeable in the sports facility (a very favourable CHP site), followed by the hospital, hotel, and office building.

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida,Masaru

2005-05-25T23:59:59.000Z

371

Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Mississippi Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.20 0.19 1970's 0.20 0.21 0.23 0.24 0.28 0.36 0.46 0.73 0.88 1.28 1980's 1.75 2.34 2.91 3.06 2.94 2.92 2.44 1.99 1.87 2.09 1990's 2.11 2.33 2.34 2.37 1.98 1.82 2.63 2.62 2.33 2.19 2000's 3.37 4.28 NA -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Mississippi Natural Gas Prices

372

Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Minnesota Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.26 0.22 0.22 1970's 0.25 0.25 0.26 0.28 0.33 0.55 0.60 1.24 1.28 2.20 1980's 1.26 4.27 4.43 4.14 3.99 3.45 2.68 2.19 1.81 1.77 1990's 1.89 0.56 0.61 0.47 0.47 0.37 0.68 0.63 0.54 0.82 2000's 1.50 1.40 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Minnesota Natural Gas Prices

373

Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Connecticut Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.35 0.68 0.30 1970's 0.32 0.32 0.35 0.40 0.50 0.58 0.59 1.50 2.60 2.53 1980's 2.76 2.94 3.53 3.30 3.18 3.71 2.53 2.52 2.13 2.97 1990's 3.68 3.08 2.95 3.53 2.62 2.20 3.50 1.54 3.00 0.59 2000's 4.82 4.93 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Connecticut Natural Gas Prices

374

Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Pennsylvania Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.25 0.24 0.24 1970's 0.25 0.29 0.31 0.32 0.40 0.54 0.60 0.92 0.94 1.42 1980's 1.89 2.34 3.02 3.20 3.09 3.06 2.63 2.38 2.36 2.35 1990's 2.57 2.41 2.41 2.83 2.47 2.00 2.71 2.72 2.08 1.97 2000's 3.59 4.76 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Pennsylvania Natural Gas Prices

375

Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Tennessee Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.20 0.20 0.20 1970's 0.20 0.22 0.23 0.24 0.28 0.36 0.49 0.73 0.89 1.26 1980's 1.73 2.25 2.96 3.19 2.94 3.01 2.29 1.85 1.78 1.97 1990's 1.94 2.61 2.44 2.23 1.88 1.59 2.57 2.52 2.17 2.04 2000's 3.44 4.13 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Tennessee Natural Gas Prices

376

Washington Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Washington Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.22 0.21 0.22 1970's 0.22 0.24 0.28 0.33 0.44 0.65 0.78 1.67 1.92 2.38 1980's 3.92 4.34 4.72 3.98 3.72 3.12 2.52 2.11 1.99 2.06 1990's 2.04 1.98 1.89 1.37 1.84 1.78 1.77 1.89 1.76 2.03 2000's 3.07 2.82 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Washington Natural Gas Prices

377

Life Cycle Assessment of a Natural Gas Combined Cycle Power Generation...  

NLE Websites -- All DOE Office Websites (Extended Search)

% of total from natural gas production & distribution % of total from ammonia production & distribution Natural gas (in ground) 169.2 97.6% 0.0% 99.9% 0.1% Coal (in ground) 1.8...

378

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

379

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

380

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the January to June 2004 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Nguyen Minh

2004-07-04T23:59:59.000Z

382

Impact of Air Quality Regulations on Distributed Generation  

Science Conference Proceedings (OSTI)

Relatively small projects for generating electrical power at or near the point of use--distributed generation (DG)--offer unique opportunities for enhancing the U.S. electric system. This report finds that current air quality regulatory practices are inappropriately inhibiting the development of DG through a failure to recognize the environmental benefits offered by DG or by imposing requirements designed for larger systems that are not appropriate to DG systems. The report recommends that air quality regulation be made more efficient and appropriate for DG by establishing national standards for DG equipment. This report also recommends that DG projects be evaluated on a''net'' emissions basis by being given credit for any emission sources that they displace. Air quality regulation should also recognize the benefits of combined heat and power (CHP).

Bluestein, J.; Horgan, S.; Eldridge, M. M.

2002-10-01T23:59:59.000Z

383

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the October 2002 to December 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The following activities have been carried out during this reporting period: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} Part-load performance analysis was conducted {lg_bullet} Primary system concept was down-selected {lg_bullet} Dynamic control model has been developed {lg_bullet} Preliminary heat exchanger designs were prepared {lg_bullet} Pressurized SOFC endurance testing was performed

Nguyen Minh; Faress Rahman

2002-12-31T23:59:59.000Z

384

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

385

GA based energy loss minimization approach for optimal sizing & placement of distributed generation  

Science Conference Proceedings (OSTI)

Distributed Generators (DG) provide the lowest cost solution to handle low voltage or overload problems. In conjunction with such problems, a technique of energy saving is introduced by placement of distributed generation (DG) in distribution systems. ... Keywords: Distributed generation (DG), energy saving, genetic algorithms (GA), optimal sizing and placement

Deependra Singh; Devender Singh; K. S. Verma

2008-04-01T23:59:59.000Z

386

Study on the operation of a low-voltage AC microgrid with multiple distributed generations  

Science Conference Proceedings (OSTI)

This paper aims to study the operation of a grid-connected low-voltage AC microgrid with multiple distributed generations (DGs). First of all, a 400 V low-voltage AC microgrid integrated with a 30 kW microturbine generator, a 13 kW photovoltaic generation ... Keywords: distributed generators, distribution systems, microgrids, steady-state analysis, three-phase power flow

Wei-Tzer Huang

2010-12-01T23:59:59.000Z

387

Time series power flow analysis for distribution connected PV generation.  

SciTech Connect

Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating potential PV impacts.

Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J. [Georgia Institute of Technology, Atlanta, GA; Smith, Jeff [Electric Power Research Institute, Knoxville, TN; Dugan, Roger [Electric Power Research Institute, Knoxville, TN

2013-01-01T23:59:59.000Z

388

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

Electricity and Natural Gas Prices from Supply- side modulesElectricity and Natural Gas Prices from Supply- side modulesfour supply modules (oil and gas, natural gas transmission

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

389

U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

View History: Monthly Annual Download Data (XLS File) U.S. Natural Gas Pipeline & Distribution Use (Million Cubic Feet) U.S. Natural Gas Pipeline & Distribution Use (Million Cubic...

390

The Value of Distributed Generation under Different Tariff Structures  

E-Print Network (OSTI)

Firestone, R. 2004. Distributed Energy Resources CustomerFramework and Tools for Distributed Energy Resources. LBNL-Energy Reliability, Distributed Energy Program of the U.S.

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-01-01T23:59:59.000Z

391

Assessment of Distributed Generation Potential in Japanese Buildings  

E-Print Network (OSTI)

RMFirestone@lbl.gov Keywords distributed energy resources,technologies into distributed energy resource (DER) sys-zation program, the Distributed Energy Resources Custom- er

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2005-01-01T23:59:59.000Z

392

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

J.L. Edwards, (2003), “Distributed Energy Resources CustomerGas-Fired Distributed Energy Resource Characterizations”,Energy Reliability, Distributed Energy Program of the U.S.

Stadler, Michael

2010-01-01T23:59:59.000Z

393

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

2004. European Distributed Energy Projects, EUR 21239,Energy Sources and Distributed Energy Resources. Brussels,International Journal of Distributed Energy Resources, 1 (

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

394

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

and Renewable Energy, Distributed Energy and ElectricPrepared for the Distributed Energy and Electric Reliabilityand Renewable Energy, Distributed Energy and Electric

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

395

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

versions of NEMS. Natural gas prices are higher in AEO2004.forecasted wellhead natural gas price from both versions ofhighly unstable natural gas prices, and the AEO2004 natural

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

396

Natural gas generation lower than last year because of differences ...  

U.S. Energy Information Administration (EIA)

Petroleum & Other Liquids. Crude oil, gasoline, heating oil, diesel, propane, and other liquids including biofuels and natural gas liquids. Natural Gas

397

The Effect of Distributed Energy Resource Competition with Central Generation  

Science Conference Proceedings (OSTI)

Distributed Energy Resource (DER) has been touted as a clean and efficient way to generate electricity at end-use sites, potentially allowing the exhaust heat to be put to good use as well. However, despite its environmental acceptability compared to many other types of generation, it has faced some disapproval because it may displace other, cleaner generation technologies. The end result could be more pollution than if the DER were not deployed. On the other hand, the DER may be competing against older power plants. If the DER is built then these other plants may be retired sooner, reducing their emissions. Or it may be that DER does not directly compete against either new or old plant capacity at the decision-maker level, and increased DER simply reduces the amount of time various plants operate. The key factor is what gets displaced if DER is added. For every kWh made by DER a kWh (or more with losses) of other production is not made. If enough DER is created, some power plants will get retired or not get built so not only their production but their capacity is displaced. Various characteristics of the power system in a region will influence how DER impacts the operation of the grid. The growth in demand in the region may influence whether new plants are postponed or old plants retired. The generation mix, including the fuel types, efficiencies, and emission characteristics of the plants in the region will factor into the overall competition. And public policies such as ease of new construction, emissions regulations, and fuel availability will also come into consideration.

Hadley, SW

2003-12-10T23:59:59.000Z

398

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

2003). Oil and Gas Supply Module Natural Gas Transmissionelectricity and natural gas prices from the NEMS supply-side

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Gumerman, Etan; Marnay, Chris

2005-01-01T23:59:59.000Z

399

Field Verification of Distributed Renewable Generation, Volume 1: Renewable Energy Field Test Concepts  

Science Conference Proceedings (OSTI)

This report describes field verification of distributed renewable generation and focuses on renewable energy field test concepts.

2003-03-25T23:59:59.000Z

400

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Distributed Generation Study/Patterson Farms | Open Energy Information  

Open Energy Info (EERE)

Farms Farms < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3508 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/03/10 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

402

Distributed Generation Study/Matlink Farm | Open Energy Information  

Open Energy Info (EERE)

Matlink Farm Matlink Farm < Distributed Generation Study Jump to: navigation, search Study Location Clymers, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha 145 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machine System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 145 kW0.145 MW 145,000 W 145,000,000 mW 1.45e-4 GW 1.45e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/10/28 Monitoring Termination Date 2005/07/16 Primary Power Application Based Load

403

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

404

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Distributed Generation Study/Emerling Farm | Open Energy Information  

Open Energy Info (EERE)

Emerling Farm Emerling Farm < Distributed Generation Study Jump to: navigation, search Study Location Perry, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/06/07 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

406

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

407

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

Kurt Montgomery; Nguyen Minh

2003-08-01T23:59:59.000Z

408

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

409

Reliability Improvement Programs in Steam Distribution and Power Generation Systems  

E-Print Network (OSTI)

This paper will present alternatives to costly corrective maintenance of the steam trap and condensate return system, and the paybacks associated with instituting a program of planned maintenance management of that system. Energy costs can be reduced by 10% and maintenance costs by 20%, while achieving other tangible improvements in the reliability and efficiency of the system. Recent studies have shown that more than 40% of all installed steam traps and 20% of certain types of valves need some form of corrective action. The majority of all high backpressure problems in condensate return systems are due to poor design criteria. in expandlng or retrofitting existing return systems. By instituting a maintenance management program, a 95% reliability can be gained within two to four annual maintenance cycles. The associated operational problems can be greatly reduced. The maintenance management concept involves: 1) centralized project management; 2) diagnostic and inspection expertise; 3) system troubleshooting; 4) data analysis, reporting and recommendations; 5) maintenance repairs and follow-up; and 6) software and data base management. Several case studies, in which the concept has been successfully applied, will be presented. Energy costs, which have been on the rise for the past ten years, have now leveled off due to global supply and demand issues. But that is not true of the costs to maintain capital equipment such as steam distribution and power generation systems. Those costs continue to rise. If the basic principles of maintenance management are applied, when upgrading poorly maintained steam systems, those upgraded systems can be a fast payback of savings in energy, manpower and inventory. Three major areas where the savings can be gained are the steam traps, valve and condensate return systems. Such systems can be found in power generation, steam distribution, and in all types of durable and non-durable industrial productions.

Petto, S.

1987-09-01T23:59:59.000Z

410

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

411

Siting and sizing of distributed generation units using GA and OPF  

Science Conference Proceedings (OSTI)

This paper deals with the important task of finding the optimal siting and sizing of Distributed Generation (DG) units for a given distribution network so that the cost of active and reactive power generation can be minimized. The optimization technique ... Keywords: distributed generation, genetic alghorithm(GA), optimal power flow(OPF)

M. Hosseini Aliabadi; M. Mardaneh; B. Behbahan

2008-01-01T23:59:59.000Z

412

Intelligent robust control of hybrid distributed generation system under voltage sag  

Science Conference Proceedings (OSTI)

In this paper, design of control strategy for hybrid fuel cell/energy storage distributed power generation system during voltage sag has been presented. The proposed control strategy allows hybrid distributed generation system works properly when a voltage ... Keywords: Energy storage, Fuel cell, Fuzzy sliding control, Hybrid distributed generation, Lyapanov, Neuro-fuzzy, Voltage sag

Amin Hajizadeh; Masoud Aliakbar Golkar

2010-12-01T23:59:59.000Z

413

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC during the January 2003 to June 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. This report summarizes the results obtained to date on: System performance analysis and model optimization; Reliability and cost model development; System control including dynamic model development; Heat exchanger material tests and life analysis; Pressurized SOFC evaluation; and Pre-baseline system definition for coal gasification fuel cell system concept.

Faress Rahman; Nguyen Minh

2003-07-01T23:59:59.000Z

414

A Model of U.S. Commercial Distributed Generation Adoption  

Science Conference Proceedings (OSTI)

Small-scale (100 kW-5 MW) on-site distributed generation (DG) economically driven by combined heat and power (CHP) applications and, in some cases, reliability concerns will likely emerge as a common feature of commercial building energy systems over the next two decades. Forecasts of DG adoption published by the Energy Information Administration (EIA) in the Annual Energy Outlook (AEO) are made using the National Energy Modeling System (NEMS), which has a forecasting module that predicts the penetration of several possible commercial building DG technologies over the period 2005-2025. NEMS is also used for estimating the future benefits of Department of Energy research and development used in support of budget requests and management decisionmaking. The NEMS approach to modeling DG has some limitations, including constraints on the amount of DG allowed for retrofits to existing buildings and a small number of possible sizes for each DG technology. An alternative approach called Commercial Sector Model (ComSeM) is developed to improve the way in which DG adoption is modeled. The approach incorporates load shapes for specific end uses in specific building types in specific regions, e.g., cooling in hospitals in Atlanta or space heating in Chicago offices. The Distributed Energy Resources Customer Adoption Model (DER-CAM) uses these load profiles together with input cost and performance DG technology assumptions to model the potential DG adoption for four selected cities and two sizes of five building types in selected forecast years to 2022. The Distributed Energy Resources Market Diffusion Model (DER-MaDiM) is then used to then tailor the DER-CAM results to adoption projections for the entire U.S. commercial sector for all forecast years from 2007-2025. This process is conducted such that the structure of results are consistent with the structure of NEMS, and can be re-injected into NEMS that can then be used to integrate adoption results into a full forecast.

LaCommare, Kristina Hamachi; Ryan Firestone; Zhou, Nan; Maribu,Karl; Marnay, Chris

2006-01-10T23:59:59.000Z

415

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

of the uncertainty in the natural gas price. Treat- ment ofits exposure to risk from natural gas price volatility. Inits exposure to the natural gas price and maximising its

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

416

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

the electricity and natural gas prices from the NEMS supply-links Electricity and Natural Gas Prices from Supply- sidecombination of low natural gas prices and cold weather would

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

417

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

in the natural gas price. Treat- ment of uncertainty viato risk from natural gas price volatility. In particular,exposure to the natural gas price and maximising its cost

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

418

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

of investment New Power Generation/Distribution EnterprisesDG Distributed Generation Disco distribution company DOEof fuel) Electricity generation, transmission, distribution

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

419

Distributed generation capabilities of the national energy modeling system  

E-Print Network (OSTI)

incentives, program-driven links Electricity and Natural Gasincentives, customer load profiles, electricity tariffs for each GIS region Electricity and Natural Gas

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

420

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

in November 2005 during a natural gas price spike. Figure 226. electricity and natural gas prices for January 2004 tonatural gas price ..

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Distributed Generation Dispatch Optimization under Various Electricity Tariffs  

E-Print Network (OSTI)

2005 during a natural gas price spike. Figure 22 through6. electricity and natural gas prices for January 2004 togas price ..

Firestone, Ryan; Marnay, Chris

2007-01-01T23:59:59.000Z

422

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

Science Conference Proceedings (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

423

Winter natural gas price spikes in New England spur generation ...  

U.S. Energy Information Administration (EIA)

Petroleum is rarely used for power generation (only 0.3% of total annual generation in 2012 for New England) because it typically is more expensive than other fuels.

424

GRR/Section 8-TX-c - Distributed Generation Interconnection | Open Energy  

Open Energy Info (EERE)

GRR/Section 8-TX-c - Distributed Generation Interconnection GRR/Section 8-TX-c - Distributed Generation Interconnection < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 8-TX-c - Distributed Generation Interconnection 8-TX-c - Distributed Generation Interconnection.pdf Click to View Fullscreen Contact Agencies Public Utility Commission of Texas Regulations & Policies PUCT Substantive Rule 25.211 PUCT Substantive Rule 25.212 Triggers None specified Click "Edit With Form" above to add content 8-TX-c - Distributed Generation Interconnection.pdf 8-TX-c - Distributed Generation Interconnection.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative This flowchart illustrates the process for distributed generation (DG)

425

Natural gas and renewable shares of electricity generation ...  

U.S. Energy Information Administration (EIA)

Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium. Uranium fuel, nuclear reactors, generation, spent fuel. ...

426

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network (OSTI)

generation investment by a microgrid under uncertainty.M. E?ects of carbon tax on microgrid combined heat and powersite generation. Nevertheless, a microgrid contemplating the

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

427

Is The Distributed Generation Revolution Coming: A Federal Perspective  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ways (or some combination of them): Reduce demand in the load center Build more generation close to the load center Build more transmission to enable distant generation to...

428

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network (OSTI)

operating strategy of the microgrid is not known in advance,Generation Investment by a Microgrid Under Uncertainty AfzalGeneration Investment by a Microgrid Under Uncertainty Afzal

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

429

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network (OSTI)

Effects of carbon tax on microgrid combined heat and powerGeneration Investment by a Microgrid under Uncertainty AfzalGeneration Investment by a Microgrid under Uncertainty Afzal

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

430

Small Gas Turbines for Distributed Generation Markets: Technology, Products, and Business Issues  

Science Conference Proceedings (OSTI)

Small gas turbines (300 kW to 5 MW) offer an attractive way for utilities and energy service companies to generate electric power within distribution grids and for consumers to generate their own power. Distributed generation also benefits utilities by deferring or avoiding costly expansion of the power transmission and distribution system, which could allow them to offer customers lower cost power. Gas turbines process more power-generation cycle air per unit size and weight of machine than do reciproca...

2000-12-06T23:59:59.000Z

431

How much coal, natural gas, or petroleum is used to generate a ...  

U.S. Energy Information Administration (EIA)

Reserves, production, prices, employ- ment and productivity, distribution, stocks, imports and exports. ... How much does it cost to produce crude oil and natural gas?

432

Next Generation * Natural Gas (NG)2 Information Requirements--Executive Summary  

Reports and Publications (EIA)

The Energy Information Administration (EIA) has initiated the Next Generation * Natural Gas (NG)2 project to design and implement a new and comprehensive information program for natural gas to meet customer requirements in the post-2000 time frame.

Information Center

2000-10-01T23:59:59.000Z

433

Today in Energy - Natural gas use for power generation ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... (through November), relative to the same time period in 2012. ... given the large cost advantage of natural gas.

434

Coal regains some electric generation market share from natural ...  

U.S. Energy Information Administration (EIA)

... a combination of higher prices for natural gas and increased demand for electricity during the summer months led electric systems across much of the country to ...

435

How much coal, natural gas, or petroleum is used to generate a ...  

U.S. Energy Information Administration (EIA)

How much coal, natural gas, or petroleum is used to generate a kilowatt-hour of electricity? The amount of fuel used to generate electricity depends on the efficiency ...

436

Monthly coal- and natural gas-fired generation equal for first ...  

U.S. Energy Information Administration (EIA)

Recently published electric power data show that, for the first time since EIA began collecting the data, generation from natural gas-fired plants is ...

437

The Potential Benefits of Distributed Generation and the Rate-Related  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Potential Benefits of Distributed Generation and the The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion. Report Pursuant to Section 1817 of the Energy Policy Act of 2005. The Potential Benefits of Distributed Generation and the Rate-Related Issues That May Impede Its Expansion More Documents & Publications The potential benefits of distributed deneration and rate-related issues that may impede issues its expansion. June 2007 Notice of inquiry and request for Information - Study of the potential benefits of distributed generation: Federal Register Notice Volume 71, No.

438

The Value of Distributed Generation under Different Tariff Structures  

E-Print Network (OSTI)

electricity tariffs and rates is provided in Table 1. Natural gas rates were more consistent across the state,

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-01-01T23:59:59.000Z

439

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

year normalized weather sample; containing simulated hourly estimates of end-use electricity and natural gas consumption

Marnay, Chris

2010-01-01T23:59:59.000Z

440

Distributed Generation Potential of the U.S. Commercial Sector  

E-Print Network (OSTI)

Module Petroleum Market Module Conversion Oil and Gas Supply Module Natural Gas Transmission limits. The submodule receives electricity and natural gas prices from the NEMS supply-side modules are reciprocating engines fueled by natural gas. Microturbines are small (30-200 kW) turbine engines, also usually

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

Science Conference Proceedings (OSTI)

Lawrence Berkeley National Laboratory (LBL) is working with the California Energy Commission (CEC) to determine the role of distributed generation (DG) in greenhouse gas reductions. The impact of DG on large industrial sites is well known, and mostly, the potentials are already harvested. In contrast, little is known about the impact of DG on commercial buildings with peak electric loads ranging from 100 kW to 5 MW. We examine how DG with combined heat and power (CHP) may be implemented within the context of a cost minimizing microgrid that is able to adopt and operate various smart energy technologies, such as thermal and photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, and storage systems. We use a mixed-integer linear program (MILP) that has the minimization of a site's annual energy costs as objective. Using 138 representative commercial sites in California (CA) with existing tariff rates and technology data, we find the greenhouse gas reduction potential for California's commercial sector. This paper shows results from the ongoing research project and finished work from a two year U.S. Department of Energy research project. To show the impact of the different technologies on CO2 emissions, several sensitivity runs for different climate zones within CA with different technology performance expectations for 2020 were performed. The considered sites can contribute between 1 Mt/a and 1.8 Mt/a to the California Air Resources Board (CARB) goal of 6.7Mt/a CO2 abatement potential in 2020. Also, with lower PV and storage costs as well as consideration of a CO2 pricing scheme, our results indicate that PV and electric storage adoption can compete rather than supplement each other when the tariff structure and costs of electricity supply have been taken into consideration. To satisfy the site's objective of minimizing energy costs, the batteries will be charged also by CHP systems during off-peak and mid-peak hours and not only by PV during sunny on-peak hours.

Stadler, Michael; Marnay, Chris; Cardoso, Goncalo; Megel, Olivier; Siddiqui, Afzal; Lai, Judy

2009-08-15T23:59:59.000Z

442

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

DOE Green Energy (OSTI)

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) under Cooperative Agreement DE-FC2601NT40779 for the US Department of Energy, National Energy Technology Laboratory (DoE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a gas turbine. A conceptual hybrid system design was selected for analysis and evaluation. The selected system is estimated to have over 65% system efficiency, a first cost of approximately $650/kW, and a cost of electricity of 8.4 cents/kW-hr. A control strategy and conceptual control design have been developed for the system. A number of SOFC module tests have been completed to evaluate the pressure impact to performance stability. The results show that the operating pressure accelerates the performance degradation. Several experiments were conducted to explore the effects of pressure on carbon formation. Experimental observations on a functioning cell have verified that carbon deposition does not occur in the cell at steam-to-carbon ratios lower than the steady-state design point for hybrid systems. Heat exchanger design, fabrication and performance testing as well as oxidation testing to support heat exchanger life analysis were also conducted. Performance tests of the prototype heat exchanger yielded heat transfer and pressure drop characteristics consistent with the heat exchanger specification. Multicell stacks have been tested and performance maps were obtained under hybrid operating conditions. Successful and repeatable fabrication of large (>12-inch diameter) planar SOFC cells was demonstrated using the tape calendering process. A number of large area cells and stacks were successfully performance tested at ambient and pressurized conditions. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Integrated gasification fuel cell systems or IGFCs were developed and analyzed for plant sizes in excess of 200 MW. Two alternative integration configurations were selected with projected system efficiency of over 53% on a HHV basis, or about 10 percentage points higher than that of the state-of-the-art Integrated Gasification Combined Cycle (IGCC) systems.

Nguyen Minh

2005-12-01T23:59:59.000Z

443

Smartgrids and distributed generation: the future electricity networks of the European union  

Science Conference Proceedings (OSTI)

A new concept for the European electrical system is emerging where a portion of the electricity generated by large conventional plants will be displaced by a great number of small generators disseminated throughout the territory. In this scenario, each ... Keywords: distributed generation, electrical distribution systems, energy and environment

Francesco Muzi

2008-02-01T23:59:59.000Z

444

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

history of concern about such emissions has led to significant improvements in the polluting characteristics of electricity generation

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

445

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Generation Facilities. California Energy Commission,Production for 2001. California Energy Commission,Power Plants. California Energy Commission, Sacramento, CA.

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

446

Future power market shares of coal, natural gas generators depend ...  

U.S. Energy Information Administration (EIA)

Natural gas combined-cycle capacity represented only 7% of total capacity in the region in 2011, but is projected to rise to 11% in 2040 in the Reference Case.

447

Analyzing Natural Gas Based Hydrogen Infrastructure - Optimizing Transitions from Distributed to Centralized H2 Production  

E-Print Network (OSTI)

Station Storage Storage Cost $500/kg Natural gas feedstocknatural gas steam methane reforming (SMR) –includes hydrogen production and storagefor storage, distribution or use H 2 Natural gas Figure 3

Yang, Christopher; Ogden, Joan M

2005-01-01T23:59:59.000Z

448

Natural Variations in the Analytical Form of the Raindrop Size Distribution  

Science Conference Proceedings (OSTI)

Empirical analyses are shown to imply variation in the shape or analytical form of the raindrop size distribution consistent with that observed experimentally and predicted theoretically. These natural variations in distribution shape are ...

Carlton W. Ulbrich

1983-10-01T23:59:59.000Z

449

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

utilities, the electricity tariff has time- of-use (TOU)energy loads, 4 electricity and natural gas tariff structurewhen the tariff structure and costs of electricity supply

Stadler, Michael

2010-01-01T23:59:59.000Z

450

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

CARB's emission regulations (e.g. , natural gas and dieselnatural gas turbines) and those technologies that have been certified as meeting the 2003 or 2007 emissions regulations (

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

451

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

fuels, including oil, landfill gas, and diesel. For most ofopportunity fuels" such as landfill gas) and fuel cells withconsumed (natural gas, landfill gas, digester gas, diesel

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

452

Distributed Generation: Which technologies? How fast will they...  

NLE Websites -- All DOE Office Websites (Extended Search)

Osborn Utility deregulation, environmental issues, increases in electricity demand, natural gaselectricity rate changes, new technologies, and several other key drivers are...

453

The Value of Distributed Generation under Different Tariff Structures  

E-Print Network (OSTI)

various tariffs Utility Electricity Bill inv. inv. no inv.major components of customer electricity bills are variabledown into utility electricity bills, utility natural gas

Firestone, Ryan; Magnus Maribu, Karl; Marnay, Chris

2006-01-01T23:59:59.000Z

454

Greenhouse Gas Abatement with Distributed Generation in California's Commercial Buildings  

E-Print Network (OSTI)

by heat activated absorption cooling, direct-fired naturalMW) solar thermal for absorption cooling (MW) adopoted heatdisplaced due to absorption building cooling (GWh/a) annual

Stadler, Michael

2010-01-01T23:59:59.000Z

455

Natural convection flow over an inclined flat plate with internal heat generation and variable viscosity  

Science Conference Proceedings (OSTI)

The present investigation deals with study of laminar natural convection flow of a viscous fluid over a semi-infinite flat plate inclined at a small angle to the horizontal with internal heat generation and variable viscosity. The dimensionless boundary ... Keywords: Heat generation, Inclined flat surface, Natural convection, Temperature dependent viscosity

S. Siddiqa; S. Asghar; M. A. Hossain

2010-11-01T23:59:59.000Z

456

Methodology The electricity generation and distribution network in the Western United States is  

E-Print Network (OSTI)

Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

Hall, Sharon J.

457

Parallel and distributed trajectory generation of redundant manipulators through cooperation and competition among subsystems  

Science Conference Proceedings (OSTI)

Autonomous distributed control (ADC) is one of the most attractive approaches for more versatile and autonomous robot systems. The paper proposes a parallel and distributed trajectory generation method for redundant manipulators through cooperative and ...

T. Tsuji; S. Nakayama; K. Ito

1997-06-01T23:59:59.000Z

458

Generation of Moist Potential Vorticity in Extratropical Cyclones. Part II: Sensitivity to Moisture Distribution  

Science Conference Proceedings (OSTI)

The effects of different moisture distributions on the generation of moist potential vorticity (MPV) in extratropical cyclones are examined by numerical simulations. These sensitivity experiments show that low-level negative MPV generation ...

Han-Ru Cho; Zuohao Cao

1998-02-01T23:59:59.000Z

459

A hybrid simulation framework to assess the impact of renewable generators on a distribution network  

Science Conference Proceedings (OSTI)

With an increasing number of small-scale renewable generator installations, distribution network planners are faced with new technical challenges (intermittent load flows, network imbalances...). Then again, these decentralized generators (DGs) present ...

Fanny Boulaire; Mark Utting; Robin Drogemuller; Gerard Ledwich; Iman Ziari

2012-12-01T23:59:59.000Z

460

MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions  

E-Print Network (OSTI)

In this note I illustrate the program MINT, a FORTRAN program for Monte Carlo adaptive integration and generation of unweighted distributions.

Nason, P

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

MINT: a Computer Program for Adaptive Monte Carlo Integration and Generation of Unweighted Distributions  

E-Print Network (OSTI)

In this note I illustrate the program MINT, a FORTRAN program for Monte Carlo adaptive integration and generation of unweighted distributions.

P. Nason

2007-09-13T23:59:59.000Z

462

Decentralized control techniques applied to electric power distributed generation in microgrids.  

E-Print Network (OSTI)

??Distributed generation of electric energy has become part of the current electric power system. In this context a new scenario is arising in which small… (more)

Vásquez Quintero, Juan Carlos

2009-01-01T23:59:59.000Z

463

Modeling of Doubly Fed Induction Generators for Distribution System Power Flow Analysis.  

E-Print Network (OSTI)

??Large-scale integration of Wind Generators (WGs) with distribution systems is underway right across the globe in a drive to harness green energy. The Doubly Fed… (more)

Dadhania, Amitkumar

2010-01-01T23:59:59.000Z

464

Simulation of Stability Analysis for Distribution Systems with Dispersed Generation Using Matlab/Simulink.  

E-Print Network (OSTI)

??This thesis is to investigate the voltage sag, transient stability and operation feasibility of power islanding with different types of dispersed generation in distribution systems.… (more)

Huang, Kun-Cyuan

2005-01-01T23:59:59.000Z

465

Role of solid oxide fuel cell distributed generation for stationary power application.  

E-Print Network (OSTI)

??Based on an availabe fuel cell dyanmical model, an inportant concept feasible operating area is introduced. Fuel cell based distributed generator is studied to solve… (more)

Li, Yonghui.

2008-01-01T23:59:59.000Z

466

Utility/Industry Partnerships Involving Distributed Generation Technologies in Evolving Electricity Markets  

E-Print Network (OSTI)

Electricity markets in the United States are undergoing unprecedented structural changes as a result of the confluence of regulatory, competitive, and technological forces. This paper will introduce the role of distributed generation technologies in evolving electric markets and will review both current and emerging distributed generation technologies aimed at retail industrial, commercial and residential markets. This paper will draw upon several Electric Power Research Institute’s (EPRI) and member utility case studies involving the assessment of distributed generation in premium power service, standby power and industrial cogeneration applications. In addition, EPRI products and services which can help evaluate energy service options involving distributed generation will also be briefly reviewed.

Rastler, D. M.

1997-04-01T23:59:59.000Z

467

Strategic Intelligence Update: Energy Storage & Distributed Generation, May-June 2010  

Science Conference Proceedings (OSTI)

Distributed generation and energy storage technologies add value to a wide range of applications within the electric utility enterprise. Both distributed generation and energy storage systems can help utilities shift and manage peak loads within the distribution system, improve reliability, and potentially help defer infrastructure upgrades. Bulk energy storage especially has the ability to improve the value of intermittent renewable resources. Smaller-scale distributed energy storage, on the order of a ...

2010-05-28T23:59:59.000Z

468

A Study of Distributed Generation System Characteristics and Protective Load Control Strategy  

E-Print Network (OSTI)

turbines: Doubly-fed Induction Generator (DFIG) and Fixed-speed Wind Turbine (FSWT) are compared), Distributed Generation System (DGS), Doubly- fed Induction Generator (DFIG), Fixed-speed Wind Turbine (FSWT (FSWT) and doubly-fed induction generator wind turbine (DFIG) have different characteristics, when

Chen, Zhe

469

Introduction to Distributed Generation and the CERTS Microgrid  

NLE Websites -- All DOE Office Websites (Extended Search)

operation of small-scale generators clustered with loads in local groupings called microgrids. Conceptually and in simulation, a electrical engineering system that will allow...

470

Wind generating capacity is distributed unevenly across the United ...  

U.S. Energy Information Administration (EIA)

The highest concentration of wind turbines in the United States is in the Great Plains states, where the best conditions for onshore wind power generation exist.

471

Definition: Generator-To-Load Distribution Factor | Open Energy...  

Open Energy Info (EERE)

on an identified transmission facility or Flowgate.1 Related Terms Load Shift Factor, transmission lines, Generator Shift Factor, transmission line, flowgate, smart grid...

472

Voltage Support in Distributed Generation by Power Electronics.  

E-Print Network (OSTI)

?? There is an increasing amount of power processed through power electronics in the areas of generation interface, energy storage and loads. This increment enables… (more)

Strand, Bjørn Erik

2008-01-01T23:59:59.000Z

473

Distributed Generation System Characteristics and Costs in the...  

Gasoline and Diesel Fuel Update (EIA)

on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for...

474

Impact of Higher Natural Gas Prices on Local Distribution ...  

U.S. Energy Information Administration (EIA)

sectors of the natural gas market between 1999 and 2006, ... rate structure and revenue collection are appropriate for each customer service category.

475

Distributed Hydrogen Production from Natural Gas: Independent Review  

DOE Green Energy (OSTI)

Independent review report on the available information concerning the technologies needed for forecourts producing 150 kg/day of hydrogen from natural gas.

Fletcher, J.; Callaghan, V.

2006-10-01T23:59:59.000Z

476

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Applications1  

E-Print Network (OSTI)

Control of Natural Gas Catalytic Partial Oxidation for Hydrogen Generation in Fuel Cell Ghosh3 , Huei Peng2 Abstract A fuel processor that reforms natural gas to hydrogen-rich mixture to feed of the hydrogen in the fuel processor is based on catalytic partial oxidation of the methane in the natural gas

Peng, Huei

477

The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)  

E-Print Network (OSTI)

Potential for Distributed Generation in Japanese PrototypePotential for Distributed Generation in Japanese PrototypePotential for Distributed Generation in Japanese Prototype

Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

2004-01-01T23:59:59.000Z

478

Nature of Planetary Matter and Magnetic Field Generation in the Solar System  

E-Print Network (OSTI)

Understanding the nature of the matter comprising the Solar System is crucial for understanding the mechanism that generates the Earth's geomagnetic field and the magnetic fields of other planets and satellites. The commonality in the Solar System of matter like that of the inside of the Earth, together with common nuclear reactor operating conditions,forms the basis for generalizing the author's concept of nuclear geomagnetic field generation to planetary magnetic field generation by natural planetocentric nuclear fission reactors.

J. Marvin Herndon

2009-03-26T23:59:59.000Z

479

Distributed Photovoltaic Generation in Residential Distribution Systems: Impacts on Power Quality and Anti-islanding.  

E-Print Network (OSTI)

??The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near… (more)

Mitra, Parag

2013-01-01T23:59:59.000Z

480

Some Aspects of Distribution System Planning in the Context of Investment in Distributed Generation.  

E-Print Network (OSTI)

??A paradigm shift in distribution system design and planning is being led by the deregulation of the power industry and the increasing adoption of distributed… (more)

Wong, Steven M.

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "distributed generation natural" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Traces generation to simulate large-scale distributed applications  

Science Conference Proceedings (OSTI)

In order to study the performance of scheduling algorithms, simulators of parallel and distributed applications need accurate models of the application's behavior during execution. For this purpose, traces of low-level events collected during the actual ...

Olivier Dalle; Emilio P. Mancini

2011-12-01T23:59:59.000Z

482

Answering natural language queries over linked data graphs: a distributional semantics approach  

Science Conference Proceedings (OSTI)

This paper demonstrates Treo, a natural language query mechanism for Linked Data graphs. The approach uses a distributional semantic vector space model to semantically match user query terms with data, supporting vocabulary-independent (or ... Keywords: distributional-compositional semantics, knowledge graphs, natural language queries, schema-agnostic queries, semantic search

André Freitas; Fabrício F. de Faria; Seán O'Riain; Edward Curry

2013-07-01T23:59:59.000Z

483

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

California Gross System Electricity Production for 2001.CA. http://energy.ca.gov/electricity/gross_system_power.htmlCEC. 2002c. 1992-2001 Electricity Generation By Fuel Type.

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

484

Quantifying the Air Pollution Exposure Consequences of Distributed Electricity Generation  

E-Print Network (OSTI)

Beach Gen Station 1: Duke Energy Moss Landing LLC 2: Moss2: So Cal Edison Co 1: Duke Energy-South Bay Power PL 2:Beach Generating Station Duke Energy Moss Landing LLC AES

Heath, Garvin A.; Granvold, Patrick W.; Hoats, Abigail S.; Nazaroff, William W

2005-01-01T23:59:59.000Z

485

Photovoltaic generator modeling for large scale distribution system studies.  

E-Print Network (OSTI)

??Geographic regions with favorable conditions for photovoltaic (PHV) power generation are seeing increasing numbers of three-phase commercial installations and single-phase residential sized installations. PHV sources… (more)

Golder, Andrew S.

2007-01-01T23:59:59.000Z

486

Distributed Generation Study/10 West 66th Street Corp | Open Energy  

Open Energy Info (EERE)

10 West 66th Street Corp 10 West 66th Street Corp < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Microturbine Prime Mover Ingersoll Rand I-R PowerWorks 70 Heat Recovery Systems Built-in Fuel Natural Gas System Installer DSM Engineering System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 70 kW0.07 MW 70,000 W 70,000,000 mW 7.0e-5 GW 7.0e-8 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 300000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/11/17 Monitoring Termination Date 1969/12/31

487

Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille |  

Open Energy Info (EERE)

Aisin Seiki G60 at Hooligans Bar and Grille Aisin Seiki G60 at Hooligans Bar and Grille < Distributed Generation Study Jump to: navigation, search Study Location Liverpool, New York Site Description Commercial-Restaurant Study Type Field Test Technology Internal Combustion Engine Prime Mover Aisin Seiki G60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer ECO Technical Solutions System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 6 kW0.006 MW 6,000 W 6,000,000 mW 6.0e-6 GW 6.0e-9 TW Nominal Voltage (V) 240 Heat Recovery Rating (BTU/hr) 46105 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Customer Assembled Start Date 2005/07/10 Monitoring Termination Date 2005/07/21

488

Price for Natural Gas Pipeline and Distribution Use  

U.S. Energy Information Administration (EIA)

Natural Gas Prices (Dollars per Thousand Cubic Feet) ... Pennsylvania: 3.59: 4.76: NA-----1967-2005: Rhode Island: 4.67: 5.20: NA-----1967-2005: South Carolina: 2.54 ...

489

Integrating Small Scale Distributed Generation into a Deregulated Market: Control Strategies and Price Feedback  

E-Print Network (OSTI)

Small scale power generating technologies, such as gas turbines, small hydro turbines, photovoltaics, wind turbines and fuel cells, are gradually replacing conventional generating technologies, for various applications, in the electric power system. The industry restructuring process in the United States is exposing the power sector to market forces, which is creating competitive structures for generation and alternative regulatory structures for the transmission and distribution systems. The potentially conflicting economic and technical demands of the new, independent generators introduce a set of significant uncertainties. What balance between market forces and centralized control will be found to coordinate distribution system operations? How will the siting of numerous small scale generators in distribution feeders impact the technical operations and control of the distribution system? Who will provide ancillary services (such as voltage support and spinning reserves) in the new competitive environment? This project investigates both the engineering and market integration of distributed generators into the distribution system. On the technical side, this project investigates the frequency performance of a distribution system that has multiple small scale generators. Using IEEE sample distribution systems and new dynamic generator models, this project develops general methods for

Judith Cardell; Marija Ili?; Richard D. Tabors

1997-01-01T23:59:59.000Z

490

Program on Technology Innovation: Identification of Embedded Applications for New and Emerging Distributed Generation Technologies  

Science Conference Proceedings (OSTI)

Novel distributed generation (DG) technologies hold the potential of serving the needs of a variety of end-use applications, both existing as well as emerging. This report describes some of the emerging end-use applications and evaluates their potential for integration with distributed generation applications. The analysis addresses their value in terms of modularity, environmental friendliness, and favorable production economics.

2006-11-16T23:59:59.000Z

491

Assessment of Distributed Resources: A Case Study for Tri-State Generation and Transmission Association, Inc.  

Science Conference Proceedings (OSTI)

During the process of upgrading service for three distribution customers, Tri-State Generation and Transmission Association (Tri-State) evaluated various distributed generation (DIS-GEN) options. Candidate DIS-GEN systems competitive with other options could become the basis for customer upgrade solutions.

1997-12-05T23:59:59.000Z

492

An active islanding detection method for small-scale distributed generators  

Science Conference Proceedings (OSTI)

This paper proposes a new islanding detection method for use in a small-scale, grid-interconnected distributed generator system. The proposed islanding detection method is based on voltage fluctuation injection, which can be obtained through high-impedance ... Keywords: correlation factor, distributed generator, islanding detection, voltage fluctuation injection

Wen-Yeau Chang

2008-06-01T23:59:59.000Z

493

Economical design of gate-commutated inverters for the grid-tied distributed generators  

Science Conference Proceedings (OSTI)

The cost-effectiveness of small distributed generating resources is vital to the success of the high penetration of distributed generators within the microgrid concept. A common mechanism is the use of highly efficient inverters following the electrical storage systems. In this paper

Mujahidul Islam; Adedamola Omole; Arif Islam; Alexander Domijan Jr.

2011-01-01T23:59:59.000Z

494

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

DOE Green Energy (OSTI)

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

495

Natural circulation steam generator model for optimal steam generator water level control  

SciTech Connect

Several authors have cited the control of steam generator water level as an important problem in the operation of pressurized water reactor plants. In this paper problems associated with steam generator water level control are identified, and advantages of modern estimation and control theory in dealing with these problems are discussed. A new state variable steam generator model and preliminary verification results using data from the loss of fluid test (LOFT) plant are also presented.

Feeley, J.J.

1979-06-01T23:59:59.000Z

496

International Natural Gas Prices for Electricity Generation - EIA  

Gasoline and Diesel Fuel Update (EIA)

Electricity Generation for Selected Countries1 Electricity Generation for Selected Countries1 U.S. Dollars per 107 Kilocalories - Gross Calorific Value2 Country 2001 2002 2003 2004 2005 2006 2007 2008 2009 Argentina NA NA NA NA NA NA NA NA NA Australia NA NA NA NA NA NA NA NA NA Austria NA NA NA NA NA NA NA NA NA Barbados NA NA NA NA NA NA NA NA NA Belgium C C C C C C C C C Bolivia NA NA NA NA NA NA NA NA NA Brazil NA NA NA NA NA NA NA NA NA Canada 145.5 144.7 174.9 171.9 225.2 NA NA NA NA Chile NA NA NA NA NA NA NA NA NA China NA NA NA NA NA NA NA NA NA Chinese Taipei (Taiwan) 244.7 252.1 258.6 281.0 326.2 348.5 400.8 499.3 NA

497

Energy Storage and Distributed Energy Generation Project, Final Project Report  

DOE Green Energy (OSTI)

tested, and scaled up to provide relief for both underserved and overstressed portions of the Nation’s grid. TEC’s research is closely associated with Sections 5.0 and 6.0 of the DOE "Five-year Program Plan for FY2008 to FY2012 for Electric Transmission and Distribution Programs, August 2006.”

Schwank, Johannes; Mader, Jerry; Chen, Xiaoyin; Mi, Chris; Linic, Suljo; Sastry, Ann Marie; Stefanopoulou, Anna; Thompson, Levi; Varde, Keshav

2008-03-31T23:59:59.000Z

498

Optimal Siting and Sizing of Solar Photovoltaic Distributed Generation to Minimize Loss, Present Value of Future Asset Upgrades and Peak Demand Costs on a Real Distribution Feeder.  

E-Print Network (OSTI)

??The increasing penetration of distributed generation (DG) in power distribution systems presents technical and economic benefits as well as integration challenges to utility engineers. Governments… (more)

Mukerji, Meghana

2011-01-01T23:59:59.000Z

499

Compatibility Tests for Dissimilar Types of Distributed Generation Powering a Microgrid  

Science Conference Proceedings (OSTI)

Microgrids are small power systems that can operate independently of the bulk power system. They are composed of one or more distributed resources (DR) and electrical loads that are interconnected by a distribution system. Most of today's microgrids are fairly simple in design, consisting of a single generator supplying a dedicated load or of multiple identical generating units ganged to operate much like a single unit. This report addresses technical issues involved when dissimilar generators are used.

2003-03-12T23:59:59.000Z

500

Novel Distributed Generation Control and Dispatching System: Application Validation and Benefits Quantification  

Science Conference Proceedings (OSTI)

This report describes a novel control and dispatching hardware/software system for distributed generation. The system allows the connection of multiple generators at a number of sites to a utility control and monitoring system for the purpose of providing peaking power for the utility. Using distributed generation for this purpose is a potentially cost-effective solution to localized power system constraints caused by the inability to increase power transmission into an area experiencing steady growth in...

2002-10-01T23:59:59.000Z